WO2017222064A1 - Optical device, display body, device provided with display body, optical filter, and method for manufacturing optical device - Google Patents

Optical device, display body, device provided with display body, optical filter, and method for manufacturing optical device Download PDF

Info

Publication number
WO2017222064A1
WO2017222064A1 PCT/JP2017/023301 JP2017023301W WO2017222064A1 WO 2017222064 A1 WO2017222064 A1 WO 2017222064A1 JP 2017023301 W JP2017023301 W JP 2017023301W WO 2017222064 A1 WO2017222064 A1 WO 2017222064A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display body
metal layer
light
lattice
Prior art date
Application number
PCT/JP2017/023301
Other languages
French (fr)
Japanese (ja)
Inventor
雅史 川下
秀充 波木井
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016125705A external-priority patent/JP2017227837A/en
Priority claimed from JP2016125704A external-priority patent/JP6790498B2/en
Priority claimed from JP2016181036A external-priority patent/JP6805668B2/en
Priority claimed from JP2016181037A external-priority patent/JP2018045156A/en
Priority claimed from JP2017092883A external-priority patent/JP2018189831A/en
Priority claimed from JP2017122323A external-priority patent/JP2018005230A/en
Priority claimed from JP2017122322A external-priority patent/JP7024221B2/en
Priority to KR1020187036539A priority Critical patent/KR102419708B1/en
Priority to EP17815529.7A priority patent/EP3477346B1/en
Priority to CN201780039380.1A priority patent/CN109328314A/en
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2017222064A1 publication Critical patent/WO2017222064A1/en
Priority to US16/228,739 priority patent/US11097568B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/328Diffraction gratings; Holograms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/373Metallic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/12Advertising or display means not otherwise provided for using special optical effects

Definitions

  • the present invention relates to an optical device, a display body, a device with a display body, an optical filter, and a method for manufacturing the optical device.
  • Optical devices are devices that use optical phenomena such as light reflection, absorption, interference, and diffraction.
  • a display body which is an example of an optical device, adds a visual effect different from a printed matter to an image displayed on the display body by using interference of light by a diffraction grating or a multilayer film (for example, Patent Document 1). reference).
  • the display body When the display body is provided in the article, it increases the difficulty of counterfeiting the article and the design.
  • Another example of the optical device is an optical filter provided in a display device, an image sensor, or the like (see, for example, Patent Document 2).
  • the optical filter emits light in a partial wavelength region of the incident light.
  • An optical device that selectively transmits or reflects light in a specific wavelength region is used as a display body that forms a colored image different from white or black, or as an optical filter.
  • it is preferable that the degree of freedom in adjusting the wavelength region transmitted or reflected by the optical device is high.
  • An object of the present invention is to provide an optical device, a display body, a device with a display body, an optical filter, and a method for manufacturing the optical device that can increase the degree of freedom of adjustment of a wavelength region to be transmitted or reflected. .
  • An optical device that solves the above problems is a support having a reference surface, and a plurality of periodic elements arranged in a two-dimensional lattice shape having a sub-wavelength period on the reference surface, and a protrusion protruding from the reference surface
  • the surface includes a periodic structure that is a dielectric body including the periodic element that is one of the recesses recessed from the reference surface, and a region that surrounds the periodic element in the reference surface and the surface of the periodic element.
  • a metal layer having a shape that follows the surface shape of the periodic structure.
  • the display body which solves the said subject is a display body which has the structure of the said optical device.
  • a device with a display body that solves the above problem includes the display body.
  • An optical filter that solves the above problem is an optical filter having the configuration of the optical device.
  • the optical device includes a layer having a grating structure with a sub-wavelength period composed of a metal and a dielectric, and therefore when the optical device is irradiated with light, the layer having the grating structure is used. Plasmon resonance occurs. The light in the wavelength region consumed by the plasmon resonance is not reflected by the optical device, and the light in the specific wavelength region affected by the plasmon resonance is transmitted through the optical device and emitted from the optical device. As a result, light in a specific wavelength region is emitted from the optical device as reflected light or transmitted light.
  • the wavelength region of the transmitted light and reflected light is determined by a plurality of factors including the position and size of each periodic element and the metal layer whose position is determined by each periodic element, it is transmitted or reflected by the optical device.
  • the degree of freedom in adjusting the wavelength region can be increased.
  • the method of manufacturing an optical device that solves the above problem is that a convex portion or a concave portion is seen from the direction facing the surface of the base material by transferring the concave and convex portions of the intaglio to the resin coated on the surface of the base material
  • a second step of forming on the substrate is that a convex portion or a concave portion is seen from the direction facing the surface of the base material by transferring the concave and convex portions of the intaglio to the resin coated on the surface of the base material
  • a high degree of freedom in adjusting the wavelength region transmitted or reflected in the optical device can be obtained.
  • a periodic structure having fine irregularities can be easily and suitably formed.
  • the degree of freedom of adjustment of the wavelength region transmitted or reflected by the optical device can be increased.
  • the top view which shows the planar structure in 1st Embodiment of a display body.
  • the enlarged view which expands and shows the planar structure of the 1st display area in the display body of 1st Embodiment.
  • Sectional drawing which shows the other example of the cross-section of the 1st display area of 1st Embodiment.
  • action figure which shows the effect
  • action figure which shows the effect
  • Sectional drawing which expands and shows a part of sectional structure in the 2nd display area of the modification of 1st Embodiment.
  • Sectional drawing which expands and shows a part of sectional structure in the 1st display area of the modification of 1st Embodiment.
  • Sectional drawing which shows the cross-section of the 1st display area
  • Sectional drawing which shows the cross-section of the 1st display area of 2nd Embodiment.
  • action figure which shows the effect
  • the figure which shows the structure of the device with a display body of 2nd Embodiment.
  • Sectional drawing which expands and shows a part of sectional structure in the 1st display area of the modification of 2nd Embodiment.
  • Sectional drawing which expands and shows a part of sectional structure in the 1st display area of the modification of 2nd Embodiment.
  • the top view which shows the planar structure in 3rd Embodiment of a display body.
  • the figure which shows the cross-section in the display area of the display body of 3rd Embodiment, and the planar structure of an uneven structure layer.
  • Sectional drawing which shows the cross-section in the auxiliary
  • action of the display body of the 1st application form in 3rd Embodiment by the reflection observation by the surface side The effect
  • the top view which shows an example of the planar structure of the display body with which the device with a display body of the 3rd application form in 3rd Embodiment is provided.
  • action of the device with a display body of the 4th application form in 3rd Embodiment.
  • the top view which shows the planar structure in 4th Embodiment of a display body.
  • Sectional drawing which shows the other example of the cross-section of the display body in 4th Embodiment.
  • Sectional drawing which shows the other example of the cross-section of the display body in 4th Embodiment.
  • the top view which shows the other example of arrangement
  • Sectional drawing which shows the other example of the cross-section of the display body in 4th Embodiment.
  • the top view which shows the planar structure in one form of 5th Embodiment of a display body. It is a figure which shows the effect
  • FIG. 48 is a diagram showing a cross-sectional structure of a first display region in a sixth embodiment, and is a cross-sectional view taken along line X48-X48 in FIG.
  • FIG. 48 is a diagram showing a cross-sectional structure of a first display region in a sixth embodiment, and is a cross-sectional view taken along line X49-X49 in FIG. 46 is a diagram showing a cross-sectional structure of a second display region according to the sixth embodiment, and is a cross-sectional view taken along line X50-X50 in FIG. 46.
  • FIG. 48 is a diagram showing a cross-sectional structure of a first display region in a sixth embodiment, and is a cross-sectional view taken along line X48-X48 in FIG.
  • FIG. 48 is a diagram showing a cross-sectional structure of a first display region in a sixth embodiment, and is a cross-sectional view taken along line X49-X49 in FIG. 46 is a diagram showing a
  • action of the display body of 6th Embodiment by the reflection observation by the surface side, and the transmission observation by the back surface side The effect
  • Sectional drawing which expands and shows an example of a part of sectional structure in the 1st display area of 6th Embodiment.
  • FIG. 58 is a diagram showing a sectional structure of the concavo-convex structure layer of the seventh embodiment, and is a sectional view taken along line X56B-X56B in FIG. 56A. Sectional drawing which shows the cross-section of the display body of 7th Embodiment.
  • FIG. 60B is a cross-sectional view taken along the line X59B-X59B in FIG.
  • Sectional drawing which shows the cross-section of the display body of the modification of 7th Embodiment.
  • Sectional drawing which shows an example of the shape of the convex part which the uneven structure layer of the modification of 7th Embodiment has.
  • Sectional drawing which shows an example of the shape of the convex part which the uneven structure layer of the modification of 7th Embodiment has.
  • Sectional drawing which shows an example of the shape of the convex part which the uneven structure layer of the modification of 7th Embodiment has.
  • Sectional drawing which shows an example of the shape of the convex part which the uneven structure layer of the modification of 7th Embodiment has.
  • Sectional drawing which shows an example of the shape of the convex part which the uneven structure layer of the modification of 7th Embodiment has.
  • the top view which shows the planar structure of the uneven structure layer in 8th Embodiment of a display body. It is a figure which shows the cross-section of the uneven structure layer of 8th Embodiment, and is the X61B-X61B sectional view taken on the line of FIG. 61A.
  • Sectional drawing which shows the cross-section of the display body of 8th Embodiment. Sectional drawing which shows an example of the shape of the recessed part which the uneven structure layer of 8th Embodiment has. Sectional drawing which shows an example of the shape of the recessed part which the uneven structure layer of 8th Embodiment has. Sectional drawing which shows an example of the shape of the recessed part which the uneven structure layer of 8th Embodiment has. Sectional drawing which shows an example of the shape of the recessed part which the uneven structure layer of 8th Embodiment has.
  • Sectional drawing which shows an example of the shape of the recessed part which the uneven structure layer of 8th Embodiment has.
  • the top view which shows the planar structure of the uneven structure layer in the modification of 8th Embodiment. It is a figure which shows the cross-section of the uneven structure layer in the modification of 8th Embodiment, and is the X63B-X63B sectional view taken on the line of FIG. 63A.
  • Sectional drawing which shows the cross-section of the display body of the modification of 8th Embodiment.
  • the top view which shows the planar structure in the display apparatus of 9th Embodiment.
  • the enlarged view which expands and shows the planar structure of the subpixel with which the color filter of 9th Embodiment is provided.
  • FIG. 66 is a diagram showing a cross-sectional structure of a sub-pixel according to the ninth embodiment, and is a cross-sectional view taken along line X66-X66 in FIG.
  • FIG. 66 is a diagram showing a cross-sectional structure of a sub-pixel according to the ninth embodiment, and is a cross-sectional view taken along line X67-X67 in FIG. Sectional drawing which shows the other example of the cross-section of the subpixel of 9th Embodiment.
  • action figure which shows the effect
  • movement figure which shows the effect
  • Sectional drawing which expands and shows an example of a part of sectional structure in the sub pixel of 9th Embodiment. Sectional drawing which expands and shows a part of sectional structure in the subpixel of the modification of 9th Embodiment. Sectional drawing which expands and shows a part of sectional structure in the subpixel of the modification of 9th Embodiment. The figure which shows the structure of the image pick-up element to which the structure of 9th Embodiment is applied. Sectional drawing which shows the cross-section of the subpixel in the color filter of 10th Embodiment. Sectional drawing which shows the cross-section of the subpixel of 10th Embodiment.
  • action of the color filter of 10th Embodiment at the time of non-lighting of a light source device The operation
  • Sectional drawing which expands and shows a part of sectional structure in the subpixel of the modification of 10th Embodiment Sectional drawing which expands and shows a part of sectional structure in the subpixel of the modification of 10th Embodiment.
  • FIG. 83 is a cross-sectional view taken along the line X82C-X82C in FIG. 82B, showing a cross-sectional structure of a region where a design is located in the mold used in Example 2;
  • A) is a figure which shows the image which looked at the display body of Example 2 from the surface side,
  • (b) is the figure which shows the image which looked at the display body of Example 2 from the back surface side.
  • FIG. 83 is a cross-sectional view taken along the line X82C-X82C in FIG. 82B, showing a cross-sectional structure of a region where a design is located in the mold used in Example 2;
  • A) is a figure which shows the image which looked at the display body of Example 2 from the surface side
  • (b) is the figure which shows the image which
  • the display body may be used for the purpose of increasing the difficulty of counterfeiting the article, may be used for the purpose of improving the design of the article, or may be used for these purposes.
  • the display body is used for authentication documents such as passports and licenses, securities such as gift certificates and checks, cards such as credit cards and cash cards, and banknotes. It is pasted.
  • the display body is, for example, a decorative article worn by the user, an article carried by the user, an article placed like a furniture or a household appliance, a wall or a door. It can be attached to structures.
  • the surface 10S of the display body is partitioned into a first display area 10A and a second display area 10B.
  • the cross-sectional structure provided in the first display area 10A and the cross-sectional structure provided in the second display area 10B are different from each other.
  • the first display area 10A is an area in which characters, figures, symbols, patterns, pictures, and the like are drawn on the surface 10S. In FIG. 1, for example, a star-shaped figure is drawn.
  • the first display area 10A includes a plurality of isolated areas A2 and a single peripheral area A3 surrounding each isolated area A2 when viewed from the direction facing the surface 10S of the display body.
  • each isolated region A2 is shown with dots.
  • the isolated regions A2 are arranged in a square array along the surface 10S.
  • the square array is an array in which an isolated region A2 is located at each vertex of a square LT having a structure period PT on one side.
  • the isolated regions A2 can be arranged in a hexagonal array. That is, the isolated regions A2 are arranged in an island-like array that is either a square array or a hexagonal array.
  • the hexagonal array is an array in which an isolated region A2 is located at each vertex of an equilateral triangle.
  • the display body includes a transparent support 11 that transmits light in the visible region.
  • the wavelength of light in the visible region is from 400 nm to 800 nm.
  • the support part 11 is common to the first display area 10A and the second display area 10B.
  • the cross-sectional structure of the support part 11 may be a single layer structure or a multilayer structure.
  • the material constituting the support portion 11 is a dielectric, for example, a resin such as a photo-curable resin, or an inorganic material such as quartz. From the viewpoints of easily obtaining the flexibility required for attaching the display body to the article and having a high degree of freedom in optical characteristics that can be added to the support portion 11, the material constituting the support portion 11 is a resin. Preferably there is.
  • the refractive index of the support part 11 is higher than that of the air layer, and is, for example, 1.2 or more and 1.7 or less.
  • the first display area 10 ⁇ / b> A includes a first lattice layer 21, an intermediate lattice layer 31, and a second lattice layer 41 in order from the layer close to the support portion 11.
  • the intermediate lattice layer 31 is sandwiched between the first lattice layer 21 and the second lattice layer 41.
  • the surface where the 1st lattice layer 21 is located is the surface of the support part 11, and the side where the 1st lattice layer 21 is located with respect to the support part 11 is the surface side in the structure.
  • the side where the support part 11 is located with respect to the first lattice layer 21 is the back side of the structure.
  • the first lattice layer 21 is located on the surface of the support portion 11.
  • the first lattice layer 21 includes a plurality of first dielectric layers 22 and a single first metal layer 23.
  • Each first dielectric layer 22 is located in the isolated region A2 when viewed from the direction facing the surface 10S of the display body.
  • the single first metal layer 23 is located in the peripheral region A3 when viewed from the direction facing the surface 10S.
  • the plurality of first dielectric layers 22 are arranged in an island-like arrangement that is either a square arrangement or a hexagonal arrangement along the surface 10S.
  • Each first dielectric layer 22 is a structure protruding from the surface of the support portion 11.
  • Each first dielectric layer 22 is integral with the support portion 11, for example.
  • each first dielectric layer 22 has a boundary with the surface of the support part 11, for example, and is separate from the support part 11.
  • the first metal layer 23 has a mesh shape surrounding each first dielectric layer 22 when viewed from the direction facing the surface 10S.
  • the single first metal layer 23 is an optical sea component through which free electrons pass, and each first dielectric layer 22 is an island component distributed in the sea component. .
  • the period in which the first dielectric layer 22 is located is the sum of the shortest width WP of the first dielectric layers 22 adjacent to each other and the width WT of the first dielectric layer 22 And the structural period PT.
  • the structural period PT is a sub-wavelength period that is equal to or shorter than the wavelength in the visible region.
  • the ratio of the width WT of the first dielectric layer 22 to the structural period PT is 0.25 or more and 0.75 or less. From the standpoint that the processing accuracy of the first lattice layer 21 is obtained and that plasmon resonance is likely to occur in the first lattice layer 21, the ratio of the width WT of the first dielectric layer 22 to the structural period PT is preferably 0.40 or more and 0.60 or less.
  • the thickness of the first lattice layer 21 is preferably 10 nm or more and 200 nm or less.
  • the thickness of the first lattice layer 21 is obtained from the viewpoints that the processing accuracy of the first lattice layer 21 is obtained, that plasmon resonance is likely to occur in the first lattice layer 21 and that the color of the image obtained by each observation becomes clear.
  • the thickness is preferably 10 nm or more and 100 nm or less.
  • An intermediate lattice layer 31 is located on the first lattice layer 21.
  • the thickness of the intermediate lattice layer 31 is thicker than the thickness of the first lattice layer 21. From the viewpoint of obtaining the processing accuracy of the intermediate lattice layer 31, the thickness of the intermediate lattice layer 31 is preferably 150 nm or less.
  • the intermediate lattice layer 31 includes a plurality of first intermediate dielectric layers 32 and a single second intermediate dielectric layer 33.
  • Each first intermediate dielectric layer 32 is located in the isolated region A2 when viewed from the direction facing the surface 10S.
  • the single second intermediate dielectric layer 33 is located in the peripheral region A3 when viewed from the direction facing the surface 10S.
  • the plurality of first intermediate dielectric layers 32 are arranged in an island-like arrangement that is either a square arrangement or a hexagonal arrangement along the surface 10S.
  • Each first intermediate dielectric layer 32 is a structure protruding from the first dielectric layer 22.
  • Each first intermediate dielectric layer 32 is, for example, integral with the first dielectric layer 22.
  • each first intermediate dielectric layer 32 has a boundary with the first dielectric layer 22, for example, and is separate from the first dielectric layer 22.
  • the period in which the first intermediate dielectric layer 32 is located is the sum of the shortest width WP and the width WT, like the first dielectric layer 22, and is the above-described structural period PT. .
  • the ratio of the width WT of the first intermediate dielectric layer 32 to the structural period PT is 0.25 or more and 0.75 or less.
  • the ratio of the width WT of the first intermediate dielectric layer 32 to the structural period PT is preferably 0.40 or more and 0.60 or less.
  • the second intermediate dielectric layer 33 has a mesh shape surrounding each first intermediate dielectric layer 32 as viewed from the direction facing the surface 10S.
  • the single second intermediate dielectric layer 33 is structurally and optically a sea component
  • each first intermediate dielectric layer 32 is structurally and optically an island component.
  • the second intermediate dielectric layer 33 is an air layer or a resin layer, and has a dielectric constant lower than that of the first intermediate dielectric layer 32.
  • a second lattice layer 41 is positioned on the intermediate lattice layer 31.
  • the thickness of the second lattice layer 41 is preferably 10 nm or more and 200 nm or less, and the thickness of the second lattice layer 41 is thinner than the thickness of the intermediate lattice layer 31.
  • the thickness of the second grating layer 41 can be obtained from the viewpoints that the processing accuracy of the second grating layer 41 is obtained, that plasmon resonance is likely to occur in the second grating layer 41, and that the color of the image obtained by each observation becomes clear.
  • the thickness is preferably 10 nm or more and 100 nm or less.
  • the second lattice layer 41 includes a plurality of second metal layers 42 and a single second dielectric layer 43.
  • the position of each second metal layer 42 includes an isolated region A2 when viewed from the direction facing the surface 10S.
  • the position of the single second dielectric layer 43 is included in the peripheral region A3 when viewed from the direction facing the surface 10S.
  • the plurality of second metal layers 42 are arranged in an island-like arrangement that is either a square arrangement or a hexagonal arrangement along the surface 10S.
  • Each second metal layer 42 is a structure that overlaps the top surface of the first intermediate dielectric layer 32.
  • Each second metal layer 42 has a boundary with the first intermediate dielectric layer 32, and is separate from the first intermediate dielectric layer 32.
  • the period in which the second metal layer 42 is located is the sum of the shortest width WP and the width WT, as in the first dielectric layer 22, and is the structural period PT.
  • the ratio of the width of the second metal layer 42 to the structural period PT is 0.25 or more and 0.75 or less.
  • the ratio of the width of the second metal layer 42 to the structural period PT is preferably 0.40 or more and 0.60 or less.
  • the second dielectric layer 43 has a mesh shape surrounding each of the second metal layers 42 as viewed from the direction facing the surface 10S.
  • the single second dielectric layer 43 is an optical sea component with fewer free electrons than the second metal layer 42, and each second metal layer 42 is a sea component. It is an island component distributed in The second dielectric layer 43 is an air layer or a resin layer, and has a dielectric constant lower than that of the first intermediate dielectric layer 32.
  • the volume ratio of the first metal layer 23 that is the sea component in the first lattice layer 21 is larger than the volume ratio of the second metal layer 42 that is the island component in the second lattice layer 41.
  • the volume ratio of the second metal layer 42 that is an island component in the second lattice layer 41 is larger than the volume ratio of the metal material in the intermediate lattice layer 31.
  • the structure constituted by the first dielectric layer 22 and the first intermediate dielectric layer 32 is an example of a periodic element, and the convex portion 11T protruding from the reference plane with the surface of the support portion 11 as the reference plane. But there is. And the structure comprised from the support part 11, the 1st dielectric material layer 22, and the 1st intermediate
  • the surface of the periodic structure is a surface including a region surrounding each periodic element in the reference plane and the surface of each periodic element.
  • the first metal layer 23 of the first lattice layer 21, the second intermediate dielectric layer 33 of the intermediate lattice layer 31, and the first The second dielectric layer 43 of the two lattice layer 41 is located.
  • the second intermediate dielectric layer 33 is sandwiched between the first metal layer 23 and the second dielectric layer 43.
  • the second display region 10 ⁇ / b> B does not include the above-described first lattice layer 21, intermediate lattice layer 31, and second lattice layer 41 on the support portion 11.
  • the second display region 10 ⁇ / b> B transmits light in the visible region in accordance with the light transmittance of the support unit 11.
  • the second display area 10B may include a layer different from the first display area 10A on the support portion 11.
  • the second display region 10B may include only the first dielectric layer 22.
  • the second display region 10B may include only a single metal layer made of the same material as that of the first metal layer 23, for example.
  • the layer structure in the second display area 10B is appropriately selected according to a request for an image displayed in the second display area 10B.
  • the cross-sectional structure of the support portion 11 may be a multilayer structure, and each first dielectric layer 22 may not have a boundary with the support portion 11.
  • FIG. 6 shows a structure in which the support part 11 is composed of two layers, and of these layers, the layer on the surface side of the support part 11 is integrated with each first dielectric layer 22. That is, the support part 11 is provided with the base material 11a and the intermediate
  • Each first dielectric layer 22 protrudes from the intermediate layer 11b, and each first dielectric layer 22 and the intermediate layer 11b are integrated.
  • the refractive index of the support part 11 is a size dominated by the dielectric, and is larger than the refractive index of the air layer.
  • the refractive index of the first dielectric layer 22 is higher than the refractive index of the air layer, and the refractive index of the first metal layer 23 is lower than the refractive index of the air layer.
  • the refractive index of the first lattice layer 21 is approximated to an averaged size by the refractive index of the first metal layer 23 and the refractive index of the first dielectric layer 22.
  • the refractive index of the first lattice layer 21 is, after all, the first metal that is a sea component.
  • the size is controlled by the layer 23 and is sufficiently lower than the refractive index of the air layer.
  • the refractive index of the first intermediate dielectric layer 32 is higher than the refractive index of the air layer, and the refractive index of the second intermediate dielectric layer 33 is equal to the refractive index of the air layer or is higher than the refractive index of the air layer. high.
  • the refractive index of the intermediate grating layer 31 is approximated to an averaged size by the refractive index of the second intermediate dielectric layer 33 and the refractive index of the first intermediate dielectric layer 32. Since the ratio of the width WT of the first intermediate dielectric layer 32 to the structural period PT is not less than 0.25 and not more than 0.75, the refractive index of the intermediate lattice layer 31 is eventually the second intermediate that is a sea component.
  • the size is governed by the dielectric layer 33, which is higher than the refractive index of the air layer and close to the refractive index of the air layer.
  • the refractive index of the second metal layer 42 is lower than the refractive index of the air layer, and the refractive index of the second dielectric layer 43 is equal to the refractive index of the air layer or higher than the refractive index of the air layer.
  • the refractive index of the second lattice layer 41 is approximated to the averaged size by the refractive index of the second dielectric layer 43 and the refractive index of the second metal layer 42. Since the ratio of the width WT of the second metal layer 42 to the structural period PT is not less than 0.25 and not more than 0.75, the refractive index of the second grating layer 41 is eventually the second dielectric that is a sea component.
  • the size is governed by the layer 43, which is lower than the refractive index of the air layer and close to the air layer.
  • the white light L1 incident on the second lattice layer 41 from the outside of the display body enters the second lattice layer 41 from the air layer and enters the intermediate lattice layer 31 from the second lattice layer 41. Since the light L1 incident on the second grating layer 41 enters the second grating layer 41 having a refractive index close to that of the air layer from the air layer, Fresnel reflection occurs at the interface between the air layer and the second grating layer 41. It is hard to occur.
  • the second grating since the light incident on the intermediate grating layer 31 enters the intermediate grating layer 31 having a refractive index close to that of the air layer from the second grating layer 41 having a refractive index close to that of the air layer, the second grating is also used here. Fresnel reflection hardly occurs at the interface between the lattice layer 41 and the intermediate lattice layer 31.
  • the structural period PT of the second metal layer 42 is a sub-wavelength period equal to or less than the wavelength in the visible region, plasmon resonance occurs in the second lattice layer 41.
  • Plasmon resonance is a phenomenon in which a part of light incident on the second lattice layer 41 is combined with collective vibration of electrons. A part of the light L 1 incident on the second grating layer 41 is converted into surface plasmons by plasmon resonance in the second grating layer 41, and the surface plasmons pass through the second grating layer 41. The surface plasmon transmitted through the second lattice layer 41 is reconverted into light and emitted.
  • the wavelength region of the light EP2 emitted from the second grating layer 41 due to plasmon resonance is a specific wavelength region depending on the grating structure and material including the structural period PT of the second metal layer 42.
  • the second grating layer 41 transmits part of the light in the wavelength region of the light incident on the second grating layer 41 to the intermediate grating layer 31.
  • the structural period PT of the first dielectric layer 22 is also a sub-wavelength period equal to or less than the wavelength in the visible region, plasmon resonance also occurs in the first lattice layer 21. That is, part of the light incident on the first lattice layer 21 is also converted into surface plasmons by plasmon resonance in the first lattice layer 21, and the surface plasmons are transmitted through the first lattice layer 21 and reconverted into light. Are emitted.
  • the wavelength region of the light EP1 emitted from the first grating layer 21 due to plasmon resonance is a specific wavelength region depending on the grating structure and material including the structural period PT of the first dielectric layer 22. As a result, the first grating layer 21 transmits part of the light in the wavelength region of the light incident on the first grating layer 21 to the support portion 11.
  • the light is transmitted through plasmon resonance in each of the lattice layers.
  • the colored light LP1 that is, light other than white and black, is visually recognized in the first display area 10A.
  • the results of the front surface reflection observation and the rear surface transmission observation show the same tendency even when the amount of external light directed toward the front surface 10S is higher than the amount of external light directed toward the rear surface 10T.
  • white light L ⁇ b> 1 that enters the support unit 11 from the outside of the display body enters the support unit 11 from the air layer and enters the first lattice layer 21 from the support unit 11.
  • the light L1 incident on the support part 11 enters the first lattice layer 21 having a refractive index lower than that of the air layer from the support part 11 having a higher refractive index than that of the air layer. Fresnel reflection is likely to occur at the interface with the lattice layer 21.
  • the difference between the refractive index of the support portion 11 and the refractive index of the first lattice layer 21 is larger than the difference in refractive index between the first lattice layer 21 and the intermediate lattice layer 31, and the intermediate lattice layer 31.
  • the difference in refractive index between the second grating layer 41 and the second grating layer 41 is larger than the difference in refractive index between the second grating layer 41 and the second grating layer 41.
  • the wavelength region of the light EP1 emitted from the first grating layer 21 due to plasmon resonance is a specific wavelength region depending on the grating structure and material including the structural period PT of the first metal layer 23. Light in this wavelength region is not reflected at the interface between the support portion 11 and the first grating layer 21 but is consumed by plasmon resonance.
  • part of the light in the wavelength region of the light incident on the support portion 11 is reflected at the interface between the support portion 11 and the first lattice layer 21, and the first lattice layer 21 is incident on the first lattice layer 21.
  • a part of the light in the wavelength region of the transmitted light is transmitted to the intermediate lattice layer 31.
  • part of the light that has passed through the intermediate grating layer 31 and entered the second grating layer 41 is also subjected to plasmon resonance in the second grating layer 41.
  • the wavelength region of the light EP2 emitted from the second grating layer 41 due to plasmon resonance is a specific wavelength region depending on the grating structure and material including the structural period PT of the second dielectric layer 43.
  • the second grating layer 41 transmits part of the light in the wavelength region of the light incident on the second grating layer 41 to the air layer.
  • the colored light LR due to Fresnel reflection at the interface is That is, light LR other than white and black is visually recognized in the first display area 10A.
  • Fresnel reflection that occurs at the interface between the support portion 11 and the first lattice layer 21 causes a color closer to black to be visually recognized in the first display region 10A in the surface reflection observation described above.
  • the Fresnel reflection and plasmon resonance in each of the lattice layers are performed.
  • the colored light LP2 is visually recognized in the first display area 10A. Note that the results of the front surface transmission observation and the back surface reflection observation show the same tendency even when the amount of external light directed toward the back surface 10T is higher than the amount of external light directed toward the front surface 10S.
  • the first dielectric layer 22 and the first intermediate dielectric layer 32 are formed on the surface of the support portion 11.
  • the first dielectric layer 22 and the first intermediate dielectric layer 32 are integrally formed as a protrusion protruding from the surface of the support portion 11.
  • a method for forming the protrusion for example, a photolithographic method using a light or charged particle beam, a nanoimprint method, a plasma etching method, or the like can be adopted.
  • a nanoimprint method can be used as a method of forming a protrusion on the surface of the support portion 11 made of resin.
  • a method in which light or a photolithographic method using a charged particle beam and a plasma etching method are combined may be used.
  • a polyethylene terephthalate sheet is first used as the base material 11a, and the base material 11a is used.
  • An ultraviolet curable resin is applied to the surface.
  • the surface of the synthetic quartz mold which is an intaglio, is pressed against the surface of the coating film made of an ultraviolet curable resin, and these are irradiated with ultraviolet rays. Subsequently, the synthetic quartz mold is released from the cured ultraviolet curable resin.
  • the unevenness of the intaglio is transferred to the resin on the surface of the base material 11a, and the protrusions and the intermediate layer 11b composed of the first dielectric layer 22 and the first intermediate dielectric layer 32 are formed.
  • the ultraviolet curable resin can be changed to a thermosetting resin, and the ultraviolet irradiation can be changed to heating. Further, the ultraviolet curable resin can be changed to a thermoplastic resin, and the irradiation of the ultraviolet rays can be changed to heating and cooling.
  • the first metal layer 23 and the second metal layer 42 are formed on the surface of the support portion 11 including the protrusions.
  • the method for forming the first metal layer 23 and the second metal layer 42 is, for example, a vacuum evaporation method or a sputtering method.
  • the first lattice layer 21 defined by the top surface of the first metal layer 23 is formed, and the second lattice layer 41 defined by the top surface of the second metal layer 42 is formed, and these first lattice layers are formed.
  • An intermediate lattice layer 31 sandwiched between the first lattice layer 21 and the second lattice layer 41 is formed.
  • the intensity of light transmitted from the back surface 10T to the front surface 10S decreases, and the color in the surface reflection observation approaches black.
  • the front and back of the display body are determined. In the above observation, sufficient accuracy can be obtained.
  • the thinner the thickness T2 of the first metal layer 23 and the thinner the thickness T4 of the second metal layer 42 the greater the intensity of light transmitted through the surface transmission observation and the rear surface transmission observation.
  • the thickness T2 of the first metal layer 23 and the thickness T4 of the second metal layer 42 are 200 nm or less, and the ratio of the width WT of the first dielectric layer 22 to the structural period PT is 0.25. If it is above, the image visually recognized by surface transmission observation and the image visually recognized by back surface transmission observation will become clear to such an extent that it can visually recognize it.
  • the sum of the thickness T2 of the first dielectric layer 22 and the thickness T3 of the first intermediate dielectric layer 32 is the sum of the width WT of the first dielectric layer 22 and the shortest width WP. Is preferably smaller.
  • the total of the thickness T2 of the first dielectric layer 22 and the thickness T3 of the first intermediate dielectric layer 32 is more preferably smaller than half of the structural period PT.
  • the accuracy of the shape of the structure can be increased, and the first dielectric It is possible to prevent the convex portion 11T including the body layer 22 and the first intermediate dielectric layer 32 from falling on the surface of the support portion 11.
  • a metal material having a negative real part of the complex dielectric constant at a wavelength in the visible region is likely to cause plasmon resonance in the first lattice layer 21 and the second lattice layer 41 using the metal material.
  • the material constituting the first metal layer 23 is preferably a material having a negative real part of the complex dielectric constant.
  • the material constituting the second metal layer 42 is also preferably a material having a negative real part of the complex dielectric constant.
  • the material constituting the first metal layer 23 and the second metal layer 42 examples include aluminum, silver, gold, indium, and tantalum.
  • the first metal layer 23 and the second metal layer 42 are metal layers for the support portion 11 on which the first dielectric layer 22 and the first intermediate dielectric layer 32 are formed. With this film formation, it can be formed in a single process.
  • the metal particles flying from the film forming source adhere to the surface of the support portion 11 with a predetermined angular distribution.
  • the width W4 of the second metal layer 42 is slightly larger than the width WT of the first intermediate dielectric layer 32, and the shortest width WP4 of the second metal layers 42 adjacent to each other is slightly larger than the shortest width WP. Get smaller.
  • the ratio of the width W4 of the second metal layer 42 to the structural period PT is 0.25 or more and 0.75 or less.
  • the periphery of the first intermediate dielectric layer 32 in the first metal layer 23 is affected by the shadow effect by the second metal layer 42, and the portion closer to the first intermediate dielectric layer 32 is thinner.
  • an intermediate metal layer 32 ⁇ / b> A that is a metal layer continuous with the second metal layer 42 is also formed on the side surface of the first intermediate dielectric layer 32.
  • the intermediate metal layer 32A is sandwiched between the first intermediate dielectric layer 32 and the second intermediate dielectric layer 33.
  • the intermediate metal layer 32 ⁇ / b> A is a structure integrated with the second metal layer 42, and the thickness on the side surface of the first intermediate dielectric layer 32 is thinner as the portion is closer to the first metal layer 23.
  • the structural period PT is a sub-wavelength period
  • the refractive index change in the thickness direction of the second grating layer 41 and the intermediate grating layer 31 is continuous.
  • the intermediate metal layer 32 ⁇ / b> A hardly reflects light incident on the second lattice layer 41 from the outside of the display body and easily transmits the light to the intermediate lattice layer 31 and the first lattice layer 21. Therefore, in the surface reflection observation described above, a color closer to black is visually recognized in the first display area 10A.
  • the material forming the first metal layer 23 and the material forming the second metal layer 42 are equal to each other.
  • the averaged refractive index at the second grating layer 41 is higher than that of the second grating layer 41 and other layers. It is easy to suppress Fresnel reflection at the interface.
  • the difference in refractive index between the first dielectric layer 22 and the first metal layer 23 increases, the averaged refractive index of the first lattice layer 21 increases between the first lattice layer 21 and the support portion 11. It is easy to promote Fresnel reflection at the interface.
  • the first metal layer 23 and the second metal layer 42 have the same refractive index, and the difference in refractive index between the first dielectric layer 22 and the first metal layer 23 is the second. If the configuration is larger than the refractive index difference between the dielectric layer 43 and the second metal layer 42, the Fresnel reflection at the interface between the second grating layer 41 and the other layer is suppressed, and the first grating layer It is possible to promote Fresnel reflection at the interface between 21 and other layers.
  • the refractive index difference between the second dielectric layer 43 and the surface layer that is the layer in contact with the second dielectric layer 43 on the side opposite to the intermediate lattice layer 31 with respect to the second dielectric layer 43 is The refractive index difference between the first metal layer 23 and the support portion 11 is preferably smaller.
  • the surface layer is, for example, an air layer.
  • the refractive index of the second dielectric layer 43 is more preferably equal to the refractive index of the surface layer.
  • the display body As described above, in the first embodiment, light in a specific wavelength region is emitted from the display body as reflected light or transmitted light due to plasmon resonance. Since the wavelength region of the transmitted light and the reflected light is determined by a plurality of factors including the position and size of the periodic element that is each convex portion 11T and the metal layer that is determined by each periodic element, the display body It is possible to increase the degree of freedom in adjusting the wavelength region that is transmitted or reflected.
  • one display body can form images having different appearances depending on the observation conditions.
  • a display body in which images of different colors are visually recognized in the observation of the front surface and the back surface of the display body, and different colors in the observation of reflected light and transmitted light on one surface of the display body.
  • a display body that can visually recognize the above image.
  • the structure period PT is a sub-wavelength period that is equal to or smaller than the wavelength in the visible region, and is a size that suppresses the formation of the first-order diffracted light in the visible region. Therefore, it is possible to suppress the rainbow color from being included in the images obtained by the back surface reflection observation, the front surface transmission observation, and the back surface transmission observation, and to make the color of the image obtained by each observation clearer.
  • the first dielectric layer 22 And the first intermediate dielectric layer 32 can be integrally formed.
  • first dielectric layer 22 and the first intermediate dielectric layer 32 are an integral structure, and the second intermediate dielectric layer 33 and the second dielectric layer 43 are integral.
  • the structure of the display body can be simplified. Further, if the second intermediate dielectric layer 33 and the second dielectric layer 43 are an integrated air layer, the structure of the display body can be further simplified.
  • the color of the first display area 10A can be unique in each of the front surface reflection observation, the back surface reflection observation, and the transmission observation on the front surface or the back surface. Therefore, it is possible to increase the accuracy in determining the authenticity of an article with a display.
  • the color of the first display region 10A can be unique in each of the front surface reflection observation, the back surface reflection observation, and the transmission observation on the front surface or the back surface. Therefore, the display form of the display body can be made more complicated, and the design property of the display body can be improved.
  • the first embodiment can be implemented with the following modifications.
  • the first intermediate dielectric layer 32 and the second intermediate dielectric layer 33 can be embodied as separate structures.
  • the second intermediate dielectric layer 33 is preferably a resin layer having a refractive index closer to the refractive index of the air layer than the refractive index of the first intermediate dielectric layer 32.
  • the second intermediate dielectric layer 33 and the second dielectric layer 43 can be embodied as separate structures.
  • the second intermediate dielectric layer 33 is preferably a resin layer having a refractive index closer to the refractive index of the air layer than the refractive index of the second dielectric layer 43.
  • first dielectric layer 22 and the first intermediate dielectric layer 32 are configured as an integral structure.
  • the shape of the convex portion 11 ⁇ / b> T which is an integral structure, can be embodied in the shape of a cone protruding from the surface of the support portion 11. With such a structure, it is possible to smoothly release the intaglio for forming the first dielectric layer 22 and the first intermediate dielectric layer 32 when forming the first dielectric layer 22 and the first intermediate dielectric layer 32.
  • the second display area 10 ⁇ / b> B can be embodied as a configuration including only the metal layer 23 ⁇ / b> B on the surface of the support portion 11.
  • an image having a black color or a color close to black can be visually recognized in the first display area 10A
  • an image having a metallic luster can be visually recognized in the second display area 10B. be able to.
  • the color due to the light affected by the wavelength region consumed by the plasmon resonance in the first grating layer 21 as the light due to Fresnel reflection at the interface between the first grating layer 21 and the support portion 11. Can be visually recognized in the first display area 10A, and an image having a metallic luster reflecting only Fresnel reflection at the interface between the metal layer 23B and the support portion 11 can be obtained in the second display area 10B. It can be visually recognized.
  • the display body further includes a protective layer on the second metal layer 42.
  • a protective layer on the second metal layer 42.
  • the intensity of Fresnel reflection at the interface between the protective layer and the second metal layer 42 and the wavelength selectivity of the display body associated therewith vary depending on the refractive index of the protective layer. Therefore, the material constituting the protective layer is appropriately selected based on the wavelength region selected by the display body.
  • the protective layer 48 can be embodied as a structure integrated with the second dielectric layer 43 and the second intermediate dielectric layer 33.
  • the protective layer 48 is preferably a low refractive index resin layer.
  • the low refractive index resin layer has a refractive index closer to the refractive index of the air layer than the refractive index of the first dielectric layer 22 and the refractive index of the first intermediate dielectric layer 32.
  • the arrangement of the isolated regions A2 as viewed from the direction facing the surface 10S of the display body is not limited to a square array and a hexagonal array, and may be an array of a two-dimensional lattice. That is, the plurality of first dielectric layers 22 may be arranged in a two-dimensional lattice, the plurality of first intermediate dielectric layers 32 may be arranged in a two-dimensional lattice, and the plurality of first dielectric layers 22 may be arranged.
  • the two metal layers 42 need only be arranged in a two-dimensional lattice. In other words, the periodic elements of the periodic structure need only be arranged in a two-dimensional lattice shape having a sub-wavelength period.
  • the two-dimensional lattice-like arrangement is an arrangement in which elements are arranged along each of two directions intersecting in a two-dimensional plane.
  • the ratio of the width WT to the structural period PT is the ratio of the width WT to the structural period PT in one direction, and that the ratio is within a predetermined range means that the two elements in which the periodic elements are arranged Each indicates that the ratio of the width WT to the structural period PT is within a predetermined range.
  • the shape of the isolated region A2 as viewed from the direction facing the surface 10S of the display body that is, the planar shape of the periodic element is not limited to a square, but may be a rectangle or another polygon, or may be a circle. May be.
  • the transmitted light transmitted through the display body is light in a specific wavelength region corresponding to the structure period PT. It becomes. Even when Fresnel reflection occurs at the interface between the second grating layer 41 and another layer and a colored image different from black is observed in the first display region 10A by surface reflection observation, it is caused by plasmon resonance. Since the consumed wavelength region is not included in the reflected light, images of different colors are visually recognized in the front surface reflection observation and the rear surface transmission observation. Also, images with different colors are visually recognized in the back surface reflection observation and the front surface transmission observation.
  • the ratio of the width WT of the first dielectric layer 22 to the structural period PT and the ratio of the width WT of the second metal layer 42 to the structural period PT are different values from 0.25 to 0.75. May be. Further, for example, the thickness relationship among the first lattice layer 21, the intermediate lattice layer 31, and the second lattice layer 41 may be different from that in the above embodiment.
  • FIGS. A second embodiment of a display body, a device with a display body, and a method for manufacturing the display body, which is an example of an optical device, will be described with reference to FIGS. Below, it demonstrates centering around the difference between 2nd Embodiment and 1st Embodiment, about the structure similar to 1st Embodiment, the same code
  • the first display region 10 ⁇ / b> A of the display body includes an upper lattice layer 51 in addition to the support portion 11, the first lattice layer 21, the intermediate lattice layer 31, and the second lattice layer 41. Yes.
  • the first lattice layer 21, the intermediate lattice layer 31, the second lattice layer 41, and the upper lattice layer 51 are arranged in this order from the surface of the support portion 11. That is, the second lattice layer 41 is sandwiched between the intermediate lattice layer 31 and the upper lattice layer 51.
  • the support part 11 has the same configuration as that of the first embodiment.
  • FIG. 13 shows a form in which the support portion 11 is composed of a base material 11a and an intermediate layer 11b.
  • the support part 11 is comprised from the base material 11a and the intermediate
  • Each of the base material 11a and the intermediate layer 11b has a refractive index higher than that of the air layer, for example, not less than 1.2 and not more than 1.7.
  • the first lattice layer 21 includes a plurality of first dielectric layers 22 and a single first metal layer 23. Each first dielectric layer 22 is located in the isolated region A2 when viewed from the direction facing the surface 10S of the display body.
  • the single first metal layer 23 is located in the peripheral region A3 when viewed from the direction facing the surface 10S.
  • the plurality of first dielectric layers 22 are arranged in an island-like arrangement that is either a square arrangement or a hexagonal arrangement along the surface 10S.
  • Each first dielectric layer 22 is a structure protruding from the surface of the support portion 11.
  • Each first dielectric layer 22 may be integral with the support portion 11 or may be a separate body from the support portion 11.
  • the structural period PT which is the period in which the first dielectric layer 22 is located, is a sub-wavelength period that is equal to or less than the wavelength in the visible region.
  • the first metal layer 23 is a structure having a mesh shape that surrounds the first dielectric layers 22 one by one when viewed from the direction facing the surface 10S.
  • the first metal layer 23 is a separate body from the support portion 11.
  • the first metal layer 23 is structurally and optically a sea component
  • each first dielectric layer 22 is structurally and optically an island component.
  • the intermediate lattice layer 31 includes a plurality of first intermediate dielectric layers 32 and a single second intermediate dielectric layer 34.
  • Each first intermediate dielectric layer 32 is located in the isolated region A2 when viewed from the direction facing the surface 10S.
  • the single second intermediate dielectric layer 34 is located in the peripheral region A3 when viewed from the direction facing the surface 10S.
  • the plurality of first intermediate dielectric layers 32 are arranged in an island-like arrangement that is either a square arrangement or a hexagonal arrangement along the surface 10S.
  • Each first intermediate dielectric layer 32 is a structure protruding from the first dielectric layer 22. Each first intermediate dielectric layer 32 may be integral with the first dielectric layer 22 or may be separate from the first dielectric layer 22. When viewed from the direction facing the surface 10S, the period in which the first intermediate dielectric layer 32 is located is the structural period PT.
  • the second intermediate dielectric layer 34 is a structure having a mesh shape that surrounds each of the first intermediate dielectric layers 32 as viewed from the direction facing the surface 10S. The second intermediate dielectric layer 34 is separate from the first metal layer 23. In the intermediate lattice layer 31, the second intermediate dielectric layer 34 is structurally and optically a sea component, and each first intermediate dielectric layer 32 is structurally and optically an island component.
  • the second lattice layer 41 includes a plurality of second metal layers 42 and a single second dielectric layer 44.
  • the position of each second metal layer 42 includes an isolated region A2 when viewed from the direction facing the surface 10S.
  • the position of the single second dielectric layer 44 is included in the peripheral region A3 when viewed from the direction facing the surface 10S.
  • the plurality of second metal layers 42 are arranged in an island-like arrangement that is either a square arrangement or a hexagonal arrangement along the surface 10S.
  • Each second metal layer 42 is a structure that overlaps the top surface of the first intermediate dielectric layer 32. Each second metal layer 42 is separate from the first intermediate dielectric layer 32. When viewed from the direction facing the surface 10S, the period in which the second metal layer 42 is located is the structural period PT.
  • the second dielectric layer 44 is a structure having a mesh shape that surrounds each of the second metal layers 42 when viewed from the direction facing the surface 10S.
  • the second dielectric layer 44 may be integral with the second intermediate dielectric layer 34 or may be a separate body. In the second lattice layer 41, the second dielectric layer 44 is structurally and optically a sea component, and each second metal layer 42 is structurally and optically an island component.
  • the upper lattice layer 51 includes a plurality of first upper dielectric layers 52 and a single second upper dielectric layer 53.
  • the position of each first upper dielectric layer 52 includes an isolated region A2 when viewed from the direction facing the surface 10S.
  • the position of the single second upper dielectric layer 53 is included in the peripheral region A3 when viewed from the direction facing the surface 10S.
  • the plurality of first upper dielectric layers 52 are arranged in an island-like arrangement that is either a square arrangement or a hexagonal arrangement along the surface 10S.
  • Each first upper dielectric layer 52 is a structure that overlaps the top surface of the second metal layer 42. Each first upper dielectric layer 52 is separate from the second metal layer 42. When viewed from the direction facing the surface 10S, the period in which the first upper dielectric layer 52 is located is the structural period PT.
  • the second upper dielectric layer 53 has a mesh shape surrounding each first upper dielectric layer 52 as viewed from the direction facing the surface 10S. The second upper dielectric layer 53 is separate from the second dielectric layer 44. In the upper lattice layer 51, the second upper dielectric layer 53 is structurally and optically a sea component, and each first upper dielectric layer 52 is structurally and optically an island component.
  • the first metal layer 23 of the first lattice layer 21, the second intermediate dielectric layer 34 of the intermediate lattice layer 31, and the first The second dielectric layer 44 of the two lattice layer 41 and the second upper dielectric layer 53 of the upper lattice layer 51 are located.
  • the first dielectric layer 22 and the first intermediate dielectric layer 32 are dielectrics, and are made of, for example, a resin such as a photocurable resin or an inorganic material such as quartz.
  • the refractive index of each of the first dielectric layer 22 and the first intermediate dielectric layer 32 is higher than that of the air layer, for example, not less than 1.2 and not more than 1.7.
  • the intermediate layer 11b, the first dielectric layer 22, and the first intermediate dielectric layer 32 of the base material 11a are an integral structure, and are composed of the same material.
  • the first metal layer 23 and the second metal layer 42 are made of a metal material.
  • the material constituting the first metal layer 23 and the second metal layer 42 is preferably a material in which the real part of the complex dielectric constant at a wavelength in the visible region is a negative value.
  • aluminum, silver, gold, indium, Tantalum or the like is preferable.
  • the first metal layer 23 and the second metal layer 42 are made of the same material, for example.
  • the second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 are transparent dielectrics that transmit light in the visible region.
  • the second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 are composed of silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and tantalum oxide (Ta 2 O 5 ). , Niobium oxide (Nb 2 O 5 ), zirconium dioxide (ZrO 2 ), titanium dioxide (TiO 2 ), magnesium fluoride (MgF 2 ), and calcium fluoride (CaF 2 ).
  • the second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 may be made of an organic compound.
  • the refractive index of each of the second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 is higher than that of the air layer, for example, 1.3 or more and 3.0 or less.
  • the second intermediate dielectric layer 34 and the second dielectric layer 44 are an integral structure, and the second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 are , Composed of the same material.
  • the second upper dielectric layer 53 is a transparent dielectric that transmits light in the visible region, and is an air layer or a resin layer having a refractive index close to that of the air layer.
  • the refractive index of the second upper dielectric layer 53 is lower than the refractive index of each of the first upper dielectric layer 52 and the second dielectric layer 44.
  • the ratio of the area occupied by the isolated region A2 per unit area is smaller than 0.5. That is, the volume ratio of the first metal layer 23 in the first lattice layer 21 is larger than the volume ratio of the first dielectric layer 22 in the first lattice layer 21.
  • the volume ratio of the second intermediate dielectric layer 34 in the intermediate lattice layer 31 is larger than the volume ratio of the first intermediate dielectric layer 32 in the intermediate lattice layer 31.
  • the volume ratio of the second dielectric layer 44 in the second lattice layer 41 is larger than the volume ratio of the second metal layer 42 in the second lattice layer 41.
  • the volume ratio of the second upper dielectric layer 53 in the upper lattice layer 51 is larger than the volume ratio of the first upper dielectric layer 52 in the upper lattice layer 51.
  • the structure configured by the first dielectric layer 22 and the first intermediate dielectric layer 32 is an example of a periodic element, and is a protrusion protruding from the reference plane with the surface of the support portion 11 as the reference plane. It is also part 11T. And the structure comprised from the support part 11, the 1st dielectric material layer 22, and the 1st intermediate
  • the surface of the periodic structure is a surface including a region surrounding each periodic element in the reference plane and the surface of each periodic element.
  • the layer composed of the second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 is on the surface opposite to the surface in contact with the periodic structure in the metal layer 61.
  • the dielectric layer 62 is positioned so that the shape of the entire layer follows the surface shape of the metal layer 61.
  • the support portion 11, the first dielectric layer 22, the first intermediate dielectric layer 32, the first metal layer 23, and the second metal layer 42 are formed in the same manner as in the first embodiment. That is, the first dielectric layer 22 and the first intermediate dielectric layer 32 are integrally formed as a convex portion 11T protruding from the surface of the support portion 11.
  • a photolithography method using light or a charged particle beam, a nanoimprint method, a plasma etching method, or the like can be employed.
  • a method of forming the convex portion 11T on the surface of the support portion 11 made of resin for example, a nanoimprint method can be used. Further, in the case where the convex portion 11T is formed by processing a hard material base material or the like, a method in which light or a photolithographic method using a charged particle beam and a plasma etching method are combined may be used.
  • the metal layer 61 is formed on the surface of the support portion 11 on which the convex portions 11T are formed using a vacuum deposition method, a sputtering method, or the like.
  • the metal layer 61 is formed in a shape that follows the surface shape of the periodic structure including the support portion 11 and the convex portion 11T. Thereby, the first metal layer 23 and the second metal layer 42 are formed.
  • the dielectric layer 62 is formed on the surface of the structure on which the metal layer 61 is formed.
  • a vacuum deposition method or a sputtering method is used to form the dielectric layer 62.
  • the dielectric layer 62 is formed in a shape that follows the surface shape of the metal layer 61.
  • the second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 are formed.
  • the first lattice layer 21 defined by the top surface of the first metal layer 23 is formed, and the top surface of the first intermediate dielectric layer 32, that is, the middle defined by the top surface of the convex portion 11T.
  • a lattice layer 31 is defined.
  • the second lattice layer 41 defined by the top surface of the second metal layer 42 is formed, and the upper lattice layer 51 defined by the top surface of the first upper dielectric layer 52 is formed.
  • the refractive index of the upper grating layer 51 is approximated to a size averaged by the refractive index of the first upper dielectric layer 52 and the refractive index of the second upper dielectric layer 53. That is, the refractive index of the upper lattice layer 51 is a size controlled by the second upper dielectric layer 53, which is a sea component, and a value close to that of the air layer.
  • the refractive index of the second lattice layer 41 is approximated to a size averaged by the refractive index of the second metal layer 42 and the refractive index of the second dielectric layer 44. That is, the refractive index of the second lattice layer 41 is a size controlled by the second dielectric layer 44, which is a sea component, and is higher than the refractive index of the air layer. Further, since the second lattice layer 41 has a lattice structure composed of a metal and a dielectric, and the structural period PT of the second metal layer 42 is a sub-wavelength period, plasmon resonance occurs in the second lattice layer 41.
  • the refractive index of the intermediate grating layer 31 is approximated to a size averaged by the refractive index of the first intermediate dielectric layer 32 and the refractive index of the second intermediate dielectric layer 34. That is, the refractive index of the intermediate lattice layer 31 is a size controlled by the second intermediate dielectric layer 34 that is a sea component. Since the first intermediate dielectric layer 32 and the second intermediate dielectric layer 34 are transparent dielectric materials that transmit light in the visible region, the intermediate lattice layer 31 has high light transmittance in the visible region.
  • the refractive index of the first lattice layer 21 is approximated to a size averaged by the refractive index of the first dielectric layer 22 and the refractive index of the first metal layer 23. That is, the refractive index of the first lattice layer 21 is controlled by the first metal layer 23 that is a sea component.
  • the first lattice layer 21 has a lattice structure made of a metal and a dielectric, and the structural period PT of the first dielectric layer 22 is a sub-wavelength period. Therefore, plasmon resonance occurs in the first lattice layer 21.
  • a part of the light reaching the first lattice layer 21 is reflected at the interface between the intermediate lattice layer 31 and the first lattice layer 21, and a part of the light reaching the first lattice layer 21 is reflected on the surface plasmon. It is converted and passes through the first lattice layer 21.
  • the light EP 1 in the wavelength region consumed by plasmon resonance is not reflected at the interface between the intermediate grating layer 31 and the first grating layer 21.
  • a part of the light transmitted through the first grating layer 21 is at the interface between the first grating layer 21 and the support part 11, the interface between the intermediate layer 11b and the substrate 11a, or the interface between the support part 11 and the air layer. Can be reflected. A part of the light transmitted through the first lattice layer 21 passes through the support portion 11 and is emitted to the back side of the display body.
  • the white light L1 when the white light L1 is incident from the outside of the display body, on the back surface side of the display body, the surface plasmon transmitted through the first lattice layer 21 and the second lattice layer 41 is reconverted and The light LP1 in a specific wavelength region including the light transmitted through all the layers is emitted. Therefore, according to the back surface transmission observation in which the light L1 is incident on the upper lattice layer 51 from the outside of the display body and the back surface 10T is observed from the back surface side of the display body, the colored colors different from black and white are the first. It is visually recognized in the display area 10A.
  • each layer is emitted to the surface side of the display body and causes interference due to the optical path difference between these lights.
  • white light L1 is incident from the outside of the display body
  • light LR1 in a specific wavelength region in which plasmon resonance and light interference act is emitted on the surface side of the display body.
  • each of the grating layers 21 and 41 is consumed by plasmon resonance and is lattice layer 21. , 41 and a wavelength region that is not consumed by plasmon resonance and is reflected at the interface between the grating layers 21 and 41 and other layers.
  • the color is different from that of the back surface transmission observation, A colored color different from white is visually recognized in the first display area 10A.
