WO2017222084A1 - Production method for product derived from plant-based biomass having two-stage process - Google Patents

Production method for product derived from plant-based biomass having two-stage process Download PDF

Info

Publication number
WO2017222084A1
WO2017222084A1 PCT/JP2017/032386 JP2017032386W WO2017222084A1 WO 2017222084 A1 WO2017222084 A1 WO 2017222084A1 JP 2017032386 W JP2017032386 W JP 2017032386W WO 2017222084 A1 WO2017222084 A1 WO 2017222084A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
plant
lignin
treatment
treatment step
Prior art date
Application number
PCT/JP2017/032386
Other languages
French (fr)
Japanese (ja)
Inventor
啓人 小山
一晃 廣田
山尾 忍
匡貴 岡野
隆夫 増田
吉川 琢也
Original Assignee
出光興産株式会社
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社, 国立大学法人北海道大学 filed Critical 出光興産株式会社
Priority to JP2018523716A priority Critical patent/JP6931878B2/en
Priority to CN201780054650.6A priority patent/CN109689736A/en
Publication of WO2017222084A1 publication Critical patent/WO2017222084A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B1/00Preparatory treatment of cellulose for making derivatives thereof, e.g. pre-treatment, pre-soaking, activation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/14Hemicellulose; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides

Definitions

  • the present invention relates to a method for producing a plant biomass-derived product having a two-stage process.
  • biomass-derived raw materials have been desired.
  • raw materials derived from biomass are particularly prominent in the production of bioethanol, for example, but there are many cases where raw materials that compete with food such as starch and sugar are often used, which leads to an increase in food prices and a decrease in food production.
  • a technology for producing biofuels and biochemicals from cellulosic biomass that does not compete with food is currently attracting attention.
  • Cellulosic biomass includes, for example, palm palm trunks and bunches, palm palm fruit fibers and seeds, bagasse (sugar cane (including high biomass and sugar cane)), cane top (sugar cane top and leaf), rice straw, Straw, rice husk, corn cobs, foliage, corn residue (corn stover, corn cob, corn hull), sorghum (including sweet sorghum) residue, Jatropha seed coat and shell, cashew shell, wood chip, switchgrass, napiergrass, Eliansus Energy crops and energy canes.
  • bagasse bagasse
  • cane cane top
  • rice straw Straw, rice husk, corn cobs, foliage, corn residue (corn stover, corn cob, corn hull), sorghum (including sweet sorghum) residue, Jatropha seed coat and shell, cashew shell, wood chip, switchgrass, napiergrass, Eliansus Energy crops and energy canes.
  • sorghum including sweet sorghum
  • a pretreatment step is usually required before the enzymatic saccharification treatment.
  • each component of the biomass or a bond between the components is loosened, and the enzyme can easily access the cellulose.
  • the enzyme adsorbs to lignin present in the system and inhibits saccharification, it was necessary to use a large amount of expensive enzyme in order to obtain sufficient saccharification, so that lignin was solubilized. It was desired.
  • hemicellulose is excessively decomposed when exposed to high temperature, and is easily converted into a saccharification / fermentation inhibitor such as furfural, and it is necessary to suppress the excessive decomposition.
  • Lignin is usually produced as a residue when biomass is converted to ethanol, but has been limited to use as a fuel because it contains many impurities such as enzymes and yeast. However, since it has a polyphenol-like structure, it can be expected to be converted into chemicals and bioplastics, and therefore it is desired to extract lignin.
  • Patent Document 1 discloses a lignin derivative that undergoes a treatment step in which biomass is stirred in the presence of a solvent under high temperature and high pressure.
  • biomass is recovered in the presence of a mixed solvent containing water and an aprotic polar solvent, and these are decomposed under high temperature and high pressure to recover a cellulose derivative, a lignin derivative, and a hemicellulose derivative.
  • Patent Document 3 includes a 1,1-diphenylpropane unit grafted with a phenol derivative at the ⁇ -position of a phenylpropane unit of lignin, and has an ester site in which one or two or more hydroxyl groups are acylated. Based polymers are disclosed.
  • Patent Document 3 discloses that the material is homogenized by acylating and modifying the hydroxyl group of lignin. In this method, secondary derivatization is required, and although the heat resistance is increased, the phenolic hydroxyl group is crushed. Therefore, the reactive sites are also lost, which is attractive as a material.
  • the present invention is to provide a method for producing a hemicellulose-derived saccharide, a cellulose-containing solid material in which excessive decomposition is suppressed, and a biomass-derived product that is lignin with less impurities from plant-based biomass.
  • the present invention provides the following [1] to [17].
  • the manufacturing method of the plant biomass origin product containing the process process (2) which mixes and heat-processes.
  • Condition A The concentration of the solid content obtained from the treatment step (1) with respect to the solvent is 1% by mass or more and 50% by mass or less.
  • Condition B treatment temperature is 100 ° C. or more and 300 ° C. or less, and condition C: treatment time is 0.1 hour or more and 10 hours or less.
  • a resin composition comprising the lignin obtained by the method according to any one of [2] to [12] above.
  • the present invention it is possible to provide a method for producing a hemicellulose-derived saccharide, a cellulose-containing solid material in which excessive decomposition is suppressed, and a biomass-derived product that is lignin with less impurities from plant-based biomass.
  • the first treatment step (1) is performed while suppressing the excessive decomposition of hemicellulose, a high sugar yield can be obtained from the hemicellulose-derived saccharide and the cellulose-containing solid.
  • the method for producing a plant biomass-derived product of the present invention includes a treatment step (1) for separating hemicellulose from a plant biomass, a solid content obtained from the treatment step (1), and an organic solvent alone or an organic solvent. It has the process containing the process process (2) which mixes the solvent selected from the mixed solvent with water, and heat-processes.
  • hemicellulose is separated from plant biomass. Details will be described below.
  • Plant biomass examples include woody biomass and herbaceous biomass.
  • woody biomass examples include conifers such as cedar, cypress, hiba, cherry, eucalyptus, beech and bamboo, and broad-leaved trees.
  • Herbaceous biomass includes palm palm trunks and empty bunches, palm palm fruit fibers and seeds, bagasse (sugar cane and high biomass sugar cane squeezed rice cake), cane top (sugar cane top and leaf), energy cane, rice straw, straw, Corn cob, foliage, residue (corn stover, corn cob, corn hull), sorghum (including sweet sorghum) residue, Jatropha seed shell and shell, cashew shell, switchgrass, Elianthus, high biomass yield crop, energy crop, Energy cane etc. are mentioned.
  • the plant biomass can be pulverized.
  • any shape of a block, a chip, or powder may be used.
  • it may be either dry or hydrated.
  • the treatment step (1) for separating hemicellulose a known plant biomass treatment method can be used, but hydrothermal treatment is preferably performed here.
  • the hydrothermal treatment include at least one selected from the group consisting of hydrothermal treatment using water and / or steam, steam explosion, and hydrothermal treatment using an acidic aqueous solution.
  • hydrothermal treatment using an acidic aqueous solution it is preferable to use an acidic aqueous solution containing at least one selected from inorganic acids and organic acids.
  • At least one acid aqueous solution selected from the group consisting of inorganic acids selected from dilute sulfuric acid, phosphoric acid, dilute hydrochloric acid and dilute nitric acid, and organic acids selected from formic acid, acetic acid, oxalic acid and malic acid, It can be used as an acidic aqueous solution.
  • the charged concentration of the plant-based biomass as the raw material with respect to the aqueous solvent is usually 1% by mass to 95% by mass, preferably 3% by mass to 80% by mass, more preferably 5% by mass. % To 50% by mass, most preferably 5% to 20% by mass. If the feed concentration of the raw material plant biomass is 1% by mass or more, the amount of energy used for heating the aqueous solvent can be suppressed, and the energy efficiency of the treatment step (1) can be kept good. When the feed concentration of the raw material plant-based biomass is 95% by mass or less, the separation efficiency can be kept good.
  • the treatment temperature in the treatment step (1) is preferably 50 ° C. or higher and 200 ° C. or lower, more preferably 100 ° C. or higher and 190 ° C. or lower, and further preferably 150 ° C. or higher and 180 ° C. or lower. If it is 50 degreeC or more, hemicellulose can be solubilized. If it is 200 degrees C or less, the excessive decomposition of hemicellulose can be suppressed.
  • the treatment time in the treatment step (1) is preferably from 1 minute to 5 hours, more preferably from 3 minutes to 3 hours, further preferably from 5 minutes to 2 hours, particularly preferably from 10 minutes to 1 hour. Below time. If the treatment time is 1 minute or longer, hemicellulose can be solubilized.
  • the pressure of the reaction system in the treatment step (1) is desirably 0.1 MPa to 30 MPa. More preferable conditions are appropriately set because they are affected by temperature. Further, the treatment process can be performed in an ambient atmosphere. Although there is no restriction
  • Hemicellulose is separated by solid-liquid separation of the reaction product after hydrothermal treatment.
  • the solid content containing a cellulose and lignin is obtained.
  • the process of washing the obtained solid content with water may be included.
  • 100 parts by mass or more and 10000 parts by mass or less of water are added to 100 parts by mass of the obtained solids and stirred, and then the solids and the liquid phase are separated by filtration.
  • the amount of water used for the water washing is more preferably 1000 parts by mass or more and 5000 parts by mass or less, and still more preferably 1000 parts by mass or more and 2000 parts by mass or less.
  • a method for performing solid-liquid separation is not particularly limited, and examples thereof include filtration, filter press, centrifugal separation, and dehydrator.
  • This treatment step is a step in which the solid content obtained from the treatment step (1) and a solvent selected from an organic solvent alone or a mixed solvent of an organic solvent and water are mixed and subjected to heat treatment. In this step, lignin and cellulose are separated.
  • a solvent an organic solvent alone or a solvent selected from a mixed solvent of an organic solvent and water is used.
  • Organic solvent is not particularly limited, and may be a saturated or unsaturated linear alcohol or branched alcohol.
  • ketones such as acetone and methyl ethyl ketone
  • ethers such as tetrahydrofuran, ethylene glycol, and polyethylene glycol may be used.
  • the organic solvent may be used alone or in combination.
  • the concentration of the organic solvent in the mixed solvent is preferably 10% by weight to 80% by weight, more preferably 12% by weight to 75% by weight, and further preferably 15% by weight to 70% by weight. If the concentration of the organic solvent in the mixed solvent is within the above-described range, lignin can be sufficiently separated in the treatment step (2).
  • the pH of the system from after the separation of hemicellulose in the processing step (1) until before mixing the solid content and the solvent obtained from the processing step (1) in the processing step (2), or in the processing step (2) It is preferable to perform the heat treatment in the treatment step (2) after adjusting the pH of the system when the solid content obtained from the treatment step (1) and the solvent are mixed with a basic substance.
  • hydrothermal treatment is performed using an acidic aqueous solution in the treatment step (1)
  • the pH before mixing the solid content obtained from the treatment step (1) and the solvent in the treatment step (2) is preferable to adjust the pH before mixing the solid content obtained from the treatment step (1) and the solvent in the treatment step (2).
  • the basic substance include inorganic bases such as sodium hydroxide, potassium hydroxide and calcium hydroxide, and organic bases such as ammonia.
  • the pH before heating in the treatment step (2) is preferably 3 or more and 12 or less, more preferably 3 or more and 10 or less, still more preferably 4 or more and 8 or less, particularly preferably 4 or more and 7 or less, and most preferably 4 Adjust to 6 or less.
  • the treatment conditions in the treatment step (2) are preferably performed under conditions that satisfy all of the following conditions A to C.
  • Condition A The concentration of the solid content obtained from the treatment step (1) with respect to the solvent is preferably 1% by mass or more and 50% by mass or less.
  • concentration of the said solid content is with respect to the total amount of a solvent. If the solid concentration obtained from the treatment step (1) is 1% by mass or more, the energy efficiency of the lignin removal process even if the amount of energy used for heating the solvent or removing the organic solvent is taken into account. Can be kept good.
  • the concentration of the solid content obtained from the treatment step (1) with respect to the solvent is more preferably 3% by mass or more and 20% by mass or less, and further preferably 5% by mass or more and 15% by mass or less.
  • the treatment temperature in the treatment step (2) is preferably 100 ° C. or higher and 300 ° C. or lower. If the treatment temperature is 100 ° C. or higher, the lignin can be sufficiently separated, and if it is 300 ° C. or lower, decomposition of cellulose and generation of impurities such as coke due to repolymerization of lignin can be suppressed. .
  • the treatment temperature is more preferably 150 ° C. or higher and 250 ° C. or lower, and further preferably 170 ° C. or higher and 230 ° C. or lower.
  • the treatment time in the treatment step (2) is preferably 0.1 hour or more and 10 hours or less. If the treatment time is 0.1 hour or more, the separation of lignin can be sufficiently advanced, and if it is 10 hours or less, the decomposition of cellulose and the generation of impurities such as coke due to repolymerization of lignin are suppressed. Can do.
  • the treatment time is more preferably 0.2 hours or more and 8 hours or less, further preferably 1 hour or more and 6 hours or less, and particularly preferably 1 hour or more and 3 hours or less.
  • the pressure of the reaction system is 0.5 MPa to 30 MPa.
  • the preferable range of the pressure in the reaction system is appropriately set because it is influenced by the amount of water and organic solvent and the temperature.
  • the processing step (2) can be performed in an ambient atmosphere.
  • the treatment step (2) is particularly preferably performed in an atmosphere in which nitrogen purge is performed to reduce oxygen in order to suppress polymerization due to oxidation reaction.
  • nitrogen purge is performed to reduce oxygen in order to suppress polymerization due to oxidation reaction.
  • a general batch reactor, a semi-batch reactor, or the like can be used.
  • the system which processes, extruding the slurry which consists of a plant-derived biomass-derived solid substance and an organic solvent or water and an organic solvent with a screw or a pump etc. is also applicable.
  • the reaction product obtained after the heat treatment in the treatment step (2) can be subjected to solid-liquid separation to obtain a cellulose-containing solid as a solid and a lignin-containing solution as a liquid.
  • the solid-liquid separation after the processing step (2) may include a step of washing the solid content obtained by the solid-liquid separation with water. This water washing process can be performed by adding 100 mass parts or more and 10000 mass parts or less of water with respect to 100 mass parts of solid content obtained after solid-liquid separation, and stirring. After stirring, the solid content and the liquid phase are separated by filtration.
  • the amount of water used in the washing step is preferably 100 parts by mass or more and 10,000 parts by mass or less, more preferably 1000 parts by mass or more and 5000 parts by mass or less, and further preferably 1000 parts by mass or more and 2000 parts by mass or less. If the amount of water used for water washing is 100 parts by mass or more, a sufficient cleaning effect can be obtained, and if it is 10000 parts by mass or less, it can be carried out without any problems in terms of equipment. By this water washing step, it is possible to further remove the organic solvent and to remove water-soluble components attached to the cellulose-containing solid.
  • a cellulose-containing solid can be obtained after solid-liquid separation after the heat treatment in the treatment step (2), or further through the water washing step.
  • the cellulose-containing solid contained in the plant biomass can be recovered as a solid obtained as a residue in the aqueous phase.
  • the liquid phase obtained after the heat treatment in the treatment step (2) or after further water washing treatment contains lignin.
  • lignin for example, when a mixed solvent of water and an organic solvent is used and two phases are formed after the treatment, the organic phase obtained after separating the aqueous phase can be vaporized to remove the solvent to obtain solid lignin. it can.
  • an organic solvent is used alone or when a mixed solvent with water is used, if the organic solvent is one phase after the heat treatment in the treatment step (2), the solvent is removed by vaporizing the organic solvent or the like. Then, solid lignin can be obtained by filtering the solid residue remaining in the water or by solid matter precipitated in water.
  • hemicellulose, cellulose-containing solid and lignin can be produced as a plant-derived biomass-derived product.
  • hemicellulose, cellulose-containing solid and lignin can be produced as a plant-derived biomass-derived product.
  • Each product is described in detail below.
  • the lignin obtained by the production method of the present invention has the following characteristics.
  • the purity of lignin is preferably 92% or more, and more preferably 94% or more.
  • the number average molecular weight is preferably 700 or more, and more preferably 750 or more.
  • the 5% thermogravimetric decrease starting temperature is preferably 215 ° C. or higher, more preferably 220 ° C. or higher.
  • each measuring method of the purity of the said lignin, a number average molecular weight, and a 5% thermogravimetric decrease start temperature is mentioned later.
  • sugar with respect to the hemicellulose in plant biomass becomes 50 mass% or more.
  • the recovery rate of saccharides derived from hemicellulose is less than 50% by mass, saccharides that can contribute to fermentation decrease.
  • the cellulose-containing solid obtained by the production method of the present invention contains 60% by mass or more and 90% by mass or less of a cellulose degradation product obtained by decomposing cellulose and cellulose on the basis of the total amount of the cellulose-containing solid as a solid content.
  • lignin is contained in an amount of 5% by mass to 30% by mass
  • hemicellulose and a hemicellulose decomposition product obtained by decomposing hemicellulose are contained in an amount of 0% by mass to 5% by mass.
  • the cellulose recovery rate in the cellulose containing solid with respect to the cellulose in plant-type biomass will be 70 mass% or more.
  • hemicellulose and the hemicellulose degradation product obtained by decomposing hemicellulose exceed 5% by mass, separation and removal of lignin bound to hemicellulose will be insufficient, and the saccharification rate when obtaining glucose by enzymatic saccharification will decrease. Moreover, when a cellulose recovery rate is less than 70 mass%, the glucose recovery rate with respect to the cellulose in plant-type biomass falls.
  • the cellulose contained in the cellulose-containing solid obtained by the production method of the present invention has a low lignin content, it is suitably used for saccharification treatment with acids and enzymes.
  • the cellulose containing solid obtained by the manufacturing method of this invention is in the state which is easy to be defibrated compared with the cellulose containing solid obtained by other methods. For this reason, it has the advantage that application development is easy. Further, ethanol, butanol, acetone, and the like can be obtained from the cellulose-containing solid obtained by the production method of the present invention using a known method.
  • resin and fiber reinforcing materials such as cellulose nanofibers, rubber and tire reinforcing materials as a substitute for chemical fibers, food additives such as carboxymethylcellulose and oligosaccharides, lactic acid Chemical products such as succinic acid can be obtained.
  • ⁇ Uses of hemicellulose and lignin> From the hemicellulose obtained by the production method of the present invention, food additives such as oligosaccharides and xylitol, and chemicals such as furfural can be obtained, which is useful.
  • the lignin obtained by the production method of the present invention can be specifically used as a water repellent material for fuel and cement. Further, it can be applied to phenol resin, epoxy resin, polyurethane resin base resin raw material, epoxy resin additive (curing agent), polyurethane resin modifier (flame retardant), thermoplastic resin additive, and the like. This is due to the characteristic that lignin has a phenolic structural unit.
  • a conventionally well-known method can be used about the use as a base resin raw material of lignin.
  • a resin composition in which a known crosslinking agent typified by lignin and hexamethylenetetramine is blended can be mentioned. You may mix
  • Such a resin composition is used for heat insulating materials for homes, electronic parts, resin for flack sand, resin for coated sand, resin for impregnation, resin for laminating, resin for FRP molding, automobile parts, reinforcing material for automobile tires, etc. Can be used.
  • an epoxy resin is also possible by introducing an epoxy group into lignin and using lignin as an epoxy resin curing agent.
  • introducing a vinyl group, a maleimide group, an isocyanate group or the like into lignin using a known method it can be applied to a wider range of industrial resins.
  • resin composition a resin composition containing lignin obtained by the above production method is provided. Moreover, resin components, such as a thermoplastic resin and a thermosetting resin, may be contained other than the lignin obtained by the said manufacturing method. Components other than lignin will be described below.
  • thermoplastic resin that can be blended in the resin composition according to the present embodiment is an amorphous thermoplastic resin having a glass transition temperature of 200 ° C. or lower, or a crystalline thermoplastic resin having a melting point of 200 ° C. or lower. Is preferred.
  • thermoplastic resin examples include polycarbonate resin, styrene resin, polystyrene elastomer, polyethylene resin, polypropylene resin, polyacrylic resin (polymethyl methacrylate resin, etc.), polyvinyl chloride resin, cellulose acetate resin, polyamide resin, Low melting point polyester resins (PET, PBT, etc.) represented by polyesters of combinations of terephthalic acid and ethylene glycol, terephthalic acid and 1,4-butanediol, polylactic acid and / or copolymers containing polylactic acid, acrylonitrile-butadiene -Styrene resin (ABS resin), polyphenylene oxide resin (PPO), polyketone resin, polysulfone resin, polyphenylene sulfide resin (PPS), fluororesin, silicon resin, polyimide resin, polybenzimi Tetrazole resins, polyamide elastomers, and copolymers thereof with other monomers.
  • ABS resin acrylon
  • the content of the thermoplastic resin in the resin composition according to the present invention is 30% by mass or more and 99.9% by mass or less with respect to the total amount of the resin composition from the viewpoint of obtaining remarkable fluidity and strength. It is preferably 40% by mass to 99.9% by mass, more preferably 45% by mass to 99.9% by mass, and particularly preferably 50% by mass to 99.9% by mass.
  • the resin composition according to the present embodiment may contain a resin, an additive and / or a filler compatible with the thermoplastic resin composition in addition to the above-described cellulose-containing solid and thermoplastic resin. Good.
  • ⁇ Thermosetting resin> You may mix
  • the compound having a functional group capable of reacting with lignin include a compound that causes an electrophilic substitution reaction with a phenol compound, a compound having an epoxy group, a compound having an isocyanate group, and the like. Since lignin has a phenolic structural unit, it can be applied as a base resin raw material such as phenol resin and epoxy resin, an additive (curing agent) of epoxy resin, and the like.
  • Examples of the compound that causes an electrophilic substitution reaction with a phenol compound include formaldehyde, a formaldehyde donating curing agent compound, or a formaldehyde equivalent compound. Commercially, hexamethylenetetramine, hexaformaldehyde, and paraformaldehyde can be used.
  • the resin composition according to the present embodiment may further contain a phenol resin in addition to lignin and hexamethylenetetramine.
  • the phenol resin is a lignin diluent, extender, etc., as long as the physical properties such as processability, strength, and heat resistance of the resin composition do not deteriorate. Can be used as
  • the compound having an epoxy group belongs to a category called a so-called epoxy resin.
  • examples include 2,2-bis (4′-hydroxyphenyl) propane (referred to as bisphenol A), bis (2-hydroxyphenyl) methane (referred to as bisphenol F), 4,4′-dihydroxydiphenyl Sulfone (referred to as bisphenol S), 4,4′-dihydroxybiphenyl, resorcin, saligenin, trihydroxydiphenyldimethylmethane, tetraphenylolethane, halogen-substituted and alkyl-substituted thereof, butanediol, ethylene glycol, A compound containing two or more hydroxyl groups in the molecule such as erythritol, novolak, glycerin, polyoxyalkylene and the like, and a glycidyl ether epoxy resin synthesized from epichlorohydrin, etc .; a compound containing two or more
  • thermosetting resin composition may further contain a phenol resin in addition to the compound containing lignin and an epoxy group.
  • a curing accelerator can be appropriately added according to the purpose of promoting the curing reaction.
  • Specific examples include imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, 1,8-diaza-bicyclo (5,4,4).
  • Tertiary amines such as undecene-7, phosphines such as triphenylphosphine, quaternary ammonium salts such as tetrabutylammonium salt, triisopropylmethylammonium salt, trimethyldecanylammonium salt, cetyltrimethylammonium salt, tri Examples thereof include quaternary phosphonium salts such as phenylbenzylphosphonium salt, triphenylethylphosphonium salt and tetrabutylphosphonium salt, and metal compounds such as tin octylate. Examples of the counter ion of the quaternary phosphonium salt include halogen, organic acid ion, hydroxide ion and the like, and organic acid ion and hydroxide ion are particularly preferable.
  • the compound having an isocyanate group is obtained by reacting polyisocyanate or polyisocyanate with a polyol.
  • Polyisocyanates include aromatic polyisocyanates such as tolylene diisocyanate (TDI), 4,4′-diphenylmethane diisocyanate (MDI), polymeric MDI (MDI-CR), carbodiimide-modified MDI (liquid MDI), and norbornane diisocyanate (NBDI).
  • Aliphatic polyisocyanates such as isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), 4,4′-methylene-bis (cyclohexyl isocyanate) (hydrogenated MDI), xylylene diisocyanate (XDI), and blocked isocyanates.
  • IPDI isophorone diisocyanate
  • HDI hexamethylene diisocyanate
  • MDI 4,4′-methylene-bis (cyclohexyl isocyanate)
  • XDI xylylene diisocyanate
  • blocked isocyanates be able to.
  • tolylene diisocyanate (TDI) and 4,4′-diphenylmethane diisocyanate (MDI) are preferably used.
  • the thermosetting resin composition may further contain a phenol resin in addition to lignin and an isocyanate compound.
  • a curing accelerator can be appropriately added to the thermosetting resin composition according to the purpose of accelerating the curing reaction.
  • the curing accelerator include zirconium and aluminum organometallic catalysts, dibutyltin laurate, DBU phenol salts, octylates, amines, imidazoles, and the like.
  • zirconium and aluminum organometallic catalysts include zirconium and aluminum organometallic catalysts, dibutyltin laurate, DBU phenol salts, octylates, amines, imidazoles, and the like.
  • aluminum sec-butyrate, ethyl acetoacetate aluminum diisopropylate, zirconium tributoxyacetylacetonate, zirconium tetraacetylacetonate and the like are particularly preferable.
  • the resin composition according to this embodiment may contain a resin such as a phenol resin, a urea resin, a melamine resin, a silicone resin, an unsaturated polyester resin, an alkyd resin, or a polyurethane resin.
  • a resin such as a phenol resin, a urea resin, a melamine resin, a silicone resin, an unsaturated polyester resin, an alkyd resin, or a polyurethane resin.
  • a resin such as a phenol resin, a urea resin, a melamine resin, a silicone resin, an unsaturated polyester resin, an alkyd resin, or a polyurethane resin.
  • a resin such as a phenol resin, a urea resin, a melamine resin, a silicone resin, an unsaturated polyester resin, an alkyd resin, or a polyurethane resin.
  • phenol resins are preferred among the above resins.
  • the resin composition according to the present embodiment may include a filler.
  • the filler may be an inorganic filler or an organic filler.
  • the inorganic filler for example, silica powder such as spherical or crushed fused silica, crystalline silica, alumina powder, glass powder, glass fiber, glass flake, mica, talc, calcium carbonate, alumina, hydrated alumina, nitriding Examples thereof include boron, aluminum nitride, silicon nitride, silicon carbide, titanium nitride, zinc oxide, tungsten carbide, and magnesium oxide.
  • organic filler examples include carbon fiber, aramid fiber, paper powder, cellulose fiber, cellulose powder, rice husk powder, fruit shell / nut powder, chitin powder, and starch.
  • the inorganic filler and the organic filler may be contained singly or in combination, and the content is determined according to the purpose.
  • thermoplastic resins include resins in which polar groups are introduced by adding maleic anhydride, epoxy, or the like to thermoplastic resins, such as maleic anhydride-modified polyethylene resins, maleic anhydride-modified polypropylene resins, and various commercially available phases. A solubilizer may be used in combination.
  • the surfactant examples include linear fatty acids such as stearic acid, palmitic acid, and oleic acid, and branched / cyclic fatty acids with rosins, but are not particularly limited thereto.
  • additives that can be blended include a flexibilizer, a heat stabilizer, an ultraviolet absorber, a flame retardant, an antistatic agent, an antifoaming agent, a thixotropic agent, a release agent, and an antioxidant. Agents, plasticizers, stress reducing agents, coupling agents, dyes, light scattering agents, small amounts of thermoplastic resins, etc.
  • the molded article which concerns on embodiment of this invention is obtained from the resin composition containing the lignin obtained by the manufacturing method mentioned above.
  • a molded product a cured resin composition in which lignin and a crosslinking agent are blended, and various fillers and industrially obtained general phenol resins are blended as necessary, Examples thereof include those cured after being molded into a predetermined shape, and those molded after being cured.
  • the method for molding into a predetermined shape is not particularly limited as long as the resin composition can be molded.
  • examples of the method for molding into a predetermined shape include a compression molding method, an injection molding method, a transfer molding method, an intermediate molding method, and an FRP molding method.
  • examples of the method for molding into a predetermined shape include an extrusion molding method and an injection molding method.
  • a molded product what is obtained by curing a resin composition in which lignin and a crosslinking agent are blended, various fillers and general phenol resins obtained industrially, if necessary, Examples thereof include those cured after being molded into a predetermined shape, those molded after being cured, and those obtained by molding a resin composition obtained by mixing lignin with a thermoplastic resin. Molded articles of such resin compositions include: heat insulating materials for housing, electronic parts, resin for flack sand, resin for coated sand, resin for impregnation, resin for lamination, resin for FRP molding, automobile parts, reinforcement of automobile tires It can be used for materials, OA equipment, machines, information communication equipment, industrial materials and the like.
  • Glucose can be produced using the cellulose-containing solid obtained by the method for producing a cellulose-containing solid according to the embodiment of the present invention.
  • the conditions for the enzymatic saccharification treatment are as follows.
  • Cellulose contained in the cellulose-containing solid and the enzyme that acts on the cellulose degradation product obtained by decomposing cellulose may be 0.1% by mass or more and 200% by mass or less based on the total amount of the cellulose-containing solid. it can.
  • the enzyme activity used for an enzyme saccharification process can be 100 CUN / g or more and 10000 CUN / g or less.
  • the processing temperature in enzyme saccharification processing is 30 degreeC or more and 70 degrees C or less, an enzyme will activate and it can improve a saccharification rate.
  • the treatment time in the enzyme saccharification treatment is 12 hours or more and 168 hours or less, the enzyme is activated and the saccharification rate can be improved.
  • Plant-based biomass for example, plant-based biomass such as bagasse
  • water is added to obtain a raw material slurry having a solid concentration of about 15% by mass.
  • phosphoric acid is added and mixed so that the pH in the raw slurry becomes 2.0.
  • the raw slurry is supplied to a reactor (pressure vessel) and heated to a supercritical state or a subcritical state.
  • hydrothermal treatment is preferably performed at a temperature of 170 ° C.
  • Processing step (2) Solid content obtained from the treatment step (1), a mixed solvent of water and 1-butanol prepared at a 1-butanol concentration of 34% by mass, sodium hydroxide so that the pH is 3, SUS (stainless steel with an internal volume of 0.92 L) ) Placed in batch-type apparatus.
  • the total amount of solvent was 315 g.
  • the treatment time was the elapsed time after reaching 200 ° C. The temperature was measured with a thermocouple.
  • the SUS batch-type apparatus was cooled, and after the temperature dropped to near room temperature, the entire contents were taken out.
  • the solid content and the liquid phase were separated by filtration.
  • 200 g of water was added to the solid content, and after stirring for 30 minutes, the solid content and the liquid phase were separated by filtration.
  • the said operation was repeated 3 times and the cellulose containing solid substance was obtained.
  • the liquid phase was liquid / liquid separated into a water phase and a 1-butanol phase by a separatory funnel.
  • the solvent of the 1-butanol phase was removed with an evaporator (70 ° C., water bath) and then vacuum-dried at 125 ° C. to obtain lignin.
  • ⁇ Production Example 4> It carried out similarly to manufacture example 3 except having used ethanol as an organic solvent which comprises the mixed solvent of a process process (2). Since the liquid phase after solid-liquid separation was a single phase, the organic solvent was removed with an evaporator, and the solid content precipitated in water due to the decrease in solubility was separated by solid-liquid separation by filtration. And vacuum drying to obtain lignin.
  • a raw material slurry having a solid concentration of about 10% by mass.
  • the raw slurry is supplied to a reactor (pressure vessel) and heated to a supercritical state or a subcritical state.
  • hydrothermal treatment is preferably performed at a temperature of 170 ° C. Thereafter, everything was carried out in the same manner as in Production Example 1 except that sodium hydroxide was not added to adjust the pH in (treatment step (2)).
  • ⁇ Production Example 13> All in the same manner as in Production Example 1 except that sodium hydroxide was not added to adjust the pH in the treatment step (2).
  • ⁇ Comparative production example> The same procedure as in Production Example 13 was performed except that the plant-based biomass as a raw material was treated with a mixed solvent of water and 1-butanol without going through the treatment step (1) which is a hydrothermal treatment step.
  • ⁇ Analysis of cellulose content in plant biomass and cellulose-containing solids The amount of cellulose in the plant biomass and cellulose-containing solid was calculated according to the constituent sugar analysis after the pretreatment shown below.
  • Preprocessing As a pretreatment, a raw material to be a sample was pulverized using a Willet mill and dried at 105 ° C.
  • Component sugar analysis An appropriate amount of a plant-based biomass or cellulose-containing solid sample was weighed, 72% sulfuric acid was added, and the mixture was allowed to stand at 30 ° C. with stirring as needed for 1 hour. The reaction solution was completely transferred to a pressure-resistant bottle while being mixed with pure water, treated in an autoclave at 120 ° C.
  • Cellulose recovery rate (% by weight) (cellulose-containing solids recovered amount (g) ⁇ cellulose ratio in cellulose-containing solids (% by weight) / 100) / cellulose amount in plant biomass (g) ⁇ 100 ⁇ Hydroxymethylfurfural production rate>
  • concentration of hydroxymethylfurfural was calculated using a high performance liquid chromatograph (HPLC 1200 series, manufactured by Agilent).
  • Hydroxymethylfurfural production rate (mass%) hydroxymethylfurfural concentration (mg / L) ⁇ 10 ⁇ 6 ⁇ solution volume (mL) / plant biomass (g) ⁇ 100
  • the enzyme has an enzyme activity of 1600 CUN / g or more.
  • Glucose recovery rate (glucose amount in cellulose-containing solid enzyme saccharified solution (g) ⁇ cellulose-containing solid material recovery rate (mass%) / 100) / glucose amount in plant biomass (g) ⁇ 100
  • Example 1 to 12 using the cellulose-containing solid produced by the production example of the present invention the glucose recovery rate based on the amount of glucose in plant biomass obtained by enzymatic saccharification from the cellulose-containing solid shows a high value. It was.
  • Example 13 using the cellulose-containing solid obtained in Production Example 13 in which the pH was not adjusted in the treatment step (2) the total amount of cellulose-containing solid that can be recovered is lower than in other production examples. Therefore, when the amount of the enzyme is 0.1 mL, the absolute amount of cellulose that is decomposed to sugar is low, so that the glucose recovery rate is lower than others.
  • saccharide can be efficiently recovered on the basis of plant biomass because the hemicellulose-derived saccharides (xylose and xylooligosaccharide) can be suppressed and recovered.
  • thermosetting resin composition containing hexamethylenetetramine A thermosetting resin composition was prepared using the lignin obtained in Production Example 9 and Comparative Production Example. Moreover, the hardened
  • ⁇ Formulation of thermosetting resin composition and molding method of cured product> Each component was put in a mortar at the blending ratio shown in Table 2, pulverized at room temperature, mixed, mixed at 100 ° C. for 5 minutes using an open roll kneader, and then cooled to room temperature. The mixture was pulverized in a mortar, sandwiched between aluminum plates coated with a release agent, and molded at 150 ° C. for 60 minutes under reduced pressure using a vacuum press.
  • Example 13 using lignin obtained by the production method of the present invention, a molded product having high heat resistance and excellent physical properties was obtained.
  • the present invention it is possible to provide a method for producing a hemicellulose-derived saccharide, a cellulose-containing solid material in which excessive decomposition is suppressed, and a biomass-derived product that is lignin with less impurities from plant-based biomass.
  • the first treatment step (1) is performed while suppressing the excessive decomposition of hemicellulose, a high sugar yield can be obtained from the hemicellulose-derived saccharide and the cellulose-containing solid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

