WO2018000189A1 - 二次电池电芯 - Google Patents

二次电池电芯 Download PDF

Info

Publication number
WO2018000189A1
WO2018000189A1 PCT/CN2016/087447 CN2016087447W WO2018000189A1 WO 2018000189 A1 WO2018000189 A1 WO 2018000189A1 CN 2016087447 W CN2016087447 W CN 2016087447W WO 2018000189 A1 WO2018000189 A1 WO 2018000189A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
anode
secondary battery
pole piece
battery cell
Prior art date
Application number
PCT/CN2016/087447
Other languages
English (en)
French (fr)
Inventor
郭培培
何平
赵义
方宏新
程文强
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to PCT/CN2016/087447 priority Critical patent/WO2018000189A1/zh
Priority to CN201680086723.5A priority patent/CN109417152B/zh
Publication of WO2018000189A1 publication Critical patent/WO2018000189A1/zh
Priority to US16/203,597 priority patent/US11024868B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrochemical energy storage device, and more particularly to a secondary battery cell.
  • Fig. 10 is a schematic view showing the structure of a secondary battery cell in the prior art after being wound and formed in an embodiment.
  • Fig. 10 is a schematic view showing the structure of a secondary battery cell in the prior art after being wound and formed in an embodiment.
  • 11(a) to 11(b) are two views after the cathode tab of the secondary battery cell of Fig. 10 is unfolded, and
  • Figs. 12(a) to 12(b) are the second in Fig. 10. Two views of the battery cell's anode pole piece after unfolding.
  • the head of the anode pole piece 1 of the secondary battery cell and the head of the cathode pole piece 3 are blank current collectors, and the anode tab 2 and the cathode tab 4 are respectively soldered to
  • the blank current collector at the head of the anode pole piece 1 and the blank current collector at the head of the cathode pole piece 3 cause a large DC resistance (DCR) of the secondary battery cell.
  • DCR DC resistance
  • an insulating paste is required to be attached to the anode tab 2 and the cathode tab 4, which causes the region where the anode tab 2 is located and the region where the cathode tab 4 is located to become the maximum thickness region of the secondary battery, and Other dimensions of the cell are wasted, resulting in a loss of energy density.
  • a Chinese patent CN203733894U issued on July 23, 2014 discloses a lithium ion battery in which an anode tab receiving groove G11 is formed on the anode pole piece 1 and a cathode tab receiving groove G31 is formed in the cathode pole piece 3. , the accumulation of the thickness of the cell by the tab is reduced, as shown in FIG.
  • By opening the anode tab receiving groove G11 and the cathode tab receiving groove G31 although the problem of capacity density loss due to the stacking of the thickness of the tab is improved, since both the anode tab 2 and the cathode tab 4 are only one They are all located on the same side of the wound cell, which causes a large cyclic deformation problem.
  • an object of the present invention is to provide a secondary battery cell capable of improving deformation of a battery cell during cyclic charging and discharging, reducing DC resistance, and increasing capacity density of a battery cell. .
  • the present invention provides a secondary battery cell comprising: an anode pole piece, an anode pole, a cathode pole piece, a cathode tab, and a separator.
  • the anode pole piece includes: an anode current collector; and an anode diaphragm disposed on a surface of the anode current collector.
  • the cathode pole piece includes: a cathode current collector; and a cathode diaphragm disposed on a surface of the cathode current collector.
  • the separator is disposed between the anode pole piece and the cathode pole piece.
  • the anode pole piece is formed with an anode tab receiving groove, an anode current collector at the bottom and an anode diaphragm on the circumference side, and the anode tab is accommodated.
  • the cathode pole piece is formed with a cathode tab receiving groove, a cathode current collector at the bottom and a cathode diaphragm on the circumference side, and the cathode tab is received.
  • anode tabs are arranged in pairs, and the two anode tabs of each pair are respectively located on the upper and lower sides of the anode winding start section of the anode pole piece along the thickness direction of the secondary battery cell; and/or the cathode tab In pairs, the two cathode tabs of each pair are respectively located on the upper and lower sides of the cathode winding start section of the cathode pole piece along the thickness direction of the secondary battery cells.
  • At least one of the anode tab and the cathode tab is disposed in pairs, and two of the anode tabs and/or the cathode tabs disposed in pairs are respectively located in the secondary battery
  • the two sides of the battery are in the thickness direction, so that when the secondary battery cell forms a secondary battery, the deformation of the battery cell during the cyclic charging and discharging process of the secondary battery is improved, and the DC resistance is lowered.
  • the anode tabs are disposed in pairs
  • the two anode tabs of each pair are respectively located on the upper and lower sides of the anode winding start section of the anode pole piece along the thickness direction of the secondary battery cell.
  • the deformation of the anode pole piece during the cyclic charging and discharging process of the secondary battery is improved, thereby improving the overall deformation of the battery core and reducing the DC resistance.
  • the cathode tabs are arranged in pairs, the two cathode tabs of each pair are respectively located on the upper and lower sides of the cathode winding start section of the cathode pole piece along the thickness direction of the secondary battery cell, thereby improving the secondary battery
  • the deformation of the cathode pole piece during the cycle of charge and discharge thereby improving the overall deformation of the cell, while reducing the DC impedance.
  • the cathode tab is received in the cathode tab receiving groove on the cathode pole piece, thereby improving the energy density of the secondary battery.
  • FIG. 1 is a schematic structural view of a secondary battery cell according to the present invention after being wound and formed in an embodiment
  • FIG. 2(a) to 2(c) are three views after the cathode tab of the secondary battery cell of Fig. 1 is unfolded, wherein Fig. 2(a) is made parallel to the paper direction of Fig. 1.
  • 2(b) is a bottom view, and
  • FIG. 2(c) is a plan view;
  • FIG. 3(a) to 3(b) are two views after the anode pole piece of the secondary battery cell of Fig. 1 is unfolded, wherein Fig. 3(a) is made parallel to the paper direction of Fig. 1. a cross-sectional view, and Figure 3 (b) is a top view;
  • FIG. 4 is a schematic structural view of a secondary battery cell according to the present invention after being wound and formed in another embodiment
  • FIG. 5(a) to 5(c) are three views after the cathode tab of the secondary battery cell of Fig. 4 is unfolded, wherein Fig. 5(a) is made parallel to the paper direction of Fig. 1. a cross-sectional view, FIG. 5(b) is a bottom view, and FIG. 5(c) is a plan view;
  • FIG. 6(a) to 6(b) are two views after the anode pole piece of the secondary battery cell of Fig. 4 is unfolded, wherein Fig. 6(a) is made parallel to the paper direction of Fig. 1. a cross-sectional view, and Figure 6 (b) is a top view;
  • Figure 7 is a schematic structural view of a secondary battery cell according to the present invention after being wound and formed in still another embodiment
  • FIG. 8(a) to 8(c) are three views after the cathode tab of the secondary battery cell of Fig. 7 is unfolded, wherein Fig. 8(a) is made parallel to the paper direction of Fig. 1. a cross-sectional view, FIG. 8(b) is a bottom view, and FIG. 8(c) is a plan view;
  • FIGS. 9(a) to 9(b) are two views after the anode pole piece of the secondary battery cell of Fig. 7 is unfolded, wherein Fig. 9(a) is made parallel to the paper direction of Fig. 1. a cross-sectional view, and Figure 9 (b) is a top view;
  • FIG. 10 is a schematic structural view of a secondary battery cell in the prior art after being wound and formed in an embodiment
  • FIG. 11(a) to 11(b) are two views after the cathode tab of the secondary battery cell of Fig. 10 is unfolded, wherein Fig. 11(a) is made parallel to the paper direction of Fig. 1. a cross-sectional view, and Figure 11 (b) is a bottom view;
  • FIG. 12(a) to 12(b) are two views after the anode pole piece of the secondary battery cell of Fig. 10 is unfolded, wherein Fig. 12(a) is made parallel to the paper direction of Fig. 1. a cross-sectional view, and Figure 12 (b) is a top view;
  • Fig. 13 is a schematic view showing the structure of a secondary battery cell in the prior art after being wound and formed in another embodiment.
  • G33 anode head alignment cathode groove
  • the secondary battery cell of the present invention comprises: an anode pole piece 1, an anode pole 2, a cathode pole piece 3, a cathode tab 4, and a separator 5.
  • the anode pole piece 1 includes an anode current collector 11 and an anode diaphragm 12 disposed on a surface of the anode current collector 11.
  • the cathode pole piece 3 includes: a cathode current collector 31; and a cathode diaphragm 32 disposed on a surface of the cathode current collector 31.
  • the separator 5 is disposed between the anode pole piece 1 and the cathode pole piece 3.