  • the first lattice layer 21 and the second lattice layer 41 in which plasmon resonance occurs based on the fact that the area ratio occupied by the isolated region A2 is smaller than 0.5 in the plane composed of the isolated region A2 and the peripheral region A3,
  • the first lattice layer 21 is a layer in which the first metal layer 23 is dominant
  • the second lattice layer 41 is a layer in which the second dielectric layer 44 is dominant. Due to the difference in structure, the wavelength region consumed by plasmon resonance is different between the first lattice layer 21 and the second lattice layer 41, and the interface between the first lattice layer 21 and the other layers, The light reflectance is different at the interface between the second lattice layer 41 and other layers. The difference in optical characteristics between the first lattice layer 21 and the second lattice layer 41 becomes more prominent as the area ratio occupied by the isolated region A2 becomes smaller.
  • the light incident on the display body from the surface side of the display body reaches the second lattice layer 41 earlier than the first lattice layer 21 and is greatly subjected to the optical action by the second lattice layer 41.
  • light incident on the display body from the back surface side of the display body reaches the first lattice layer 21 earlier than the second lattice layer 41, and is greatly subjected to the optical action by the first lattice layer 21.
  • the hue of reflected light is particularly different between when light is incident on the display body from the front surface side and when light is incident on the display body from the back surface side. That is, in the front surface reflection observation and the back surface reflection observation, images of different colors are visually recognized in the first display region 10A. In addition, the image of the same hue is visually recognized in the front surface transmission observation and the back surface transmission observation.
  • the wavelength region consumed by plasmon resonance in each of the lattice layers 21 and 41 is the lattice structure of each of the lattice layers 21 and 41, that is, the structural period PT, the thickness of each of the lattice layers 21 and 41, and the first dielectric layer 22.
  • the width WT of the second metal layer 42 and also depending on the material of each of the lattice layers 21, 41, that is, the refractive index of the metal layer 61 and the convex portion 11T and the refractive index of the dielectric layer 62. change. Therefore, for example, the color observed in reflection observation or transmission observation by selecting the material of the first dielectric layer 22 in the first lattice layer 21 or selecting the material of the second dielectric layer 44 in the second lattice layer 41. Can be adjusted.
  • two display bodies having the same structural period PT the materials of the convex portions 11T and the metal layer 61 are the same in the two display bodies, and the material of the dielectric layer 62 is the two display bodies.
  • the configuration of the first lattice layer 21 is the same
  • the material of the first intermediate dielectric layer 32 in the intermediate lattice layer 31 is also the same
  • the second metal layer 42 in the second lattice layer 41 is the same.
  • the materials of the second intermediate dielectric layer 34 in the intermediate lattice layer 31 are different from each other, the materials of the second dielectric layer 44 in the second lattice layer 41 are different from each other, and the materials in the upper lattice layer 51 are different.
  • the materials of the upper dielectric layer 52 are also different from each other.
  • the colors observed by the surface reflection observation differ between the two display bodies according to the refractive index of the second dielectric layer 44 of each display body.
  • the structure of each of the intermediate lattice layer 31, the second lattice layer 41, and the upper lattice layer 51 is different from each other, so that the wavelength region of light transmitted through these layers is 2
  • Two display bodies are different from each other. Therefore, the colors observed by the front surface transmission observation are different from each other on the two display bodies, and the colors observed by the rear surface transmission observation are also different from each other on the two display bodies.
  • the thickness T ⁇ b> 5 that is the height of the convex portion 11 ⁇ / b> T is the combined thickness of the first lattice layer 21 and the intermediate lattice layer 31.
  • the thickness T5 is such that the convex portion 11T is unlikely to fall down, the durability of the structure including the support portion 11 and the convex portion 11T is enhanced, and the processing accuracy of the convex portion 11T is easily obtained. It is preferable that it is smaller than half of the above.
  • the thickness T5 is more preferably not less than 50 nm and not more than 200 nm from the viewpoint that the color visually recognized by reflection observation or transmission observation becomes clear by the action of plasmon resonance or light interference.
  • the thickness T6 of the metal layer 61 is the thickness of each of the first metal layer 23 and the second metal layer 42. Thickness T6 is preferably 10 nm or more because plasmon resonance is likely to occur and the color visually recognized by reflection observation becomes clear. On the other hand, when the thickness T6 is equal to or greater than the thickness T5, the convex portion 11T is buried in the metal layer 61, and the intermediate lattice layer 31 disappears. Even if the intermediate lattice layer 31 is not present, the metal layer 61 has a shape that follows the surface shape of the structure including the support portion 11 and the convex portion 11T, whereby the first lattice layer 21 and the second lattice layer are formed.
  • the difference in the visible color between the front surface reflection observation and the back surface reflection observation due to the plasmon resonance, and the difference in the visible color between the reflection observation and the transmission observation are as follows: Can occur.
  • the metal layer 61 is thin enough not to bury the convex portion 11T, the light transmittance in the display body is increased, and the image in the transmission observation is clearly visible. Therefore, the thickness T6 of the metal layer 61 is preferably smaller than the thickness T5 that is the height of the convex portion 11T.
  • the thickness of the metal layer 61 may be such that the region on the convex portion 11T, that is, the second metal layer 42, and the region between the adjacent convex portions 11T, that is, the first metal layer 23 and the like. May vary.
  • the thickness T6 of the metal layer 61 refers to a band-shaped region in the peripheral region A3, that is, the metal layer 61 located in the center in the width direction of the region where the convex portion 11T does not exist along one direction. Is defined as the thickness of The same applies to other embodiments.
  • the thickness T7 of the dielectric layer 62 is the combined thickness of the second intermediate dielectric layer 34 and the second dielectric layer 44, and the thickness of the first upper dielectric layer 52.
  • the thickness T7 of the dielectric layer 62 is preferably larger than the thickness T5 that is the height of the convex portion 11T.
  • the thickness T7 is larger than the thickness T5
  • the entire thickness direction of the second metal layer 42 is surrounded by the dielectric layer 62 in the second lattice layer 41. Therefore, the plasmon in the second lattice layer 41 Resonance is likely to occur, and a change in the material of the dielectric layer 62 is easily reflected in a change in the wavelength region consumed by plasmon resonance in the second grating layer 41.
  • the dielectric layer 62 functions as a layer that protects the structure.
  • plasmon resonance occurs in the layer having the lattice structure of the metal and the dielectric, and it is visually recognized by reflection observation and transmission observation by the action of this plasmon resonance. Color differences can occur.
  • the second lattice layer 41 Part or all of the second dielectric layer 44 is made of the same material as the second upper dielectric layer 53 of the upper lattice layer 51. That is, in this case, part or all of the second dielectric layer 44 is an air layer or a resin layer.
  • the second dielectric layer 44 is preferably a structure continuous from the second intermediate dielectric layer 34, and the thickness T7 of the dielectric layer 62 is equal to the height of the convex portion 11T. The thickness is preferably larger than a certain thickness T5.
  • the thickness of the dielectric layer 62 is such that the region on the convex portion 11T, that is, the region between the first upper dielectric layer 52 and the adjacent convex portion 11T, that is, the second intermediate dielectric.
  • the body layer 34 and the second dielectric layer 44 may be different.
  • the thickness T7 of the dielectric layer 62 is a dielectric located in the central portion in the width direction of a region extending in a strip shape in the peripheral region A3, that is, a region where the convex portion 11T does not exist along one direction. Defined as the thickness of layer 62. The same applies to other embodiments.
  • the area ratio occupied by the isolated region A2 that is, the ratio of the area occupied by the convex portion 11T per unit area in the plane including the reference surface and the convex portion 11T is 0. Is preferably greater than 1. If the area ratio is greater than 0.1, the aspect ratio, which is the ratio of the height to the width of the convex portion 11T, can be prevented from becoming excessively large. Therefore, the structure including the support portion 11 and the convex portion 11T. The durability of the body is improved and the processing accuracy of the convex portion 11T is easily obtained.
  • the area ratio is smaller than 0.5, it is possible to suitably suppress the occurrence of Fresnel reflection at the interface between the upper lattice layer 51 and the upper layer.
  • the material also adheres to the side surface of the convex portion 11T when these layers are formed. If the area ratio is smaller than 0.5, the area between the adjacent protrusions 11T is sufficiently large, and the area between the protrusions 11T forms the metal layer 61 and the dielectric layer 62. In this case, it is possible to prevent the material from adhering to the side surface of the convex portion 11T from being buried.
  • the metal layer 61 and the dielectric layer 62 are easily formed in a shape that follows the surface shape of the lower layer.
  • the upper lattice layer 51 interspersed with the first upper dielectric layer 52 is preferably formed, and the effect of suppressing Fresnel reflection at the interface of the upper lattice layer 51 is preferably obtained.
  • the surface of the dielectric layer 62 is flat because the surface of the dielectric layer 62 has irregularities following the surface shape of the metal layer 61. Compared to the case, the effect of suppressing the Fresnel reflection can be obtained. Further, even if Fresnel reflection occurs at the interface between the upper grating layer 51 and the upper layer, it is possible to visually recognize the surface reflection observation and the back surface reflection observation caused by plasmon resonance in the first grating layer 21 and the second grating layer 41. Differences in the colors to be recognized, and differences in the colors visually recognized between the reflection observation and the transmission observation can occur.
  • the Fresnel reflection at the interface between the upper lattice layer 51 and the upper layer that is, the Fresnel reflection near the outermost surface of the display body is suppressed, the wavelength region of the reflected light at the interface of each layer inside the display body The color corresponding to is easily visually recognized in the surface reflection observation.
  • a surface layer that is a layer in contact with the second upper dielectric layer 53 on the opposite side of the second upper dielectric layer 53 from the second lattice layer 41;
  • the refractive index difference between the second upper dielectric layer 53 is preferably smaller than the refractive index difference between the first metal layer 23 and the support portion 11.
  • the surface layer is, for example, an air layer.
  • the refractive index of the second upper dielectric layer 53 is more preferably equal to the refractive index of the surface layer.
  • the second display region 10B may include only the support portion 11 as in the first embodiment, or may include at least one of the metal layer 61 and the dielectric layer 62 in addition to the support portion 11. May be.
  • the second display area 10B is an image having a color and a texture according to the layer configuration of the second display area 10B, and visually recognizes an image having a color and a texture different from the first display area 10A. Can be made.
  • the device with a display body 110 includes a display body 100 that is a display body according to the second embodiment, and a light emission structure 70 configured to emit light.
  • the light emitting structure 70 is a structure that emits light irradiated to the light emitting structure 70 by reflection, or a structure that emits light by light emission of the light emitting structure 70 itself.
  • the light emission structure 70 is a structure that looks white under white light.
  • the light emission structure 70 is disposed at a position facing a part of the back surface 10T of the display body 100, and the light emission structure 70 and the back surface 10T are separated from each other. That is, when viewed from the direction facing the surface 10 ⁇ / b> S of the display body 100, the surface 10 ⁇ / b> S includes a region that overlaps the light emission structure 70 and a region that does not overlap the light emission structure 70. Specifically, the light emitting structure 70 is disposed at a position facing a part of the first display region 10A.
  • the light emission structure is formed on the back surface side of the display body 100 in the first display area 10A.
  • the color due to the reflected light from the display body 100 is visually recognized, similar to the surface reflection observation.
  • the light emitting structure 70 is located on the back surface side of the display body 100 in the first display area 10A, light is emitted from the light emitting structure 70 toward the back surface 10T of the display body 100.
  • the light emitting structure 70 is a structure that emits the light irradiated on itself by reflection
  • the light irradiated on the back surface 10T is the light reflected by the light emitting structure 70 on the transmitted light of the display body 100.
  • the light emitted from the light source structure 70 may be reflected by the light emitted from the light source provided near the light emitting structure 70.
  • the light emitting structure 70 is a structure that emits light by its own light emission
  • the light irradiated to the back surface 10T is light generated by the light emission of the light emitting structure 70. Therefore, when viewed from the surface side of the display body 100, in the portion overlapping the light emitting structure 70 in the first display area 10A, the light irradiated from the surface side and reflected by the display body 100, The color by the light including the light irradiated from the back side and transmitted through the display body 100 is visually recognized.
  • the first display region 10A a portion that overlaps with the light emitting structure 70 and a portion that does not overlap with the light emitting structure 70 appear to have different hue colors, or appear to have different saturation and lightness colors. Accordingly, since an image corresponding to the shape of the light emitting structure 70 is visually recognized, various images can be expressed.
  • an image of the image is displayed so that an image corresponding to the shape of the light emission structure 70 can be seen or not seen by turning on / off the light irradiation to the light emission structure 70 or turning on / off the light emission of the light emission structure 70.
  • the visibility can be adjusted. This also makes it possible to express more diverse images.
  • the light emission structure 70 may be arrange
  • FIG. In this case, when the back surface 10T is observed from the back surface side of the display body 100 in a state where white light is irradiated from the outside of the display body-equipped device 110 toward the back surface 10T of the display body 100, the first display area 10A In particular, a portion that overlaps the light emitting structure 70 and a portion that does not overlap the light emitting structure 70 appear to have different colors.
  • the display body As described above, also in the second embodiment, light of a specific wavelength region is emitted from the display body as reflected light or transmitted light due to plasmon resonance. Since the wavelength region of the transmitted light and the reflected light is determined by a plurality of factors including the position and size of the periodic element that is each convex portion 11T and the metal layer that is determined by each periodic element, the display body It is possible to increase the degree of freedom in adjusting the wavelength region that is transmitted or reflected.
  • the second embodiment it is an object of the second embodiment to provide a display body capable of visually recognizing images having different appearances according to observation conditions.
  • the effects (1-1) to (1-3), (1-7), and (1-8) of the first embodiment, according to the second embodiment, including the effects on such problems can be obtained.
  • the display body includes the dielectric layer 62, it is possible to adjust the color observed in reflection observation or transmission observation by changing the material constituting the dielectric layer 62, This increases the degree of freedom for color adjustment.
  • the dielectric layer 62 is composed of an inorganic compound, the refractive index of the dielectric layer 62 can be selected from a wide range.
  • the dielectric layer 62 has a shape that follows the surface shape of the metal layer 61, compared to the case where the surface of the dielectric layer 62 is flat, the Fresnel near the outermost surface of the display body. Reflection is suppressed. As a result, the color observed in the surface reflection observation becomes clear.
  • the thickness T6 of the metal layer 61 is 10 nm or more, plasmon resonance is likely to occur in the first grating layer 21 and the second grating layer 41, and the color is visually recognized by reflection observation. Becomes clear. Further, if the thickness T6 of the metal layer 61 is smaller than the thickness T5 which is the height of the convex portion 11T, the light transmittance in the display body is increased and the image in the transmission observation becomes clear. .
  • the thickness T7 of the dielectric layer 62 is larger than the thickness T5 which is the height of the convex portion 11T, plasmon resonance is likely to occur in the second lattice layer 41, and the dielectric The change of the material of the body layer 62 is easily reflected in the change of the wavelength region consumed by the plasmon resonance in the second lattice layer 41.
  • the structure including the support portion 11, the protrusion 11 ⁇ / b> T, and the metal layer 61 is buried in the dielectric layer 62, the structure is protected by the dielectric layer 62.
  • the ratio of the area occupied by the convex portion 11T per unit area may be greater than 0.1.
  • the durability of the structure including the support portion 11 and the convex portion 11T is enhanced, and the processing accuracy of the convex portion 11T is easily obtained.
  • the area ratio is smaller than 0.5, an effect of suppressing the occurrence of Fresnel reflection at the interface between the upper lattice layer 51 and the upper layer can be suitably obtained.
  • the device with display 110 In the device with display 110, a part of the light emitted from the light emitting structure 70 passes through the first display region 10A of the display 100 and is emitted to the opposite side of the light emitting structure 70. Is done. Therefore, when this surface is observed in a state where light is irradiated toward the surface opposite to the surface facing the light emitting structure 70 of the front surface 10S and the back surface 10T, the first display region 10A In particular, a portion that overlaps the light emitting structure 70 and a portion that does not overlap the light emitting structure 70 appear to be different colors. Therefore, an image corresponding to the shape of the light emitting structure 70 is visually recognized, and more various images can be expressed, and the forgery difficulty and design of the display-equipped device 110 are further enhanced.
  • (2-7) Manufacturing method using the nanoimprint method for forming the convex portion 11T, that is, by transferring the unevenness of the intaglio to the resin coated on the surface of the substrate 11a, the support portion 11 and the plurality of convex portions If it is a manufacturing method which forms the periodic structure comprised from 11T, the periodic structure which has fine unevenness
  • the second embodiment can be implemented with the following modifications.
  • the first metal layer 23 and the second metal layer 42 may have the shape characteristics shown in FIG.
  • the metal layer 61 may include an intermediate metal layer 32 ⁇ / b> A that is a metal layer located on the side surface of the first intermediate dielectric layer 32 and continuing to the second metal layer 42.
  • the intermediate metal layer 32 ⁇ / b> A is sandwiched between the first intermediate dielectric layer 32 and the second intermediate dielectric layer 34, and the thickness on the side surface of the first intermediate dielectric layer 32 is closer to the first metal layer 23. thin. Note that plasmon resonance can also occur in the intermediate lattice layer 31 due to the presence of the intermediate metal layer 32A.
  • the shape of the convex part 11T may be the cone shape which protrudes from the surface of the support part 11 similarly to the structure shown in FIG.
  • the display body includes a plurality of areas having the same structure period PT as the areas included in the first display area 10A and different from each other only in the material of the dielectric layer 62 among the materials constituting the display body. May be. According to such a configuration, different colors can be visually recognized in a plurality of areas in the first display area 10A in reflection observation. And since the convex part 11T and the metal layer 61 can be formed in the same process with respect to said several area
  • the display body may further include a protective layer 48 on the dielectric layer 62.
  • a protective layer 48 on the dielectric layer 62.
  • the protective layer 48 can be embodied in a structure that is integral with the second upper dielectric layer 53.
  • the protective layer 48 is preferably a low refractive index resin layer.
  • the low refractive index resin layer has a refractive index closer to the refractive index of the air layer than the refractive index of the first dielectric layer 22 and the refractive index of the first intermediate dielectric layer 32.
  • the protective layer 48 constituting the surface of the display body is preferably made of a resin containing fluorine. According to such a configuration, it is possible to prevent dirt such as sebum from adhering to the surface of the display body.
  • the protective layer 48 may have a flat surface as shown in FIG. 17 or may have a shape that follows the surface shape of the dielectric layer 62.
  • the arrangement of the isolated regions A2 viewed from the direction facing the surface 10S of the display body is not limited to a square array and a hexagonal array, and may be a two-dimensional lattice shape. That is, the plurality of first dielectric layers 22 may be arranged in a two-dimensional lattice, the plurality of first intermediate dielectric layers 32 may be arranged in a two-dimensional lattice, and the plurality of first dielectric layers 22 may be arranged.
  • the two metal layers 42 need only be arranged in a two-dimensional lattice, and the plurality of first upper dielectric layers 52 need only be arranged in a two-dimensional lattice.
  • the periodic elements of the periodic structure need only be arranged in a two-dimensional lattice shape having a sub-wavelength period.
  • the two-dimensional lattice-like arrangement is an arrangement in which elements are arranged along each of two directions intersecting in a two-dimensional plane.
  • the shape of the isolated region A2 as viewed from the direction facing the surface 10S of the display body that is, the planar shape of the periodic element is not limited to a square, but may be a rectangle or another polygon, or may be a circle. May be.
  • a recess 11H that is recessed from the surface of the support portion 11 may be located in the isolated region A2.
  • the plurality of recesses 11H are arranged in a two-dimensional lattice pattern having a sub-wavelength period.
  • the support portion 11 is a periodic structure. That is, the periodic element included in the periodic structure may be a concave portion 11H that is recessed from the reference surface with the surface of the support portion 11 as a reference surface.
  • the metal layer 61 has a shape that follows the surface shape of the periodic structure
  • the dielectric layer 62 has a shape that follows the surface shape of the metal layer 61.
  • a lattice structure composed of a metal and a dielectric is formed by the metal layer 71 located on the bottom surface of each recess 11 ⁇ / b> H and the net-like portion surrounding each metal layer 71 in the support portion 11.
  • a lattice structure made of metal and dielectric is also formed by the dielectric layer 72 located on the metal layer 71 and the mesh-like metal layer 73 located on the reference plane and surrounding each dielectric layer 72.
  • the ratio of the area occupied by the periodic element per unit area on the plane including the reference plane and the periodic element may be larger than 0.1 and smaller than 0.5. preferable. If the ratio of the area is within the above range, the metal layer 61 and the dielectric layer 62 are likely to be formed in a shape following the uneven shape on the surface of the periodic structure. Moreover, if the ratio of the said area is in the said range, while the durability of a periodic structure will be improved, the precision of the process of the recessed part 11H will be easy to be obtained.
  • the periodic element may be the concave portion 11H that is recessed from the reference plane.
  • the display body with which a device with a display body is provided may be the display body of 1st Embodiment.
  • Means for solving the above-mentioned problems include the following items as technical ideas derived from the first embodiment, the second embodiment, and their modifications.
  • a support portion having a reference surface and a plurality of periodic elements arranged in a two-dimensional lattice shape having a sub-wavelength period on the reference surface, the protrusion protruding from the reference surface, or the recess recessed from the reference surface
  • a periodic structure that is a dielectric including the periodic element, and a surface of the periodic structure that is a plane including a region surrounding the periodic element in the reference plane and the surface of the periodic element.
  • a metal layer having a shape that follows the surface shape of the periodic structure.
  • the display body includes a layer having a subwavelength period lattice structure made of a metal and a dielectric, so that light is emitted from the outside of the display body to one of the front surface and the back surface of the display body.
  • plasmon resonance occurs in the layer having the lattice structure. The light in the wavelength region consumed by the plasmon resonance is not emitted from the one surface, and the light in the specific wavelength region affected by the plasmon resonance is transmitted through the display body and the front and back surfaces of the display body. It is injected from the other side of the.
  • the intermediate lattice layer comprising: A plurality of first intermediate dielectric layers arranged in an island-like arrangement which is one of a square arrangement and a hexagonal arrangement; and a mesh shape surrounding each first intermediate dielectric layer; and the first intermediate dielectric layer
  • a plurality of second metal layers arranged in an island-like arrangement which is one of the rows, and a second dielectric layer having a mesh shape surrounding each second metal layer, and the periodic element is the convex portion
  • the first dielectric layer and the first intermediate dielectric layer constitute the periodic element, the first metal layer and the second metal layer are included in the metal layer, and the first The volume ratio of the first metal layer in the lattice layer is larger than the volume ratio of the second metal layer
  • the averaged refractive index of the first lattice layer is governed by the refractive index of the first metal layer.
  • Light incident on the support portion from the outside of the display body tends to cause Fresnel reflection at the interface between the first lattice layer and the support portion.
  • the averaged refractive index of the second grating layer is dominated by the second dielectric layer.
  • the averaged refractive index of the intermediate grating layer is also dominated by the second intermediate dielectric layer which is a dielectric. Then, light incident on the second grating layer from the outside of the display body hardly causes Fresnel reflection, and enters the second grating layer and further the intermediate grating layer.
  • the first lattice layer and the second lattice layer cause plasmon resonance.
  • the first lattice layer consumes a part of the light incident on the first lattice layer for plasmon resonance and transmits it.
  • the second grating layer also transmits a part of the light incident on the second grating layer by consuming plasmon resonance. Therefore, in the reflection observation in which the display body is viewed from the direction facing the support portion, the image by Fresnel reflection is colored more clearly than black or white. At this time, when the display body is viewed from the direction facing the second lattice layer, the transmitted light that has undergone the plasmon resonance in the first lattice layer and the plasmon resonance in the second lattice layer is not black or white. Forms a colored image.
  • reflection observation in which the display body is viewed from the direction facing the support portion reflection observation in which the display body is viewed from the direction facing the second lattice layer, and further, the display body is viewed from the direction facing the second lattice layer.
  • the transmission observation it is possible to determine the position of the support portion in the thickness direction of each layer, that is, the front and back of the display body.
  • the ratio of the width of the first dielectric layer to the structural period of the first dielectric layer and the ratio of the width of the second metal layer to the structural period of the second metal layer are each 0.40 or more and 0
  • the size of the first dielectric layer becomes excessively small with respect to the size of the first metal layer, and the size of the second metal layer with respect to the size of the second dielectric layer.
  • An excessively small size can be suppressed. Therefore, the processing load in manufacturing the display body is reduced.
  • the first dielectric layer and the first intermediate dielectric layer are an integral structure, the thickness of the first lattice layer is 100 nm or less, and the thickness of the second lattice layer is 100 nm or less.
  • the first dielectric layer and the first One intermediate dielectric layer can be integrally formed.
  • the material constituting the first metal layer is the same as the material constituting the second metal layer, the second dielectric layer is an air layer, and the refractive index of the first dielectric layer and the first dielectric layer Item 6.
  • the display body according to any one of Items 2 to 5, wherein the difference between the refractive index of the metal layer and the refractive index of the second dielectric layer and the refractive index of the second metal layer is larger.
  • the first metal layer and the second metal layer have the same refractive index, and the refractive index difference between the first dielectric layer and the first metal layer is the second. Since the refractive index difference between the dielectric layer and the second metal layer is larger than that, the Fresnel reflection at the interface between the second grating layer and the other layer is further suppressed, and the first grating layer and the other It is possible to promote Fresnel reflection at the interface with the other layer.
  • the first dielectric layer and the first intermediate dielectric layer are an integral structure
  • the second intermediate dielectric layer and the second dielectric layer are an integral structure.
  • the structure of the display body can be simplified.
  • the intermediate lattice layer is an intermediate metal layer located on a side surface of the first intermediate dielectric layer, and the intermediate metal layer sandwiched between the first intermediate dielectric layer and the second intermediate dielectric layer
  • the intermediate metal layer is a structure integrated with the second metal layer, is included in the metal layer, and has a thickness on the side surface to suppress reflection of light in the visible region.
  • the intermediate metal layer has an antireflection function, the color of the image visually recognized by the reflection observation of viewing the display body from the direction facing the second lattice layer can be made a color closer to black. Is possible.
  • the display body according to item 1 further comprising a dielectric layer having a shape that is located on a surface opposite to a surface in contact with the periodic structure in the metal layer and that follows a surface shape of the metal layer.
  • the degree of freedom in adjusting the color can be increased.
  • the dielectric layer has a shape that follows the surface shape of the metal layer, the interface between the layer including the dielectric layer and its upper layer is compared with the case where the surface of the dielectric layer is flat. Can reduce Fresnel reflection. As a result, the color of the image visually recognized by the reflection observation of viewing the display body from the direction facing the dielectric layer becomes clearer.
  • the dielectric layer is made of an inorganic compound.
  • the refractive index of the dielectric layer can be selected from a wide range based on the selection of the material as compared with the case where the dielectric layer is made of resin.
  • the thickness of the metal layer is 10 nm or more, plasmon resonance is likely to occur, and the color visually recognized by reflection observation becomes clear. Further, since the thickness of the metal layer is smaller than the height of the convex portion, the light transmittance in the display body is increased, and the image in the transmission observation becomes clear.
  • the lattice structure constituted by the metal layer and the dielectric layer is preferably formed, and plasmon resonance is likely to occur.
  • the change in the material of the dielectric layer is a wavelength consumed by plasmon resonance. It becomes easy to be reflected in the change of the area.
  • the structure including the periodic structure and the metal layer is buried in the dielectric layer, the structure is protected by the dielectric layer.
  • the ratio of the area occupied by the periodic element per unit area in the plane including the reference plane and the periodic element is any one of items 9 to 13 that is greater than 0.1 and smaller than 0.5.
  • the display body is any one of items 9 to 13 that is greater than 0.1 and smaller than 0.5.
  • the ratio of the area is larger than 0.1, the durability of the periodic structure is improved, and the processing accuracy of the convex portion is easily obtained. Moreover, since the area ratio is smaller than 0.5, Fresnel reflection at the interface between the layer including the dielectric layer and the upper layer thereof can be suitably suppressed.
  • Item 15 The display according to any one of Items 9 to 14, further comprising a protective layer that covers a surface of the dielectric layer opposite to the surface in contact with the metal layer.
  • the structure which consists of a periodic structure body, a metal layer, and a protective layer can be protected.
  • the display body according to any one of items 1 to 15, and the display body, and disposed at a position facing a part of one of the front surface and the back surface of the display body, and emits light toward the display body.
  • a light emitting structure configured to be able to emit, and a device with a display body.
  • a part of the light emitted from the light emitting structure passes through the display body and is emitted from the surface located on the side opposite to the light emitting structure. Therefore, when the display body is observed from the direction facing this surface in a state where light is irradiated toward the surface opposite to the light emitting structure, the portion where the light emitting structure is located and the light emitting structure The part where is not located looks different from each other. Therefore, it is possible to express more diverse images.
  • the periodic elements that are convex portions or concave portions have a sub-wavelength period when viewed from the direction facing the surface of the base material.
  • a display body capable of visually recognizing images having different appearances according to the observation conditions can be obtained.
  • a periodic structure having fine irregularities can be easily and suitably formed.
  • Item 18 The method for manufacturing a display body according to Item 17, comprising a third step of forming a dielectric layer having a shape following the surface shape of the metal layer on the metal layer.
  • the above manufacturing method it is possible to adjust the color observed in the reflection observation or transmission observation with respect to the display body by changing the material constituting the dielectric layer, so that the degree of freedom in adjusting the color is increased. It is done.
  • the display body 10 has a front surface 10F and a back surface 10R that is a surface opposite to the front surface 10F, and the display body 10 has a display area when viewed from the direction facing the front surface 10F.
  • 20 and the auxiliary area 30 are included.
  • the display area 20 includes two types of areas of a first area 20A and a second area 20B, and the surface 10F is partitioned into a first area 20A, a second area 20B, and an auxiliary area 30. .
  • the display area 20 exhibits a structural color, and the hue exhibited by the first area 20A and the hue exhibited by the second area 20B are different from each other when the surface 10F is irradiated with white light.
  • the auxiliary region 30 exhibits a color having a metallic luster.
  • characters, symbols, figures, patterns, designs, and the like are expressed by the first region 20A and the second region 20B, and a background is expressed by the auxiliary region 30.
  • the earth pattern is represented by the first region 20A exhibiting a green color and the second region 20B exhibiting a blue color
  • the background is represented by the auxiliary region 30 exhibiting a silver color. Has been.
  • the display body 10 includes a base material 16, an uneven structure layer 12, a metal layer 13, and a multilayer film layer 14.
  • the base material 16, the concavo-convex structure layer 12, the metal layer 13, and the multilayer film layer 14 are arranged in this order, and the side where the multilayer film layer 14 is positioned with respect to the base material 16 is the surface side of the display 10.
  • the side where the base material 16 is positioned with respect to the multilayer film layer 14 is the back surface side of the display body 10.
  • FIG. 20 shows the planar structure of the concavo-convex structure layer 12 as viewed from the direction facing the surface 10F of the display body 10 along with the cross-sectional structure of the display region 20.
  • the base material 16 has a plate shape, and the surface located on the surface side of the display body 10 among the surfaces of the base material 16 is the surface of the base material 16.
  • the base material 16 is transparent to light in the visible region and transmits light in the visible region.
  • the wavelength of light in the visible region is from 400 nm to 800 nm.
  • the substrate 16 is a dielectric, and examples of the material of the substrate 16 include synthetic quartz, resins such as polyethylene terephthalate (PET), polycarbonate (PC), and polyethylene naphthalate (PEN).
  • PET polyethylene terephthalate
  • PC polycarbonate
  • PEN polyethylene naphthalate
  • the refractive index of the base material 16 is higher than that of the air layer, and is, for example, 1.2 or more and 1.7 or less.
  • the base material 16 may be comprised from one layer, and may be comprised from the some layer.
  • the plasmon structure layer 15 which is a structure composed of the concavo-convex structure layer 12 and the metal layer 13, transmits incident light by plasmon resonance or the like.
  • the concavo-convex structure layer 12 includes a flat portion 12a extending along the surface of the base material 16, and a plurality of convex portions 12b protruding from the flat portion 12a to the surface side of the display body 10. That is, the convex part 12b protrudes from the surface which spreads along the back surface 10R of the display body 10 toward the front surface 10F.
  • the concavo-convex structure layer 12 is a dielectric that is transparent to light in the visible region, and is made of, for example, an ultraviolet curable resin, a thermosetting resin, or a thermoplastic resin.
  • the refractive index of the uneven structure layer 12 is higher than that of the air layer.
  • the convex portion 12 b has a quadrangular pyramid shape, that is, a shape in which the top of the quadrangular pyramid is a plane, and the width of the convex portion 12 b in the direction along the surface of the substrate 16 is the width of the display body 10. It gradually decreases in the direction from the back surface 10R toward the front surface 10F.
  • the length from the proximal end to the distal end of the convex portion 12b, that is, the length of the convex portion 12b in the extending direction of the convex portion 12b is the convex portion height H, and one side of the square constituting the base portion of the convex portion 12b
  • the length is the protrusion width D.
  • the plurality of convex portions 12b are arranged in a square arrangement, which is an example of a two-dimensional lattice, when viewed from the direction facing the surface 10F of the display body 10.
  • the square array is an array in which the center of the convex portion 12b is located at each vertex of the square SQ whose one side is the structural period P. That is, the structure period P is the distance between the centers of the two adjacent protrusions 12b, and the structure period P is the distance between the protrusions W that is the distance between the two adjacent protrusions 12b. It is the total with the convex part width D.
  • the structural period P is a length equal to or shorter than the wavelength in the visible region, that is, the structural period P is a sub-wavelength period. From the viewpoint of easily obtaining the processing accuracy of the convex portion 12b, the structural period P is preferably not less than 100 nm and not more than 400 nm, and more preferably not less than 200 nm and not more than 400
  • the area Sa of the entire region where the plurality of convex portions 12b are arranged is the area of the concavo-convex structure layer 12 as viewed from the direction facing the surface 10F of the display body 10, that is, exposed between the convex portions 12b. This is the sum of the area of the flat part 12a and the area of the square that forms the base of each convex part 12b.
  • the volume ratio Vr that is the ratio of the individual volumes of the plurality of convex portions 12b to the volume represented by the area Sa ⁇ the convex portion height H is: 0.05 or more and 0.5 or less is preferable.
  • the volume ratio Vr is a ratio of the convex portion 12b occupying per unit volume of the space where the concavo-convex structure is formed on the flat portion 12a.
  • the distance W between the protrusions may be determined in consideration of the desired volume ratio Vr, the structure period P, and the shape of the protrusion 12b.
  • the metal layer 13 is located on the surface side of the display body 10 with respect to the uneven structure layer 12 and covers the entire surface of the uneven structure layer 12.
  • the metal layer 13 has a shape that follows the surface shape of the concavo-convex structure layer 12. That is, the surface of the metal layer 13 has unevenness following the unevenness of the uneven structure layer 12.
  • the period and height of the uneven structure in the metal layer 13 depend on the period and height of the uneven structure in the uneven structure layer 12.
  • the period and height of the concavo-convex structure in the concavo-convex structure layer 12 are defined by the shape of the convex part 12b including the structural period P, the convex part distance W, the convex part height H, and the convex part width D.
  • the metal layer 13 is made of a metal material, and the refractive index of the metal layer 13 is lower than that of the air layer. From the standpoint that plasmon resonance is likely to occur, the metal layer 13 is made of a metal material having a negative real part of the complex dielectric constant at a wavelength in the visible region, and the film thickness of the metal layer 13 is 10 nm. The thickness is preferably 200 nm or more. Examples of the material of the metal layer 13 include aluminum, gold, silver, tantalum, and indium.
  • the area of the flat portion 12 a exposed from between the convex portions 12 b in the concavo-convex structure layer 12 is a square area constituting the base portion of each convex portion 12 b when viewed from the direction facing the surface 10 F of the display body 10. It is preferable to be larger than the total.
  • the metal layer 13 is structurally and optically
  • the base of the convex portion 12b is an island component distributed structurally and optically in the sea component.
  • the multilayer film layer 14 has a structure in which a plurality of thin films 14a are stacked, and causes multilayer film interference. That is, when the multilayer film layer 14 receives incident light from the surface side of the display body 10, the multilayer film layer 14 strongly returns light in a specific wavelength region as a result of interference of light reflected by each thin film 14a. Thereby, the structural color of a specific hue is visually recognized in the display area 20 when viewed from the front surface side of the display body 10.
  • the multilayer film layer 14 has a shape that repeats undulations according to the unevenness of the metal layer 13, in other words, a curved portion that swells toward the surface side of the display body 10 extends in the arrangement direction of the protrusions 12 b in the uneven structure layer 12. It has a shape that continues along.
  • the portion of the multilayer film 14 that is closest to the back surface 10 ⁇ / b> R of the display body 10, that is, the end portion of the curved portion extends into the region between the convex portions 12 b in the concavo-convex structure layer 12.
  • the degree of curvature of each thin film 14 a varies depending on the position of each thin film 14 a in the stacking direction of the multilayer film layer 14.
  • the thin film 14a is made of a material that is transparent to light in the visible region, and the refractive indexes of the plurality of thin films 14a are different from each other.
  • the material of the thin film 14a include titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), Inorganic substances such as hafnium oxide (HfO 2 ), zinc sulfide (ZnS), and zirconium oxide (ZrO 2 ), and polymer compounds such as nylon and polyester can be used.
  • the number of thin films 14a included in the multilayer film layer 14 and the material and film thickness of each thin film 14a depend on the hue that the display area 20 wants to visually recognize when the reflected light is viewed from the surface side of the display body 10, It is set so that light in a wavelength region corresponding to this hue is intensified and reflected from the multilayer film layer 14.
  • the display body is also changed by changing the shape of the convex portion 12b including the convex portion 12b including the structural period P and the convex portion distance W in the concave-convex structure layer 12 and the convex portion height H and the convex portion width D.
  • the hue of the color visually recognized in the display area 20 can be changed.
  • the length of the optical path of the light passing through the thin film 14a is increased, light having a longer wavelength is strengthened and reflected from the multilayer film layer 14.
  • each thin film 14a in the multilayer film layer 14 and the arrangement and shape of the protrusions 12b in the concavo-convex structure layer 12 are visually recognized as colors displayed in the display region 20 when the reflected light is viewed from the surface side of the display body 10.
  • light in the wavelength region corresponding to this hue is intensified and adjusted so as to be reflected from the multilayer film layer 14.
  • the first region 20A and the second region 20B are different from each other in the configuration of each thin film 14a in the multilayer film layer 14 and the arrangement and shape of the protrusions 12b in the concavo-convex structure layer 12 in these regions.
  • the formation of the convex portions 12b having different structural periods P in the two regions 20A and 20B means that the two regions 20A and 20B are multilayer films having different layer configurations such as the number, material, and film thickness of the thin film 14a. Since it is easier than forming the layer 14, it is preferable that the hue of the first region 20 ⁇ / b> A and the hue of the second region 20 ⁇ / b> B are made different depending on the difference in the structural period P. That is, the multilayer film layer 14 in the first region 20A and the multilayer film layer 14 in the second region 20B are preferably one multilayer structure having the same layer configuration and continuous with each other.
  • the periodic structure is configured by the base material 16 and the concavo-convex structure layer 12.
  • the convex part 12b is an example of a periodic element.
  • a support portion is configured by the base material 16 and the flat portion 12a, and the surface of the flat portion 12a, that is, the surface opposite to the surface in contact with the base material 16 in the flat portion 12a is the reference surface.
  • the metal layer 13 is regarded as a metal layer having a shape in which the shape of the entire layer follows the surface shape of the periodic structure.
  • the surface of the periodic structure is a surface including a region surrounding each periodic element in the reference plane and the surface of each periodic element.
  • the multilayer film layer 14 is located on the surface of the metal layer 13 opposite to the surface in contact with the periodic structure, and covers the structure including the periodic structure and the metal layer 13.
  • the auxiliary region 30 includes the base material 16 and the metal layer 13, and the flat metal layer 13 is located on the surface of the base material 16.
  • the base material 16 is one structure that is continuous with the display area 20 and the auxiliary area 30, and the metal layer 13 is one layer that is continuous with the display area 20 and the auxiliary area 30.
  • a method for manufacturing the display body 10 will be described. First, a method for manufacturing the display area 20 will be described. First, the uneven structure layer 12 is formed on the surface of the substrate 16.
  • a method of forming the convex portion 12b in the concavo-convex structure layer 12 for example, a photolithography method using light or a charged particle beam, a nanoimprint method, a plasma etching method, or the like can be employed.
  • a nanoimprint method can be utilized as a method for forming the convex portion 12b on the surface of the flat portion 12a made of resin.
  • the convex portion 12b is formed by processing a hard material base material or the like
  • a method in which light or a photolithography method using a charged particle beam and a plasma etching method are combined may be used.
  • the nanoimprint method is suitable for forming the uneven structure layer 12 having fine unevenness.
  • a polyethylene terephthalate sheet is used as the base material 16 and an ultraviolet curable resin is applied to the surface of the base material 16.
  • a synthetic quartz mold which is an intaglio plate having concave portions having a shape and arrangement corresponding to the convex portions 12b, is pressed against the surface of the coating film made of an ultraviolet curable resin, and the coating film and the synthetic quartz mold are irradiated with ultraviolet rays. .
  • the synthetic quartz mold is released from the cured ultraviolet curable resin. Thereby, the convex part 12b is formed and the uneven structure layer 12 is shape
  • thermosetting resin may be used instead of the ultraviolet curable resin, and in this case, the irradiation of the ultraviolet light may be changed to heat.
  • thermoplastic resin may be used instead of the ultraviolet curable resin, and in this case, the irradiation with ultraviolet light may be changed to heating and cooling.
  • the uneven structure layer 12 in the first region 20A and the uneven structure layer 12 in the second region 20B can be formed simultaneously.
  • a metal layer 13 is formed on the surface of the uneven structure layer 12.
  • the method for forming the metal layer 13 include a vacuum deposition method and a sputtering method.
  • the multilayer film layer 14 is formed by sequentially forming the thin film 14 a on the surface of the metal layer 13.
  • the method for forming the thin film 14a include a vacuum deposition method and a sputtering method. Thereby, the laminated structure of the display area 20 is formed.
  • the auxiliary region 30 can be manufactured by not performing the formation process of the uneven structure layer 12 and the formation process of the multilayer film layer 14 in the manufacturing process of the display region 20. That is, the metal layer 13 is formed on the surface of the base material 16 in the auxiliary region 30 simultaneously with the formation of the metal layer 13 in the display region 20.
  • the structure of the display area 20 in the display body 10 may be changed as follows.
  • the base material 16 and the uneven structure layer 12 may be integrated.
  • the concavo-convex structure layer 12 may not include the flat portion 12 a and the convex portion 12 b may protrude from the surface of the base material 16.
  • the base material 16 constitutes a support portion, and the surface of the base material 16 is a reference plane.
  • the convex portion 12b is not limited to a quadrangular pyramid shape, but may be a rectangular parallelepiped shape, a truncated cone shape, or a cylindrical shape. That is, the width of the convex portion 12b in the direction along the surface of the substrate 16 may be constant, or the shape of the convex portion 12b viewed from the direction facing the surface 10F of the display body 10 may be circular. Good. Furthermore, the convex portion 12b may have a shape that does not have a flat surface at the tip, such as a pyramid shape or a cone shape.
  • the arrangement of the convex portions 12b viewed from the direction facing the surface 10F of the display body 10 is not limited to a square arrangement, and may be a two-dimensional lattice shape.
  • the square array is an array in which the convex portions 12b are arranged at a constant period along each of two orthogonal directions in the two-dimensional plane.
  • the two-dimensional lattice array includes a two-dimensional plane in addition to the square array.
  • An arrangement in which the convex portions 12b are arranged along each of two directions intersecting at an angle different from 90 degrees is included.
  • the metal layer 13 does not cover the entire surface of the concavo-convex structure layer 12, and may be located, for example, on the flat part 12a exposed between the convex parts 12b and on the top part of the convex parts 12b.
  • the metal layer 13 only needs to have a shape in which the shape of the entire layer follows the surface shape of the uneven structure layer 12, in other words, the metal layer 13 protrudes toward the surface side. What is necessary is just to have the shape where the part is scattered in the two-dimensional lattice shape along arrangement
  • the concavo-convex structure layer 12 and the metal layer 13 only have to have a structure in which the plasmon structure layer 15 made of these layers transmits incident light by plasmon resonance or the like.
  • the reason why the incident light is transmitted is mainly due to the occurrence of plasmon resonance.
  • the reason for the transmission is that, in addition to the plasmon resonance, the incident light is transmitted through the structure from a locally thinned portion of the metal layer 13. It is also included.
  • the first application mode will be described with reference to FIG.
  • the first application form is an embodiment of a display body
  • the display body 10 of the first application form is a mode in which light is incident on the display body 10 mainly from the surface side and the display body 10 is observed only from the surface side.
  • the display body 10 is affixed to an opaque surface of an article that hardly reflects light.
  • the display body 10 may be used for the purpose of increasing the difficulty of counterfeiting the article, may be used for the purpose of improving the designability of the article, or may be used for these purposes.
  • the display 10 is used for authentication documents such as passports and licenses, securities such as gift certificates and checks, cards such as credit cards and cash cards, banknotes, etc. Is pasted.
  • the display body 10 is, for example, a decorative article that can be worn, an article that is carried by the user, an article that is stationary such as furniture or home appliances, a wall or a door. It is attached to the structure etc.
  • FIG. 22 an image that is visually recognized when the display region 20 is observed from a direction facing the surface 10 ⁇ / b> F of the display body 10 will be described.
  • the plasmon structure layer 15 composed of the concavo-convex structure layer 12 and the metal layer 13 is schematically represented as one flat layer, and the multilayer film layer 14 is represented as It is schematically represented as one flat layer.
  • the white light I1 When the white light I1 is irradiated from the outside of the display body 10 toward the surface 10F of the display body 10, the light I2 in a predetermined wavelength region reflected by each thin film 14a is strengthened by interference in the multilayer film layer 14. Thus, the light I2 is emitted to the surface side of the display body 10.
  • the multilayer film layer 14 transmits the light I3 in a part of the wavelength region included in the white light I1, and the light I3 enters the plasmon structure layer 15.
  • the concavo-convex structure in the plasmon structure layer 15 is a structure in which a metal thin film is laminated on a dielectric, and the period of the concavo-convex structure is a sub-wavelength period equal to or less than the wavelength in the visible region. Therefore, in the plasmon structure layer 15 that has received the light I3, the generation of the first-order diffracted light is suppressed, and the plasmon resonance in which the light E1 in a specific wavelength region included in the light I3 and the collective vibration of the electrons are combined. Arise.
  • the plasmon structure layer 15 transmits light E1 in a part of the wavelength region included in the light I3 as surface plasmon, and converts it into light I4 emitted from the plasmon structure layer 15.
  • the wavelength region of the light I4 is determined according to the period of the uneven structure, that is, the structure period P.
  • the light emitted from the plasmon structure layer 15 includes light transmitted through the plasmon structure layer 15 by, for example, passing through the structure from a locally thinned portion of the metal layer 13. However, in the light emitted to the back side of the display body 10, the light I4 is dominant.
  • the light I ⁇ b> 2 reflected by the multilayer film layer 14 is emitted on the surface side of the display body 10. Therefore, according to the surface reflection observation in which the surface 10F is observed from the surface side of the display body 10 in a state where the white light I1 is irradiated from the outside of the display body 10 toward the surface 10F, the wavelength region of the light I2 is observed.
  • the corresponding hue that is, the color of the hue corresponding to the wavelength region strengthened by the multilayer film layer 14 is visually recognized in the display region 20.
  • the color corresponding to the wavelength region of the light I2 is different from white and black.
  • the display body 10 since the display body 10 includes the plasmon structure layer 15, light consumed by plasmon resonance in the plasmon structure layer 15 is reflected at the interface between the plasmon structure layer 15 and other layers. do not do. Therefore, the light transmitted through the multilayer film layer 14 is suppressed from being emitted to the surface side of the display body 10 due to reflection inside the display body 10 such as an interface between the base material 16 and the upper layer thereof. . Therefore, since light of a wavelength region different from the light I2 of the wavelength region intensified by the multilayer film layer 14 is suppressed from being emitted to the surface side of the display body 10, the hue visually recognized in the display region 20 is clear. Is increased.
  • the wavelength region intensified by the multilayer film layer 14 in the first region 20A is different from the wavelength region intensified by the multilayer film layer 14 in the second region 20B.
  • the region 20A and the second region 20B appear to have different hues. And since each of the first region 20A and the second region 20B has enhanced visibility of the hue, the difference between the hue of the first region 20A and the hue of the second region 20B becomes clear, The visibility of an image such as a pattern expressed by these areas is improved.
  • the auxiliary region 30 when the auxiliary region 30 is observed from the direction facing the surface 10F of the display body 10, when the white light I1 is irradiated from the outside of the display body 10 toward the surface 10F, depending on the material of the metal layer 13 The light in the wavelength region is rebounded by the collective movement of free electrons in the metal layer 13. Therefore, the auxiliary region 30 appears to have a metallic luster with a hue corresponding to the wavelength region of the bounced light.
  • the display body 10 can express various images by the display area 20 and the auxiliary area 30.
  • the light applied to the surface 10F of the display body 10 when observing the display region 20 and the auxiliary region 30 may not be white light.
  • the display body 10 includes the plasmon structure layer 15, the light transmitted through the multilayer film layer 14 is emitted to the surface side of the display body 10 by reflection inside the display body 10. Is suppressed. Therefore, since light of a wavelength region different from the light I2 of the wavelength region intensified by the multilayer film layer 14 is suppressed from being emitted to the surface side of the display body 10, the hue visually recognized in the display region 20 is clear. Is increased.
  • the display area 20 includes a first area 20A and a second area 20B where colors of different hues are visually recognized in the surface reflection observation. And since each of the first region 20A and the second region 20B has enhanced visibility of the hue, the difference between the hue of the first region 20A and the hue of the second region 20B becomes clear, The visibility of the image expressed by these areas is improved. Therefore, in the article provided with the display body 10, the forgery difficulty and the design are further enhanced.
  • Forming the convex portions 12b having different structural periods P in the two regions 20A and 20B is easier than stacking the multilayer film layers 14 having different layer structures in the two regions 20A and 20B. According to the above configuration, the manufacturing process of the display body 10 can be simplified.
  • the multilayer film layer 14 in the first region 20A and the multilayer film layer 14 in the second region 20B are one continuous multilayer structure having the same layer configuration, and the first structure 20 In the configuration in which the hue of the region 20A is different from the hue of the second region 20B, the display body 10 is particularly easy to manufacture.
  • the display area 20 and the auxiliary area 30 appear to have different textures in the surface reflection observation. Therefore, the display area 20 and the auxiliary area 30 can be used in various expressions, and the forgery difficulty and the design are further enhanced in the article including the display body 10.
  • a 2nd application form is embodiment of a display body, and the display body 10 of a 2nd application form is used in the aspect by which the display body 10 is observed from both the surface side and a back surface side.
  • the display body 10 is attached to the article so that both the front surface and the back surface of the display body 10 are in contact with an air layer or a transparent member.
  • the display body 10 may be used for the purpose of increasing the difficulty of counterfeiting the article, or may be used for the purpose of improving the designability of the article.
  • FIG. 23 An image which is visually recognized when the display area 20 of the display body 10 is observed from each of the front surface side and the back surface side when light is incident on the display body 10 from the front surface side will be described.
  • the plasmon structure layer 15 composed of the concavo-convex structure layer 12 and the metal layer 13 is schematically represented as one flat layer
  • the multilayer film layer 14 is represented as It is schematically represented as one flat layer.
  • the surface area of the display body 10 has a wavelength region enhanced by the multilayer film layer 14 as in the first application mode.
  • Light I2 is emitted. Therefore, when the display region 20 is observed from the surface side, the hue color corresponding to the wavelength region of the light I2 is visually recognized in the display region 20.
  • the display body 10 includes the plasmon structure layer 15
  • the light transmitted through the multilayer film layer 14 is reflected by the reflection inside the display body 10 or the like. Therefore, the clearness of the hue of the display area 20 as viewed from the surface side is enhanced.
  • the display region 20 when the display region 20 is observed from the back side of the display body 10, the color of the hue corresponding to the wavelength region of the light I4 is visually recognized in the display region 20.
  • the color according to the wavelength region of the light I4 is white, black, and a color different from the color according to the wavelength region of the light I2.
  • the back surface of the display body 10 is changed by changing the structure period P.
  • the wavelength region of the light I4 emitted to the side can be changed.
  • the auxiliary region 30 When the auxiliary region 30 is observed from the surface side of the display body 10, the auxiliary region 30 appears to have a metallic luster with a hue corresponding to the material of the metal layer 13, as in the first application mode. Further, when the auxiliary region 30 is observed from the back side of the display body 10, the intensity of light transmitted through the auxiliary region 30 out of the light I1 irradiated from the outside of the display body 10 toward the front surface 10F is very small. The auxiliary area 30 is visually recognized as a dark color close to black.
  • the first application An image similar to the morphology is observed.
  • an image such as a pattern composed of the first region 20A and the second region 20B, and further, the first region 20A, the second region 20B, and the auxiliary region 30 are formed even by backside transmission observation. An image such as a pattern is observed.
  • the results of the surface reflection observation and the back surface transmission observation show the same tendency even when the amount of external light directed toward the front surface 10F is higher than the amount of external light directed toward the back surface 10R. Moreover, the light irradiated to the surface 10F of the display body 10 may not be white light.
  • the white light I1 when the white light I1 is irradiated from the outside of the display body 10 toward the rear surface 10R, the light I1 enters the base material 16 from the air layer and from the base material 16 to the plasmon structure layer 15 to go into.
  • the region immediately above the flat portion 12a in the plasmon structure layer 15 is composed of a base portion of the convex portion 12b and a portion of the metal layer 13 laminated on the flat portion 12a between the convex portions 12b.
  • the refractive index of this region is approximated to the averaged size by the refractive index of the base portion of these convex portions 12b and the refractive index of the metal layer 13 between the convex portions 12b. If the volume of the space between the convex portions 12b is larger than the volume of the plurality of convex portions 12b, the refractive index of the region immediately above the flat portion 12a is controlled by the metal layer 13 that is a sea component. And is sufficiently lower than the refractive index of the air layer.
  • the light I1 incident on the base material 16 has a refractive index lower than that of the air layer from the base material 16 having a higher refractive index than that of the air layer and the flat portion 12a of the concavo-convex structure layer 12. Fresnel reflection is likely to occur at these boundaries.
  • the light I1 enters the plasmon structure layer 15, plasmon resonance occurs in the plasmon structure layer 15.
  • the light I5 in a part of the wavelength region included in the light I1 is emitted as reflected light to the back surface side of the display body 10, and the light E2 in a part of the wavelength region included in the light I1 is consumed by plasmon resonance.
  • light I6 in a partial wavelength region included in the light I1 is emitted from the plasmon structure layer 15.
  • the light I7 in the wavelength region included in the light I6 passes through the multilayer film layer 14 and is emitted to the surface side of the display body 10.
  • the wavelength region of the lights I5 and I6 can be adjusted by the structural period P in the concavo-convex structure layer 12. By changing the structural period P, the wavelength region of the light I7 emitted to the surface side of the display body 10 can be changed. .
  • the wavelength region of the light I7 can also be adjusted by the configuration of the thin film 14a in the multilayer film layer 14.
  • the display region 20 As described above, according to the surface transmission observation in which the surface 10F is observed from the surface side of the display body 10 in the state where the white light I1 is irradiated from the outside of the display body 10 toward the back surface 10R, the display region 20 Thus, the color of the hue corresponding to the wavelength region of the light I7 is visually recognized. The color corresponding to the wavelength region of the light I7 is different from white and black.
  • the display region 20 According to the back surface reflection observation in which the back surface 10R is observed from the back surface side of the display body 10 in the state where the white light I1 is irradiated from the outside of the display body 10 toward the back surface 10R, in the display region 20,
  • the hue color corresponding to the wavelength region of the light I5 is visually recognized.
  • the color corresponding to the wavelength region of the light I5 is white, black, and a color different from the color corresponding to the wavelength region of the light I7.
  • the display area 20 appears to have a different hue color or to have a different saturation or lightness in the surface transmission observation and the back reflection observation.
  • the hue of the color visually recognized in the first region 20A and the second region 20B in the surface transmission observation In the back surface reflection observation, it is possible to make the hues of the colors visually recognized in the first region 20A and the second region 20B different. According to such a configuration, an image such as a pattern composed of the first region 20A and the second region 20B is observed in both the front surface transmission observation and the back surface reflection observation.
  • the auxiliary region 30 is visually recognized as a dark color close to black, as in the rear surface transmission observation.
  • the auxiliary region 30 appears to have a metallic luster with a hue corresponding to the material of the metal layer 13, as in the front surface reflection observation. Therefore, an image such as a picture composed of the display area 20 and the auxiliary area 30 is observed in both the front surface transmission observation and the back surface reflection observation.
  • the results of the surface transmission observation and the back surface reflection observation show the same tendency even when the amount of external light directed to the back surface 10R is higher than the amount of external light directed to the front surface 10F. Moreover, the light irradiated to the back surface 10R of the display body 10 may not be white light.
  • the display body 10 is irradiated toward the back surface 10R as compared with the configuration in which the plasmon structure layer 15 is not provided.
  • the light transmitted through the entire display body 10 in the light I1 decreases. Therefore, when the light I1 is irradiated on the front surface 10F and the back surface 10R of the display body 10, the presence of the plasmon structure layer 15 causes the multi-layer film layer 14 in the light I1 irradiated on the front surface 10F.
  • Light other than the reflected light is suppressed from returning to the front surface side, and light included in the light I1 irradiated to the back surface 10R is prevented from passing through the display body 10 and exiting to the front surface side. This also enhances the clearness of the hue visually recognized in the display area 20 during the surface reflection observation.
  • FIG. 25 shows the display body 10 attached to the lens of the glasses 90 as a specific example of the display body 10 of the second application form.
  • the display body 10 may cover the entire surface of the lens. If the external light is strong, the spectacle outside the spectacles 90 can be visually recognized from the wearer of the spectacles 90 while having a hue corresponding to the wavelength of the light emitted from the back surface 10R of the display body 10.