A production method for a product derived from a plant-based biomass that includes: a processing step (1) for separating a hemicellulose from a plant-based biomass; and a processing step (2) for mixing the solid component obtained from processing step (1) with a solvent selected from an organic solvent alone or a mixed solvent of an organic solvent and water, and heat-treating the mixture.

Description

二段プロセスによる植物系バイオマス由来生成物の製造方法Method for producing plant biomass-derived product by a two-stage process
 本発明は、二段プロセスを有する、植物系バイオマス由来生成物の製造方法に関する。 The present invention relates to a method for producing a plant biomass-derived product having a two-stage process.
 近年の環境意識の高まりにより、バイオマス由来の原料が望まれるようになってきている。しかし、バイオマス由来の原料は、例えば、バイオエタノールの製造において特に顕著であるが、デンプンや糖など食料と競合する原料を用いる場合が多く、これにより食料価格上昇や食糧生産の減少に繋がるなど問題が指摘されていた。そこで、現在、食料と競合しないセルロース系バイオマスからバイオ燃料・バイオ化学品を製造する技術が注目されている。
 セルロース系バイオマスとして、例えば、パームヤシの樹幹及び空房、パームヤシ果実の繊維及び種子、バガス(さとうきび(高バイオマス量さとうきびを含む))の搾り滓)、ケーントップ(さとうきびのトップ及びリーフ)、稲わら、麦わら、籾殻、トウモロコシの穂軸・茎葉・トウモロコシ残渣(コーンストーバー、コーンコブ、コーンハル)、ソルガム(スイートソルガムを含む)残渣、ヤトロファ種皮及び殻、カシュー殻、木材チップ、スイッチグラス、ネピアグラス、エリアンサス、エネルギー作物、エナジーケーンなどが挙げられる。これらのセルロース系バイオマスは、いずれも糖に変換できるセルロースやヘミセルロース以外にリグニンを含有している。
With the recent increase in environmental awareness, biomass-derived raw materials have been desired. However, raw materials derived from biomass are particularly prominent in the production of bioethanol, for example, but there are many cases where raw materials that compete with food such as starch and sugar are often used, which leads to an increase in food prices and a decrease in food production. Was pointed out. Therefore, a technology for producing biofuels and biochemicals from cellulosic biomass that does not compete with food is currently attracting attention.
Cellulosic biomass includes, for example, palm palm trunks and bunches, palm palm fruit fibers and seeds, bagasse (sugar cane (including high biomass and sugar cane)), cane top (sugar cane top and leaf), rice straw, Straw, rice husk, corn cobs, foliage, corn residue (corn stover, corn cob, corn hull), sorghum (including sweet sorghum) residue, Jatropha seed coat and shell, cashew shell, wood chip, switchgrass, napiergrass, Eliansus Energy crops and energy canes. These cellulosic biomasses contain lignin in addition to cellulose and hemicellulose that can be converted into sugar.
 セルロース系バイオマスから糖を得るためには、通常、酵素糖化処理の前に前処理工程が必要となる。当該前処理により、バイオマスの各成分あるいは各成分間の結合がほぐされ、酵素がセルロースにアクセスし易くなる。しかし、系中に存在するリグニンに酵素が吸着して糖化を阻害してしまうため、十分な糖化性を得るためには、高価な酵素を大量に使用する必要があったため、リグニンの可溶化が望まれていた。
 また、ヘミセルロースは高温に晒されると過分解し、フルフラールのような糖化・発酵阻害物質に変換され易く、過分解を抑制する必要があった。
 リグニンは通常、バイオマスをエタノールに変換する際の残渣として生成するが、酵素・酵母といった不純物を多く含むため、燃料としての利用に限られてきた。しかし、ポリフェノール類似構造を有することから、化学品やバイオプラスチックへの変換が期待できるため、リグニンを抽出することが望まれている。
In order to obtain sugar from cellulosic biomass, a pretreatment step is usually required before the enzymatic saccharification treatment. By the pretreatment, each component of the biomass or a bond between the components is loosened, and the enzyme can easily access the cellulose. However, since the enzyme adsorbs to lignin present in the system and inhibits saccharification, it was necessary to use a large amount of expensive enzyme in order to obtain sufficient saccharification, so that lignin was solubilized. It was desired.
In addition, hemicellulose is excessively decomposed when exposed to high temperature, and is easily converted into a saccharification / fermentation inhibitor such as furfural, and it is necessary to suppress the excessive decomposition.
Lignin is usually produced as a residue when biomass is converted to ethanol, but has been limited to use as a fuel because it contains many impurities such as enzymes and yeast. However, since it has a polyphenol-like structure, it can be expected to be converted into chemicals and bioplastics, and therefore it is desired to extract lignin.
 特許文献1には、バイオマスを溶媒存在下、高温高圧下で攪拌する処理工程を経るリグニン誘導体が開示されている。
 特許文献2には、バイオマスを水と非プロトン性極性溶媒とを含む混合溶媒存在下におき、これらを高温高圧下で分解処理することで、セルロース誘導体、リグニン誘導体およびヘミセルロース誘導体を回収することが開示されている。
 特許文献3には、リグニンのフェニルプロパンユニットのα位にフェノール誘導体がグラフトされた1,1-ジフェニルプロパンユニットを含み、1又は2以上の水酸基がアシル化されたエステル部位を備える、耐熱性リグニン系ポリマーが開示されている。
Patent Document 1 discloses a lignin derivative that undergoes a treatment step in which biomass is stirred in the presence of a solvent under high temperature and high pressure.
In Patent Document 2, biomass is recovered in the presence of a mixed solvent containing water and an aprotic polar solvent, and these are decomposed under high temperature and high pressure to recover a cellulose derivative, a lignin derivative, and a hemicellulose derivative. It is disclosed.
Patent Document 3 includes a 1,1-diphenylpropane unit grafted with a phenol derivative at the α-position of a phenylpropane unit of lignin, and has an ester site in which one or two or more hydroxyl groups are acylated. Based polymers are disclosed.
特許第5256679号Japanese Patent No. 5256679 特開平2014-62051号公報Japanese Patent Laid-Open No. 2014-62051 特開2011-256381号公報JP 2011-256381 A
 しかしながら、特許文献1において得られるリグニンは、分子量が小さすぎるものが多く、リグニンを樹脂として使用するには耐熱性が悪いこと、また作業性を向上させるためには、別途反応釜で二次誘導化することが必要であり、リグニンそのままでは使用が困難だった。また、ヘミセルロースおよびセルロースの糖類に関する詳細な記述はない。
 特許文献2に記載の方法では、分解処理温度が高く、ヘミセルロースが過分解するため、糖類としての回収が困難である。セルロース誘導体の性状について詳細な記述がない。リグニンの水酸基でアシル化変性することで材料の均質化をすることも開示され、別途反応釜で二次誘導化することが必要であった。また、耐熱性は上がるがフェノール性水酸基を潰してしまうため、反応点も同時に消失しており材料としての魅力にかける。
 特許文献3には、リグニンの水酸基をアシル化変性することで、材料の均質化をすることが開示されている。この方法では二次誘導化することが必要であり、耐熱性は上がるものの、フェノール性水酸基を潰してしまうため、反応点も同時に消失しており材料としての魅力にかける。
However, many of the lignins obtained in Patent Document 1 have a molecular weight that is too low, and the heat resistance is poor when lignin is used as a resin, and in order to improve workability, secondary induction is performed separately in a reaction kettle. The lignin as such was difficult to use. Moreover, there is no detailed description regarding hemicellulose and saccharides of cellulose.
In the method described in Patent Document 2, the decomposition treatment temperature is high, and hemicellulose is excessively decomposed, so that it is difficult to recover the sugar. There is no detailed description of the properties of cellulose derivatives. It has also been disclosed that the material is homogenized by acylation modification with a hydroxyl group of lignin, and it has been necessary to perform secondary derivatization in a separate reaction vessel. In addition, although the heat resistance is increased, the phenolic hydroxyl group is crushed, so that the reaction point is also lost, which is attractive as a material.
Patent Document 3 discloses that the material is homogenized by acylating and modifying the hydroxyl group of lignin. In this method, secondary derivatization is required, and although the heat resistance is increased, the phenolic hydroxyl group is crushed. Therefore, the reactive sites are also lost, which is attractive as a material.
 本発明は、植物系バイオマスから、ヘミセルロース由来糖類、過分解が抑制されたセルロース含有固形物、及び不純物の少ないリグニンであるバイオマス由来生成物を製造する方法を提供することにある。 The present invention is to provide a method for producing a hemicellulose-derived saccharide, a cellulose-containing solid material in which excessive decomposition is suppressed, and a biomass-derived product that is lignin with less impurities from plant-based biomass.
 本発明者等は鋭意検討を行った結果、以下の特定の2段プロセスを経由することにより、上記課題を解決できることを見出した。
 すなわち、本発明は、以下の[1]~[17]を提供する。
[1]植物系バイオマスから、ヘミセルロースを分離する処理工程(1)と、処理工程(1)から得られる固形分と、有機溶媒単独、または有機溶媒と水との混合溶媒から選択される溶媒とを混合して、加熱処理をする処理工程(2)とを含有する、植物系バイオマス由来生成物の製造方法。
[2]前記処理工程(2)の後、固液分離をすることにより、固体としてセルロース含有固形物を、液体としてリグニン含有溶液を得る、上記[1]に記載の植物系バイオマス由来生成物の製造方法。
[3]前記リグニン含有溶液から溶媒を除去することにより固体リグニンを得る、上記[2]に記載の植物系バイオマス由来生成物の製造方法。
[4]前記植物系バイオマスが、草本系バイオマスである、上記[1]~[3]のいずれか1つに記載の植物系バイオマス由来生成物の製造方法。
[5]前記処理工程(1)において、ヘミセルロースを分離する処理として、水熱処理を行う、上記[1]~[4]のいずれか1つに記載の植物系バイオマス由来生成物の製造方法。
[6]前記水熱処理が、水及び/または水蒸気を用いた水熱処理、水蒸気爆砕、並びに酸性水溶液を用いた水熱処理からなる群から選ばれる少なくとも1つである、上記[5]に記載の植物系バイオマス由来生成物の製造方法。
[7]前記酸性水溶液は、無機酸及び有機酸から選択される少なくとも1種を含む酸性水溶液である、上記[6]に記載の植物系バイオマス由来生成物の製造方法。
[8]前記処理工程(1)におけるヘミセルロース分離後から前記処理工程(2)における処理工程(1)から得られる固形分と溶媒との混合前までの系のpHを、または前記処理工程(2)における処理工程(1)から得られる固形分と溶媒とを混合する際の系のpHを、塩基性物質を用いて調整する、上記[1]~[7]のいずれか1つに記載の植物系バイオマス由来生成物の製造方法。
[9]前記処理工程(2)において、処理工程(1)から得られる固形分と溶媒とを混合する際の系のpHを調整する、上記[8]に記載の植物系バイオマス由来生成物の製造方法。
[10]前記塩基性物質を用いてpHを調整した後の系のpHが3以上12以下である、上記[8]又は[9]に記載の植物系バイオマス由来生成物の製造方法。
[11]前記処理工程(2)において用いられる有機溶媒が、エタノール、1-ブタノール、2-メチル-1-プロパノール、2-ブタノール及びアセトンから選ばれる少なくとも1種である、上記[1]~[10]のいずれか1つに記載の植物系バイオマス由来生成物の製造方法。
[12]前記処理工程(2)を以下の条件A~Cで行う、上記[1]~[11]のいずれか1つに記載の植物系バイオマス由来生成物の製造方法。
条件A:溶媒に対する、処理工程(1)から得られる固形分の仕込み濃度が1質量%以上50質量%以下である,
条件B:処理温度が100℃以上300℃以下である,及び
条件C:処理時間が0.1時間以上10時間以下である。
[13]上記[2]~[12]のいずれか1つに記載の製造方法によって得られたセルロース含有固形物を酵素糖化処理し、グルコースを得るグルコースの製造方法。
[14]上記[2]~[12]のいずれか1つに記載の方法により得られたリグニンを用いてなる、樹脂組成物。
[15]下記の(11)~(13)を満たす、リグニン。
(11):リグニンの純度が90%以上である、
(12):数平均分子量が650以上である、及び
(13):5%熱重量減少開始温度が210℃以上である。
[16]上記[15]に記載のリグニンを含む樹脂組成物。
[17]上記[14]または[16]に記載の樹脂組成物を用いてなる、成形品。
As a result of intensive studies, the present inventors have found that the above problems can be solved by going through the following specific two-stage process.
That is, the present invention provides the following [1] to [17].
[1] A processing step (1) for separating hemicellulose from plant biomass, a solid content obtained from the processing step (1), and a solvent selected from an organic solvent alone or a mixed solvent of an organic solvent and water The manufacturing method of the plant biomass origin product containing the process process (2) which mixes and heat-processes.
[2] The plant-derived biomass-derived product according to the above [1], wherein after the treatment step (2), solid-liquid separation is performed to obtain a cellulose-containing solid as a solid and a lignin-containing solution as a liquid. Production method.
[3] The method for producing a plant biomass-derived product according to [2] above, wherein solid lignin is obtained by removing a solvent from the lignin-containing solution.
[4] The method for producing a plant biomass-derived product according to any one of the above [1] to [3], wherein the plant biomass is a herbaceous biomass.
[5] The method for producing a plant-derived biomass-derived product according to any one of [1] to [4], wherein in the treatment step (1), hydrothermal treatment is performed as a treatment for separating hemicellulose.
[6] The plant according to [5], wherein the hydrothermal treatment is at least one selected from the group consisting of hydrothermal treatment using water and / or steam, steam explosion, and hydrothermal treatment using an acidic aqueous solution. Of producing a biomass-derived product.
[7] The method for producing a plant biomass-derived product according to the above [6], wherein the acidic aqueous solution is an acidic aqueous solution containing at least one selected from inorganic acids and organic acids.
[8] The pH of the system from after the separation of hemicellulose in the treatment step (1) to before mixing the solid content obtained from the treatment step (1) in the treatment step (2) and the solvent, or the treatment step (2 The pH of the system at the time of mixing the solid content obtained from the treatment step (1) and the solvent in step 1) is adjusted using a basic substance, according to any one of [1] to [7] above A method for producing a plant biomass-derived product.
[9] The plant biomass-derived product according to [8] above, wherein in the treatment step (2), the pH of the system when the solid content obtained from the treatment step (1) and the solvent are mixed is adjusted. Production method.
[10] The method for producing a plant-derived biomass-derived product according to [8] or [9] above, wherein the pH of the system after adjusting the pH using the basic substance is 3 or more and 12 or less.
[11] The above [1] to [1], wherein the organic solvent used in the treatment step (2) is at least one selected from ethanol, 1-butanol, 2-methyl-1-propanol, 2-butanol and acetone. 10] The manufacturing method of the plant biomass origin product as described in any one of [10].
[12] The method for producing a plant-derived biomass-derived product according to any one of [1] to [11], wherein the treatment step (2) is performed under the following conditions A to C.
Condition A: The concentration of the solid content obtained from the treatment step (1) with respect to the solvent is 1% by mass or more and 50% by mass or less.
Condition B: treatment temperature is 100 ° C. or more and 300 ° C. or less, and condition C: treatment time is 0.1 hour or more and 10 hours or less.
[13] A method for producing glucose in which glucose is obtained by subjecting a cellulose-containing solid obtained by the production method according to any one of [2] to [12] to an enzymatic saccharification treatment.
[14] A resin composition comprising the lignin obtained by the method according to any one of [2] to [12] above.
[15] A lignin satisfying the following (11) to (13).
(11): The purity of lignin is 90% or more,
(12): Number average molecular weight is 650 or more, and (13): 5% thermogravimetric decrease starting temperature is 210 ° C. or more.
[16] A resin composition comprising the lignin according to [15].
[17] A molded product comprising the resin composition according to [14] or [16].
 本発明によれば、植物系バイオマスから、ヘミセルロース由来糖類、過分解が抑制されたセルロース含有固形物、及び不純物の少ないリグニンであるバイオマス由来生成物を製造する方法を提供することができる。本発明によれば、ヘミセルロースの過分解を抑制しながら第1の処理工程(1)を行うため、ヘミセルロース由来糖類及びセルロース含有固形物から高い糖収量を得ることができる。 According to the present invention, it is possible to provide a method for producing a hemicellulose-derived saccharide, a cellulose-containing solid material in which excessive decomposition is suppressed, and a biomass-derived product that is lignin with less impurities from plant-based biomass. According to the present invention, since the first treatment step (1) is performed while suppressing the excessive decomposition of hemicellulose, a high sugar yield can be obtained from the hemicellulose-derived saccharide and the cellulose-containing solid.
 本発明の植物系バイオマス由来生成物の製造方法は、植物系バイオマスから、ヘミセルロースを分離する処理工程(1)と、処理工程(1)から得られる固形分と、有機溶媒単独、または有機溶媒と水との混合溶媒から選択される溶媒とを混合して、加熱処理をする処理工程(2)とを含有する工程を有する。以下に、本発明の実施形態について詳細に説明する。 The method for producing a plant biomass-derived product of the present invention includes a treatment step (1) for separating hemicellulose from a plant biomass, a solid content obtained from the treatment step (1), and an organic solvent alone or an organic solvent. It has the process containing the process process (2) which mixes the solvent selected from the mixed solvent with water, and heat-processes. Hereinafter, embodiments of the present invention will be described in detail.
<処理工程(1)>
 本工程においては、植物系バイオマスからヘミセルロースを分離する。以下、詳述する。
<Processing step (1)>
In this step, hemicellulose is separated from plant biomass. Details will be described below.
[植物系バイオマス]
 植物系バイオマスとしては、木本系バイオマス、草本系バイオマスが挙げられる。木本系バイオマスとしては、スギ、ヒノキ、ヒバ、サクラ、ユーカリ、ブナ、タケなどの針葉樹、広葉樹が挙げられる。
 草本系バイオマスとしては、パームヤシの樹幹・空房、パームヤシ果実の繊維及び種子、バガス(さとうきび及び高バイオマス量さとうきびの搾り滓)、ケーントップ(さとうきびのトップ及びリーフ)、エナジーケーン、稲わら、麦わら、トウモロコシの穂軸・茎葉・残渣(コーンストーバー、コーンコブ、コーンハル)、ソルガム(スイートソルガムを含む)残渣、ヤトロファ種の皮及び殻、カシュー殻、スイッチグラス、エリアンサス、高バイオマス収量作物、エネルギー作物、エナジーケーン等が挙げられる。
 これらのなかでも、入手容易性や本発明において適用する製造方法との適合性の観点から、草本系バイオマスであることが好ましく、パームヤシの空房、麦わら、トウモロコシの茎葉・残渣、バガス、ケーントップ、エナジーケーン、これら有用成分抽出後の残渣がより好ましく、バガス、ケーントップ、エナジーケーンがより好ましく、バガス、ケーントップ、エナジーケーンがさらに好ましい。
 植物系バイオマスは、粉砕されたものを用いることもできる。また、ブロック、チップ、または粉末のいずれの形状でもよい。さらに、乾燥または含水のいずれの状態でもよい。
[Plant biomass]
Examples of plant biomass include woody biomass and herbaceous biomass. Examples of woody biomass include conifers such as cedar, cypress, hiba, cherry, eucalyptus, beech and bamboo, and broad-leaved trees.
Herbaceous biomass includes palm palm trunks and empty bunches, palm palm fruit fibers and seeds, bagasse (sugar cane and high biomass sugar cane squeezed rice cake), cane top (sugar cane top and leaf), energy cane, rice straw, straw, Corn cob, foliage, residue (corn stover, corn cob, corn hull), sorghum (including sweet sorghum) residue, Jatropha seed shell and shell, cashew shell, switchgrass, Elianthus, high biomass yield crop, energy crop, Energy cane etc. are mentioned.
Among these, from the viewpoint of availability and compatibility with the production method applied in the present invention, it is preferably a herbaceous biomass, palm palm empty bunch, straw, corn stover and residue, bagasse, cane top, Energy cane and residues after extraction of these useful components are more preferred, bagasse, cane top and energy cane are more preferred, and bagasse, cane top and energy cane are even more preferred.
The plant biomass can be pulverized. Moreover, any shape of a block, a chip, or powder may be used. Furthermore, it may be either dry or hydrated.
[処理条件]
 ヘミセルロースを分離する処理工程(1)として、公知の植物系バイオマスの処理方法を用いることができるが、ここでは、水熱処理を行うことが好ましい。水熱処理としては、水及び/又は水蒸気を用いた水熱処理、水蒸気爆砕、並びに酸性水溶液を用いた水熱処理からなる群から選ばれる少なくとも1つを挙げることができる。