  • the anode pole piece 1 is formed with an anode tab receiving groove G11, an anode current collector 11 at the bottom and an anode diaphragm 12 at the peripheral side, and the anode tab 2 is housed.
  • the cathode pole piece 3 is formed with a cathode tab receiving groove G31, a cathode current collector 31 at the bottom and a cathode diaphragm 32 at the peripheral side, and the cathode tab 4 is housed.
  • the anode tabs 2 are disposed in pairs, and the two anode tabs 2 of each pair are respectively located on the upper and lower sides of the anode winding start section B1 of the anode pole piece 1 in the thickness direction of the secondary battery cell; and / Or the cathode tabs 4 are arranged in pairs, and the two cathode tabs 4 of each pair are respectively located on the upper and lower sides of the cathode winding start section B2 of the cathode pole piece 3 in the thickness direction of the secondary battery cells.
  • At least one of the anode tab 2 and the cathode tab 4 is disposed in pairs, and two of the anode tab 2 and/or the cathode tab 4 disposed in pairs are respectively It is located on both sides of the thickness direction of the secondary battery cells, so when the secondary battery cells form a secondary battery, the deformation of the battery cells during the cyclic charging and discharging process of the secondary battery is improved, and the DC resistance is lowered.
  • the anode tabs 2 are arranged in pairs, the two anode tabs 2 of each pair are respectively located above and below the anode winding start section B1 of the anode pole piece 1 in the thickness direction of the secondary battery cells.
  • the deformation of the anode pole piece 1 during the cyclic charging and discharging process of the secondary battery is improved, thereby improving the overall deformation of the battery core and reducing the DC resistance.
  • the cathode tabs 4 are arranged in pairs, the two cathode tabs 4 of each pair are respectively located on the upper and lower sides of the cathode winding start section B2 of the cathode pole piece 3 in the thickness direction of the secondary battery cells.
  • the deformation of the cathode pole piece 3 during the cyclic charging and discharging process of the secondary battery is improved, thereby improving the overall deformation of the battery core and reducing the DC resistance.
  • the cathode tab 4 is received in the cathode tab receiving groove G31 on the cathode pole piece 3, thereby improving the secondary battery. Energy density.
  • the anode winding start section B1 generally refers to a portion between the winding head of the anode pole piece 1 to the first bend;
  • the cathode winding start section B2 generally refers to the winding of the cathode pole piece 3. The part between the head and the first bend.
  • the peripheral side of the anode tab receiving groove G11 may be a three-sided closed side opening (ie, a non-through groove), or the anode side of the anode tab receiving groove G11 may be two sides. Closed both sides of the opening Through the slot). The same can be said on the circumferential side of the cathode tab accommodation groove G31.
  • the cathode pole piece 3 may also be formed with a cathode pole piece alignment groove G32, which is located at the cathode pole piece 3 and the anode tab. The area where the groove G11 is aligned.
  • the cathode pole piece alignment groove G32 is aligned with the anode pole 2, the cathode active material released to the anode tab 2 is reduced, and the cathode active material is freely diffused to the opposite anode tab 2, thereby further The cathode active material is enriched in the anode tab 2 during charging and discharging of the secondary battery, and finally the problem of precipitation of the cathode active material at the anode tab 2 is reduced, and the safety performance of the secondary battery is improved. Further, since the cathode pole piece registration groove G32 has no cathode active material, when the secondary battery cell forms a secondary battery, the energy density of the secondary battery is improved.
  • the cathode pole piece alignment groove G32 may be a non-through groove.
  • the cathode pole piece alignment groove G32 is larger in length and width than the anode tab receiving groove G11.
  • the anode tabs 2 can be one or more pairs.
  • the cathode tabs 4 may be one or more pairs.
  • the secondary battery cell may further include: an insulating tape T1 for the cathode head alignment cathode, Covering the region of the cathode pole piece 3 that is aligned with the anode head.
  • the cathode pole piece 3 may also be formed with an anode head alignment cathode groove G33 located in a region of the cathode pole piece 3 opposite to the anode head, and the anode head is aligned.
  • the cathode covers the anode head alignment cathode groove G33 with an insulating tape T1.
  • the anode head alignment cathode groove G33 may be a through groove.
  • the insulating tape T1 for the anode head alignment cathode may have a width of 2 mm to 25 mm, and the length of the anode head alignment insulating tape T1 may be 1-1.2 times the width of the cathode pole piece 1.
  • the secondary battery cell may further include
  • the anode tab accommodating groove aligning cathode insulating tape T2 covers the region of the entire cathode pole piece 3 opposed to the anode tab accommodating groove G11.
  • the width of the insulating tape T2 for the anode cathode receiving groove of the anode can be 1 to 1.5 times the width of the anode tab receiving groove G11, and the anode tab is used for the insulating tape of the cathode for the alignment of the anode.
  • the length of T2 may be 1 to 1.5 times the length of the anode tab housing groove G11.
  • the secondary battery cell may further include: an insulating tape T3 for the cathode tab receiving groove, covering a portion of the cathode tab receiving groove G31 around the cathode tab 4 and the cathode tab 4. .
  • the width of the insulating tape T3 for the cathode tab receiving groove may be 0.5 to 1.5 times the width of the cathode tab receiving groove G31, and the length of the insulating tape T3 for the cathode tab receiving groove may be the cathode.
  • the length of the tab accommodation groove G31 is 0.5 to 1.5 times.
  • the anode tab 2 may be electrically connected to the anode current collector 11 at the anode tab receiving groove G11 by ultrasonic welding, laser welding or thermocompression bonding, or conductive adhesive bonding.
  • the cathode tab 4 is electrically connected to the cathode current collector 31 at the cathode tab receiving groove G31 by ultrasonic welding, laser welding or thermocompression bonding, or conductive adhesive bonding.
  • the anode tab receiving groove G11 may be formed by removing a corresponding portion of the anode film 12 by laser cleaning or mechanical cleaning to expose the anode current collector 11; or the anode tab receiving groove G11 may be coated.
  • the anode film slurry is pre-preset on the anode current collector 11, and then the anode film slurry is coated and dried to form the anode film 12 and the adhesive paper is discharged from the anode current collector 11 after drying the anode film slurry.
  • the upper peel is formed.
  • the cathode tab receiving groove G31 may be formed by removing a corresponding portion of the cathode diaphragm 32 by laser cleaning or mechanical cleaning to expose the cathode current collector 31; or the cathode tab receiving groove G31 may be coated.
  • the cathode film slurry is pre-preset on the cathode current collector 31, and then the cathode film slurry is coated and dried to form the cathode film 32 and the adhesive paper is discharged from the cathode current collector 31 after drying the cathode film slurry.
  • the upper peel is formed.
  • the cathode pole piece alignment groove G32 may be formed by removing a corresponding portion of the cathode film 32 by laser cleaning or mechanical cleaning to expose the cathode current collector 31; or the cathode pole piece alignment groove G32 may pass Before the cathode film slurry is coated, the pre-adhesive paper is placed on the cathode current collector 31, and then the cathode film slurry is coated and dried to form the cathode film 32. After the cathode film slurry is dried, the adhesive tape is collected from the cathode. The fluid 31 is peeled off to form.
  • the anode head alignment cathode groove G33 may be formed by removing a corresponding portion of the cathode film 32 by laser cleaning or mechanical cleaning to expose the cathode current collector 31; or the anode head alignment cathode groove G33
  • the cathode film 32 can be coated and dried on the cathode current collector 31 by applying a pre-set adhesive tape to the cathode current collector 31 to form the cathode film 32, and the adhesive paper is removed from the dried cathode film slurry.
  • the cathode current collector 31 is peeled off to form.
  • the insulating tape T1 for the anode head aligning cathode can be a single-sided adhesive single-sided insulating tape or both sides of the double-sided initial adhesive or one-sided initial tackiness and another The single side is a double-sided insulating tape which is viscous after subsequent hot pressing or cold pressing.
  • the insulating tape T2 for the anode of the anode tab accommodating recess can be a single-sided adhesive single-sided insulating tape or has a tackiness at the beginning of the double-sided or a single-sided initial tack.
