WO2018000240A1 - Procédé et système destinés à l'optimisation du déploiement de fonctions de réseau virtuel dans un réseau de communication qui utilise un réseautage défini par logiciel - Google Patents

Procédé et système destinés à l'optimisation du déploiement de fonctions de réseau virtuel dans un réseau de communication qui utilise un réseautage défini par logiciel Download PDF

Info

Publication number
WO2018000240A1
WO2018000240A1 PCT/CN2016/087658 CN2016087658W WO2018000240A1 WO 2018000240 A1 WO2018000240 A1 WO 2018000240A1 CN 2016087658 W CN2016087658 W CN 2016087658W WO 2018000240 A1 WO2018000240 A1 WO 2018000240A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
vnf
network
configuration
vnfs
Prior art date
Application number
PCT/CN2016/087658
Other languages
English (en)
Inventor
Xiaoyu Wang
Tao Zheng
Original Assignee
Orange
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orange filed Critical Orange
Priority to PCT/CN2016/087658 priority Critical patent/WO2018000240A1/fr
Publication of WO2018000240A1 publication Critical patent/WO2018000240A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5061Partitioning or combining of resources
    • G06F9/5077Logical partitioning of resources; Management or configuration of virtualized resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0823Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0895Configuration of virtualised networks or elements, e.g. virtualised network function or OpenFlow elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/16Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks using machine learning or artificial intelligence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/40Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks using virtualisation of network functions or resources, e.g. SDN or NFV entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5041Network service management, e.g. ensuring proper service fulfilment according to agreements characterised by the time relationship between creation and deployment of a service
    • H04L41/5054Automatic deployment of services triggered by the service manager, e.g. service implementation by automatic configuration of network components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/508Network service management, e.g. ensuring proper service fulfilment according to agreements based on type of value added network service under agreement
    • H04L41/5096Network service management, e.g. ensuring proper service fulfilment according to agreements based on type of value added network service under agreement wherein the managed service relates to distributed or central networked applications