 酸性水溶液を用いた水熱処理を行う場合には、無機酸及び有機酸から選択される少なくとも1種を含む酸性水溶液を用いることが好ましい。中でも、希硫酸、リン酸、希塩酸及び希硝酸から選択される無機酸、並びにギ酸、酢酸、シュウ酸及びリンゴ酸から選択される有機酸からなる群から選択される少なくとも1種の酸水溶液を、酸性水溶液として用いることができる。
[Processing conditions]
As the treatment step (1) for separating hemicellulose, a known plant biomass treatment method can be used, but hydrothermal treatment is preferably performed here. Examples of the hydrothermal treatment include at least one selected from the group consisting of hydrothermal treatment using water and / or steam, steam explosion, and hydrothermal treatment using an acidic aqueous solution.
When hydrothermal treatment using an acidic aqueous solution is performed, it is preferable to use an acidic aqueous solution containing at least one selected from inorganic acids and organic acids. Among them, at least one acid aqueous solution selected from the group consisting of inorganic acids selected from dilute sulfuric acid, phosphoric acid, dilute hydrochloric acid and dilute nitric acid, and organic acids selected from formic acid, acetic acid, oxalic acid and malic acid, It can be used as an acidic aqueous solution.
 処理工程(1)において、水系溶媒に対する、原料である植物系バイオマスの仕込み濃度は、通常1質量%以上95質量%以下であり、好ましくは3質量%以上80質量%以下、より好ましくは5質量%以上50質量%以下であり、最も好ましくは5質量%以上20質量%以下である。
 原料の植物系バイオマスの仕込み濃度が1質量%以上であれば、水系溶媒の加温に使用するエネルギー量を抑えることができ、処理工程(1)のエネルギー効率を良好に保つことができる。原料の植物系バイオマスの仕込み濃度が95質量%以下であれば、分離効率を良好に保つことができる。
In the treatment step (1), the charged concentration of the plant-based biomass as the raw material with respect to the aqueous solvent is usually 1% by mass to 95% by mass, preferably 3% by mass to 80% by mass, more preferably 5% by mass. % To 50% by mass, most preferably 5% to 20% by mass.
If the feed concentration of the raw material plant biomass is 1% by mass or more, the amount of energy used for heating the aqueous solvent can be suppressed, and the energy efficiency of the treatment step (1) can be kept good. When the feed concentration of the raw material plant-based biomass is 95% by mass or less, the separation efficiency can be kept good.
 処理工程(1)における処理温度は、好ましくは50℃以上200℃以下であり、より好ましくは100℃以上190℃以下であり、さらに好ましくは150℃以上180℃以下である。50℃以上であれば、ヘミセルロースを可溶化することができる。200℃以下であれば、ヘミセルロースの過分解を抑制することができる。
 処理工程(1)における処理時間は、好ましくは1分間以上5時間以下であり、より好ましくは3分間以上3時間以下、さらに好ましくは5分間以上2時間以下であり、特に好ましくは10分間以上1時間以下である。処理時間が1分以上であれば、ヘミセルロースを可溶化することができる。処理時間が5時間以下であれば、ヘミセルロースの過分解を抑制することができる。
 処理工程(1)における反応系の圧力は、0.1MPa~30MPaが望まれる。より好ましい条件は、温度によって影響されるため適宜設定する。また、処理工程は、周囲雰囲気下で行うことができる。
 処理工程(1)における処理方式に特に制限はないが、静置あるいは攪拌処理を挙げることができる。例えば、一般的な回分式反応器、半回分式反応器、圧力容器などを利用することができる。また、植物系バイオマス由来固形物と、水あるいは酸性水溶液とからなるスラリーをスクリュー又はポンプ等で押し出しながら処理する方式も適用可能である。
The treatment temperature in the treatment step (1) is preferably 50 ° C. or higher and 200 ° C. or lower, more preferably 100 ° C. or higher and 190 ° C. or lower, and further preferably 150 ° C. or higher and 180 ° C. or lower. If it is 50 degreeC or more, hemicellulose can be solubilized. If it is 200 degrees C or less, the excessive decomposition of hemicellulose can be suppressed.
The treatment time in the treatment step (1) is preferably from 1 minute to 5 hours, more preferably from 3 minutes to 3 hours, further preferably from 5 minutes to 2 hours, particularly preferably from 10 minutes to 1 hour. Below time. If the treatment time is 1 minute or longer, hemicellulose can be solubilized. If the treatment time is 5 hours or less, the excessive decomposition of hemicellulose can be suppressed.
The pressure of the reaction system in the treatment step (1) is desirably 0.1 MPa to 30 MPa. More preferable conditions are appropriately set because they are affected by temperature. Further, the treatment process can be performed in an ambient atmosphere.
Although there is no restriction | limiting in particular in the processing method in a process process (1), A stationary or stirring process can be mentioned. For example, a general batch reactor, semi-batch reactor, pressure vessel, or the like can be used. Moreover, the system which processes, extruding the slurry which consists of a plant biomass origin solid substance, water, or acidic aqueous solution with a screw or a pump etc. is applicable.
 水熱処理後の反応物を固液分離することにより、ヘミセルロースを分離する。なお、固液分離後の固体としては、セルロース及びリグニンを含有する固形分が得られる。
 なお、処理工程(1)においては、得られた固形分を水洗する工程を含んでいてもよい。例えば、得られた固形分100質量部に対して、100質量部以上10000質量部以下の水を加えて攪拌した後、固形分と液相とを濾別する。上記水洗に用いられる水の量は、より好ましくは1000質量部以上5000質量部以下であり、さらに好ましくは1000質量部以上2000質量部以下である。水洗に用いる水の量が100質量部以上であれば、十分な洗浄効果を得ることができ、10000質量部以下とすることで、設備上問題なく行うことができる。この水洗する工程を設けることにより、ヘミセルロース由来糖類等の水に可溶な成分を固形分から除去することができる。
 固液分離を行う方法は特に限定されないが、濾過、フィルタープレス、遠心分離、脱水機などを挙げることができる。
Hemicellulose is separated by solid-liquid separation of the reaction product after hydrothermal treatment. In addition, as solid after solid-liquid separation, the solid content containing a cellulose and lignin is obtained.
In addition, in the process process (1), the process of washing the obtained solid content with water may be included. For example, 100 parts by mass or more and 10000 parts by mass or less of water are added to 100 parts by mass of the obtained solids and stirred, and then the solids and the liquid phase are separated by filtration. The amount of water used for the water washing is more preferably 1000 parts by mass or more and 5000 parts by mass or less, and still more preferably 1000 parts by mass or more and 2000 parts by mass or less. If the amount of water used for water washing is 100 parts by mass or more, a sufficient cleaning effect can be obtained, and if it is 10000 parts by mass or less, it can be carried out without any problems in terms of equipment. By providing this washing step, water-soluble components such as hemicellulose-derived saccharides can be removed from the solid content.
A method for performing solid-liquid separation is not particularly limited, and examples thereof include filtration, filter press, centrifugal separation, and dehydrator.
<処理工程(2)>
 本処理工程は、処理工程(1)から得られる固形分と、有機溶媒単独、または有機溶媒と水との混合溶媒から選択される溶媒とを混合して、加熱処理をする工程である。本工程において、リグニンとセルロースとの分離を行う。
 溶媒としては、有機溶媒単独、または有機溶媒と水との混合溶媒から選択される溶媒を用いる。
<Processing step (2)>
This treatment step is a step in which the solid content obtained from the treatment step (1) and a solvent selected from an organic solvent alone or a mixed solvent of an organic solvent and water are mixed and subjected to heat treatment. In this step, lignin and cellulose are separated.
As the solvent, an organic solvent alone or a solvent selected from a mixed solvent of an organic solvent and water is used.
[有機溶媒]
 有機溶媒は特に限定されないが、飽和または不飽和の、直鎖アルコール及び分岐アルコールのいずれであってもよい。その他、アセトン、メチルエチルケトン等のケトン類、テトラヒドロフラン等のエーテル類、エチレングリコール、ポリエチレングリコールであってもよい。また、有機溶媒は単独でも、複数を混合したものでもよい。
 中でも、メタノール、エタノール、プロパノール、1-ブタノール、2-メチル-1-プロパノール、2-ブタノール、2-メチル-2-プロパノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、アセトン及びテトラヒドロフランから選らばれる少なくとも1種が好ましく、1-ブタノール、2-メチル-1-プロパノール、2-ブタノール、エタノール、ペンタノール、ヘキサノール及びアセトンから選ばれる1種以上であることがより好ましく、1-ブタノール、2-メチル-1-プロパノール、2-ブタノール、エタノール及びアセトンから選ばれる少なくとも1種であることがさらに好ましく、1-ブタノール、2-メチル-1-プロパノール、2-ブタノールであることがさらに好ましく、1-ブタノールであることが特に好ましい。
[Organic solvent]
The organic solvent is not particularly limited, and may be a saturated or unsaturated linear alcohol or branched alcohol. In addition, ketones such as acetone and methyl ethyl ketone, ethers such as tetrahydrofuran, ethylene glycol, and polyethylene glycol may be used. Moreover, the organic solvent may be used alone or in combination.
Among them, at least one selected from methanol, ethanol, propanol, 1-butanol, 2-methyl-1-propanol, 2-butanol, 2-methyl-2-propanol, pentanol, hexanol, heptanol, octanol, acetone and tetrahydrofuran And more preferably at least one selected from 1-butanol, 2-methyl-1-propanol, 2-butanol, ethanol, pentanol, hexanol and acetone, and 1-butanol, 2-methyl-1- More preferably, it is at least one selected from propanol, 2-butanol, ethanol and acetone, more preferably 1-butanol, 2-methyl-1-propanol, 2-butanol, and 1-butanol. It is particularly preferred.
[混合溶媒]
 上記有機溶媒と水との混合溶媒を用いる際には、有機溶媒としては、上述したものを用いることができ、好ましいものも同様である。水としては、例えば、水道水、工業用水、イオン交換水、蒸留水等を用いることができる。
 混合溶媒における有機溶媒の濃度は、好ましくは10重量%以上80重量%以下、より好ましくは12重量%以上75重量%以下、さらに好ましくは15重量%以上70重量%以下である。混合溶媒中の有機溶媒の濃度が上述した範囲内であれば、処理工程(2)においてリグニンを十分に分離することができる。
[Mixed solvent]
When using the mixed solvent of the said organic solvent and water, as an organic solvent, what was mentioned above can be used and a preferable thing is also the same. Examples of water that can be used include tap water, industrial water, ion exchange water, and distilled water.
The concentration of the organic solvent in the mixed solvent is preferably 10% by weight to 80% by weight, more preferably 12% by weight to 75% by weight, and further preferably 15% by weight to 70% by weight. If the concentration of the organic solvent in the mixed solvent is within the above-described range, lignin can be sufficiently separated in the treatment step (2).
 ここで、上記処理工程(1)におけるヘミセルロース分離後から処理工程(2)における処理工程(1)から得られる固形分と溶媒との混合前までの系のpHを、または処理工程(2)において処理工程(1)から得られる固形分と溶媒とを混合する際の系のpHを、塩基性物質を用いて調整してから、処理工程(2)における加熱処理を行うことが好ましい。特に、処理工程(1)において、酸性水溶液を用いて水熱処理を行った場合には、処理工程(2)における加熱処理前までにpHを調整しておくことが好ましい。
 処理工程(2)の処理条件は、処理工程(1)と比べると厳しいため、系内のpHが酸性に傾いていると、処理工程(2)で得られるセルロースの望ましくない過分解を引き起こし得る。この過分解を抑制するためにも、処理工程(2)において処理工程(1)から得られる固形分と溶媒とを混合するまでの間にpHを調整することが好ましい。
 塩基性物質としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウムなどの無機塩基、アンモニアなどの有機塩基を挙げることができる。処理工程(2)における加熱前のpHを好ましくは3以上12以下に、より好ましくは3以上10以下に、さらに好ましくは4以上8以下に、特に好ましくは4以上7以下に、最も好ましくは4以上6以下に調整する。pHを上記範囲にすることにより、セルロースの過分解を抑制することができ、高い糖収量が得られる。
Here, the pH of the system from after the separation of hemicellulose in the processing step (1) until before mixing the solid content and the solvent obtained from the processing step (1) in the processing step (2), or in the processing step (2) It is preferable to perform the heat treatment in the treatment step (2) after adjusting the pH of the system when the solid content obtained from the treatment step (1) and the solvent are mixed with a basic substance. In particular, when hydrothermal treatment is performed using an acidic aqueous solution in the treatment step (1), it is preferable to adjust the pH before the heat treatment in the treatment step (2).
Since the processing conditions of the processing step (2) are stricter than those of the processing step (1), if the pH in the system is inclined to be acidic, the cellulose obtained in the processing step (2) may cause undesirable overdegradation. . In order to suppress this excessive decomposition, it is preferable to adjust the pH before mixing the solid content obtained from the treatment step (1) and the solvent in the treatment step (2).
Examples of the basic substance include inorganic bases such as sodium hydroxide, potassium hydroxide and calcium hydroxide, and organic bases such as ammonia. The pH before heating in the treatment step (2) is preferably 3 or more and 12 or less, more preferably 3 or more and 10 or less, still more preferably 4 or more and 8 or less, particularly preferably 4 or more and 7 or less, and most preferably 4 Adjust to 6 or less. By making pH into the said range, the excessive decomposition of a cellulose can be suppressed and a high sugar yield is obtained.
[処理条件]
 処理工程(2)における処理条件としては、以下の条件A~Cを全て満たす条件下で行うことが好ましい。
条件A
 上記溶媒に対する、処理工程(1)から得られる固形分の仕込み濃度は、好ましくは1質量%以上50質量%以下である。なお、溶媒として複数の有機溶媒を用いる場合には、上記固形分の仕込み濃度は、溶媒の合計量に対するものである。処理工程(1)から得られる固形分の仕込み濃度が1質量%以上であれば、溶媒の加温や、有機溶媒の除去に使用するエネルギー量を勘案しても、リグニンの除去プロセスのエネルギー効率を良好に保つことができる。上記固形分の仕込み濃度が50質量%以下であれば、溶媒量として十分であるため、リグニンの分離効率を良好に保つことができる。
 上記溶媒に対する、処理工程(1)から得られる固形分の仕込み濃度は、より好ましくは3質量%以上20質量%以下、さらに好ましくは5質量%以上15質量%以下である。
[Processing conditions]
The treatment conditions in the treatment step (2) are preferably performed under conditions that satisfy all of the following conditions A to C.
Condition A
The concentration of the solid content obtained from the treatment step (1) with respect to the solvent is preferably 1% by mass or more and 50% by mass or less. In addition, when using a some organic solvent as a solvent, the preparation density | concentration of the said solid content is with respect to the total amount of a solvent. If the solid concentration obtained from the treatment step (1) is 1% by mass or more, the energy efficiency of the lignin removal process even if the amount of energy used for heating the solvent or removing the organic solvent is taken into account. Can be kept good. If the preparation concentration of the solid content is 50% by mass or less, the amount of the solvent is sufficient, so that the lignin separation efficiency can be kept good.
The concentration of the solid content obtained from the treatment step (1) with respect to the solvent is more preferably 3% by mass or more and 20% by mass or less, and further preferably 5% by mass or more and 15% by mass or less.
条件B
 処理工程(2)における処理温度は、好ましくは100℃以上300℃以下である。処理温度が100℃以上であれば、リグニンの分離を十分に進めることができ、300℃以下であれば、セルロースの分解や、リグニンの再重合によるコーク等の不純物の生成を抑制することができる。
 処理温度は、より好ましくは150℃以上250℃以下であり、さらに好ましくは170℃以上230℃以下である。
Condition B
The treatment temperature in the treatment step (2) is preferably 100 ° C. or higher and 300 ° C. or lower. If the treatment temperature is 100 ° C. or higher, the lignin can be sufficiently separated, and if it is 300 ° C. or lower, decomposition of cellulose and generation of impurities such as coke due to repolymerization of lignin can be suppressed. .
The treatment temperature is more preferably 150 ° C. or higher and 250 ° C. or lower, and further preferably 170 ° C. or higher and 230 ° C. or lower.
条件C
 処理工程(2)における処理時間は、好ましくは0.1時間以上10時間以下である。処理時間が0.1時間以上であれば、リグニンの分離を十分に進めることができ、10時間以下であれば、セルロースの分解や、リグニンの再重合によるコーク等の不純物の生成を抑制することができる。
 処理時間は、より好ましくは0.2時間以上8時間以下であり、さらに好ましくは1時間以上6時間以下であり、特に好ましくは1時間以上3時間以下である。
Condition C
The treatment time in the treatment step (2) is preferably 0.1 hour or more and 10 hours or less. If the treatment time is 0.1 hour or more, the separation of lignin can be sufficiently advanced, and if it is 10 hours or less, the decomposition of cellulose and the generation of impurities such as coke due to repolymerization of lignin are suppressed. Can do.
The treatment time is more preferably 0.2 hours or more and 8 hours or less, further preferably 1 hour or more and 6 hours or less, and particularly preferably 1 hour or more and 3 hours or less.
 処理工程(2)における他の処理条件として、反応系の圧力を0.5MPa~30MPaとすることが望まれる。但し、反応系の圧力の好ましい範囲は、水や有機溶媒の量と温度によって影響されるため適宜設定する。また、処理工程(2)は、周囲雰囲気下で行うことができる。なお、処理工程(2)は、酸化反応による重合を抑えるために、窒素パージを行って酸素を減らした雰囲気下で行われることが特に好ましい。
 処理工程(2)における処理方式に特に制限はないが、静置あるいは攪拌処理を挙げることができる。例えば、一般的な回分式反応器、半回分式反応器などを利用することができる。また、植物系バイオマス由来固形物と、有機溶媒あるいは水と有機溶媒とからなるスラリーをスクリュー又はポンプ等で押し出しながら処理する方式も適用可能である。
As another processing condition in the processing step (2), it is desired that the pressure of the reaction system is 0.5 MPa to 30 MPa. However, the preferable range of the pressure in the reaction system is appropriately set because it is influenced by the amount of water and organic solvent and the temperature. The processing step (2) can be performed in an ambient atmosphere. The treatment step (2) is particularly preferably performed in an atmosphere in which nitrogen purge is performed to reduce oxygen in order to suppress polymerization due to oxidation reaction.
Although there is no restriction | limiting in particular in the processing method in a process process (2), Standing or stirring processing can be mentioned. For example, a general batch reactor, a semi-batch reactor, or the like can be used. Moreover, the system which processes, extruding the slurry which consists of a plant-derived biomass-derived solid substance and an organic solvent or water and an organic solvent with a screw or a pump etc. is also applicable.
 処理工程(2)の加熱処理後に得られた反応物を固液分離して、固体としてセルロース含有固形物を、液体としてリグニン含有溶液を得ることができる。
 なお、処理工程(2)の後の固液分離時には、固液分離により得られた固形分を水洗する工程を含んでいてもよい。該水洗工程は、固液分離後に得られた固形分100質量部に対して、例えば100質量部以上10000質量部以下の水を加えて攪拌することにより行うことができる。攪拌後、固形分と液相とを濾別する。
 水洗工程で用いられる水の量は、上述した通り好ましくは100質量部以上10000質量部以下、より好ましくは1000質量部以上5000質量部以下、さらに好ましくは1000質量部以上2000質量部以下である。水洗に用いる水の量が100質量部以上であれば、十分な洗浄効果を得ることができ、10000質量部以下とすることで、設備上問題なく行うことができる。この水洗工程によって、有機溶媒のさらなる除去、及びセルロース含有固形物に付着する、水に可溶な成分を除去することができる。
The reaction product obtained after the heat treatment in the treatment step (2) can be subjected to solid-liquid separation to obtain a cellulose-containing solid as a solid and a lignin-containing solution as a liquid.
In addition, the solid-liquid separation after the processing step (2) may include a step of washing the solid content obtained by the solid-liquid separation with water. This water washing process can be performed by adding 100 mass parts or more and 10000 mass parts or less of water with respect to 100 mass parts of solid content obtained after solid-liquid separation, and stirring. After stirring, the solid content and the liquid phase are separated by filtration.