  • the other single side is a double-sided insulating tape which is viscous after subsequent hot pressing or cold pressing.
  • the insulating tape T3 for the cathode tab receiving groove can be a single-sided adhesive single-sided insulating tape or both sides of the double-sided initial adhesive or one single-sided initial adhesive and another The single side is a double-sided insulating tape which is viscous after subsequent hot pressing or cold pressing.
  • the cathode pole piece 3 may also be formed with: a cathode
  • the mating recess R31 has a cathode current collector 31 at the bottom and a cathode diaphragm 32 on the circumferential side, and is located on the opposite side of the cathode tab accommodation groove G31.
  • the arrangement of the cathode mating recess R31 facilitates ultrasonic welding of the cathode tab 4 into the cathode tab receiving recess G31.
  • the cathode mating recess R31 can be a non-through slot.
  • the secondary battery cell may further include The cathode mating recess covers the cathode counter recess R31 with an insulating tape T4.
  • the width of the insulating tape T4 for the cathode mating recess may be 0.5 to 1.5 times the width of the cathode tab receiving groove G31
  • the length of the insulating tape T4 for the cathode mating recess may be the cathode tab receiving groove G31. The length is 0.5 to 1.5 times.
  • the cathode mating recess R31 may be formed by removing a corresponding portion of the cathode diaphragm 32 by laser cleaning or mechanical cleaning to expose the cathode current collector 31; or the cathode mating recess R31 may be before coating the cathode diaphragm slurry
  • the pre-adhesive paper is applied to the cathode current collector 31, and then the cathode film slurry is applied and dried to form a cathode film 32 and the adhesive paper is peeled off from the cathode current collector 31 after drying the cathode film slurry.
  • the insulating tape T4 for the cathode mating recess may be a single-sided adhesive single-sided insulating tape or may have a tackiness when the double-sided initial is used or a single-sided initial tackiness while the other side is Adhesive double-sided insulating tape after subsequent hot pressing or cold pressing.
  • the anode pole piece 1 may be further formed with an anode.
  • the mating recess R11 is located on the opposite side of the anode tab receiving groove G11.
  • the arrangement of the anode pairing recess R11 facilitates ultrasonic welding of the anode tab 2 in the anode tab receiving groove G11.
  • the cathode pole piece 3 may further be formed with a cathode pole piece aligning concave portion R32 located at the cathode pole piece 3
  • the region that is aligned with the anode pairing recess R11 is larger than the anode mating recess R11 in length and width.
  • the anode mating recess R11 may be a non-through slot
  • the cathode pole piece aligning recess R32 is also a non-through slot.
  • the anode pairing concave portion is used for the cathode insulating tape T5. Covering the region of the cathode pole piece 3 that is aligned with the anode mating recess R11.
  • the anode mating recess R11 may be formed by removing a corresponding portion of the anode film 12 by laser cleaning or mechanical cleaning to expose the anode current collector 11; or the anode mating recess R11 may be before applying the anode diaphragm slurry
  • the pre-adhesive paper is coated on the anode current collector 11, and then the anode film slurry is applied and dried to form the anode film 12 and the adhesive tape is peeled off from the anode current collector 11 after drying the anode film slurry.
  • the cathode pole piece aligning recess R32 may be formed by removing a corresponding portion of the cathode film 32 by laser cleaning or mechanical cleaning to expose the cathode current collector 31; or the cathode pole piece aligning concave portion R32 may be coated
  • the cathode film slurry is pre-preset on the cathode current collector 31, and then the cathode film slurry is coated and dried to form the cathode film 32 and the adhesive paper is discharged from the cathode current collector 31 after drying the cathode film slurry.
  • the upper peel is formed.
  • the anode matching recessed portion is used for the cathode insulating tape T5 as a single-sided adhesive single-sided insulating tape. Either the two sides are initially tacky or one side is initially tacky and the other side is a double-sided insulating tape that is tacky after subsequent hot or cold pressing.
  • the width of the anode tab receiving groove G11 may be 1 to 5 times the width of the anode tab 2, and the length of the anode tab receiving groove G11 may be the anode tab 2
  • the length of the portion accommodated in the anode tab receiving groove G11 is 1 to 5 times, and the depth of the anode tab receiving groove G11 may be equal to the thickness of the anode film 12.
  • the width of the cathode tab receiving groove G31 may be 1 to 5 times the width of the cathode tab 4, and the length of the cathode tab receiving groove G31 may be the cathode tab 4
  • the length of the portion accommodated in the cathode tab accommodation groove G31 is 1 to 5 times, and the depth of the cathode tab accommodation groove G31 may be equal to the thickness of the cathode diaphragm 32.
  • the pole piece 1 can be a monolithic piece, and the secondary battery cell is a wound cell.
  • the distance from the head to the tail of the anode pole piece 1 is defined as D1, from the anode pole piece 1
  • the distance between the center line of the first anode tab receiving groove G11 from the head to the head of the anode pole piece 1 is defined as d11
  • the center line to the anode pole of the second anode tab receiving groove G11 The distance between the heads of the sheets 1 is defined as d12
  • the third and subsequent anode tab receiving grooves G11 are similarly applied, and these distances are all calculated from 1/100 D1 to 7 from the head of the anode pole piece 1.
  • each distance may be in the range of 3/100D1 to 7/10D1 calculated from the head of the anode pole piece 1, thereby being more advantageous for reducing the DC resistance (Direct Current Resistance) of the secondary battery cell.
  • DC resistance Direct Current Resistance
  • the anode current collector 11 located at the winding start section B1 of the anode pole piece 1 is provided with the anode diaphragm 12 on only one surface.
  • the pole piece 3 can be a unitary piece, and the secondary battery cell is a wound cell.
  • the distance from the head to the tail of the cathode pole piece 3 is defined as D2, from the cathode pole piece 3
  • the distance between the center line of the first cathode tab receiving groove G31 from the head to the head of the cathode pole piece 3 is defined as d21, and the center line to the cathode of the second cathode tab receiving groove G31
  • the distance between the heads of the sheets 3 is defined as d22, and the third and subsequent cathode tab receiving grooves G31 are sequentially analogized, and these distances are all calculated from 1/100 D2 to 7/ from the head of the cathode pole piece 3.
  • each distance may be in the range of 3/100 D2 to 7/10 D2 calculated from the head of the cathode pole piece 3, thereby being more advantageous for reducing the DC resistance DCR of the secondary battery cell. This is because the closer the distance is to the intermediate position of the cathode pole piece 3 (i.e., 1/2 D1), the smaller the DCR.
  • the double-sided insulating tape mentioned above comprises a substrate and a glue layer coated on both surfaces of the substrate.
  • the adhesive layer of the double-sided insulating tape which has been viscous on both sides may be a styrene-butadiene rubber layer, a polyurethane layer, a polyacrylate layer or a polyvinylidene fluoride layer.
  • a single-sided adhesive layer which is initially viscous may be a styrene-butadiene rubber layer.
  • the temperature-sensitive adhesive having no initial tack at normal temperature refers to a temperature-sensitive adhesive which does not cause adhesion to an object when a short-term contact occurs between the object and the temperature-sensitive adhesive at a normal temperature.
  • the pressure-sensitive adhesive having no initial tack at normal temperature refers to a pressure-sensitive adhesive which does not cause adhesion to an object when the object and the pressure-sensitive adhesive are temporarily contacted under a finger pressure at a normal temperature.
  • the temperature-sensitive adhesive having no initial tack at normal temperature may be selected from one or more of polyolefin, polyvinyl butyral, polyamide, and polyester.
  • the pressure sensitive adhesive having no initial tack at normal temperature may be selected from the group consisting of ethylene-butylene-polystyrene linear triblock copolymer (SEBS), styrene-butadiene block copolymer (SEPS), and epoxidized benzene.
  • SEBS ethylene-butylene-polystyrene linear triblock copolymer
  • SEPS styrene-butadiene block copolymer
  • ESIS ethylene-isoprene-styrene block copolymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供了一种二次电池电芯,其包括:阳极极片、阳极极耳、阴极极片、阴极极耳以及隔离膜。阳极极片包括:阳极集流体;以及阳极膜片。阴极极片包括:阴极集流体;以及阴极膜片。阳极极片形成有:阳极极耳收容凹槽,收容阳极极耳。阴极极片形成有:阴极极耳收容凹槽,收容阴极极耳。阳极极耳成对设置,各对中的两个阳极极耳沿二次电池电芯的厚度方向分别位于阳极极片的阳极卷绕起始段的上下两侧;和/或阴极极耳成对设置,各对中的两个阴极极耳沿二次电池电芯的厚度方向分别位于阴极极片的阴极卷绕起始段的上下两侧。从而改善了二次电池在循环充放电过程中电芯的变形,降低了直流阻抗,且提高了二次电池的能量密度。