Definitions

  • a given end-to-end service that operates over a network can be defined in terms of a forwarding graph of network functions and end points/terminals.
  • Typical communications networks comprise network infrastructure over which a plurality of services can operate simultaneously.
  • the expression “network service” used herein refers to some service that is implemented with the aid of a network and which involves performance of technical functions by components in the network (e.g. communications functions, networking functions, firewall functionality, domain name resolution functionality, and so on) .
  • the service can be visualised as a forwarding graph that starts at an LTE vBS 5 (represented in the forwarding graph as 63) .
  • This communicates with an MME 47 in the core mobile network 19 (represented in the forwarding graph as 65) and then an SGW 45 in the core mobile network 19 (represented in the forwarding graph as 67) .
  • the service communicates with a PGW 55 in the mobile IP networking system 29 (represented in the forwarding graph as 69) and an App server in the mobile IP networking system 29 (represented in the forwarding graph as 71) .
  • VNFs may be instantiated on network infrastructure so that the network has the capability of supporting different network services.
  • resources computing power, storage, networking resources
  • specific hardware component will be allocated for implementing the associated virtual machine/run the associated application software.
  • a forwarding graph for a network service in a static manner, making use of a fixed routing between specific instances of VNFs of determined types deployed on particular network infrastructure components.
  • the network may well include multiple instances of the same types of VNFs and it may be possible for the same service to be implemented using different instances of the VNFs. There may be some benefit to choosing one path through a first set of VNF instances (one service chain) over a second path through a second set of VNF instances (asecond service chain) .
  • Networks may make use of Software Defined Networking (SDN) to define service chains for network services in a dynamic manner.
  • SDN makes it possible to change, dynamically, the network function forwarding graph that is used to implement a particular network service, by re-routing the traffic path among the servers of the network infrastructure.
  • This dynamic selection of service chains may help to maximize quality of service/minimize consumption of resources, for example, by responding to changes occurring at the user interface and/or changes in network conditions.
  • Different policies may be applied when recalculating the routing path. For example, the SDN controller may select a new path that has smaller traffic forwarding delay from end to end, based on a QoS policy.
  • the computing cost of the instances in the fitness calculation are set to be equal to those of a single instance of the VNF.
  • the fitness function takes the form of:
  • I the number of each VNF type, indexed by i;
  • M the number of VNF service chains, indexed by m;
  • N a number of servers in a network infrastructure layer, indexed by n;
  • the possible configurations are constrained by a function of the form:
  • each of said candidate configurations defining an allocation of VNFs to infrastructure equipment to enable implementation of a set of service chains which could be specified by the SDN controller for the set of network services, the set of service chains including said plural alternative service chains;
  • a potential configuration (e.g. best configuration so far) may be selected before the exit condition is checked.
  • FIGS11A and 11B illustrate only two possible VNF-deployment configurations that could be used to allocate the resources of three servers to VNFs used in implementing the three network services. Other configurations are possible but it is not expedient to give an exhaustive description here of all the possibilities.
  • k is an index to differentiate different candidate VNF-deployment configurations from one another. So a given value of k designates a particular deployment of VNFs over the network infrastructure.
  • the optimization method seeks to determine which configuration k is “optimal” according to a chosen metric.
  • Lm the number of VNFs in a service chain m, indexed by l.
  • L 4 is equal to two because there are two VNFs in this service chain S 4 .
  • s k l represents the identity of the server on which the lth VNF of this service chain m is deployed according to the kth configuration.
  • n1 and n2 represent respectively server1 and server2.
  • the communication cost from server1 to server2 equals that from server2 to server1.
  • can be made to be dependent on the direction of communication.
  • ⁇ i is the additional resource cost for instantiating VNF type i.
  • represents the computational cost of running a particular VNF. This is in general composed of two components, a processing cost and a memory cost, with the overall value of ⁇ being the combination of these components.
  • C n represents the maximum resource of server n, and this can be considered to be a cost. Different servers will in general have different capabilities and so C can in general be dependent on the particular server.
  • Z l represents the VNF processing delay for a VNF having index l.
  • equation (1) is representative of the sum of the communication costs between VNFs of the different service chains in the VNF-deployment configuration k (i.e. it is dependent on ⁇ ) and the second term is representative of the sum of the computational costs of running the VNFs in these service chains (i.e. it is dependent on ⁇ ) .
  • Each server n has particular resources Cn and if a candidate VNF-deployment configuration would result in Cn being exceeded then this candidate configuration cannot be implemented in the real world.
  • This requirement acts as a constraint on the candidate configurations that may be selected as the “optimal” configuration.
  • the constraint may be expressed according to relation (2) below:
  • Qm represents a target QoS level to be provided by service chain m and, thus, defines a constraint on service chain m.
  • Qm may serve as a constraint that may be expressed using relation (3) below:
  • the communication “cost” ⁇ represents the time delay involved in communication between VNFs of service chain m.
  • Figure 6 illustrates a method, according to an embodiment of the invention, which defines service chains having different QoS levels for at least one network service, selects a VNF-deployment configuration, and records routing for service chains in the selected configuration as well as QoS rates associated with the service chains.
  • An SDN controller may refer to the record of routing and QoS rates when selecting service chains for use in implementing network functions.
  • the method of figure 6 enables VNF deployment in network infrastructure, notably servers, to be optimized while at same time predefining the QoS of service chains that may be created by an SDN controller when the VNFs have been deployed.
  • This method considers different service chains which could be created by SDN, with different QoS levels for a certain network service, when deploying VNFs in servers.
  • the process flow is, as follows:
  • S60 Define a number T of QoS levels around the required QoS of each service (or for selected services) .
  • the set of defined QoS levels is [QoS 1 , QoS 2 , ...QoS Req (required) , ., QoS T ]
  • S61 Select a VNF-deployment configuration for the set of M service chains taking QoS into consideration, and record the routing for each service chain in the selected configuration in association with the QoS offered by that service chain.
  • a particular method for selecting a VNF-deployment configuration will be described below. For the time being it may be noted that selecting process takes into account plural different possible service chains for a given network service and these possible service chains may different QoS.
  • Steps S60 to S62 may be performed by an information processing apparatus.
  • VNFs *Servers randomly generating matrices
  • Step S103 generating an initial population
  • the 1s in a given column of the matrix represent the VNFs allocated to a given server taking into account all of the service chains. Duplicate VNFs in different service chains are allowed.
  • Each matrix represents one candidate solution of VNF deployment and, in terms of the genetic algorithm, one genome (individual) .
  • one genome is composed of N ‘chromosomes’a nd the length of each chromosome is, in the present embodiment, the total length of all services chains.
  • the size of initial population is in general related to the scale of the optimisation problem. Generally, the more complex problem needs greater population size.
  • the size of initial population can be set to a random number or a constant value with experience, for example 64 or 128. This size is related to the scale of VNF deployment. The skilled person will recognise that there is a trade-off in that a bigger initial population size will result in a greater search space and less iterations before convergence however the calculations required will require a greater computational power. Conversely a smaller initial population size requires less computational power but is more likely to cause the algorithm to converge to a local optimised point rather than the global optimum.
  • the individual fitness expression from equation (4) or (5) is calculated for each member of the population present in the current generation. In the case of the first iteration, this corresponds to each member of the initial population.
  • the size of the population is maintained for each iteration.
  • Step S103 if some individuals are discarded because they don’t meet constraint condition (equation (2) ) , Step 103 and Step 105 will be executed repeatedly in sequence to ensure that the initial size of the population is maintained.
  • step S113 wherein the optimisation result is output and the algorithm ends. This is described in further detail below. Otherwise, the algorithm continues to execute step S109 and S111, and subsequently back to S103 to enter the next generation of the algorithm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Databases & Information Systems (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