As described above, the amount of water used in the washing step is preferably 100 parts by mass or more and 10,000 parts by mass or less, more preferably 1000 parts by mass or more and 5000 parts by mass or less, and further preferably 1000 parts by mass or more and 2000 parts by mass or less. If the amount of water used for water washing is 100 parts by mass or more, a sufficient cleaning effect can be obtained, and if it is 10000 parts by mass or less, it can be carried out without any problems in terms of equipment. By this water washing step, it is possible to further remove the organic solvent and to remove water-soluble components attached to the cellulose-containing solid.
 処理工程(2)の加熱処理後の固液分離後によって、またはさらに上記水洗工程を経て、セルロース含有固形物を得ることができる。本実施形態に係る製造方法によれば、植物系バイオマス中に含まれるセルロース含有固形物を、水相に残渣として得られる固形分として回収することができる。
 本実施形態に係る製造方法における分離方式に特に制限はないが、濾過、フィルタープレス、遠心分離、脱水機などを挙げることができる。
A cellulose-containing solid can be obtained after solid-liquid separation after the heat treatment in the treatment step (2), or further through the water washing step. According to the manufacturing method according to the present embodiment, the cellulose-containing solid contained in the plant biomass can be recovered as a solid obtained as a residue in the aqueous phase.
Although there is no restriction | limiting in particular in the separation system in the manufacturing method which concerns on this embodiment, Filtration, a filter press, centrifugation, a dehydrator etc. can be mentioned.
 処理工程(2)の加熱処理後、またはさらなる水洗処理後に得られる液相にはリグニンが含まれる。例えば、水と有機溶媒との混合溶媒を用い、処理後に二相になる場合には、水相を分離した後に得られる有機相を気化等させることにより溶媒を除去し、固体リグニンを得ることができる。また、有機溶媒を単独で用いた場合や、水との混合溶媒を用いた場合でも処理工程(2)の加熱処理後に一相である場合には、有機溶媒を気化等させることにより溶媒を除去して残った固形残渣として、または水中に沈降した固形物をろ過することにより、固体リグニンを得ることができる。 The liquid phase obtained after the heat treatment in the treatment step (2) or after further water washing treatment contains lignin. For example, when a mixed solvent of water and an organic solvent is used and two phases are formed after the treatment, the organic phase obtained after separating the aqueous phase can be vaporized to remove the solvent to obtain solid lignin. it can. In addition, even when an organic solvent is used alone or when a mixed solvent with water is used, if the organic solvent is one phase after the heat treatment in the treatment step (2), the solvent is removed by vaporizing the organic solvent or the like. Then, solid lignin can be obtained by filtering the solid residue remaining in the water or by solid matter precipitated in water.
 上述した通り、本発明の製造方法によれば、植物系バイオマス由来生成物として、ヘミセルロース、セルロース含有固形物及びリグニンを製造することができる。各生成物について、以下、詳述する。 As described above, according to the production method of the present invention, hemicellulose, cellulose-containing solid and lignin can be produced as a plant-derived biomass-derived product. Each product is described in detail below.
<リグニンの特徴>
 本発明の製造方法により得られるリグニンは、以下の特徴を有する。
(11):リグニンの純度が90%以上である、
(12):数平均分子量が650以上である、及び
(13):5%熱重量減少開始温度が210℃以上である。
 上記において、リグニンの純度は92%以上であることが好ましく、94%以上であることがより好ましい。また、数平均分子量は700以上であることが好ましく、750以上であることがより好ましい。さらに、5%熱重量減少開始温度は215℃以上であることが好ましく、220℃以上であることがより好ましい。
 なお、上記リグニンの純度、数平均分子量及び5%熱重量減少開始温度の各測定法については後述する。
<Characteristics of lignin>
The lignin obtained by the production method of the present invention has the following characteristics.
(11): The purity of lignin is 90% or more,
(12): Number average molecular weight is 650 or more, and (13): 5% thermogravimetric decrease starting temperature is 210 ° C. or more.
In the above, the purity of lignin is preferably 92% or more, and more preferably 94% or more. The number average molecular weight is preferably 700 or more, and more preferably 750 or more. Furthermore, the 5% thermogravimetric decrease starting temperature is preferably 215 ° C. or higher, more preferably 220 ° C. or higher.
In addition, each measuring method of the purity of the said lignin, a number average molecular weight, and a 5% thermogravimetric decrease start temperature is mentioned later.
<ヘミセルロース由来糖類および得られたセルロース含有固形物の特徴>
 本発明の製造方法によれば、植物系バイオマス中のヘミセルロースに対するヘミセルロース由来糖類の回収率が、50質量%以上となる。ヘミセルロース由来糖類の回収率が、50質量%未満の場合、発酵に寄与可能な糖類が減少する。
 本発明の製造方法により得られるセルロース含有固形物には、固形分として、セルロース含有固形物の全量基準において、セルロース及びセルロースを分解して得られるセルロース分解物が60質量%以上90質量%以下含まれており、その他の物質として、リグニンが5質量%以上30質量%以下含まれ、ヘミセルロース及びヘミセルロースを分解して得られるヘミセルロース分解物が0質量%以上5質量%以下含まれる。また、植物系バイオマス中のセルロースに対するセルロース含有固形物中のセルロース回収率は、70質量%以上となる。
 セルロース及びセルロースを分解して得られるセルロース分解物が60質量%未満の場合、或いは、リグニンが30質量%を超える場合には、酵素糖化処理によりグルコースを得る際の糖化率が低下する。ヘミセルロース及びヘミセルロースを分解して得られるヘミセルロース分解物が5質量%を超えると、ヘミセルロースと結合しているリグニンの分離・除去が不十分となり、酵素糖化処理によりグルコースを得る際の糖化率が低下する。また、セルロース回収率が70質量%未満の場合、植物系バイオマス中のセルロースに対するグルコース回収率が低下する。
<Characteristics of hemicellulose-derived saccharide and the obtained cellulose-containing solid>
According to the manufacturing method of this invention, the collection | recovery rate of hemicellulose origin saccharide | sugar with respect to the hemicellulose in plant biomass becomes 50 mass% or more. When the recovery rate of saccharides derived from hemicellulose is less than 50% by mass, saccharides that can contribute to fermentation decrease.
The cellulose-containing solid obtained by the production method of the present invention contains 60% by mass or more and 90% by mass or less of a cellulose degradation product obtained by decomposing cellulose and cellulose on the basis of the total amount of the cellulose-containing solid as a solid content. As other substances, lignin is contained in an amount of 5% by mass to 30% by mass, and hemicellulose and a hemicellulose decomposition product obtained by decomposing hemicellulose are contained in an amount of 0% by mass to 5% by mass. Moreover, the cellulose recovery rate in the cellulose containing solid with respect to the cellulose in plant-type biomass will be 70 mass% or more.
When the cellulose and the cellulose degradation product obtained by decomposing cellulose are less than 60% by mass, or when the lignin exceeds 30% by mass, the saccharification rate when glucose is obtained by enzymatic saccharification treatment decreases. If hemicellulose and the hemicellulose degradation product obtained by decomposing hemicellulose exceed 5% by mass, separation and removal of lignin bound to hemicellulose will be insufficient, and the saccharification rate when obtaining glucose by enzymatic saccharification will decrease. . Moreover, when a cellulose recovery rate is less than 70 mass%, the glucose recovery rate with respect to the cellulose in plant-type biomass falls.
<セルロース含有固形物の用途>
 本発明の製造方法により得られるセルロース含有固形物に含まれるセルロースは、リグニン含有量が少ないため、酸や酵素による糖化処理に好適に用いられる。また、本発明の製造方法によって得られたセルロース含有固形物は、他の方法によって得られるセルロース含有固形物に比べて、解繊されやすい状態になっている。このため、用途展開がし易いという利点を有する。
 また、本発明の製造方法によって得られたセルロース含有固形物から、公知の手法を用いてエタノール、ブタノール、及びアセトンなどを得ることができる。
 また、本発明の製造方法によって得られたセルロース含有固形物からは、セルロースナノファイバー等の樹脂強化繊維・化学繊維代替としてのゴム及びタイヤ補強材、カルボキシメチルセルロース、オリゴ糖等の食品添加物、乳酸、コハク酸等の化学品を得ることができる。
<Uses of cellulose-containing solids>
Since the cellulose contained in the cellulose-containing solid obtained by the production method of the present invention has a low lignin content, it is suitably used for saccharification treatment with acids and enzymes. Moreover, the cellulose containing solid obtained by the manufacturing method of this invention is in the state which is easy to be defibrated compared with the cellulose containing solid obtained by other methods. For this reason, it has the advantage that application development is easy.
Further, ethanol, butanol, acetone, and the like can be obtained from the cellulose-containing solid obtained by the production method of the present invention using a known method.
Further, from the cellulose-containing solid obtained by the production method of the present invention, resin and fiber reinforcing materials such as cellulose nanofibers, rubber and tire reinforcing materials as a substitute for chemical fibers, food additives such as carboxymethylcellulose and oligosaccharides, lactic acid Chemical products such as succinic acid can be obtained.
<ヘミセルロース及びリグニンの用途>
 本発明の製造方法により得られるヘミセルロースからは、オリゴ糖、キシリトールなどの食品添加物、フルフラールなどの化学品を得ることができ、有用である。
 また、本発明の製造方法により得られたリグニンは、具体的に、燃料、セメント用の撥水材として用いることができる。また、フェノール樹脂、エポキシ樹脂、ポリウレタン樹脂のベース樹脂原料、エポキシ樹脂の添加剤(硬化剤)、ポリウレタン樹脂の改質剤(難燃剤)、熱可塑性樹脂の添加剤などにも適用できる。これは、リグニンがフェノール性の構造単位を有する特徴によるものである。
 リグニンのベース樹脂原料としての使用については、従来公知の手法を用いることができる。一例として、リグニンとヘキサメチレンテトラミンを代表とする公知の架橋剤とが配合されてなる樹脂組成物が挙げられる。
 リグニンと架橋剤とが配合されてなる樹脂組成物に、各種の充填材や工業的に得られる一般のフェノール樹脂を必要に応じて配合してもよい。このような樹脂組成物は、住宅用の断熱材、電子部品、フラックサンド用樹脂、コーテッドサンド用樹脂、含浸用樹脂、積層用樹脂、FRP成型用樹脂、自動車部品、自動車タイヤの補強材などに用いることができる。
 また、リグニンへのエポキシ基の導入及びリグニンのエポキシ樹脂硬化剤としての使用によりエポキシ樹脂への適用も可能となる。そのほか、公知の手法を用いて、ビニル基、マレイミド基、イソシアネート基などをリグニンに導入することにより、さらに広範囲の工業用樹脂への適用が可能となる。
<Uses of hemicellulose and lignin>
From the hemicellulose obtained by the production method of the present invention, food additives such as oligosaccharides and xylitol, and chemicals such as furfural can be obtained, which is useful.
The lignin obtained by the production method of the present invention can be specifically used as a water repellent material for fuel and cement. Further, it can be applied to phenol resin, epoxy resin, polyurethane resin base resin raw material, epoxy resin additive (curing agent), polyurethane resin modifier (flame retardant), thermoplastic resin additive, and the like. This is due to the characteristic that lignin has a phenolic structural unit.
A conventionally well-known method can be used about the use as a base resin raw material of lignin. As an example, a resin composition in which a known crosslinking agent typified by lignin and hexamethylenetetramine is blended can be mentioned.
You may mix | blend various fillers and the general phenol resin obtained industrially with the resin composition formed by mix | blending a lignin and a crosslinking agent as needed. Such a resin composition is used for heat insulating materials for homes, electronic parts, resin for flack sand, resin for coated sand, resin for impregnation, resin for laminating, resin for FRP molding, automobile parts, reinforcing material for automobile tires, etc. Can be used.
Moreover, application to an epoxy resin is also possible by introducing an epoxy group into lignin and using lignin as an epoxy resin curing agent. In addition, by introducing a vinyl group, a maleimide group, an isocyanate group or the like into lignin using a known method, it can be applied to a wider range of industrial resins.
 添加剤としての使用については、例えば、特開2014-15579、国際公開第2016/104634号等に挙げられる従来公知の手法を用いることができる。リグニンと熱可塑性樹脂とが配合されてなる樹脂組成物に、各種の添加剤や充填材を必要に応じて配合してもよい。 Regarding the use as an additive, for example, conventionally known methods such as those described in JP-A-2014-15579 and International Publication No. 2016/104634 can be used. You may mix | blend various additives and a filler as needed with the resin composition formed by mix | blending a lignin and a thermoplastic resin.
[樹脂組成物]
 本発明の他の実施形態において、上記製造方法により得られたリグニンを含む樹脂組成物が提供される。また上記製造方法により得られたリグニン以外に、熱可塑性樹脂、熱硬化性樹脂等の樹脂成分が含まれていてもよい。リグニン以外の成分について、以下に説明する。
[Resin composition]
In another embodiment of the present invention, a resin composition containing lignin obtained by the above production method is provided. Moreover, resin components, such as a thermoplastic resin and a thermosetting resin, may be contained other than the lignin obtained by the said manufacturing method. Components other than lignin will be described below.
<熱可塑性樹脂>
 本実施形態に係る樹脂組成物に配合可能な熱可塑性樹脂としては、200℃以下のガラス転移温度を持つ非晶性熱可塑性樹脂、若しくは融点が200℃以下である結晶性熱可塑性樹脂であることが好ましい。熱可塑性樹脂としては、例えば、ポリカーボネート系樹脂、スチレン系樹脂、ポリスチレン系エラストマー、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアクリル系樹脂(ポリメチルメタクリレート樹脂等)、ポリ塩化ビニル樹脂、酢酸セルロース樹脂、ポリアミド樹脂、テレフタル酸とエチレングリコール、テレフタル酸と1,4-ブタンジオールの組み合わせのポリエステルに代表される低融点ポリエステル樹脂(PET、PBT等)、ポリ乳酸及び/又はポリ乳酸を含む共重合体、アクリロニトリル-ブタジエン-スチレン樹脂(ABS樹脂)、ポリフェニレンオキサイド樹脂(PPO)、ポリケトン樹脂、ポリスルホン樹脂、ポリフェニレンスルフィド樹脂(PPS)、フッ素樹脂、ケイ素樹脂、ポリイミド樹脂、ポリベンズイミダゾール樹脂、ポリアミドエラストマー等、及びこれらと他のモノマーとの共重合体が挙げられる。
 本発明に係る樹脂組成物における熱可塑性樹脂の含有量は、顕著な流動性及び強度を得る観点から、当該樹脂組成物の全体量に対して、30質量%以上99.9質量%以下であることが好ましく、40質量%以上99.9質量%以下がより好ましく、45質量%以上99.9質量%以下が更に好ましく、50質量%以上99.9質量%以下が特に好ましい。
 本実施形態に係る樹脂組成物には、上述したセルロース含有固形物、熱可塑性樹脂のほかに、熱可塑性樹脂組成物と相溶可能な樹脂、添加剤及び/または充填剤が含まれていてもよい。
<Thermoplastic resin>
The thermoplastic resin that can be blended in the resin composition according to the present embodiment is an amorphous thermoplastic resin having a glass transition temperature of 200 ° C. or lower, or a crystalline thermoplastic resin having a melting point of 200 ° C. or lower. Is preferred. Examples of the thermoplastic resin include polycarbonate resin, styrene resin, polystyrene elastomer, polyethylene resin, polypropylene resin, polyacrylic resin (polymethyl methacrylate resin, etc.), polyvinyl chloride resin, cellulose acetate resin, polyamide resin, Low melting point polyester resins (PET, PBT, etc.) represented by polyesters of combinations of terephthalic acid and ethylene glycol, terephthalic acid and 1,4-butanediol, polylactic acid and / or copolymers containing polylactic acid, acrylonitrile-butadiene -Styrene resin (ABS resin), polyphenylene oxide resin (PPO), polyketone resin, polysulfone resin, polyphenylene sulfide resin (PPS), fluororesin, silicon resin, polyimide resin, polybenzimi Tetrazole resins, polyamide elastomers, and copolymers thereof with other monomers.
The content of the thermoplastic resin in the resin composition according to the present invention is 30% by mass or more and 99.9% by mass or less with respect to the total amount of the resin composition from the viewpoint of obtaining remarkable fluidity and strength. It is preferably 40% by mass to 99.9% by mass, more preferably 45% by mass to 99.9% by mass, and particularly preferably 50% by mass to 99.9% by mass.
The resin composition according to the present embodiment may contain a resin, an additive and / or a filler compatible with the thermoplastic resin composition in addition to the above-described cellulose-containing solid and thermoplastic resin. Good.
<熱硬化性樹脂>
 本実施形態に係る樹脂組成物に配合可能な熱硬化性樹脂として、リグニンと反応可能な官能基を有するリグニン反応性化合物を配合してもよい。リグニンと反応可能な官能基を有する化合物としては、フェノール化合物と親電子置換反応を生じる化合物、エポキシ基を有する化合物、イソシアネート基を有する化合物等が挙げられる。
 リグニンは、フェノール性の構造単位を有することから、フェノール樹脂及びエポキシ樹脂等のベース樹脂原料、エポキシ樹脂の添加剤(硬化剤)等として適用できる。
(フェノール化合物と親電子置換反応を生じる化合物)
 フェノール化合物と親電子置換反応を生じる化合物としては、ホルムアルデヒド、ホルムアルデヒド供与硬化剤化合物、又はホルムアルデヒド等価化合物等が挙げられる。商業的には、ヘキサメチレンテトラミン、ヘキサホルムアルデヒド、及びパラホルムアルデヒドを用いることができる。
 また、本実施形態に係る樹脂組成物は、リグニンとヘキサメチレンテトラミンのほかに、フェノール樹脂をさらに含んでいてもよい。上述のように、リグニンは、フェノール性の構造単位を有することから、フェノール樹脂は、樹脂組成物の加工性、強度、及び耐熱性等の物性を低下させない範囲でリグニンの希釈剤、増量剤等として用いることができる。
<Thermosetting resin>
You may mix | blend the lignin reactive compound which has a functional group which can react with lignin as a thermosetting resin which can be mix | blended with the resin composition which concerns on this embodiment. Examples of the compound having a functional group capable of reacting with lignin include a compound that causes an electrophilic substitution reaction with a phenol compound, a compound having an epoxy group, a compound having an isocyanate group, and the like.
Since lignin has a phenolic structural unit, it can be applied as a base resin raw material such as phenol resin and epoxy resin, an additive (curing agent) of epoxy resin, and the like.
(Compound that causes electrophilic substitution reaction with phenolic compounds)
Examples of the compound that causes an electrophilic substitution reaction with a phenol compound include formaldehyde, a formaldehyde donating curing agent compound, or a formaldehyde equivalent compound. Commercially, hexamethylenetetramine, hexaformaldehyde, and paraformaldehyde can be used.
Moreover, the resin composition according to the present embodiment may further contain a phenol resin in addition to lignin and hexamethylenetetramine. As described above, since lignin has a phenolic structural unit, the phenol resin is a lignin diluent, extender, etc., as long as the physical properties such as processability, strength, and heat resistance of the resin composition do not deteriorate. Can be used as
(エポキシ基を有する化合物)
 エポキシ基を有する化合物は、いわゆるエポキシ樹脂と称される範疇に属するものである。一例としては、2,2-ビス(4’-ヒドロキシフェニル)プロパン(ビスフェノールAと称される)、ビス(2-ヒドロキシフェニル)メタン(ビスフェノールFと称される)、4,4’-ジヒドロキシジフェニルスルホン(ビスフェノールSと称される)、4,4’-ジヒドロキシビフェニル、レゾルシン、サリゲニン、トリヒドロキシジフェニルジメチルメタン、テトラフェニロールエタン、これらのハロゲン置換体及びアルキル基置換体、ブタンジオール、エチレングリコール、エリスリット、ノボラック、グリセリン、ポリオキシアルキレン等のヒドロキシル基を分子内に2個以上含有する化合物とエピクロルヒドリン等から合成されるグリシジルエーテル系エポキシ樹脂;該ヒドロキシル基を分子内に2個以上含有する化合物とフタル酸グリシジルエステル等から合成されるグリシジルエステル系エポキシ樹脂;アニリン、ジアミノジフェニルメタン、メタキシレンジアミン、1,3-ビスアミノメチルシクロヘキサン等の第一又は第二アミンとエピクロロヒドリン等から合成されるグリシジルアミン系エポキシ樹脂等のグリシジル基を含むエポキシ樹脂;エポキシ化大豆油、エポキシ化ポリオレフィン、ビニルシクロヘキセンジオキサイド、ジシクロペンタジエンジオキサイド等々のグリシジル基を含まないエポキシ樹脂が挙げられる。これらの中でもリグニンと化学構造が類似して相溶性の良好なクレゾールノボラック型、フェノールノボラック型エポキシ樹脂が好ましい。
(Compound having an epoxy group)