Description

二次电池电芯 技术领域
本发明涉及电化学储能装置,尤其涉及一种二次电池电芯。
背景技术
图10是现有技术中的二次电池电芯在一实施例中卷绕成型后的结构示意图。图10是现有技术中的二次电池电芯在一实施例中卷绕成型后的结构示意图。图11(a)至图11(b)是图10中的二次电池电芯的阴极极片展开后的两个视图,图12(a)至图12(b)是图10中的二次电池电芯的阳极极片展开后的两个视图。
如图10至12(b)所示,二次电池电芯的阳极极片1的头部和阴极极片3的头部均为空白集流体,阳极极耳2和阴极极耳4分别焊接于阳极极片1头部的空白集流体和阴极极片3头部的空白集流体上,从而会造成二次电池电芯的直流电阻(DCR)较大。此外,在阳极极耳2和阴极极耳4上还需要粘贴绝缘胶,这样会导致阳极极耳2所在的区域和阴极极耳4所在的区域成为二次电池的最大厚度区,而除此以外电芯的其它尺寸空间白白浪费,导致能量密度损失。
2014年7月23日授权公告的中国专利CN203733894U公开了一种锂离子电池,其中在阳极极片1上开设阳极极耳收容凹槽G11和在阴极极片3上开设阴极极耳收容凹槽G31,减少了极耳对电芯厚度的累加,如图13所示。通过开设阳极极耳收容凹槽G11和阴极极耳收容凹槽G31的方式,尽管改善了极耳厚度叠加带来的能力密度损失问题,但是由于阳极极耳2和阴极极耳4均仅为一个且均位于卷绕式电芯的同一侧,这样会产生较大的循环变形问题。
发明内容
鉴于背景技术中存在的问题,本发明的目的在于提供一种二次电池电芯,其能改善二次电池在循环充放电过程中电芯的变形,降低直流阻抗,并提升电芯的容量密度。
为了实现上述目的,本发明提供了一种二次电池电芯,其包括:阳极极片、阳极极耳、阴极极片、阴极极耳以及隔离膜。
阳极极片包括:阳极集流体;以及阳极膜片,设置在阳极集流体的表面。阴极极片包括:阴极集流体;以及阴极膜片,设置在阴极集流体的表面。隔离膜设置于阳极极片和阴极极片之间。
阳极极片形成有:阳极极耳收容凹槽,底部为阳极集流体而周侧为阳极膜片,收容阳极极耳。阴极极片形成有:阴极极耳收容凹槽,底部为阴极集流体而周侧为阴极膜片,收容阴极极耳。
其中,阳极极耳成对设置,各对中的两个阳极极耳沿二次电池电芯的厚度方向分别位于阳极极片的阳极卷绕起始段的上下两侧;和/或阴极极耳成对设置,各对中的两个阴极极耳沿二次电池电芯的厚度方向分别位于阴极极片的阴极卷绕起始段的上下两侧。
本发明的有益效果如下:
在根据本发明的二次电池电芯中,阳极极耳和阴极极耳中至少有一种成对设置,且成对设置的阳极极耳和/或阴极极耳中的两个分别位于二次电池电芯的厚度方向的两侧,所以当二次电池电芯形成二次电池后,改善了二次电池在循环充放电过程中电芯的变形,降低了直流阻抗。具体来说,当阳极极耳成对设置时,各对中的两个阳极极耳沿二次电池电芯的厚度方向分别位于阳极极片的阳极卷绕起始段的上下两侧,以此改善二次电池在循环充放电过程中阳极极片的变形,进而改善电芯的整体变形,同时降低了直流阻抗。当阴极极耳成对设置时,各对中的两个阴极极耳沿二次电池电芯的厚度方向分别位于阴极极片的阴极卷绕起始段的上下两侧,以此改善二次电池在循环充放电过程中阴极极片的变形,进而改善电芯的整体变形,同时降低了直流阻抗。此外,由于阳极极耳收容于阳极极片上的阳极极耳收容凹槽中,阴极极耳收容于阴极极片上的阴极极耳收容凹槽中,提高了二次电池的能量密度。
附图说明
图1是根据本发明的二次电池电芯在一实施例中卷绕成型后的结构示意图;
图2(a)至图2(c)是图1中的二次电池电芯的阴极极片展开后的三个视图,其中图2(a)为平行于图1的纸面方向做出的截面图,图2(b)为仰视图,而图2(c)为俯视图;
图3(a)至图3(b)是图1中的二次电池电芯的阳极极片展开后的两个视图,其中图3(a)为平行于图1的纸面方向做出的截面图,而图3(b)为俯视图;
图4是根据本发明的二次电池电芯在另一实施例中卷绕成型后的结构示意图;
图5(a)至图5(c)是图4中的二次电池电芯的阴极极片展开后的三个视图,其中图5(a)为平行于图1的纸面方向做出的截面图,图5(b)为仰视图,而图5(c)为俯视图;
图6(a)至图6(b)是图4中的二次电池电芯的阳极极片展开后的两个视图,其中图6(a)为平行于图1的纸面方向做出的截面图,而图6(b)为俯视图;
图7是根据本发明的二次电池电芯在又一实施例中卷绕成型后的结构示意图;
图8(a)至图8(c)是图7中的二次电池电芯的阴极极片展开后的三个视图,其中图8(a)为平行于图1的纸面方向做出的截面图,图8(b)为仰视图,而图8(c)为俯视图;
图9(a)至图9(b)是图7中的二次电池电芯的阳极极片展开后的两个视图,其中图9(a)为平行于图1的纸面方向做出的截面图,而图9(b)为俯视图;
图10是现有技术中的二次电池电芯在一实施例中卷绕成型后的结构示意图;
图11(a)至图11(b)是图10中的二次电池电芯的阴极极片展开后的两个视图,其中图11(a)为平行于图1的纸面方向做出的截面图,而图11(b)为仰视图;
图12(a)至图12(b)是图10中的二次电池电芯的阳极极片展开后的两个视图,其中图12(a)为平行于图1的纸面方向做出的截面图,而图12(b)为俯视图;
图13是现有技术中的二次电池电芯在另一实施例中卷绕成型后的结构示意图。
其中,附图标记说明如下:
1 阳极极片
11 阳极集流体
12 阳极膜片
B1 阳极卷绕起始段
G11 阳极极耳收容凹槽
R11 阳极配对凹部2阳极极耳
3 阴极极片
31 阴极集流体
32 阴极膜片
B2 阴极卷绕起始段
G31 阴极极耳收容凹槽
G32 阴极极片对位凹槽
G33 阳极头部对位阴极凹槽
R31 阴极配对凹部
R32 阴极极片对位凹部
4 阴极极耳
5 隔离膜
T1 阳极头部对位阴极用绝缘胶带
T2 阳极极耳收容凹槽对位阴极用绝缘胶带
T3 阴极极耳收容凹槽用绝缘胶带
T4 阴极配对凹部用绝缘胶带
T5 阳极配对凹部对位阴极用用绝缘胶带
T6 阳极极耳用绝缘胶带
T7 阴极极耳用绝缘胶带
具体实施方式
下面参照附图来详细说明本发明的二次电池电芯。
参照图1至图9(b),本发明的二次电池电芯包括:阳极极片1、阳极极耳2、阴极极片3、阴极极耳4以及隔离膜5。
阳极极片1包括:阳极集流体11;以及阳极膜片12,设置在阳极集流体11的表面。阴极极片3包括:阴极集流体31;以及阴极膜片32,设置在阴极集流体31的表面。隔离膜5设置于阳极极片1和阴极极片3之间。
阳极极片1形成有:阳极极耳收容凹槽G11,底部为阳极集流体11而周侧为阳极膜片12,收容阳极极耳2。阴极极片3形成有:阴极极耳收容凹槽G31,底部为阴极集流体31而周侧为阴极膜片32,收容阴极极耳4。