La présente invention concerne un procédé qui détermine un déploiement de fonctions de réseau virtuel (VNF) dans un réseau qui doit mettre en œuvre un ensemble d'un ou plusieurs services de réseau et qui comprend un réseau défini par un dispositif de commande de réseautage défini par logiciel (SDN) pour commander laquelle des plusieurs chaînes de services alternatives est utilisée pour mettre en œuvre un service de réseau. Le procédé consiste : à générer un groupe de configurations de déploiement de VNF candidates, chacune des configurations candidates définissant un déploiement des VNF qui permet la mise en œuvre d'un ensemble de chaînes de service qui pourraient être spécifiées par le dispositif de commande de SDN, l'ensemble de chaînes de service comprenant la pluralité de chaînes de service alternatives; à évaluer l'aptitude de chaque configuration candidate dans le groupe, à l'aide d'une fonction d'aptitude qui quantifie l'aptitude en fonction des ressources d'un calcul et/ou d'une communication utilisées par une configuration; et à sélectionner une configuration candidate sur la base de son aptitude évaluée.
PCT/CN2016/087658 2016-06-29 2016-06-29 Procédé et système destinés à l'optimisation du déploiement de fonctions de réseau virtuel dans un réseau de communication qui utilise un réseautage défini par logiciel WO2018000240A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/087658 WO2018000240A1 (fr) 2016-06-29 2016-06-29 Procédé et système destinés à l'optimisation du déploiement de fonctions de réseau virtuel dans un réseau de communication qui utilise un réseautage défini par logiciel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/087658 WO2018000240A1 (fr) 2016-06-29 2016-06-29 Procédé et système destinés à l'optimisation du déploiement de fonctions de réseau virtuel dans un réseau de communication qui utilise un réseautage défini par logiciel

Publications (1)

Publication Number Publication Date
WO2018000240A1 true WO2018000240A1 (fr) 2018-01-04

Family

ID=60785816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/087658 WO2018000240A1 (fr) 2016-06-29 2016-06-29 Procédé et système destinés à l'optimisation du déploiement de fonctions de réseau virtuel dans un réseau de communication qui utilise un réseautage défini par logiciel

Country Status (1)

Country Link
WO (1) WO2018000240A1 (fr)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111093203A (zh) * 2019-12-30 2020-05-01 重庆邮电大学 一种基于环境感知的服务功能链低成本智能部署方法
CN111324538A (zh) * 2020-02-20 2020-06-23 上海赛可出行科技服务有限公司 一种基于动态路由的微服务并行测试环境管理方法
CN111770070A (zh) * 2020-06-22 2020-10-13 中国电子科技集团公司第五十四研究所 一种基于sdn的安全服务链聚合部署方法
KR102165865B1 (ko) * 2019-07-22 2020-10-14 성균관대학교산학협력단 소프트웨어 정의 네트워크에서 유전자 및 개미 집단 알고리즘 기반 동적 로드 밸런싱 방법 및 장치
US20200329383A1 (en) * 2019-03-04 2020-10-15 British Telecommunications Public Limited Company Software defined network optimization
CN112199153A (zh) * 2020-09-25 2021-01-08 国网河北省电力有限公司信息通信分公司 一种虚拟网络功能vnf实例部署方法及装置
WO2021057378A1 (fr) * 2019-09-29 2021-04-01 华为技术有限公司 Procédé d'instanciation de vnf, nfvo, vim, vnfm et système
CN112737854A (zh) * 2020-12-30 2021-04-30 国网河南省电力公司信息通信公司 一种基于能耗和服务质量的服务链迁移方法及装置
CN113348651A (zh) * 2019-01-24 2021-09-03 威睿公司 切片的虚拟网络功能的动态云间放置
WO2021197588A1 (fr) * 2020-03-31 2021-10-07 Telefonaktiebolaget Lm Ericsson (Publ) Orchestration de technologie de virtualisation et mise en œuvre d'application
CN114124818A (zh) * 2021-11-11 2022-03-01 广东工业大学 一种sdn网络中多播传输的新增功能节点部署优化方法
US11296939B2 (en) 2018-07-17 2022-04-05 At&T Intellectual Property I, L.P. Network reconfiguration with customer premises-based application hosting
US11405281B2 (en) 2018-03-25 2022-08-02 British Telecommunications Public Limited Company Dynamic network adaptation
CN115001985A (zh) * 2021-02-23 2022-09-02 中国电信股份有限公司 面向多服务的虚拟网络功能高可用部署方法
CN115174393A (zh) * 2022-06-27 2022-10-11 福州大学 基于带内网络遥测的服务功能链动态调整方法
US11588733B2 (en) 2019-05-14 2023-02-21 Vmware, Inc. Slice-based routing
US11595315B2 (en) 2019-05-14 2023-02-28 Vmware, Inc. Quality of service in virtual service networks
CN116991545A (zh) * 2023-09-28 2023-11-03 中航金网(北京)电子商务有限公司 虚拟机部署位置确定方法及装置
US11902080B2 (en) 2019-05-14 2024-02-13 Vmware, Inc. Congestion avoidance in a slice-based network