  • the display body 10 may be attached to a window.
  • the surface 10F of the display 10 is directed to the outside, for example, in the state in which outside light hits the window during the daytime, an image by surface reflection observation is visually recognized from the outside of the window, and backside transmission observation is performed from the inside of the window. The image by is visually recognized.
  • an image by front surface observation is visually recognized from the outside of the window, and an image by back surface reflection observation is visually recognized from the inside of the window.
  • the following effects can be obtained.
  • (3-8) When light is irradiated from the outside of the display body 10 toward the front surface 10F, colors of different hues are visually recognized in the display area 20 in the front surface reflection observation and the rear surface transmission observation.
  • colors of different hues are visually recognized in the display region 20 in the front surface transmission observation and the back surface reflection observation.
  • the hue of the image visually recognized is different between the case where the display body 10 is observed from the front surface side and the case where the display body 10 is observed from the back surface side, it is difficult to counterfeit or design the article provided with the display body 10. Is further enhanced. Further, the front and back of the display body 10 can be easily identified.
  • various images can be expressed by combining the difference in hue between the first area 20A and the second area 20B in each observation, the difference in color between the display area 20 and the auxiliary area 30, and the like.
  • the forgery difficulty and the design are further enhanced.
  • the third application mode will be described with reference to FIGS.
  • the third application form is an embodiment of a device with a display body.
  • the display-equipped device 150 includes the display body 10 and the solar battery 50.
  • the light receiving region in the solar cell 50 is disposed at a position facing the back surface 10 ⁇ / b> R of the display body 10.
  • the back surface 10 ⁇ / b> R of the display body 10 and the light receiving region of the solar cell 50 are in contact with each other.
  • the solar cell 50 generates electric power from the energy of light incident on the light receiving region.
  • the display-equipped device 150 is embodied in a timepiece driven by a solar cell, and at this time, the display 10 is used as a dial to enhance the design of the article.
  • the first area 20A, the second area 20B, and the auxiliary area 30 include a pattern for decoration, numbers and characters for time display, and the like. It is composed. Some of the numbers, characters, and patterns may be formed by a configuration different from that of the display area 20 and the auxiliary area 30, for example, by applying a resin or metal to the surface 10F.
  • the display-equipped device 150 is not limited to a watch, and may be any device that is driven by the solar cell 50.
  • the drive target of the solar cell 50 may be a display device or the like.
  • the device 150 with a display body should just have the structure where the solar cell 50 is located in the back surface side with respect to the display body 10.
  • FIG. Further, the solar cell 50 may face a part of the back surface 10 ⁇ / b> R of the display body 10 as long as it faces at least the display area 20.
  • the mode of travel of light incident on the display-equipped device 150 will be described.
  • the plasmon structure body layer 15 including the concavo-convex structure layer 12 and the metal layer 13 is schematically illustrated as one flat layer in the display region 20 of the display body 10.
  • the multilayer film layer 14 is schematically represented as one flat layer.
  • the display area 10 As shown in FIG. 28, when the sunlight I1 is irradiated from the outside of the display-equipped device 150 toward the surface 10F of the display body 10, in the display area 20, the display area 10 The light I2 in the wavelength region strengthened by the multilayer film layer 14 is emitted on the surface side. Therefore, when viewed from the surface side of the display body 10, the hue color corresponding to the wavelength region of the light I ⁇ b> 2 is visually recognized in the display region 20.
  • the display body 10 includes the plasmon structure layer 15
  • the light transmitted through the multilayer film layer 14 is reflected by the reflection inside the display body 10 or the like. Therefore, the clearness of the hue of the display area 20 as viewed from the surface side is enhanced.
  • the back surface of the display body 10 is changed by changing the structure period P.
  • the wavelength region of the light I4 emitted to the side can be changed. Therefore, by adjusting the structural period P, the wavelength region of the light I4 is adjusted to a wavelength region that is efficiently absorbed by the solar cell 50, and the display region 20 exhibits a color due to the wavelength region that does not contribute to photoelectric conversion in the solar cell 50. It can also be a structural color.
  • the auxiliary region 30 When the auxiliary region 30 is observed from the surface side of the display body 10, the auxiliary region 30 appears to have a metallic luster with a hue corresponding to the material of the metal layer 13 as in the first application mode.
  • the first application form is obtained.
  • An image similar to the surface reflection observation is observed.
  • the light I ⁇ b> 4 emitted from the back side of the display body 10 is used for power generation by the solar cell 50.
  • a hole for allowing light to enter the solar cell must be formed in a part of the dial. Increasing the size of these holes increases the amount of light incident on the solar cell and increases the power generation efficiency, but decreases the designability. On the other hand, reducing the size of the hole increases the design but reduces the amount of light incident on the solar cell. As a result, power generation efficiency decreases.
  • the display region 20 is used as a region for forming an image and light is applied to the solar cell. It can also be used as a passing area. Therefore, it is possible to improve both the design properties and the power generation efficiency of the solar cell.
  • the following effects can be obtained.
  • (3-9) When the surface 10F is observed from the surface side of the display body 10 in a state where light is irradiated from the outside of the device with display body 150 toward the surface 10F of the display body 10, in the display region 20, An image with enhanced hue clarity is visible. Then, light having a predetermined wavelength that is transmitted through the display region 20 and emitted from the back surface side of the display body 10 is used for power generation by the solar cell 50.
  • the display region 20 can be used as a region for forming an image and also used as a region for transmitting light to the solar cell 50, it is possible to improve the design of the device 150 with a display body and to generate power from the solar cell 50. It is possible to achieve both efficiency.
  • a 4th application form is embodiment of the device with a display body.
  • the display-equipped device 160 includes the display body 10 and a light emitting structure 60 configured to emit light.
  • the light emitting structure 60 is a structure that emits light irradiated to the light emitting structure 60 by reflection, or a structure that emits light by light emission of the light emitting structure 60 itself.
  • the light emission structure 60 is a structure that looks white under white light.
  • the light emitting structure 60 is disposed at a position facing a part of the back surface 10R of the display body 10, and the light emitting structure 60 and the back surface 10R are separated from each other. That is, when viewed from the direction facing the surface 10 ⁇ / b> F of the display body 10, the surface 10 ⁇ / b> F includes a region overlapping the light emission structure 60 and a region not overlapping the light emission structure 60. Specifically, the light emission structure 60 is disposed at a position facing a part of the display area 20.
  • the display-equipped device 160 is embodied as a watch in which the display body 10 is a dial and the light emission structure 60 is a component such as a gear disposed below the dial. Is done.
  • the display-equipped device 160 is not limited to the watch, and may have a configuration in which the light emitting structure 60 is disposed on the back surface side with respect to the display body 10.
  • the plasmon structure layer 15 including the concavo-convex structure layer 12 and the metal layer 13 is schematically illustrated as one flat layer in the display region 20 of the display body 10.
  • the multilayer film layer 14 is schematically represented as one flat layer.
  • the white light I ⁇ b> 1 when the white light I ⁇ b> 1 is irradiated from the outside of the display-equipped device 160 toward the surface 10 ⁇ / b> F of the display body 10, the light emission structure is formed on the back surface side of the display body 10 in the display region 20.
  • the light I2 in the wavelength region enhanced by the multilayer film layer 14 is emitted to the surface side of the display body 10 as in the first application mode. Accordingly, when viewed from the surface side of the display body 10, the color of the hue corresponding to the wavelength region of the light I ⁇ b> 2 is visually recognized in a portion of the display region 20 that does not overlap the light emitting structure 60.
  • the display body 10 includes the plasmon structure layer 15
  • the light transmitted through the multilayer film layer 14 is reflected by the reflection inside the display body 10 or the like. Therefore, the clearness of the hue that is visually recognized in a portion that does not overlap the light emitting structure 60 in the display region 20 is enhanced.
  • the light emitting structure 60 is a structure that emits the light emitted to the light emitting structure 60 by reflection
  • the light I8 is reflected by the light emitting structure 60 from the light I4 emitted from the display body 10.
  • the light may be light, or may be light reflected by the light emitting structure 60 from the light emitted to the light emitting structure 60 from a light source provided in the vicinity of the light emitting structure 60.
  • the light emitting structure 60 is a structure that emits light by its own light emission
  • the light I8 is light generated by the light emission of the light emitting structure 60.
  • the light I8 When the light I8 is irradiated toward the back surface 10R of the display body 10, the light I8 enters the base material 16 and enters the plasmon structure layer 15 from the base material 16.
  • the light I9 in a part of the wavelength region included in the light I8 is emitted as reflected light to the back surface side of the display body 10 as in the surface transmission observation of the second application form.
  • the light I3 in the partial wavelength region included in the light I8 is emitted from the plasmon structure layer 15 based on the consumption of the light E3 in the partial wavelength region included in the light I8 by plasmon resonance.
  • the light I11 in the wavelength region included in the light I10 passes through the multilayer film layer 14 and is emitted to the surface side of the display body 10.
  • the wavelength region of the lights I9 and I10 can be adjusted by the structural period P in the concavo-convex structure layer 12, and by changing the structural period P, the wavelength region of the light I11 emitted to the surface side of the display body 10 can be changed. .
  • the wavelength region of the light I11 can also be adjusted by the configuration of the thin film 14a in the multilayer film layer 14.
  • the color of the hue corresponding to the wavelength region of the light I ⁇ b> 2 and the light I ⁇ b> 11 is visually recognized in the portion of the display region 20 that overlaps the light emitting structure 60. .
  • the display area 20 when the surface 10F is observed from the surface side of the display body 10 in a state where the white light I1 is irradiated from the outside of the device with display body 160 toward the surface 10F of the display body 10, the display area 20 Thus, the portion overlapping with the light emitting structure 60 and the portion not overlapping with the light emitting structure 60 appear to have different hue colors, or appear to have different saturation and lightness colors. Therefore, an image corresponding to the shape of the light emitting structure 60 is visually recognized, and further, a combination of a difference in hue between the first region 20A and the second region 20B, a difference in color between the display region 20 and the auxiliary region 30, and the like. It is possible to express various images.
  • the image of the image is displayed so that an image corresponding to the shape of the light emitting structure 60 can be seen or not seen by turning on and off the light irradiation to the light emitting structure 60 and turning on and off the light emission of the light emitting structure 60.
  • the visibility can be adjusted. This also makes it possible to express more diverse images.
  • the following effects can be obtained.
  • the display body As described above, also in the third embodiment, light of a specific wavelength region is emitted from the display body as reflected light or transmitted light due to plasmon resonance. Since the wavelength region of the transmitted light and the reflected light is determined by a plurality of factors including the position and size of the periodic element that is each convex portion 12b and the metal layer that is determined by each periodic element, the display body It is possible to increase the degree of freedom in adjusting the wavelength region that is transmitted or reflected.
  • the display region 20 includes the third region, and in the third region, the structural period P of the uneven structure layer 12 is not constant, and is a predetermined value that is, for example, 1/10 of the average value of the structural period P in the third region
  • the position of each convex part 12b seen from the direction facing the surface 10F may be determined so that the structural period P is distributed with a standard deviation.
  • the third region exhibits different hues in a very small region, and as a whole, the surface is visually recognized as a color in which these hues are mixed in the surface reflection observation. Therefore, it is possible to configure the third region so as to be visually recognized as a color close to white, and the degree of freedom regarding the colors of the image formed in the display region 20 is increased.
  • the display area 20 may include three or more areas that exhibit different hues. Further, the display area 20 may be an area exhibiting one kind of hue, and even in this case, the display body 10 has the display area 20 with enhanced hue clarity, so It is possible to improve the difficulty of counterfeiting the article and improve the design by combining the combination with a decoration attached to the article.
  • the auxiliary region 30 may be a region where the metallic luster is visually recognized when the reflected light is viewed from the surface side of the display body 10, for example, between the metal layer 13 and the substrate 16, A flat resin layer continuous with the flat portion 12a may be provided.
  • the auxiliary region 30 may include a metal layer that is a layer different from the metal layer 13 in the display region 20.
  • the display body 10 does not need to include the auxiliary region 30 and may be configured only by the display region 20.
  • the display body 10 includes a base material 16 and a resin layer for surface reflection observation. And may have a region that looks like a color corresponding to the material of the resin layer.
  • the device with a display body may include the display body 10 and the solar cell 50 and the light emitting structure 60 disposed on the back surface side of the display body.
  • a display body having a front surface and a back surface, a plurality of convex portions protruding in a direction from the back surface toward the front surface, and having a sub-wavelength period when viewed from a direction facing the front surface
  • a concavo-convex structure layer that is a dielectric having the plurality of convex portions located on the surface, a metal layer that is located on the surface of the concavo-convex structure layer and has a shape that follows the surface shape of the concavo-convex structure layer, and a multilayer film
  • a display body comprising: a multilayer film layer that causes interference, the multilayer film layer positioned on a surface of the metal layer and covering a structure including the uneven structure layer and the metal layer.
  • the above configuration when light is irradiated from the outside of the display body toward the surface of the display body, light in a predetermined wavelength region is strengthened by interference in the multilayer film layer and emitted to the surface side of the display body.
  • the In a structure composed of a metal layer and a concavo-convex structure layer light transmitted through the multilayer film becomes surface plasmon by the plasmon resonance phenomenon and passes through the structure, or a metal located on the concavo-convex structure layer. Permeation of the structure occurs from locally thinned portions of the layer.
  • transmitted the said structure is reconverted into light, when it inject
  • the light transmitted through the multilayer film layer can be suppressed from being emitted to the surface side of the display body. Therefore, on the surface side of the display body, since light in a wavelength region different from the light in the wavelength region strengthened by the multilayer film layer is suppressed, it is visually recognized when the display body is viewed from the surface side. Hue clarity is enhanced.
  • a region including the concavo-convex structure layer, the metal layer, and the multilayer film layer is a display region, and the display region includes a first region and a second region when viewed from a direction facing the surface, In surface reflection observation in which white light is irradiated from the outside of the display body toward the surface to observe the display body from a direction facing the surface, the first region and the second region have different hues.
  • the first region and the second region exhibit different hue colors in the surface reflection observation. And since each of the first region and the second region has enhanced visibility, the difference between the hue of the first region and the hue of the second region becomes clear. The visibility of the expressed image is improved. Therefore, the forgery difficulty and the design are improved in the article including the display body.
  • the hue of the first region and the hue of the second region are changed using the difference in the period of the arrangement of the convex portions.
  • the hues of the two regions are different. High degree of freedom for adjustment.
  • the difference in the layer configuration of the multilayer film layer in the two regions is compared with the configuration in which the hue of the first region is different from the hue of the second region only by the layer configuration in the multilayer film layer. It is also possible to make it smaller. Since it is easier to form convex portions having different periods in the two regions compared to stacking multilayer film layers having different layer configurations in the two regions, according to the above configuration, The manufacturing process can be simplified.
  • An area including the concavo-convex structure layer, the metal layer, and the multilayer film layer is a display area, and the display body further includes an auxiliary area including a metal layer as an area different from the display area, In the surface reflection observation in which white light is irradiated from the outside to the surface and the display body is observed from the direction facing the surface, the auxiliary region is configured to exhibit a metallic luster. 24.
  • the display area and the auxiliary area appear to have different textures. Therefore, a variety of expressions can be made by the display area and the auxiliary area, and the forgery difficulty and the design are enhanced in the article including the display body.
  • Item 25 The display body according to Item 24, wherein the metal layer included in the display area and the metal layer included in the auxiliary area are one continuous layer.
  • the metal layer provided in the display region and the metal layer provided in the auxiliary region are one continuous layer, so that the display body is compared with the configuration in which these layers are separate layers. It is possible to reduce the number of layers included in.
  • a device with a display body comprising: the display body according to any one of items 21 to 25; and a solar cell disposed at a position facing the back surface of the display body.
  • the display body when the display body is observed from the surface side in a state where sunlight is irradiated from the outside of the device with the display body toward the surface of the display body, an image with enhanced hue is visually recognized.
  • emitted on the back surface side of the display body is utilized for the electric power generation by a solar cell. Therefore, since the area for forming an image on the display body can be used as an area for transmitting light to the solar cell, it is possible to improve both the design of the device with the display body and the power generation efficiency of the solar cell. It is.
  • the display body according to any one of items 21 to 25 is disposed at a position facing a part of the back surface of the display body and configured to emit light toward the back surface of the display body. And a light emitting structure.
  • part of the light emitted from the light emitting structure passes through the display and is emitted to the surface side. Therefore, when the display body is observed from the surface side in a state where light is irradiated from the outside of the device with the display body toward the surface of the display body, the hue of the portion of the display body that does not overlap with the light emitting structure is determined. Since the image with the sharpness of the image is visually recognized, and the portion of the display that overlaps the light emitting structure is different in color from the portion that does not overlap the light emitting structure, the light emission An image corresponding to the shape of the structure can be seen. Therefore, more various images can be expressed, and the forgery difficulty and design of the display-equipped device are enhanced.
  • a plurality of convex portions made of the resin are formed by pressing the intaglio on the resin coated on the surface of the base material and curing the resin, thereby forming a sub-view as viewed from the direction facing the surface of the base material.
  • corrugation can be formed suitably.
  • a region provided with the concavo-convex structure layer, the metal layer, and the multilayer film layer is a display region, and the display region is a first region having two different arrangement periods of the convex portions. 29.
  • a display body can be manufactured efficiently compared with the manufacturing method which forms the convex part of a 1st area
  • a display body as an example of an optical device and a fourth embodiment of a method for manufacturing the display body will be described.
  • the wavelength region of incident light irradiated on the display body is not limited, the fourth and fifth embodiments include a visible region (wavelength: 400 nm or more and 800 nm or less) that can be recognized with the naked eye as the incident light. A description will be given for natural light.
  • the display body of the fourth embodiment may be used for the purpose of increasing the difficulty of counterfeiting the article, may be used for the purpose of improving the designability of the article, or may be used for these purposes. Also good.
  • the display body is used for authentication documents such as passports and licenses, securities such as gift certificates and checks, cards such as credit cards and cash cards, and banknotes. It is pasted.
  • the display body is, for example, a decorative article worn by the user, an article carried by the user, an article placed like a furniture or a household appliance, a wall or a door. It can be attached to structures.
  • the display body may be used as a dial of a clock.
  • the display body 210 has a front surface 210F and a back surface 210R that is a surface opposite to the front surface 210F, and the display body 210 has a first surface when viewed from the direction facing the front surface 210F.
  • a display area 220 and a second display area 230 are included.
  • the first display area 220 is an area in which first pixels, which are examples of first display elements, are arranged
  • the second display area 230 is an area in which second pixels, which are examples of second display elements, are arranged. is there.
  • Each of the first display area 220 and the second display area 230 represents a character, a symbol, a figure, a pattern, a pattern, a background thereof, or the like as an image by using only these areas or a combination of these areas.
  • the first display area 220 and the second display area 230 represent the design of the moon, and the second display area 230 allows stars located around the moon to be displayed.
  • the background is expressed by the first display area 220.
  • FIG. 33 is a portion including a boundary between the first display area 220 and the second display area 230, and includes a first pixel 220 ⁇ / b> P constituting the first display area 220 and a second pixel constituting the second display area 230. It is a figure which expands and shows the structure of the part which 230P mutually arranges.
  • Each of the first pixel 220P and the second pixel 230P includes a base material 211, an uneven structure layer 212, a first metal layer 213, and a second metal layer 214.
  • the side where the uneven structure layer 212 is positioned with respect to the base material 211 is the front surface side of the display body 210
  • the side where the base material 211 is positioned with respect to the uneven structure layer 212 is the back surface side of the display body 210.
  • FIG 33 shows a planar structure of the concavo-convex structure layer 212 in the first pixel 220P and the second pixel 230P as viewed from the direction facing the surface 210F of the display body 210, along with the cross-sectional structures of the first pixel 220P and the second pixel 230P. ing.
  • first pixel 220P and the second pixel 230P structures other than the structure related to the unevenness in the uneven structure layer 212 are common to each other.
  • a portion included in the first pixel 220P is continuous with a portion included in the second pixel 230P, and these are an integral structure.
  • a portion included in the first pixel 220P is continuous with a portion included in the second pixel 230P, and these are also an integral structure.
  • the first metal layer 213 constituting the first pixel 220P and the first metal layer 213 constituting the second pixel 230P are substantially common in the constitution of the material and thickness constituting the first pixel 220P.
  • the second metal layer 214 that constitutes the pixel 220P and the second metal layer 214 that constitutes the second pixel 230P are almost common in the configuration of the material and thickness that constitute the second metal layer 214.
  • the concavo-convex structure layer 212, the first metal layer 213, and the second metal layer 214 in the first pixel 220P constitute a plasmon structure layer 215 that is a structure that causes plasmon resonance.
  • the concavo-convex structure layer 212, the first metal layer 213, and the second metal layer 214 in the second pixel 230P pass light incident on the display body 210 out of the space on the front surface side and the space on the back surface side with respect to the display body 210.
  • a diffraction grating layer 216 that is a structure that emits diffracted light into space is configured.
  • the substrate 211 has a plate shape, and the surface located on the surface side of the display body 210 among the surfaces of the substrate 211 is the surface of the substrate 211.
  • the base material 211 is transparent to light in the visible region and transmits light in the visible region. The wavelength of light in the visible region is from 400 nm to 800 nm.
  • the substrate 211 is a dielectric, and examples of the material of the substrate 211 include synthetic quartz and resins such as PET (polyethylene terephthalate), PC (polycarbonate), and PEN (polyethylene naphthalate).
  • the refractive index of the base material 211 is higher than that of the air layer, and is, for example, 1.2 or more and 1.7 or less.
  • the base material 211 may be comprised from one layer, and may be comprised from the some layer.
  • the concavo-convex structure layer 212 includes a flat portion 212a extending along the surface of the base material 211, and a plurality of convex portions 212b protruding from the flat portion 212a to the surface side of the display body 210. That is, the convex portion 212b protrudes in a direction from the back surface 210R of the display body 210 toward the front surface 210F.
  • the concavo-convex structure layer 212 is a dielectric that is transparent to light in the visible region, and is made of, for example, an ultraviolet curable resin, a thermosetting resin, or a thermoplastic resin.
  • the refractive index of the concavo-convex structure layer 212 is higher than that of the air layer.
  • the convex portion 212b has a quadrangular prism shape that is square when viewed from the direction facing the surface 210F.
  • the length from the base end to the tip of the convex portion 212b, that is, the length of the convex portion 212b in the extending direction of the convex portion 212b is the convex portion height.
  • the convex height of the convex portion 212b of the first pixel 220P is the first convex portion height H1
  • the convex portion height of the convex portion 212b of the second pixel 230P is the second convex portion height H2.
  • the length of the convex part 212b in the direction along the surface of the substrate 211, that is, the length of one side of the square constituting the base part of the convex part 212b is the convex part width.
  • the convex width of the convex portion 212b of the first pixel 220P is the first convex portion width D1
  • the convex portion width of the convex portion 212b of the second pixel 230P is the second convex portion width D2.
  • the plurality of convex portions 212b are arranged in a square arrangement, which is an example of a two-dimensional lattice, when viewed from the direction facing the surface 210F of the display body 210.
  • the square array is an array in which the center of the convex portion 212b is located at each vertex of the square SQ.
  • the length of one side of the square SQ is the period of the array of the convex parts 212b. That is, the period of the array of the convex parts 212b is the shortest distance between the centers of the two adjacent convex parts 212b.
  • the period of the arrangement of 212b is the sum of the shortest distance between the two adjacent convex portions 212b and the convex portion width.
  • the period of the arrangement of the protrusions 212b of the first pixel 220P is the first structure period P1
  • the period of the arrangement of the protrusions 212b of the second pixel 230P is the second structure period P2.
  • the first structure period P1 is a period for causing plasmon resonance at a wavelength in the visible region, is a sub-wavelength period equal to or smaller than the wavelength in the visible region, and is smaller than a wavelength on the short wavelength side of the visible region. is there. Specifically, the first structure period P1 is less than 400 nm.
  • the second structural period P2 is a period for diffracting light in the visible region, and is larger than the first structural cycle P1, for example, a length equal to or longer than the wavelength on the short wavelength side of the visible region.
  • the second structure period P2 is, for example, not less than 400 nm and not more than 10 ⁇ m as a period during which light in the visible region is easily diffracted.
  • 1st convex part height H1 and 2nd convex part height H2 may correspond, and may differ.
  • the processing accuracy of the intaglio used for forming the convex portion 212b is high. Since it is easy to obtain, the processing accuracy of the convex portion 212b is easily obtained.
  • the ratio of the first convex portion height H1 to the first convex portion width D1 is preferably 3 or less, and preferably 2 or less. More preferably.
  • the second protrusion height H2 is higher than the first protrusion height H1
  • the first pixel 220P is a structure having a relatively small period and causing the concavo-convex structure layer 212 to generate plasmon resonance.
  • the second pixel 230P which has a relatively large period and a structure for causing light diffraction, the convex portion height is increased while the aspect ratio is reduced to ensure processing accuracy.
  • the diffraction efficiency can be increased.
  • the first metal layer 213 covers the flat portion 212a exposed between the convex portions 212b.
  • the second metal layer 214 covers the tip surface of the convex portion 212b.
  • the first metal layer 213 and the second metal layer 214 are made of a common metal material and have substantially the same film thickness.
  • the refractive index of each of the metal layers 213 and 214 is lower than that of the air layer. From the standpoint that plasmon resonance is likely to occur, the metal layers 213 and 214 are preferably made of a metal material having a negative real part of the complex dielectric constant at a wavelength in the visible region.
  • the film thickness of 214 is preferably 10 nm or more and 200 nm or less. Examples of the material of the metal layers 213 and 214 include aluminum, gold, silver, tantalum, and indium.
  • the area of the flat portion 212a exposed from between the convex portions 212b when viewed from the direction facing the surface 210F of the display body 210 is the sum of the square areas of the convex portions 212b. Is preferably larger.
  • the first metal layer 213 is structurally and optically It is a sea component
  • the base of the convex portion 212b is an island component scattered in the sea component structurally and optically.
  • the second metal layer 214 is structurally and optically an island component
  • the air layer is structurally and optically a sea component.
  • the intermediate region 218 between the base region 217 and the top region 219 that is, in a region including a portion other than the base in each convex portion 212b and an air layer between the plurality of convex portions 212b, in the convex portion 212b
  • the part other than the base is structurally and optically an island component
  • the air layer is structurally and optically a sea component.
  • the volume ratio of the sea component is larger than the volume ratio of the island component.
  • the volume ratio of the first metal layer 213 in the base region 217 is larger than the volume ratio of the second metal layer 214 in the top region 219, and the volume ratio of the second metal layer 214 in the top region 219 is in the intermediate region 218. It is larger than the volume ratio of the metal material.
  • the refractive index of each of the base region 217, the intermediate region 218, and the top region 219 is the average of the refractive indexes of the metal layers 213, 214, the convex portions 212b, and the air layer included in each region. Approximated to the normalized size. That is, the refractive index of the base region 217 is a size controlled by the first metal layer 213 which is a sea component, and is sufficiently lower than the refractive index of the air layer.
  • the refractive index of the intermediate region 218 is a size controlled by the air layer that is a sea component, and is higher than the refractive index of the air layer due to the presence of the convex portion 212b, and the refractive index of the air layer. The value is close to.
  • the refractive index of the top region 219 is a size controlled by the air layer that is a sea component, is lower than the refractive index of the air layer due to the presence of the second metal layer 214, and It is a value close to the refractive index.
  • a periodic structure is configured from the base material 211 and the uneven structure layer 212.
  • the convex part 212b located in the 1st display area 220 is an example of a periodic element.
  • a support portion is configured by the base material 211 and the flat portion 212a, and the surface of the flat portion 212a, that is, the surface opposite to the surface in contact with the base material 211 in the flat portion 212a. Is the reference plane.
  • the layer formed of the first metal layer 213 and the second metal layer 214 is an example of an upper metal layer.
  • the shape of the entire layer is the surface shape of the periodic structure. It is perceived as a metal layer having a following shape.
  • the surface of the periodic structure is a surface including a region surrounding each periodic element in the reference plane and the surface of each periodic element.
  • the uneven structure layer 212 is formed on the surface of the substrate 211.
  • a method for forming the convex portion 212b in the concavo-convex structure layer 212 for example, a photolithography method using light or a charged particle beam, a nanoimprint method, a plasma etching method, or the like can be employed.
  • a nanoimprint method can be utilized as a method for forming the convex portion 212b on the surface of the flat portion 212a made of resin.
  • the convex portion 212b is formed by processing a hard material base material or the like
  • a method in which light or a photolithography method using a charged particle beam and a plasma etching method are combined may be used.
  • the nanoimprint method is suitable for forming the uneven structure layer 212 having fine unevenness in the first pixel 220P.
  • a polyethylene terephthalate sheet is used as the substrate 211, and an ultraviolet curable resin is applied to the surface of the substrate 211.
  • a synthetic quartz mold which is an intaglio plate having concave portions having a shape and arrangement corresponding to the convex portions 212b, is pressed against the surface of the coating film made of an ultraviolet curable resin, and the coating film and the synthetic quartz mold are irradiated with ultraviolet rays. . Subsequently, the synthetic quartz mold is released from the cured ultraviolet curable resin.
  • a convex portion 212b is formed, and a flat portion 212a is formed between the convex portion 212b and the substrate 211 as a residual film made of an ultraviolet curable resin.
  • a thermosetting resin may be used instead of the ultraviolet curable resin, and in this case, the irradiation of the ultraviolet light may be changed to heat.
  • a thermoplastic resin may be used instead of the ultraviolet curable resin, and in this case, the irradiation with ultraviolet light may be changed to heating and cooling.
  • the convex portion of the first structural period P1 in the first pixel 220P is obtained by changing the period of the concave portion arrangement in the synthetic quartz mold between the part corresponding to the first pixel 220P and the part corresponding to the second pixel 230P.
  • 212b and the convex part 212b of the second structural period P2 in the second pixel 230P can be formed simultaneously.
  • the first metal layer 213 and the second metal layer 214 are formed on the surface of the uneven structure layer 212.
  • the first metal layer 213 and the second metal layer 214 are simultaneously formed by forming a metal thin film on the surface of the concavo-convex structure layer 212.
  • Examples of the method for forming the first metal layer 213 and the second metal layer 214 include a vacuum deposition method and a sputtering method.
  • FIG. 34 an image that is visually recognized when the display body 210 is observed from each of the front surface side and the back surface side when light is incident on the display body 210 from the front surface side will be described.
  • the plasmon structure layer 215 included in the first pixel 220P is schematically represented as one flat layer
  • the diffraction grating layer 216 included in the second pixel 230P is represented by It is schematically represented as one flat layer.
  • the first display area 220 having the first pixels 220P is observed.
  • the white light I21 is irradiated from the outside of the display body 210 toward the surface 210F of the display body 210, the light I21 enters the plasmon structure layer 215 from the air layer.
  • the light I21 enters the concavo-convex structure portion of the plasmon structure layer 215, the light I21 enters the top region 219 having a refractive index close to that of the air layer from the air layer, so that at the interface between the air layer and the top region 219, Fresnel reflection hardly occurs.
  • the uneven structure in the plasmon structure layer 215 is a structure in which a metal thin film is laminated on a dielectric, and the period of the uneven structure is smaller than the wavelength in the visible region. Therefore, in the plasmon structure layer 215 that has received the light I21, generation of the first-order diffracted light on the surface side of the display body 210 is suppressed, and collective vibrations of the light E21 and electrons in a specific wavelength region included in the light I21.
  • the light E21 is first-order diffracted light generated at an angle close to the horizontal with respect to the surface 210F of the display body 210.
  • the plasmon structure layer 215 transmits part of the light in the wavelength region included in the light I21 as surface plasmon, and converts it into light I22 emitted from the plasmon structure layer 215.
  • the wavelength region of the light I22 is determined according to the period of the concavo-convex structure in the plasmon structure layer 215, that is, the first structure period P1.
  • the plasmon structure layer 215 is observed.
  • Fresnel reflection at the interface is difficult to occur and plasmon resonance occurs in the plasmon structure layer 215, so that black or a color close to black is visually recognized in the first pixel 220P. That is, in the surface reflection observation, the first display region 220 looks black or a color close to black. Even if the angle of the observer with respect to the surface 210F, that is, the angle of observation formed by the surface 210F and the direction of the line of sight of the observer changes, the color of the first display region 220 does not substantially change.
  • the plasmon structure layer 215 The color corresponding to the wavelength region of the light I22 emitted to the back surface side of the display body 210 through the plasmon resonance is visually recognized by the first pixel 220P. That is, in the rear surface transmission observation, the first display region 220 looks a color different from white and black.
  • the second display area 230 having the second pixels 230P is observed.
  • the white light I21 is irradiated from the outside of the display body 210 toward the surface 210F of the display body 210
  • the period of the concavo-convex structure in the diffraction grating layer 216 is longer than the wavelength of the visible region, and thus the light I21 is diffracted. Diffraction occurs at the grating layer 216, and the light I 23 that is diffracted light is emitted to the surface side of the display body 210.
  • the light I23 includes light having a plurality of wavelengths, and the emission angles of these lights are different from each other. The emission angle of light in each wavelength region included in the light I23 is determined by the period of the concavo-convex structure in the diffraction grating layer 216, that is, the second structure period P2.
  • the intensity of the light I24 transmitted through the diffraction grating layer 216 having the metal layers 213 and 214 is very small among the light I21 irradiated from the outside of the display body 210 toward the front surface 210F. Therefore, a color close to black is visually recognized in the second pixel 230P. That is, in the rear surface transmission observation, the second display region 230 looks a color close to black.
  • the color visually recognized in the first display area 220 has a small change due to the change in the observation angle
  • the color visually recognized in the second display area 230 is the change due to the change in the observation angle. Is big. Therefore, regions having different degrees of color change due to changes in the observation angle can be realized by the difference in the period of the convex portions 212b in the concavo-convex structure layer 212. Due to the difference in the degree of color change, the first display area 220 and the second display area 230 have different appearances. Therefore, according to the surface reflection observation, the first display area 220 and the second display area 230 An image such as a picture composed of is visually recognized.
  • the hue, saturation, and brightness are different between the color visually recognized in the first display region 220 and the color visually recognized in the second display region 230.
  • An image such as a pattern composed of the display area 220 and the second display area 230 is visually recognized.
  • the images visually recognized by the display body 210 in the front surface reflection observation and the rear surface transmission observation are images having different hues, saturations, and brightness values, and the degree of color change due to the change in the observation angle is mutually different. It is a different image.
  • the results of the surface reflection observation and the back surface transmission observation show the same tendency even when the amount of external light directed toward the front surface 210F is higher than the amount of external light directed toward the back surface 210R. Further, the light irradiated on the surface 210F of the display body 210 may not be white light.
  • the white light I21 When the white light I21 is irradiated from the outside of the display body 210 toward the back surface 210R of the display body 210, the light I21 enters the base material 211 from the air layer and enters the plasmon structure layer 215 from the base material 211.
  • the light I21 enters the concavo-convex structure portion of the plasmon structure layer 215, the light I21 has a lower refractive index than the air layer from the flat portion 212a of the concavo-convex structure layer 212 having a higher refractive index than the air layer. Since it enters the base region 217, Fresnel reflection tends to occur at these interfaces.
  • the light I25 in a part of the wavelength region included in the light I21 is emitted as reflected light to the back surface side of the display body 210, and the light E22 in a part of the wavelength region included in the light I21 is consumed by plasmon resonance.
  • the light I26 in a part of the wavelength region included in the light I21 is emitted from the plasmon structure layer 215 to the surface side.
  • the wavelength regions of the lights I25 and I26 are determined according to the period of the uneven structure in the plasmon structure layer 215, that is, the first structure period P1.
  • the display body 210 is caused by Fresnel reflection.
  • a color corresponding to the wavelength region of the light I25 emitted to the back side of the first pixel 220P is visually recognized.
  • the color corresponding to the wavelength region of the light I25 is a color different from white and black, and changes with the observation angle are small.
  • the plasmon structure layer 215 A color corresponding to the wavelength region of the light I26 emitted to the surface side of the display body 210 through plasmon resonance is visually recognized by the first pixel 220P.
  • the color corresponding to the wavelength region of the light I26 is white, black, and a color different from the color corresponding to the wavelength region of the light I25.
  • the intensity of the light transmitted through the display body 210 is not high in the light I21 irradiated toward the back surface 210R. Therefore, when the light I21 is irradiated on the front surface 210F and the back surface 210R of the display body 210, the first display region 220 looks a color close to black when viewed from the front surface side.
  • the second display area 230 having the second pixels 230P is observed.
  • the white light I21 is irradiated from the outside of the display body 210 toward the back surface 210R of the display body 210, the light I21 is diffracted by the diffraction grating layer 216, and the light I27 which is diffracted light is the back surface of the display body 210. Injected to the side.
  • the emission angle of light in each wavelength region included in the light I27 is determined by the period of the uneven structure in the diffraction grating layer 216, that is, the second structure period P2.
  • the intensity of the light I28 transmitted through the diffraction grating layer 216 having the metal layers 213 and 214 is very small among the light I21 irradiated from the outside of the display body 210 toward the back surface 210R. Therefore, a color close to black is visually recognized in the second pixel 230P. That is, in the surface transmission observation, the second display region 230 looks a color close to black.
  • the first display region 220 and the second display region 230 have different appearances. Therefore, according to the back surface reflection observation, the first display region 220 and the second display region 230 are configured. An image such as a picture is visually recognized.
  • the images visually recognized by the display body 210 in the back surface reflection observation and the front surface transmission observation are images having different hues, saturations, and brightness values, and the degree of color change due to the change in the observation angle is mutually different. It is a different image.
  • the results of the back surface reflection observation and the front surface transmission observation show the same tendency even when the amount of external light directed to the back surface 210R is higher than the amount of external light directed to the front surface 210F.
  • the light irradiated to the back surface 210R of the display body 210 may not be white light.
  • regions having different degrees of color change due to a change in observation angle can be realized due to a difference in the period of the convex portion 212b in the concavo-convex structure layer 212.
  • the outer edges of these regions are defined by the positions of the convex portions 212b, and the convex portions 212b of the first display region 220 are arranged in the sub-wavelength period, so compared to the region formed by printing the ink, The position of the outer edge can be set more finely. Therefore, a finer image can be formed by the first display area 220 and the second display area 230, and the counterfeiting difficulty and design of an article including the display body 210 and the display body 210 are enhanced.
  • the image formed by the first display area 220 and the second display area 230 may be, for example, an image in which the second display area 230 forms a picture and the first display area 220 forms a background.
  • the first display area 220 and the second display area 230 may cooperate with each other to form an image, or the second display area 230 may form an outline of the pattern, and the first display area 220 may have an outline.
  • the image which comprises the inside of may be sufficient.
  • the second display region 230 appears to shine in rainbow colors due to the change in the observation angle, while the first display region 220 looks black regardless of the change in the observation angle.
  • the first display region 220 is clearly visible. Therefore, the design of the image formed by the first display area 220 and the second display area 230 is improved.
  • the display body 210 may be used so that at least surface reflection observation is possible. For example, light is incident on the display body 210 only from the surface side, and the display body 210 can be observed only from the surface side. It may be used in a state. Even in this case, the first display area 220 and the second display area 230 can realize areas having different degrees of color change due to changes in the observation angle.
  • the intensity of light emitted by Fresnel reflection generated at the interface between the base region 217 of the plasmon structure layer 215 and the flat portion 212a increases.
  • the brightness of the image visually recognized by back surface reflection observation increases.
  • the intensity of light transmitted from the back surface 210R to the front surface 210F is small, and even when light is irradiated on the front and back of the display body 210, the color in the surface reflection observation However, it is closer to black.
  • the brightness of the visually recognized image is increased, and the color in the surface reflection observation is closer to black.
  • the thickness Ta of the first metal layer 213 is preferably 10 nm or more. Further, the ratio of the first convex portion width D1 to the first structural period P1 is preferably 0.75 or less, and more preferably 0.60 or less. In the plane including the upper surface of the convex portion 212b, the area ratio occupied by the convex portion 212b in the first pixel 220P is preferably 50% or less.
  • the thinner the thickness Ta of the first metal layer 213 and the thinner the thickness Tb of the second metal layer 214 the greater the intensity of light transmitted through the surface transmission observation and the rear surface transmission observation.
  • the image will be clear.
  • the larger the ratio of the first convex portion width D1 to the first structural period P1 the higher the intensity of the light transmitted through the display body 210.
  • the thickness Ta of the first metal layer 213 and the thickness Tb of the second metal layer 214 are preferably 200 nm or less.
  • the ratio of the first convex portion width D1 to the first structural period P1 is preferably 0.25 or more, and more preferably 0.40 or more.
  • the area ratio occupied by the convex portion 212b in the first pixel 220P is preferably 10% or more.
  • the metal particles flying from the film formation source are It adheres to the surface of 212 with a predetermined angular distribution.
  • the width Wa of the second metal layer 214 is slightly larger than the first protrusion width D1 of the protrusion 212b, and the shortest distance Wb between the second metal layers 214 adjacent to each other is the protrusion 212b adjacent to each other. It is slightly smaller than the shortest distance Wc.
  • the portion around the convex portion 212b in the first metal layer 213 is affected by the shadow effect by the second metal layer 214, and the portion closer to the convex portion 212b is thinner.
  • the intermediate metal layer 214A that is a metal layer continuous to the second metal layer 214 is also formed on the side surface of the convex portion 212b.
  • the intermediate metal layer 214 ⁇ / b> A is a structure integrated with the second metal layer 214, and the thickness on the side surface of the convex portion 212 b is thinner as the portion is closer to the first metal layer 213.
  • the intermediate metal layer 214A has a continuous change in refractive index in the thickness direction of the top region 219 and the intermediate region 218 since the first structural period P1 is a sub-wavelength period.
  • the intermediate metal layer 214 ⁇ / b> A hardly reflects light incident on the top region 219 from the outside of the display body and easily transmits the light to the intermediate region 218 and the base region 217. Therefore, a color closer to black is visually recognized in the first display region 220 in the surface reflection observation.
  • the difference in refractive index between the convex portion 212b and the first metal layer 213 increases, the averaged refractive index of the base region 217 promotes Fresnel reflection at the interface between the base region 217 and the flat portion 212a. Cheap.
  • the first metal layer 213 and the second metal layer 214 have the same refractive index, and the refractive index difference between the convex portion 212b and the first metal layer 213 is the same as that of the dielectric layer. If the configuration is larger than the refractive index difference between the second metal layer 214, the Fresnel reflection at the interface between the top region 219 and the air layer is suppressed, and at the interface between the base region 217 and the flat portion 212a. It is possible to promote Fresnel reflection.
  • the first pixel 220P does not have the above-described various configurations for suitably suppressing Fresnel reflection at the interface between the top region 219 and the air layer on the top region 219, the first pixel 220P Since the period of the convex portion 212b in the pixel 220P is a sub-wavelength period, the diffracted light is prevented from being emitted from the first pixel 220P, and plasmon resonance occurs in the plasmon structure layer 215. Therefore, in a state where light is irradiated from the outside of the display body 210 toward the surface 210F, it is possible to suppress the diffracted light from being emitted from the first pixel 220P to the surface side of the display body 210.
  • the first display area 220 having a small color change can be realized.
  • the shape of the convex portion 212b may have a quadrangular pyramid shape, that is, a shape in which the top of the quadrangular pyramid is a flat surface.
  • the width of the convex portion 212b in the direction along the surface of the base material 211 is gradually reduced in the direction from the back surface 210R of the display body 210 to the front surface 210F, and the square constituting the base portion of the convex portion 212b.
  • the length of one side is the convex part width.
  • the convex portion 212b may have a truncated cone shape or a columnar shape, or may have a shape that does not have a flat surface at the tip, such as a pyramid shape or a cone shape.
  • the arrangement of the convex portions 212b viewed from the direction facing the surface 210F of the display body 210 is not limited to a square arrangement, and may be a two-dimensional lattice shape.
  • the square array is an array in which convex portions 212b are arranged along each of two orthogonal directions in the two-dimensional plane, and the two-dimensional lattice-like array includes 90 degrees in the two-dimensional plane in addition to the square array.
  • An arrangement in which the convex portions 212b are arranged along each of two directions intersecting at different angles is included.
  • the concavo-convex structure layer 212, the first metal layer 213, and the second metal layer 214 only have to have a structure in which plasmon resonance occurs in the plasmon structure layer 215 including these layers.
  • the arrangement of the convex portions 212b viewed from the direction facing the surface 210F of the display body 210 is not limited to a two-dimensional lattice shape including a square arrangement, but is a band shape in one direction.
  • a plurality of protrusions 212b extending in a line may be arranged at equal intervals.
  • the length of the convex portion 212b in the direction orthogonal to the extending direction of the convex portion 212b is the second convex portion width D2.
  • the convex portion 212b constitutes a diffraction grating in which the diffraction grating layer 216 composed of the uneven structure layer 212, the first metal layer 213, and the second metal layer 214 diffracts light in the visible region. It suffices if they are arranged in such a manner.
  • the display body 210 covers a structure including the concavo-convex structure layer 212, the first metal layer 213, and the second metal layer 214 in at least one of the first pixel 220P and the second pixel 230P.
  • a protective layer 240 may be provided. That is, a dielectric different from air may be located in the region between the convex portions 212 b and the region between the second metal layers 214.
  • the protective layer 240 is made of, for example, a low refractive index resin.
  • the protective layer 240 made of a low refractive index resin has a refractive index closer to the refractive index of the air layer than the refractive index of the convex portion 212b.
  • the display body 210 may include a multilayer film layer that covers the plasmon structure layer 215 on the surface side with respect to the structure in the first pixel 220P.
  • the multilayer film layer is a laminated body of a plurality of thin films made of a material transparent to light in the visible region, and causes multilayer film interference.
  • the refractive indexes of the plurality of thin films are different from each other.
  • the generation of primary diffracted light on the surface side is suppressed, and plasmon resonance occurs. Therefore, light in a wavelength region different from the light in the wavelength region strengthened by the multilayer film is emitted to the surface side. Is suppressed. Therefore, when viewed from the surface side, the hue of the hue corresponding to the wavelength region strengthened by the multilayer film layer is clearly seen in the first pixel 220P.
  • the color of the second display region 230 seems to change greatly according to the change of the observation angle, while the color visually recognized in the first display region 220 is enhanced by the multilayer film layer.
  • the color corresponds to the wavelength region, and the change due to the change in the observation angle of this color is small compared to the second display region 230. Therefore, the first display area 220 and the second display area 230 realize areas in which the degree of color change due to the change in observation angle is different from each other.
  • the wavelength region intensified by the multilayer film layer can be adjusted by the layer configuration of the multilayer film, it is possible to make colors other than black visible in the region where the color change due to the change in the observation angle is small, Various images can be represented.
  • first metal layer 213 and the second metal layer 214 may be one metal layer continuous with each other. That is, the metal layer may cover the entire surface of the uneven structure layer 212 along the surface of the uneven structure layer 212.
  • the metal layer that includes the first metal layer 213 and the second metal layer 214 only needs to have a shape in which the shape of the entire layer follows the surface shape of the concavo-convex structure layer 212. In this case, the metal layer only needs to have a shape in which portions protruding toward the surface side are scattered in an arrangement along the arrangement of the convex portions 212b.
  • the uneven structure layer 212 of the first display area 220 and the uneven structure layer 212 of the second display area 230 may be formed in separate steps. Further, the first metal layer 213 and the second metal layer 214 may be formed in separate steps. In such a case, the first metal layer 213 and the second metal layer 214 may be made of different materials.
  • the base material 211 and the uneven structure layer 212 may be integrated.
  • the concavo-convex structure layer 212 may not include the flat portion 212 a and the convex portion 212 b may protrude from the surface of the base material 211.
  • the display body It is possible to increase the degree of freedom in adjusting the wavelength region that is transmitted or reflected.
  • a display body having regions with different appearances have been proposed.
  • Such a display body includes a region where the color by the hologram is visually recognized, that is, a region where the color changes greatly when the angle of the line of sight of the observer with respect to the display body changes, and a region where the color of the ink is visually recognized, And a region where a change in color due to a change in angle is small.
  • the ink area which is the area where the ink layer is located, is formed by applying ink using various printing methods, and therefore the position of the outer edge of the ink area as viewed from the direction facing the surface of the display body. Control is limited. Therefore, there is a demand for a display body that realizes areas in which the degree of color change due to the change in angle is different from each other using an area where the position of the outer edge can be controlled more finely than the ink area.
  • the first display area 220 and the second display area 230 are areas in which the degree of change in color due to the change in the observation angle is different from each other due to the difference in the period of the protrusion 212b in the uneven structure layer 212. Is realized.
  • the outer edges of these regions are defined by the positions of the convex portions 212b, and the convex portions 212b of the first display region 220 are arranged in the sub-wavelength period, so compared to the region formed by printing the ink, The position of the outer edge can be set more finely. Therefore, a finer image can be formed by the first display area 220 and the second display area 230, and the forgery and design of the article including the display body 210 are enhanced. That is, the function expressed by the appearance of the display body 210 can be enhanced.
  • the first pixel 220P is a structure having a relatively small period and causing the concavo-convex structure layer 212 to generate plasmon resonance.
  • the convex portion height is increased while the aspect ratio is reduced to ensure processing accuracy.
  • the diffraction efficiency can be increased.
  • the flat portion 212a is included in the second display region 230 and has a function of supporting the convex portion 212b included in the first display region 220.
  • a plurality of convex portions 212b are formed by pressing the intaglio to the resin coated on the surface of the base material 211 and curing the resin, thereby forming irregularities having a first region and a second region.
  • a structural layer 212 is formed.
  • a metal layer is formed on the uneven structure layer 212.
  • a two-dimensional grating having a subwavelength period so that a portion of the metal layer located on the first region and the convex portion 212b of the first region constitute a structure that generates plasmon resonance.
  • a convex portion 212b located in the first region is formed.
  • the portion of the metal layer located on the second region and the convex portion 212b of the second region constitute a diffraction grating that diffracts light in the visible region, so that the convex portion 212b in the first region is formed.
  • the convex portions 212b located in the second region are formed with a period longer than the period. According to such a manufacturing method, it is possible to manufacture the display body 210 having regions with different degrees of color change due to changes in the observation angle, and suitably form the uneven structure layer 212 having fine unevenness. can do.
  • the convex portion 212b of the first region and the convex portion 212b of the second region are simultaneously formed using the intaglio
  • the convex portion 212b and the second pixel of the first pixel 220P 230P convex part 212b is formed simultaneously.
  • the display 210 can be efficiently manufactured as compared with a manufacturing method in which the convex portions 212b of the first pixels 220P and the convex portions 212b of the second pixels 230P are formed in separate steps. it can.
  • the boundary between the first display area 220 where the first pixels 220P are arranged and the second display area 230 where the second pixels 230P are arranged can be formed more precisely.
  • the configuration of the first pixel and the second pixel in the display body of the fifth embodiment is the same as that of the fourth embodiment.
  • the second display area of the fifth embodiment includes second pixels in which at least one of the arrangement direction of the protrusions and the period of the protrusions is different from each other.
  • the second display area 230 includes a first sub-area 230A, a second sub-area 230B, and a third sub-area 230C when viewed from the direction facing the surface 210F.
  • the convex portions 212b of the second pixels 230Pa located in the first sub-region 230A are arranged in a two-dimensional lattice shape when viewed from the direction facing the surface 210F. Yes.
  • the convex portions 212b of the second pixels 230Pb located in the second sub-region 230B are arranged at equal intervals and in one direction as viewed from the direction facing the surface 210F. It has a plurality of strips extending in the direction.
  • the convex portions 212b of the second pixels 230Pc located in the third sub-region 230C are a plurality of strips that are arranged at equal intervals and extend in one direction when viewed from the direction facing the surface 210F, and the second pixels 230Pb A plurality of strips are arranged in a direction different from the direction in which the convex portions 212b are arranged.
  • the convex portions 212b of the second pixels 230Pa are arranged along the first direction and the second direction orthogonal to the first direction.
  • the convex portions 212b of the second pixels 230Pb extend along the first direction and are aligned along the second direction.
  • the convex portions 212b of the second pixels 230Pc extend along the second direction and are arranged along the first direction. That is, the arrangement direction of the convex portions 212b of the second pixel 230Pb and the arrangement direction of the convex portions 212b of the second pixel 230Pc are orthogonal to each other.
  • the dependency on the direction of the arrangement of the convex portions 212b is low, and the direction of incident light when viewed from the direction facing the surface 210F, that is, the plane along the surface 210F.
  • the range of the direction of the incident light from which the second pixel 230Pa can emit diffracted light is wide. Since the diffracted light is emitted in a direction according to the direction of the incident light, when light including incident light from various directions is irradiated onto the surface 210F of the display body 210, the light emitted from the second pixel 230Pa is emitted. Includes diffracted light in various directions.
  • the second pixel 230Pb in the second sub-region 230B and the second pixel 230Pc in the third sub-region 230C are in the direction in which the convex portions 212b are arranged in the direction of incident light when projected onto a plane along the surface 210F.
  • the diffracted light is emitted in the direction of the specific range with respect to the incident light from the direction of the specific range depending on. Therefore, when the surface 210F of the display body 210 is irradiated with light including incident light from various directions, the direction of emission of diffracted light from the second pixel 230Pb is different from the direction of emission of diffracted light from the second pixel 230Pc. .
  • the first sub-region 230A appears bright, and when it is located ahead of the direction of emission of diffracted light from the second pixel 230Pb.
  • the second sub-region 230B appears bright, and the third sub-region 230C appears bright when positioned ahead of the direction of emission of the diffracted light from the second pixel 230Pc.
  • each region looks bright each region appears to shine in iridescent colors, that is, it appears that the color changes greatly as the viewing angle changes.
  • the second subregion 230B and the third subregion 230C are the region and the observer. It looks bright or dark depending on the positional relationship with the light and the direction and intensity of light included in the external light. That is, when the display body 210 is moved relative to the observer so as to rotate the display body 210 in a direction along the surface 210F or change the angle of the display body 210 with respect to the horizontal plane, It seems that the brightness of the area 230B and the brightness of the third sub-area 230C change.
  • the second pixel 230Pb and the second pixel 230Pc have different arrangement directions of the convex portions 212b, so that both the second subregion 230B and the third subregion 230C appear dark, and the second subregion 230B is bright,
  • the state in which the third sub-region 230C looks dark the state in which the second sub-region 230B is dark and the third sub-region 230C looks bright, and both the second sub-region 230B and the third sub-region 230C are bright. It can be visible.
  • the first sub-region 230A appears brighter in a wider range than the second sub-region 230B and the third sub-region 230C when the display body 210 is moved relative to the observer. Therefore, the first sub-region 230A, the second sub-region 230B, and the third sub-region 230C can form an image having a large change according to the position and angle of the viewer with respect to the display body 210.
  • the first sub-region 230A and the second sub-region 230B are bright and the third sub-region 230C is bright.
  • the first sub-region 230A and the third sub-region 230C are bright and the second sub-region 230B looks dark, and the image that is visually recognized on the surface 210F of the display 210 Can change. Therefore, an image that appears to change the glowing ring among the stars represented by the first sub-region 230A and the star rings represented by the second sub-region 230B and the third sub-region 230C is displayed to the observer. Can be provided.
  • the combination of the second display area 230 including the second pixels 230P having the different arrangement directions of the convex portions 212b and the first display area 220 can make the image change in the second display area 230 stand out.
  • the first display area 220 with a small color change due to a change in the observation angle is located around the second display area 230.
  • the change in the image in the second display area 230 when the 210 is moved stands out. Therefore, the forgery difficulty and design of an article provided with the display body 210 are further enhanced.
  • the number of regions in which the arrangement direction of the convex portions 212b is different from each other is not particularly limited, and the second display region 230 has an arrangement direction of the convex portions 212b in addition to the second sub region 230B and the third sub region 230C. An area different from these areas may be further included. Further, the second display area 230 may include only the second sub area 230B and the third sub area 230C, and may not include the first sub area 230A in which the convex portions 212b are arranged in a two-dimensional lattice pattern.
  • the second display area 230 includes a fourth sub area 230D, a fifth sub area 230E, a sixth sub area 230F, and a seventh sub area 230G when viewed from the direction facing the surface 210F. It is out.
  • the second structural period P2 of the convex portion 212b located in each of the sub-regions 230D to 230G is different for each sub-region, and the period of the convex portion 212b of the second pixel 230Pd located in the fourth sub-region 230D is the second structural cycle P2d.
  • the period of the convex portion 212b of the second pixel 230Pe located in the fifth sub-region 230E is the second structure period P2e.
  • the period of the convex portion 212b of the second pixel 230Pf located in the sixth sub-region 230F is the second structure period P2f
  • the cycle of the convex portion 212b of the second pixel 230Pg located in the seventh sub-region 230G is This is the second structure period P2g.
  • the second structure period P2d, the second structure period P2e, the second structure period P2f, and the second structure period P2g increase in this order.
  • the convex portions 212b in each of the sub-regions 230D to 230G may be arranged in a two-dimensional lattice shape, or may be arranged in a plurality of strips arranged at equal intervals and extending in one direction.
  • the diffraction angle ⁇ which is the angle at which the diffracted light is emitted, increases as the second structural period P2 increases. That is, the following formula (1) is established for the incident angle ⁇ , the diffraction angle ⁇ , the grating period d, the diffraction order n, and the diffraction wavelength ⁇ . Note that the grating period d is the second structure period P2.
  • d (sin ⁇ sin ⁇ ) n ⁇ (1)
  • the incident light is white and the incident angle ⁇ is 45 °
  • the second structural period P2 is 1.0 ⁇ m
  • the light is split into a range where the diffraction angle ⁇ is about 0 ° to about 20 °. Diffracted light is emitted.