The compound having an epoxy group belongs to a category called a so-called epoxy resin. Examples include 2,2-bis (4′-hydroxyphenyl) propane (referred to as bisphenol A), bis (2-hydroxyphenyl) methane (referred to as bisphenol F), 4,4′-dihydroxydiphenyl Sulfone (referred to as bisphenol S), 4,4′-dihydroxybiphenyl, resorcin, saligenin, trihydroxydiphenyldimethylmethane, tetraphenylolethane, halogen-substituted and alkyl-substituted thereof, butanediol, ethylene glycol, A compound containing two or more hydroxyl groups in the molecule such as erythritol, novolak, glycerin, polyoxyalkylene and the like, and a glycidyl ether epoxy resin synthesized from epichlorohydrin, etc .; a compound containing two or more such hydroxyl groups in the molecule And lid Glycidyl ester epoxy resin synthesized from acid glycidyl ester, etc .; Glycidyl synthesized from primary or secondary amines such as aniline, diaminodiphenylmethane, metaxylenediamine, 1,3-bisaminomethylcyclohexane and epichlorohydrin Examples include epoxy resins containing glycidyl groups such as amine-based epoxy resins; epoxy resins containing no glycidyl groups such as epoxidized soybean oil, epoxidized polyolefin, vinylcyclohexenedioxide, and dicyclopentadiene dioxide. Among these, cresol novolac type and phenol novolac type epoxy resins having a similar chemical structure to lignin and good compatibility are preferable.
 また、熱硬化性樹脂組成物は、リグニンとエポキシ基を含む化合物のほかに、フェノール樹脂をさらに含んでいてもよい。
 熱硬化性樹脂組成物に含まれるリグニンがエポキシ基を含む化合物である場合には、硬化反応促進の目的に応じて硬化促進剤を適宜添加することができる。具体例としては2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾ-ル類、2-(ジメチルアミノメチル)フェノール、1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7等の第3級アミン類、トリフェニルホスフィン等のホスフィン類、テトラブチルアンモニウム塩、トリイソプロピルメチルアンモニウム塩、トリメチルデカニルアンモニウム塩、セチルトリメチルアンモニウム塩などの4級アンモニウム塩、トリフェニルベンジルホスホニウム塩、トリフェニルエチルホスホニウム塩、テトラブチルホスホニウム塩などの4級ホスホニウム塩、オクチル酸スズ等の金属化合物等が挙げられる。4級ホスホニウム塩のカウンターイオンとしては、ハロゲン、有機酸イオン、水酸化物イオン等が挙げられ、特に、有機酸イオン、水酸化物イオンが好ましい。
Moreover, the thermosetting resin composition may further contain a phenol resin in addition to the compound containing lignin and an epoxy group.
When the lignin contained in the thermosetting resin composition is a compound containing an epoxy group, a curing accelerator can be appropriately added according to the purpose of promoting the curing reaction. Specific examples include imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, 1,8-diaza-bicyclo (5,4,4). 0) Tertiary amines such as undecene-7, phosphines such as triphenylphosphine, quaternary ammonium salts such as tetrabutylammonium salt, triisopropylmethylammonium salt, trimethyldecanylammonium salt, cetyltrimethylammonium salt, tri Examples thereof include quaternary phosphonium salts such as phenylbenzylphosphonium salt, triphenylethylphosphonium salt and tetrabutylphosphonium salt, and metal compounds such as tin octylate. Examples of the counter ion of the quaternary phosphonium salt include halogen, organic acid ion, hydroxide ion and the like, and organic acid ion and hydroxide ion are particularly preferable.
(イソシアネート基を有する化合物)
 イソシアネート基を有する化合物は、ポリイソシアネート、またはポリイソシアネートとポリオールを反応させて得られるものである。ポリイソシアネートとしては、トリレンジイソシアネート(TDI)、4,4’-ジフェニルメタンジイソシアネート(MDI)、ポリメリックMDI(MDI-CR)、カルボジイミド変性MDI(液状MDI)等の芳香族ポリイソシアネート及びノルボルナンジイソシアネート(NBDI)、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、4,4’-メチレン-ビス(シクロヘキシルイソシアネート)(水添MDI)、キシリレンジイソシアネート(XDI)等の脂肪族ポリイソシアネートや、ブロックイソシアネートを挙げることができる。これらの中でも、トリレンジイソシアネート(TDI)、4,4’-ジフェニルメタンジイソシアネート(MDI)を用いることが好ましい。
 また、上記熱硬化性樹脂組成物は、リグニンとイソシアネート化合物のほかに、フェノール樹脂をさらに含んでいてもよい。
(Compound having an isocyanate group)
The compound having an isocyanate group is obtained by reacting polyisocyanate or polyisocyanate with a polyol. Polyisocyanates include aromatic polyisocyanates such as tolylene diisocyanate (TDI), 4,4′-diphenylmethane diisocyanate (MDI), polymeric MDI (MDI-CR), carbodiimide-modified MDI (liquid MDI), and norbornane diisocyanate (NBDI). Aliphatic polyisocyanates such as isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), 4,4′-methylene-bis (cyclohexyl isocyanate) (hydrogenated MDI), xylylene diisocyanate (XDI), and blocked isocyanates. be able to. Among these, tolylene diisocyanate (TDI) and 4,4′-diphenylmethane diisocyanate (MDI) are preferably used.
The thermosetting resin composition may further contain a phenol resin in addition to lignin and an isocyanate compound.
 熱硬化性樹脂組成物には硬化反応促進の目的に応じて硬化促進剤を適宜添加することができる。硬化促進剤としては、例えば、ジルコニウムやアルミニウムの有機金属系触媒、ジブチルスズラウレート、DBUのフェノール塩、オクチル酸塩、アミン、イミダゾール等が挙げられるが、着色性の点で、有機金属系触媒、例えば、アルミニウムsec-ブチレート、エチルアセトアセテートアルミニウムジイソプロピレート、ジルコニウムトリブトキシアセチルアセトネート、ジルコニウムテトラアセチルアセトネート等が特に好ましい。 A curing accelerator can be appropriately added to the thermosetting resin composition according to the purpose of accelerating the curing reaction. Examples of the curing accelerator include zirconium and aluminum organometallic catalysts, dibutyltin laurate, DBU phenol salts, octylates, amines, imidazoles, and the like. For example, aluminum sec-butyrate, ethyl acetoacetate aluminum diisopropylate, zirconium tributoxyacetylacetonate, zirconium tetraacetylacetonate and the like are particularly preferable.
(その他の樹脂成分)
 本実施形態に係る樹脂組成物には、リグニンのほかに、フェノール樹脂、ユリア樹脂、メラミン樹脂、シリコーン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン樹脂等の樹脂が含まれていてもよい。
 リグニンと同様に、フェノール性水酸基を有しており、リグニンと反応することができ、リグニンの希釈剤としても使用可能であることから、上記樹脂のうち、フェノール樹脂が好ましい。
(Other resin components)
In addition to lignin, the resin composition according to this embodiment may contain a resin such as a phenol resin, a urea resin, a melamine resin, a silicone resin, an unsaturated polyester resin, an alkyd resin, or a polyurethane resin.
Like lignin, it has a phenolic hydroxyl group, can react with lignin, and can also be used as a diluent for lignin. Therefore, phenol resins are preferred among the above resins.
<無機充填材、有機充填材>
 本実施形態に係る樹脂組成物には、充填材が含まれていてもよい。充填材は、無機充填材であっても有機充填剤であってもよい。
 無機充填材としては、例えば、球状あるいは、破砕状の溶融シリカ、結晶シリカ等のシリカ粉末、アルミナ粉末、ガラス粉末、ガラス繊維、ガラスフレーク、マイカ、タルク、炭酸カルシウム、アルミナ、水和アルミナ、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、窒化チタン、酸化亜鉛、炭化タングステン、酸化マグネシウム等が挙げられる。
 また有機充填材としては炭素繊維、アラミド繊維、紙粉、セルロース繊維、セルロース粉、籾殻粉、果実殻・ナッツ粉、キチン粉、澱粉などが挙げられる。
 無機充填材、有機充填材は単独あるいは複数の組み合わせで含有されてよく、その含有量は目的に応じて決定される。
<Inorganic filler, organic filler>
The resin composition according to the present embodiment may include a filler. The filler may be an inorganic filler or an organic filler.
As the inorganic filler, for example, silica powder such as spherical or crushed fused silica, crystalline silica, alumina powder, glass powder, glass fiber, glass flake, mica, talc, calcium carbonate, alumina, hydrated alumina, nitriding Examples thereof include boron, aluminum nitride, silicon nitride, silicon carbide, titanium nitride, zinc oxide, tungsten carbide, and magnesium oxide.
Examples of the organic filler include carbon fiber, aramid fiber, paper powder, cellulose fiber, cellulose powder, rice husk powder, fruit shell / nut powder, chitin powder, and starch.
The inorganic filler and the organic filler may be contained singly or in combination, and the content is determined according to the purpose.
<その他の添加剤>
 本実施形態に係る樹脂組成物には、該樹脂組成物から得られる成形品の特性を損ねない範囲で各種添加剤を添加することができる。また、目的に応じてさらに、相溶化剤、界面活性剤等を添加することができる。
 熱可塑性樹脂とともに用いる相溶化剤としては、熱可塑性樹脂に無水マレイン酸やエポキシ等を付加し極性基を導入した樹脂、例えば無水マレイン酸変性ポリエチレン樹脂、無水マレイン酸変性ポリプロピレン樹脂、市販の各種相溶化剤を併用してもよい。
 また、界面活性剤としては、ステアリン酸、パルミチン酸、オレイン酸等の直鎖脂肪酸、またロジン類との分岐・環状脂肪酸等が挙げられるが、特にこれに限定されない。
 さらに、上述したものの他に配合可能な添加剤としては、可撓化剤、熱安定剤、紫外線吸収剤、難燃剤、帯電防止剤、消泡剤、チキソトロピー性付与剤、離型剤、酸化防止剤、可塑剤、低応力化剤、カップリング剤、染料、光散乱剤、少量の熱可塑性樹脂などが挙げられる
<Other additives>
Various additives can be added to the resin composition according to the present embodiment as long as the properties of a molded product obtained from the resin composition are not impaired. Further, depending on the purpose, a compatibilizer, a surfactant and the like can be added.
Compatibilizers used with thermoplastic resins include resins in which polar groups are introduced by adding maleic anhydride, epoxy, or the like to thermoplastic resins, such as maleic anhydride-modified polyethylene resins, maleic anhydride-modified polypropylene resins, and various commercially available phases. A solubilizer may be used in combination.
Examples of the surfactant include linear fatty acids such as stearic acid, palmitic acid, and oleic acid, and branched / cyclic fatty acids with rosins, but are not particularly limited thereto.
In addition to the above-mentioned additives, additives that can be blended include a flexibilizer, a heat stabilizer, an ultraviolet absorber, a flame retardant, an antistatic agent, an antifoaming agent, a thixotropic agent, a release agent, and an antioxidant. Agents, plasticizers, stress reducing agents, coupling agents, dyes, light scattering agents, small amounts of thermoplastic resins, etc.
[成形品]
 本発明の実施形態に係る成形品は、上述した製造方法により得られたリグニンを含有する樹脂組成物から得られるものである。成形品の一例としては、リグニンと架橋剤とが配合されてなる樹脂組成物を硬化させたもの、また、各種の充填材や工業的に得られる一般のフェノール樹脂を必要に応じて配合し、所定形状に成形した後に硬化させたもの、あるいは硬化させた後に成形加工したもの等が挙げられる。
 所定形状に成形する方法としては、樹脂組成物を成形できれば特に限定されない。例えば、樹脂組成物が熱硬化性樹脂組成物である場合は、所定形状に成形する方法には、圧縮成形法、射出成形法、トランスファー成形法、中型成形、FRP成形法等が挙げられる。また、樹脂組成物が熱可塑性樹脂組成物である場合は、所定形状に成形する方法には、押出成形法、射出成形法等が挙げられる。
[Molding]
The molded article which concerns on embodiment of this invention is obtained from the resin composition containing the lignin obtained by the manufacturing method mentioned above. As an example of a molded product, a cured resin composition in which lignin and a crosslinking agent are blended, and various fillers and industrially obtained general phenol resins are blended as necessary, Examples thereof include those cured after being molded into a predetermined shape, and those molded after being cured.
The method for molding into a predetermined shape is not particularly limited as long as the resin composition can be molded. For example, when the resin composition is a thermosetting resin composition, examples of the method for molding into a predetermined shape include a compression molding method, an injection molding method, a transfer molding method, an intermediate molding method, and an FRP molding method. In addition, when the resin composition is a thermoplastic resin composition, examples of the method for molding into a predetermined shape include an extrusion molding method and an injection molding method.
 成形品の一例としては、リグニンと架橋剤とが配合されてなる樹脂組成物を硬化させたもの、また各種の充填材や工業的に得られる一般のフェノール樹脂を必要に応じてさらに配合し、所定形状に成形した後に硬化させたもの、あるいは硬化させた後に成形加工したもの、リグニンを熱可塑性樹脂と混合してなる樹脂組成物を成形加工したもの等を挙げることができる。このような樹脂組成物の成形品は、住宅用の断熱材、電子部品、フラックサンド用樹脂、コーテッドサンド用樹脂、含浸用樹脂、積層用樹脂、FRP成型用樹脂、自動車部品、自動車タイヤの補強材、OA機器、機械、情報通信機器、産業資材などに用いることができる。 As an example of a molded product, what is obtained by curing a resin composition in which lignin and a crosslinking agent are blended, various fillers and general phenol resins obtained industrially, if necessary, Examples thereof include those cured after being molded into a predetermined shape, those molded after being cured, and those obtained by molding a resin composition obtained by mixing lignin with a thermoplastic resin. Molded articles of such resin compositions include: heat insulating materials for housing, electronic parts, resin for flack sand, resin for coated sand, resin for impregnation, resin for lamination, resin for FRP molding, automobile parts, reinforcement of automobile tires It can be used for materials, OA equipment, machines, information communication equipment, industrial materials and the like.
[グルコースの製造方法]
 本発明の実施形態に係るセルロース含有固形物の製造方法によって得られたセルロース含有固形物を用いてグルコースを製造することができる。
[Method for producing glucose]
Glucose can be produced using the cellulose-containing solid obtained by the method for producing a cellulose-containing solid according to the embodiment of the present invention.
 本実施形態に係るグルコースの製造方法において、酵素糖化処理における条件は、下記のとおりである。
 セルロース含有固形物に含まれるセルロース及びセルロースを分解して得られるセルロース分解物に対して作用する酵素を、セルロース含有固形物全量に対して、0.1質量%以上200質量%以下とすることができる。また、酵素糖化処理に用いる酵素活性は、100CUN/g以上10000CUN/g以下とすることができる。さらに、酵素糖化処理における処理温度は、30℃以上70℃以下であれば、酵素が活性化し、糖化率を向上させることができる。酵素糖化処理における処理時間は、12時間以上168時間以下であれば、酵素が活性化し、糖化率を向上させることができる。
In the method for producing glucose according to the present embodiment, the conditions for the enzymatic saccharification treatment are as follows.
Cellulose contained in the cellulose-containing solid and the enzyme that acts on the cellulose degradation product obtained by decomposing cellulose may be 0.1% by mass or more and 200% by mass or less based on the total amount of the cellulose-containing solid. it can. Moreover, the enzyme activity used for an enzyme saccharification process can be 100 CUN / g or more and 10000 CUN / g or less. Furthermore, if the processing temperature in enzyme saccharification processing is 30 degreeC or more and 70 degrees C or less, an enzyme will activate and it can improve a saccharification rate. When the treatment time in the enzyme saccharification treatment is 12 hours or more and 168 hours or less, the enzyme is activated and the saccharification rate can be improved.
 以下、本実施形態を実施例によりさらに具体的に説明するが、本実施形態はこれらに何ら限定されない。 Hereinafter, the present embodiment will be described more specifically by way of examples, but the present embodiment is not limited to these.
[セルロース含有固形物の製造例]
<製造例1>
処理工程(1)
 原料である植物系バイオマス(例えば、バガスのような草木系バイオマス)を、前処理として数mm以下に粉砕する。粉砕後、水を加えて固形物濃度15質量%程度の原料スラリーとする。この原料スラリーに、原料スラリー中のpHが2.0となるようにリン酸を添加し、混合する。
 原料スラリーは、反応器(圧力容器)へと供給され、超臨界状態又は亜臨界状態まで加熱される。原料スラリー中のヘミセルロースを加水分解する場合には、温度170℃で水熱処理することが好ましい。
処理工程(2)
 処理工程(1)から得られた固形分、1-ブタノール濃度34質量%で調製した水と1-ブタノールの混合溶媒、pH3となるように水酸化ナトリウムを、内容積0.92LのSUS(ステンレス)製回分式装置に入れた。溶媒の合計量は、315gであった。原料仕込み濃度は、原料/溶媒=1/10(固形分の仕込み濃度:9.1質量%)として行った。
 SUS製回分式装置の装置内を窒素でパージした後、200℃まで昇温し、2時間処理を行った。処理時間は、200℃に達してからの経過時間とした。また、熱電対にて温度を測定した。
 処理終了後、SUS製回分式装置を冷却し、温度が室温付近まで下がった後、中味を全て取り出した。処理後、固形分と液相とを濾別した。
 固形分に200gの水を加え、30分間攪拌後、固形分と液相とをろ別した。当該操作を3回繰り返し、セルロース含有固形物を得た。液相は分液漏斗により、水相と1-ブタノール相とに液/液分離した。1-ブタノール相の溶媒をエバポレーター(70℃、水浴)で除去した後、125℃の条件で真空乾燥して、リグニンを得た。
[Production Example of Cellulose-Containing Solid]
<Production Example 1>
Processing step (1)
Plant-based biomass (for example, plant-based biomass such as bagasse) as a raw material is pulverized to a few mm or less as a pretreatment. After pulverization, water is added to obtain a raw material slurry having a solid concentration of about 15% by mass. To this raw slurry, phosphoric acid is added and mixed so that the pH in the raw slurry becomes 2.0.
The raw slurry is supplied to a reactor (pressure vessel) and heated to a supercritical state or a subcritical state. When the hemicellulose in the raw slurry is hydrolyzed, hydrothermal treatment is preferably performed at a temperature of 170 ° C.
Processing step (2)
Solid content obtained from the treatment step (1), a mixed solvent of water and 1-butanol prepared at a 1-butanol concentration of 34% by mass, sodium hydroxide so that the pH is 3, SUS (stainless steel with an internal volume of 0.92 L) ) Placed in batch-type apparatus. The total amount of solvent was 315 g. The raw material charge concentration was made as raw material / solvent = 1/10 (solid content charge concentration: 9.1% by mass).
After purging the inside of the SUS batch type apparatus with nitrogen, the temperature was raised to 200 ° C. and the treatment was performed for 2 hours. The treatment time was the elapsed time after reaching 200 ° C. The temperature was measured with a thermocouple.
After completion of the treatment, the SUS batch-type apparatus was cooled, and after the temperature dropped to near room temperature, the entire contents were taken out. After the treatment, the solid content and the liquid phase were separated by filtration.
200 g of water was added to the solid content, and after stirring for 30 minutes, the solid content and the liquid phase were separated by filtration. The said operation was repeated 3 times and the cellulose containing solid substance was obtained. The liquid phase was liquid / liquid separated into a water phase and a 1-butanol phase by a separatory funnel. The solvent of the 1-butanol phase was removed with an evaporator (70 ° C., water bath) and then vacuum-dried at 125 ° C. to obtain lignin.
<製造例2>
 処理工程(2)において、pHを4に調整した以外は全て製造例1と同様に行った。
<製造例3>
 処理工程(2)における混合溶媒中の1-ブタノール濃度が50質量%であること以外は全て製造例2と同様に行った。
<Production Example 2>
All in the same manner as in Production Example 1 except that the pH was adjusted to 4 in the treatment step (2).
<Production Example 3>
The same procedure as in Production Example 2 was conducted except that the 1-butanol concentration in the mixed solvent in the treatment step (2) was 50% by mass.
<製造例4>
 処理工程(2)の混合溶媒を構成する有機溶媒としてエタノールを用いたこと以外は、製造例3と同様に行った。なお、固液分離後の液相は一相であったため、エバポレーターで有機溶媒を除去することで、溶解度の低下により水中に沈殿した固形分を濾過により、固液分離した後、125℃の条件で真空乾燥して、リグニンを得た。
<Production Example 4>
It carried out similarly to manufacture example 3 except having used ethanol as an organic solvent which comprises the mixed solvent of a process process (2). Since the liquid phase after solid-liquid separation was a single phase, the organic solvent was removed with an evaporator, and the solid content precipitated in water due to the decrease in solubility was separated by solid-liquid separation by filtration. And vacuum drying to obtain lignin.