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014120145A1 (fr) * 2013-01-30 2014-08-07 Hewlett-Packard Development Company, L.P. Commande d'une topologie d'un réseau
CN104518993A (zh) * 2014-12-29 2015-04-15 华为技术有限公司 云化网络通信路径的分配方法、装置及系统
EP2911347A1 (fr) * 2014-02-24 2015-08-26 Hewlett-Packard Development Company, L.P. Fournir des informations de politique
US20160019186A1 (en) * 2014-07-16 2016-01-21 International Business Machines Corporation Energy and effort efficient reading sessions
WO2016026129A1 (fr) * 2014-08-22 2016-02-25 Nokia Technologies Oy Infrastructure de sécurité et de confiance pour réseaux virtualisés

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014120145A1 (fr) * 2013-01-30 2014-08-07 Hewlett-Packard Development Company, L.P. Commande d'une topologie d'un réseau
EP2911347A1 (fr) * 2014-02-24 2015-08-26 Hewlett-Packard Development Company, L.P. Fournir des informations de politique
US20160019186A1 (en) * 2014-07-16 2016-01-21 International Business Machines Corporation Energy and effort efficient reading sessions
WO2016026129A1 (fr) * 2014-08-22 2016-02-25 Nokia Technologies Oy Infrastructure de sécurité et de confiance pour réseaux virtualisés
CN104518993A (zh) * 2014-12-29 2015-04-15 华为技术有限公司 云化网络通信路径的分配方法、装置及系统