  • the second structure period P2 is 1.5 ⁇ m
  • the diffraction angle ⁇ is about 18 ° to about 30 °
  • the second structure period P2 is 2.0 ⁇ m
  • the diffraction angle ⁇ is about 25 °.
  • the angle is about 35 ° and the second structure period P2 is 3.0 ⁇ m
  • the diffraction angle ⁇ is about 35 ° to about 40 °.
  • the region where the second pixel 230P emitting the diffracted light appears bright. Therefore, in the configuration in which the second structural periods P2 of the convex portions 212b located in the sub-regions 230D to 230G are different from each other, as shown in FIGS. 44 (a) and 44 (b), the surface 210F and the viewing direction of the observer When the observation angle ⁇ , which is the angle formed by the two, changes, the sub-regions 230D to 230G that appear bright change.
  • FIG. 44B shows the state in which the observation angle ⁇ shown in FIG. 44A is 90 °, that is, the state where the observer views the surface 210F from the direction orthogonal to the surface 210F of the display body 210.
  • the observation angle ⁇ is gradually decreased, the brighter regions change in order of the fourth sub region 230D, the fifth sub region 230E, the sixth sub region 230F, and the seventh sub region 230G.
  • FIG. 45A shows a state in which the sixth sub-region 230F and the seventh sub-region 230G appear dark.
  • FIG. 45B shows a state in which the sixth sub-region 230F and the seventh sub-region 230G appear dark.
  • FIG. 45D shows a state in which the region 230G looks dark, as shown in FIG. 45C, where the sixth sub-region 230F is bright and the fourth sub-region 230D, the fifth sub-region 230E, and the seventh sub-region 230G appear dark.
  • the state in which the seventh sub-region 230G is bright and the fourth sub-region 230D, the fifth sub-region 230E, and the sixth sub-region 230F appear dark is changed in order. Therefore, the shining portion changes in order from the star represented by the fourth subregion 230D to the tail of the star represented by the fifth subregion 230E, the sixth subregion 230F, and the seventh subregion 230G in order, and the shooting star changes. An image that appears to flow can be provided to the viewer.
  • the change of the image in the second display area 230 can be made conspicuous by the combination of the second display area 230 including the second pixels 230P having different periods of the convex portions 212b and the first display area 220.
  • the first display area 220 with a small color change due to a change in the observation angle is located around the second display area 230.
  • the change in the image in the second display area 230 when the 210 is moved stands out. Therefore, the forgery difficulty and design of an article provided with the display body 210 are further enhanced.
  • the number of areas where the periods of the convex portions 212b are different from each other is not particularly limited.
  • the two forms described above may be combined. That is, the second display area 230 may include second pixels 230P in which the convex portions 212b are arranged in different directions and second pixels 230P in which the periods of the convex portions 212b are different from each other. According to such a configuration, since the change of the image in the second display region 230 when the display body 210 is moved becomes more complicated, forgery difficulty and design are further improved.
  • light of a specific wavelength region is emitted from the display body as reflected light or transmitted light due to plasmon resonance. Since the wavelength region of the transmitted light and the reflected light is determined by a plurality of factors including the position and size of the periodic elements that are the respective convex portions 212b and the metal layer determined by each periodic element, the display body It is possible to increase the degree of freedom in adjusting the wavelength region that is transmitted or reflected.
  • the fifth embodiment it is an object of the fifth embodiment to provide a display body that can enhance the function expressed by the appearance of the display body.
  • the effects listed below are obtained according to the fifth embodiment, including the effects on such problems.
  • the second display area 230 includes a plurality of second pixels 230P in which the convex portions 212b are arranged in different directions
  • an observation method in which the display body 210 is moved relative to the observer is used. It seems that the brightness of the region where the second pixels 230P in which the protruding portions 212b are arranged in different directions are located changes separately. Therefore, the second display region 230 can form an image having a large change according to a change in the position and angle of the observer with respect to the display body 210. Further, the combination of the first display area 220 and the second display area 230 can make the change in the image in the second display area 230 stand out, so that the forgery difficulty and the design are further enhanced.
  • the second display region 230 includes a plurality of second pixels 230P having different periods of the convex portions 212b
  • the period of the convex portions 212b is different from each other in the observation method in which the observation angle is changed. It seems that the brightness of the area where the second pixel 230P is located changes separately. Therefore, the second display region 230 can form an image having a large change according to the change in the observation angle. Further, the combination of the first display area 220 and the second display area 230 can make the change in the image in the second display area 230 stand out, so that the forgery difficulty and the design are further enhanced.
  • each of the display elements included in the first display area 220 and the display elements included in the second display area 230 is the minimum of repetition for forming a raster image.
  • the area is not limited to the unit pixel, and may be an area where anchors for forming a vector image are connected.
  • the periodic element included in the periodic structure may be a recess that is recessed from the reference plane with the surface of the support portion as the reference plane.
  • the configuration of the device with a display body of the second embodiment may be applied to the fourth embodiment and the fifth embodiment. That is, the device with a display body may include the display body of the fourth embodiment or the fifth embodiment and the light emission structure.
  • Means for solving the above problems include the following items as technical ideas derived from the fourth embodiment, the fifth embodiment, and the modifications thereof.
  • a display body having a front surface and a back surface, wherein the uneven structure layer is a dielectric having a plurality of protrusions protruding in a direction from the back surface toward the surface, and is located on the surface of the uneven structure layer, A metal layer having a shape that follows the surface shape of the concavo-convex structure layer, and when viewed from a direction facing the surface of the display body, the display body is a first display region in which a first display element is located. And a second display region in which the second display element is located, and in the first display element, the plurality of convex portions have a sub-wavelength period when viewed from a direction facing the surface of the display body.
  • a two-dimensional grid together with the portion constituting the first display element in the metal layer, constitutes a structure that causes plasmon resonance, and in the second display element, the plurality of protrusions are Seen from the direction facing the surface of the display
  • a diffraction grating that diffracts light in the visible region is arranged together with a portion that constitutes the second display element in the metal layer, which is arranged with a period larger than the period of the array of the convex portions in the first display element. Display body.
  • the first display element when light is irradiated from the outside of the display body toward the surface of the display body, the first display element can suppress the first-order diffracted light from being generated on the surface side of the display body.
  • first-order diffracted light generated at an angle close to the horizontal with respect to the surface of the display body among the light incident on the structure composed of the metal layer and the concavo-convex structure layer causes plasmon resonance.
  • the surface plasmons induced in the structure through plasmon resonance are transmitted through the structure and emitted as light to the back side of the structure.
  • the diffracted light is prevented from being emitted to the surface side of the display body, even if the observation angle, which is the angle formed by the surface and the viewing direction of the observer, changes, the color of the first display region The change is small.
  • the observation angle which is the angle formed by the surface and the viewing direction of the observer
  • the color of the first display region seems to change greatly according to the change of the observation angle.
  • the first display region and the second display region which are regions having different degrees of color change due to a change in observation angle, are realized by the difference in the period of the arrangement of the convex portions in the concavo-convex structure layer. Is done.
  • the outer edges of these areas are defined by the positions of the protrusions, and the protrusions of the first display area are arranged in sub-wavelength periods, so that the outer edges are more finely compared with the areas formed by ink printing. Can be set. Therefore, a finer image can be formed by the first display area and the second display area, and the function expressed by the difficulty and design of counterfeiting, that is, the appearance of the display body can be enhanced.
  • the height of the convex portion affects the diffraction efficiency. When the convex portion has a low height, the light diffraction efficiency , And the visibility of the diffracted light may deteriorate.
  • the height of the convex portion is increased to increase the diffraction efficiency. Can be increased.
  • the area ratio occupied by the convex portion in the first display element on a plane including the upper surface of the convex portion is 10% or more and 50% or less.
  • the area ratio is 50% or less in the first display region, it is possible to suppress transmission light from being observed in reflection observation from the surface side, while the area ratio is 10%.
  • the visibility of the image in the transmission observation from the front surface side and the back surface side is ensured.
  • a substrate having a surface supporting the concavo-convex structure layer, the concavo-convex structure layer including a flat portion having a shape extending along the surface of the substrate, and the convex portion from the flat portion The display body according to any one of the protruding items 31 to 33.
  • the flat portion has a function of supporting the convex portion included in the first display area and a function of supporting the convex portion included in the second display area. Therefore, it is possible to accurately prevent the convex part from falling down, and the structure for supporting the convex part located in each region is a flat part, so that the structure required to suppress the convex part from falling down is simplified. Can be achieved.
  • the display body in the observation method in which the display body is moved relative to the observer, it seems that the brightness of each second display element in the second display region changes separately. Therefore, an image having a large change according to a change in the position and angle of the observer with respect to the display body can be formed by the display body. Furthermore, the combination of the first display area and the second display area can make the change in the image in the second display area stand out, so that the function expressed by the appearance of the display body is further enhanced.
  • the display body in the observation method in which the observation angle is changed, it appears that the brightness of each second display element in the second display region changes separately. Accordingly, an image having a large change according to the change in the observation angle can be formed by the display body. Furthermore, the combination of the first display area and the second display area can make the change in the image in the second display area stand out, so that the function expressed by the appearance of the display body is further enhanced.
  • a concavo-convex structure layer comprising a plurality of convex portions made of the resin by pressing the intaglio to the resin coated on the surface of the substrate and curing the resin, the first and second regions including the first region and the second region
  • the two convex portions constitute a diffraction grating that diffracts light in the visible region. So that the manufacturing method of the display body forming a plurality of convex portions arranged in the second region at a greater period than the period of arrangement of the convex portion in the first region.
  • the above manufacturing method it is possible to manufacture a display body having regions in which the degree of change in color due to change in observation angle is different from each other due to the difference in the period of the arrangement of protrusions in the uneven structure layer. Therefore, a display body with an enhanced function expressed by the appearance of the display body is obtained. And according to the said manufacturing method, the uneven
  • the display body can be efficiently manufactured as compared with the manufacturing method in which the convex portions in the first region and the convex portions in the second region are formed in separate steps.
  • the boundary between the first region and the second region can be formed more precisely.
  • Display structure As shown in FIG. 46, the surface 10S of the display body 170 is partitioned into a first display area 10A and a second display area 10B.
  • the cross-sectional structure provided in the first display area 10A and the cross-sectional structure provided in the second display area 10B are different from each other.
  • the first display area 10A includes a plurality of isolated areas A12 and a plurality of isolated areas A13 having a size different from that of the isolated area A12 when viewed from the direction facing the surface 10S of the display body 170. , Each isolated region A12 and a single peripheral region A14 surrounding each isolated region A13.
  • each isolated region A12 is shown with dots, and each isolated region A13 is shown with diagonal lines.
  • the isolated regions A12 and A13 are arranged in a square array along the surface 10S.
  • the square array formed by the isolated region A12 is an array in which the isolated region A12 is located at each vertex of the square LT2 having one side having the structural period PT2.
  • the square array formed by the isolated region A13 is an array in which the isolated region A13 is positioned at each vertex of the square LT3 having one side having the structural period PT3.
  • the structural period PT2 and the structural period PT3 satisfy PT2 ⁇ PT3.
  • the plurality of isolated regions A12 are not limited to a square array, but may be arranged in a two-dimensional lattice, and the plurality of isolated regions A13 are not limited to a square array and may be arranged in a two-dimensional lattice.
  • the two-dimensional lattice-like arrangement is an arrangement in which elements are arranged along each of two directions intersecting in a two-dimensional plane.
  • the display body 170 includes the support portion 11.
  • the structure of the support part 11 is the same as that of the support part 11 of 1st Embodiment.
  • the first display area 10 ⁇ / b> A includes a first lattice layer 21, an intermediate lattice layer 31, and a second lattice layer 41 in order from the layer close to the support portion 11.
  • the intermediate lattice layer 31 is sandwiched between the first lattice layer 21 and the second lattice layer 41, and the side where the first lattice layer 21 is located with respect to the support portion 11 is the surface side of the structure.
  • the side where the support part 11 is located with respect to the first lattice layer 21 is the back surface side in the structure.
  • the first lattice layer 21 is located on the surface that is one of the surfaces of the support portion 11.
  • the first lattice layer 21 includes a plurality of first dielectric layers and a first metal layer 27, and each of the plurality of first dielectric layers has a width in an arrangement direction that is a direction in which the first dielectric layers are arranged. A plurality of different first dielectric layers are included.
  • the first lattice layer 21 has the first dielectric layer 25 and the first dielectric layer 26 which are two types of first dielectric layers having different widths in the arrangement direction will be described.
  • the first dielectric layer 25 is located in the isolated region A12 when viewed from the direction facing the surface 10S of the display body 170.
  • the first dielectric layer 26 is located in the isolated region A13.
  • the single first metal layer 27 is located in the peripheral region A14 when viewed from the direction facing the surface 10S.
  • the plurality of first dielectric layers 25 are arranged in a two-dimensional lattice pattern along the surface 10S, and the plurality of first dielectric layers 26 are also arranged in a two-dimensional lattice pattern along the surface 10S.
  • the first dielectric layers 25 and 26 are structures protruding from the surface of the support portion 11.
  • Each first dielectric layer 25, 26 is integral with the support portion 11, for example.
  • each 1st dielectric material layer 25 and 26 has a boundary between the surfaces of the support part 11, for example, and is a different body from the support part 11. FIG.
  • the first metal layer 27 has a mesh shape surrounding each of the first dielectric layers 25 and 26 when viewed from the direction facing the surface 10S.
  • the single first metal layer 27 is an optical sea component through which free electrons pass, and each first dielectric layer 25, 26 is an island component distributed in the sea component. It is.
  • the structural period PT2 at which the first dielectric layer 25 is located has the shortest width WP2 between two adjacent first dielectric layers 25 and the width of the first dielectric layer 25. This is the sum of WT2.
  • the structural period PT3 where the first dielectric layer 26 is located is the sum of the shortest width WP3 between two adjacent first dielectric layers 26 and the width WT3 of the first dielectric layer 26.
  • Each of the structural period PT2 and the structural period PT3 is a sub-wavelength period that is equal to or less than the wavelength in the visible region, and satisfies the same condition as the structural period PT of the first embodiment. That is, for each direction of the two-dimensional lattice in which the isolated regions A12 and A13 are arranged, the ratio of the width WT2 of the first dielectric layer 25 to the structural period PT2 and the ratio of the width WT3 of the first dielectric layer 26 to the structural period PT3 Is 0.25 or more and 0.75 or less, preferably 0.40 or more and 0.60 or less.
  • the display body 170 when the display body 170 is viewed from a macroscopic viewpoint, the display body 170 is a structure in which a structure in which two isolated regions A12 and two isolated regions A13 are combined is repeated. It can also be taken as.
  • the period in which such a structure is located can be regarded as a new structure period PT4 that is a combination of the structure period PT2 of the isolated region A12 and the structure period PT3 of the isolated region A13.
  • the structural period PT4 is a period obtained by combining the structural period PT2 and the structural period PT3, which are sub-wavelength periods.
  • the structural period PT4 becomes larger than the sub-wavelength period, and the display body 170 is formed with a structure aligned with the structural period PT4. Therefore, the first-order diffracted light in the visible region is emitted from the display body 170.
  • the structural period PT4 is configured by arranging two isolated regions A12 and two isolated regions A13 along one direction, but the isolated regions constituting the structural period PT4
  • the number is not limited to this. That is, an isolated region group having a structural period of sub-wavelength period, and by arranging a plurality of isolated region groups having different structural periods, the combined period of these isolated region groups is larger than the sub-wavelength period. It suffices if a period is formed and a structure that generates first-order diffracted light is formed.
  • the thickness of the first lattice layer 21 is preferably 10 nm to 200 nm, and more preferably 10 nm to 100 nm.
  • An intermediate lattice layer 31 is located on the first lattice layer 21.
  • the intermediate lattice layer 31 is disposed on the surface of the first lattice layer 21 opposite to the support portion 11. Similar to the first embodiment, the thickness of the intermediate lattice layer 31 is preferably larger than the thickness of the first lattice layer 21 and 150 nm or less.
  • the intermediate lattice layer 31 includes, for example, a plurality of first intermediate dielectric layers including a plurality of first intermediate dielectric layers 35 and a plurality of first intermediate dielectric layers 36, and the first intermediate dielectric layers 35 and 36.
  • a single second intermediate dielectric layer 37 having a low dielectric constant.
  • Each first intermediate dielectric layer 35 is located in the isolated region A12 when viewed from the direction facing the surface 10S.
  • each first intermediate dielectric layer 36 is located in the isolated region A13 when viewed from the direction facing the surface 10S.
  • the single second intermediate dielectric layer 37 is located in the peripheral region A14 when viewed from the direction facing the surface 10S.
  • the plurality of first intermediate dielectric layers 35 are arranged in a two-dimensional lattice pattern along the surface 10S, and the plurality of first intermediate dielectric layers 36 are also arranged in a two-dimensional lattice pattern along the surface 10S.
  • Each first intermediate dielectric layer 35 is a structure protruding from the first dielectric layer 25.
  • each first intermediate dielectric layer 36 is a structure protruding from the first dielectric layer 26.
  • Each first intermediate dielectric layer 35 may be integral with the first dielectric layer 25 or may be a separate body.
  • Each first intermediate dielectric layer 36 may be integral with the first dielectric layer 26 or may be a separate body.
  • the period in which the first intermediate dielectric layer 35 is located is the sum of the shortest width WP2 and the width WT2 as in the first dielectric layer 25, and is the above-described structural period PT2. .
  • the period in which the first intermediate dielectric layer 36 is located is the sum of the shortest width WP3 and the width WT3, which is the above-described structural period PT3, as in the first dielectric layer 26.
  • the ratio of the width WT2 of the first intermediate dielectric layer 35 to the structural period PT2 and the ratio of the width WT3 of the first intermediate dielectric layer 36 to the structural period PT3 Is 0.25 or more and 0.75 or less, preferably 0.40 or more and 0.60 or less.
  • the second intermediate dielectric layer 37 has a mesh shape surrounding each of the first intermediate dielectric layers 35 and each of the first intermediate dielectric layers 36 when viewed from the direction facing the surface 10S.
  • the single second intermediate dielectric layer 37 is structurally and optically a sea component, and each first intermediate dielectric layer 35, 36 is structurally and optically an island component. is there.
  • the second intermediate dielectric layer 37 is an air layer or a resin layer.
  • a second lattice layer 41 is positioned on the intermediate lattice layer 31.
  • the second lattice layer 41 is disposed on the surface of the intermediate lattice layer 31 opposite to the first lattice layer 21. Similar to the first embodiment, the thickness of the second lattice layer 41 is preferably 10 nm or more and 200 nm or less, and more preferably 10 nm or more and 100 nm or less.
  • the second lattice layer 41 includes, for example, a plurality of second metal layers including a plurality of second metal layers 45 and a plurality of second metal layers 46, and a single second dielectric layer 47.
  • the position of each second metal layer 45 includes an isolated region A12 when viewed from the direction facing the surface 10S.
  • the position of each second metal layer 46 includes an isolated region A13 when viewed from the direction facing the surface 10S.
  • the position of the single second dielectric layer 47 is included in the peripheral region A14 when viewed from the direction facing the surface 10S.
  • the plurality of second metal layers 45 are arranged in a two-dimensional lattice shape along the surface 10S, and the plurality of second metal layers 46 are also arranged in a two-dimensional lattice shape along the surface 10S.
  • Each second metal layer 45 is a structure that overlaps the top surface of the first intermediate dielectric layer 35, and is separate from the first intermediate dielectric layer 35.
  • Each second metal layer 46 is a structure that overlaps the top surface of the first intermediate dielectric layer 36, and is separate from the first intermediate dielectric layer 36.
  • the period in which the second metal layer 45 is located is the sum of the shortest width WP2 and the width WT2 as in the first dielectric layer 25, and is the above-described structural period PT2.
  • the period in which the second metal layer 46 is located is the sum of the shortest width WP3 and the width WT3, like the first dielectric layer 26, and is the structural period PT3.
  • the ratio of the width WT2 of the second metal layer 45 to the structural period PT2 and the ratio of the width WT3 of the second metal layer 46 to the structural period PT3 are 0. It is preferably 25 or more and 0.75 or less, and preferably 0.40 or more and 0.60 or less.
  • the second dielectric layer 47 has a mesh shape surrounding each of the second metal layers 45 and each of the second metal layers 46 when viewed from the direction facing the surface 10S.
  • the single second dielectric layer 47 is an optical sea component with fewer free electrons than the second metal layer 45 and the second metal layer 46, and each second metal layer 45. , 46 are island components distributed among the sea components.
  • the second dielectric layer 47 is an air layer or a resin layer.
  • the volume ratio of the first metal layer 27 that is the sea component in the first lattice layer 21 is larger than the second metal layer 45 that is the island component in the second lattice layer 41,
  • the volume ratio of the second metal layer 45 that is an island component in the second lattice layer 41 is larger than the volume ratio of the metal material in the intermediate lattice layer 31.
  • the volume ratio of the first metal layer 27 that is the sea component in the first lattice layer 21 is larger than the second metal layer 46 that is the island component in the second lattice layer 41,
  • the volume ratio of the second metal layer 46 that is an island component in the second lattice layer 41 is larger than the volume ratio of the metal material in the intermediate lattice layer 31.
  • a structure constituted by the first dielectric layer 25 and the first intermediate dielectric layer 35 and a structure constituted by the first dielectric layer 26 and the first intermediate dielectric layer 36 Each is an example of a periodic element, and is also a convex portion protruding from the reference surface with the surface of the support portion 11 as a reference surface.
  • middle dielectric material layers 35 and 36 is an example of a periodic structure.
  • the layer composed of the first metal layer 27, the second metal layer 45, and the second metal layer 46 is regarded as a metal layer having a shape in which the shape of the entire layer follows the surface shape of the periodic structure. It is done.
  • the surface of the periodic structure is a surface including a region surrounding each periodic element in the reference plane and the surface of each periodic element.
  • the support portion 11 includes a base material and an intermediate layer positioned on the surface side with respect to the base material, and each first dielectric layer 25, 26 may be integral with the intermediate layer 11b.
  • the peripheral area A14 has the same configuration as the peripheral area A3 of the first embodiment. That is, in the peripheral region A14, the first metal layer 27 of the first lattice layer 21, the second intermediate dielectric layer 37 of the intermediate lattice layer 31, and the second lattice layer 41 in order from the layer close to the support portion 11.
  • the second dielectric layer 47 is located.
  • the second display region 10B has the same configuration as the second display region 10B of the first embodiment, and the first lattice layer 21 and the intermediate lattice layer described above are formed on the support portion 11. 31 and the second lattice layer 41 are not provided.
  • the second display region 10 ⁇ / b> B is made of, for example, a layer made of the same material as that forming the first dielectric layers 25 and 26, or made of the same material as that making up the first metal layer 27. A metal layer may be provided.
  • the refractive index of the first lattice layer 21 is a size controlled by the first metal layer 27, which is a sea component, and is sufficiently lower than the refractive index of the air layer.
  • the refractive index of the intermediate lattice layer 31 is a size controlled by the second intermediate dielectric layer 37 that is a sea component, and is higher than the refractive index of the air layer and close to the refractive index of the air layer. It is.
  • the refractive index of the second lattice layer 41 is a size controlled by the second dielectric layer 47, which is a sea component, and is lower than the refractive index of the air layer and close to the refractive index of the air layer. It is.
  • the structural period PT2 of the second metal layer 45 of the second lattice layer 41 and the structural period PT3 of the second metal layer 46 are sub-wavelength periods, the wavelength region of the light incident on the second lattice layer 41 A part of the light EP2 is subjected to plasmon resonance in the second grating layer 41. As a result, the second grating layer 41 transmits part of the light in the wavelength region of the light incident on the second grating layer 41 to the intermediate grating layer 31.
  • the structural period PT2 of the first dielectric layer 25 of the first grating layer 21 and the structural period PT3 of the first dielectric layer 26 are also sub-wavelength periods, the wavelength region of the light incident on the first grating layer 21 A part of the light EP 1 is also subjected to plasmon resonance in the first lattice layer 21. As a result, the first grating layer 21 transmits part of the light LP1 in the wavelength region of the light incident on the first grating layer 21 to the support portion 11.
  • the structural period PT4 obtained by combining the structural period PT2 and the structural period PT3 is larger than the sub-wavelength period.
  • a spectral color due to the first-order diffracted light is observed. Therefore, light outside the wavelength region consumed by plasmon resonance is dispersed, and light having a large hue change depending on the observation angle is visually recognized at some observation angles.
  • the plasmon resonance is performed in each of the lattice layers. Colored light transmitted through the display body 170, that is, light other than white and black is visually recognized in the first display region 10A. Note that the results of the front surface reflection observation and the rear surface transmission observation show the same tendency even when the amount of external light directed toward the front surface 10S is higher than the amount of external light directed toward the rear surface 10T.
  • a part of the light EP1 in the wavelength region of the light transmitted through the interface between the support portion 11 and the first grating layer 21 is subjected to plasmon resonance in the first grating layer 21.
  • the first grating layer 21 transmits part of the light in the wavelength region of the light incident on the first grating layer 21 to the intermediate grating layer 31.
  • a part of the light EP 2 in the wavelength region of the light that has passed through the intermediate grating layer 31 and entered the second grating layer 41 is also subjected to plasmon resonance in the second grating layer 41.
  • the second grating layer 41 transmits part of the light LP2 in the wavelength region of the light incident on the second grating layer 41 to the air layer.
  • the structural period PT4 obtained by combining the structural period PT2 and the structural period PT3 is larger than the sub-wavelength period.
  • a spectral color due to the first-order diffracted light is observed. Therefore, light outside the wavelength region consumed by plasmon resonance is dispersed, and light having a large hue change depending on the observation angle is visually recognized at some observation angles.
  • the colored light LR due to Fresnel reflection at the interface is That is, light LR other than white and black is visually recognized in the first display area 10A.
  • the spectral color due to the diffraction grating structure having a period longer than the sub-wavelength period is visually recognized according to the observation angle.
  • the Fresnel reflection and plasmon resonance in each of the lattice layers are performed. Colored light is visually recognized in the first display area 10A.
  • the results of the surface transmission observation and the back surface reflection observation show the same tendency even when the amount of external light directed to the front surface 10S is higher than the amount of external light directed to the back surface 10T.
  • the first dielectric layers 25 and 26 and the first intermediate dielectric layers 35 and 36 are formed on the surface of the support portion 11.
  • the first dielectric layer 25 and the first intermediate dielectric layer 35 are integrally formed as a protrusion protruding from the surface of the support portion 11, and the first dielectric layer 26 and the first intermediate dielectric layer 36 are It is integrally formed as a protrusion protruding from the surface of the support portion 11.
  • a method for forming the protrusion for example, a photolithographic method using a light or charged particle beam, a nanoimprint method, a plasma etching method, or the like can be adopted.
  • a nanoimprint method can be used as a method of forming a protrusion on the surface of the support portion 11 made of resin.
  • a method in which light or a photolithographic method using a charged particle beam and a plasma etching method are combined may be used.
  • a polyethylene terephthalate sheet is used as a base material, and an ultraviolet curable resin is applied to the surface of the base material.
  • the surface of the synthetic quartz mold which is an intaglio, is pressed against the surface of the coating film made of an ultraviolet curable resin, and these are irradiated with ultraviolet rays.
  • the synthetic quartz mold is released from the cured ultraviolet curable resin.
  • the unevenness of the intaglio is transferred to the resin on the surface of the base material, and the projecting portion comprising the first dielectric layer 25 and the first intermediate dielectric layer 35, the first dielectric layer 26 and the first intermediate dielectric A protrusion made of the layer 36 is formed.
  • the ultraviolet curable resin can be changed to a thermosetting resin, and the ultraviolet irradiation can be changed to heating. Further, the ultraviolet curable resin can be changed to a thermoplastic resin, and the irradiation of the ultraviolet rays can be changed to heating and cooling.
  • the first metal layer 27, the second metal layer 45, and the second metal layer 46 are formed on the surface of the support portion 11 including the protrusions.
  • the method for forming these metal layers is, for example, a vacuum deposition method or a sputtering method.
  • the first lattice layer 21 defined by the top surface of the first metal layer 27 is formed, and the second lattice layer 41 defined by the top surfaces of the second metal layer 45 and the second metal layer 46 is formed.
  • an intermediate lattice layer 31 sandwiched between the first lattice layer 21 and the second lattice layer 41 is formed.
  • each of the region having the structural period PT2 and the region having the structural period PT3 preferably has the configuration shown as the preferable configuration of the first display region 10A in the first embodiment.
  • the structural period If the ratio of the width WT2 of the first dielectric layer 25 to PT2 is 0.25 or more and the ratio of the width WT3 of the first dielectric layer 26 to the structural period PT3 is 0.25 or more, it is visually recognized by surface transmission observation.
  • the image to be visually recognized and the image to be visually recognized by the back surface transmission observation are so clear that they can be visually recognized.
  • the sum of the thickness T2 of the first dielectric layers 25 and 26 of the first lattice layer 21 and the thickness T3 of the first intermediate dielectric layers 35 and 36 of the intermediate lattice layer 31 is greater than the structural period PT2. It is preferably smaller and smaller than the structural period PT3.
  • the sum of the thickness T2 of the first dielectric layers 25 and 26 and the thickness T3 of the first intermediate dielectric layers 35 and 36 is smaller than half of the structural period PT2 and smaller than half of the structural period PT3. It is more preferable.
  • the thickness of the first intermediate dielectric layer 35 and the thickness of the first intermediate dielectric layer 36 are preferably the same. According to such a configuration, when a synthetic quartz mold, which is an intaglio for forming the first intermediate dielectric layer 35 and the first intermediate dielectric layer 36, is produced by using a dry etching method, the depression of the intaglio is processed once. Can be formed by process. However, when the structural period PT2 and the structural period PT3 are greatly different, the thickness of the first intermediate dielectric layer 35 and the first intermediate dielectric layer 36 may be different due to processing characteristics. . However, the difference in thickness between the first intermediate dielectric layer 35 and the first intermediate dielectric layer 36 caused by the manufacturing method does not have a significant effect on the observation of the display body 170 as an optical change. Absent.
  • the material constituting the first metal layer 27 and the second metal layers 45 and 46 is preferably a material in which the real part of the complex dielectric constant for light in the visible region has a negative value, as in the first embodiment.
  • a material in which the real part of the complex dielectric constant for light in the visible region has a negative value as in the first embodiment.
  • aluminum, silver, gold, indium, tantalum and the like are preferable.
  • the width W2 of the second metal layer 45 is the same as in the first embodiment.
  • the width WT2 of the intermediate dielectric layer 35 is slightly larger, and the shortest width WP5 of the second metal layers 45 adjacent to each other is slightly smaller than the shortest width WP2.
  • the width W3 of the second metal layer 46 is slightly larger than the width WT3 of the first intermediate dielectric layer 36, and the shortest width WP6 of the second metal layers 46 adjacent to each other is slightly smaller than the shortest width WP3.
  • the ratio of the width W2 of the second metal layer 45 to the structural period PT2 is 0.25 or more and 0.75 or less
  • the ratio of the width W3 of the second metal layer 46 to the structure period PT3 is 0.25 or more. 0.75 or less.
  • the periphery of the first intermediate dielectric layers 35 and 36 in the first metal layer 27 is affected by the shadow effect of the second metal layers 45 and 46, and the portion closer to the first intermediate dielectric layers 35 and 36 is thinner.
  • an intermediate metal layer 35A that is a metal layer continuous with the second metal layer 45 is also formed on the side surface of the first intermediate dielectric layer 35. Is formed. Similarly, an intermediate metal layer 36 ⁇ / b> A that is a metal layer continuous with the second metal layer 46 is formed on the side surface of the first intermediate dielectric layer 36.
  • the intermediate metal layer 35 ⁇ / b> A is sandwiched between the first intermediate dielectric layer 35 and the second intermediate dielectric layer 37.
  • the intermediate metal layer 35 ⁇ / b> A is a structure integrated with the second metal layer 45, and the thickness on the side surface of the first intermediate dielectric layer 35 is thinner as the portion is closer to the first metal layer 27.
  • the intermediate metal layer 36 ⁇ / b> A is sandwiched between the first intermediate dielectric layer 36 and the second intermediate dielectric layer 37.
  • the intermediate metal layer 36 ⁇ / b> A is a structure integrated with the second metal layer 46, and the thickness on the side surface of the first intermediate dielectric layer 36 is thinner as the portion is closer to the first metal layer 27.
  • the first metal layer 27, the second metal layer 45, and the second metal layer 46 have the same refractive index, and the refraction between the first dielectric layer 25 and the first metal layer 27.
  • Each of the difference in refractive index and the difference in refractive index between the first dielectric layer 26 and the first metal layer 27 is different from the difference in refractive index between the second dielectric layer 47 and the second metal layers 45 and 46. Is larger, it is possible to suppress Fresnel reflection at the interface between the second grating layer 41 and the other layer, and to promote Fresnel reflection at the interface between the first grating layer 21 and the other layer. Become.
  • the refractive index difference between the second dielectric layer 47 and the surface layer that is a layer in contact with the second dielectric layer 47 on the side opposite to the intermediate lattice layer 31 with respect to the second dielectric layer 47 is The refractive index difference between the first metal layer 27 and the support portion 11 is preferably smaller.
  • the surface layer is, for example, an air layer.
  • the refractive index of the second dielectric layer 47 is more preferably equal to the refractive index of the surface layer.
  • light in a specific wavelength region is emitted from the display body as reflected light or transmitted light due to plasmon resonance.
  • the wavelength region of the transmitted light and reflected light is determined by a plurality of factors including the position and size of the periodic elements that are the convex portions and the metal layer determined by the periodic elements. Alternatively, the degree of freedom in adjusting the reflected wavelength region can be increased.
  • a display body including a diffraction grating has been used as an example of a display body having an anti-counterfeit function.
  • the diffraction grating constitutes a hologram, for example.
  • the diffraction grating included in such a display body includes, for example, a transparent resin layer and a metal layer positioned on the resin layer.
  • the shape of a diffraction grating expressed by a mathematical function having a sinusoidal secondary structure has a metal layer that is thinner than other parts in the inclined part of the diffraction grating, and the difference in structure between the inclined parts.
  • a difference in transmittance and reflectance is added to the metal layer.
  • a display that enables discrimination of the front and back sides of the display body by observing the image formed by the display body, and enables dynamic color expression using a diffraction grating, which is excellent in design and forgery.
  • Providing a body is also an object of the sixth embodiment.
  • the effects (1-1), (1-2), (1-4) to (1-8) of the first embodiment, according to the sixth embodiment, including the effects on such problems can be obtained.
  • the size of the structural period PT2 and the structural period PT3 is a sub-wavelength period that is equal to or smaller than the wavelength of the visible region, the first-order diffracted light is not reflected in the region unit having these structural periods, and is observed. Static color expression with small change in hue due to angle is possible.
  • the size of the structural period PT4 is larger than the sub-wavelength period, the spectral color due to the first-order diffracted light is observed in the region unit having the structural period PT4, and the change in hue due to the observation angle is large. Dynamic color expression is possible. Therefore, it is possible to realize color expressions having different hue changes depending on the observation angle on the same plane.
  • the first lattice layer 21 has been described as having two types of first dielectric layers having different widths in the arrangement direction.
  • the first lattice layer 21 may include n types (n is an integer of 2 or more) of first dielectric layers having different widths in the arrangement direction. There are a plurality of first dielectric layers for each type. In this case, among the n types of first dielectric layers having different widths in the arrangement direction, the structural period between the same types of first dielectric layers having the same width in the arrangement direction needs to be sub-wavelength periods.
  • the n types of first dielectric layers may include a plurality of types of first dielectric layers having different widths in the arrangement direction and having the same structural period.
  • the structural period is n types or less.
  • a group of a plurality of first dielectric layers for each type is a first dielectric layer group
  • a group of a plurality of types of first dielectric layer groups is a first dielectric layer group
  • each first dielectric layer group The structural period is a sub-wavelength period, and a structural period larger than the sub-wavelength period can be formed by periodically arranging a plurality of first dielectric layer groups.
  • Each of the structural period PT2, the structural period PT3, and the structural period PTn between the first dielectric layers having the same width in the arrangement direction is a sub-wavelength period.
  • a group of first dielectric layer groups having the respective structural periods PT2, PT3, PTn is a first dielectric layer group.
  • a structural period PT4 larger than the sub-wavelength period is formed by periodically arranging a plurality of first dielectric layer groups.
  • the structure period between the first dielectric layers needs to be a sub-wavelength period.
  • a plurality of first dielectric layers whose structural period is a sub-wavelength period are defined as a first dielectric layer group, and a first dielectric layer group is configured from one first dielectric layer group, a plurality of first dielectric layers are formed.
  • a structural period larger than the sub-wavelength period may be formed by periodically arranging the dielectric layer groups at intervals.
  • the structural period PT2 between the first dielectric layers is a sub-wavelength period.
  • FIG. 55 shows an example in which 16 first dielectric layers arranged in 4 rows ⁇ 4 columns constitute a first dielectric layer group and a first dielectric layer group. The number of the first dielectric layers constituting the group is not limited to 16.
  • a plurality of first dielectric layer groups are periodically arranged at intervals to form a structural period PT4 that is larger than the sub-wavelength period.
  • the same configuration as that of the modified example of the first embodiment can be applied to each of the areas having different structural periods.
  • the display body may include a dielectric layer similar to that of the second embodiment on the metal layer.
  • the periodic element included in the periodic structure may be a recess that is recessed from the reference surface with the surface of the support portion 11 as the reference surface.
  • the configuration of the device with a display according to the second embodiment may be applied to the sixth embodiment and its modifications.
  • the device with a display body may include the display body according to the sixth embodiment or a modification thereof and the light emission structure.
  • a support portion made of a dielectric material that transmits light in the visible region; a first lattice layer disposed on one of the surfaces of the support portion; and a surface of the first lattice layer opposite to the support portion. And a second lattice layer disposed on a surface of the intermediate lattice layer opposite to the first lattice layer, the first lattice layer being arranged in a two-dimensional lattice shape.
  • a first metal layer having a mesh shape surrounding each first dielectric layer, and the intermediate lattice layer includes a plurality of first intermediate dielectric layers arranged in a two-dimensional lattice shape.
  • the second lattice layer Comprises a plurality of second metal layers arranged in a two-dimensional lattice, and a second dielectric layer having a mesh shape surrounding each second metal layer,
  • the width of the first dielectric layer in the arrangement direction of the first dielectric layer along the two-dimensional lattice is one or more kinds, and a plurality of the first lattice layers are provided for each kind of the width.
  • a plurality of the first dielectric layers having the same width are first dielectric layer groups, and the structural period of the first dielectric layer in each first dielectric layer group Is a sub-wavelength period, and one or more first dielectric layer groups constitute a first dielectric layer group, and a plurality of the first dielectric layer groups are regularly arranged, whereby the sub-wavelength A display body in which a structural period larger than the period is formed.
  • each of the first metal layer and the second metal layer has a negative real part of a complex dielectric constant with respect to light in a visible region.
  • the ratio of the width of the first dielectric layer to the structural period of the first dielectric layer and the ratio of the width of the second metal layer to the structural period of the second metal layer are each 0.40 or more and 0
  • the first lattice layer has a thickness of 100 nm or less
  • the second lattice layer has a thickness of 100 nm or less
  • the intermediate lattice layer has a thickness of 150 nm or less, the first lattice layer, 45.
  • the display body according to any one of items 41 to 44, wherein the intermediate lattice layer has the largest thickness among the second lattice layer and the intermediate lattice layer.
  • the material constituting the first metal layer is the same as the material constituting the second metal layer, the second dielectric layer is an air layer, and the refractive index of the first dielectric layer and the first dielectric layer Item 46.
  • the display body according to any one of items 41 to 45, wherein a difference between the refractive index of the metal layer and the refractive index of the second dielectric layer is larger than that of the second metal layer.
  • the wavelength region of incident light irradiated on the display body is not limited, the seventh and eighth embodiments include a visible region (wavelength: 400 nm or more and 800 nm or less) that can be recognized with the naked eye as the incident light. A description will be given for natural light.
  • the display bodies of the seventh embodiment and the eighth embodiment may be used for the purpose of increasing the difficulty of counterfeiting the article, may be used for the purpose of improving the designability of the article, and these purposes may be used. It may also be used.
  • the display body 300 of the seventh embodiment includes a support layer 312 made of a material that is transparent to the incident light I, and an uneven structure layer formed on the surface of the support layer 312. 314 and a stacked body 318 including a metal layer 316 provided over the uneven structure layer 314.
  • the uneven structure layer 314 is made of a dielectric material.
  • the dielectric material for example, when the incident light I is light in the visible region, synthetic quartz or resin that transmits light in the visible region is suitable.
  • the concavo-convex structure layer 314 includes a plurality of convex portions 314a arranged so as to have periodicity, and a concave portion 314b which is a portion other than the convex portions 314a.
  • the example of the concavo-convex structure layer 314 shown in FIG. 56A shows a configuration in which a plurality of convex portions 314a are arranged in a hexagonal array that is an example of a two-dimensional lattice-like array.
  • a flat surface 315 exists in the recess 314b.
  • the convex portions 314a are arranged so that the apexes of the three adjacent convex portions 314a form an equilateral triangle 317.
  • the length PS of one side of the equilateral triangle 317 is the structural period of the convex portion 314a.
  • the vertexes of the three adjacent convex portions 314a are not limited to the array forming a regular triangle, and the vertexes of the four adjacent convex portions 314a form a square, that is, a plurality of squares are arranged in a square array.
  • the convex portions 314a may be arranged.
  • a plurality of adjacent ridges 314a may form an isosceles triangle instead of an equilateral triangle, or vertices of four adjacent ridges 314a may form a rectangle instead of a square.
  • Convex portions 314a may be arranged. FIG.
  • FIG. 57A shows an example of an array in which the vertices of three adjacent convex portions 314a form an isosceles triangle
  • FIG. 57B shows an example of an array in which the vertices of four adjacent convex portions 314a form a rectangle.
  • the structural period PS of the convex part 314a in the concave-convex structure layer 314 is a sub-wavelength period that is equal to or less than the wavelength of the incident light I.
  • all the structural periods PS are equal to or less than the wavelength of the incident light I.
  • each of the structural period PS1 and the structural period PS2 is less than or equal to the wavelength of the incident light I.
  • each of the structural period PSx and the structural period PSy is incident light I. Or less.
  • the structural period PS is preferably 500 nm or less, and particularly preferably 400 nm or less in order to reduce the influence of the spectral color due to the first-order diffracted light.
  • the side wall 314c of the convex portion 314a is not inclined toward the concave portion 314b adjacent to the convex portion 314a, and at least a part of the side wall 314c of the convex portion 314a is Inclined towards the center.
  • FIG. 58A shows an enlarged shape of the side wall 314c of the convex portion 314a illustrated in FIG. 56B.
  • the shape of the side wall 314c of the convex portion 314a is not limited to a shape that continuously inclines toward the center of the convex portion 314a, as illustrated in FIG. 58A.
  • the side wall 314c may not be inclined to the height h1 from the support layer 312 but may be inclined toward the center of the convex portion 314a at a portion higher than the height h1.
  • FIG. 58A shows an enlarged shape of the side wall 314c of the convex portion 314a illustrated in FIG. 56B.
  • the shape of the side wall 314c of the convex portion 314a is not limited to a shape that continuously inclines toward the center of the convex portion 314a, as illustrated in FIG. 58A.
  • the side wall 314c may not be inclined to the height h1 from the support layer 312 but may be
  • the side wall 314c is inclined toward the center of the convex portion 314a at least partly from the support layer 312 to the height h2, but from the height h2 to the height h3.
  • a shape that does not tilt but tilts again toward the center of the convex portion 314a at a portion higher than the height h3 may be used.
  • the side wall 314c does not tilt to the height h2 from the support layer 312, and the side wall 314c does not tilt to the height h3 although the diameter of the convex portion 314a becomes small at the height h2.
  • the side wall 314c may be inclined toward the center of the convex portion 314a at a portion higher than the height h3.
  • the convex portion 314a is an example of a periodic element, and is a convex portion that protrudes from the reference plane with the surface of the support layer 312 that is an example of the support portion as a reference plane.
  • the structure including the support layer 312 and the uneven structure layer 314 is an example of a periodic structure.
  • the metal layer 316 is regarded as a metal layer having a shape in which the shape of the entire layer follows the surface shape of the periodic structure.
  • the surface of the periodic structure is a surface including a region surrounding each periodic element in the reference plane and the surface of each periodic element.
  • the side surface of the periodic element that is the side wall 314c of the convex portion 314a does not have a portion that inclines so as to approach the reference plane, in other words, a portion that inclines away from the center of the periodic element as the distance from the reference plane increases. Does not have. Furthermore, at least a part of the side surface of the periodic element is inclined so as to approach the center of the periodic element as the distance from the reference plane increases.
  • the center of the periodic element is the center of the periodic element as viewed from the direction facing the reference plane.
  • a method for manufacturing the display body 300 will be described.
  • a base material made of a dielectric material such as synthetic quartz or resin for example, a photolithographic method using light or a charged particle beam, a nanoimprint method
  • a laminated body of the support layer 312 and the concavo-convex structure layer 314 is formed by forming the concavo-convex structure layer 314 using a known processing technique such as a plasma etching method.
  • a method for forming the convex portions 314a on the surface of the support layer 312 made of resin for example, a nanoimprint method can be used.
  • a method in which light or a photolithography method using a charged particle beam and a plasma etching method are combined may be used.
  • a metal layer 316 is formed on the concavo-convex structure layer 314 by depositing a metal using a known technique such as a vacuum evaporation method.
  • the material constituting the metal layer 316 is preferably a material having a negative real part of the complex dielectric constant in the wavelength region of light incident on the display body 300 from the viewpoint of easily causing surface plasmon resonance.
  • the material forming the metal layer 316 is preferably a metal material such as aluminum, silver, gold, indium, or tantalum.
  • the material constituting the metal layer 316 is not limited to the above-described material, and may be a metal other than the above.
  • the thickness of the metal layer 316 is preferably in the range of 10 nm or more and 300 nm or less, and particularly preferably 20 nm or more.
  • the upper limit of 300 nm is a value determined as the thickness of the metal layer 316 at which the transmittance of the display 300 (the peak transmittance in the transmission spectrum) exceeds 1%, and the lower limit of 10 nm is a natural value. This value is determined in consideration of the formation of an oxide film. Note that the thickness of the metal layer 316 may be less than 10 nm as long as the anti-reflection effect and surface plasmon resonance phenomenon described later are exhibited in the display body 300.
  • the concavo-convex structure period PS of the concavo-convex structure layer 314 is less than or equal to the wavelength in the visible region
  • the concavo-convex structure period of the metal layer 316 formed on the concavo-convex structure layer 314 is also less than or equal to the wavelength in the visible region. Therefore, as shown in FIG. 56C, when the incident light I is incident on the display body 300 from the side where the metal layer 316 is located, it is difficult to observe the iridescent spectral color due to the first-order diffracted light.
  • the uneven structure layer 314 has an uneven shape having a plurality of convex portions 314 a, and thus a laminate 318 including the metal layer 316, the uneven structure layer 314, and the support layer 312. Is approximated to a layer whose refractive index continuously changes in the thickness direction. Therefore, for example, in the region where the concavo-convex structure layer 314 is located, Fresnel reflection is less likely to occur, and thus an antireflection effect is exerted on the incident light I incident from the surface side of the support layer 312 that is the upper side in FIG. 56C. .
  • the ratio of the height of the convex portion 314a to the structural period PS is preferably 0.5 or less.
  • a flat surface 315 exists in the recess 314b, and the uneven structure layer 314 and the metal layer 316 have an uneven structure with a sub-wavelength period, and the material constituting the metal layer 316 is as follows.
  • a metal material having a negative real part of the complex dielectric constant for light in the visible region is selected.
  • a part of the incident light I and the collective vibration of the electrons are coupled to generate plasmon resonance.
  • the thickness of the metal layer 316 is sufficiently thin, a part of the incident light I in the visible region can pass through the display body 300.
  • the transmitted light has wavelength selectivity due to plasmon resonance.
  • the display body 300 observes reflected light from the upper surface side in FIG. 56C or observation of transmitted light from the front surface side or the lower surface side in FIG. 56C in observation under natural light. It is possible to realize different color expressions depending on each observation, such as observation of reflected light from the back side.
  • light of a specific wavelength region is emitted from the display body as reflected light or transmitted light due to plasmon resonance. Since the wavelength region of the transmitted light and the reflected light is determined by a plurality of factors including the position and size of the periodic element that is each convex portion 314a and the metal layer that is determined by each periodic element, the display body It is possible to increase the degree of freedom in adjusting the wavelength region that is transmitted or reflected.
  • a display body including a diffraction grating has been used as an example of a display body having an anti-counterfeit function.
  • the diffraction grating included in such a display body includes, for example, a transparent resin layer and a metal layer positioned on the resin layer.
  • the shape of a diffraction grating expressed by a mathematical function having a sinusoidal secondary structure has a metal layer that is thinner than other parts in the inclined part of the diffraction grating, and the difference in structure between the inclined parts.
  • a difference in transmittance and reflectance is added to the metal layer.
  • the seventh embodiment provides a display body that can distinguish the front and back of the display body by observing an image formed by the display body.
  • the display body 300 of the seventh embodiment different colors are observed in each of the observation of the reflected light on the front and back surfaces and the observation of the transmitted light. Therefore, it is possible to realize a display body that does not impair the ease of authenticity determination.
  • ⁇ Modification of the seventh embodiment> A modification of the seventh embodiment will be described with reference to FIGS. 59 and 60.
  • a flat surface exists only in the concave portion 314b.
  • a flat surface 319 also exists at the tip of the convex portion 314a as illustrated in FIG. 59B.
  • the cross-sectional shape of the convex portion 314a along the surface of the support layer 312 may be circular as shown in FIG. 56A or polygon.
  • FIG. 59A shows, as an example, a configuration in which the cross-sectional shape of the convex portion 314a along the surface of the support layer 312 is a square.
  • the convex portion 314a has a shape in which the width of the convex portion 314a becomes narrower toward the tip.
  • FIG. 59C shows, the surface of the uneven structure layer 314 is covered with the metal layer 316 similarly to FIG. 56C.
  • the side wall 314c of the convex portion 314a is not inclined toward the adjacent concave portion 314b, and at least a part of the side wall 314c of the convex portion 314a is not in the convex portion 314a. Inclined towards the center.
  • the convex portion 314a shown in FIG. 60A has a shape obtained by changing the top of the convex portion 314a shown in FIG. 58A to a flat surface 319, and the convex portion 314a shown in FIG. 60B is flat on the top of the convex portion 314a shown in FIG.
  • the surface 319 has a changed shape.
  • 60C has a shape obtained by changing the top part of the convex part 314a shown in FIG. 58C to a flat surface 319, and the convex part 314a shown in FIG. 60D is flat on the top part of the convex part 314a shown in FIG.
  • the surface 319 has a changed shape.
  • FIGS. 61 and 62 an eighth embodiment of a display body which is an example of an optical device and a method for manufacturing the display body will be described. Below, it demonstrates centering around the difference between 8th Embodiment and 7th Embodiment, about the structure similar to 7th Embodiment, the same code
  • the concavo-convex structure of the concavo-convex structure layer 314 in the display body 300 of the seventh embodiment is referred to as a dot array structure, whereas the concavo-convex structure of the concavo-convex structure layer 314 of the display body of the eighth embodiment is It is called a hole arrangement type structure.
  • the display 310 of the eighth embodiment is a support layer 312 made of a material transparent to the incident light I, and includes a support layer 312 including an uneven structure layer 314, And a laminated body 318 including a metal layer 316 provided over the uneven structure layer 314.
  • the concavo-convex structure layer 314 is made of a dielectric material as in the seventh embodiment.
  • the dielectric material for example, when the incident light I is light in the visible region, synthetic quartz or resin that transmits light in the visible region is suitable.
  • the concavo-convex structure layer 314 is configured by providing the support layer 312 with a plurality of recesses 314e arranged to have periodicity. And in the uneven structure layer 314, the flat surface 322 exists in the convex part 314g which is areas
  • the example of the concavo-convex structure layer 314 shown in FIG. 61A shows a configuration in which the recesses 314e are arranged in a hexagonal array, which is an example of a two-dimensional lattice-like array.
  • the array pattern of the recesses 314e is the same as in the seventh embodiment. As explained, it is not limited to a hexagonal arrangement.
  • the concave-convex structure period PS of the concave-convex structure layer 314, that is, in the case of the eighth embodiment, the arrangement period of the concave parts 314e is also a sub-wavelength period equal to or less than the wavelength of the incident light I as described in the seventh embodiment. is there.
  • the side wall 314f of the recess 314e is not inclined toward the adjacent projection 314g, and at least a part of the side wall 314f of the recess 314e is directed toward the center of the recess 314e. Tilted.
  • FIG. 62A shows an enlarged shape of the side wall 314f of the recess 314e illustrated in FIG. 61B.
  • the shape of the side wall 314f of the recess 314e is not limited to a shape that continuously inclines toward the center of the recess 314e, as illustrated in FIG. 62A.
  • the side wall 314f does not tilt to the depth h1 from the surface of the support layer 312 and may have a shape tilted toward the center of the recess 314e at a portion deeper than the depth h1. .
  • FIG. 62B shows an enlarged shape of the side wall 314f of the recess 314e illustrated in FIG. 61B.
  • the shape of the side wall 314f of the recess 314e is not limited to a shape that continuously inclines toward the center of the recess 314e, as illustrated in FIG. 62A.
  • the side wall 314f does not tilt to the depth h1 from the surface of the support
  • the side wall 314f is inclined toward the center of the recess 314e at least partially from the surface of the support layer 312 to the depth h2, but from the depth h2 to the depth h3. May not be inclined, and may be a shape deeper than the depth h3 and inclined again toward the center of the recess 314e. Furthermore, as shown in FIG. 62D, the side wall 314f does not tilt to the depth h2 from the surface of the support layer 312, but the side wall 314f tilts to the depth h3 although the diameter of the concave portion 314e decreases at the depth h2. However, the side wall 314f may be inclined toward the center of the recess 314e at a portion deeper than the depth h3.
  • a flat surface may be located in the bottom of the recessed part 314e similarly to the structure of the modification of 7th Embodiment.
  • the display 310 of the eighth embodiment having the above-described configuration, colors different from each other in the observation of the reflected light on the front and back and the observation of the transmitted light due to the same actions as those described in the seventh embodiment. Is observed. Therefore, it is possible to realize a display body that does not impair the ease of authenticity determination.
  • the concave portion 314e is an example of a periodic element, and is a concave portion that is recessed from the reference plane with the surface of the support layer 312 that is an example of the support portion as a reference plane.
  • the structure including the support layer 312 including the uneven structure layer 314 is an example of a periodic structure.
  • the metal layer 316 is regarded as a metal layer having a shape in which the shape of the entire layer follows the surface shape of the periodic structure.
  • the surface of the periodic structure is a surface including a region surrounding each periodic element in the reference plane and the surface of each periodic element.
  • the side surface of the periodic element that is the side wall 314f of the recess 314e does not have a portion that is inclined so as to be farther from the center of the periodic element as it is farther from the reference plane. Furthermore, at least a part of the side surface of the periodic element is inclined so as to approach the center of the periodic element as the distance from the reference plane increases.
  • the center of the periodic element is the center of the periodic element as viewed from the direction facing the reference plane.
  • light of a specific wavelength region is emitted from the display body as reflected light or transmitted light due to plasmon resonance. Since the wavelength region of the transmitted light and reflected light is determined by a plurality of factors including the position and size of the periodic elements that are the concave portions 314e and the metal layer determined by the periodic elements, the transmitted light is transmitted through the display body. Alternatively, the degree of freedom in adjusting the reflected wavelength region can be increased.
  • the display body 320 of this modification has a configuration in which a stacked body having a structure similar to that of the display body 300 of the seventh embodiment is disposed on a base material 332.
  • the base material 332 is preferably made of a dielectric material that transmits light in the visible region, such as synthetic quartz or resin, when the incident light I is light in the visible region. It is.
  • a base material 332 can be provided with a function as an adhesive layer, for example. By using the base material 332 as an adhesive layer, the display body 320 can be adhered to a desired place.
  • a flat surface may be located in the front-end
  • a display body may be comprised by arrange
  • the base material 332 and the support layer 312 constitute a support portion.
  • a method for manufacturing the display body 320 will be described.
  • the concavo-convex structure layer 314 is formed using a known technique such as a nanoimprint method using light or heat.
  • an ultraviolet curable resin is applied to a base material 332 made of polyethylene terephthalate, and the surface of the synthetic quartz mold on which the unevenness of the uneven structure layer 314 as shown in FIGS. Press against curable resin. Further, the ultraviolet curable resin is cured by irradiating ultraviolet rays, and then the base material 332 and the mold are released.
  • thermosetting resin or a thermoplastic resin may be used to press and heat or cool the mold, and then the base material 332 and the mold may be released. Good.
  • the relationship between the preferred structural period PS and the height of the convex part 314a in the concavo-convex structure layer 314 is that the ratio of the height of the convex part 314a to the structural period PS is 0.5 or less, as in the seventh embodiment. Is preferred.
  • a display body 320 in which different colors are observed in each of observation of reflected light on the front and back and observation of transmitted light is realized. It becomes possible to do.
  • the material of the support layer 312 is preferably selected according to the desired color development.
  • the display body 320 can be used by being bonded to a desired place by causing the base material 332 to function as an adhesive layer.
  • the configurations of the convex portions 314a and the concave portions 314e of the seventh embodiment, the eighth embodiment, and the modified examples thereof may be applied to the configuration of the periodic elements in the display bodies of the first to sixth embodiments.
  • the structure of the device with a display body of 2nd Embodiment may be applied to 7th Embodiment, 8th Embodiment, and these modifications. That is, the device with a display body may include the display body according to the seventh embodiment, the eighth embodiment, or a modification thereof, and the light emission structure.