<製造例5>
 処理工程(2)の混合溶媒を構成する有機溶媒としてアセトンを用いたこと以外は、製造例4と同様の操作によりリグニンを得た。
<製造例6>
 処理工程(2)の混合溶媒を構成する有機溶媒として2-メチル1-プロパノールを用いた以外は、全て製造例3と同様に行った。
<製造例7>
 処理工程(2)においてpHを5に調整したこと以外は、全て製造例1と同様に行った。
<製造例8>
 処理工程(2)においてpHを6に調整したこと以外は、全て製造例1と同様に行った。
<Production Example 5>
Lignin was obtained by the same operation as in Production Example 4 except that acetone was used as the organic solvent constituting the mixed solvent in the treatment step (2).
<Production Example 6>
All operations were performed in the same manner as in Production Example 3, except that 2-methyl 1-propanol was used as the organic solvent constituting the mixed solvent in the treatment step (2).
<Production Example 7>
All were carried out in the same manner as in Production Example 1 except that the pH was adjusted to 5 in the treatment step (2).
<Production Example 8>
All were carried out in the same manner as in Production Example 1 except that the pH was adjusted to 6 in the treatment step (2).
<製造例9>
 処理工程(2)においてpHを7に調整したこと以外は、全て製造例1と同様に行った。
<製造例10>
 処理工程(2)においてpHを10に調整したこと以外は、全て製造例1と同様に行った。
<製造例11>
 処理工程(2)においてpHを12に調整したこと以外は、全て製造例1と同様に行った。
<製造例12>(処理工程(1)で酸性水溶液ではなく水のみを用いる)
 まず、原料である植物系バイオマス(例えば、バガスのような草木系バイオマス)を、前処理として数mm以下に粉砕する。粉砕後、水を加えて固形物濃度10質量%程度の原料スラリーとする。
 原料スラリーは、反応器(圧力容器)へと供給され、超臨界状態又は亜臨界状態まで加熱される。原料スラリー中のヘミセルロースを加水分解する場合には、温度170℃で水熱処理することが好ましい。以降、(処理工程(2)において、水酸化ナトリウムを添加して、pHを調整しなかったこと以外は、全て製造例1と同様に行った。
<Production Example 9>
All were carried out in the same manner as in Production Example 1 except that the pH was adjusted to 7 in the treatment step (2).
<Production Example 10>
All were carried out in the same manner as in Production Example 1 except that the pH was adjusted to 10 in the treatment step (2).
<Production Example 11>
All were carried out in the same manner as in Production Example 1 except that the pH was adjusted to 12 in the treatment step (2).
<Production Example 12> (Only water is used in the treatment step (1), not an acidic aqueous solution)
First, plant-based biomass (for example, plant-based biomass such as bagasse) as a raw material is pulverized to several mm or less as a pretreatment. After pulverization, water is added to obtain a raw material slurry having a solid concentration of about 10% by mass.
The raw slurry is supplied to a reactor (pressure vessel) and heated to a supercritical state or a subcritical state. When the hemicellulose in the raw slurry is hydrolyzed, hydrothermal treatment is preferably performed at a temperature of 170 ° C. Thereafter, everything was carried out in the same manner as in Production Example 1 except that sodium hydroxide was not added to adjust the pH in (treatment step (2)).
<製造例13>
 処理工程(2)において、水酸化ナトリウムを添加して、pHを調整しなかったこと以外は、全て製造例1と同様に行った。
<比較製造例>
 水熱処理工程である処理工程(1)を経ずに、原料である植物系バイオマスを水と1-ブタノールの混合溶媒で処理した以外は、製造例13と全て同様に行った。
<Production Example 13>
All in the same manner as in Production Example 1 except that sodium hydroxide was not added to adjust the pH in the treatment step (2).
<Comparative production example>
The same procedure as in Production Example 13 was performed except that the plant-based biomass as a raw material was treated with a mixed solvent of water and 1-butanol without going through the treatment step (1) which is a hydrothermal treatment step.
<植物系バイオマス中およびセルロース含有固形物中のセルロース量の分析>
 植物系バイオマス中およびセルロール含有固形物中のセルロース量は、下記に示す前処理を行った後、構成糖分析に従って算出した。
[前処理]
 前処理として、ウィレーミルを用いて試料となる原料を粉砕し、105℃で乾燥した。
[構成糖分析]
 植物系バイオマスまたはセルロース含有固形物の試料の適量を量りとり、72%硫酸を加え、30℃において、随時撹拌しながら1時間放置した。この反応液を純水と混釈しながら耐圧瓶に完全に移し、オートクレーブにて120℃で1時間処理した後、ろ液と残渣とを、ろ別した。ろ液中の単糖については、高速液体クロマトグラフ法により定量を行った。なお、C6多糖類(主にグルカン)をセルロース、C5多糖類(主にキシラン)をヘミセルロースと定義した。
[リグニン]
 構成糖分析の過程でろ別して得られた残渣を105℃で乾燥し、重量を計測し、分解残渣率を算定した。さらに、灰分量補正することで、リグニンの含有量を算定した。
<Analysis of cellulose content in plant biomass and cellulose-containing solids>
The amount of cellulose in the plant biomass and cellulose-containing solid was calculated according to the constituent sugar analysis after the pretreatment shown below.
[Preprocessing]
As a pretreatment, a raw material to be a sample was pulverized using a Willet mill and dried at 105 ° C.
[Component sugar analysis]
An appropriate amount of a plant-based biomass or cellulose-containing solid sample was weighed, 72% sulfuric acid was added, and the mixture was allowed to stand at 30 ° C. with stirring as needed for 1 hour. The reaction solution was completely transferred to a pressure-resistant bottle while being mixed with pure water, treated in an autoclave at 120 ° C. for 1 hour, and then the filtrate and the residue were separated by filtration. Monosaccharides in the filtrate were quantified by high performance liquid chromatography. In addition, C6 polysaccharide (mainly glucan) was defined as cellulose, and C5 polysaccharide (mainly xylan) was defined as hemicellulose.
[Lignin]
The residue obtained by filtration in the process of constituent sugar analysis was dried at 105 ° C., the weight was measured, and the decomposition residue rate was calculated. Furthermore, the lignin content was calculated by correcting the ash content.
<セルロース回収率>
 セルロース回収率(重量%)=(セルロース含有固形物回収量(g)×セルロース含有固形物中セルロース割合(重量%)/100)/植物系バイオマス中のセルロース量(g)×100
<ヒドロキシメチルフルフラール生成率>
 高速液体クロマトグラフ(Agilent社製HPLC1200シリーズ)にて、ヒドロキシメチルフルフラールの濃度を算出した。
ヒドロキシメチルフルフラール生成率(質量%)=ヒドロキシメチルフルフラール濃度(mg/L)×10-6×溶液容積(mL)/植物系バイオマス(g)×100
<Cellulose recovery rate>
Cellulose recovery rate (% by weight) = (cellulose-containing solids recovered amount (g) × cellulose ratio in cellulose-containing solids (% by weight) / 100) / cellulose amount in plant biomass (g) × 100
<Hydroxymethylfurfural production rate>
The concentration of hydroxymethylfurfural was calculated using a high performance liquid chromatograph (HPLC 1200 series, manufactured by Agilent).
Hydroxymethylfurfural production rate (mass%) = hydroxymethylfurfural concentration (mg / L) × 10−6 × solution volume (mL) / plant biomass (g) × 100
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 製造例1~12では、過分解によるヒドロキシメチルフルフラールの生成が抑制され、高いセルロース回収率を得られることが分かった。 In Production Examples 1 to 12, it was found that the production of hydroxymethylfurfural due to excessive decomposition was suppressed and a high cellulose recovery rate was obtained.
実施例1~13
[得られたセルロース含有固形物の評価方法]
<酵素糖化処理>
 セルロース含有固形物1g(乾燥重量)を50mL遠沈管に投入し、121℃、20分間滅菌処理を行った。同様の滅菌処理を実施した酢酸緩衝液を液量が約20mL、pH5となるように、遠沈管に加え、その後、第3表に示す酵素量(ナガセケムテックス(株)製、セルライザーACE)を投入した。当該遠沈管を50℃の恒温槽中、120rpmで、72hr振盪した。
 0.625%のカルボキシメチルセルロースナトリウムの0.625%溶液(pH4.5)、4mlに、当該酵素1mlを加えて、40℃で30分間作用させたとき、1分間に1μmolのグルコースに相当する還元力を生成する活性を1CUNと表す。上記酵素は、1600CUN/g以上の酵素活性を有するものである。
Examples 1 to 13
[Evaluation method of the obtained cellulose-containing solid]
<Enzymatic saccharification treatment>
1 g (dry weight) of cellulose-containing solid was put into a 50 mL centrifuge tube and sterilized at 121 ° C. for 20 minutes. A similar sterilized acetate buffer solution was added to the centrifuge tube so that the solution volume was about 20 mL and pH 5, and then the enzyme amounts shown in Table 3 (manufactured by Nagase ChemteX Corporation, Cellizer ACE) Was introduced. The centrifuge tube was shaken in a thermostatic bath at 50 ° C. at 120 rpm for 72 hours.
When 1 ml of the enzyme is added to 4 ml of 0.625% sodium carboxymethylcellulose solution (pH 4.5) and allowed to act at 40 ° C. for 30 minutes, reduction corresponding to 1 μmol of glucose per minute The activity that generates force is denoted as 1 CUN. The enzyme has an enzyme activity of 1600 CUN / g or more.
<得られるキシロース+キシロオリゴ糖およびセルロース含有固形物中のグルコース量の分析>
1.糖分析
 糖(キシロース、キシロオリゴ糖、グルコース)は、以下の条件を用いてHPLCにて分析した。
測定条件
カラム:昭和電工製 Shodex SP-G(ガードカラム)+SP0810
移動相:蒸留水(HPLCグレード)
検出器:RI(セル内60℃)
カラム温度:80℃
注入量:50μL
2.試料調製
 ピペッターを用いて、10mLバイアル瓶に試料(溶液)を0.2mL採取する。
蒸留水を1.8mL添加し、よく混合する(10倍希釈)。
バイアル瓶に採取する。
3.計算方法
 検量線を用いて、グルコース濃度(g-グルコース/L)を算出する。
グルコース回収率(%)=(セルロース含有固形物酵素糖化液中のグルコース量(g)×セルロース含有固形物回収率(質量%)/100)/植物系バイオマス中のグルコース量(g)×100
<Analysis of the amount of glucose in the resulting xylose + xylooligosaccharide and cellulose-containing solid>
1. Sugar analysis Sugar (xylose, xylooligosaccharide, glucose) was analyzed by HPLC using the following conditions.
Measurement condition column: Showa Denko Shodex SP-G (guard column) + SP0810
Mobile phase: distilled water (HPLC grade)
Detector: RI (60 ° C in the cell)
Column temperature: 80 ° C
Injection volume: 50 μL
2. Sample Preparation Using a pipetter, collect 0.2 mL of sample (solution) in a 10 mL vial.
Add 1.8 mL of distilled water and mix well (10-fold dilution).
Collect in a vial.
3. Calculation method The glucose concentration (g-glucose / L) is calculated using a calibration curve.
Glucose recovery rate (%) = (glucose amount in cellulose-containing solid enzyme saccharified solution (g) × cellulose-containing solid material recovery rate (mass%) / 100) / glucose amount in plant biomass (g) × 100
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明の製造例により製造されたセルロース含有固形物を用いる実施例1~12においては、セルロース含有固形物から酵素糖化により得られる植物系バイオマス中のグルコース量基準のグルコース回収率は高い値を示した。なお、処理工程(2)においてpHを調整していない製造例13により得られたセルロース含有固形物を用いた実施例13では、回収できるセルロース含有固形物の総量が他の製造例と比べて低いため、酵素量が0.1mLになると、糖にまで分解されるセルロースの絶対量が低いために、グルコース回収率が他と比べて低くなっている。 In Examples 1 to 12 using the cellulose-containing solid produced by the production example of the present invention, the glucose recovery rate based on the amount of glucose in plant biomass obtained by enzymatic saccharification from the cellulose-containing solid shows a high value. It was. In Example 13 using the cellulose-containing solid obtained in Production Example 13 in which the pH was not adjusted in the treatment step (2), the total amount of cellulose-containing solid that can be recovered is lower than in other production examples. Therefore, when the amount of the enzyme is 0.1 mL, the absolute amount of cellulose that is decomposed to sugar is low, so that the glucose recovery rate is lower than others.
実施例9及び比較例1
(キシロース、キシロオリゴ糖、グルコース)回収率(%)=(水熱処理液中のキシロース量(g)+水熱処理液中のキシロオリゴ糖量(g)+(セルロース含有固形物酵素糖化液中のグルコース量(g)×セルロース含有固形物回収率(質量%)/100))/(植物系バイオマス中のキシロース量(g)+植物系バイオマス中のグルコース量(g))×100
Example 9 and Comparative Example 1
(Xylose, xylooligosaccharide, glucose) recovery rate (%) = (xylose amount (g) in hydrothermal treatment liquid + xylooligosaccharide amount (g) in hydrothermal treatment liquid + (glucose amount in cellulose-containing solid enzyme saccharification solution) (G) × cellulose-containing solids recovery rate (mass%) / 100)) / (xylose amount in plant biomass (g) + glucose amount in plant biomass (g)) × 100
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明の製造方法によれば、ヘミセルロース由来糖類(キシロースおよびキシロオリゴ糖)の過分解を抑制して回収できるため、植物系バイオマスを基準として糖類を効率良く回収できる。 According to the production method of the present invention, saccharide can be efficiently recovered on the basis of plant biomass because the hemicellulose-derived saccharides (xylose and xylooligosaccharide) can be suppressed and recovered.
<リグニン純度の測定>
 上記<原料の組成分析>と同様に行った。
<数平均分子量>
 テトラヒドロフラン溶媒を用いたゲル浸透クロマトグラフ(GPC)にて、上述のリグニンの数平均分子量を測定した(測定温度40℃、検出器RI)。数平均分子量は、ポリスチレン換算数平均分子量である。
<熱重量減少開始温度(Td5)>
 5%熱重量減少開始温度(Td5)は、SII社製 EXSTAR6000 TG/DTA6200にて測定した。Ptパンに約10mgのサンプルを秤量し、昇温速度10℃/分、測定雰囲気:空気200mL/分、温度35℃~800℃まで測定し、重量が5%減少する温度を求めた。
<フェノール性水酸基当量>
 重クロロホルム、ピリジン、シクロヘキサノール(内部標準)を混合した溶媒を精製リグニンに加え、さらに、誘導体化試薬として2-クロロ-4,4,5,5-テトラメチル-1,3,2-ジオキサホスホランを添加し、50℃、1時間加熱した。その後、以下の測定条件で31PNMR測定を実施した。
 パルス幅:30°
 繰り返し時間:2秒
 測定範囲:-60~200ppm
 積算回数:200回
 内部標準であるシクロヘキサノール由来シグナルを145.2ppmとし、144.7~136.6ppmをフェノール性水酸基(Ph-OH)として帰属し、積分値からフェノール性水酸基当量(g/eq)を算出した。
<Measurement of lignin purity>
It carried out similarly to the above <Composition analysis of a raw material>.
<Number average molecular weight>
The number average molecular weight of the above lignin was measured by a gel permeation chromatograph (GPC) using a tetrahydrofuran solvent (measurement temperature 40 ° C., detector RI). The number average molecular weight is a polystyrene-equivalent number average molecular weight.
<Thermal weight decrease start temperature (Td5)>
The 5% thermogravimetric decrease starting temperature (Td5) was measured with EXSTAR6000 TG / DTA6200 manufactured by SII. About 10 mg of a sample was weighed in a Pt pan, measured at a temperature increase rate of 10 ° C./min, measurement atmosphere: air 200 mL / min, temperature 35 ° C. to 800 ° C., and a temperature at which the weight decreased by 5% was determined.
<Phenolic hydroxyl group equivalent>
A solvent mixed with deuterated chloroform, pyridine and cyclohexanol (internal standard) is added to the purified lignin, and 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxa is used as a derivatization reagent. Phosphorane was added and heated at 50 ° C. for 1 hour. Thereafter, 31PNMR measurement was performed under the following measurement conditions.
Pulse width: 30 °
Repetition time: 2 seconds Measurement range: -60 to 200 ppm
Integration number: 200 times The signal derived from the internal standard cyclohexanol was 145.2 ppm, 144.7 to 136.6 ppm was assigned as phenolic hydroxyl group (Ph-OH), and the phenolic hydroxyl group equivalent (g / eq) was calculated from the integrated value. ) Was calculated.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表4からわかるように、耐熱性の高いリグニンが得られた。また、本製造方法では二次変性を行っていないため、高いフェノール性水酸基量を有する。そのため、材料としても好適に用いることができる。 As can be seen from Table 4, lignin having high heat resistance was obtained. Moreover, since secondary modification | denaturation is not performed in this manufacturing method, it has a high amount of phenolic hydroxyl groups. Therefore, it can be suitably used as a material.
実施例9及び比較例1
[ヘキサメチレンテトラミンを含んでなる熱硬化性樹脂組成物の評価]
 製造例9および比較製造例で得られたリグニンを用いて熱硬化性樹脂組成物を作製した。また、その硬化物を作製し、物性を評価した。
<熱硬化性樹脂組成物の配合及び硬化物の成形方法>
 第2表に示す配合比で各成分を乳鉢に入れ、室温にて粉砕し、混合後、オープンロール混練機を用いて100℃にて5分間混合した後、室温まで冷却した。混合物を乳鉢で粉砕し、離型剤を塗布したアルミ板の間に挟み、真空プレス機を用いて、減圧下で150℃にて60分間成形した。成形後、200℃にて120分間処理して、成形品を得た。
<曲げ強度測定方法>
 得られた成形品から5mm×50mm×1mmの試料を切り出し、インストロン5566を用いて、3点曲げモード、スパン30mm、速度2mm/分の条件で、曲げ強度を測定した。
<ガラス転移温度の測定方法>
 ガラス転移温度の測定は固体粘弾性法によって測定した。得られた成形品から5mm×30mm×1mmの試料を切り出し、DMA8000(パーキンエルマージャパン株式会社製)を用いて、0℃~300℃、若しくは限界最低弾性率に達するまで昇温温度2℃/分、1Hzで測定を行った。得られたtanδのピーク温度をガラス転移温度(Tg)とした。
Example 9 and Comparative Example 1
[Evaluation of thermosetting resin composition containing hexamethylenetetramine]
A thermosetting resin composition was prepared using the lignin obtained in Production Example 9 and Comparative Production Example. Moreover, the hardened | cured material was produced and the physical property was evaluated.
<Formulation of thermosetting resin composition and molding method of cured product>
Each component was put in a mortar at the blending ratio shown in Table 2, pulverized at room temperature, mixed, mixed at 100 ° C. for 5 minutes using an open roll kneader, and then cooled to room temperature. The mixture was pulverized in a mortar, sandwiched between aluminum plates coated with a release agent, and molded at 150 ° C. for 60 minutes under reduced pressure using a vacuum press. After molding, it was treated at 200 ° C. for 120 minutes to obtain a molded product.
<Bending strength measurement method>
A 5 mm × 50 mm × 1 mm sample was cut out from the obtained molded product, and the bending strength was measured using an Instron 5566 under conditions of a three-point bending mode, a span of 30 mm, and a speed of 2 mm / min.
<Measuring method of glass transition temperature>
The glass transition temperature was measured by the solid viscoelastic method. A sample of 5 mm × 30 mm × 1 mm was cut out from the obtained molded product, and the temperature was raised to 0 ° C. to 300 ° C. or 2 ° C./min until reaching the limit minimum elastic modulus using DMA8000 (manufactured by PerkinElmer Japan). Measurement was performed at 1 Hz. The obtained tan δ peak temperature was defined as the glass transition temperature (Tg).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表5の結果からわかるように、本発明の製造方法により得られたリグニンを用いた実施例13では、耐熱性が高く、かつ物性に優れた成形品が得られた。 As can be seen from the results in Table 5, in Example 13 using lignin obtained by the production method of the present invention, a molded product having high heat resistance and excellent physical properties was obtained.
 本発明によれば、植物系バイオマスから、ヘミセルロース由来糖類、過分解が抑制されたセルロース含有固形物、及び不純物の少ないリグニンであるバイオマス由来生成物を製造する方法を提供することができる。本発明によれば、ヘミセルロースの過分解を抑制しながら第1の処理工程(1)を行うため、ヘミセルロース由来糖類及びセルロース含有固形物から高い糖収量を得ることができる。 According to the present invention, it is possible to provide a method for producing a hemicellulose-derived saccharide, a cellulose-containing solid material in which excessive decomposition is suppressed, and a biomass-derived product that is lignin with less impurities from plant-based biomass. According to the present invention, since the first treatment step (1) is performed while suppressing the excessive decomposition of hemicellulose, a high sugar yield can be obtained from the hemicellulose-derived saccharide and the cellulose-containing solid.