其中,阳极极耳2成对设置,各对中的两个阳极极耳2沿二次电池电芯的厚度方向分别位于阳极极片1的阳极卷绕起始段B1的上下两侧;和/或阴极极耳4成对设置,各对中的两个阴极极耳4沿二次电池电芯的厚度方向分别位于阴极极片3的阴极卷绕起始段B2的上下两侧。
在根据本发明的二次电池电芯中,阳极极耳2和阴极极耳4中至少有一种成对设置,且成对设置的阳极极耳2和/或阴极极耳4中的两个分别位于二次电池电芯的厚度方向的两侧,所以当二次电池电芯形成二次电池后,改善了二次电池在循环充放电过程中电芯的变形,降低了直流阻抗。具体来说,当阳极极耳2成对设置时,各对中的两个阳极极耳2沿二次电池电芯的厚度方向分别位于阳极极片1的阳极卷绕起始段B1的上下两侧,以此改善二次电池在循环充放电过程中阳极极片1的变形,进而改善电芯的整体变形,同时降低了直流阻抗。当阴极极耳4成对设置时,各对中的两个阴极极耳4沿二次电池电芯的厚度方向分别位于阴极极片3的阴极卷绕起始段B2的上下两侧,以此改善二次电池在循环充放电过程中阴极极片3的变形,进而改善电芯的整体变形,同时降低了直流阻抗。此外,由于阳极极耳2收容于阳极极片1上的阳极极耳收容凹槽G11中,阴极极耳4收容于阴极极片3上的阴极极耳收容凹槽G31中,提高了二次电池的能量密度。
其中,阳极卷绕起始段B1通常指的是阳极极片1的卷绕头部至第一次弯曲之间的部分;阴极卷绕起始段B2通常指的是阴极极片3的卷绕头部至第一次弯曲之间的部分。
在根据本发明的二次电池电芯中,阳极极耳收容凹槽G11的周侧可为三边封闭一边开口(即非贯穿槽),或者阳极极耳收容凹槽G11的周侧可为两边封闭两边开口(即贯 穿槽)。阴极极耳收容凹槽G31的周侧亦可如此。
在根据本发明的二次电池电芯中,参照图1、图4和图7,阴极极片3还可形成有:阴极极片对位凹槽G32,位于阴极极片3的与阳极极耳收容凹槽G11对位的区域。因为阴极极片对位凹槽G32与阳极极耳2对位,从而减少了向阳极极耳2游离的阴极活性物质,同时减少了阴极活性物质游离扩散至对位的阳极极耳2处,进而能减轻在二次电池充放电过程中阴极活性物质富集在阳极极耳2处,最终减轻了阳极极耳2处出现析出阴极活性物质的问题,提高二次电池的安全性能。此外,由于阴极极片对位凹槽G32无阴极活性物质存在,当二次电池电芯形成二次电池后,提高了二次电池的能量密度。
在一实施例中,阴极极片对位凹槽G32可为非贯穿槽。在根据本发明的二次电池电芯中,阴极极片对位凹槽G32在长度和宽度上均大于阳极极耳收容凹槽G11。
在一实施例中,阳极极耳2可为一对或多对。
在一实施例中,阴极极耳4可为一对或多对。
在根据本发明的二次电池电芯中,参照图1、图2(a)和图2(b),所述二次电池电芯还可包括:阳极头部对位阴极用绝缘胶带T1,覆盖阴极极片3的与阳极头部对位的区域。
在一实施例中,参照图1,阴极极片3还可形成有:阳极头部对位阴极凹槽G33,位于阴极极片3的与阳极头部对位的区域,且阳极头部对位阴极用绝缘胶带T1覆盖阳极头部对位阴极凹槽G33。
在一实施例中,阳极头部对位阴极凹槽G33可为贯穿槽。
在一实施例中,阳极头部对位阴极用绝缘胶带T1的宽度可为2mm~25mm,阳极头部对位阴极用绝缘胶带T1的长度可为阴极极片1的宽度的1-1.2倍。
在根据本发明的二次电池电芯中,参照图1至图2(b)、图4至图5(b)以及图7至图8(b),所述二次电池电芯还可包括:阳极极耳收容凹槽对位阴极用绝缘胶带T2,覆盖整个阴极极片3的与阳极极耳收容凹槽G11对位的区域。
在一实施例中,阳极极耳收容凹槽对位阴极用绝缘胶带T2的宽度可为阳极极耳收容凹槽G11的宽度的1~1.5倍,阳极极耳收容凹槽对位阴极用绝缘胶带T2的长度可为阳极极耳收容凹槽G11的长度的1~1.5倍。
在根据本发明的二次电池电芯中,参照图1、图2(a)和图2(c)、图4、图5(a)和图5(b)以及图7、图8(a)和图8(b),所述二次电池电芯还可包括:阴极极耳收容凹槽用绝缘胶带T3,覆盖阴极极耳4和阴极极耳4周围的部分阴极极耳收容凹槽G31。
在一实施例中,阴极极耳收容凹槽用绝缘胶带T3的宽度可为阴极极耳收容凹槽G31的宽度的0.5~1.5倍,阴极极耳收容凹槽用绝缘胶带T3的长度可为阴极极耳收容凹槽G31的长度的0.5~1.5倍。
在一实施例中,阳极极耳2可采用超声波焊接、激光焊接或热压焊接、或导电胶粘结的方式电连接于阳极极耳收容凹槽G11处的阳极集流体11。
在一实施例中,阴极极耳4采用超声波焊接、激光焊接或热压焊接、或导电胶粘结的方式电连接于阴极极耳收容凹槽G31处的阴极集流体31。
在一实施例中,阳极极耳收容凹槽G11可通过激光清洗或机械清洗将阳极膜片12的对应部分去除以露出阳极集流体11而形成;或者阳极极耳收容凹槽G11可通过涂布阳极膜片浆料之前预置胶纸在阳极集流体11上、之后涂布并干燥阳极膜片浆料以形成阳极膜片12且在干燥阳极膜片浆料后将胶纸从阳极集流体11上剥离形成。
在一实施例中,阴极极耳收容凹槽G31可通过激光清洗或机械清洗将阴极膜片32的对应部分去除以露出阴极集流体31而形成;或者阴极极耳收容凹槽G31可通过涂布阴极膜片浆料之前预置胶纸在阴极集流体31上、之后涂布并干燥阴极膜片浆料以形成阴极膜片32且在干燥阴极膜片浆料后将胶纸从阴极集流体31上剥离形成。
在一实施例中,阴极极片对位凹槽G32可通过激光清洗或机械清洗将阴极膜片32的对应部分去除以露出阴极集流体31而形成;或者阴极极片对位凹槽G32可通过涂布阴极膜片浆料之前预置胶纸在阴极集流体31上、之后涂布并干燥阴极膜片浆料以形成阴极膜片32且在干燥阴极膜片浆料后将胶纸从阴极集流体31上剥离形成。
在一实施例中,阳极头部对位阴极凹槽G33可通过激光清洗或机械清洗将阴极膜片32的对应部分去除以露出阴极集流体31而形成;或者阳极头部对位阴极凹槽G33可通过涂布阴极膜片浆料之前预置胶纸在阴极集流体31上、之后涂布并干燥阴极膜片浆料以形成阴极膜片32且在干燥阴极膜片浆料后将胶纸从阴极集流体31上剥离形成。
在一实施例中,阳极头部对位阴极用绝缘胶带T1可为单面有粘性的单面绝缘胶带或者为双面初始时均已有粘性或是一个单面初始时已有粘性而另一单面是经后续的热压或冷压后有粘性的双面绝缘胶带。
在一实施例中,阳极极耳收容凹槽对位阴极用绝缘胶带T2可为单面有粘性的单面绝缘胶带或者为双面初始时均已有粘性或是一个单面初始时已有粘性而另一单面是经后续的热压或冷压后有粘性的双面绝缘胶带。
在一实施例中,阴极极耳收容凹槽用绝缘胶带T3可为单面有粘性的单面绝缘胶带或者为双面初始时均已有粘性或是一个单面初始时已有粘性而另一单面是经后续的热压或冷压后有粘性的双面绝缘胶带。