  • Means for solving the above problems include the following items as technical ideas derived from the seventh embodiment, the eighth embodiment, and the modifications thereof.
  • the concavo-convex structure layer includes a plurality of convex portions arranged to have periodicity, and there is a flat surface in a concave portion that is a portion other than the convex portions in the concavo-convex structure layer, A display body in which at least a part of the side wall of the convex portion is inclined toward the center of the convex portion without the side wall of the convex portion being inclined toward the concave portion adjacent to the convex portion.
  • Item 54 Item 53.
  • a display layer comprising a support layer made of a material transparent to incident light, the support layer including an uneven structure layer, and a metal layer provided so as to cover the surface of the uneven structure layer
  • the concavo-convex structure layer includes a plurality of concave portions arranged so as to have periodicity, a flat surface is present in a convex portion that is a portion other than the concave portions in the concavo-convex structure layer, and the side wall of the concave portion.
  • the display body in which at least a part of the side wall of the concave portion is inclined toward the center of the concave portion without being inclined toward the convex portion adjacent to the concave portion.
  • Item 60 The display body according to any one of Items 51 to 59, wherein a structure period of unevenness in the uneven structure layer is not more than a wavelength of the incident light.
  • Item 61 The display body according to Item 60, wherein the structural period is 400 nm or less.
  • item 62 The display according to any one of items 51 to 61, wherein the metal layer has a thickness of 10 nm to 200 nm.
  • Item 65 The display body according to any one of items 51 to 62, wherein the metal layer is made of a material containing at least one of aluminum, gold, silver, tantalum, and indium.
  • the display device includes a color filter 1 which is an example of an optical filter, and a light source device 2.
  • the color filter 1 converts the color of light incident from the light source device 2.
  • the light source device 2 emits light for entering the color filter 1.
  • the light source device 2 is, for example, a liquid crystal device including a backlight, an EL device including a plurality of self-luminous elements, and an LED device including a plurality of LED (Light Emitting Diode) elements.
  • the light source device 2 includes a plurality of unit regions arranged in a matrix, and changes the intensity of light emitted from the light source device 2 for each unit region.
  • the color filter 1 includes one pixel 410 in each unit region, and each pixel 410 includes three types of sub-pixels 410A.
  • the sub-pixel 410A is an example of a filter element.
  • the type of the sub-pixel 410A is determined by the color of light emitted from the sub-pixel 410A.
  • the three types of subpixels 410A are a red subpixel 410R, a green subpixel 410G, and a blue subpixel 410B.
  • the red sub-pixel 410R converts the light incident on the red sub-pixel 410R into red light and emits it.
  • the green subpixel 410G converts the light incident on the green subpixel 410G into green light and emits it.
  • the blue subpixel 410B converts the light incident on the blue subpixel 410B into blue light and emits it.
  • the sub-pixel 410A includes a plurality of isolated regions A2 and a single peripheral region A3 surrounding each isolated region A2 when viewed from the direction facing the sub-pixel 410A.
  • each isolated region A2 is shown with dots.
  • the isolated regions A2 are arranged in a square array along the surface 410S of the sub-pixel 410A.
  • the square array is an array in which an isolated region A2 is located at each vertex of a square LT having a structure period PT on one side.
  • the isolated regions A2 can be arranged in a hexagonal array. That is, the isolated regions A2 are arranged in an island-like array that is either a square array or a hexagonal array.
  • the hexagonal array is an array in which an isolated region A2 is located at each vertex of an equilateral triangle.
  • the color filter includes a transparent support portion 11 that transmits light in the visible region.
  • the wavelength of light in the visible region is from 400 nm to 800 nm.
  • the cross-sectional structure of the support part 11 may be a single layer structure or a multilayer structure.
  • the material constituting the support portion 11 is a dielectric, for example, a resin such as a photo-curable resin, or an inorganic material such as quartz. It is preferable that the material which comprises the support part 11 is resin.
  • the refractive index of the support portion 11 is higher than that of the air layer, and is preferably 1.2 or more and 1.7 or less, for example.
  • the subpixel 410 ⁇ / b> A includes a first lattice layer 21, an intermediate lattice layer 31, and a second lattice layer 41 in order from a layer close to the support portion 11.
  • the intermediate lattice layer 31 is sandwiched between the first lattice layer 21 and the second lattice layer 41.
  • the surface where the 1st lattice layer 21 is located is the surface of the support part 11, and the side where the 1st lattice layer 21 is located with respect to the support part 11 is the surface side in the structure.
  • the side where the support part 11 is located with respect to the first lattice layer 21 is the back side of the structure.
  • the first lattice layer 21 is located on the surface of the support portion 11.
  • the first lattice layer 21 includes a plurality of first dielectric layers 22 and a single first metal layer 23.
  • Each first dielectric layer 22 is located in the isolated region A2 when viewed from the direction facing the surface 410S of the sub-pixel 410A.
  • the single first metal layer 23 is located in the peripheral region A3 when viewed from the direction facing the surface 410S.
  • the plurality of first dielectric layers 22 are arranged in an island-like arrangement that is either a square arrangement or a hexagonal arrangement along the surface 410S.
  • Each first dielectric layer 22 is a structure protruding from the surface of the support portion 11.
  • Each first dielectric layer 22 is integral with the support portion 11, for example.
  • each first dielectric layer 22 has a boundary with the surface of the support part 11, for example, and is separate from the support part 11.
  • the first metal layer 23 has a net shape surrounding each first dielectric layer 22 when viewed from the direction facing the surface 410S.
  • the single first metal layer 23 is an optical sea component through which free electrons pass, and each first dielectric layer 22 is an island component distributed in the sea component. .
  • the structural period PT When viewed from the direction facing the surface 410S, the structural period PT, which is the period in which the first dielectric layer 22 is located, is the shortest width WP of the first dielectric layers 22 adjacent to each other and the first dielectric layer 22 This is the sum of the width WT.
  • the structural period PT is a sub-wavelength period that is equal to or shorter than the wavelength in the visible region.
  • the structural period PT may be 200 nm or more and 400 nm or less from the viewpoint that the color of the light emitted from the sub-pixel 410A becomes clear and the processing accuracy of the first lattice layer 21 is obtained. preferable.
  • the ratio of the width WT of the first dielectric layer 22 to the structural period PT is 0.30 or more and 0.65 or less. From the standpoint that the processing accuracy of the first lattice layer 21 is obtained and that plasmon resonance is likely to occur in the first lattice layer 21, the ratio of the width WT of the first dielectric layer 22 to the structural period PT is preferably 0.40 or more and 0.60 or less.
  • the thickness of the first lattice layer 21 is preferably 200 nm or less.
  • the processing accuracy of the first lattice layer 21 can be obtained, plasmon resonance is likely to occur in the first lattice layer 21, the light transmittance in the first lattice layer 21 is increased, and the color of the image by each observation is clear. From the viewpoint of becoming, the thickness of the first lattice layer 21 is preferably 15 nm or less.
  • An intermediate lattice layer 31 is located on the first lattice layer 21.
  • the thickness of the intermediate lattice layer 31 is thicker than the thickness of the first lattice layer 21. From the viewpoint of obtaining the processing accuracy of the intermediate lattice layer 31, the thickness of the intermediate lattice layer 31 is preferably 100 nm or more and 200 nm or less in total with the first lattice layer 21.
  • the intermediate lattice layer 31 includes a plurality of first intermediate dielectric layers 32 and a single second intermediate dielectric layer 33.
  • Each first intermediate dielectric layer 32 is located in the isolated region A2 when viewed from the direction facing the surface 410S.
  • the single second intermediate dielectric layer 33 is located in the peripheral region A3 when viewed from the direction facing the surface 410S.
  • the plurality of first intermediate dielectric layers 32 are arranged in an island-like arrangement that is either a square arrangement or a hexagonal arrangement along the surface 410S.
  • Each first intermediate dielectric layer 32 is a structure protruding from the first dielectric layer 22.
  • Each first intermediate dielectric layer 32 is, for example, integral with the first dielectric layer 22.
  • each first intermediate dielectric layer 32 has a boundary with the first dielectric layer 22, for example, and is separate from the first dielectric layer 22.
  • the period in which the first intermediate dielectric layer 32 is located is the sum of the shortest width WP and the width WT, like the first dielectric layer 22, and is the above-described structural period PT. .
  • the ratio of the width WT of the first intermediate dielectric layer 32 to the structural period PT is not less than 0.30 and not more than 0.65.
  • the ratio of the width WT of the first intermediate dielectric layer 32 to the structural period PT is preferably 0.4 or more and 0.6 or less.
  • the second intermediate dielectric layer 33 has a mesh shape surrounding each first intermediate dielectric layer 32 as viewed from the direction facing the surface 410S.
  • the single second intermediate dielectric layer 33 is structurally and optically a sea component
  • each first intermediate dielectric layer 32 is structurally and optically an island component.
  • the second intermediate dielectric layer 33 is an air layer or a resin layer.
  • a second lattice layer 41 is positioned on the intermediate lattice layer 31.
  • the thickness of the second lattice layer 41 is preferably 200 nm or less, and the thickness of the second lattice layer 41 is smaller than the thickness of the intermediate lattice layer 31.
  • the processing accuracy of the second grating layer 41 can be obtained, plasmon resonance is likely to occur in the second grating layer 41, the light transmittance in the second grating layer 41 is increased, and the color of the image by each observation is clear
  • the thickness of the second lattice layer 41 is preferably 15 nm or less.
  • the second lattice layer 41 includes a plurality of second metal layers 42 and a single second dielectric layer 43.
  • the position of each second metal layer 42 includes an isolated region A2 when viewed from the direction facing the surface 410S.
  • the position of the single second dielectric layer 43 is included in the peripheral region A3 when viewed from the direction facing the surface 410S.
  • the plurality of second metal layers 42 are arranged in an island-like arrangement that is either a square arrangement or a hexagonal arrangement along the surface 410S.
  • Each second metal layer 42 is a structure that overlaps the top surface of the first intermediate dielectric layer 32.
  • Each second metal layer 42 has a boundary with the first intermediate dielectric layer 32, and is separate from the first intermediate dielectric layer 32.
  • the period in which the second metal layer 42 is located is the sum of the shortest width WP and the width WT, as in the first dielectric layer 22, and is the structural period PT.
  • the ratio of the width of the second metal layer 42 to the structural period PT is not less than 0.30 and not more than 0.65.
  • the ratio of the width of the second metal layer 42 to the structural period PT is preferably 0.4 or more and 0.6 or less.
  • the second dielectric layer 43 has a mesh shape surrounding each second metal layer 42 one by one when viewed from the direction facing the surface 410S.
  • the single second dielectric layer 43 is an optical sea component with fewer free electrons than the second metal layer 42, and each second metal layer 42 is a sea component. It is an island component distributed in The second dielectric layer 43 is an air layer or a resin layer.
  • the volume ratio of the first metal layer 23 that is the sea component in the first lattice layer 21 is larger than the volume ratio of the second metal layer 42 that is the island component in the second lattice layer 41.
  • the volume ratio of the second metal layer 42 that is an island component in the second lattice layer 41 is larger than the volume ratio of the metal material in the intermediate lattice layer 31.
  • the structure constituted by the first dielectric layer 22 and the first intermediate dielectric layer 32 is an example of a periodic element, and the convex portion 11T protruding from the reference plane with the surface of the support portion 11 as the reference plane. But there is.
  • the back surface of the first dielectric layer 22 is an example of one end portion of the periodic element, and the surface of the first intermediate dielectric layer 32 is an example of the other end portion of the periodic element.
  • middle dielectric material layer 32 is an example of a periodic structure.
  • the layer comprised from the 1st metal layer 23 and the 2nd metal layer 42 is caught as a metal layer with the shape in which the shape as the whole layer follows the surface shape of a periodic structure body.
  • the surface of the periodic structure is a surface including a region surrounding each periodic element in the reference plane and the surface of each periodic element.
  • the first metal layer 23 of the first lattice layer 21, the second intermediate dielectric layer 33 of the intermediate lattice layer 31, and the first The second dielectric layer 43 of the two lattice layer 41 is located.
  • the second intermediate dielectric layer 33 is sandwiched between the first metal layer 23 and the second dielectric layer 43.
  • the cross-sectional structure of the support portion 11 may be a multilayer structure, and each first dielectric layer 22 may not have a boundary with the support portion 11.
  • FIG. 68 shows a structure in which the support portion 11 is composed of two layers, and of these layers, the layer on the surface side of the support portion 11 is integrated with each first dielectric layer 22. That is, the support part 11 is provided with the base material 11a and the intermediate
  • Each first dielectric layer 22 protrudes from the intermediate layer 11b, and each first dielectric layer 22 and the intermediate layer 11b are integrated.
  • the front surface 410S of the subpixel 410A and the back surface 410T of the subpixel 410A are in contact with the air layer, respectively, and each of the second intermediate dielectric layer 33 and the second dielectric layer 43 is an air layer.
  • a configuration that is a resin layer having a refractive index close to that of an air layer will be described as an example.
  • the refractive index of the support part 11 is a size dominated by the dielectric, and is larger than the refractive index of the air layer.
  • the refractive index of the first dielectric layer 22 is higher than the refractive index of the air layer, and the refractive index of the first metal layer 23 is lower than the refractive index of the air layer.
  • the refractive index of the first lattice layer 21 is approximated to an averaged size by the refractive index of the first metal layer 23 and the refractive index of the first dielectric layer 22.
  • the refractive index of the first lattice layer 21 is eventually the first metal that is a sea component.
  • the size is controlled by the layer 23 and is sufficiently lower than the refractive index of the air layer.
  • the refractive index of the first intermediate dielectric layer 32 is higher than the refractive index of the air layer, and the refractive index of the second intermediate dielectric layer 33 is equal to the refractive index of the air layer or is higher than the refractive index of the air layer. high.
  • the refractive index of the intermediate grating layer 31 is approximated to an averaged size by the refractive index of the second intermediate dielectric layer 33 and the refractive index of the first intermediate dielectric layer 32. Since the ratio of the width WT of the first intermediate dielectric layer 32 to the structural period PT is not less than 0.30 and not more than 0.65, the refractive index of the intermediate lattice layer 31 is eventually the second intermediate that is a sea component.
  • the size is governed by the dielectric layer 33, which is higher than the refractive index of the air layer and close to the refractive index of the air layer.
  • the refractive index of the second metal layer 42 is lower than the refractive index of the air layer, and the refractive index of the second dielectric layer 43 is equal to the refractive index of the air layer or higher than the refractive index of the air layer.
  • the refractive index of the second lattice layer 41 is approximated to the averaged size by the refractive index of the second dielectric layer 43 and the refractive index of the second metal layer 42. Since the ratio of the width WT of the second metal layer 42 to the structural period PT is not less than 0.30 and not more than 0.65, the refractive index of the second lattice layer 41 is eventually the second dielectric that is a sea component.
  • the size is governed by the layer 43, which is lower than the refractive index of the air layer and close to the air layer.
  • the second grating since the light incident on the intermediate grating layer 31 enters the intermediate grating layer 31 having a refractive index close to that of the air layer from the second grating layer 41 having a refractive index close to that of the air layer, the second grating is also used here. Fresnel reflection hardly occurs at the interface between the lattice layer 41 and the intermediate lattice layer 31.
  • the structural period PT of the second metal layer 42 is a sub-wavelength period equal to or smaller than the wavelength in the visible region, a part of the external light L1 incident on the second grating layer 41 is generated in the second grating layer 41.
  • the surface plasmon is converted into surface plasmon by plasmon resonance, and the surface plasmon passes through the second lattice layer 41.
  • the surface plasmon transmitted through the second lattice layer 41 is reconverted into light and emitted.
  • Plasmon resonance is a phenomenon in which a part of the external light L1 incident on the second lattice layer 41 is coupled with collective vibration of electrons in the second lattice layer 41.
  • the wavelength region of the light EP2 emitted from the second grating layer 41 due to plasmon resonance is a specific wavelength region depending on the grating structure and material including the structural period PT of the second metal layer 42.
  • the second grating layer 41 transmits a part of the light in the wavelength region of the external light L 1 incident on the second grating layer 41 to the intermediate grating layer 31.
  • the structural period PT of the first dielectric layer 22 is also a sub-wavelength period equal to or smaller than the wavelength in the visible region, a part of the light incident on the first lattice layer 21 is also plasmon in the first lattice layer 21. It is converted into surface plasmon by resonance, and the surface plasmon passes through the first lattice layer 21. The surface plasmon that has passed through the first lattice layer 21 is converted back to light and emitted.
  • the wavelength region of the light EP1 emitted from the first grating layer 21 due to plasmon resonance is a specific wavelength region depending on the grating structure and material including the structural period PT of the first dielectric layer 22.
  • the first grating layer 21 transmits part of the light LP1 in the wavelength region of the light incident on the first grating layer 21 to the support unit 11.
  • the white light LA from the light source device 2 that enters the support unit 11 from the back surface 410T of the sub-pixel 410A enters the support unit 11 from the air layer, and enters the first lattice layer 21 from the support unit 11. enter.
  • the light LA incident on the support unit 11 enters the first lattice layer 21 having a refractive index lower than that of the air layer from the support unit 11 having a higher refractive index than that of the air layer.
  • Fresnel reflection is likely to occur at the interface with the lattice layer 21.
  • the thickness of the first metal layer 23 is sufficiently thin, the intensity of the reflected light LR due to Fresnel reflection is sufficiently suppressed.
  • the wavelength region of the light EP1 emitted from the first grating layer 21 due to plasmon resonance is a specific wavelength region depending on the grating structure and material including the structural period PT of the first metal layer 23.
  • the first grating layer 21 transmits light in a specific wavelength region in the light incident on the first grating layer 21 to the intermediate grating layer 31.
  • the wavelength region of the light EP2 emitted from the second grating layer 41 due to plasmon resonance is a specific wavelength region depending on the grating structure and material including the structural period PT of the second dielectric layer 43.
  • the second grating layer 41 transmits light in a specific wavelength region in the light incident on the second grating layer 41 to the air layer.
  • the light LP2 after color conversion corresponding to the type of the pixel 410A is visually recognized by the sub-pixel 410A.
  • the first dielectric layer 22 and the first intermediate dielectric layer 32 are formed on the surface of the support portion 11.
  • the first dielectric layer 22 and the first intermediate dielectric layer 32 are integrally formed as a convex portion 11T protruding from the surface of the support portion 11.
  • a method of forming the convex portion 11T for example, a photolithographic method using a light or charged particle beam, a nanoimprint method, a plasma etching method, or the like can be adopted.
  • a nanoimprint method can be used as a method of forming the convex portion 11T on the surface of the support portion 11 made of resin.
  • a method in which light or a photolithographic method using a charged particle beam and a plasma etching method are combined may be used.
  • the subpixel 410A having the support portion 11 composed of the base material 11a and the intermediate layer 11b as shown in FIG. 68 first, a polyethylene terephthalate sheet is used as the base material 11a. An ultraviolet curable resin is applied to the surface of 11a. Next, the surface of the synthetic quartz mold, which is an intaglio, is pressed against the surface of the coating film made of an ultraviolet curable resin, and these are irradiated with ultraviolet rays. Subsequently, the synthetic quartz mold is released from the cured ultraviolet curable resin.
  • the unevenness of the intaglio is transferred to the resin on the surface of the base material 11a, and the convex portion 11T and the intermediate layer 11b composed of the first dielectric layer 22 and the first intermediate dielectric layer 32 are formed.
  • the ultraviolet curable resin can be changed to a thermosetting resin, and the ultraviolet irradiation can be changed to heating. Further, the ultraviolet curable resin can be changed to a thermoplastic resin, and the irradiation of the ultraviolet rays can be changed to heating and cooling.
  • the first metal layer 23 and the second metal layer 42 are formed on the surface of the support portion 11 including the convex portions 11T.
  • the method for forming the first metal layer 23 and the second metal layer 42 is, for example, a vacuum evaporation method or a sputtering method.
  • the first lattice layer 21 defined by the top surface of the first metal layer 23 is formed, and the second lattice layer 41 defined by the top surface of the second metal layer 42 is formed, and these first lattice layers are formed.
  • An intermediate lattice layer 31 sandwiched between the first lattice layer 21 and the second lattice layer 41 is formed.
  • the thickness T2 of the first metal layer 23 and the thickness T4 of the second metal layer 42 are 10 minutes of the total of the thickness T2 of the first lattice layer 21 and the thickness T3 of the intermediate lattice layer 31. If the ratio of the width WT of the first dielectric layer 22 to the structural period PT is 0.30 or more, the color of the image during lighting observation can be sufficiently obtained.
  • the thickness T2 of the first metal layer 23 and the thickness T4 of the second metal layer 42 are 10 minutes of the total of the thickness T2 of the first lattice layer 21 and the thickness T3 of the intermediate lattice layer 31. If the ratio of the width WT of the first dielectric layer 22 to the structural period PT is 1 or less and 0.65 or less, the brightness of the image in the lighting observation can be sufficiently obtained. Furthermore, the ratio of the width WT of the first dielectric layer 22 to the structural period PT is preferably 0.6 or less, and more preferably 0.5 or less.
  • the sum of the thickness T2 of the first dielectric layer 22 and the thickness T3 of the first intermediate dielectric layer 32 is the sum of the width WT of the first dielectric layer 22 and the shortest width WP. Is preferably smaller.
  • the total of the thickness T2 of the first dielectric layer 22 and the thickness T3 of the first intermediate dielectric layer 32 is more preferably smaller than half of the structural period PT.
  • a metal material having a negative real part of the complex dielectric constant at a wavelength in the visible region is likely to cause plasmon resonance in the first lattice layer 21 and the second lattice layer 41 using the metal material. Therefore, the material constituting the first metal layer 23 is a material having a negative real part of the complex dielectric constant.
  • the material forming the second metal layer 42 is also a material having a negative real part of the complex dielectric constant.
  • the material constituting the first metal layer 23 and the second metal layer 42 examples include aluminum, silver, gold, indium, and tantalum.
  • the first metal layer 23 and the second metal layer 42 are metal layers with respect to the support portion 11 having the first dielectric layer 22 and the first intermediate dielectric layer 32.
  • the film can be formed in a single process.
  • the metal particles flying from the film forming source adhere to the surface of the support portion 11 with a predetermined angular distribution.
  • the width W4 of the second metal layer 42 is slightly larger than the width WT of the first intermediate dielectric layer 32, and the shortest width WP4 of the second metal layers 42 adjacent to each other is slightly larger than the shortest width WP. Get smaller.
  • the ratio of the width W4 of the second metal layer 42 to the structural period PT is not less than 0.30 and not more than 0.65.
  • the periphery of the first intermediate dielectric layer 32 in the first metal layer 23 is affected by the shadow effect by the second metal layer 42, and the portion closer to the first intermediate dielectric layer 32 is thinner.
  • an intermediate metal layer 32 ⁇ / b> A that is a metal layer continuous with the second metal layer 42 is also formed on the side surface of the first intermediate dielectric layer 32.
  • the intermediate metal layer 32A is sandwiched between the first intermediate dielectric layer 32 and the second intermediate dielectric layer 33.
  • the intermediate metal layer 32 ⁇ / b> A is a structure that is integral with the second metal layer 42, and the thickness on the side surface of the first intermediate dielectric layer 32 is thinner as the portion is closer to the first metal layer 23.
  • the structural period PT is a sub-wavelength period
  • the refractive index change in the thickness direction of the second grating layer 41 and the intermediate grating layer 31 is continuous.
  • the intermediate metal layer 32 ⁇ / b> A hardly reflects light incident on the second grating layer 41 from the surface 410 ⁇ / b> S of the subpixel 410 ⁇ / b> A and easily transmits the light to the intermediate grating layer 31 and the first grating layer 21. Therefore, in the non-lighting observation described above, a color closer to black is visually recognized by the sub-pixel 410A.
  • the refractive index difference between the second dielectric layer 43 and the surface layer that is the layer in contact with the second dielectric layer 43 on the side opposite to the intermediate lattice layer 31 with respect to the second dielectric layer 43 is The refractive index difference between the first metal layer 23 and the support portion 11 is preferably smaller.
  • the surface layer is, for example, an air layer.
  • the refractive index of the second dielectric layer 43 is more preferably equal to the refractive index of the surface layer.
  • the optical filter It is possible to increase the degree of freedom in adjusting the wavelength region that is transmitted or reflected.
  • the color conversion part which the conventional color filter has is a single thin film layer that absorbs light in a predetermined wavelength region, and the color after color conversion by the color conversion part increases as the thickness of the thin film layer increases. It ’s dark.
  • the thickness of the thin film layer varies in the thin film layer, and may be thick at the edge of the thin film layer or thick at the center of the thin film layer. It is difficult to adjust the thickness of the thin film layer to a desired distribution in the sub-pixel, and the color filter described above has a degree of freedom to adjust the distribution of the wavelength region that the sub-pixel selectively transmits in the sub-pixel. I do not have.
  • Such a problem is not limited to the color filter used in the display device, but is common in an optical filter including a filter element that transmits light in a specific wavelength region among light emitted from a light source.
  • each convex portion 11T located at the edge of the sub-pixel 410A when the color is light at the edge of the sub-pixel 410A, the position and size of each convex portion 11T located at the edge of the sub-pixel 410A, and the metal layers 23 and 42 located at the edge of the sub-pixel 410A. It is possible to make the thickness different from other parts in the sub-pixel 410A so that the color becomes darker.
  • each convex portion 11T located at the center of the subpixel 410A when the color is dark at the center of the subpixel 410A, the position and size of each convex portion 11T located at the center of the subpixel 410A, and the metal layers 23 and 42 located at the center of the subpixel 410A.
  • the thickness can be different from other portions of the sub-pixel 410A so that the color becomes lighter.
  • the thickness T2 of the first metal layer 23 and the thickness T4 of the second metal layer 42 are 15 nm or less, the vividness of each subpixel 410A, the subpixel 410A, It is also possible to further increase the brightness of the light.
  • the first dielectric layer 22 It is also possible to form the convex portion 11T having the functions of the first intermediate dielectric layer 32 and the first intermediate dielectric layer 32 as a single structure.
  • a lattice structure in which plasmon resonance occurs by forming a plurality of holes arranged in a subwavelength period in a flat metal layer and filling the holes with a dielectric.
  • minute holes in the metal layer it is necessary to form an etching mask using a photolithography method or a nanoimprint method, and to etch the metal layer by a plasma etching method. Becomes complicated. As a result, the yield of the color filter tends to decrease.
  • a yield reduction can be suppressed by a method of forming a lattice structure in which plasmon resonance occurs by laminating a metal layer on the unevenness formed using the nanoimprint method as in this embodiment.
  • the ninth embodiment can be implemented with the following modifications.
  • the first intermediate dielectric layer 32 and the second intermediate dielectric layer 33 can be embodied as separate structures.
  • the second intermediate dielectric layer 33 is preferably a resin layer having a refractive index closer to the refractive index of the air layer than the refractive index of the first intermediate dielectric layer 32.
  • the second intermediate dielectric layer 33 and the second dielectric layer 43 can be embodied as separate structures.
  • the second intermediate dielectric layer 33 is preferably a resin layer having a refractive index closer to the refractive index of the air layer than the refractive index of the second dielectric layer 43.
  • the shape of the convex portion 11T composed of the first dielectric layer 22 and the first intermediate dielectric layer 32 can be embodied as a cone shape protruding from the surface of the support portion 11. With such a structure, it is possible to smoothly release the intaglio for forming the first dielectric layer 22 and the first intermediate dielectric layer 32 when forming the first dielectric layer 22 and the first intermediate dielectric layer 32.
  • the periodic elements arranged on the reference plane can be embodied in a concave portion that is a bottomed hole provided on the surface of the support portion 11.
  • the reference surface is the surface of the support portion 11.
  • One end of the periodic element is an opening provided in each hole, and the other end of the periodic element is a bottom surface provided in each hole.
  • the 1st metal layer 23 is located in the mesh shape surrounding the opening part of each hole, and the 2nd metal layer 42 is located in the bottom face of each hole.
  • the interior of each hole is partitioned into a second metal layer 42 and a first intermediate dielectric layer 32 located above the second metal layer 42.
  • the space surrounded by the first metal layer 23 functions as the first dielectric layer 22. Even with such a configuration, it is possible to obtain effects according to the above (9-1) to (9-4) and (9-6) to (9-8).
  • the color filter further includes a protective layer on the second metal layer 42.
  • the intensity of Fresnel reflection at the interface between the protective layer and the second metal layer 42 and the wavelength selectivity in the color filter associated therewith vary depending on the refractive index of the protective layer. Therefore, the material constituting the protective layer is appropriately selected based on the wavelength region selected by the color filter.
  • the protective layer 48 can be embodied in a structure that is integral with the second dielectric layer 43 and the second intermediate dielectric layer 33.
  • the protective layer 48 is preferably a low refractive index resin layer.
  • the low refractive index resin layer has a refractive index closer to the refractive index of the air layer than the refractive index of the first dielectric layer 22 and the refractive index of the first intermediate dielectric layer 32.
  • the arrangement of the isolated region A2 viewed from the direction facing the surface 410S of the subpixel 410A is not limited to a square array and a hexagonal array, and may be a two-dimensional lattice array. That is, the plurality of first dielectric layers 22 may be arranged in a two-dimensional lattice, the plurality of first intermediate dielectric layers 32 may be arranged in a two-dimensional lattice, and the plurality of first dielectric layers 22 may be arranged.
  • the two metal layers 42 need only be arranged in a two-dimensional lattice. In other words, the periodic elements of the periodic structure need only be arranged in a two-dimensional lattice shape having a sub-wavelength period.
  • the two-dimensional lattice-like arrangement is an arrangement in which elements are arranged along each of two directions intersecting in a two-dimensional plane.
  • the ratio of the width WT to the structural period PT is the ratio of the width WT to the structural period PT in one direction, and that the ratio is within a predetermined range means that the two elements in which the periodic elements are arranged
  • Each indicates that the ratio of the width WT to the structural period PT is within a predetermined range.
  • the thickness of each layer included in the color filter is within a predetermined range with respect to the structural period PT.
  • the thickness of each layer is predetermined with respect to the structural period PT in each of the two directions in which the periodic elements are arranged. It is within the range of.
  • the shape of the isolated region A2 viewed from the direction facing the surface 410S of the sub-pixel 410A is not limited to a square, but may be a rectangle or other polygons, There may be.
  • the structure of the optical filter of 9th Embodiment may be applied to the filter used for an image pick-up element.
  • the imaging element is, for example, a CCD (Charge Coupled Device) type or a CMOS (Complementary Metal Oxide Semiconductor) type image sensor.
  • the imaging element 140 includes an optical filter 120 having a plurality of filter elements 121 and a light receiving element group 130 having a plurality of light receiving elements 131.
  • the filter element 121 has a stacked structure similar to that of the sub-pixel 410A of the ninth embodiment, that is, a structure composed of a periodic structure and a metal layer, and has a specific wavelength region of light incident on the filter element 121. Transmits light.
  • the light receiving element 131 is an element that converts light incident on the light receiving element 131 into electric charges.
  • the optical filter 120 and the light receiving element group 130 face each other and are arranged so that light transmitted through one filter element 121 enters one light receiving element 131.
  • a portion of the optical filter 120 that emits transmitted light to one light receiving element 131 is one filter element 121.
  • the light receiving element 131 receives the light transmitted through the filter element 121 and converts it into an electrical signal.
  • the electrical signal from the light receiving element 131 is received by the signal processing circuit, and is received by the optical filter 120.
  • An image of an article or the like located on the side opposite to the element group 130 is recorded.
  • the optical filter 120 is, for example, an on-chip color filter, and the plurality of filter elements 121 include a plurality of types of filter elements 121 having different transmission wavelength regions.
  • the plurality of filter elements 121 include three types of filter elements 121: a filter element 121 that transmits red light, a filter element 121 that transmits green light, and a filter element 121 that transmits blue light. included.
  • the plurality of filter elements 121 include a filter element 121 that transmits yellow (yellow) light, a filter element 121 that transmits light of cyan (cyan), and a filter element that transmits magenta light.
  • Four types of filter elements 121, 121 and a filter element 121 that transmits green light are included.
  • the wavelength region that each of the plurality of filter elements 121 transmits is as follows. It may match.
  • the structural period PT of the periodic element of the periodic structure provided in the filter element 121 may be equal to or smaller than the wavelength region that the filter element 121 transmits. That is, in the ninth embodiment and the tenth embodiment, the sub-wavelength period is defined as a period equal to or less than the wavelength region that the filter element 121 transmits.
  • the wavelength region of light transmitted through the filter element 121 is adjusted by a plurality of factors such as the structural period PT, the width WT of the periodic element, the distance between one end and the other end of the periodic element, and the film thickness of the metal layers 23 and 42. Is possible. Therefore, regardless of the device in which the optical filter 120 is used, the degree of freedom for adjusting the distribution of the wavelength region of light transmitted through the filter element 121 within the filter element 121 can be increased.
  • an optical filter which is an example of an optical device, a display device, an image sensor, and a tenth embodiment that is an embodiment of a method for manufacturing the optical filter will be described.
  • the tenth embodiment is also a form in which the optical filter is embodied as a color filter provided in the display device.
  • it demonstrates centering around the difference between 10th Embodiment and 9th Embodiment, about the structure similar to 9th Embodiment, the same code
  • the sub-pixel 410 ⁇ / b> A includes an upper lattice layer 51 in addition to the support portion 11, the first lattice layer 21, the intermediate lattice layer 31, and the second lattice layer 41.
  • the first lattice layer 21, the intermediate lattice layer 31, the second lattice layer 41, and the upper lattice layer 51 are arranged in this order from the surface of the support portion 11. That is, the second lattice layer 41 is sandwiched between the intermediate lattice layer 31 and the upper lattice layer 51.
  • the support part 11 has the same configuration as that of the ninth embodiment.
  • FIG. 75 shows a form in which the support portion 11 is composed of a base material 11a and an intermediate layer 11b.
  • the support part 11 is comprised from the base material 11a and the intermediate
  • Each of the base material 11a and the intermediate layer 11b has a refractive index higher than that of the air layer, for example, not less than 1.2 and not more than 1.7.
  • the first lattice layer 21 has the same configuration as that of the ninth embodiment, and each includes a plurality of first dielectric layers 22 located in the isolated region A2 and a single first metal layer located in the peripheral region A3. 23.
  • the ratio of the width WT of the first dielectric layer 22 to the structural period PT is 0.30 or more and 0.65 or less, preferably 0.40 or more and 0.60 or less. Furthermore, the ratio is preferably 0.5 or less.
  • the thickness of the first lattice layer 21 is preferably 200 nm or less, and particularly preferably 15 nm or less.
  • the intermediate lattice layer 31 includes a plurality of first intermediate dielectric layers 32 each located in the isolated region A2, and a single second intermediate dielectric layer 34 located in the peripheral region A3.
  • the intermediate lattice layer 31 has the same configuration as that of the ninth embodiment except that the material of the second intermediate dielectric layer 34 is different from that of the second intermediate dielectric layer 33 of the ninth embodiment.
  • the thickness of the intermediate lattice layer 31 is thicker than the thickness of the first lattice layer 21, and the total thickness of the first lattice layer 21 and the intermediate lattice layer 31 is preferably 100 nm or more and 200 nm or less.
  • the ratio of the width WT of the first intermediate dielectric layer 32 to the structural period PT is not less than 0.30 and not more than 0.65, and preferably not less than 0.4 and not more than 0.6. Furthermore, the ratio is preferably 0.5 or less.
  • the second lattice layer 41 includes a plurality of second metal layers 42 each positioned in a region including the isolated region A2, and a single second dielectric layer 44 included in the peripheral region A3.
  • the second lattice layer 41 has the same configuration as that of the ninth embodiment except that the material of the second dielectric layer 44 is different from that of the second dielectric layer 43 of the ninth embodiment.
  • the thickness of the second lattice layer 41 is thinner than the thickness of the intermediate lattice layer 31.
  • the thickness of the second lattice layer 41 is preferably 200 nm or less, and particularly preferably 15 nm or less.
  • the ratio of the width of the second metal layer 42 to the structural period PT is 0.30 or more and 0.65 or less, and preferably 0.4 or more and 0.6 or less. Furthermore, the ratio is preferably 0.5 or less.
  • the upper lattice layer 51 includes a plurality of first upper dielectric layers 52 and a single second upper dielectric layer 53.
  • the position of each first upper dielectric layer 52 includes an isolated region A2 when viewed from the direction facing the surface 410S.
  • the position of the single second upper dielectric layer 53 is included in the peripheral region A3 when viewed from the direction facing the surface 410S.
  • the thickness of the upper lattice layer 51 is preferably 200 nm or less.
  • Each first upper dielectric layer 52 is a structure that overlaps the top surface of the second metal layer 42. Each first upper dielectric layer 52 is separate from the second metal layer 42. When viewed from the direction facing the surface 410S, the period in which the first upper dielectric layer 52 is located is the structural period PT.
  • the ratio of the width of the first upper dielectric layer 52 to the structural period PT is 0.30 or more and 0.65 or less, and preferably 0.4 or more and 0.6 or less. Furthermore, the ratio is preferably 0.5 or less.
  • the second upper dielectric layer 53 has a mesh shape surrounding each first upper dielectric layer 52 as viewed from the direction facing the surface 410S.
  • the second upper dielectric layer 53 is separate from the second dielectric layer 44.
  • the second upper dielectric layer 53 is structurally and optically a sea component
  • each first upper dielectric layer 52 is structurally and optically an island component.
  • the first metal layer 23 of the first lattice layer 21, the second intermediate dielectric layer 34 of the intermediate lattice layer 31, and the first The second dielectric layer 44 of the two lattice layer 41 and the second upper dielectric layer 53 of the upper lattice layer 51 are located.
  • the first dielectric layer 22 and the first intermediate dielectric layer 32 are dielectrics, and are made of, for example, a resin such as a photocurable resin or an inorganic material such as quartz, as in the ninth embodiment.
  • the refractive index of each of the first dielectric layer 22 and the first intermediate dielectric layer 32 is higher than that of the air layer, for example, not less than 1.2 and not more than 1.7.
  • the intermediate layer 11b, the first dielectric layer 22, and the first intermediate dielectric layer 32 of the base material 11a are an integral structure, and are composed of the same material.
  • the first metal layer 23 and the second metal layer 42 are made of a metal material.
  • the material constituting the first metal layer 23 and the second metal layer 42 is a material in which the real part of the complex dielectric constant at a wavelength in the visible region is a negative value, as in the ninth embodiment.
  • aluminum, silver, Gold, indium, tantalum and the like are preferable.
  • the first metal layer 23 and the second metal layer 42 are made of the same material, for example.
  • the second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 are transparent dielectrics that transmit light in the visible region.
  • the second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 are composed of silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and tantalum oxide (Ta 2 O 5 ). , Niobium oxide (Nb 2 O 5 ), zirconium dioxide (ZrO 2 ), titanium dioxide (TiO 2 ), magnesium fluoride (MgF 2 ), and calcium fluoride (CaF 2 ). .
  • the materials constituting the second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 are made of titanium, niobium, aluminum, tantalum, hafnium, zirconium, silicon, and magnesium. It is preferable to include an oxide of any one material selected from the group.
  • the second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 may be made of an organic compound.
  • the refractive index of each of the second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 is higher than that of the air layer, for example, 1.3 or more and 3.0 or less.
  • the second intermediate dielectric layer 34 and the second dielectric layer 44 are an integral structure, and the second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 are , Composed of the same material.
  • the second upper dielectric layer 53 is a transparent dielectric that transmits light in the visible region, and is an air layer or a resin layer having a refractive index close to that of the air layer.
  • the refractive index of the second upper dielectric layer 53 is lower than the refractive index of each of the first upper dielectric layer 52 and the second dielectric layer 44.
  • the structure configured by the first dielectric layer 22 and the first intermediate dielectric layer 32 is an example of a periodic element, and is a protrusion protruding from the reference plane with the surface of the support portion 11 as the reference plane. It is also part 11T. And the structure comprised from the support part 11, the 1st dielectric material layer 22, and the 1st intermediate
  • the layer composed of the second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 is on the surface opposite to the surface in contact with the periodic structure in the metal layer 61.
  • the dielectric layer 62 is positioned so that the shape of the entire layer follows the surface shape of the metal layer 61.
  • the thickness T5 which is the height of the convex portion 11T is preferably 100 nm or more and 200 nm or less.
  • the thickness T6 of the metal layer 61 is preferably 200 nm or less, and particularly preferably 15 nm or less.
  • the thickness T7 of the dielectric material layer 62 is below the thickness T5 which is the height of the convex part 11T, and it is preferable that it is 200 nm or less.
  • lattice layer 41 or All are made of the same material as the second upper dielectric layer 53 of the upper lattice layer 51. That is, in this case, part or all of the second dielectric layer 44 is an air layer or a resin layer.
  • the second dielectric layer 44 is preferably a structure continuous from the second intermediate dielectric layer 34 as described above.
  • the thickness T6 of the metal layer 61 is preferably 1/10 or less of the thickness T5 which is the height of the convex portion 11T.
  • the thickness T5, which is the height of the convex portion 11T, is preferably smaller than the structural period PT, and more preferably smaller than half of the structural period PT.
  • the thickness of the metal layer 61 may be such that the region on the convex portion 11T, that is, the second metal layer 42, and the region between the adjacent convex portions 11T, that is, the first metal layer 23 and the like. May vary.
  • the thickness T6 of the metal layer 61 refers to a band-shaped region in the peripheral region A3, that is, the metal layer 61 located in the center in the width direction of the region where the convex portion 11T does not exist along one direction. Is defined as the thickness of The same applies to the ninth embodiment.
  • the thickness of the dielectric layer 62 may be a region on the convex portion 11T, that is, a region between the first upper dielectric layer 52 and the adjacent convex portion 11T, that is, the first thickness.
  • the two intermediate dielectric layers 34 and the second dielectric layer 44 may be different.
  • the thickness T7 of the dielectric layer 62 is a dielectric located in the central portion in the width direction of a region extending in a strip shape in the peripheral region A3, that is, a region where the convex portion 11T does not exist along one direction. Defined as the thickness of layer 62. The same applies to the ninth embodiment.
  • the support portion 11, the first dielectric layer 22, the first intermediate dielectric layer 32, the first metal layer 23, and the second metal layer 42 are formed in the same manner as in the ninth embodiment. That is, the first dielectric layer 22 and the first intermediate dielectric layer 32 are integrally formed as a convex portion 11T protruding from the surface of the support portion 11.
  • a photolithography method using light or a charged particle beam, a nanoimprint method, a plasma etching method, or the like can be employed.
  • a method of forming the convex portion 11T on the surface of the support portion 11 made of resin for example, a nanoimprint method can be used. Further, in the case where the convex portion 11T is formed by processing a hard material base material or the like, a method in which light or a photolithographic method using a charged particle beam and a plasma etching method are combined may be used.
  • the metal layer 61 is formed on the surface of the support portion 11 on which the convex portions 11T are formed using a vacuum deposition method, a sputtering method, or the like.
  • the metal layer 61 is formed in a shape that follows the surface shape of the periodic structure including the support portion 11 and the convex portion 11T. Thereby, the first metal layer 23 and the second metal layer 42 are formed.
  • the dielectric layer 62 is formed on the surface of the structure on which the metal layer 61 is formed.
  • a vacuum deposition method or a sputtering method is used to form the dielectric layer 62.
  • the dielectric layer 62 is formed in a shape that follows the surface shape of the metal layer 61.
  • the second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 are formed.
  • the first lattice layer 21 defined by the top surface of the first metal layer 23 is formed, and the top surface of the first intermediate dielectric layer 32, that is, the middle defined by the top surface of the convex portion 11T.
  • a lattice layer 31 is defined.
  • the second lattice layer 41 defined by the top surface of the second metal layer 42 is formed, and the upper lattice layer 51 defined by the top surface of the first upper dielectric layer 52 is formed.
  • the refractive index of the upper grating layer 51 is approximated to a size averaged by the refractive index of the first upper dielectric layer 52 and the refractive index of the second upper dielectric layer 53. That is, the refractive index of the upper lattice layer 51 is a size controlled by the second upper dielectric layer 53, which is a sea component, and a value close to that of the air layer.
  • the refractive index of the second lattice layer 41 is approximated to a size averaged by the refractive index of the second metal layer 42 and the refractive index of the second dielectric layer 44. That is, the refractive index of the second lattice layer 41 is a size controlled by the second dielectric layer 44, which is a sea component, and is higher than the refractive index of the air layer. Further, since the second lattice layer 41 has a lattice structure composed of a metal and a dielectric, and the structural period PT of the second metal layer 42 is a sub-wavelength period, plasmon resonance occurs in the second lattice layer 41.
  • the refractive index of the intermediate grating layer 31 is approximated to a size averaged by the refractive index of the first intermediate dielectric layer 32 and the refractive index of the second intermediate dielectric layer 34. That is, the refractive index of the intermediate lattice layer 31 is a size controlled by the second intermediate dielectric layer 34 that is a sea component. Since the first intermediate dielectric layer 32 and the second intermediate dielectric layer 34 are transparent dielectric materials that transmit light in the visible region, the intermediate lattice layer 31 has high light transmittance in the visible region.
  • the refractive index of the first lattice layer 21 is approximated to a size averaged by the refractive index of the first dielectric layer 22 and the refractive index of the first metal layer 23. That is, the refractive index of the first lattice layer 21 is controlled by the first metal layer 23 that is a sea component.
  • the first lattice layer 21 has a lattice structure made of a metal and a dielectric, and the structural period PT of the first dielectric layer 22 is a sub-wavelength period. Therefore, plasmon resonance occurs in the first lattice layer 21.
  • a part of the light reaching the first lattice layer 21 is reflected at the interface between the intermediate lattice layer 31 and the first lattice layer 21, and a part of the light reaching the first lattice layer 21 is reflected on the surface plasmon. It is converted and passes through the first lattice layer 21.
  • the light EP 1 in the wavelength region consumed by plasmon resonance is not reflected at the interface between the intermediate grating layer 31 and the first grating layer 21.
  • a part of the light transmitted through the first grating layer 21 is at the interface between the first grating layer 21 and the support part 11, the interface between the intermediate layer 11b and the substrate 11a, or the interface between the support part 11 and the air layer. Can be reflected. Then, a part of the light LP1 in the wavelength region of the light transmitted through the first grating layer 21 passes through the support portion 11 and is emitted to the back surface side of the color filter.
  • the light reflected at the interface of each layer is emitted to the surface side of the color filter and causes interference due to the optical path difference between these lights.
  • light LR1 in a specific wavelength region in which plasmon resonance and light interference act is emitted on the surface side of the color filter.
  • the intensity of the light LR1 that is the reflected light can be suppressed.
  • the color is different from black and white.
  • a dark color is visually recognized by the sub-pixel 410A.
  • the light LP2 after color conversion corresponding to the type of the sub-pixel 410A that is, black
  • a colored color different from white is visually recognized by the sub-pixel 410A.
  • the white light LA is incident from the light source device 2 to the back surface 410T of the sub-pixel 410A
  • the light reflected from the interface of each layer is reflected on the back surface side of the color filter in addition to Fresnel reflection and plasmon resonance or light.
  • the light LR2 in a specific wavelength region where the interference acts is emitted, but the intensity of the light LR2 is kept low.
  • each of the grating layers 21 and 41 is consumed by plasmon resonance.
  • the wavelength region transmitted through the layers 21 and 41 is different from the wavelength region that is not consumed by plasmon resonance and is reflected at the interface between the lattice layers 21 and 41 and other layers. Therefore, the wavelength regions of the light beams LR1 and LR2 that are reflected light and the light beams LP1 and LP2 that are transmitted light are different from each other.
  • the first lattice layer 21 of the first lattice layer 21 and the second lattice layer 41 in which plasmon resonance occurs is the first lattice layer 21.
  • the metal layer 23 is a dominant layer
  • the second lattice layer 41 is a layer where the second dielectric layer 44 is dominant. Due to the difference in structure, the wavelength region consumed by plasmon resonance is different between the first lattice layer 21 and the second lattice layer 41, and the interface between the first lattice layer 21 and the other layers, The light reflectance is different at the interface between the second lattice layer 41 and other layers.
  • the wavelength region consumed by plasmon resonance in each of the lattice layers 21 and 41 is the lattice structure of each of the lattice layers 21 and 41, that is, the structural period PT, the thickness of each of the lattice layers 21 and 41, and the first dielectric layer 22.
  • the width WT of the second metal layer 42 and also depending on the material of each of the lattice layers 21, 41, that is, the refractive index of the metal layer 61 and the convex portion 11T and the refractive index of the dielectric layer 62. change.
  • the wavelength region of reflected light or transmitted light is adjusted by selecting the material of the first dielectric layer 22 in the first lattice layer 21 or selecting the material of the second dielectric layer 44 in the second lattice layer 41. can do. That is, the color of light after conversion by the sub-pixel 410A can be adjusted.
  • the materials of the convex portion 11T and the metal layer 61 are the same in the two subpixels 410A, and the material of the dielectric layer 62 is the two subpixels.
  • Different sub-pixels 410A are compared in pixel 410A. That is, in the two subpixels 410A, the configuration of the first lattice layer 21 is the same, the material of the first intermediate dielectric layer 32 in the intermediate lattice layer 31 is also the same, and the second metal layer in the second lattice layer 41 is the same.
  • the material of 42 is also the same.
  • the materials of the second intermediate dielectric layer 34 in the intermediate lattice layer 31 are different from each other, the materials of the second dielectric layer 44 in the second lattice layer 41 are different from each other, and in the upper lattice layer 51 The materials of the first upper dielectric layer 52 are also different from each other.
  • the structures of the intermediate lattice layer 31, the second lattice layer 41, and the upper lattice layer 51 are different from each other, so that the wavelength region of light transmitted through these layers is different. Are different from each other in the two sub-pixels 410A. Therefore, the wavelength regions of the light after color conversion emitted from the two subpixels 410A are different from each other.
  • the optical filter It is possible to increase the degree of freedom in adjusting the wavelength region that is transmitted or reflected.
  • the ninth embodiment it is also an object of the tenth embodiment to provide an optical filter that can increase the degree of freedom of adjusting the distribution of the wavelength region of light transmitted through the filter element within the filter element. It is.
  • the effects listed below are provided. can get.
  • the wavelength region transmitted through the sub-pixel 410A can be adjusted by changing the material constituting the dielectric layer 62. Therefore, the degree of freedom for adjusting the distribution of the wavelength region of light transmitted through the sub-pixel 410A within the sub-pixel 410A is further increased.
  • the dielectric layer 62 is composed of a material including an oxide of any one material selected from the group consisting of titanium, niobium, aluminum, tantalum, hafnium, zirconium, silicon, and magnesium. If so, the refractive index of the dielectric layer 62 can be selected from a wide range. Therefore, the degree of freedom in adjusting the wavelength region transmitted through the subpixel 410A is increased.
  • the thickness T7 of the dielectric layer 62 is equal to or less than the thickness T5 that is the height of the convex portion 11T, the light transmittance in the subpixel 410A is improved, and thus the subpixel 410A.
  • the intensity of transmitted light is increased. Accordingly, it is possible to increase the vividness of the color in each sub-pixel 410A and the luminance of light in each sub-pixel 410A. Further, if the thickness T7 of the dielectric layer 62 is 200 nm or less, the light transmittance in the sub-pixel 410A is sufficiently enhanced.
  • the tenth embodiment can be implemented with the following modifications.
  • the ratio of the area occupied by the isolated region A2 in the plane composed of the isolated region A2 and the peripheral region A3, that is, the ratio of the area occupied by the convex portion 11T per unit area in the plane including the reference surface and the convex portion 11T is: Preferably it is greater than 0.1. If the area ratio is greater than 0.1, the aspect ratio, which is the ratio of the height to the width of the convex portion 11T, can be prevented from becoming excessively large. Therefore, the structure including the support portion 11 and the convex portion 11T. The durability of the body is improved and the processing accuracy of the convex portion 11T is easily obtained.
  • the area ratio is smaller than 0.5, it is possible to suitably suppress the occurrence of Fresnel reflection at the interface between the upper lattice layer 51 and the upper layer.
  • the material also adheres to the side surface of the convex portion 11T when these layers are formed. If the area ratio is smaller than 0.5, the area between the adjacent protrusions 11T is sufficiently large, and the area between the protrusions 11T forms the metal layer 61 and the dielectric layer 62. In this case, it is possible to prevent the material from adhering to the side surface of the convex portion 11T from being buried.
  • the metal layer 61 and the dielectric layer 62 are easily formed in a shape that follows the surface shape of the lower layer.
  • the upper lattice layer 51 interspersed with the first upper dielectric layer 52 is preferably formed, and the effect of suppressing Fresnel reflection at the interface of the upper lattice layer 51 is preferably obtained.
  • a surface layer that is a layer in contact with the second upper dielectric layer 53 on the side opposite to the second grating layer 41 with respect to the second upper dielectric layer 53.
  • the refractive index difference between the first upper dielectric layer 53 and the second upper dielectric layer 53 is preferably smaller than the refractive index difference between the first metal layer 23 and the support portion 11.
  • the surface layer is, for example, an air layer.
  • the refractive index of the second upper dielectric layer 53 is more preferably equal to the refractive index of the surface layer.
  • the metal layer 61 may include an intermediate metal layer 32 ⁇ / b> A that is a metal layer located on the side surface of the first intermediate dielectric layer 32 and continuing to the second metal layer 42.
  • the intermediate metal layer 32 ⁇ / b> A is sandwiched between the first intermediate dielectric layer 32 and the second intermediate dielectric layer 34, and the thickness on the side surface of the first intermediate dielectric layer 32 is close to the first metal layer 23. It is so thin. Note that plasmon resonance can also occur in the intermediate lattice layer 31 due to the presence of the intermediate metal layer 32A.
  • the shape of the convex part 11T may be the cone shape which protrudes from the surface of the support part 11 similarly to the structure shown in FIG. 72 of 9th Embodiment.
  • the color filter may further include a protective layer 48 on the dielectric layer 62.
  • the protective layer 48 can be embodied in a structure that is integral with the second upper dielectric layer 53.
  • the protective layer 48 is preferably a low refractive index resin layer.
  • the low refractive index resin layer has a refractive index closer to the refractive index of the air layer than the refractive index of the first dielectric layer 22 and the refractive index of the first intermediate dielectric layer 32.
  • the protective layer 48 constituting the surface of the color filter is made of a resin containing fluorine, it is possible to prevent dirt from adhering to the surface of the color filter.
  • the protective layer 48 may have a flat surface as shown in FIG. 79, or may have a shape following the surface shape of the dielectric layer 62.
  • the arrangement of the isolated region A2 viewed from the direction facing the surface 410S of the subpixel 410A is not limited to a square array and a hexagonal array, and may be a two-dimensional lattice shape. That is, the plurality of first dielectric layers 22 may be arranged in a two-dimensional lattice, the plurality of first intermediate dielectric layers 32 may be arranged in a two-dimensional lattice, and the plurality of first dielectric layers 22 may be arranged.
  • the two metal layers 42 need only be arranged in a two-dimensional lattice, and the plurality of first upper dielectric layers 52 need only be arranged in a two-dimensional lattice.
  • the periodic elements of the periodic structure need only be arranged in a two-dimensional lattice shape having a sub-wavelength period.
  • the two-dimensional lattice-like arrangement is an arrangement in which elements are arranged along each of two directions intersecting in a two-dimensional plane.
  • the ratio of the width WT to the structural period PT is the ratio of the width WT to the structural period PT in one direction, and that the ratio is within a predetermined range means that the two elements in which the periodic elements are arranged
  • Each indicates that the ratio of the width WT to the structural period PT is within a predetermined range.
  • the thickness of each layer included in the color filter is within a predetermined range with respect to the structural period PT.
  • the thickness of each layer is predetermined with respect to the structural period PT in each of the two directions in which the periodic elements are arranged. It is within the range of.
  • the shape of the isolated region A2 viewed from the direction facing the surface 410S of the sub-pixel 410A is not limited to a square, but may be a rectangle or other polygons, There may be.
  • the periodic element arranged on the reference plane may be a bottomed hole provided on the surface of the support portion 11.
  • a recessed portion 11 ⁇ / b> H that is a hole recessed from the surface of the support portion 11 is located in the isolated region A ⁇ b> 2.
  • the plurality of recesses 11H are arranged in a two-dimensional lattice pattern having a sub-wavelength period.
  • the support portion 11 is a periodic structure.
  • the periodic element which a periodic structure has is the recessed part 11H recessed from a reference plane by using the surface of the support part 11 as a reference plane.
  • One end of the periodic element is an opening provided in each recess 11H, and the other end of the periodic element is a bottom surface provided in each recess 11H.
  • the metal layer 61 has a shape that follows the surface shape of the periodic structure
  • the dielectric layer 62 has a shape that follows the surface shape of the metal layer 61.
  • the 1st metal layer 23 is located in the mesh shape surrounding the opening part of each recessed part 11H
  • the 2nd metal layer 42 is located in the bottom face of each recessed part 11H.
  • a mesh-like dielectric layer 75 is positioned on the first metal layer 23, and a dielectric layer 76 arranged in a two-dimensional lattice pattern is positioned on the second metal layer 42. At this time, a lattice structure made of a metal and a dielectric is formed by each second metal layer 42 and a mesh-like portion surrounding each second metal layer 42 in the support portion 11.
  • the dielectric layer 76 located on the second metal layer 42 and the first metal layer 23 also form a lattice structure made of metal and dielectric.
  • the sub-pixel 410A transmits light in a specific wavelength region due to plasmon resonance occurring in the layer having these lattice structures. Even with such a configuration, the effects according to the above (10-1) to (10-3) can be obtained.
  • the shape of the convex part or recessed part of 7th Embodiment, 8th Embodiment, and these modifications may be applied to the convex part or recessed part which is a periodic element.