Claims (17)

  1.  植物系バイオマスから、ヘミセルロースを分離する処理工程(1)と、
     処理工程(1)から得られる固形分と、有機溶媒単独、または有機溶媒と水との混合溶媒から選択される溶媒とを混合して、加熱処理をする処理工程(2)
    とを含有する、植物系バイオマス由来生成物の製造方法。
    A treatment step (1) for separating hemicellulose from plant biomass;
    Processing step (2) in which the solid content obtained from the processing step (1) and an organic solvent alone or a solvent selected from a mixed solvent of an organic solvent and water are mixed and subjected to heat treatment.
    And a method for producing a plant-derived biomass-derived product.
  2.  前記処理工程(2)の後、固液分離をすることにより、固体としてセルロース含有固形物を、液体としてリグニン含有溶液を得る、請求項1に記載の植物系バイオマス由来生成物の製造方法。 The method for producing a plant biomass-derived product according to claim 1, wherein after the treatment step (2), solid-liquid separation is performed to obtain a cellulose-containing solid as a solid and a lignin-containing solution as a liquid.
  3.  前記リグニン含有溶液から溶媒を除去することにより固体リグニンを得る、請求項2に記載の植物系バイオマス由来生成物の製造方法。 The method for producing a plant biomass-derived product according to claim 2, wherein solid lignin is obtained by removing a solvent from the lignin-containing solution.
  4.  前記植物系バイオマスが、草本系バイオマスである、請求項1~3のいずれか一項に記載の植物系バイオマス由来生成物の製造方法。 The method for producing a plant biomass-derived product according to any one of claims 1 to 3, wherein the plant biomass is a herbaceous biomass.
  5.  前記処理工程(1)において、ヘミセルロースを分離する処理として、水熱処理を行う、請求項1~4のいずれか一項に記載の植物系バイオマス由来生成物の製造方法。 The method for producing a plant-based biomass-derived product according to any one of claims 1 to 4, wherein in the treatment step (1), hydrothermal treatment is performed as a treatment for separating hemicellulose.
  6.  前記水熱処理が、水及び/又は水蒸気を用いた水熱処理、水蒸気爆砕、並びに酸性水溶液を用いた水熱処理からなる群から選ばれる少なくとも1つである、請求項5に記載の植物系バイオマス由来生成物の製造方法。 The plant-derived biomass-derived production according to claim 5, wherein the hydrothermal treatment is at least one selected from the group consisting of hydrothermal treatment using water and / or steam, steam explosion, and hydrothermal treatment using an acidic aqueous solution. Manufacturing method.
  7.  前記酸性水溶液は、無機酸及び有機酸から選択される少なくとも1種を含む酸性水溶液である、請求項6に記載の植物系バイオマス由来生成物の製造方法。 The method for producing a plant biomass-derived product according to claim 6, wherein the acidic aqueous solution is an acidic aqueous solution containing at least one selected from inorganic acids and organic acids.
  8.  前記処理工程(1)におけるヘミセルロース分離後から前記処理工程(2)における処理工程(1)から得られる固形分と溶媒との混合前までの系のpHを、または前記処理工程(2)において処理工程(1)から得られる固形分と溶媒とを混合する際の系のpHを、塩基性物質を用いて調整する、請求項1~7のいずれか一項に記載の植物系バイオマス由来生成物の製造方法。 The pH of the system from after the separation of hemicellulose in the treatment step (1) to before the mixing of the solid content and the solvent obtained from the treatment step (1) in the treatment step (2), or in the treatment step (2). The plant-derived biomass-derived product according to any one of claims 1 to 7, wherein the pH of the system when mixing the solid content obtained from the step (1) and the solvent is adjusted using a basic substance. Manufacturing method.
  9.  前記処理工程(2)において、処理工程(1)から得られる固形分と溶媒とを混合する際の系のpHを調整する、請求項8に記載の植物系バイオマス由来生成物の製造方法。 The method for producing a plant-based biomass-derived product according to claim 8, wherein in the treatment step (2), the pH of the system when the solid content obtained from the treatment step (1) and the solvent are mixed is adjusted.
  10.  前記塩基性物質を用いてpHを調整した後の系のpHが3以上12以下である、請求項8又は9に記載の植物系バイオマス由来生成物の製造方法。 The method for producing a plant-derived biomass-derived product according to claim 8 or 9, wherein the pH of the system after adjusting the pH with the basic substance is 3 or more and 12 or less.
  11.  前記処理工程(2)において用いられる有機溶媒が、エタノール、1-ブタノール、2-メチル-1-プロパノール、2-ブタノール及びアセトンから選ばれる少なくとも1種である、請求項1~10のいずれか一項に記載の植物系バイオマス由来生成物の製造方法。 The organic solvent used in the treatment step (2) is at least one selected from ethanol, 1-butanol, 2-methyl-1-propanol, 2-butanol and acetone. The manufacturing method of the plant-derived biomass origin product of description.
  12.  前記処理工程(2)を以下の条件A~Cで行う、請求項1~11のいずれか一項に記載の植物系バイオマス由来生成物の製造方法。
    条件A:溶媒に対する、処理工程(1)から得られる固形分の仕込み濃度が1質量%以上50質量%以下である,
    条件B:処理温度が100℃以上300℃以下である,及び
    条件C:処理時間が0.1時間以上10時間以下である。
    The method for producing a plant biomass-derived product according to any one of claims 1 to 11, wherein the treatment step (2) is performed under the following conditions A to C.
    Condition A: The concentration of the solid content obtained from the treatment step (1) with respect to the solvent is 1% by mass or more and 50% by mass or less.
    Condition B: treatment temperature is 100 ° C. or more and 300 ° C. or less, and condition C: treatment time is 0.1 hour or more and 10 hours or less.
  13.  請求項2~12のいずれか一項に記載の製造方法によって得られたセルロース含有固形物を酵素糖化処理し、グルコースを得るグルコースの製造方法。 A method for producing glucose, wherein a cellulose-containing solid obtained by the production method according to any one of claims 2 to 12 is subjected to enzymatic saccharification treatment to obtain glucose.
  14.  請求項2~12のいずれか一項に記載の方法により得られたリグニンを用いてなる、樹脂組成物。 A resin composition comprising the lignin obtained by the method according to any one of claims 2 to 12.
  15.  下記の(11)~(13)を満たす、リグニン。
    (11):リグニンの純度が90%以上である、
    (12):数平均分子量が650以上である、及び
    (13):5%熱重量減少開始温度が210℃以上である。
    Lignin satisfying the following (11) to (13).
    (11): The purity of lignin is 90% or more,
    (12): Number average molecular weight is 650 or more, and (13): 5% thermogravimetric decrease starting temperature is 210 ° C. or more.
  16.  請求項15に記載のリグニンを含む、樹脂組成物。 A resin composition comprising the lignin according to claim 15.
  17.  請求項14または16に記載の樹脂組成物を用いてなる、成形品。 A molded product comprising the resin composition according to claim 14 or 16.
PCT/JP2017/032386 2016-09-09 2017-09-07 Production method for product derived from plant-based biomass having two-stage process WO2017222084A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018523716A JP6931878B2 (en) 2016-09-09 2017-09-07 Method for producing plant-based biomass-derived products by a two-step process
CN201780054650.6A CN109689736A (en) 2016-09-09 2017-09-07 Method for producing products derived from plant-based biomass using a two-stage process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016177151 2016-09-09
JP2016-177151 2016-09-09