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11405281B2 (en) 2018-03-25 2022-08-02 British Telecommunications Public Limited Company Dynamic network adaptation
US11296939B2 (en) 2018-07-17 2022-04-05 At&T Intellectual Property I, L.P. Network reconfiguration with customer premises-based application hosting
CN113348651B (zh) * 2019-01-24 2023-06-09 威睿公司 切片的虚拟网络功能的动态云间放置
CN113348651A (zh) * 2019-01-24 2021-09-03 威睿公司 切片的虚拟网络功能的动态云间放置
GB2583827B (en) * 2019-03-04 2021-07-28 British Telecomm Software defined network optimisation
GB2583827A (en) * 2019-03-04 2020-11-11 British Telecomm Software defined network optimisation
US20200329383A1 (en) * 2019-03-04 2020-10-15 British Telecommunications Public Limited Company Software defined network optimization
US11595315B2 (en) 2019-05-14 2023-02-28 Vmware, Inc. Quality of service in virtual service networks
US11588733B2 (en) 2019-05-14 2023-02-21 Vmware, Inc. Slice-based routing
US11902080B2 (en) 2019-05-14 2024-02-13 Vmware, Inc. Congestion avoidance in a slice-based network
KR102165865B1 (ko) * 2019-07-22 2020-10-14 성균관대학교산학협력단 소프트웨어 정의 네트워크에서 유전자 및 개미 집단 알고리즘 기반 동적 로드 밸런싱 방법 및 장치
WO2021057378A1 (fr) * 2019-09-29 2021-04-01 华为技术有限公司 Procédé d'instanciation de vnf, nfvo, vim, vnfm et système
US11871280B2 (en) 2019-09-29 2024-01-09 Huawei Technologies Co., Ltd. VNF instantiation method, NFVO, VIM, VNFM, and system
CN111093203B (zh) * 2019-12-30 2022-04-29 重庆邮电大学 一种基于环境感知的服务功能链低成本智能部署方法
CN111093203A (zh) * 2019-12-30 2020-05-01 重庆邮电大学 一种基于环境感知的服务功能链低成本智能部署方法
CN111324538A (zh) * 2020-02-20 2020-06-23 上海赛可出行科技服务有限公司 一种基于动态路由的微服务并行测试环境管理方法
CN111324538B (zh) * 2020-02-20 2024-03-08 上海赛可出行科技服务有限公司 一种基于动态路由的微服务并行测试环境管理方法
WO2021197588A1 (fr) * 2020-03-31 2021-10-07 Telefonaktiebolaget Lm Ericsson (Publ) Orchestration de technologie de virtualisation et mise en œuvre d'application
CN111770070A (zh) * 2020-06-22 2020-10-13 中国电子科技集团公司第五十四研究所 一种基于sdn的安全服务链聚合部署方法
CN112199153A (zh) * 2020-09-25 2021-01-08 国网河北省电力有限公司信息通信分公司 一种虚拟网络功能vnf实例部署方法及装置
CN112737854A (zh) * 2020-12-30 2021-04-30 国网河南省电力公司信息通信公司 一种基于能耗和服务质量的服务链迁移方法及装置
CN115001985A (zh) * 2021-02-23 2022-09-02 中国电信股份有限公司 面向多服务的虚拟网络功能高可用部署方法
CN115001985B (zh) * 2021-02-23 2024-04-09 中国电信股份有限公司 面向多服务的虚拟网络功能高可用部署方法
CN114124818A (zh) * 2021-11-11 2022-03-01 广东工业大学 一种sdn网络中多播传输的新增功能节点部署优化方法
CN114124818B (zh) * 2021-11-11 2023-07-04 广东工业大学 一种sdn网络中多播传输的新增功能节点部署优化方法
CN115174393A (zh) * 2022-06-27 2022-10-11 福州大学 基于带内网络遥测的服务功能链动态调整方法
CN115174393B (zh) * 2022-06-27 2023-09-22 福州大学 基于带内网络遥测的服务功能链动态调整方法
CN116991545B (zh) * 2023-09-28 2024-02-09 中航国际金网(北京)科技有限公司 虚拟机部署位置确定方法及装置
CN116991545A (zh) * 2023-09-28 2023-11-03 中航金网(北京)电子商务有限公司 虚拟机部署位置确定方法及装置

Similar Documents

Publication Publication Date Title
WO2018000240A1 (fr) Procédé et système destinés à l'optimisation du déploiement de fonctions de réseau virtuel dans un réseau de communication qui utilise un réseautage défini par logiciel
Xiao et al. NFVdeep: Adaptive online service function chain deployment with deep reinforcement learning
Liu et al. On dynamic service function chain deployment and readjustment
Ma et al. Traffic aware placement of interdependent NFV middleboxes
Agarwal et al. Joint VNF placement and CPU allocation in 5G
Rankothge et al. Towards making network function virtualization a cloud computing service
Fischer et al. ALEVIN-a framework to develop, compare, and analyze virtual network embedding algorithms
US10887172B2 (en) Network function virtualization
US9740534B2 (en) System for controlling resources, control pattern generation apparatus, control apparatus, method for controlling resources and program
Shirmarz et al. An adaptive greedy flow routing algorithm for performance improvement in software‐defined network
Tajiki et al. CECT: computationally efficient congestion-avoidance and traffic engineering in software-defined cloud data centers
KR101823346B1 (ko) 서비스 기능 체이닝 시스템 및 그 방법
Ibrahim et al. Heuristic resource allocation algorithm for controller placement in multi-control 5G based on SDN/NFV architecture
Buyakar et al. Resource allocation with admission control for GBR and delay QoS in 5G network slices
Fajjari et al. Adaptive-VNE: A flexible resource allocation for virtual network embedding algorithm
WO2017107127A1 (fr) Procédé et système d'optimisation de fonctions de réseau virtuelles dans un environnement de virtualisation de fonction de réseau
Shang et al. Network congestion-aware online service function chain placement and load balancing
CN116232982A (zh) 一种路由计算方法以及相关设备
Miyazawa et al. Autonomic resource arbitration and service-continuable network function migration along service function chains
Lei et al. Deploying QoS-assured service function chains with stochastic prediction models on VNF latency
Shang et al. Online service function chain placement for cost-effectiveness and network congestion control
Mondal et al. FlowMan: QoS-aware dynamic data flow management in software-defined networks
Aguilar-Fuster et al. Online virtual network embedding based on virtual links’ rate requirements
Quang et al. Evolutionary actor-multi-critic model for VNF-FG embedding
El-Mekkawi et al. Evaluating the impact of delay constraints in network services for intelligent network slicing based on SKM model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906641

Country of ref document: EP

Kind code of ref document: A1