  • the structure of the optical filter of 10th Embodiment may be applied to the filter used for an image pick-up element similarly to 9th Embodiment.
  • Means for solving the above-mentioned problems include the following items as technical ideas derived from the ninth embodiment, the tenth embodiment, and modifications thereof.
  • a plurality of filter elements that selectively transmit light in a specific wavelength region is a periodic structure composed of a dielectric, and includes a plurality of periodic elements arranged in a two-dimensional lattice pattern The periodic structure and a metal layer positioned on the surface of the periodic structure, wherein a plane in which the plurality of periodic elements are arranged in the periodic structure is a reference plane, and the periodic element is arranged on the reference plane.
  • One of a convex portion projecting from the reference surface with one end portion and a concave portion having one end portion on the reference surface and recessed from the reference surface, and the metal layer of the reference surface A first metal layer having a mesh shape surrounding the one end of each periodic element, and a second metal layer positioned at the other end of each periodic element, wherein the structural period of the periodic element is the filter.
  • Sub-wavelength period below the wavelength region through which the element is transmitted The ratio of the width of the periodic element to the structural period in each direction along the two-dimensional lattice is not less than 0.30 and not more than 0.65, and the metal layer is a real part of a complex dielectric constant for light in the visible region Is a negative value, and the thickness of the metal layer is 1/10 or less of the distance between the one end and the other end of the periodic element.
  • a virtual layer along the reference plane and including the first metal layer is a first lattice layer, and the interface between the metal layer and the dielectric is a sub-wavelength in the first lattice layer. Repeated in a cycle. Further, the virtual layer along the reference plane and including the plurality of second metal layers is the second lattice layer, and even in the second lattice layer, the interface between the metal layer and the dielectric has a sub-wavelength period. Is repeated. Plasmon resonance occurs in these first and second lattice layers.
  • the first lattice layer part of the light incident on the first lattice layer is converted into surface plasmons by plasmon resonance, and the surface plasmons are transmitted through the first lattice layer. Also in the second lattice layer, a part of the light incident on the second lattice layer is converted into surface plasmon by plasmon resonance and is transmitted through the second lattice layer. The surface plasmon transmitted through the first lattice layer or the second lattice layer is reconverted into light and emitted.
  • the ratio of the width of the periodic element to the structural period is 0.30 or more and 0.65 or less, and the thickness of the metal layer is 10 minutes of the distance between one end and the other end of each periodic element. Therefore, light transmission is ensured in both the first metal layer and the second metal layer. Further, the wavelength region of light transmitted through the first lattice layer and the wavelength region of light transmitted through the second lattice layer vary depending on the size of the structural period and the thickness of the periodic element. As a result, colored light other than black or white is emitted from the filter element.
  • the distribution of the wavelength region of light transmitted through the filter element is determined by the filter element.
  • the degree of freedom of adjustment can be increased.
  • the distance between the one end portion and the other end portion of the periodic element and the thickness of the metal layer determined accordingly are large enough to transmit light incident on the filter element. Therefore, it is possible to further increase the intensity of light transmitted through the filter element and the vividness of the color.
  • the periodic element is the convex part, and the ratio of the width of the periodic element to the structural period in each direction along the two-dimensional lattice is 0.5 or less, and any one of items 71 to 73 The optical filter described in 1.
  • transmits is raised.
  • the material constituting the metal layer includes any one metal material selected from the group consisting of aluminum, tantalum, silver, and gold.
  • the material constituting the metal layer is a material that easily causes plasmon resonance, the selectivity of the wavelength in the first grating layer and the second grating layer can be enhanced. Therefore, the selectivity of the wavelength of light transmitted through the filter element can be increased.
  • the dielectric layer is located on the surface of the metal layer and has a shape following the surface shape of the metal layer, and the thickness of the dielectric layer includes the one end and the other end of the periodic element. 76.
  • the optical filter according to any one of items 71 to 75, which is equal to or less than the distance of.
  • the wavelength region of light transmitted through the filter element can be adjusted by changing the material constituting the dielectric layer. Therefore, the degree of freedom for adjusting the wavelength region of light transmitted through the filter element is further increased.
  • the refractive index of the dielectric layer can be selected from a wide range as compared with the case where the dielectric layer is made of resin. Therefore, the degree of freedom for adjusting the wavelength region of light transmitted through the filter element is further increased.
  • the optical filter is a filter included in a display device, and the plurality of filter elements included in the optical filter include a plurality of types of filter elements that selectively transmit light in a wavelength region specific to each type. 79.
  • the optical filter according to any one of items 71 to 78.
  • the degree of freedom for adjusting the distribution of the wavelength region of the light transmitted by the filter element that functions as a subpixel is increased.
  • a display device comprising: the optical filter according to any one of items 71 to 79; and a light source device that causes light in a visible region to enter the filter element.
  • a display device including an optical filter in which the filter element of the optical filter functions as a sub-pixel and the degree of freedom for adjusting the distribution of the wavelength region of light transmitted by such a filter element is increased is realized.
  • An image pickup device comprising: the optical filter according to any one of items 71 to 78, and 80; and a light receiving element that receives light transmitted through the filter element and converts the light into an electric signal.
  • an imaging element including an optical filter with an increased degree of freedom for adjusting the distribution of the wavelength region of light transmitted through the filter element is realized.
  • a method of manufacturing an optical filter comprising a plurality of filter elements that selectively transmit light in a specific wavelength region, wherein the step of forming the filter elements has an intaglio in a resin coated on the surface of a substrate
  • a plurality of periodic elements that are convex portions or concave portions, as viewed from the direction facing the surface of the base material, have a sub-wavelength period equal to or less than the wavelength region that the filter element transmits.
  • Metal with negative value Is formed to a thickness of 1/10 or less of the distance between one end of the periodic element and the other end of the periodic element located on the plane in which the plurality of periodic elements are arranged in the periodic structure.
  • a method for manufacturing an optical filter is
  • the wavelength region of light transmitted through the filter element can be adjusted by changing the material constituting the dielectric layer. Therefore, the degree of freedom for adjusting the wavelength region of light transmitted through the filter element can be further increased.
  • Example 1 is an example of the display body of the first embodiment.
  • a mold which is an intaglio used in the optical nanoimprint method was prepared. Specifically, a film made of chromium (Cr) was formed on the surface of the synthetic quartz substrate to a thickness of 10 nm by sputtering, and an electron beam resist pattern was formed on the Cr film by electron beam lithography.
  • the resist used was a positive type, and the film thickness was 150 nm.
  • the formed pattern is a pattern in which squares with a side of 160 nm are arranged in a hexagonal array with a structural period PT of 320 nm in a square-shaped region with a side of 1 cm, and the region where the electron beam is drawn is The inner area.
  • the Cr film exposed from the resist was etched by plasma generated by applying a high frequency to a mixed gas of chlorine and oxygen.
  • the synthetic quartz substrate in the region exposed from the resist and the Cr film was etched by a plasma generated by applying a high frequency to hexafluoroethane gas.
  • the depth of the etched synthetic quartz substrate was 150 nm.
  • the remaining resist and Cr film were removed to obtain a mold having an uneven structure.
  • OPTOOL HD-1100 manufactured by Daikin Industries
  • an ultraviolet curable resin was applied to the surface on which the mold pattern was formed. And the surface of the mold was covered with the surface which gave the easy-adhesion process of this film using the polyethylene terephthalate film by which the easy-adhesion process was given to the single side
  • a pattern of convex portions arranged in a hexagonal array is formed on the surface of the ultraviolet curable resin, and a periodic structure that is a laminate of the layer made of the ultraviolet curable resin and the base material that is a polyethylene terephthalate film is obtained. It was.
  • a metal layer was formed by forming a film made of aluminum (Al) to a thickness of 100 nm on the surface of the periodic structure using a vacuum deposition method. Thereby, the display body of Example 1 was obtained.
  • the side where the metal layer is located with respect to the base material is the surface side of the display body, and the side where the base material is located with respect to the metal layer is the back side of the display body.
  • Example 2 is an example of the first embodiment.
  • a mold which is an intaglio used in the optical nanoimprint method was prepared. Specifically, a film made of chromium (Cr) was formed on the surface of the synthetic quartz substrate to a thickness of 10 nm by sputtering, and an electron beam resist pattern was formed on the Cr film by electron beam lithography.
  • the resist used was a positive type, and the film thickness was 150 nm.
  • the Cr film exposed from the resist was etched by plasma generated by applying a high frequency to a mixed gas of chlorine and oxygen.
  • the synthetic quartz substrate in the region exposed from the resist and the Cr film was etched by a plasma generated by applying a high frequency to hexafluoroethane gas.
  • the depth of the etched synthetic quartz substrate was 150 nm.
  • the remaining resist and Cr film were removed to obtain a mold having an uneven structure.
  • OPTOOL HD-1100 manufactured by Daikin Industries
  • the formed mold is a mold 350 including a pattern 340 shown in FIG. 82A on the surface.
  • the length L of one side of the mold 350 is 1 cm.
  • the pattern 340 is composed of a pattern in which squares 342 having a side length M of 150 nm are arranged in a hexagonal array having a structural period PS of 300 nm.
  • the region where the electron beam is drawn corresponds to the inner region of the square 342.
  • FIG. 82C shows a cross-sectional structure of a region of the mold 350 where the pattern 340 is formed.
  • an ultraviolet curable resin was applied by spin coating to form a resin layer having a film thickness of 50 nm.
  • the surface of the resin layer and the surface of the mold were pressed at a pressure of 50 kN under reduced pressure, and irradiated with light having a wavelength of 365 nm to cure the ultraviolet curable resin.
  • the mold was released from the base material to obtain a structure composed of a resin layer having a concavo-convex in which the concavo-convexity of the surface of the mold was inverted and the base material.
  • the structure is exposed to O 2 plasma to remove the remaining film made of ultraviolet curable resin, and is made of ultraviolet curable resin by plasma generated by applying a high frequency to octafluorocyclobutane gas.
  • the substrate was etched until the pattern disappeared completely. This obtained the periodic structure which is a base material in which the unevenness
  • the height H of the convex part of the concavo-convex structure formed by this process was 140 nm.
  • FIG. 83A shows an image of the display body 360 of Example 2 viewed from the front side
  • FIG. 83B shows an image of the display body 360 of Example 2 viewed from the back side.
  • the three regions of the region ⁇ where the design is not drawn on the front surface, the region ⁇ where the design is drawn on the front surface, and the region ⁇ where the design is drawn on the back surface The wavelength of the reflected light was measured. The result is shown in FIG.
  • the spectrum of the region ⁇ has a uniform lower reflectance in the visible region of 400 nm to 700 nm than the spectrum of the region ⁇ . For this reason, when natural light was irradiated to the display body 360 and the reflected image of the display body 360 was observed with the naked eye from the surface side, the design looked a color close to black.
  • the reflectance in the wavelength region near 520 nm is drastically decreased. For this reason, when natural light was irradiated to the display body 360 and the reflected image of the display body 360 was observed with the naked eye from the back side, the design looked like a magenta color.
  • the display body of Example 2 is different from each other in observation of reflected light from the front surface side, observation of reflected light from the back surface side, and observation of transmitted light in observation under natural light. It was confirmed that color expression can be realized.
  • Example 3 is an example of the display body of the second embodiment.
  • a mold which is an intaglio used in the optical nanoimprint method was prepared. Specifically, a film made of chromium (Cr) was formed on the surface of the synthetic quartz substrate to a thickness of 10 nm by sputtering, and an electron beam resist pattern was formed on the Cr film by electron beam lithography.
  • the resist used was a positive type, and the film thickness was 150 nm.
  • the formed pattern is a pattern in which squares with a side of 160 nm are arranged in a hexagonal array with a structural period PT of 320 nm in a square-shaped region with a side of 1 cm, and the region where the electron beam is drawn is The inner area.
  • the Cr film exposed from the resist was etched by plasma generated by applying a high frequency to a mixed gas of chlorine and oxygen.
  • the synthetic quartz substrate in the region exposed from the resist and the Cr film was etched by a plasma generated by applying a high frequency to hexafluoroethane gas.
  • the depth of the synthetic quartz substrate etched by this was 100 nm.
  • the remaining resist and Cr film were removed to obtain a mold having an uneven structure.
  • OPTOOL HD-1100 manufactured by Daikin Industries
  • an ultraviolet curable resin was applied to the surface on which the mold pattern was formed. And the surface of the mold was covered with the surface which gave the easy-adhesion process of this film using the polyethylene terephthalate film by which the easy-adhesion process was given to the single side
  • a pattern of convex portions arranged in a hexagonal array is formed on the surface of the ultraviolet curable resin, and a periodic structure that is a laminate of the layer made of the ultraviolet curable resin and the base material that is a polyethylene terephthalate film is obtained. It was.
  • the refractive index of the ultraviolet curable resin after curing was 1.52.
  • a metal layer was formed by forming a film made of aluminum (Al) to a thickness of 50 nm on the surface of the periodic structure using a vacuum deposition method. Furthermore, a dielectric layer was formed by forming a film made of silicon dioxide (SiO 2 ) to a thickness of 150 nm on the surface of the metal layer. Thereby, the display body of Example 3 was obtained.
  • the side where the dielectric layer is positioned with respect to the base material is the front side of the display body, and the side where the base material is positioned with respect to the dielectric layer is the back side of the display body.
  • Example 3 When the display of Example 3 was irradiated with white light and observed, in the region where the pattern of the convex portions was formed, a blue color close to black was observed by the surface reflection observation, and the purple color was observed by the back surface reflection observation. Observed, orange was observed by surface transmission observation and back surface transmission observation. Moreover, in the area

Abstract

The optical device according to the present invention is provided with a periodic structure which is a dielectric provided with a support part having a reference plane and a plurality of periodic elements arranged in a two-dimensional lattice shape having a sub-wavelength period on the reference plane, the periodic elements being projections protruding from the reference plane or recesses depressed from the reference plane. The optical device is furthermore provided with a metal layer having a shape that follows the surface shape of the periodic structure, the metal layer being positioned on a surface of the periodic structure which is a plane including the surfaces of the periodic elements and a region surrounding the periodic elements in the reference plane.

Description

光学デバイス、表示体、表示体付きデバイス、光学フィルタ、および、光学デバイスの製造方法Optical device, display body, device with display body, optical filter, and manufacturing method of optical device
 本発明は、光学デバイス、表示体、表示体付きデバイス、光学フィルタ、および、光学デバイスの製造方法に関する。 The present invention relates to an optical device, a display body, a device with a display body, an optical filter, and a method for manufacturing the optical device.
 光学デバイスは、光の反射、吸収、干渉、回折といった光学現象を利用したデバイスである。光学デバイスの一例である表示体は、回折格子や多層膜による光の干渉等を利用することにより、印刷物とは異なる視覚的な効果を、表示体が示す像に付加する(例えば、特許文献1参照)。表示体は、物品に備えられることにより、物品の偽造の困難性や意匠性を高める。光学デバイスの他の例は、表示装置や撮像素子などに備えられる光学フィルタである(例えば、特許文献2参照)。光学フィルタは、入射された光のうちの一部の波長領域の光を射出する。 Optical devices are devices that use optical phenomena such as light reflection, absorption, interference, and diffraction. A display body, which is an example of an optical device, adds a visual effect different from a printed matter to an image displayed on the display body by using interference of light by a diffraction grating or a multilayer film (for example, Patent Document 1). reference). When the display body is provided in the article, it increases the difficulty of counterfeiting the article and the design. Another example of the optical device is an optical filter provided in a display device, an image sensor, or the like (see, for example, Patent Document 2). The optical filter emits light in a partial wavelength region of the incident light.
特許第5124272号明細書Japanese Patent No. 5124272 特開2014‐098780号公報JP 2014-098780 A
 特定の波長領域の光を選択的に透過あるいは反射する光学デバイスは、白色や黒色とは異なる有色の像を形成する表示体、あるいは、光学フィルタとして用いられる。こうした光学デバイスの汎用性を高めるためには、光学デバイスにおいて透過あるいは反射される波長領域を調整する自由度が高いことが好ましい。 An optical device that selectively transmits or reflects light in a specific wavelength region is used as a display body that forms a colored image different from white or black, or as an optical filter. In order to increase the versatility of such an optical device, it is preferable that the degree of freedom in adjusting the wavelength region transmitted or reflected by the optical device is high.
 本発明は、透過あるいは反射される波長領域の調整の自由度を高めることのできる光学デバイス、表示体、表示体付きデバイス、光学フィルタ、および、光学デバイスの製造方法を提供することを目的とする。 An object of the present invention is to provide an optical device, a display body, a device with a display body, an optical filter, and a method for manufacturing the optical device that can increase the degree of freedom of adjustment of a wavelength region to be transmitted or reflected. .
 上記課題を解決する光学デバイスは、基準面を有する支持部と、前記基準面においてサブ波長周期を有した二次元格子状に並ぶ複数の周期要素であって、前記基準面から突出する凸部、もしくは、前記基準面から窪む凹部のいずれかである前記周期要素とを備える誘電体である周期構造体と、前記基準面のうち前記周期要素を囲む領域と前記周期要素の表面とを含む面である前記周期構造体の表面に位置し、前記周期構造体の表面形状に追従する形状を有した金属層と、を備える。 An optical device that solves the above problems is a support having a reference surface, and a plurality of periodic elements arranged in a two-dimensional lattice shape having a sub-wavelength period on the reference surface, and a protrusion protruding from the reference surface, Alternatively, the surface includes a periodic structure that is a dielectric body including the periodic element that is one of the recesses recessed from the reference surface, and a region that surrounds the periodic element in the reference surface and the surface of the periodic element. And a metal layer having a shape that follows the surface shape of the periodic structure.
 上記課題を解決する表示体は、上記光学デバイスの構成を有する表示体である。
 上記課題を解決する表示体付きデバイスは、上記表示体を備える。
 上記課題を解決する光学フィルタは、上記光学デバイスの構成を有する光学フィルタである。
The display body which solves the said subject is a display body which has the structure of the said optical device.
A device with a display body that solves the above problem includes the display body.
An optical filter that solves the above problem is an optical filter having the configuration of the optical device.
 上記構成によれば、光学デバイスが、金属と誘電体とからなるサブ波長周期の格子構造を有する層を備えるため、光学デバイスに対して光が照射されると、上記格子構造を有する層にてプラズモン共鳴が生じる。プラズモン共鳴にて消費される波長領域の光は、光学デバイスにて反射されず、プラズモン共鳴の作用を受けた特定の波長領域の光が、光学デバイスを透過して光学デバイスから射出される。結果として、光学デバイスからは、特定の波長領域の光が反射光もしくは透過光として射出される。そして、各周期要素の位置や大きさと、各周期要素によって位置が定まる金属層とを含む複数の因子によって、上記透過光や反射光の波長領域が定まるため、光学デバイスにて透過あるいは反射される波長領域の調整の自由度を高めることができる。 According to the above configuration, the optical device includes a layer having a grating structure with a sub-wavelength period composed of a metal and a dielectric, and therefore when the optical device is irradiated with light, the layer having the grating structure is used. Plasmon resonance occurs. The light in the wavelength region consumed by the plasmon resonance is not reflected by the optical device, and the light in the specific wavelength region affected by the plasmon resonance is transmitted through the optical device and emitted from the optical device. As a result, light in a specific wavelength region is emitted from the optical device as reflected light or transmitted light. Since the wavelength region of the transmitted light and reflected light is determined by a plurality of factors including the position and size of each periodic element and the metal layer whose position is determined by each periodic element, it is transmitted or reflected by the optical device. The degree of freedom in adjusting the wavelength region can be increased.
 上記課題を解決する光学デバイスの製造方法は、基材の表面に塗工された樹脂に凹版の有する凹凸を転写することにより、前記基材の表面と対向する方向から見て、凸部または凹部である周期要素がサブ波長周期を有した二次元格子状に位置する周期構造体を形成する第1工程と、前記周期構造体の表面形状に追従する形状を有した金属層を前記周期構造体の上に形成する第2工程と、を含む。 The method of manufacturing an optical device that solves the above problem is that a convex portion or a concave portion is seen from the direction facing the surface of the base material by transferring the concave and convex portions of the intaglio to the resin coated on the surface of the base material A first step of forming a periodic structure in which the periodic elements are positioned in a two-dimensional lattice having a sub-wavelength period, and a metal layer having a shape following the surface shape of the periodic structure. And a second step of forming on the substrate.
 上記製法によれば、光学デバイスにおいて、透過あるいは反射される波長領域の調整の自由度が高く得られる。また、微細な凹凸を有する周期構造体を、容易にかつ好適に形成することができる。 According to the above manufacturing method, a high degree of freedom in adjusting the wavelength region transmitted or reflected in the optical device can be obtained. In addition, a periodic structure having fine irregularities can be easily and suitably formed.
 本発明によれば、光学デバイスにおいて透過あるいは反射される波長領域の調整の自由度を高めることができる。 According to the present invention, the degree of freedom of adjustment of the wavelength region transmitted or reflected by the optical device can be increased.
表示体の第1実施形態における平面構造を示す平面図。The top view which shows the planar structure in 1st Embodiment of a display body. 第1実施形態の表示体における第1表示領域の平面構造を拡大して示す拡大図。The enlarged view which expands and shows the planar structure of the 1st display area in the display body of 1st Embodiment. 第1実施形態の第1表示領域の断面構造を示す図であり、図2のX3‐X3線断面図。It is a figure which shows the cross-section of the 1st display area of 1st Embodiment, and is X3-X3 sectional view taken on the line of FIG. 第1実施形態の第1表示領域の断面構造を示す図であり、図2のX4‐X4線断面図。It is a figure which shows the cross-section of the 1st display area of 1st Embodiment, and is X4-X4 sectional view taken on the line of FIG. 第1実施形態の第2表示領域の断面構造を示す図であり、図1のX5‐X5線断面図。It is a figure which shows the cross-section of the 2nd display area | region of 1st Embodiment, and is X5-X5 sectional view taken on the line of FIG. 第1実施形態の第1表示領域の断面構造の他の例を示す断面図。Sectional drawing which shows the other example of the cross-section of the 1st display area of 1st Embodiment. 第1実施形態の表示体の作用を表面側での反射観察、および、裏面側での透過観察によって示す作用図。The effect | action figure which shows the effect | action of the display body of 1st Embodiment by the reflection observation by the surface side, and the transmission observation by the back surface side. 第1実施形態の表示体の作用を裏面側での反射観察、および、表面側での透過観察によって示す作用図。The effect | action figure which shows the effect | action of the display body of 1st Embodiment by the reflection observation by the back surface side, and the transmission observation by the surface side. 第1実施形態の第1表示領域における断面構造の一部の一例を拡大して示す断面図。Sectional drawing which expands and shows an example of a part of sectional structure in the 1st display area of 1st Embodiment. 第1実施形態の変形例の第1表示領域における断面構造の一部を拡大して示す断面図。Sectional drawing which expands and shows a part of sectional structure in the 1st display area of the modification of 1st Embodiment. 第1実施形態の変形例の第2表示領域における断面構造の一部を拡大して示す断面図。Sectional drawing which expands and shows a part of sectional structure in the 2nd display area of the modification of 1st Embodiment. 第1実施形態の変形例の第1表示領域における断面構造の一部を拡大して示す断面図。Sectional drawing which expands and shows a part of sectional structure in the 1st display area of the modification of 1st Embodiment. 表示体の第2実施形態における第1表示領域の断面構造を示す断面図。Sectional drawing which shows the cross-section of the 1st display area | region in 2nd Embodiment of a display body. 第2実施形態の第1表示領域の断面構造を示す断面図。Sectional drawing which shows the cross-section of the 1st display area of 2nd Embodiment. 第2実施形態の表示体の作用を表面側での反射観察、および、裏面側での透過観察によって示す作用図。The effect | action figure which shows the effect | action of the display body of 2nd Embodiment by the reflection observation in the surface side, and the transmission observation in a back surface side. 第2実施形態の表示体付きデバイスの構成を示す図。The figure which shows the structure of the device with a display body of 2nd Embodiment. 第2実施形態の変形例の第1表示領域における断面構造の一部を拡大して示す断面図。Sectional drawing which expands and shows a part of sectional structure in the 1st display area of the modification of 2nd Embodiment. 第2実施形態の変形例の第1表示領域における断面構造の一部を拡大して示す断面図。Sectional drawing which expands and shows a part of sectional structure in the 1st display area of the modification of 2nd Embodiment. 表示体の第3実施形態における平面構造を示す平面図。The top view which shows the planar structure in 3rd Embodiment of a display body. 第3実施形態の表示体の表示領域における断面構造と凹凸構造層の平面構造とを示す図。The figure which shows the cross-section in the display area of the display body of 3rd Embodiment, and the planar structure of an uneven structure layer. 第3実施形態の表示体の補助領域における断面構造を示す断面図。Sectional drawing which shows the cross-section in the auxiliary | assistant area | region of the display body of 3rd Embodiment. 第3実施形態における第1適用形態の表示体の作用を表面側での反射観察によって示す作用図。The effect | action figure which shows the effect | action of the display body of the 1st application form in 3rd Embodiment by the reflection observation by the surface side. 第3実施形態における第2適用形態の表示体の作用を表面側での反射観察および裏面側での透過観察によって示す作用図。The effect | action figure which shows the effect | action of the display body of the 2nd application form in 3rd Embodiment by the reflection observation by the surface side, and the transmission observation by the back surface side. 第3実施形態における第2適用形態の表示体の作用を表面側での透過観察および裏面側での反射観察によって示す作用図。The effect | action figure which shows the effect | action of the display body of the 2nd application form in 3rd Embodiment by the transmission observation by the surface side, and the reflection observation by the back surface side. 第3実施形態における第2適用形態の表示体を備える物品の一例を示す図。The figure which shows an example of the articles | goods provided with the display body of the 2nd application form in 3rd Embodiment. 第3実施形態における第3適用形態の表示体付きデバイスの構成を模式的に示す図。The figure which shows typically the structure of the device with a display body of the 3rd application form in 3rd Embodiment. 第3実施形態における第3適用形態の表示体付きデバイスが備える表示体の平面構造の一例を示す平面図。The top view which shows an example of the planar structure of the display body with which the device with a display body of the 3rd application form in 3rd Embodiment is provided. 第3実施形態における第3適用形態の表示体付きデバイスの作用を示す作用図。The effect | action figure which shows the effect | action of the device with a display body of the 3rd application form in 3rd Embodiment. 第3実施形態における第4適用形態の表示体付きデバイスの構成を模式的に示す図。The figure which shows typically the structure of the device with a display body of the 4th application form in 3rd Embodiment. 第3実施形態における第4適用形態の表示体付きデバイスの平面構造の一例を示す平面図。The top view which shows an example of the planar structure of the device with a display body of the 4th application form in 3rd Embodiment. 第3実施形態における第4適用形態の表示体付きデバイスの作用を示す作用図。The effect | action figure which shows the effect | action of the device with a display body of the 4th application form in 3rd Embodiment. 表示体の第4実施形態における平面構造を示す平面図。The top view which shows the planar structure in 4th Embodiment of a display body. 第4実施形態における表示体の断面構造と凹凸構造層の平面構造とを示す図。The figure which shows the cross-section of the display body in 4th Embodiment, and the planar structure of an uneven structure layer. 第4実施形態の表示体の作用を表面側での反射観察および裏面側での透過観察によって示す作用図。The effect | action figure which shows the effect | action of the display body of 4th Embodiment by the reflection observation by the surface side, and the transmission observation by the back surface side. 第4実施形態の表示体の作用を表面側での透過観察および裏面側での反射観察によって示す作用図。The effect | action figure which shows the effect | action of the display body of 4th Embodiment by the transmission observation by the surface side, and the reflection observation by the back surface side. 第4実施形態における表示体の断面構造の他の例を示す断面図。Sectional drawing which shows the other example of the cross-section of the display body in 4th Embodiment. 第4実施形態における表示体の断面構造の他の例を示す断面図。Sectional drawing which shows the other example of the cross-section of the display body in 4th Embodiment. 第4実施形態における表示体の第2画素での凸部の配置の他の例を示す平面図。The top view which shows the other example of arrangement | positioning of the convex part in the 2nd pixel of the display body in 4th Embodiment. 第4実施形態における表示体の断面構造の他の例を示す断面図。Sectional drawing which shows the other example of the cross-section of the display body in 4th Embodiment. 表示体の第5実施形態の一形態における平面構造を示す平面図。The top view which shows the planar structure in one form of 5th Embodiment of a display body. 第5実施形態の表示体の作用を示す図であって、表示体の一形態にて視認される像の変化の過程の一部を示す図。It is a figure which shows the effect | action of the display body of 5th Embodiment, Comprising: The figure which shows a part of process of the change of the image visually recognized with one form of a display body. 第5実施形態の表示体の作用を示す図であって、表示体の一形態にて視認される像の変化の過程の一部を示す図。It is a figure which shows the effect | action of the display body of 5th Embodiment, Comprising: The figure which shows a part of process of the change of the image visually recognized with one form of a display body. 表示体の第5実施形態の一形態における平面構造を示す平面図。The top view which shows the planar structure in one form of 5th Embodiment of a display body. 凸部の周期と入射角および回折角との関係を示す図。The figure which shows the relationship between the period of a convex part, an incident angle, and a diffraction angle. (a)および(b)は、観察者による表示体の観察角度の変化を示す図。(A) And (b) is a figure which shows the change of the observation angle of the display body by an observer. 第5実施形態の表示体の作用を示す図であって、表示体の一形態にて視認される像の変化の過程の一部を示す図。It is a figure which shows the effect | action of the display body of 5th Embodiment, Comprising: The figure which shows a part of process of the change of the image visually recognized with one form of a display body. 第5実施形態の表示体の作用を示す図であって、表示体の一形態にて視認される像の変化の過程の一部を示す図。It is a figure which shows the effect | action of the display body of 5th Embodiment, Comprising: The figure which shows a part of process of the change of the image visually recognized with one form of a display body. 第5実施形態の表示体の作用を示す図であって、表示体の一形態にて視認される像の変化の過程の一部を示す図。It is a figure which shows the effect | action of the display body of 5th Embodiment, Comprising: The figure which shows a part of process of the change of the image visually recognized with one form of a display body. 第5実施形態の表示体の作用を示す図であって、表示体の一形態にて視認される像の変化の過程の一部を示す図。It is a figure which shows the effect | action of the display body of 5th Embodiment, Comprising: The figure which shows a part of process of the change of the image visually recognized with one form of a display body. 表示体の第6実施形態における平面構造を示す平面図。The top view which shows the planar structure in 6th Embodiment of a display body. 第6実施形態の第1表示領域の平面構造を拡大して示す拡大図。The enlarged view which expands and shows the planar structure of the 1st display area of 6th Embodiment. 第6実施形態の第1表示領域の断面構造を示す図であり、図47のX48‐X48線断面図。FIG. 48 is a diagram showing a cross-sectional structure of a first display region in a sixth embodiment, and is a cross-sectional view taken along line X48-X48 in FIG. 第6実施形態の第1表示領域の断面構造を示す図であり、図47のX49‐X49線断面図。FIG. 48 is a diagram showing a cross-sectional structure of a first display region in a sixth embodiment, and is a cross-sectional view taken along line X49-X49 in FIG. 第6実施形態の第2表示領域の断面構造を示す図であり、図46のX50‐X50線断面図。46 is a diagram showing a cross-sectional structure of a second display region according to the sixth embodiment, and is a cross-sectional view taken along line X50-X50 in FIG. 46. FIG. 第6実施形態の表示体の作用を表面側での反射観察、および、裏面側での透過観察によって示す作用図。The effect | action figure which shows the effect | action of the display body of 6th Embodiment by the reflection observation by the surface side, and the transmission observation by the back surface side. 第6実施形態の表示体の作用を裏面側での反射観察、および、表面側での透過観察によって示す作用図。The effect | action figure which shows the effect | action of the display body of 6th Embodiment by the reflection observation by the back surface side, and the transmission observation by the surface side. 第6実施形態の第1表示領域における断面構造の一部の一例を拡大して示す断面図。Sectional drawing which expands and shows an example of a part of sectional structure in the 1st display area of 6th Embodiment. 第6実施形態の変形例における第1表示領域の平面構造を拡大して示す拡大図。The enlarged view which expands and shows the planar structure of the 1st display area in the modification of 6th Embodiment. 第6実施形態の変形例における第1表示領域の平面構造を拡大して示す拡大図。The enlarged view which expands and shows the planar structure of the 1st display area in the modification of 6th Embodiment. 表示体の第7実施形態における凹凸構造層の平面構造を示す平面図。The top view which shows the planar structure of the uneven structure layer in 7th Embodiment of a display body. 第7実施形態の凹凸構造層の断面構造を示す図であり、図56AのX56B-X56B線断面図。FIG. 58 is a diagram showing a sectional structure of the concavo-convex structure layer of the seventh embodiment, and is a sectional view taken along line X56B-X56B in FIG. 56A. 第7実施形態の表示体の断面構造を示す断面図。Sectional drawing which shows the cross-section of the display body of 7th Embodiment. 第7実施形態の凹凸構造層であって、複数の構造周期を有する凹凸構造層の一例を示す平面図。The top view which shows an example of the uneven structure layer of 7th Embodiment, Comprising: The uneven structure layer which has a some structural period. 第7実施形態の凹凸構造層であって、複数の構造周期を有する凹凸構造層の一例を示す平面図。The top view which shows an example of the uneven structure layer of 7th Embodiment, Comprising: The uneven structure layer which has a some structural period. 第7実施形態の凹凸構造層が有する凸部の形状の一例を示す断面図。Sectional drawing which shows an example of the shape of the convex part which the uneven structure layer of 7th Embodiment has. 第7実施形態の凹凸構造層が有する凸部の形状の一例を示す断面図。Sectional drawing which shows an example of the shape of the convex part which the uneven structure layer of 7th Embodiment has. 第7実施形態の凹凸構造層が有する凸部の形状の一例を示す断面図。Sectional drawing which shows an example of the shape of the convex part which the uneven structure layer of 7th Embodiment has. 第7実施形態の凹凸構造層が有する凸部の形状の一例を示す断面図。Sectional drawing which shows an example of the shape of the convex part which the uneven structure layer of 7th Embodiment has. 第7実施形態の変形例における凹凸構造層の平面構造を示す平面図。The top view which shows the planar structure of the uneven structure layer in the modification of 7th Embodiment. 第7実施形態の変形例における凹凸構造層の断面構造を示す図であり、図59AのX59B-X59B線断面図。FIG. 60B is a cross-sectional view taken along the line X59B-X59B in FIG. 59A, showing a cross-sectional structure of the concavo-convex structure layer in a modification of the seventh embodiment. 第7実施形態の変形例の表示体の断面構造を示す断面図。Sectional drawing which shows the cross-section of the display body of the modification of 7th Embodiment. 第7実施形態の変形例の凹凸構造層が有する凸部の形状の一例を示す断面図。Sectional drawing which shows an example of the shape of the convex part which the uneven structure layer of the modification of 7th Embodiment has. 第7実施形態の変形例の凹凸構造層が有する凸部の形状の一例を示す断面図。Sectional drawing which shows an example of the shape of the convex part which the uneven structure layer of the modification of 7th Embodiment has. 第7実施形態の変形例の凹凸構造層が有する凸部の形状の一例を示す断面図。Sectional drawing which shows an example of the shape of the convex part which the uneven structure layer of the modification of 7th Embodiment has. 第7実施形態の変形例の凹凸構造層が有する凸部の形状の一例を示す断面図。Sectional drawing which shows an example of the shape of the convex part which the uneven structure layer of the modification of 7th Embodiment has. 表示体の第8実施形態における凹凸構造層の平面構造を示す平面図。The top view which shows the planar structure of the uneven structure layer in 8th Embodiment of a display body. 第8実施形態の凹凸構造層の断面構造を示す図であり、図61AのX61B-X61B線断面図。It is a figure which shows the cross-section of the uneven structure layer of 8th Embodiment, and is the X61B-X61B sectional view taken on the line of FIG. 61A. 第8実施形態の表示体の断面構造を示す断面図。Sectional drawing which shows the cross-section of the display body of 8th Embodiment. 第8実施形態の凹凸構造層が有する凹部の形状の一例を示す断面図。Sectional drawing which shows an example of the shape of the recessed part which the uneven structure layer of 8th Embodiment has. 第8実施形態の凹凸構造層が有する凹部の形状の一例を示す断面図。Sectional drawing which shows an example of the shape of the recessed part which the uneven structure layer of 8th Embodiment has. 第8実施形態の凹凸構造層が有する凹部の形状の一例を示す断面図。Sectional drawing which shows an example of the shape of the recessed part which the uneven structure layer of 8th Embodiment has. 第8実施形態の凹凸構造層が有する凹部の形状の一例を示す断面図。Sectional drawing which shows an example of the shape of the recessed part which the uneven structure layer of 8th Embodiment has. 第8実施形態の変形例における凹凸構造層の平面構造を示す平面図。The top view which shows the planar structure of the uneven structure layer in the modification of 8th Embodiment. 第8実施形態の変形例における凹凸構造層の断面構造を示す図であり、図63AのX63B-X63B線断面図。It is a figure which shows the cross-section of the uneven structure layer in the modification of 8th Embodiment, and is the X63B-X63B sectional view taken on the line of FIG. 63A. 第8実施形態の変形例の表示体の断面構造を示す断面図。Sectional drawing which shows the cross-section of the display body of the modification of 8th Embodiment. 第9実施形態の表示装置における平面構造を示す平面図。The top view which shows the planar structure in the display apparatus of 9th Embodiment. 第9実施形態のカラーフィルタが備える副画素の平面構造を拡大して示す拡大図。The enlarged view which expands and shows the planar structure of the subpixel with which the color filter of 9th Embodiment is provided. 第9実施形態の副画素の断面構造を示す図であり、図65のX66‐X66線断面図。FIG. 66 is a diagram showing a cross-sectional structure of a sub-pixel according to the ninth embodiment, and is a cross-sectional view taken along line X66-X66 in FIG. 第9実施形態の副画素の断面構造を示す図であり、図65のX67‐X67線断面図。FIG. 66 is a diagram showing a cross-sectional structure of a sub-pixel according to the ninth embodiment, and is a cross-sectional view taken along line X67-X67 in FIG. 第9実施形態の副画素の断面構造の他の例を示す断面図。Sectional drawing which shows the other example of the cross-section of the subpixel of 9th Embodiment. 光源装置の非点灯時における第9実施形態のカラーフィルタの作用を示す作用図。The effect | action figure which shows the effect | action of the color filter of 9th Embodiment at the time of non-lighting of a light source device. 光源装置の点灯時における第9実施形態のカラーフィルタの作用を示す作用図。The operation | movement figure which shows the effect | action of the color filter of 9th Embodiment at the time of lighting of a light source device. 第9実施形態の副画素における断面構造の一部の一例を拡大して示す断面図。Sectional drawing which expands and shows an example of a part of sectional structure in the sub pixel of 9th Embodiment. 第9実施形態の変形例の副画素における断面構造の一部を拡大して示す断面図。Sectional drawing which expands and shows a part of sectional structure in the subpixel of the modification of 9th Embodiment. 第9実施形態の変形例の副画素における断面構造の一部を拡大して示す断面図。Sectional drawing which expands and shows a part of sectional structure in the subpixel of the modification of 9th Embodiment. 第9実施形態の構成が適用される撮像素子の構成を示す図。The figure which shows the structure of the image pick-up element to which the structure of 9th Embodiment is applied. 第10実施形態のカラーフィルタにおける副画素の断面構造を示す断面図。Sectional drawing which shows the cross-section of the subpixel in the color filter of 10th Embodiment. 第10実施形態の副画素の断面構造を示す断面図。Sectional drawing which shows the cross-section of the subpixel of 10th Embodiment. 光源装置の非点灯時における第10実施形態のカラーフィルタの作用を示す作用図。The operation | movement figure which shows the effect | action of the color filter of 10th Embodiment at the time of non-lighting of a light source device. 光源装置の点灯時における第10実施形態のカラーフィルタの作用を示す作用図。The operation | movement figure which shows the effect | action of the color filter of 10th Embodiment at the time of lighting of a light source device. 第10実施形態の変形例の副画素における断面構造の一部を拡大して示す断面図。Sectional drawing which expands and shows a part of sectional structure in the subpixel of the modification of 10th Embodiment. 第10実施形態の変形例の副画素における断面構造の一部を拡大して示す断面図。Sectional drawing which expands and shows a part of sectional structure in the subpixel of the modification of 10th Embodiment. 実施例1の表示体における表面側の反射光の波長、裏面側の反射光の波長、および、透過光の波長の測定結果を示す図。The figure which shows the measurement result of the wavelength of the reflected light of the surface side in the display body of Example 1, the wavelength of the reflected light of a back surface side, and the wavelength of transmitted light. 実施例2にて用いられるモールドの表面に位置する図柄を示す図。The figure which shows the design located in the surface of the mold used in Example 2. FIG. 実施例2にて用いられるモールドにおいて図柄が位置する領域の平面構造を拡大して示す平面図。The top view which expands and shows the planar structure of the area | region where a pattern is located in the mold used in Example 2. FIG. 実施例2にて用いられるモールドにおいて図柄が位置する領域の断面構造を示す図であって、図82BのX82C‐X82C線断面図。FIG. 83 is a cross-sectional view taken along the line X82C-X82C in FIG. 82B, showing a cross-sectional structure of a region where a design is located in the mold used in Example 2; (a)は実施例2の表示体を表面側から見た像を示す図、(b)は実施例2の表示体を裏面側から見た像を示す図。(A) is a figure which shows the image which looked at the display body of Example 2 from the surface side, (b) is the figure which shows the image which looked at the display body of Example 2 from the back surface side. 実施例2の表示体における反射光の波長の測定結果を示す図。The figure which shows the measurement result of the wavelength of the reflected light in the display body of Example 2. FIG. 実施例2の表示体における透過光の波長の測定結果を示す図。The figure which shows the measurement result of the wavelength of the transmitted light in the display body of Example 2. FIG.
 (第1実施形態)
 図1から図12を参照して、光学デバイスの一例である表示体、および、表示体の製造方法の第1実施形態を説明する。なお、表示体は、物品の偽造の困難性を高める目的で用いられてもよいし、物品の意匠性を高める目的で用いられてもよいし、これらの目的を兼ねて用いられてもよい。物品の偽造の困難性を高める目的としては、表示体は、例えば、パスポートや免許証等の認証書類、商品券や小切手等の有価証券類、クレジットカードやキャッシュカード等のカード類、紙幣等に貼り付けられる。また、物品の意匠性を高める目的としては、表示体は、例えば、身に着けられる装飾品や、使用者に携帯される物品、家具や家電等のように据え置かれる物品、壁や扉等の構造物等に取り付けられる。
(First embodiment)
With reference to FIGS. 1 to 12, a display body that is an example of an optical device and a first embodiment of a method for manufacturing the display body will be described. Note that the display body may be used for the purpose of increasing the difficulty of counterfeiting the article, may be used for the purpose of improving the design of the article, or may be used for these purposes. For the purpose of increasing the difficulty of counterfeiting goods, for example, the display body is used for authentication documents such as passports and licenses, securities such as gift certificates and checks, cards such as credit cards and cash cards, and banknotes. It is pasted. In addition, for the purpose of improving the design of the article, the display body is, for example, a decorative article worn by the user, an article carried by the user, an article placed like a furniture or a household appliance, a wall or a door. It can be attached to structures.
 図1が示すように、表示体の有する表面10Sは、第1表示領域10Aと、第2表示領域10Bとに区画される。第1表示領域10Aの備える断面構造と、第2表示領域10Bの備える断面構造とは、相互に異なる。第1表示領域10Aは、表面10Sにおいて、文字、図形、記号、模様、絵などを描く領域であり、図1では、例えば、星形の図形を描く領域である。 As shown in FIG. 1, the surface 10S of the display body is partitioned into a first display area 10A and a second display area 10B. The cross-sectional structure provided in the first display area 10A and the cross-sectional structure provided in the second display area 10B are different from each other. The first display area 10A is an area in which characters, figures, symbols, patterns, pictures, and the like are drawn on the surface 10S. In FIG. 1, for example, a star-shaped figure is drawn.
 [表示体の構造]
 まず、第1表示領域10Aの構成について以下に説明する。
 図2が示すように、第1表示領域10Aは、表示体の表面10Sと対向する方向から見て、複数の孤立領域A2と、各孤立領域A2を囲む単一の周辺領域A3とを含む。図2では、孤立領域A2を説明する便宜上、各孤立領域A2にドットを付して示す。
[Display structure]
First, the configuration of the first display area 10A will be described below.
As shown in FIG. 2, the first display area 10A includes a plurality of isolated areas A2 and a single peripheral area A3 surrounding each isolated area A2 when viewed from the direction facing the surface 10S of the display body. In FIG. 2, for the convenience of explaining the isolated region A2, each isolated region A2 is shown with dots.
 各孤立領域A2は、表面10Sに沿って正方配列に並ぶ。正方配列は、一辺が構造周期PTを有する正方形LTの各頂点に孤立領域A2が位置する配列である。なお、各孤立領域A2は、六方配列に並ぶことも可能である。すなわち、孤立領域A2は、正方配列と六方配列とのいずれか一方である島状配列に並ぶ。なお、六方配列は、正三角形の各頂点に孤立領域A2が位置する配列である。 The isolated regions A2 are arranged in a square array along the surface 10S. The square array is an array in which an isolated region A2 is located at each vertex of a square LT having a structure period PT on one side. Note that the isolated regions A2 can be arranged in a hexagonal array. That is, the isolated regions A2 are arranged in an island-like array that is either a square array or a hexagonal array. The hexagonal array is an array in which an isolated region A2 is located at each vertex of an equilateral triangle.
 図3が示すように、表示体は、可視領域の光を透過する透明な支持部11を備える。可視領域の光が有する波長は、400nm以上800nm以下である。支持部11は、第1表示領域10Aと第2表示領域10Bとに共通する。支持部11の有する断面構造は、単層構造であってもよいし、多層構造であってもよい。 As shown in FIG. 3, the display body includes a transparent support 11 that transmits light in the visible region. The wavelength of light in the visible region is from 400 nm to 800 nm. The support part 11 is common to the first display area 10A and the second display area 10B. The cross-sectional structure of the support part 11 may be a single layer structure or a multilayer structure.
 支持部11を構成する材料は、誘電体であり、例えば、光硬化性樹脂などの樹脂や、石英などの無機材料である。物品に表示体を貼り付けることに要する可撓性を得やすいこと、支持部11に付加できる光学的な特性の自由度が高いことなどの観点において、支持部11を構成する材料は、樹脂であることが好ましい。支持部11の屈折率は、空気層よりも高く、例えば1.2以上1.7以下である。 The material constituting the support portion 11 is a dielectric, for example, a resin such as a photo-curable resin, or an inorganic material such as quartz. From the viewpoints of easily obtaining the flexibility required for attaching the display body to the article and having a high degree of freedom in optical characteristics that can be added to the support portion 11, the material constituting the support portion 11 is a resin. Preferably there is. The refractive index of the support part 11 is higher than that of the air layer, and is, for example, 1.2 or more and 1.7 or less.
 第1表示領域10Aは、支持部11に近い層から順に、第1格子層21と、中間格子層31と、第2格子層41とを備える。中間格子層31は、第1格子層21と第2格子層41とに挟まれている。なお、支持部11において第1格子層21の位置する面が、支持部11の表面であり、支持部11に対して第1格子層21の位置する側が、構造体における表面側である。反対に、第1格子層21に対して支持部11の位置する側が、構造体における裏面側である。 The first display area 10 </ b> A includes a first lattice layer 21, an intermediate lattice layer 31, and a second lattice layer 41 in order from the layer close to the support portion 11. The intermediate lattice layer 31 is sandwiched between the first lattice layer 21 and the second lattice layer 41. In addition, in the support part 11, the surface where the 1st lattice layer 21 is located is the surface of the support part 11, and the side where the 1st lattice layer 21 is located with respect to the support part 11 is the surface side in the structure. On the contrary, the side where the support part 11 is located with respect to the first lattice layer 21 is the back side of the structure.
 [第1格子層21]
 支持部11の表面には、第1格子層21が位置する。第1格子層21は、複数の第1誘電体層22と、単一の第1金属層23とを備える。各第1誘電体層22は、表示体の表面10Sと対向する方向から見て、孤立領域A2に位置する。単一の第1金属層23は、表面10Sと対向する方向から見て、周辺領域A3に位置する。複数の第1誘電体層22は、表面10Sに沿って、正方配列と六方配列とのいずれか一方である島状配列に並ぶ。
[First lattice layer 21]
The first lattice layer 21 is located on the surface of the support portion 11. The first lattice layer 21 includes a plurality of first dielectric layers 22 and a single first metal layer 23. Each first dielectric layer 22 is located in the isolated region A2 when viewed from the direction facing the surface 10S of the display body. The single first metal layer 23 is located in the peripheral region A3 when viewed from the direction facing the surface 10S. The plurality of first dielectric layers 22 are arranged in an island-like arrangement that is either a square arrangement or a hexagonal arrangement along the surface 10S.
 各第1誘電体層22は、支持部11の表面から突き出た構造体である。各第1誘電体層22は、例えば、支持部11と一体である。あるいは、各第1誘電体層22は、例えば、支持部11の表面との間に境界を有し、支持部11とは別体である。 Each first dielectric layer 22 is a structure protruding from the surface of the support portion 11. Each first dielectric layer 22 is integral with the support portion 11, for example. Alternatively, each first dielectric layer 22 has a boundary with the surface of the support part 11, for example, and is separate from the support part 11.
 第1金属層23は、表面10Sと対向する方向から見て、各第1誘電体層22を1つずつ囲う網目状を有する。第1格子層21において、単一の第1金属層23は、自由電子が行きわたる光学的な海成分であり、各第1誘電体層22は、海成分のなかに分布する島成分である。 The first metal layer 23 has a mesh shape surrounding each first dielectric layer 22 when viewed from the direction facing the surface 10S. In the first lattice layer 21, the single first metal layer 23 is an optical sea component through which free electrons pass, and each first dielectric layer 22 is an island component distributed in the sea component. .
 表面10Sと対向する方向から見て、第1誘電体層22の位置する周期は、相互に隣り合う第1誘電体層22の最短幅WPと、第1誘電体層22の幅WTとの合計であり、上記構造周期PTである。構造周期PTは、可視領域の波長以下であるサブ波長周期である。 When viewed from the direction facing the surface 10S, the period in which the first dielectric layer 22 is located is the sum of the shortest width WP of the first dielectric layers 22 adjacent to each other and the width WT of the first dielectric layer 22 And the structural period PT. The structural period PT is a sub-wavelength period that is equal to or shorter than the wavelength in the visible region.
 構造周期PTに対する第1誘電体層22の幅WTの比は、0.25以上0.75以下である。第1格子層21の加工の精度が得られること、第1格子層21においてプラズモン共鳴が生じやすいことなどの観点において、構造周期PTに対する第1誘電体層22の幅WTの比は、好ましくは、0.40以上0.60以下である。 The ratio of the width WT of the first dielectric layer 22 to the structural period PT is 0.25 or more and 0.75 or less. From the standpoint that the processing accuracy of the first lattice layer 21 is obtained and that plasmon resonance is likely to occur in the first lattice layer 21, the ratio of the width WT of the first dielectric layer 22 to the structural period PT is preferably 0.40 or more and 0.60 or less.
 第1格子層21の厚さは、10nm以上200nm以下であることが好ましい。第1格子層21の加工の精度が得られること、第1格子層21においてプラズモン共鳴が生じやすいこと、各観察による像の色彩が鮮明となることなどの観点において、第1格子層21の厚さは、10nm以上100nm以下であることが好ましい。 The thickness of the first lattice layer 21 is preferably 10 nm or more and 200 nm or less. The thickness of the first lattice layer 21 is obtained from the viewpoints that the processing accuracy of the first lattice layer 21 is obtained, that plasmon resonance is likely to occur in the first lattice layer 21 and that the color of the image obtained by each observation becomes clear. The thickness is preferably 10 nm or more and 100 nm or less.
 [中間格子層31]
 第1格子層21の上には、中間格子層31が位置する。中間格子層31の厚さは、第1格子層21の厚さよりも厚い。中間格子層31の加工の精度が得られる観点において、中間格子層31の厚さは、150nm以下であることが好ましい。
[Intermediate lattice layer 31]
An intermediate lattice layer 31 is located on the first lattice layer 21. The thickness of the intermediate lattice layer 31 is thicker than the thickness of the first lattice layer 21. From the viewpoint of obtaining the processing accuracy of the intermediate lattice layer 31, the thickness of the intermediate lattice layer 31 is preferably 150 nm or less.
 中間格子層31は、複数の第1中間誘電体層32と、単一の第2中間誘電体層33とを備える。各第1中間誘電体層32は、表面10Sと対向する方向から見て、孤立領域A2に位置する。単一の第2中間誘電体層33は、表面10Sと対向する方向から見て、周辺領域A3に位置する。複数の第1中間誘電体層32は、表面10Sに沿って、正方配列と六方配列とのいずれか一方である島状配列に並ぶ。 The intermediate lattice layer 31 includes a plurality of first intermediate dielectric layers 32 and a single second intermediate dielectric layer 33. Each first intermediate dielectric layer 32 is located in the isolated region A2 when viewed from the direction facing the surface 10S. The single second intermediate dielectric layer 33 is located in the peripheral region A3 when viewed from the direction facing the surface 10S. The plurality of first intermediate dielectric layers 32 are arranged in an island-like arrangement that is either a square arrangement or a hexagonal arrangement along the surface 10S.
 各第1中間誘電体層32は、第1誘電体層22から突き出た構造体である。各第1中間誘電体層32は、例えば、第1誘電体層22と一体である。あるいは、各第1中間誘電体層32は、例えば、第1誘電体層22との間に境界を有し、第1誘電体層22とは別体である。表面10Sと対向する方向から見て、第1中間誘電体層32の位置する周期は、第1誘電体層22と同じく、最短幅WPと幅WTとの合計であり、上記構造周期PTである。構造周期PTに対する第1中間誘電体層32の幅WTの比は、0.25以上0.75以下である。また、構造周期PTに対する第1中間誘電体層32の幅WTの比は、好ましくは、0.40以上0.60以下である。 Each first intermediate dielectric layer 32 is a structure protruding from the first dielectric layer 22. Each first intermediate dielectric layer 32 is, for example, integral with the first dielectric layer 22. Alternatively, each first intermediate dielectric layer 32 has a boundary with the first dielectric layer 22, for example, and is separate from the first dielectric layer 22. As seen from the direction facing the surface 10S, the period in which the first intermediate dielectric layer 32 is located is the sum of the shortest width WP and the width WT, like the first dielectric layer 22, and is the above-described structural period PT. . The ratio of the width WT of the first intermediate dielectric layer 32 to the structural period PT is 0.25 or more and 0.75 or less. The ratio of the width WT of the first intermediate dielectric layer 32 to the structural period PT is preferably 0.40 or more and 0.60 or less.
 第2中間誘電体層33は、表面10Sと対向する方向から見て、各第1中間誘電体層32を1つずつ囲う網目状を有する。中間格子層31において、単一の第2中間誘電体層33は、構造的および光学的に海成分であり、各第1中間誘電体層32は、構造的および光学的に島成分である。第2中間誘電体層33は、空気層、あるいは、樹脂層であり、第1中間誘電体層32よりも低い誘電率を有する。 The second intermediate dielectric layer 33 has a mesh shape surrounding each first intermediate dielectric layer 32 as viewed from the direction facing the surface 10S. In the intermediate lattice layer 31, the single second intermediate dielectric layer 33 is structurally and optically a sea component, and each first intermediate dielectric layer 32 is structurally and optically an island component. The second intermediate dielectric layer 33 is an air layer or a resin layer, and has a dielectric constant lower than that of the first intermediate dielectric layer 32.
 [第2格子層41]
 中間格子層31の上には、第2格子層41が位置する。第2格子層41の厚さは、10nm以上200nm以下であることが好ましく、また、第2格子層41の厚さは、中間格子層31の厚さよりも薄い。第2格子層41の加工の精度が得られること、第2格子層41においてプラズモン共鳴が生じやすいこと、各観察による像の色彩が鮮明になることなどの観点において、第2格子層41の厚さは、10nm以上100nm以下であることが好ましい。
[Second lattice layer 41]
A second lattice layer 41 is positioned on the intermediate lattice layer 31. The thickness of the second lattice layer 41 is preferably 10 nm or more and 200 nm or less, and the thickness of the second lattice layer 41 is thinner than the thickness of the intermediate lattice layer 31. The thickness of the second grating layer 41 can be obtained from the viewpoints that the processing accuracy of the second grating layer 41 is obtained, that plasmon resonance is likely to occur in the second grating layer 41, and that the color of the image obtained by each observation becomes clear. The thickness is preferably 10 nm or more and 100 nm or less.
 第2格子層41は、複数の第2金属層42と、単一の第2誘電体層43とを備える。各第2金属層42の位置は、表面10Sと対向する方向から見て、孤立領域A2を含む。単一の第2誘電体層43の位置は、表面10Sと対向する方向から見て、周辺領域A3に含まれる。複数の第2金属層42は、表面10Sに沿って、正方配列と六方配列とのいずれか一方である島状配列に並ぶ。 The second lattice layer 41 includes a plurality of second metal layers 42 and a single second dielectric layer 43. The position of each second metal layer 42 includes an isolated region A2 when viewed from the direction facing the surface 10S. The position of the single second dielectric layer 43 is included in the peripheral region A3 when viewed from the direction facing the surface 10S. The plurality of second metal layers 42 are arranged in an island-like arrangement that is either a square arrangement or a hexagonal arrangement along the surface 10S.