在根据本发明的二次电池电芯中,参照图1、图2(a)、图4、图5(a)以及图7和图8(a),阴极极片3还可形成有:阴极配对凹部R31,底部为阴极集流体31而周侧为阴极膜片32,位于阴极极耳收容凹槽G31的正对背侧。阴极配对凹部R31的设置,便于阴极极耳4超声焊接于阴极极耳收容凹槽G31中。
在一实施例中,阴极配对凹部R31可为非贯穿槽。
在根据本发明的二次电池电芯中,参照图1、图2(a)、图4、图5(a)以及图7和图8(a),所述二次电池电芯还可包括:阴极配对凹部用绝缘胶带T4,覆盖阴极配对凹部R31。在一实施例中,阴极配对凹部用绝缘胶带T4的宽度可为阴极极耳收容凹槽G31的宽度的0.5~1.5倍,阴极配对凹部用绝缘胶带T4的长度可为阴极极耳收容凹槽G31的长度的0.5~1.5倍。
在一实施例中,阴极配对凹部R31可通过激光清洗或机械清洗将阴极膜片32的对应部分去除以露出阴极集流体31而形成;或者阴极配对凹部R31可通过涂布阴极膜片浆料之前预置胶纸在阴极集流体31上、之后涂布并干燥阴极膜片浆料以形成阴极膜片32且在干燥阴极膜片浆料后将胶纸从阴极集流体31上剥离形成。
在一实施例中,阴极配对凹部用绝缘胶带T4可为单面有粘性的单面绝缘胶带或者为双面初始时均已有粘性或是一个单面初始时已有粘性而另一单面是经后续的热压或冷压后有粘性的双面绝缘胶带。
在根据本发明的二次电池电芯中,参照图1、图3(a)、图4、图6(a)以及图7和图9(a),阳极极片1还可形成有:阳极配对凹部R11,位于阳极极耳收容凹槽G11的正对背侧。阳极配对凹部R11的设置,便于阳极极耳2超声焊接于阳极极耳收容凹槽G11中。参照图1、图2(a)、图4、图5(a)以及图7和图8(a),阴极极片3还可形成有:阴极极片对位凹部R32,位于阴极极片3的与阳极配对凹部R11对位的区域,且在长度和宽度上均大于阳极配对凹部R11。
在一实施例中,阳极配对凹部R11可为非贯穿槽,阴极极片对位凹部R32也为非贯穿槽。
在根据本发明的二次电池电芯中,参照图1、图2(a)、图4、图5(a)以及图7和图8(a),阳极配对凹部对位阴极用绝缘胶带T5,覆盖阴极极片3的与阳极配对凹部R11对位的区域。
在一实施例中,阳极配对凹部R11可通过激光清洗或机械清洗将阳极膜片12的对应部分去除以露出阳极集流体11而形成;或者阳极配对凹部R11可通过涂布阳极膜片浆料之前预置胶纸在阳极集流体11上、之后涂布并干燥阳极膜片浆料以形成阳极膜片12且在干燥阳极膜片浆料后将胶纸从阳极集流体11上剥离形成。
在一实施例中,阴极极片对位凹部R32可通过激光清洗或机械清洗将阴极膜片32的对应部分去除以露出阴极集流体31而形成;或者阴极极片对位凹部R32可通过涂布阴极膜片浆料之前预置胶纸在阴极集流体31上、之后涂布并干燥阴极膜片浆料以形成阴极膜片32且在干燥阴极膜片浆料后将胶纸从阴极集流体31上剥离形成。
在一实施例中,阳极配对凹部对位阴极用绝缘胶带T5为单面有粘性的单面绝缘胶带 或者为双面初始时均已有粘性或是一个单面初始时已有粘性而另一单面是经后续的热压或冷压后有粘性的双面绝缘胶带。
在根据本发明的二次电池电芯中,阳极极耳收容凹槽G11的宽度可为阳极极耳2的宽度的1~5倍,阳极极耳收容凹槽G11的长度可为阳极极耳2的收容于阳极极耳收容凹槽G11内的部分的长度的1~5倍,阳极极耳收容凹槽G11的深度可等于阳极膜片12的厚度。
在根据本发明的二次电池电芯中,阴极极耳收容凹槽G31的宽度可为阴极极耳4的宽度的1~5倍,阴极极耳收容凹槽G31的长度可为阴极极耳4的收容于阴极极耳收容凹槽G31内的部分的长度的1~5倍,阴极极耳收容凹槽G31的深度可等于阴极膜片32的厚度。
在根据本发明的二次电池电芯中,参照图3(a)至图3(b)、图6(a)至图6(b)和图9(a)至图9(b),阳极极片1可为一整体片,二次电池电芯为卷绕式电芯,在阳极极片1展开状态下,阳极极片1的头部至尾部的距离定义为D1,自阳极极片1的头部起的第一个阳极极耳收容凹槽G11的中心线至阳极极片1的头部之间的距离定义为d11,第二个阳极极耳收容凹槽G11的中心线至阳极极片1的头部之间的距离定义为d12,第三个及以后的阳极极耳收容凹槽G11以此类推,这些距离均处于自阳极极片1的头部起计算的1/100D1~7/10D1的范围内。优选地,各距离均可处于自阳极极片1的头部起计算的3/100D1~7/10D1的范围内,从而更有利于降低二次电池电芯的直流阻抗DCR(Direct current resistance)。这是因为各距离越靠近阳极极片1的中间位置(即1/2D1),DCR越小。
在一实施例中,位于阳极极片1的卷绕起始段B1的阳极集流体11仅一个表面设置阳极膜片12。
在根据本发明的二次电池电芯中,参照图2(a)至图2(c)、图5(a)至图5(c)和图8(a)至图8(c),阴极极片3可为一整体片,二次电池电芯为卷绕式电芯,在阴极极片3展开状态下,阴极极片3的头部至尾部的距离定义为D2,自阴极极片3的头部起的第一个阴极极耳收容凹槽G31的中心线至阴极极片3的头部之间的距离定义为d21,第二个阴极极耳收容凹槽G31的中心线至阴极极片3的头部之间的距离定义为d22,第三个及以后的阴极极耳收容凹槽G31依次类推,这些距离均处于自阴极极片3的头部起计算的1/100D2~7/10D2的范围内。优选地,各距离均可处于自阴极极片3的头部起计算的3/100D2~7/10D2的范围内,从而更有利于降低二次电池电芯的直流阻抗DCR。这是因为各距离越靠近阴极极片3的中间位置(即1/2D1),DCR越小。
在根据本发明的二次电池电芯中,参照图1、图4以及图7,各对阳极极耳2沿二次电芯的厚度方向的投影彼此重合,各对阴极极耳4沿二次电芯的厚度方向的投影彼此重 合。
最后补充说明的是,上述提到的双面绝缘胶带包括基材和涂覆在基材的两个表面的胶层。双面初始时均已有粘性的双面绝缘胶带的胶层可以为丁苯橡胶层、聚氨酯层、聚丙烯酸酯层或聚偏氟乙烯层。在一个单面初始时已有粘性而另一单面是经后续的热压或冷压后有粘性的双面绝缘胶带中,一个单面初始时已有粘性的胶层可以为丁苯橡胶层、聚氨酯层、聚丙烯酸酯层或聚偏氟乙烯层;而另一单面是经后续的热压或冷压后有粘性的胶层可以为常温下无初粘性的温敏胶或常温下无初粘性的压敏胶。所述常温下无初粘性的温敏胶是指在常温下,当物体和温敏胶之间发生短暂接触时,不会对物体产生粘结作用的温敏胶。所述常温下无初粘性的压敏胶是指在常温下,当物体和压敏胶之间在指压下发生短暂接触时,不会对物体产生粘结作用的压敏胶。所述常温下无初粘性的温敏胶可选自聚烯烃、聚乙烯醇缩丁醛、聚酰胺类以及聚酯类中的一种或几种。所述常温下无初粘性的压敏胶可选自乙烯-丁烯-聚苯乙烯线性三嵌段共聚物(SEBS)、苯乙烯-丁二烯嵌段共聚物(SEPS)以及环氧化苯乙烯-异戊二烯-苯乙烯嵌段共聚物(ESIS)中的一种或几种。