Publications (1)

Publication Number Publication Date
WO2017222084A1 true WO2017222084A1 (en) 2017-12-28

Family

ID=60784229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032386 WO2017222084A1 (en) 2016-09-09 2017-09-07 Production method for product derived from plant-based biomass having two-stage process

Country Status (3)

Country Link
JP (1) JP6931878B2 (en)
CN (1) CN109689736A (en)
WO (1) WO2017222084A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021042289A (en) * 2019-09-10 2021-03-18 日鉄エンジニアリング株式会社 Recovery system and recovery method of organic solvent-soluble lignin
JP2021524869A (en) * 2019-06-26 2021-09-16 中国林▲業▼科学研究院林▲産▼化学工▲業▼研究所 Comprehensive usage for fiber-based biomass
KR20220056619A (en) * 2020-10-28 2022-05-06 주식회사 리그넘 Method for Manufacturing Antimicrobial Bio-fillers for Plastics and Antimicrobial Bio-fillers by Using the Same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142895A (en) * 2010-01-18 2011-07-28 Ihi Corp Biomass treating system and biomass treating method
WO2011099544A1 (en) * 2010-02-10 2011-08-18 日立化成工業株式会社 Resin composition, molded body and composite molded body
WO2016022173A1 (en) * 2013-08-12 2016-02-11 Green Extraction Technologies Method for isolating lignin from a biomass and products provided therefrom
WO2016027537A1 (en) * 2014-08-18 2016-02-25 日立化成株式会社 Resin composition and molded object
JP2016516882A (en) * 2013-05-03 2016-06-09 ヴァーディア, インコーポレイテッド Method for preparation of heat-stable lignin fraction
JP2016522850A (en) * 2013-05-03 2016-08-04 ヴァーディア, インコーポレイテッド Method of lignocellulosic material treatment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101522760A (en) * 2006-08-07 2009-09-02 艾米塞莱克斯能源公司 Process for recovery of holocellulose and near-native lignin from biomass
CN102180994B (en) * 2011-03-04 2012-12-19 广州优锐生物科技有限公司 Combined pretreatment method for efficiently separating bagasse biomass components

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142895A (en) * 2010-01-18 2011-07-28 Ihi Corp Biomass treating system and biomass treating method
WO2011099544A1 (en) * 2010-02-10 2011-08-18 日立化成工業株式会社 Resin composition, molded body and composite molded body
JP2016516882A (en) * 2013-05-03 2016-06-09 ヴァーディア, インコーポレイテッド Method for preparation of heat-stable lignin fraction
JP2016522850A (en) * 2013-05-03 2016-08-04 ヴァーディア, インコーポレイテッド Method of lignocellulosic material treatment
WO2016022173A1 (en) * 2013-08-12 2016-02-11 Green Extraction Technologies Method for isolating lignin from a biomass and products provided therefrom
WO2016027537A1 (en) * 2014-08-18 2016-02-25 日立化成株式会社 Resin composition and molded object

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021524869A (en) * 2019-06-26 2021-09-16 中国林▲業▼科学研究院林▲産▼化学工▲業▼研究所 Comprehensive usage for fiber-based biomass
JP7149332B2 (en) 2019-06-26 2022-10-06 中国林▲業▼科学研究院林▲産▼化学工▲業▼研究所 Method for producing cellulose, low-dispersion hemicellulose and lignin-dissociated polyphenols from fibrous biomass
JP2021042289A (en) * 2019-09-10 2021-03-18 日鉄エンジニアリング株式会社 Recovery system and recovery method of organic solvent-soluble lignin
WO2021049359A1 (en) * 2019-09-10 2021-03-18 日鉄エンジニアリング株式会社 Organic-solvent-soluble lignin recovery system and recovery method
JP7343337B2 (en) 2019-09-10 2023-09-12 日鉄エンジニアリング株式会社 Organic solvent soluble lignin recovery system and recovery method
KR20220056619A (en) * 2020-10-28 2022-05-06 주식회사 리그넘 Method for Manufacturing Antimicrobial Bio-fillers for Plastics and Antimicrobial Bio-fillers by Using the Same
KR102400400B1 (en) * 2020-10-28 2022-05-20 주식회사 리그넘 Method for Manufacturing Antimicrobial Bio-fillers for Plastics and Antimicrobial Bio-fillers by Using the Same

Also Published As

Publication number Publication date
CN109689736A (en) 2019-04-26
JPWO2017222084A1 (en) 2019-06-20
JP6931878B2 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
JP6920317B2 (en) Manufacturing method of lignin-containing resin composition and lignin-containing resin molded product
WO2016043218A1 (en) Thermosetting resin composition
US8053566B2 (en) Methods for isolating and harvesting lignin and isolated lignin preparations produced using the methods
CN110914341B (en) Method for producing modified lignin, and resin composition material containing modified lignin
JP6750832B2 (en) Method for producing purified lignin, purified lignin, resin composition and molded article
Zhao et al. Structural variation of lignin and lignin–carbohydrate complex in Eucalyptus grandis× E. urophylla during its growth process
Wang et al. Mild one-pot lignocellulose fractionation based on acid-catalyzed biphasic water/phenol system to enhance components’ processability
US20130012610A1 (en) Lignin and other products isolated from plant material, methods for isolation and use, and compositions containing lignin and other plant-derived products
Guo et al. New lignin streams derived from heteropoly acids enhanced neutral deep eutectic solvent fractionation: toward structural elucidation and antioxidant performance
WO2014142289A1 (en) Method for manufacturing lignin degradation product
WO2019094444A1 (en) Methods of making specialized cellulose and other products from biomass
JP6931878B2 (en) Method for producing plant-based biomass-derived products by a two-step process
WO2020162621A1 (en) Method for producing polyphenol derivative, polyphenol derivative, and polyphenol derivative-containing resin composition material
US20160273010A1 (en) Melt compounding and fractionation of lignocellulosic biomass and products produced therefrom
JP6955498B2 (en) Manufacturing method of heat-resistant lignin
US20240010798A1 (en) Lignin composition and use thereof
WO2016199924A1 (en) Method for producing cellulose-containing solid material and method for producing glucose

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815548

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018523716

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815548

Country of ref document: EP

Kind code of ref document: A1