 各第2金属層42は、第1中間誘電体層32の頂面に重なる構造体である。各第2金属層42は、第1中間誘電体層32との間に境界を有し、第1中間誘電体層32とは別体である。表面10Sと対向する方向から見て、第2金属層42の位置する周期は、第1誘電体層22と同じく、最短幅WPと幅WTとの合計であり、上記構造周期PTである。構造周期PTに対する第2金属層42の幅の比は、0.25以上0.75以下である。また、構造周期PTに対する第2金属層42の幅の比は、好ましくは、0.40以上0.60以下である。 Each second metal layer 42 is a structure that overlaps the top surface of the first intermediate dielectric layer 32. Each second metal layer 42 has a boundary with the first intermediate dielectric layer 32, and is separate from the first intermediate dielectric layer 32. As viewed from the direction facing the surface 10S, the period in which the second metal layer 42 is located is the sum of the shortest width WP and the width WT, as in the first dielectric layer 22, and is the structural period PT. The ratio of the width of the second metal layer 42 to the structural period PT is 0.25 or more and 0.75 or less. The ratio of the width of the second metal layer 42 to the structural period PT is preferably 0.40 or more and 0.60 or less.
 第2誘電体層43は、表面10Sと対向する方向から見て、各第2金属層42を1つずつ囲う網目状を有する。第2格子層41において、単一の第2誘電体層43は、第2金属層42と比べて自由電子が少ない光学的な海成分であり、各第2金属層42は、海成分のなかに分布する島成分である。第2誘電体層43は、空気層、あるいは、樹脂層であり、第1中間誘電体層32よりも低い誘電率を有する。 The second dielectric layer 43 has a mesh shape surrounding each of the second metal layers 42 as viewed from the direction facing the surface 10S. In the second lattice layer 41, the single second dielectric layer 43 is an optical sea component with fewer free electrons than the second metal layer 42, and each second metal layer 42 is a sea component. It is an island component distributed in The second dielectric layer 43 is an air layer or a resin layer, and has a dielectric constant lower than that of the first intermediate dielectric layer 32.
 第1格子層21における海成分である第1金属層23の体積比率は、第2格子層41における島成分である第2金属層42の体積比率よりも大きい。また、第2格子層41における島成分である第2金属層42の体積比率は、中間格子層31における金属材料の体積比率よりも大きい。 The volume ratio of the first metal layer 23 that is the sea component in the first lattice layer 21 is larger than the volume ratio of the second metal layer 42 that is the island component in the second lattice layer 41. The volume ratio of the second metal layer 42 that is an island component in the second lattice layer 41 is larger than the volume ratio of the metal material in the intermediate lattice layer 31.
 なお、第1誘電体層22と第1中間誘電体層32とから構成される構造体は、周期要素の一例であり、支持部11の表面を基準面として、基準面から突出する凸部11Tでもある。そして、支持部11、第1誘電体層22、および、第1中間誘電体層32から構成される構造体は、周期構造体の一例である。また、第1金属層23と第2金属層42とから構成される層は、層全体としての形状が周期構造体の表面形状に追従する形状を有した金属層として捉えられる。周期構造体の表面は、基準面のうち各周期要素を囲む領域と各周期要素の表面とを含む面である。 The structure constituted by the first dielectric layer 22 and the first intermediate dielectric layer 32 is an example of a periodic element, and the convex portion 11T protruding from the reference plane with the surface of the support portion 11 as the reference plane. But there is. And the structure comprised from the support part 11, the 1st dielectric material layer 22, and the 1st intermediate | middle dielectric material layer 32 is an example of a periodic structure. Moreover, the layer comprised from the 1st metal layer 23 and the 2nd metal layer 42 is caught as a metal layer with the shape in which the shape as the whole layer follows the surface shape of a periodic structure body. The surface of the periodic structure is a surface including a region surrounding each periodic element in the reference plane and the surface of each periodic element.
 図4が示すように、周辺領域A3においては、支持部11に近い層から順に、第1格子層21の第1金属層23と、中間格子層31の第2中間誘電体層33と、第2格子層41の第2誘電体層43とが位置する。第2中間誘電体層33は、第1金属層23と第2誘電体層43とに挟まれている。 As shown in FIG. 4, in the peripheral region A3, in order from the layer close to the support portion 11, the first metal layer 23 of the first lattice layer 21, the second intermediate dielectric layer 33 of the intermediate lattice layer 31, and the first The second dielectric layer 43 of the two lattice layer 41 is located. The second intermediate dielectric layer 33 is sandwiched between the first metal layer 23 and the second dielectric layer 43.
 図5が示すように、第2表示領域10Bは、支持部11の上に、上述した第1格子層21、中間格子層31、および、第2格子層41を備えていない。すなわち、第2表示領域10Bは、支持部11の備える光透過性に従って、可視領域の光を透過する。 As shown in FIG. 5, the second display region 10 </ b> B does not include the above-described first lattice layer 21, intermediate lattice layer 31, and second lattice layer 41 on the support portion 11. In other words, the second display region 10 </ b> B transmits light in the visible region in accordance with the light transmittance of the support unit 11.
 なお、第2表示領域10Bは、第1表示領域10Aとは異なる層を、支持部11の上に備えてもよい。第2表示領域10Bは、例えば、第1誘電体層22のみを備えてもよい。また、第2表示領域10Bは、例えば、第1金属層23を構成する材料と同一の材料から構成された単一の金属層のみを備えてもよい。第2表示領域10Bにおける層構成は、第2表示領域10Bが表示する像への要請に応じて、適宜選択される。 The second display area 10B may include a layer different from the first display area 10A on the support portion 11. For example, the second display region 10B may include only the first dielectric layer 22. Further, the second display region 10B may include only a single metal layer made of the same material as that of the first metal layer 23, for example. The layer structure in the second display area 10B is appropriately selected according to a request for an image displayed in the second display area 10B.
 また、上述のように、支持部11の有する断面構造は、多層構造であってもよいし、各第1誘電体層22は支持部11との間に境界を有していなくてもよい。図6は、支持部11が2つの層から構成され、これらの層のうち支持部11の表面側の層が各第1誘電体層22と一体である構造を示す。すなわち、支持部11は、基材11aと中間層11bとを備え、中間層11bは、基材11aに対して表面側に位置する。各第1誘電体層22は、中間層11bから突き出ており、各第1誘電体層22と中間層11bとは一体である。 Further, as described above, the cross-sectional structure of the support portion 11 may be a multilayer structure, and each first dielectric layer 22 may not have a boundary with the support portion 11. FIG. 6 shows a structure in which the support part 11 is composed of two layers, and of these layers, the layer on the surface side of the support part 11 is integrated with each first dielectric layer 22. That is, the support part 11 is provided with the base material 11a and the intermediate | middle layer 11b, and the intermediate | middle layer 11b is located in the surface side with respect to the base material 11a. Each first dielectric layer 22 protrudes from the intermediate layer 11b, and each first dielectric layer 22 and the intermediate layer 11b are integrated.
 [表示体の光学的な構成]
 次に、表示体が備える光学的な構成を説明する。
 ここでは、表示体の表面10S、および、表示体の裏面10Tが、それぞれ空気層と接し、第2中間誘電体層33と第2誘電体層43との各々が、空気層である構成、あるいは、空気層に近い屈折率を有した樹脂層である構成を例として説明する。
[Optical configuration of display]
Next, an optical configuration provided in the display body will be described.
Here, the front surface 10S of the display body and the back surface 10T of the display body are in contact with the air layer, respectively, and each of the second intermediate dielectric layer 33 and the second dielectric layer 43 is an air layer, or A configuration that is a resin layer having a refractive index close to that of an air layer will be described as an example.
 図7が示すように、支持部11の屈折率は、誘電体に支配された大きさであって、空気層の屈折率よりも大きい。
 第1誘電体層22の屈折率は、空気層の屈折率よりも高く、第1金属層23の屈折率は、空気層の屈折率よりも低い。第1格子層21の屈折率は、これら第1金属層23の屈折率と、第1誘電体層22の屈折率とによって、平均化された大きさに近似される。構造周期PTに対する第1誘電体層22の幅WTの比は、0.25以上0.75以下であるため、第1格子層21の屈折率は、結局のところ、海成分である第1金属層23に支配された大きさであり、空気層の屈折率よりも十分に低い。
As FIG. 7 shows, the refractive index of the support part 11 is a size dominated by the dielectric, and is larger than the refractive index of the air layer.
The refractive index of the first dielectric layer 22 is higher than the refractive index of the air layer, and the refractive index of the first metal layer 23 is lower than the refractive index of the air layer. The refractive index of the first lattice layer 21 is approximated to an averaged size by the refractive index of the first metal layer 23 and the refractive index of the first dielectric layer 22. Since the ratio of the width WT of the first dielectric layer 22 to the structural period PT is not less than 0.25 and not more than 0.75, the refractive index of the first lattice layer 21 is, after all, the first metal that is a sea component. The size is controlled by the layer 23 and is sufficiently lower than the refractive index of the air layer.
 第1中間誘電体層32の屈折率は、空気層の屈折率よりも高く、第2中間誘電体層33の屈折率は、空気層の屈折率と等しい、もしくは、空気層の屈折率よりも高い。中間格子層31の屈折率は、これら第2中間誘電体層33の屈折率と、第1中間誘電体層32の屈折率とによって、平均化された大きさに近似される。構造周期PTに対する第1中間誘電体層32の幅WTの比は、0.25以上0.75以下であるため、中間格子層31の屈折率は、結局のところ、海成分である第2中間誘電体層33に支配された大きさであり、空気層の屈折率よりも高く、かつ、空気層の屈折率に近い値である。 The refractive index of the first intermediate dielectric layer 32 is higher than the refractive index of the air layer, and the refractive index of the second intermediate dielectric layer 33 is equal to the refractive index of the air layer or is higher than the refractive index of the air layer. high. The refractive index of the intermediate grating layer 31 is approximated to an averaged size by the refractive index of the second intermediate dielectric layer 33 and the refractive index of the first intermediate dielectric layer 32. Since the ratio of the width WT of the first intermediate dielectric layer 32 to the structural period PT is not less than 0.25 and not more than 0.75, the refractive index of the intermediate lattice layer 31 is eventually the second intermediate that is a sea component. The size is governed by the dielectric layer 33, which is higher than the refractive index of the air layer and close to the refractive index of the air layer.
 第2金属層42の屈折率は、空気層の屈折率よりも低く、第2誘電体層43の屈折率は、空気層の屈折率と等しい、もしくは、空気層の屈折率よりも高い。第2格子層41の屈折率は、これら第2誘電体層43の屈折率と、第2金属層42の屈折率とによって、平均化された大きさに近似される。構造周期PTに対する第2金属層42の幅WTの比は、0.25以上0.75以下であるため、第2格子層41の屈折率は、結局のところ、海成分である第2誘電体層43に支配された大きさであり、空気層の屈折率よりも低く、かつ、空気層に近い値である。 The refractive index of the second metal layer 42 is lower than the refractive index of the air layer, and the refractive index of the second dielectric layer 43 is equal to the refractive index of the air layer or higher than the refractive index of the air layer. The refractive index of the second lattice layer 41 is approximated to the averaged size by the refractive index of the second dielectric layer 43 and the refractive index of the second metal layer 42. Since the ratio of the width WT of the second metal layer 42 to the structural period PT is not less than 0.25 and not more than 0.75, the refractive index of the second grating layer 41 is eventually the second dielectric that is a sea component. The size is governed by the layer 43, which is lower than the refractive index of the air layer and close to the air layer.
 [表面反射観察、裏面透過観察]
 ここで、表示体の外側から第2格子層41に入射する白色の光L1は、空気層から第2格子層41に入り、第2格子層41から中間格子層31に入る。第2格子層41に入射する光L1は、空気層に近い屈折率を有した第2格子層41に空気層から入るため、空気層と第2格子層41との界面においては、フレネル反射を生じ難い。また、中間格子層31に入射する光は、空気層に近い屈折率を有した第2格子層41から、空気層に近い屈折率を有した中間格子層31に入るため、ここでも、第2格子層41と中間格子層31との界面においては、フレネル反射を生じ難い。
[Surface reflection observation, back surface transmission observation]
Here, the white light L1 incident on the second lattice layer 41 from the outside of the display body enters the second lattice layer 41 from the air layer and enters the intermediate lattice layer 31 from the second lattice layer 41. Since the light L1 incident on the second grating layer 41 enters the second grating layer 41 having a refractive index close to that of the air layer from the air layer, Fresnel reflection occurs at the interface between the air layer and the second grating layer 41. It is hard to occur. Further, since the light incident on the intermediate grating layer 31 enters the intermediate grating layer 31 having a refractive index close to that of the air layer from the second grating layer 41 having a refractive index close to that of the air layer, the second grating is also used here. Fresnel reflection hardly occurs at the interface between the lattice layer 41 and the intermediate lattice layer 31.
 一方で、第2金属層42の構造周期PTが、可視領域の波長以下のサブ波長周期であるため、第2格子層41ではプラズモン共鳴が生じる。プラズモン共鳴は、第2格子層41に入射した光の一部と電子の集団的な振動とが結合する現象である。第2格子層41に入射した光L1の一部は、第2格子層41でのプラズモン共鳴によって表面プラズモンに変換され、表面プラズモンは第2格子層41を透過する。第2格子層41を透過した表面プラズモンは、光に再変換されて出射される。プラズモン共鳴に起因して第2格子層41が出射する光EP2の波長領域は、第2金属層42の構造周期PTを含む格子構造および材料に依存した特定の波長領域である。結果として、第2格子層41は、第2格子層41に入射した光の波長領域の一部の光を、中間格子層31へ透過する。 On the other hand, since the structural period PT of the second metal layer 42 is a sub-wavelength period equal to or less than the wavelength in the visible region, plasmon resonance occurs in the second lattice layer 41. Plasmon resonance is a phenomenon in which a part of light incident on the second lattice layer 41 is combined with collective vibration of electrons. A part of the light L 1 incident on the second grating layer 41 is converted into surface plasmons by plasmon resonance in the second grating layer 41, and the surface plasmons pass through the second grating layer 41. The surface plasmon transmitted through the second lattice layer 41 is reconverted into light and emitted. The wavelength region of the light EP2 emitted from the second grating layer 41 due to plasmon resonance is a specific wavelength region depending on the grating structure and material including the structural period PT of the second metal layer 42. As a result, the second grating layer 41 transmits part of the light in the wavelength region of the light incident on the second grating layer 41 to the intermediate grating layer 31.
 また、第1誘電体層22の構造周期PTも、可視領域の波長以下のサブ波長周期であるため、第1格子層21でもプラズモン共鳴が生じる。すなわち、第1格子層21に入射する光の一部もまた、第1格子層21でのプラズモン共鳴によって表面プラズモンに変換され、表面プラズモンは第1格子層21を透過し、光に再変換されて出射される。プラズモン共鳴に起因して第1格子層21が出射する光EP1の波長領域は、第1誘電体層22の構造周期PTを含む格子構造および材料に依存した特定の波長領域である。結果として、第1格子層21は、第1格子層21に入射した光の波長領域の一部の光を、支持部11へ透過する。 In addition, since the structural period PT of the first dielectric layer 22 is also a sub-wavelength period equal to or less than the wavelength in the visible region, plasmon resonance also occurs in the first lattice layer 21. That is, part of the light incident on the first lattice layer 21 is also converted into surface plasmons by plasmon resonance in the first lattice layer 21, and the surface plasmons are transmitted through the first lattice layer 21 and reconverted into light. Are emitted. The wavelength region of the light EP1 emitted from the first grating layer 21 due to plasmon resonance is a specific wavelength region depending on the grating structure and material including the structural period PT of the first dielectric layer 22. As a result, the first grating layer 21 transmits part of the light in the wavelength region of the light incident on the first grating layer 21 to the support portion 11.
 以上により、表示体の外側から第2格子層41へ光L1を入射させて、表示体の表面側から表面10Sを観察する表面反射観察によれば、上記各界面でのフレネル反射を生じ難いこと、上記各格子層でのプラズモン共鳴を生じること、これらが相まって、黒色、もしくは、黒色に近い色彩が、第1表示領域10Aで視認される。 As described above, according to the surface reflection observation in which the light L1 is incident on the second lattice layer 41 from the outside of the display body and the surface 10S is observed from the surface side of the display body, Fresnel reflection at each of the interfaces is difficult to occur. The plasmon resonance is generated in each of the lattice layers, and these are combined, and black or a color close to black is visually recognized in the first display area 10A.
 他方、表示体の外側から第2格子層41へ光L1を入射させて、表示体の裏面側から裏面10Tを観察する裏面透過観察によれば、上記各格子層でのプラズモン共鳴を経て透過した有色の光LP1が、すなわち、白色および黒色以外の光が、第1表示領域10Aで視認される。なお、上記表面反射観察や裏面透過観察の結果は、表面10Sに向けた外光の光量が、裏面10Tに向けた外光の光量よりも高い場合においても、同様の傾向を示す。 On the other hand, according to backside transmission observation in which light L1 is incident on the second lattice layer 41 from the outside of the display body and the back surface 10T is observed from the backside of the display body, the light is transmitted through plasmon resonance in each of the lattice layers. The colored light LP1, that is, light other than white and black, is visually recognized in the first display area 10A. The results of the front surface reflection observation and the rear surface transmission observation show the same tendency even when the amount of external light directed toward the front surface 10S is higher than the amount of external light directed toward the rear surface 10T.
 [裏面反射観察、表面透過観察]
 図8が示すように、表示体の外側から支持部11に入射する白色の光L1は、空気層から支持部11に入り、支持部11から第1格子層21に入る。支持部11に入射した光L1は、空気層よりも高い屈折率を有した支持部11から、空気層よりも低い屈折率を有した第1格子層21に入るため、支持部11と第1格子層21との界面では、フレネル反射を生じやすい。なお、支持部11の屈折率と、第1格子層21の屈折率との差は、第1格子層21と中間格子層31との間の屈折率差よりも大きく、また、中間格子層31と第2格子層41との間の屈折率差よりも大きい。
[Backside observation, surface transmission observation]
As shown in FIG. 8, white light L <b> 1 that enters the support unit 11 from the outside of the display body enters the support unit 11 from the air layer and enters the first lattice layer 21 from the support unit 11. The light L1 incident on the support part 11 enters the first lattice layer 21 having a refractive index lower than that of the air layer from the support part 11 having a higher refractive index than that of the air layer. Fresnel reflection is likely to occur at the interface with the lattice layer 21. The difference between the refractive index of the support portion 11 and the refractive index of the first lattice layer 21 is larger than the difference in refractive index between the first lattice layer 21 and the intermediate lattice layer 31, and the intermediate lattice layer 31. And the difference in refractive index between the second grating layer 41 and the second grating layer 41.
 一方で、支持部11と第1格子層21との界面を透過した光の一部は、第1格子層21でのプラズモン共鳴に供される。ここでも、プラズモン共鳴に起因して第1格子層21が出射する光EP1の波長領域は、第1金属層23の構造周期PTを含む格子構造および材料に依存した特定の波長領域である。この波長領域の光は、支持部11と第1格子層21との界面では反射されずに、プラズモン共鳴によって消費される。結果として、支持部11に入射した光の波長領域の一部の光は、支持部11と第1格子層21との界面で反射され、第1格子層21は、第1格子層21に入射した光の波長領域の一部の光を、中間格子層31へ透過する。 On the other hand, a part of the light transmitted through the interface between the support portion 11 and the first lattice layer 21 is subjected to plasmon resonance in the first lattice layer 21. Again, the wavelength region of the light EP1 emitted from the first grating layer 21 due to plasmon resonance is a specific wavelength region depending on the grating structure and material including the structural period PT of the first metal layer 23. Light in this wavelength region is not reflected at the interface between the support portion 11 and the first grating layer 21 but is consumed by plasmon resonance. As a result, part of the light in the wavelength region of the light incident on the support portion 11 is reflected at the interface between the support portion 11 and the first lattice layer 21, and the first lattice layer 21 is incident on the first lattice layer 21. A part of the light in the wavelength region of the transmitted light is transmitted to the intermediate lattice layer 31.
 また、中間格子層31を透過して第2格子層41に入射した光の一部も、第2格子層41でのプラズモン共鳴に供される。ここでも、プラズモン共鳴に起因して第2格子層41が出射する光EP2の波長領域は、第2誘電体層43の構造周期PTを含む格子構造および材料に依存した特定の波長領域である。結果として、第2格子層41は、第2格子層41に入射した光の波長領域の一部の光を、空気層へ透過する。 Also, part of the light that has passed through the intermediate grating layer 31 and entered the second grating layer 41 is also subjected to plasmon resonance in the second grating layer 41. Again, the wavelength region of the light EP2 emitted from the second grating layer 41 due to plasmon resonance is a specific wavelength region depending on the grating structure and material including the structural period PT of the second dielectric layer 43. As a result, the second grating layer 41 transmits part of the light in the wavelength region of the light incident on the second grating layer 41 to the air layer.
 以上により、表示体の外側から支持部11へ光L1を入射させて、表示体の裏面側から裏面10Tを観察する裏面反射観察によれば、上記界面でのフレネル反射による有色の光LRが、すなわち、白色および黒色以外の光LRが、第1表示領域10Aで視認される。なお、こうした支持部11と第1格子層21との界面で生じるフレネル反射は、上述した表面反射観察において、より黒色に近い色彩を、第1表示領域10Aで視認させる。 As described above, according to the back surface reflection observation in which the light L1 is incident on the support portion 11 from the outside of the display body and the back surface 10T is observed from the back surface side of the display body, the colored light LR due to Fresnel reflection at the interface is That is, light LR other than white and black is visually recognized in the first display area 10A. Note that Fresnel reflection that occurs at the interface between the support portion 11 and the first lattice layer 21 causes a color closer to black to be visually recognized in the first display region 10A in the surface reflection observation described above.
 他方、表示体の外側から支持部11へ光L1を入射させて、表示体の表面側から表面10Sを観察する表面透過観察では、上記フレネル反射と、上記各格子層でのプラズモン共鳴とを経た有色の光LP2が、第1表示領域10Aで視認される。なお、上記表面透過観察や裏面反射観察の結果は、裏面10Tに向けた外光の光量が、表面10Sに向けた外光の光量よりも高い場合においても、同様の傾向を示す。 On the other hand, in surface transmission observation in which the light L1 is incident on the support 11 from the outside of the display body and the surface 10S is observed from the surface side of the display body, the Fresnel reflection and plasmon resonance in each of the lattice layers are performed. The colored light LP2 is visually recognized in the first display area 10A. Note that the results of the front surface transmission observation and the back surface reflection observation show the same tendency even when the amount of external light directed toward the back surface 10T is higher than the amount of external light directed toward the front surface 10S.
 [表示体の製造方法]
 次に、表示体を製造する方法の一例を説明する。
 まず、支持部11の表面に、第1誘電体層22と第1中間誘電体層32とを形成する。第1誘電体層22と第1中間誘電体層32とは、支持部11の表面から突き出た突部として一体に形成される。突部を形成する方法は、例えば、光、あるいは、荷電粒子線を用いたフォトリソグラフィー法や、ナノインプリント法、あるいは、プラズマエッチング法などを採用できる。特に、樹脂からなる支持部11の表面に突部を形成する方法として、例えばナノインプリント法を活用できる。また、硬い材質の基材などを加工することにより突部を形成する場合には、光、あるいは、荷電粒子線を用いたフォトリソグラフィー法とプラズマエッチング法を組み合わせた方法を用いればよい。
[Manufacturing method of display body]
Next, an example of a method for manufacturing a display body will be described.
First, the first dielectric layer 22 and the first intermediate dielectric layer 32 are formed on the surface of the support portion 11. The first dielectric layer 22 and the first intermediate dielectric layer 32 are integrally formed as a protrusion protruding from the surface of the support portion 11. As a method for forming the protrusion, for example, a photolithographic method using a light or charged particle beam, a nanoimprint method, a plasma etching method, or the like can be adopted. In particular, for example, a nanoimprint method can be used as a method of forming a protrusion on the surface of the support portion 11 made of resin. In addition, in the case where the protrusion is formed by processing a hard material base material or the like, a method in which light or a photolithographic method using a charged particle beam and a plasma etching method are combined may be used.
 例えば、図6に示したように基材11aと中間層11bとから構成される支持部11を有する表示体を製造する場合、まず、基材11aとして、ポリエチレンテレフタラートシートを用い、基材11aの表面に、紫外線硬化性樹脂を塗工する。次いで、紫外線硬化性樹脂からなる塗工膜の表面に、凹版である合成石英モールドの表面を押し当て、これらに紫外線を照射する。続いて、硬化した紫外線硬化性樹脂から合成石英モールドを離型する。これによって、基材11aの表面の樹脂に凹版の有する凹凸が転写され、第1誘電体層22と第1中間誘電体層32とからなる突部および中間層11bが形成される。なお、紫外線硬化性樹脂は、熱硬化性樹脂に変更することも可能であり、紫外線の照射は、加熱に変更することも可能である。また、紫外線硬化性樹脂は、熱可塑性樹脂に変更することも可能であり、紫外線の照射は、加熱および冷却に変更することも可能である。 For example, as shown in FIG. 6, when manufacturing the display body which has the support part 11 comprised from the base material 11a and the intermediate | middle layer 11b, a polyethylene terephthalate sheet is first used as the base material 11a, and the base material 11a is used. An ultraviolet curable resin is applied to the surface. Next, the surface of the synthetic quartz mold, which is an intaglio, is pressed against the surface of the coating film made of an ultraviolet curable resin, and these are irradiated with ultraviolet rays. Subsequently, the synthetic quartz mold is released from the cured ultraviolet curable resin. As a result, the unevenness of the intaglio is transferred to the resin on the surface of the base material 11a, and the protrusions and the intermediate layer 11b composed of the first dielectric layer 22 and the first intermediate dielectric layer 32 are formed. Note that the ultraviolet curable resin can be changed to a thermosetting resin, and the ultraviolet irradiation can be changed to heating. Further, the ultraviolet curable resin can be changed to a thermoplastic resin, and the irradiation of the ultraviolet rays can be changed to heating and cooling.
 次いで、突部を備える支持部11の表面に、第1金属層23、および、第2金属層42を形成する。第1金属層23、および、第2金属層42を形成する方法は、例えば、真空蒸着法、スパッタリング法である。これによって、第1金属層23の頂面によって区画される第1格子層21が形成され、第2金属層42の頂面によって区画される第2格子層41が形成され、これら第1格子層21と第2格子層41とに挟まれた中間格子層31が形成される。 Next, the first metal layer 23 and the second metal layer 42 are formed on the surface of the support portion 11 including the protrusions. The method for forming the first metal layer 23 and the second metal layer 42 is, for example, a vacuum evaporation method or a sputtering method. As a result, the first lattice layer 21 defined by the top surface of the first metal layer 23 is formed, and the second lattice layer 41 defined by the top surface of the second metal layer 42 is formed, and these first lattice layers are formed. An intermediate lattice layer 31 sandwiched between the first lattice layer 21 and the second lattice layer 41 is formed.
 [第1表示領域の構成例]
 図9が示すように、第1金属層23の厚さT2が厚いほど、第1格子層21と支持部11との界面では、フレネル反射による光の強度が大きく、裏面反射観察での像の明度が高まる。構造周期PTに対する第1誘電体層22の幅WTの比が小さいほど、これもまた、裏面反射観察での像の明度が高まる。
[Configuration example of first display area]
As shown in FIG. 9, as the thickness T2 of the first metal layer 23 increases, the intensity of light due to Fresnel reflection increases at the interface between the first grating layer 21 and the support portion 11, and the image in the back surface reflection observation becomes larger. Brightness increases. The smaller the ratio of the width WT of the first dielectric layer 22 to the structural period PT, the higher the lightness of the image in back reflection observation.
 また、第1金属層23の厚さT2が厚いほど、裏面10Tから表面10Sへ透過する光の強度が小さく、表面反射観察での色彩が、より黒色に近づく。構造周期PTに対する第1誘電体層22の幅WTの比が小さいほど、これもまた、表面反射観察での色彩が、より黒色に近づく。 Further, as the thickness T2 of the first metal layer 23 increases, the intensity of light transmitted from the back surface 10T to the front surface 10S decreases, and the color in the surface reflection observation approaches black. The smaller the ratio of the width WT of the first dielectric layer 22 to the structural period PT is, the closer the color in the surface reflection observation becomes closer to black.
 そして、第1金属層23の厚さT2が10nm以上であり、かつ、構造周期PTに対する第1誘電体層22の幅WTの比が0.75以下であれば、表示体の表裏を判断するための上記観察において、それの精度が十分に得られる。 If the thickness T2 of the first metal layer 23 is 10 nm or more and the ratio of the width WT of the first dielectric layer 22 to the structural period PT is 0.75 or less, the front and back of the display body are determined. In the above observation, sufficient accuracy can be obtained.
 他方、第1金属層23の厚さT2が薄いほど、また、第2金属層42の厚さT4が薄いほど、表面透過観察や裏面透過観察では、これらを透過する光の強度が大きい。構造周期PTに対する第1誘電体層22の幅WTの比が大きいほど、これもまた、表示体を透過する光の強度が大きい。 On the other hand, the thinner the thickness T2 of the first metal layer 23 and the thinner the thickness T4 of the second metal layer 42, the greater the intensity of light transmitted through the surface transmission observation and the rear surface transmission observation. The greater the ratio of the width WT of the first dielectric layer 22 to the structural period PT, the greater the intensity of the light transmitted through the display body.
 そして、第1金属層23の厚さT2や、第2金属層42の厚さT4が、200nm以下であり、かつ、構造周期PTに対する第1誘電体層22の幅WTの比が0.25以上であれば、表面透過観察で視認される像や、裏面透過観察で視認される像が、それを視認できる程度に明りょうとなる。 The thickness T2 of the first metal layer 23 and the thickness T4 of the second metal layer 42 are 200 nm or less, and the ratio of the width WT of the first dielectric layer 22 to the structural period PT is 0.25. If it is above, the image visually recognized by surface transmission observation and the image visually recognized by back surface transmission observation will become clear to such an extent that it can visually recognize it.
 第1誘電体層22の厚さT2と、第1中間誘電体層32の厚さT3との合計は、第1誘電体層22の幅WTと、最短幅WPとの合計である構造周期PTよりも小さいことが好ましい。また、第1誘電体層22の厚さT2と第1中間誘電体層32の厚さT3との合計は、構造周期PTの半分よりも小さいことが、より好ましい。 The sum of the thickness T2 of the first dielectric layer 22 and the thickness T3 of the first intermediate dielectric layer 32 is the sum of the width WT of the first dielectric layer 22 and the shortest width WP. Is preferably smaller. The total of the thickness T2 of the first dielectric layer 22 and the thickness T3 of the first intermediate dielectric layer 32 is more preferably smaller than half of the structural period PT.
 こうした構成であれば、第1誘電体層22と第1中間誘電体層32とが一体である樹脂構造体において、その構造体の形状の精度を高めることが可能であり、また、第1誘電体層22と第1中間誘電体層32とからなる凸部11Tが支持部11の表面で倒れることが抑えられる。 With such a configuration, in the resin structure in which the first dielectric layer 22 and the first intermediate dielectric layer 32 are integrated, the accuracy of the shape of the structure can be increased, and the first dielectric It is possible to prevent the convex portion 11T including the body layer 22 and the first intermediate dielectric layer 32 from falling on the surface of the support portion 11.
 可視領域の波長における複素誘電率の実部が負の値である金属材料は、それを用いた第1格子層21や第2格子層41において、プラズモン共鳴を生じやすい。そこで、第1金属層23を構成する材料は、上記複素誘電率の実部が負の値の材料であることが好ましい。第2金属層42を構成する材料もまた、上記複素誘電率の実部が負の値の材料であることが好ましい。 A metal material having a negative real part of the complex dielectric constant at a wavelength in the visible region is likely to cause plasmon resonance in the first lattice layer 21 and the second lattice layer 41 using the metal material. Accordingly, the material constituting the first metal layer 23 is preferably a material having a negative real part of the complex dielectric constant. The material constituting the second metal layer 42 is also preferably a material having a negative real part of the complex dielectric constant.
 これら第1金属層23や第2金属層42を構成する材料は、例えば、アルミニウム、銀、金、インジウム、タンタルなどである。
 なお、上記製造方法において説明したように、第1金属層23と第2金属層42とは、第1誘電体層22と第1中間誘電体層32とが形成された支持部11に対する金属層の成膜によって、単一の工程で形成することができる。
Examples of the material constituting the first metal layer 23 and the second metal layer 42 include aluminum, silver, gold, indium, and tantalum.
As described in the above manufacturing method, the first metal layer 23 and the second metal layer 42 are metal layers for the support portion 11 on which the first dielectric layer 22 and the first intermediate dielectric layer 32 are formed. With this film formation, it can be formed in a single process.
 この場合、成膜源から飛行する金属粒子は、支持部11の表面に対して、所定の角度分布を有して付着する。結果として、第2金属層42の幅W4は、第1中間誘電体層32の幅WTよりも若干大きくなり、相互に隣り合う第2金属層42の最短幅WP4は、最短幅WPよりも若干小さくなる。この際、構造周期PTに対する第2金属層42の幅W4の比は、0.25以上0.75以下である。ちなみに、第1金属層23における第1中間誘電体層32の周囲は、第2金属層42によるシャドウ効果の影響を受け、第1中間誘電体層32に近い部位ほど薄い。 In this case, the metal particles flying from the film forming source adhere to the surface of the support portion 11 with a predetermined angular distribution. As a result, the width W4 of the second metal layer 42 is slightly larger than the width WT of the first intermediate dielectric layer 32, and the shortest width WP4 of the second metal layers 42 adjacent to each other is slightly larger than the shortest width WP. Get smaller. At this time, the ratio of the width W4 of the second metal layer 42 to the structural period PT is 0.25 or more and 0.75 or less. Incidentally, the periphery of the first intermediate dielectric layer 32 in the first metal layer 23 is affected by the shadow effect by the second metal layer 42, and the portion closer to the first intermediate dielectric layer 32 is thinner.
 また、上記成膜方法によって形成される構造体においては、第1中間誘電体層32の側面にも、第2金属層42に連続する金属層である中間金属層32Aが形成される。
 中間金属層32Aは、第1中間誘電体層32と第2中間誘電体層33とに挟まれる。中間金属層32Aは、第2金属層42と一体の構造体であり、第1中間誘電体層32の側面上での厚みが、第1金属層23に近い部位ほど薄い。
In the structure formed by the film forming method, an intermediate metal layer 32 </ b> A that is a metal layer continuous with the second metal layer 42 is also formed on the side surface of the first intermediate dielectric layer 32.
The intermediate metal layer 32A is sandwiched between the first intermediate dielectric layer 32 and the second intermediate dielectric layer 33. The intermediate metal layer 32 </ b> A is a structure integrated with the second metal layer 42, and the thickness on the side surface of the first intermediate dielectric layer 32 is thinner as the portion is closer to the first metal layer 23.
 こうした中間金属層32Aは、構造周期PTがサブ波長周期であるため、第2格子層41や中間格子層31の厚さ方向での屈折率の変化を連続的とする。そして、中間金属層32Aは、表示体の外側から第2格子層41に入射した光を反射し難く、中間格子層31や第1格子層21へ透過しやすい。それゆえに、上述した表面反射観察においては、より黒色に近い色が、第1表示領域10Aで視認される。 In such an intermediate metal layer 32A, since the structural period PT is a sub-wavelength period, the refractive index change in the thickness direction of the second grating layer 41 and the intermediate grating layer 31 is continuous. The intermediate metal layer 32 </ b> A hardly reflects light incident on the second lattice layer 41 from the outside of the display body and easily transmits the light to the intermediate lattice layer 31 and the first lattice layer 21. Therefore, in the surface reflection observation described above, a color closer to black is visually recognized in the first display area 10A.
 また、上記成膜方法によって形成される構造体においては、第1金属層23を構成する材料と、第2金属層42を構成する材料とは、相互に等しい。
 ここで、第2誘電体層43と第2金属層42との間の屈折率差が小さいほど、第2格子層41での平均化された屈折率は、第2格子層41と他の層との界面でのフレネル反射を抑えやすい。他方、第1誘電体層22と第1金属層23との間の屈折率差が大きいほど、第1格子層21の平均化された屈折率は、第1格子層21と支持部11との界面でのフレネル反射を促しやすい。
In the structure formed by the film forming method, the material forming the first metal layer 23 and the material forming the second metal layer 42 are equal to each other.
Here, as the refractive index difference between the second dielectric layer 43 and the second metal layer 42 is smaller, the averaged refractive index at the second grating layer 41 is higher than that of the second grating layer 41 and other layers. It is easy to suppress Fresnel reflection at the interface. On the other hand, as the difference in refractive index between the first dielectric layer 22 and the first metal layer 23 increases, the averaged refractive index of the first lattice layer 21 increases between the first lattice layer 21 and the support portion 11. It is easy to promote Fresnel reflection at the interface.
 そこで、第1金属層23と第2金属層42とが、相互に等しい屈折率を有し、かつ、第1誘電体層22と第1金属層23との間の屈折率差が、第2誘電体層43と第2金属層42との間の屈折率差よりも大きい構成であれば、第2格子層41と他の層との界面でのフレネル反射を抑え、かつ、第1格子層21と他の層との界面でのフレネル反射を促すことが可能である。 Therefore, the first metal layer 23 and the second metal layer 42 have the same refractive index, and the difference in refractive index between the first dielectric layer 22 and the first metal layer 23 is the second. If the configuration is larger than the refractive index difference between the dielectric layer 43 and the second metal layer 42, the Fresnel reflection at the interface between the second grating layer 41 and the other layer is suppressed, and the first grating layer It is possible to promote Fresnel reflection at the interface between 21 and other layers.
 なお、第2格子層41と他の層との界面でのフレネル反射を抑え、かつ、第1格子層21と他の層との界面でのフレネル反射を促すためには、以下の条件が満たされていることが好ましい。すなわち、第2誘電体層43に対して中間格子層31とは反対側で第2誘電体層43に接する層である表面層と、第2誘電体層43との間の屈折率差は、第1金属層23と支持部11との間の屈折率差よりも小さいことが好ましい。表面層は、例えば空気層である。そして、第2誘電体層43の屈折率は、表面層の屈折率と等しいことがさらに好ましい。 In order to suppress Fresnel reflection at the interface between the second grating layer 41 and the other layer and to promote Fresnel reflection at the interface between the first grating layer 21 and the other layer, the following conditions are satisfied. It is preferable that That is, the refractive index difference between the second dielectric layer 43 and the surface layer that is the layer in contact with the second dielectric layer 43 on the side opposite to the intermediate lattice layer 31 with respect to the second dielectric layer 43 is The refractive index difference between the first metal layer 23 and the support portion 11 is preferably smaller. The surface layer is, for example, an air layer. The refractive index of the second dielectric layer 43 is more preferably equal to the refractive index of the surface layer.
 以上のように、第1実施形態において、表示体からは、プラズモン共鳴に起因して、特定の波長領域の光が反射光もしくは透過光として射出される。そして、各凸部11Tである周期要素の位置や大きさと、各周期要素によって位置が定まる金属層とを含む複数の因子によって、上記透過光や反射光の波長領域が定まるため、表示体にて透過あるいは反射される波長領域の調整の自由度を高めることができる。 As described above, in the first embodiment, light in a specific wavelength region is emitted from the display body as reflected light or transmitted light due to plasmon resonance. Since the wavelength region of the transmitted light and the reflected light is determined by a plurality of factors including the position and size of the periodic element that is each convex portion 11T and the metal layer that is determined by each periodic element, the display body It is possible to increase the degree of freedom in adjusting the wavelength region that is transmitted or reflected.
 ところで、偽造の困難性や意匠性をより高めるためには、1つの表示体が、観察の条件に応じて互いに異なる外観の像を形成可能であることが好ましい。例えば、表示体の表面の観察と裏面の観察とで、互いに異なる色彩の像が視認される表示体や、表示体の一方の面に対する反射光の観察と透過光の観察とで、互いに異なる色彩の像が視認される表示体が望まれている。観察の条件に応じて互いに異なる外観の像を視認させることのできる表示体を提供することも、第1実施形態の目的である。こうした課題に対する効果を含めて、第1実施形態によれば、以下に列挙する効果が得られる。 By the way, in order to further improve the forgery difficulty and design, it is preferable that one display body can form images having different appearances depending on the observation conditions. For example, a display body in which images of different colors are visually recognized in the observation of the front surface and the back surface of the display body, and different colors in the observation of reflected light and transmitted light on one surface of the display body. There is a demand for a display body that can visually recognize the above image. It is also an object of the first embodiment to provide a display body capable of visually recognizing images having different external appearances according to observation conditions. According to the first embodiment, including the effects on such problems, the effects listed below can be obtained.
 (1-1)表面反射観察と裏面反射観察とにおいて別々の色彩を有した像を第1表示領域10Aで視認させられるため、表示体の表裏を判別することが可能となる。また、表示体の貼り付けられた物品に対して、それの真贋の判定を容易なものとすることや、表示体の貼り付けられた物品の意匠性を高めることが可能ともなる。 (1-1) Since the images having different colors can be visually recognized in the first display area 10A in the front surface reflection observation and the back surface reflection observation, it is possible to determine the front and back of the display body. In addition, it is possible to easily determine the authenticity of an article on which a display body is pasted, and to improve the design of the article on which the display body is pasted.
 (1-2)表面反射観察と裏面透過観察とにおいても別々の色彩を有した像を第1表示領域10Aで視認させられるため、表裏の判断結果に対する精度を高めることが可能となる。また、裏面反射観察と表面透過観察とにおいても別々の色彩を有した像を第1表示領域10Aで視認させられるため、表裏の判断結果に対する精度を高めることが可能となる。 (1-2) Since the images having different colors can be visually recognized in the first display area 10A in the front surface reflection observation and the rear surface transmission observation, it is possible to increase the accuracy with respect to the determination result of the front and back surfaces. In addition, since images having different colors can be visually recognized in the first display area 10A in the back surface reflection observation and the front surface transmission observation, it is possible to improve the accuracy with respect to the determination result of the front and back surfaces.
 (1-3)構造周期PTの大きさが、可視領域の波長以下であるサブ波長周期であり、可視領域の光の一次回折光の形成を抑える大きさである。そのため、裏面反射観察、表面透過観察、裏面透過観察による像に、虹色が含まれることを抑えて、各観察による像の色彩を、より鮮明にすることが可能ともなる。 (1-3) The structure period PT is a sub-wavelength period that is equal to or smaller than the wavelength in the visible region, and is a size that suppresses the formation of the first-order diffracted light in the visible region. Therefore, it is possible to suppress the rainbow color from being included in the images obtained by the back surface reflection observation, the front surface transmission observation, and the back surface transmission observation, and to make the color of the image obtained by each observation clearer.
 (1-4)第1格子層21の厚さT2と、中間格子層31の厚さT3との合計が、ナノインプリントなどの凹版を適用できる程度の大きさであるため、第1誘電体層22と第1中間誘電体層32とを一体に成形することが可能ともなる。 (1-4) Since the sum of the thickness T2 of the first lattice layer 21 and the thickness T3 of the intermediate lattice layer 31 is large enough to apply an intaglio such as nanoimprint, the first dielectric layer 22 And the first intermediate dielectric layer 32 can be integrally formed.
 (1-5)第1誘電体層22と第1中間誘電体層32とが一体の構造体であり、また、第2中間誘電体層33と第2誘電体層43とが一体であるため、表示体の構造を簡素化することが可能ともなる。さらに、第2中間誘電体層33と第2誘電体層43とが一体の空気層である構成であれば、表示体の構造をさらに簡素化することが可能ともなる。 (1-5) Since the first dielectric layer 22 and the first intermediate dielectric layer 32 are an integral structure, and the second intermediate dielectric layer 33 and the second dielectric layer 43 are integral. In addition, the structure of the display body can be simplified. Further, if the second intermediate dielectric layer 33 and the second dielectric layer 43 are an integrated air layer, the structure of the display body can be further simplified.
 (1-6)中間金属層32Aが反射防止機能を備えるため、表面反射観察によって視認される像の色彩を、さらに黒色に近い色彩とすることが可能ともなる。
 (1-7)表面反射観察と、裏面反射観察と、表面もしくは裏面での透過観察との各々において、第1表示領域10Aの色彩を固有のものとすることができる。それゆえに、表示体が付された物品に対して、それの真贋の判定における精度を高めることが可能ともなる。
(1-6) Since the intermediate metal layer 32A has an antireflection function, the color of the image visually recognized by the surface reflection observation can be made closer to black.
(1-7) The color of the first display area 10A can be unique in each of the front surface reflection observation, the back surface reflection observation, and the transmission observation on the front surface or the back surface. Therefore, it is possible to increase the accuracy in determining the authenticity of an article with a display.
 (1-8)表面反射観察と、裏面反射観察と、表面もしくは裏面での透過観察との各々において、第1表示領域10Aの色彩を固有のものとすることができる。それゆえに、表示体による表示の形態を、より複雑なものとすること、また、表示体の有する意匠性を高めることが可能ともなる。 (1-8) The color of the first display region 10A can be unique in each of the front surface reflection observation, the back surface reflection observation, and the transmission observation on the front surface or the back surface. Therefore, the display form of the display body can be made more complicated, and the design property of the display body can be improved.
 <第1実施形態の変形例>
 上記第1実施形態は、以下のように変更して実施することもできる。
 [中間格子層31]
 ・第1中間誘電体層32と第2中間誘電体層33とは、各別の構造体に具体化できる。この際、第2中間誘電体層33は、第1中間誘電体層32の屈折率よりも空気層の屈折率に近い屈折率を有した樹脂層であることが好ましい。
<Modification of First Embodiment>
The first embodiment can be implemented with the following modifications.
[Intermediate lattice layer 31]
The first intermediate dielectric layer 32 and the second intermediate dielectric layer 33 can be embodied as separate structures. At this time, the second intermediate dielectric layer 33 is preferably a resin layer having a refractive index closer to the refractive index of the air layer than the refractive index of the first intermediate dielectric layer 32.
 ・第2中間誘電体層33と第2誘電体層43とは、各別の構造体に具体化できる。この際、第2中間誘電体層33は、第2誘電体層43の屈折率よりも空気層の屈折率に近い屈折率を有した樹脂層であることが好ましい。 The second intermediate dielectric layer 33 and the second dielectric layer 43 can be embodied as separate structures. At this time, the second intermediate dielectric layer 33 is preferably a resin layer having a refractive index closer to the refractive index of the air layer than the refractive index of the second dielectric layer 43.
 [第1格子層21]
 ・図10が示すように、第1誘電体層22と第1中間誘電体層32とを一体の構造体として構成する。この一体の構造体である凸部11Tの形状は、支持部11の表面から突き出る錐体状に具体化できる。こうした構造であれば、第1誘電体層22や第1中間誘電体層32の形成に際して、それを形成するための凹版の離型を円滑に進めることが可能である。
[First lattice layer 21]
As shown in FIG. 10, the first dielectric layer 22 and the first intermediate dielectric layer 32 are configured as an integral structure. The shape of the convex portion 11 </ b> T, which is an integral structure, can be embodied in the shape of a cone protruding from the surface of the support portion 11. With such a structure, it is possible to smoothly release the intaglio for forming the first dielectric layer 22 and the first intermediate dielectric layer 32 when forming the first dielectric layer 22 and the first intermediate dielectric layer 32.
 [第2表示領域10B]
 ・図11が示すように、第2表示領域10Bは、支持部11の表面に金属層23Bのみを備える構成として具体化できる。この際、表面反射観察では、黒色、もしくは、黒色に近い色彩を有する像を、第1表示領域10Aで視認させることができ、かつ、金属光沢を有する像を、第2表示領域10Bで視認させることができる。他方、裏面反射観察では、第1格子層21と支持部11との界面でのフレネル反射による光として、第1格子層21でのプラズモン共鳴によって消費される波長領域の影響を受けた光による有色の像を、第1表示領域10Aで視認させることができ、かつ、金属層23Bと支持部11との界面でのフレネル反射のみが反映された金属光沢を有する像を、第2表示領域10Bで視認させることができる。
[Second display area 10B]
As shown in FIG. 11, the second display area 10 </ b> B can be embodied as a configuration including only the metal layer 23 </ b> B on the surface of the support portion 11. At this time, in the surface reflection observation, an image having a black color or a color close to black can be visually recognized in the first display area 10A, and an image having a metallic luster can be visually recognized in the second display area 10B. be able to. On the other hand, in the back surface reflection observation, the color due to the light affected by the wavelength region consumed by the plasmon resonance in the first grating layer 21 as the light due to Fresnel reflection at the interface between the first grating layer 21 and the support portion 11. Can be visually recognized in the first display area 10A, and an image having a metallic luster reflecting only Fresnel reflection at the interface between the metal layer 23B and the support portion 11 can be obtained in the second display area 10B. It can be visually recognized.
 [保護層]
 ・表示体は、第2金属層42の上に保護層をさらに備える。この際、保護層と第2金属層42との界面におけるフレネル反射の強度、および、それに伴う表示体での波長の選択性が、保護層の屈折率によって変わる。そこで、保護層を構成する材料は、表示体に選択させる波長領域に基づき、適宜選択される。
[Protective layer]
The display body further includes a protective layer on the second metal layer 42. At this time, the intensity of Fresnel reflection at the interface between the protective layer and the second metal layer 42 and the wavelength selectivity of the display body associated therewith vary depending on the refractive index of the protective layer. Therefore, the material constituting the protective layer is appropriately selected based on the wavelength region selected by the display body.
 なお、図12が示すように、保護層48は、第2誘電体層43、および、第2中間誘電体層33と一体の構造体に具体化できる。この際、保護層48は、低屈折率の樹脂層であることが好ましい。低屈折率の樹脂層は、第1誘電体層22の屈折率や第1中間誘電体層32の屈折率よりも空気層の屈折率に近い屈折率を有する。 Note that, as shown in FIG. 12, the protective layer 48 can be embodied as a structure integrated with the second dielectric layer 43 and the second intermediate dielectric layer 33. At this time, the protective layer 48 is preferably a low refractive index resin layer. The low refractive index resin layer has a refractive index closer to the refractive index of the air layer than the refractive index of the first dielectric layer 22 and the refractive index of the first intermediate dielectric layer 32.
 [その他の形態]
 ・表示体の表面10Sと対向する方向から見た孤立領域A2の配置は、正方配列および六方配列に限らず、二次元格子状の配列であればよい。すなわち、複数の第1誘電体層22は二次元格子状に並んでいればよく、また、複数の第1中間誘電体層32も二次元格子状に並んでいればよく、また、複数の第2金属層42も二次元格子状に並んでいればよい。換言すれば、周期構造体の周期要素は、サブ波長周期を有した二次元格子状に並んでいればよい。二次元格子状の配列は、二次元平面内において交差する2つの方向の各々に沿って要素が並ぶ配列である。この際、構造周期PTに対する幅WTの比は、1つの方向での構造周期PTに対する幅WTの比であり、当該比が所定の範囲内であるとは、周期要素が並ぶ上記2つの方向の各々について、構造周期PTに対する幅WTの比が所定の範囲内であることを示す。
[Other forms]
The arrangement of the isolated regions A2 as viewed from the direction facing the surface 10S of the display body is not limited to a square array and a hexagonal array, and may be an array of a two-dimensional lattice. That is, the plurality of first dielectric layers 22 may be arranged in a two-dimensional lattice, the plurality of first intermediate dielectric layers 32 may be arranged in a two-dimensional lattice, and the plurality of first dielectric layers 22 may be arranged. The two metal layers 42 need only be arranged in a two-dimensional lattice. In other words, the periodic elements of the periodic structure need only be arranged in a two-dimensional lattice shape having a sub-wavelength period. The two-dimensional lattice-like arrangement is an arrangement in which elements are arranged along each of two directions intersecting in a two-dimensional plane. At this time, the ratio of the width WT to the structural period PT is the ratio of the width WT to the structural period PT in one direction, and that the ratio is within a predetermined range means that the two elements in which the periodic elements are arranged Each indicates that the ratio of the width WT to the structural period PT is within a predetermined range.
 また、表示体の表面10Sと対向する方向から見た孤立領域A2の形状、すなわち、周期要素の平面形状は、正方形に限らず、長方形や他の多角形であってもよいし、円形であってもよい。 In addition, the shape of the isolated region A2 as viewed from the direction facing the surface 10S of the display body, that is, the planar shape of the periodic element is not limited to a square, but may be a rectangle or another polygon, or may be a circle. May be.
 ・第1格子層21および第2格子層41にてプラズモン共鳴が生じる構造を表示体が有していれば、表示体を透過する透過光は、構造周期PTに応じた特定の波長領域の光となる。第2格子層41と他の層との界面にてフレネル反射が生じ、表面反射観察にて黒色とは異なる有色の像が第1表示領域10Aで視認される場合であっても、プラズモン共鳴によって消費される波長領域は、反射光には含まれないため、表面反射観察と裏面透過観察とでは、互いに異なる色彩の像が視認される。また、裏面反射観察と表面透過観察とでも、互いに異なる色彩の像が視認される。したがって、表示体の表面の観察と裏面の観察とで、互いに異なる色彩の像を視認させることが可能であり、すなわち、観察の条件に応じて互いに異なる外観の像を視認させることができる。それゆえ、表示体の付された物品における偽造の困難性や意匠性をより高めることができる。 -If the display body has a structure in which plasmon resonance occurs in the first lattice layer 21 and the second lattice layer 41, the transmitted light transmitted through the display body is light in a specific wavelength region corresponding to the structure period PT. It becomes. Even when Fresnel reflection occurs at the interface between the second grating layer 41 and another layer and a colored image different from black is observed in the first display region 10A by surface reflection observation, it is caused by plasmon resonance. Since the consumed wavelength region is not included in the reflected light, images of different colors are visually recognized in the front surface reflection observation and the rear surface transmission observation. Also, images with different colors are visually recognized in the back surface reflection observation and the front surface transmission observation. Therefore, it is possible to visually recognize images having different colors in the observation of the front surface and the back surface of the display body, that is, it is possible to visually recognize images having different appearances according to the observation conditions. Therefore, it is possible to further increase the forgery difficulty and the design of the article with the display body.
 例えば、構造周期PTに対する第1誘電体層22の幅WTの比、および、構造周期PTに対する第2金属層42の幅WTの比は、0.25以上0.75以下とは異なる値であってもよい。また例えば、第1格子層21と中間格子層31と第2格子層41との厚さの関係は、上記実施形態と異なってもよい。 For example, the ratio of the width WT of the first dielectric layer 22 to the structural period PT and the ratio of the width WT of the second metal layer 42 to the structural period PT are different values from 0.25 to 0.75. May be. Further, for example, the thickness relationship among the first lattice layer 21, the intermediate lattice layer 31, and the second lattice layer 41 may be different from that in the above embodiment.
 (第2実施形態)
 図13から図16を参照して、光学デバイスの一例である表示体、表示体付きデバイス、および、表示体の製造方法の第2実施形態を説明する。以下では、第2実施形態と第1実施形態との相違点を中心に説明し、第1実施形態と同様の構成については同じ符号を付してその説明を省略する。
(Second Embodiment)
A second embodiment of a display body, a device with a display body, and a method for manufacturing the display body, which is an example of an optical device, will be described with reference to FIGS. Below, it demonstrates centering around the difference between 2nd Embodiment and 1st Embodiment, about the structure similar to 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 [表示体の構造]
 図13が示すように、表示体の第1表示領域10Aは、支持部11、第1格子層21、中間格子層31、および、第2格子層41に加えて、上部格子層51を備えている。第1格子層21、中間格子層31、第2格子層41、および、上部格子層51は、支持部11の表面からこの順に並んでいる。すなわち、第2格子層41は、中間格子層31と上部格子層51とに挟まれている。
[Display structure]
As shown in FIG. 13, the first display region 10 </ b> A of the display body includes an upper lattice layer 51 in addition to the support portion 11, the first lattice layer 21, the intermediate lattice layer 31, and the second lattice layer 41. Yes. The first lattice layer 21, the intermediate lattice layer 31, the second lattice layer 41, and the upper lattice layer 51 are arranged in this order from the surface of the support portion 11. That is, the second lattice layer 41 is sandwiched between the intermediate lattice layer 31 and the upper lattice layer 51.
 支持部11は、第1実施形態と同様の構成を有する。図13は、支持部11が基材11aと中間層11bとから構成された形態を示している。なお、支持部11が、基材11aと中間層11bとから構成される場合、基材11aを構成する材料の屈折率と、中間層11bを構成する材料の屈折率とは近いほど好ましい。基材11aおよび中間層11bの各々の屈折率は、空気層よりも高く、例えば、1.2以上1.7以下である。 The support part 11 has the same configuration as that of the first embodiment. FIG. 13 shows a form in which the support portion 11 is composed of a base material 11a and an intermediate layer 11b. In addition, when the support part 11 is comprised from the base material 11a and the intermediate | middle layer 11b, it is so preferable that the refractive index of the material which comprises the base material 11a and the refractive index of the material which comprises the intermediate | middle layer 11b are near. Each of the base material 11a and the intermediate layer 11b has a refractive index higher than that of the air layer, for example, not less than 1.2 and not more than 1.7.
 [第1格子層21]
 第1格子層21は、複数の第1誘電体層22と、単一の第1金属層23とを備える。各第1誘電体層22は、表示体の表面10Sと対向する方向から見て、孤立領域A2に位置する。単一の第1金属層23は、表面10Sと対向する方向から見て、周辺領域A3に位置する。複数の第1誘電体層22は、表面10Sに沿って、正方配列と六方配列とのいずれか一方である島状配列に並ぶ。
[First lattice layer 21]
The first lattice layer 21 includes a plurality of first dielectric layers 22 and a single first metal layer 23. Each first dielectric layer 22 is located in the isolated region A2 when viewed from the direction facing the surface 10S of the display body. The single first metal layer 23 is located in the peripheral region A3 when viewed from the direction facing the surface 10S. The plurality of first dielectric layers 22 are arranged in an island-like arrangement that is either a square arrangement or a hexagonal arrangement along the surface 10S.