Claims (20)

  1. 一种二次电池电芯,包括:
    阳极极片(1),包括:
    阳极集流体(11);以及
    阳极膜片(12),设置在阳极集流体(11)的表面;
    阳极极耳(2);
    阴极极片(3),包括:
    阴极集流体(31);以及
    阴极膜片(32),设置在阴极集流体(31)的表面;
    阴极极耳(4);以及
    隔离膜(5),设置于阳极极片(1)和阴极极片(3)之间;
    其中,
    阳极极片(1)形成有:
    阳极极耳收容凹槽(G11),底部为阳极集流体(11)而周侧为阳极膜片(12),收容阳极极耳(2);
    阴极极片(3)形成有:
    阴极极耳收容凹槽(G31),底部为阴极集流体(31)而周侧为阴极膜片(32),收容阴极极耳(4);
    其特征在于,
    阳极极耳(2)成对设置,各对中的两个阳极极耳(2)沿二次电池电芯的厚度方向分别位于阳极极片(1)的阳极卷绕起始段(B1)的上下两侧;和/或
    阴极极耳(4)成对设置,各对中的两个阴极极耳(4)沿二次电池电芯的厚度方向分别位于阴极极片(3)的阴极卷绕起始段(B2)的上下两侧。
  2. 根据权利要求1所述的二次电池电芯,其特征在于,
    阳极极耳收容凹槽(G11)的周侧为三边封闭一边开口;或
    阳极极耳收容凹槽(G11)的周侧为两边封闭两边开口。
  3. 根据权利要求1所述的二次电池电芯,其特征在于,
    阴极极耳收容凹槽(G31)的周侧为三边封闭一边开口;或
    阴极极耳收容凹槽(G31)的周侧为两边封闭两边开口。
  4. 根据权利要求1所述的二次电池电芯,其特征在于,阴极极片(3)还形成有:
    阴极极片对位凹槽(G32),位于阴极极片(3)的与阳极极耳收容凹槽(G11)对位的区域。
  5. 根据权利要求1所述的二次电池电芯,其特征在于,阴极极片对位凹槽(G32)在长度和宽度上均大于阳极极耳收容凹槽(G11)。
  6. 根据权利要求1所述的二次电池电芯,其特征在于,阳极极耳(2)为一对或多对。
  7. 根据权利要求1所述的二次电池电芯,其特征在于,阴极极耳(4)为一对或多对。
  8. 根据权利要求1所述的二次电池电芯,其特征在于,所述二次电池电芯还包括:
    阳极头部对位阴极用绝缘胶带(T1),覆盖阴极极片(3)的与阳极头部对位的区域。
  9. 根据权利要求8所述的二次电池电芯,其特征在于,阴极极片(3)还形成有:
    阳极头部对位阴极凹槽(G33),位于阴极极片(3)的与阳极头部对位的区域,且阳极头部对位阴极用绝缘胶带(T1)覆盖阳极头部对位阴极凹槽(G33)。
  10. 根据权利要求1所述的二次电池电芯,其特征在于,所述二次电池电芯还包括:
    阳极极耳收容凹槽对位阴极用绝缘胶带(T2),覆盖整个阴极极片(3)的与阳极极耳收容凹槽(G11)对位的区域。
  11. 根据权利要求10所述的二次电池电芯,其特征在于,阳极极耳收容凹槽对位阴极用绝缘胶带(T2)的宽度为阳极极耳收容凹槽(G11)的宽度的1~1.5倍,阳极极耳收容凹槽对位阴极用绝缘胶带(T2)的长度为阳极极耳收容凹槽(G11)的长度的1~1.5倍。
  12. 根据权利要求1所述的二次电池电芯,其特征在于,所述二次电池电芯还包括:
    阴极极耳收容凹槽用绝缘胶带(T3),覆盖阴极极耳(4)和阴极极耳(4)周围的部分阴极极耳收容凹槽(G31)。
  13. 根据权利要求12所述的二次电池电芯,其特征在于,阴极极耳收容凹槽用绝缘胶带(T3)的宽度为阴极极耳收容凹槽(G31)的宽度的0.5~1.5倍,阴极极耳收容凹槽用绝缘胶带(T3)的长度为阴极极耳收容凹槽(G31)的长度的0.5~1.5倍。
  14. 根据权利要求1所述的二次电池电芯,其特征在于,
    阴极极片(3)还形成有:
    阴极配对凹部(R31),底部为阴极集流体(31)而周侧为阴极膜片(32),
    位于阴极极耳收容凹槽(G31)的正对背侧。
  15. 根据权利要求14所述的二次电池电芯,其特征在于,所述二次电池电芯还包括:
    阴极配对凹部用绝缘胶带(T4),覆盖阴极配对凹部(R31)。
  16. 根据权利要求15所述的二次电池电芯,其特征在于,阴极配对凹部用绝缘胶带(T4)的宽度为阴极极耳收容凹槽(G31)的宽度的0.5~1.5倍,阴极配对凹部用绝缘胶带(T4)的长度为阴极极耳收容凹槽(G31)的长度的0.5~1.5倍。
  17. 根据权利要求1所述的二次电池电芯,其特征在于,
    阳极极片(1)还形成有:
    阳极配对凹部(R11),位于阳极极耳收容凹槽(G11)的正对背侧;
    阴极极片(3)还形成有:
    阴极极片对位凹部(R32),位于阴极极片(3)的与阳极配对凹部(R11)对位的区域,且在长度和宽度上均大于阳极配对凹部(R11)。
  18. 根据权利要求1所述的二次电池电芯,其特征在于,
    所述二次电池电芯还包括:
    阳极配对凹部对位阴极用绝缘胶带(T5),覆盖阴极极片(3)的与阳极配对凹部(R11)对位的区域。
  19. 根据权利要求1所述的二次电池电芯,其特征在于,位于阳极极片(1)的卷绕起始段(B1)的阳极集流体(11)仅一个表面设置阳极膜片(12)。
  20. 根据权利要求1所述的二次电池电芯,其特征在于,
    各对阳极极耳(2)沿二次电芯的厚度方向的投影至少部分重合;
    各对阴极极耳(4)沿二次电芯的厚度方向的投影至少部分重合。
PCT/CN2016/087447 2016-06-28 2016-06-28 二次电池电芯 WO2018000189A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2016/087447 WO2018000189A1 (zh) 2016-06-28 2016-06-28 二次电池电芯
CN201680086723.5A CN109417152B (zh) 2016-06-28 2016-06-28 二次电池电芯
US16/203,597 US11024868B2 (en) 2016-06-28 2018-11-28 Secondary battery cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/087447 WO2018000189A1 (zh) 2016-06-28 2016-06-28 二次电池电芯

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/203,597 Continuation US11024868B2 (en) 2016-06-28 2018-11-28 Secondary battery cell

Publications (1)

Publication Number Publication Date
WO2018000189A1 true WO2018000189A1 (zh) 2018-01-04

Family

ID=60785680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/087447 WO2018000189A1 (zh) 2016-06-28 2016-06-28 二次电池电芯

Country Status (3)

Country Link
US (1) US11024868B2 (zh)
CN (1) CN109417152B (zh)
WO (1) WO2018000189A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3716362A1 (en) * 2019-03-26 2020-09-30 Ningde Amperex Technology Limited Electrode sheet, cell and battery
EP3736884A4 (en) * 2019-03-26 2021-03-10 Ningde Amperex Technology Ltd. POLAR PART, BATTERY ELEMENT AND BATTERY

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4106048A4 (en) * 2021-04-28 2023-06-14 Ningde Amperex Technology Ltd. CELL AND POWER UTILIZATION APPARATUS
DE102021111821A1 (de) * 2021-05-06 2022-11-10 Bayerische Motoren Werke Aktiengesellschaft Elektrode und elektrochemische Speicherzelle
CN114430095B (zh) * 2022-04-06 2022-07-08 宁德新能源科技有限公司 电化学装置及电子设备
CN115566373B (zh) * 2022-12-07 2023-03-03 楚能新能源股份有限公司 一种错位型的全极耳极片、卷绕电芯和圆柱电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201556685U (zh) * 2009-07-16 2010-08-18 微宏动力系统(湖州)有限公司 超级电容电池
CN203733894U (zh) * 2014-01-17 2014-07-23 宁德新能源科技有限公司 锂离子电池
CN204167396U (zh) * 2014-10-29 2015-02-18 深圳市电科电源股份有限公司 多极耳电池
CN204809314U (zh) * 2015-06-12 2015-11-25 宁德时代新能源科技有限公司 二次电池电芯
CN205231172U (zh) * 2015-12-07 2016-05-11 山东精工电子科技有限公司 一种圆柱形高容量锂电池正极片结构

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4149543B2 (ja) * 1997-11-19 2008-09-10 株式会社東芝 非水電解液電池
JP4362539B2 (ja) * 2007-07-20 2009-11-11 パナソニック株式会社 電池用電極板、電池用極板群、リチウム二次電池、電池用電極板の製造方法、及び電池用電極板の製造装置
KR100911999B1 (ko) * 2008-01-28 2009-08-14 주식회사 엘지화학 절연특성이 향상된 전지
KR100982003B1 (ko) * 2008-04-17 2010-09-13 주식회사 엘지화학 절연특성이 향상된 전지
US8142928B2 (en) * 2008-06-04 2012-03-27 Basvah Llc Systems and methods for rechargeable battery collector tab configurations and foil thickness
CN102484240A (zh) * 2009-01-28 2012-05-30 K2能源解决方案公司 电池极耳结构
JP2011238375A (ja) * 2010-05-06 2011-11-24 Hitachi Vehicle Energy Ltd 二次電池およびその製造方法
CN101950816A (zh) * 2010-09-21 2011-01-19 奇瑞汽车股份有限公司 一种方形动力锂离子电池电芯及其制作方法
WO2012090726A1 (ja) * 2010-12-28 2012-07-05 三洋電機株式会社 非水電解質二次電池
KR101866355B1 (ko) * 2011-03-25 2018-06-12 에스케이이노베이션 주식회사 파우치형 이차전지의 가스배출장치
KR101354580B1 (ko) * 2011-06-24 2014-01-22 에스케이이노베이션 주식회사 이종 접합 탭을 가지는 배터리
CN102683742A (zh) * 2012-06-12 2012-09-19 东莞新能源科技有限公司 一种锂离子电芯及其制备方法
KR20140139181A (ko) * 2013-05-27 2014-12-05 삼성에스디아이 주식회사 이차 전지
CN104051792B (zh) * 2014-07-03 2016-03-09 宁德新能源科技有限公司 非矩形叠片电芯的制备方法
CN104157912B (zh) * 2014-08-13 2016-06-08 东莞新能源科技有限公司 电芯的制备方法
CN105655531B (zh) * 2014-11-10 2018-08-10 东莞新能源科技有限公司 电芯及电化学装置
CN105576191A (zh) * 2016-02-26 2016-05-11 宁德新能源科技有限公司 一种电池极片及采用该电池极片的二次电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201556685U (zh) * 2009-07-16 2010-08-18 微宏动力系统(湖州)有限公司 超级电容电池
CN203733894U (zh) * 2014-01-17 2014-07-23 宁德新能源科技有限公司 锂离子电池
CN204167396U (zh) * 2014-10-29 2015-02-18 深圳市电科电源股份有限公司 多极耳电池
CN204809314U (zh) * 2015-06-12 2015-11-25 宁德时代新能源科技有限公司 二次电池电芯
CN205231172U (zh) * 2015-12-07 2016-05-11 山东精工电子科技有限公司 一种圆柱形高容量锂电池正极片结构

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3716362A1 (en) * 2019-03-26 2020-09-30 Ningde Amperex Technology Limited Electrode sheet, cell and battery
EP3736884A4 (en) * 2019-03-26 2021-03-10 Ningde Amperex Technology Ltd. POLAR PART, BATTERY ELEMENT AND BATTERY
US11888123B2 (en) 2019-03-26 2024-01-30 Ningde Amperex Technology Ltd. Electrode plate, battery cell, and battery

Also Published As

Publication number Publication date
CN109417152B (zh) 2022-04-29
CN109417152A (zh) 2019-03-01
US20190097259A1 (en) 2019-03-28
US11024868B2 (en) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2018000189A1 (zh) 二次电池电芯
WO2016197382A1 (zh) 二次电池电芯
WO2020103014A1 (zh) 智能电池及其锂电芯
WO2017219345A1 (zh) 卷绕式电芯
EP2892101B1 (en) Method for manufacturing electrode assembly
JP6788107B2 (ja) 電池セルのための電極ユニットの製造方法、及び、電極ユニット
CN204809314U (zh) 二次电池电芯
JP6090724B2 (ja) ゼリーロールタイプの電極組立体の製造方法、及びゼリーロールタイプのポリマー二次電池の製造方法
EP2985831B1 (en) Curved electrode stacked body and battery cell comprising same
CN108615924B (zh) 电芯及采用电芯的锂离子电池
KR20180080908A (ko) 전극 조립체
WO2024082814A1 (zh) 一种电极组件及电池
KR20140034405A (ko) 래핑 전극체 및 그 제조방법
CN109888186B (zh) 薄型锂离子电池的极片装配定位方法
CN205828567U (zh) 二次电池电芯
JP2015201373A (ja) 電池ユニットの製造方法、及び、電池ユニット
WO2021047505A1 (zh) 电池隔膜、电池及电池包
CN107293806B (zh) 卷绕式电芯
CN214378500U (zh) 一种电极片、卷绕式电芯和电池
JP2010003653A (ja) 電池
CN210429950U (zh) 层叠极耳、极片、电芯和电池
CN115498366A (zh) 电化学装置及用电设备
CN117059906A (zh) 卷绕式电芯
JPH1126008A (ja) 電池の電極構造
KR20190055994A (ko) 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906592

Country of ref document: EP

Kind code of ref document: A1