 各第1誘電体層22は、支持部11の表面から突き出た構造体である。各第1誘電体層22は、支持部11と一体であってもよいし、支持部11とは別体であってもよい。表面10Sと対向する方向から見て、第1誘電体層22の位置する周期である構造周期PTは、可視領域の波長以下であるサブ波長周期である。第1金属層23は、表面10Sと対向する方向から見て、各第1誘電体層22を1つずつ囲う網目状を有する構造体である。第1金属層23は、支持部11とは別体である。第1格子層21において、第1金属層23は、構造的および光学的に海成分であり、各第1誘電体層22は構造的および光学的に島成分である。 Each first dielectric layer 22 is a structure protruding from the surface of the support portion 11. Each first dielectric layer 22 may be integral with the support portion 11 or may be a separate body from the support portion 11. When viewed from the direction facing the surface 10S, the structural period PT, which is the period in which the first dielectric layer 22 is located, is a sub-wavelength period that is equal to or less than the wavelength in the visible region. The first metal layer 23 is a structure having a mesh shape that surrounds the first dielectric layers 22 one by one when viewed from the direction facing the surface 10S. The first metal layer 23 is a separate body from the support portion 11. In the first lattice layer 21, the first metal layer 23 is structurally and optically a sea component, and each first dielectric layer 22 is structurally and optically an island component.
 [中間格子層31]
 中間格子層31は、複数の第1中間誘電体層32と、単一の第2中間誘電体層34とを備える。各第1中間誘電体層32は、表面10Sと対向する方向から見て、孤立領域A2に位置する。単一の第2中間誘電体層34は、表面10Sと対向する方向から見て、周辺領域A3に位置する。複数の第1中間誘電体層32は、表面10Sに沿って、正方配列と六方配列とのいずれか一方である島状配列に並ぶ。
[Intermediate lattice layer 31]
The intermediate lattice layer 31 includes a plurality of first intermediate dielectric layers 32 and a single second intermediate dielectric layer 34. Each first intermediate dielectric layer 32 is located in the isolated region A2 when viewed from the direction facing the surface 10S. The single second intermediate dielectric layer 34 is located in the peripheral region A3 when viewed from the direction facing the surface 10S. The plurality of first intermediate dielectric layers 32 are arranged in an island-like arrangement that is either a square arrangement or a hexagonal arrangement along the surface 10S.
 各第1中間誘電体層32は、第1誘電体層22から突き出た構造体である。各第1中間誘電体層32は、第1誘電体層22と一体であってもよいし、第1誘電体層22とは別体であってもよい。表面10Sと対向する方向から見て、第1中間誘電体層32の位置する周期は、構造周期PTである。第2中間誘電体層34は、表面10Sと対向する方向から見て、各第1中間誘電体層32を1つずつ囲う網目状を有する構造体である。第2中間誘電体層34は、第1金属層23とは別体である。中間格子層31において、第2中間誘電体層34は、構造的および光学的に海成分であり、各第1中間誘電体層32は、構造的および光学的に島成分である。 Each first intermediate dielectric layer 32 is a structure protruding from the first dielectric layer 22. Each first intermediate dielectric layer 32 may be integral with the first dielectric layer 22 or may be separate from the first dielectric layer 22. When viewed from the direction facing the surface 10S, the period in which the first intermediate dielectric layer 32 is located is the structural period PT. The second intermediate dielectric layer 34 is a structure having a mesh shape that surrounds each of the first intermediate dielectric layers 32 as viewed from the direction facing the surface 10S. The second intermediate dielectric layer 34 is separate from the first metal layer 23. In the intermediate lattice layer 31, the second intermediate dielectric layer 34 is structurally and optically a sea component, and each first intermediate dielectric layer 32 is structurally and optically an island component.
 [第2格子層41]
 第2格子層41は、複数の第2金属層42と、単一の第2誘電体層44とを備える。各第2金属層42の位置は、表面10Sと対向する方向から見て、孤立領域A2を含む。単一の第2誘電体層44の位置は、表面10Sと対向する方向から見て、周辺領域A3に含まれる。複数の第2金属層42は、表面10Sに沿って、正方配列と六方配列とのいずれか一方である島状配列に並ぶ。
[Second lattice layer 41]
The second lattice layer 41 includes a plurality of second metal layers 42 and a single second dielectric layer 44. The position of each second metal layer 42 includes an isolated region A2 when viewed from the direction facing the surface 10S. The position of the single second dielectric layer 44 is included in the peripheral region A3 when viewed from the direction facing the surface 10S. The plurality of second metal layers 42 are arranged in an island-like arrangement that is either a square arrangement or a hexagonal arrangement along the surface 10S.
 各第2金属層42は、第1中間誘電体層32の頂面に重なる構造体である。各第2金属層42は、第1中間誘電体層32とは別体である。表面10Sと対向する方向から見て、第2金属層42の位置する周期は、構造周期PTである。第2誘電体層44は、表面10Sと対向する方向から見て、各第2金属層42を1つずつ囲う網目状を有する構造体である。第2誘電体層44は、第2中間誘電体層34と一体であってもよいし、別体であってもよい。第2格子層41において、第2誘電体層44は、構造的および光学的に海成分であり、各第2金属層42は、構造的および光学的に島成分である。 Each second metal layer 42 is a structure that overlaps the top surface of the first intermediate dielectric layer 32. Each second metal layer 42 is separate from the first intermediate dielectric layer 32. When viewed from the direction facing the surface 10S, the period in which the second metal layer 42 is located is the structural period PT. The second dielectric layer 44 is a structure having a mesh shape that surrounds each of the second metal layers 42 when viewed from the direction facing the surface 10S. The second dielectric layer 44 may be integral with the second intermediate dielectric layer 34 or may be a separate body. In the second lattice layer 41, the second dielectric layer 44 is structurally and optically a sea component, and each second metal layer 42 is structurally and optically an island component.
 [上部格子層51]
 上部格子層51は、複数の第1上部誘電体層52と、単一の第2上部誘電体層53とを備える。各第1上部誘電体層52の位置は、表面10Sと対向する方向から見て、孤立領域A2を含む。単一の第2上部誘電体層53の位置は、表面10Sと対向する方向から見て、周辺領域A3に含まれる。複数の第1上部誘電体層52は、表面10Sに沿って、正方配列と六方配列とのいずれか一方である島状配列に並ぶ。
[Upper lattice layer 51]
The upper lattice layer 51 includes a plurality of first upper dielectric layers 52 and a single second upper dielectric layer 53. The position of each first upper dielectric layer 52 includes an isolated region A2 when viewed from the direction facing the surface 10S. The position of the single second upper dielectric layer 53 is included in the peripheral region A3 when viewed from the direction facing the surface 10S. The plurality of first upper dielectric layers 52 are arranged in an island-like arrangement that is either a square arrangement or a hexagonal arrangement along the surface 10S.
 各第1上部誘電体層52は、第2金属層42の頂面に重なる構造体である。各第1上部誘電体層52は、第2金属層42とは別体である。表面10Sと対向する方向から見て、第1上部誘電体層52の位置する周期は、構造周期PTである。第2上部誘電体層53は、表面10Sと対向する方向から見て、各第1上部誘電体層52を1つずつ囲う網目状を有する。第2上部誘電体層53は、第2誘電体層44とは別体である。上部格子層51において、第2上部誘電体層53は、構造的および光学的に海成分であり、各第1上部誘電体層52は、構造的および光学的に島成分である。 Each first upper dielectric layer 52 is a structure that overlaps the top surface of the second metal layer 42. Each first upper dielectric layer 52 is separate from the second metal layer 42. When viewed from the direction facing the surface 10S, the period in which the first upper dielectric layer 52 is located is the structural period PT. The second upper dielectric layer 53 has a mesh shape surrounding each first upper dielectric layer 52 as viewed from the direction facing the surface 10S. The second upper dielectric layer 53 is separate from the second dielectric layer 44. In the upper lattice layer 51, the second upper dielectric layer 53 is structurally and optically a sea component, and each first upper dielectric layer 52 is structurally and optically an island component.
 図14が示すように、周辺領域A3においては、支持部11に近い層から順に、第1格子層21の第1金属層23と、中間格子層31の第2中間誘電体層34と、第2格子層41の第2誘電体層44と、上部格子層51の第2上部誘電体層53とが位置する。 As shown in FIG. 14, in the peripheral region A3, in order from the layer close to the support portion 11, the first metal layer 23 of the first lattice layer 21, the second intermediate dielectric layer 34 of the intermediate lattice layer 31, and the first The second dielectric layer 44 of the two lattice layer 41 and the second upper dielectric layer 53 of the upper lattice layer 51 are located.
 [各格子層の材料]
 第1誘電体層22および第1中間誘電体層32は、誘電体であり、例えば、光硬化性樹脂などの樹脂や、石英などの無機材料から構成される。第1誘電体層22および第1中間誘電体層32の各々の屈折率は、空気層よりも高く、例えば、1.2以上1.7以下である。例えば、基材11aの中間層11b、第1誘電体層22、および、第1中間誘電体層32は一体の構造物であり、これらは同一の材料から構成される。
[Material of each lattice layer]
The first dielectric layer 22 and the first intermediate dielectric layer 32 are dielectrics, and are made of, for example, a resin such as a photocurable resin or an inorganic material such as quartz. The refractive index of each of the first dielectric layer 22 and the first intermediate dielectric layer 32 is higher than that of the air layer, for example, not less than 1.2 and not more than 1.7. For example, the intermediate layer 11b, the first dielectric layer 22, and the first intermediate dielectric layer 32 of the base material 11a are an integral structure, and are composed of the same material.
 第1金属層23および第2金属層42は、金属材料から構成されている。第1金属層23および第2金属層42を構成する材料は、可視領域の波長における複素誘電率の実部が負の値の材料であることが好ましく、例えば、アルミニウム、銀、金、インジウム、タンタルなどであることが好ましい。第1金属層23と第2金属層42とは、例えば、同一の材料から構成される。 The first metal layer 23 and the second metal layer 42 are made of a metal material. The material constituting the first metal layer 23 and the second metal layer 42 is preferably a material in which the real part of the complex dielectric constant at a wavelength in the visible region is a negative value. For example, aluminum, silver, gold, indium, Tantalum or the like is preferable. The first metal layer 23 and the second metal layer 42 are made of the same material, for example.
 第2中間誘電体層34、第2誘電体層44、および、第1上部誘電体層52は、可視領域の光を透過する透明な誘電体である。第2中間誘電体層34、第2誘電体層44、および、第1上部誘電体層52は、二酸化珪素(SiO)、酸化アルミニウム(Al)、酸化タンタル(Ta)、酸化ニオブ(Nb)、二酸化ジルコニウム(ZrO)、二酸化チタン(TiO)、弗化マグネシウム(MgF)、弗化カルシウム(CaF)などの無機化合物から構成されることが好ましい。ただし、第2中間誘電体層34、第2誘電体層44、および、第1上部誘電体層52は、有機化合物から構成されてもよい。第2中間誘電体層34、第2誘電体層44、および、第1上部誘電体層52の各々の屈折率は、空気層よりも高く、例えば、1.3以上3.0以下である。 The second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 are transparent dielectrics that transmit light in the visible region. The second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 are composed of silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and tantalum oxide (Ta 2 O 5 ). , Niobium oxide (Nb 2 O 5 ), zirconium dioxide (ZrO 2 ), titanium dioxide (TiO 2 ), magnesium fluoride (MgF 2 ), and calcium fluoride (CaF 2 ). . However, the second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 may be made of an organic compound. The refractive index of each of the second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 is higher than that of the air layer, for example, 1.3 or more and 3.0 or less.
 例えば、第2中間誘電体層34と第2誘電体層44とは一体の構造物であり、第2中間誘電体層34、第2誘電体層44、および、第1上部誘電体層52は、同一の材料から構成される。 For example, the second intermediate dielectric layer 34 and the second dielectric layer 44 are an integral structure, and the second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 are , Composed of the same material.
 第2上部誘電体層53は、可視領域の光を透過する透明な誘電体であり、空気層、もしくは、空気層に近い屈折率を有した樹脂層である。第2上部誘電体層53の屈折率は、第1上部誘電体層52および第2誘電体層44の各々の屈折率よりも低い。 The second upper dielectric layer 53 is a transparent dielectric that transmits light in the visible region, and is an air layer or a resin layer having a refractive index close to that of the air layer. The refractive index of the second upper dielectric layer 53 is lower than the refractive index of each of the first upper dielectric layer 52 and the second dielectric layer 44.
 孤立領域A2と周辺領域A3とからなる平面において、単位面積あたりにおいて孤立領域A2が占める面積の割合は、0.5よりも小さい。すなわち、第1格子層21における第1金属層23の体積比率は、第1格子層21における第1誘電体層22の体積比率よりも大きい。また、中間格子層31における第2中間誘電体層34の体積比率は、中間格子層31における第1中間誘電体層32の体積比率よりも大きい。 In the plane composed of the isolated region A2 and the peripheral region A3, the ratio of the area occupied by the isolated region A2 per unit area is smaller than 0.5. That is, the volume ratio of the first metal layer 23 in the first lattice layer 21 is larger than the volume ratio of the first dielectric layer 22 in the first lattice layer 21. The volume ratio of the second intermediate dielectric layer 34 in the intermediate lattice layer 31 is larger than the volume ratio of the first intermediate dielectric layer 32 in the intermediate lattice layer 31.
 そして、第2格子層41における第2誘電体層44の体積比率は、第2格子層41における第2金属層42の体積比率よりも大きい。また、上部格子層51における第2上部誘電体層53の体積比率は、上部格子層51における第1上部誘電体層52の体積比率よりも大きい。 The volume ratio of the second dielectric layer 44 in the second lattice layer 41 is larger than the volume ratio of the second metal layer 42 in the second lattice layer 41. The volume ratio of the second upper dielectric layer 53 in the upper lattice layer 51 is larger than the volume ratio of the first upper dielectric layer 52 in the upper lattice layer 51.
 上記構成において、第1誘電体層22と第1中間誘電体層32とから構成される構造体は、周期要素の一例であり、支持部11の表面を基準面として、基準面から突出する凸部11Tでもある。そして、支持部11、第1誘電体層22、および、第1中間誘電体層32から構成される構造体は、周期構造体の一例である。また、第1金属層23と第2金属層42とから構成される層は、周期構造体の表面に位置し、層全体としての形状が周期構造体の表面形状に追従する形状を有した金属層61として捉えられる。周期構造体の表面は、基準面のうち各周期要素を囲む領域と各周期要素の表面とを含む面である。 In the above-described configuration, the structure configured by the first dielectric layer 22 and the first intermediate dielectric layer 32 is an example of a periodic element, and is a protrusion protruding from the reference plane with the surface of the support portion 11 as the reference plane. It is also part 11T. And the structure comprised from the support part 11, the 1st dielectric material layer 22, and the 1st intermediate | middle dielectric material layer 32 is an example of a periodic structure. Further, the layer composed of the first metal layer 23 and the second metal layer 42 is located on the surface of the periodic structure, and the shape of the entire layer follows the surface shape of the periodic structure. Captured as layer 61. The surface of the periodic structure is a surface including a region surrounding each periodic element in the reference plane and the surface of each periodic element.
 また、第2中間誘電体層34、第2誘電体層44、および、第1上部誘電体層52から構成される層は、金属層61における周期構造体と接する面とは反対側の面に位置し、層全体としての形状が金属層61の表面形状に追従する形状を有した誘電体層62として捉えられる。 Further, the layer composed of the second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 is on the surface opposite to the surface in contact with the periodic structure in the metal layer 61. The dielectric layer 62 is positioned so that the shape of the entire layer follows the surface shape of the metal layer 61.
 [表示体の製造方法]
 次に、第2実施形態の表示体を製造する方法の一例を説明する。
 支持部11、第1誘電体層22、第1中間誘電体層32、第1金属層23、および、第2金属層42は、第1実施形態と同様に形成される。すなわち、第1誘電体層22と第1中間誘電体層32とは、支持部11の表面から突き出た凸部11Tとして一体に形成される。凸部11Tの形成には、例えば、光、あるいは、荷電粒子線を用いたフォトリソグラフィー法や、ナノインプリント法、あるいは、プラズマエッチング法などを採用できる。特に、樹脂からなる支持部11の表面に凸部11Tを形成する方法として、例えばナノインプリント法を活用できる。また、硬い材質の基材などを加工することにより凸部11Tを形成する場合には、光、あるいは、荷電粒子線を用いたフォトリソグラフィー法とプラズマエッチング法を組み合わせた方法を用いればよい。
[Manufacturing method of display body]
Next, an example of a method for manufacturing the display body according to the second embodiment will be described.
The support portion 11, the first dielectric layer 22, the first intermediate dielectric layer 32, the first metal layer 23, and the second metal layer 42 are formed in the same manner as in the first embodiment. That is, the first dielectric layer 22 and the first intermediate dielectric layer 32 are integrally formed as a convex portion 11T protruding from the surface of the support portion 11. For the formation of the convex portion 11T, for example, a photolithography method using light or a charged particle beam, a nanoimprint method, a plasma etching method, or the like can be employed. In particular, as a method of forming the convex portion 11T on the surface of the support portion 11 made of resin, for example, a nanoimprint method can be used. Further, in the case where the convex portion 11T is formed by processing a hard material base material or the like, a method in which light or a photolithographic method using a charged particle beam and a plasma etching method are combined may be used.
 次いで、凸部11Tが形成された支持部11の表面に、真空蒸着法やスパッタリング法などを用いて、金属層61が形成される。金属層61は、支持部11と凸部11Tとからなる周期構造体の表面形状に追従する形状に形成される。これにより、第1金属層23、および、第2金属層42が形成される。 Next, the metal layer 61 is formed on the surface of the support portion 11 on which the convex portions 11T are formed using a vacuum deposition method, a sputtering method, or the like. The metal layer 61 is formed in a shape that follows the surface shape of the periodic structure including the support portion 11 and the convex portion 11T. Thereby, the first metal layer 23 and the second metal layer 42 are formed.
 次いで、金属層61が形成された構造体の表面に、誘電体層62が形成される。誘電体層62の形成には、例えば、真空蒸着法やスパッタリング法が用いられる。誘電体層62は、金属層61の表面形状に追従する形状に形成される。これにより、第2中間誘電体層34、第2誘電体層44、および、第1上部誘電体層52が形成される。 Next, the dielectric layer 62 is formed on the surface of the structure on which the metal layer 61 is formed. For example, a vacuum deposition method or a sputtering method is used to form the dielectric layer 62. The dielectric layer 62 is formed in a shape that follows the surface shape of the metal layer 61. Thus, the second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 are formed.
 こうした製造方法によって、第1金属層23の頂面によって区画される第1格子層21が形成され、第1中間誘電体層32の頂面、すなわち、凸部11Tの頂面によって区画される中間格子層31が区画される。さらに、第2金属層42の頂面によって区画される第2格子層41が形成され、第1上部誘電体層52の頂面によって区画される上部格子層51が形成される。 By such a manufacturing method, the first lattice layer 21 defined by the top surface of the first metal layer 23 is formed, and the top surface of the first intermediate dielectric layer 32, that is, the middle defined by the top surface of the convex portion 11T. A lattice layer 31 is defined. Further, the second lattice layer 41 defined by the top surface of the second metal layer 42 is formed, and the upper lattice layer 51 defined by the top surface of the first upper dielectric layer 52 is formed.
 [表示体の光学的な作用]
 図15を参照して、第2実施形態の表示体における光学的な構成および作用を説明する。
[Optical action of display]
With reference to FIG. 15, the optical configuration and operation of the display body of the second embodiment will be described.
 図15が示すように、表示体の外側から上部格子層51に入射する白色の光L1は、空気層から上部格子層51に入る。上部格子層51の屈折率は、第1上部誘電体層52の屈折率と第2上部誘電体層53の屈折率とによって平均化された大きさに近似される。すなわち、上部格子層51の屈折率は、海成分である第2上部誘電体層53に支配された大きさであり、空気層に近い値である。このとき、光L1は、空気層に近い屈折率を有した上部格子層51に空気層から入るため、空気層と上部格子層51との界面においては、フレネル反射を生じ難い。したがって、空気層と上部格子層51との界面での反射が抑えられ、上部格子層51に入射した光は上部格子層51を透過して第2格子層41に到達する。 As shown in FIG. 15, white light L1 incident on the upper lattice layer 51 from the outside of the display body enters the upper lattice layer 51 from the air layer. The refractive index of the upper grating layer 51 is approximated to a size averaged by the refractive index of the first upper dielectric layer 52 and the refractive index of the second upper dielectric layer 53. That is, the refractive index of the upper lattice layer 51 is a size controlled by the second upper dielectric layer 53, which is a sea component, and a value close to that of the air layer. At this time, since the light L1 enters the upper lattice layer 51 having a refractive index close to that of the air layer from the air layer, Fresnel reflection hardly occurs at the interface between the air layer and the upper lattice layer 51. Therefore, reflection at the interface between the air layer and the upper lattice layer 51 is suppressed, and light incident on the upper lattice layer 51 passes through the upper lattice layer 51 and reaches the second lattice layer 41.
 第2格子層41の屈折率は、第2金属層42の屈折率と第2誘電体層44の屈折率とによって平均化された大きさに近似される。すなわち、第2格子層41の屈折率は、海成分である第2誘電体層44に支配された大きさであり、空気層の屈折率よりも高い値である。また、第2格子層41は金属と誘電体とからなる格子構造を有し、第2金属層42の構造周期PTはサブ波長周期であるため、第2格子層41ではプラズモン共鳴が生じる。したがって、第2格子層41に到達した光の一部は、上部格子層51と第2格子層41との界面で反射し、第2格子層41に到達した光の一部は、表面プラズモンに変換されて第2格子層41を透過する。プラズモン共鳴によって消費される波長領域の光EP2は、上部格子層51と第2格子層41との界面で反射されない。 The refractive index of the second lattice layer 41 is approximated to a size averaged by the refractive index of the second metal layer 42 and the refractive index of the second dielectric layer 44. That is, the refractive index of the second lattice layer 41 is a size controlled by the second dielectric layer 44, which is a sea component, and is higher than the refractive index of the air layer. Further, since the second lattice layer 41 has a lattice structure composed of a metal and a dielectric, and the structural period PT of the second metal layer 42 is a sub-wavelength period, plasmon resonance occurs in the second lattice layer 41. Therefore, a part of the light reaching the second grating layer 41 is reflected at the interface between the upper grating layer 51 and the second grating layer 41, and a part of the light reaching the second grating layer 41 is reflected on the surface plasmon. It is converted and passes through the second lattice layer 41. Light EP2 in the wavelength region consumed by plasmon resonance is not reflected at the interface between the upper grating layer 51 and the second grating layer 41.
 中間格子層31の屈折率は、第1中間誘電体層32の屈折率と第2中間誘電体層34の屈折率とによって平均化された大きさに近似される。すなわち、中間格子層31の屈折率は、海成分である第2中間誘電体層34に支配された大きさである。第1中間誘電体層32と第2中間誘電体層34とは、可視領域の光を透過する透明な誘電体であるため、中間格子層31は、可視領域の光の透過性が高い。第2格子層41の屈折率と中間格子層31の屈折率との差によっては、中間格子層31に到達した光の一部は、第2格子層41と中間格子層31との界面で反射する。 The refractive index of the intermediate grating layer 31 is approximated to a size averaged by the refractive index of the first intermediate dielectric layer 32 and the refractive index of the second intermediate dielectric layer 34. That is, the refractive index of the intermediate lattice layer 31 is a size controlled by the second intermediate dielectric layer 34 that is a sea component. Since the first intermediate dielectric layer 32 and the second intermediate dielectric layer 34 are transparent dielectric materials that transmit light in the visible region, the intermediate lattice layer 31 has high light transmittance in the visible region. Depending on the difference between the refractive index of the second grating layer 41 and the refractive index of the intermediate grating layer 31, a part of the light reaching the intermediate grating layer 31 is reflected at the interface between the second grating layer 41 and the intermediate grating layer 31. To do.
 第1格子層21の屈折率は、第1誘電体層22の屈折率と第1金属層23の屈折率とによって平均化された大きさに近似される。すなわち、第1格子層21の屈折率は、海成分である第1金属層23に支配された大きさである。また、第1格子層21は金属と誘電体とからなる格子構造を有し、第1誘電体層22の構造周期PTはサブ波長周期であるため、第1格子層21ではプラズモン共鳴が生じる。したがって、第1格子層21に到達した光の一部は、中間格子層31と第1格子層21との界面で反射し、第1格子層21に到達した光の一部は、表面プラズモンに変換されて第1格子層21を透過する。プラズモン共鳴によって消費される波長領域の光EP1は、中間格子層31と第1格子層21との界面で反射されない。 The refractive index of the first lattice layer 21 is approximated to a size averaged by the refractive index of the first dielectric layer 22 and the refractive index of the first metal layer 23. That is, the refractive index of the first lattice layer 21 is controlled by the first metal layer 23 that is a sea component. In addition, the first lattice layer 21 has a lattice structure made of a metal and a dielectric, and the structural period PT of the first dielectric layer 22 is a sub-wavelength period. Therefore, plasmon resonance occurs in the first lattice layer 21. Therefore, a part of the light reaching the first lattice layer 21 is reflected at the interface between the intermediate lattice layer 31 and the first lattice layer 21, and a part of the light reaching the first lattice layer 21 is reflected on the surface plasmon. It is converted and passes through the first lattice layer 21. The light EP 1 in the wavelength region consumed by plasmon resonance is not reflected at the interface between the intermediate grating layer 31 and the first grating layer 21.
 第1格子層21を透過した光の一部は、第1格子層21と支持部11との界面や、中間層11bと基材11aとの界面や、支持部11と空気層との界面で反射され得る。そして、第1格子層21を透過した光の一部は、支持部11を透過して表示体の裏面側に射出される。 A part of the light transmitted through the first grating layer 21 is at the interface between the first grating layer 21 and the support part 11, the interface between the intermediate layer 11b and the substrate 11a, or the interface between the support part 11 and the air layer. Can be reflected. A part of the light transmitted through the first lattice layer 21 passes through the support portion 11 and is emitted to the back side of the display body.
 このように、表示体の外側から白色の光L1を入射させたとき、表示体の裏面側には、第1格子層21および第2格子層41を透過した表面プラズモンが再変換された光と、すべての層を透過した光とを含む特定の波長領域の光LP1が射出される。したがって、表示体の外側から上部格子層51へ光L1を入射させて、表示体の裏面側から裏面10Tを観察する裏面透過観察によれば、黒色および白色とは異なる有色の色彩が、第1表示領域10Aで視認される。 As described above, when the white light L1 is incident from the outside of the display body, on the back surface side of the display body, the surface plasmon transmitted through the first lattice layer 21 and the second lattice layer 41 is reconverted and The light LP1 in a specific wavelength region including the light transmitted through all the layers is emitted. Therefore, according to the back surface transmission observation in which the light L1 is incident on the upper lattice layer 51 from the outside of the display body and the back surface 10T is observed from the back surface side of the display body, the colored colors different from black and white are the first. It is visually recognized in the display area 10A.
 各層の界面で反射した光は、表示体の表面側に射出され、これらの光の光路差に起因して干渉を起こす。結果として、表示体の外側から白色の光L1を入射させたとき、表示体の表面側には、プラズモン共鳴および光の干渉が作用した特定の波長領域の光LR1が射出される。上述のように、第1格子層21および第2格子層41の各々において特定の波長領域の光に対しプラズモン共鳴が生じるため、格子層21,41ごとに、プラズモン共鳴によって消費されて格子層21,41を透過する波長領域と、プラズモン共鳴によって消費されずに格子層21,41と他の層との界面で反射される波長領域とは異なる波長領域となる。したがって、表示体の外側から上部格子層51へ光L1を入射させて、表示体の表面側から表面10Sを観察する表面反射観察によれば、裏面透過観察とは異なる色彩であって、黒色および白色とは異なる有色の色彩が、第1表示領域10Aで視認される。 The light reflected at the interface of each layer is emitted to the surface side of the display body and causes interference due to the optical path difference between these lights. As a result, when white light L1 is incident from the outside of the display body, light LR1 in a specific wavelength region in which plasmon resonance and light interference act is emitted on the surface side of the display body. As described above, since plasmon resonance occurs with respect to light in a specific wavelength region in each of the first grating layer 21 and the second grating layer 41, each of the grating layers 21 and 41 is consumed by plasmon resonance and is lattice layer 21. , 41 and a wavelength region that is not consumed by plasmon resonance and is reflected at the interface between the grating layers 21 and 41 and other layers. Therefore, according to the surface reflection observation in which the light L1 is incident on the upper lattice layer 51 from the outside of the display body and the surface 10S is observed from the front surface side of the display body, the color is different from that of the back surface transmission observation, A colored color different from white is visually recognized in the first display area 10A.
 また、表示体の外側から支持部11に白色の光を入射させたとき、同様に、第1格子層21および第2格子層41の各々ではプラズモン共鳴が生じる。そして、表示体の表面側には、第1格子層21および第2格子層41の各々を透過した表面プラズモンが再変換された光と、すべての層を透過した光とを含む特定の波長領域の光が射出される。一方、表示体の外側から支持部11に白色の光を入射させたとき、表示体の裏面側には、各層の界面で反射した光として、プラズモン共鳴および光の干渉が作用した特定の波長領域の光が射出される。 Further, when white light is incident on the support portion 11 from the outside of the display body, similarly, plasmon resonance occurs in each of the first lattice layer 21 and the second lattice layer 41. And on the surface side of the display body, a specific wavelength region including light obtained by reconverting the surface plasmons transmitted through each of the first lattice layer 21 and the second lattice layer 41 and light transmitted through all the layers. Light is emitted. On the other hand, when white light is incident on the support 11 from the outside of the display body, a specific wavelength region in which plasmon resonance and light interference act on the back surface side of the display body as light reflected at the interface of each layer. Light is emitted.
 したがって、表示体の外側から支持部11へ光を入射させたとき、表示体の表面側から表面10Sを観察する表面透過観察と、表示体の裏面側から裏面10Tを観察する裏面反射観察とでは、互いに異なる色彩であって、黒色および白色とは異なる有色の色彩が、第1表示領域10Aで視認される。 Therefore, when light is incident on the support portion 11 from the outside of the display body, surface transmission observation in which the surface 10S is observed from the front surface side of the display body and back surface reflection observation in which the back surface 10T is observed from the back surface side of the display body. Colored colors different from each other and different from black and white are visually recognized in the first display area 10A.
 孤立領域A2と周辺領域A3とからなる平面において、孤立領域A2が占める面積比率が0.5よりも小さいことに基づき、プラズモン共鳴が生じる第1格子層21と第2格子層41のうち、第1格子層21は、第1金属層23が支配的に位置する層となり、第2格子層41は、第2誘電体層44が支配的に位置する層となる。こうした構造の違いに起因して、第1格子層21と第2格子層41とで、プラズモン共鳴により消費される波長領域は異なり、また、第1格子層21と他の層との界面と、第2格子層41と他の層との界面とで、光の反射率は異なる。そして、こうした第1格子層21と第2格子層41との光学的な特性の違いは、孤立領域A2が占める面積比率が小さくなるほど、顕著となる。 Of the first lattice layer 21 and the second lattice layer 41 in which plasmon resonance occurs, based on the fact that the area ratio occupied by the isolated region A2 is smaller than 0.5 in the plane composed of the isolated region A2 and the peripheral region A3, The first lattice layer 21 is a layer in which the first metal layer 23 is dominant, and the second lattice layer 41 is a layer in which the second dielectric layer 44 is dominant. Due to the difference in structure, the wavelength region consumed by plasmon resonance is different between the first lattice layer 21 and the second lattice layer 41, and the interface between the first lattice layer 21 and the other layers, The light reflectance is different at the interface between the second lattice layer 41 and other layers. The difference in optical characteristics between the first lattice layer 21 and the second lattice layer 41 becomes more prominent as the area ratio occupied by the isolated region A2 becomes smaller.
 表示体の表面側から表示体に入射する光は、第1格子層21よりも第2格子層41に先に到達し、第2格子層41による光学的作用を大きく受ける。一方、表示体の裏面側から表示体に入射する光は、第2格子層41よりも第1格子層21に先に到達し、第1格子層21による光学的作用を大きく受ける。結果として、表面側から表示体に光が入射する場合と、裏面側から表示体に光が入射する場合とで、特に反射光の色相が大きく異なる。すなわち、表面反射観察と裏面反射観察とでは、互いに異なる色彩の像が第1表示領域10Aで視認される。なお、表面透過観察と裏面透過観察とでは、同様の色相の像が視認される。 The light incident on the display body from the surface side of the display body reaches the second lattice layer 41 earlier than the first lattice layer 21 and is greatly subjected to the optical action by the second lattice layer 41. On the other hand, light incident on the display body from the back surface side of the display body reaches the first lattice layer 21 earlier than the second lattice layer 41, and is greatly subjected to the optical action by the first lattice layer 21. As a result, the hue of reflected light is particularly different between when light is incident on the display body from the front surface side and when light is incident on the display body from the back surface side. That is, in the front surface reflection observation and the back surface reflection observation, images of different colors are visually recognized in the first display region 10A. In addition, the image of the same hue is visually recognized in the front surface transmission observation and the back surface transmission observation.
 さらに、各格子層21,41においてプラズモン共鳴によって消費される波長領域は、各格子層21,41の格子構造、すなわち、構造周期PTや各格子層21,41の厚さや第1誘電体層22および第2金属層42の幅WTによって変わり、また、各格子層21,41の材料、すなわち、金属層61の材料や凸部11Tの材料の屈折率や誘電体層62の材料の屈折率によって変わる。したがって、例えば、第1格子層21における第1誘電体層22の材料の選択や、第2格子層41における第2誘電体層44の材料の選択によって、反射観察や透過観察で観察される色彩を調整することができる。 Furthermore, the wavelength region consumed by plasmon resonance in each of the lattice layers 21 and 41 is the lattice structure of each of the lattice layers 21 and 41, that is, the structural period PT, the thickness of each of the lattice layers 21 and 41, and the first dielectric layer 22. Depending on the width WT of the second metal layer 42, and also depending on the material of each of the lattice layers 21, 41, that is, the refractive index of the metal layer 61 and the convex portion 11T and the refractive index of the dielectric layer 62. change. Therefore, for example, the color observed in reflection observation or transmission observation by selecting the material of the first dielectric layer 22 in the first lattice layer 21 or selecting the material of the second dielectric layer 44 in the second lattice layer 41. Can be adjusted.
 例えば、同一の構造周期PTを有する2つの表示体であって、凸部11Tおよび金属層61の各々の材料が2つの表示体で同一であり、誘電体層62の材料が2つの表示体で異なる表示体を比較する。すなわち、2つの表示体において、第1格子層21の構成は同一であり、中間格子層31における第1中間誘電体層32の材料も同一であり、第2格子層41における第2金属層42の材料も同一である。一方、2つの表示体において、中間格子層31における第2中間誘電体層34の材料は互いに異なり、第2格子層41における第2誘電体層44の材料は互いに異なり、上部格子層51における第1上部誘電体層52の材料も互いに異なっている。2つの表示体に裏面側から光を照射するとき、2つの表示体における第1格子層21の構成は同一であるため、裏面反射観察によって観察される色彩は、2つの表示体で大きくは変わらない。一方、2つの表示体に表面側から光を照射するとき、表面反射観察によって観察される色彩は、各表示体の第2誘電体層44の屈折率に応じて、2つの表示体で互いに異なる。また、2つの表示体において、中間格子層31、第2格子層41、および、上部格子層51の各々の構成が互いに異なっていることにより、これらの層を透過する光の波長領域は、2つの表示体で互いに異なる。したがって、表面透過観察によって観察される色彩は、2つの表示体で互いに異なり、また、裏面透過観察によって観察される色彩も、2つの表示体で互いに異なる。 For example, two display bodies having the same structural period PT, the materials of the convex portions 11T and the metal layer 61 are the same in the two display bodies, and the material of the dielectric layer 62 is the two display bodies. Compare different displays. That is, in the two display bodies, the configuration of the first lattice layer 21 is the same, the material of the first intermediate dielectric layer 32 in the intermediate lattice layer 31 is also the same, and the second metal layer 42 in the second lattice layer 41. The materials are the same. On the other hand, in the two displays, the materials of the second intermediate dielectric layer 34 in the intermediate lattice layer 31 are different from each other, the materials of the second dielectric layer 44 in the second lattice layer 41 are different from each other, and the materials in the upper lattice layer 51 are different. The materials of the upper dielectric layer 52 are also different from each other. When the two display bodies are irradiated with light from the back side, the configuration of the first lattice layer 21 in the two display bodies is the same, so the colors observed by the back side reflection observation vary greatly between the two display bodies. Absent. On the other hand, when the two display bodies are irradiated with light from the surface side, the colors observed by the surface reflection observation differ between the two display bodies according to the refractive index of the second dielectric layer 44 of each display body. . Further, in the two display bodies, the structure of each of the intermediate lattice layer 31, the second lattice layer 41, and the upper lattice layer 51 is different from each other, so that the wavelength region of light transmitted through these layers is 2 Two display bodies are different from each other. Therefore, the colors observed by the front surface transmission observation are different from each other on the two display bodies, and the colors observed by the rear surface transmission observation are also different from each other on the two display bodies.
 [各格子層の構成例]
 各格子層の詳細構成について、好ましい構成例を説明する。
 図13および図14に示すように、凸部11Tの高さである厚さT5は、すなわち、第1格子層21と中間格子層31とを合わせた厚さである。厚さT5は、凸部11Tが倒れにくく支持部11と凸部11Tとからなる構造体の耐久性が高められること、および、凸部11Tの加工の精度が得られやすいことから、構造周期PTの2分の1よりも小さいことが好ましい。さらに、プラズモン共鳴や光の干渉の作用によって反射観察や透過観察で視認される色彩が鮮明になる観点から、厚さT5は、50nm以上200nm以下であることがより好ましい。
[Configuration example of each lattice layer]
A preferred configuration example will be described for the detailed configuration of each lattice layer.
As shown in FIGS. 13 and 14, the thickness T <b> 5 that is the height of the convex portion 11 </ b> T is the combined thickness of the first lattice layer 21 and the intermediate lattice layer 31. The thickness T5 is such that the convex portion 11T is unlikely to fall down, the durability of the structure including the support portion 11 and the convex portion 11T is enhanced, and the processing accuracy of the convex portion 11T is easily obtained. It is preferable that it is smaller than half of the above. Furthermore, the thickness T5 is more preferably not less than 50 nm and not more than 200 nm from the viewpoint that the color visually recognized by reflection observation or transmission observation becomes clear by the action of plasmon resonance or light interference.
 金属層61の厚さT6は、すなわち、第1金属層23および第2金属層42の各々の厚さである。厚さT6は、プラズモン共鳴が生じやすいこと、および、反射観察で視認される色彩が鮮明になることから、10nm以上であることが好ましい。一方、厚さT6が厚さT5以上であると、凸部11Tが金属層61に埋没し、中間格子層31が消失する。中間格子層31が存在しなかったとしても、金属層61が、支持部11と凸部11Tとからなる構造体の表面形状に追従した形状を有することにより第1格子層21と第2格子層41とが形成されていれば、プラズモン共鳴に起因した表面反射観察と裏面反射観察とでの視認される色彩の違い、および、これらの反射観察と透過観察とでの視認される色彩の違いは生じ得る。しかしながら、金属層61が凸部11Tを埋没させない程度に薄い方が、表示体における光の透過率が高められ、透過観察における像が明りょうに視認される。したがって、金属層61の厚さT6は、凸部11Tの高さである厚さT5よりも小さいことが好ましい。 The thickness T6 of the metal layer 61 is the thickness of each of the first metal layer 23 and the second metal layer 42. Thickness T6 is preferably 10 nm or more because plasmon resonance is likely to occur and the color visually recognized by reflection observation becomes clear. On the other hand, when the thickness T6 is equal to or greater than the thickness T5, the convex portion 11T is buried in the metal layer 61, and the intermediate lattice layer 31 disappears. Even if the intermediate lattice layer 31 is not present, the metal layer 61 has a shape that follows the surface shape of the structure including the support portion 11 and the convex portion 11T, whereby the first lattice layer 21 and the second lattice layer are formed. 41 is formed, the difference in the visible color between the front surface reflection observation and the back surface reflection observation due to the plasmon resonance, and the difference in the visible color between the reflection observation and the transmission observation are as follows: Can occur. However, if the metal layer 61 is thin enough not to bury the convex portion 11T, the light transmittance in the display body is increased, and the image in the transmission observation is clearly visible. Therefore, the thickness T6 of the metal layer 61 is preferably smaller than the thickness T5 that is the height of the convex portion 11T.
 なお、金属層61の製法によっては、金属層61の厚さは、凸部11T上の領域、すなわち第2金属層42と、隣り合う凸部11Tの間の領域、すなわち第1金属層23とで異なる場合がある。本実施形態において金属層61の厚さT6とは、周辺領域A3における帯状に延びる領域、すなわち、1つの方向に沿って凸部11Tが存在しない領域の幅方向の中央部に位置する金属層61の厚さとして定義される。なお、他の実施形態でも同様である。 Depending on the manufacturing method of the metal layer 61, the thickness of the metal layer 61 may be such that the region on the convex portion 11T, that is, the second metal layer 42, and the region between the adjacent convex portions 11T, that is, the first metal layer 23 and the like. May vary. In the present embodiment, the thickness T6 of the metal layer 61 refers to a band-shaped region in the peripheral region A3, that is, the metal layer 61 located in the center in the width direction of the region where the convex portion 11T does not exist along one direction. Is defined as the thickness of The same applies to other embodiments.
 誘電体層62の厚さT7は、すなわち、第2中間誘電体層34と第2誘電体層44とを合わせた厚さであり、かつ、第1上部誘電体層52の厚さである。誘電体層62の厚さT7は、凸部11Tの高さである厚さT5よりも大きいことが好ましい。なお、隣り合う凸部11Tの間の領域において誘電体層62が凸部11T上の金属層61よりも突出しているとき、上部格子層51における第2上部誘電体層53の一部は、誘電体層62によって構成される。 The thickness T7 of the dielectric layer 62 is the combined thickness of the second intermediate dielectric layer 34 and the second dielectric layer 44, and the thickness of the first upper dielectric layer 52. The thickness T7 of the dielectric layer 62 is preferably larger than the thickness T5 that is the height of the convex portion 11T. When the dielectric layer 62 protrudes from the metal layer 61 on the convex portion 11T in the region between the adjacent convex portions 11T, a part of the second upper dielectric layer 53 in the upper lattice layer 51 is dielectric. It is constituted by the body layer 62.
 厚さT7が厚さT5よりも大きい構成であれば、第2格子層41にて第2金属層42の厚さ方向の全体が誘電体層62に囲まれるため、第2格子層41におけるプラズモン共鳴が生じやすくなり、また、誘電体層62の材料の変更が、第2格子層41でのプラズモン共鳴で消費される波長領域の変化に反映されやすくなる。また、支持部11、凸部11T、および、金属層61からなる構造体が、誘電体層62に埋没するため、誘電体層62が上記構造体を保護する層として機能する。 If the thickness T7 is larger than the thickness T5, the entire thickness direction of the second metal layer 42 is surrounded by the dielectric layer 62 in the second lattice layer 41. Therefore, the plasmon in the second lattice layer 41 Resonance is likely to occur, and a change in the material of the dielectric layer 62 is easily reflected in a change in the wavelength region consumed by plasmon resonance in the second grating layer 41. In addition, since the structure including the support portion 11, the protrusion 11 </ b> T, and the metal layer 61 is buried in the dielectric layer 62, the dielectric layer 62 functions as a layer that protects the structure.
 なお、厚さT7が厚さT5よりも小さかったとしても、金属と誘電体との格子構造を有する層ではプラズモン共鳴が生じ、このプラズモン共鳴の作用により反射観察と透過観察とでの視認される色彩の違いは生じ得る。 Even if the thickness T7 is smaller than the thickness T5, plasmon resonance occurs in the layer having the lattice structure of the metal and the dielectric, and it is visually recognized by reflection observation and transmission observation by the action of this plasmon resonance. Color differences can occur.
 ちなみに、誘電体層62の厚さT7が小さく、隣り合う凸部11Tの間の領域に位置する誘電体層62が凸部11T上の金属層61よりも窪んでいるとき、第2格子層41の第2誘電体層44の一部もしくは全部は、上部格子層51の第2上部誘電体層53と同一の材料から構成される。すなわち、この場合、第2誘電体層44の一部もしくは全部は、空気層もしくは樹脂層である。ただし、第2誘電体層44は、上述のように、第2中間誘電体層34から連続する構造体であることが好ましく、誘電体層62の厚さT7は、凸部11Tの高さである厚さT5よりも大きいことが好ましい。 Incidentally, when the thickness T7 of the dielectric layer 62 is small and the dielectric layer 62 located in the region between the adjacent convex portions 11T is depressed more than the metal layer 61 on the convex portion 11T, the second lattice layer 41 Part or all of the second dielectric layer 44 is made of the same material as the second upper dielectric layer 53 of the upper lattice layer 51. That is, in this case, part or all of the second dielectric layer 44 is an air layer or a resin layer. However, as described above, the second dielectric layer 44 is preferably a structure continuous from the second intermediate dielectric layer 34, and the thickness T7 of the dielectric layer 62 is equal to the height of the convex portion 11T. The thickness is preferably larger than a certain thickness T5.
 誘電体層62の製法によっては、誘電体層62の厚さは、凸部11T上の領域、すなわち第1上部誘電体層52と、隣り合う凸部11Tの間の領域、すなわち第2中間誘電体層34および第2誘電体層44とで異なる場合がある。本実施形態において誘電体層62の厚さT7とは、周辺領域A3における帯状に延びる領域、すなわち、1つの方向に沿って凸部11Tが存在しない領域の幅方向の中央部に位置する誘電体層62の厚さとして定義される。なお、他の実施形態でも同様である。 Depending on the manufacturing method of the dielectric layer 62, the thickness of the dielectric layer 62 is such that the region on the convex portion 11T, that is, the region between the first upper dielectric layer 52 and the adjacent convex portion 11T, that is, the second intermediate dielectric. The body layer 34 and the second dielectric layer 44 may be different. In the present embodiment, the thickness T7 of the dielectric layer 62 is a dielectric located in the central portion in the width direction of a region extending in a strip shape in the peripheral region A3, that is, a region where the convex portion 11T does not exist along one direction. Defined as the thickness of layer 62. The same applies to other embodiments.
 孤立領域A2と周辺領域A3とからなる平面において、孤立領域A2が占める面積比率、すなわち、基準面と凸部11Tとを含む平面において、単位面積あたりにおいて凸部11Tが占める面積の割合は、0.1より大きいことが好ましい。上記面積比率が0.1より大きい構成であれば、凸部11Tの幅に対する高さの比であるアスペクト比が過度に大きくなることが抑えられるため、支持部11と凸部11Tとからなる構造体の耐久性が高められ、また、凸部11Tの加工の精度が得られやすい。 In the plane formed by the isolated region A2 and the peripheral region A3, the area ratio occupied by the isolated region A2, that is, the ratio of the area occupied by the convex portion 11T per unit area in the plane including the reference surface and the convex portion 11T is 0. Is preferably greater than 1. If the area ratio is greater than 0.1, the aspect ratio, which is the ratio of the height to the width of the convex portion 11T, can be prevented from becoming excessively large. Therefore, the structure including the support portion 11 and the convex portion 11T. The durability of the body is improved and the processing accuracy of the convex portion 11T is easily obtained.
 一方、上記面積比率が0.5より小さい構成であれば、上部格子層51とその上層との界面においてフレネル反射が生じることが好適に抑えられる。なお、金属層61や誘電体層62の製法によっては、これらの層の形成の際に凸部11Tの側面にも材料が付着する。上記面積比率が0.5より小さい構成であれば、互いに隣り合う凸部11T間の領域の大きさが十分に確保され、凸部11T間の領域が、金属層61や誘電体層62の形成の際に凸部11Tの側面に付着した材料によって埋まることが抑えられる。したがって、金属層61および誘電体層62が下層の表面形状に追従した形状に形成されやすい。その結果、第1上部誘電体層52が点在する上部格子層51が好適に形成され、上部格子層51の界面でフレネル反射を抑える効果が好適に得られる。 On the other hand, if the area ratio is smaller than 0.5, it is possible to suitably suppress the occurrence of Fresnel reflection at the interface between the upper lattice layer 51 and the upper layer. Note that, depending on the manufacturing method of the metal layer 61 and the dielectric layer 62, the material also adheres to the side surface of the convex portion 11T when these layers are formed. If the area ratio is smaller than 0.5, the area between the adjacent protrusions 11T is sufficiently large, and the area between the protrusions 11T forms the metal layer 61 and the dielectric layer 62. In this case, it is possible to prevent the material from adhering to the side surface of the convex portion 11T from being buried. Therefore, the metal layer 61 and the dielectric layer 62 are easily formed in a shape that follows the surface shape of the lower layer. As a result, the upper lattice layer 51 interspersed with the first upper dielectric layer 52 is preferably formed, and the effect of suppressing Fresnel reflection at the interface of the upper lattice layer 51 is preferably obtained.
 なお、上記面積比率が0.5以上であっても、誘電体層62の表面が金属層61の表面形状に追従した凹凸を有していることにより、誘電体層62の表面が平坦である場合と比較して、フレネル反射を抑える効果は得られる。また、上部格子層51とその上層との界面においてフレネル反射が生じたとしても、第1格子層21および第2格子層41でのプラズモン共鳴に起因した表面反射観察と裏面反射観察とでの視認される色彩の違い、および、これらの反射観察と透過観察とでの視認される色彩の違いは生じ得る。ただし、上部格子層51とその上層との界面でのフレネル反射、すなわち、表示体の最外面付近でのフレネル反射が抑えられることにより、表示体の内部における各層の界面での反射光の波長領域に応じた色が、表面反射観察において鮮明に視認されやすくなる。 Even if the area ratio is 0.5 or more, the surface of the dielectric layer 62 is flat because the surface of the dielectric layer 62 has irregularities following the surface shape of the metal layer 61. Compared to the case, the effect of suppressing the Fresnel reflection can be obtained. Further, even if Fresnel reflection occurs at the interface between the upper grating layer 51 and the upper layer, it is possible to visually recognize the surface reflection observation and the back surface reflection observation caused by plasmon resonance in the first grating layer 21 and the second grating layer 41. Differences in the colors to be recognized, and differences in the colors visually recognized between the reflection observation and the transmission observation can occur. However, since the Fresnel reflection at the interface between the upper lattice layer 51 and the upper layer, that is, the Fresnel reflection near the outermost surface of the display body is suppressed, the wavelength region of the reflected light at the interface of each layer inside the display body The color corresponding to is easily visually recognized in the surface reflection observation.
 表示体の特に表面側でフレネル反射を抑えるためには、第2上部誘電体層53に対して第2格子層41とは反対側で第2上部誘電体層53に接する層である表面層と、第2上部誘電体層53との間の屈折率差は、第1金属層23と支持部11との間の屈折率差よりも小さいことが好ましい。表面層は、例えば空気層である。そして、第2上部誘電体層53の屈折率は、表面層の屈折率と等しいことがさらに好ましい。 In order to suppress Fresnel reflection particularly on the surface side of the display body, a surface layer that is a layer in contact with the second upper dielectric layer 53 on the opposite side of the second upper dielectric layer 53 from the second lattice layer 41; The refractive index difference between the second upper dielectric layer 53 is preferably smaller than the refractive index difference between the first metal layer 23 and the support portion 11. The surface layer is, for example, an air layer. The refractive index of the second upper dielectric layer 53 is more preferably equal to the refractive index of the surface layer.
 なお、第2表示領域10Bは、第1実施形態と同様に、支持部11のみを備えていてもよいし、支持部11に加えて、金属層61および誘電体層62の少なくとも一方を備えていてもよい。反射観察や透過観察にて、第2表示領域10Bは、第2表示領域10Bの層構成に応じた色彩や質感の像であって、第1表示領域10Aとは異なる色彩や質感の像を視認させることができる。 Note that the second display region 10B may include only the support portion 11 as in the first embodiment, or may include at least one of the metal layer 61 and the dielectric layer 62 in addition to the support portion 11. May be. In the reflection observation and the transmission observation, the second display area 10B is an image having a color and a texture according to the layer configuration of the second display area 10B, and visually recognizes an image having a color and a texture different from the first display area 10A. Can be made.
 [表示体付きデバイス]
 図16を参照して、上記表示体を備える表示体付きデバイスの構成を説明する。
 図16が示すように、表示体付きデバイス110は、第2実施形態の表示体である表示体100と、光を放つことが可能に構成された光射出構造体70とを備えている。光射出構造体70は、光射出構造体70に照射された光を反射によって射出する構造体、もしくは、光射出構造体70自身の発光によって光を射出する構造体である。例えば、光射出構造体70は、白色光下において白色に見える構造体である。
[Device with display]
With reference to FIG. 16, the structure of the device with a display body provided with the said display body is demonstrated.
As shown in FIG. 16, the device with a display body 110 includes a display body 100 that is a display body according to the second embodiment, and a light emission structure 70 configured to emit light. The light emitting structure 70 is a structure that emits light irradiated to the light emitting structure 70 by reflection, or a structure that emits light by light emission of the light emitting structure 70 itself. For example, the light emission structure 70 is a structure that looks white under white light.
 光射出構造体70は、表示体100の裏面10Tの一部と対向する位置に配置されており、光射出構造体70と裏面10Tとは離間している。すなわち、表示体100の表面10Sと対向する方向から見て、表面10Sには、光射出構造体70と重なる領域と、光射出構造体70と重ならない領域とが含まれる。詳細には、光射出構造体70は、第1表示領域10Aの一部と対向する位置に配置されている。 The light emission structure 70 is disposed at a position facing a part of the back surface 10T of the display body 100, and the light emission structure 70 and the back surface 10T are separated from each other. That is, when viewed from the direction facing the surface 10 </ b> S of the display body 100, the surface 10 </ b> S includes a region that overlaps the light emission structure 70 and a region that does not overlap the light emission structure 70. Specifically, the light emitting structure 70 is disposed at a position facing a part of the first display region 10A.
 こうした構成によれば、表示体付きデバイス110の外側から表示体100の表面10Sに向けて白色の光が照射されたとき、第1表示領域10Aのなかで表示体100の裏面側に光射出構造体70が配置されていない部分では、上記表面反射観察と同様、表示体100からの反射光による色彩が視認される。 According to such a configuration, when white light is emitted from the outside of the display-equipped device 110 toward the surface 10S of the display body 100, the light emission structure is formed on the back surface side of the display body 100 in the first display area 10A. In the part where the body 70 is not disposed, the color due to the reflected light from the display body 100 is visually recognized, similar to the surface reflection observation.
 一方、第1表示領域10Aのなかで表示体100の裏面側に光射出構造体70が位置している部分では、光射出構造体70から表示体100の裏面10Tに向けて、光が照射される。光射出構造体70が自身に照射された光を反射によって射出する構造体である場合、裏面10Tに照射される光は、表示体100の透過光を光射出構造体70が反射した光であってもよいし、光射出構造体70の付近に設けられた光源から光射出構造体70に照射された光を光射出構造体70が反射した光であってもよい。また、光射出構造体70が自身の発光によって光を射出する構造体である場合、裏面10Tに照射される光は、光射出構造体70の発光によって生じた光である。したがって、表示体100の表面側から見た場合、第1表示領域10Aのなかで光射出構造体70と重なっている部分では、表面側から照射されて表示体100にて反射された光と、裏面側から照射されて表示体100を透過した光とを含む光による色彩が視認される。 On the other hand, in the part where the light emitting structure 70 is located on the back surface side of the display body 100 in the first display area 10A, light is emitted from the light emitting structure 70 toward the back surface 10T of the display body 100. The When the light emitting structure 70 is a structure that emits the light irradiated on itself by reflection, the light irradiated on the back surface 10T is the light reflected by the light emitting structure 70 on the transmitted light of the display body 100. Alternatively, the light emitted from the light source structure 70 may be reflected by the light emitted from the light source provided near the light emitting structure 70. When the light emitting structure 70 is a structure that emits light by its own light emission, the light irradiated to the back surface 10T is light generated by the light emission of the light emitting structure 70. Therefore, when viewed from the surface side of the display body 100, in the portion overlapping the light emitting structure 70 in the first display area 10A, the light irradiated from the surface side and reflected by the display body 100, The color by the light including the light irradiated from the back side and transmitted through the display body 100 is visually recognized.
 結果として、表示体付きデバイス110の外側から表示体100の表面10Sに向けて白色の光が照射されている状態で、表示体100の表面側から表面10Sを観察すると、第1表示領域10Aのなかで光射出構造体70と重なっている部分と、光射出構造体70と重なっていない部分とが、互いに異なる色相の色に見える、あるいは、互いに異なる彩度や明度の色に見える。したがって、光射出構造体70の形状に応じた像が視認されるため、多様な像の表現が可能である。 As a result, when the surface 10S is observed from the surface side of the display body 100 in a state where white light is irradiated from the outside of the display-equipped device 110 toward the surface 10S of the display body 100, the first display region 10A Among them, a portion that overlaps with the light emitting structure 70 and a portion that does not overlap with the light emitting structure 70 appear to have different hue colors, or appear to have different saturation and lightness colors. Accordingly, since an image corresponding to the shape of the light emitting structure 70 is visually recognized, various images can be expressed.
 また、光射出構造体70に対する光の照射の入切や光射出構造体70の発光の入切によって、光射出構造体70の形状に応じた像が見えたり見えなかったりするように、像の視認性の調節も可能である。これによっても、より多様な像の表現が可能である。 Further, an image of the image is displayed so that an image corresponding to the shape of the light emission structure 70 can be seen or not seen by turning on / off the light irradiation to the light emission structure 70 or turning on / off the light emission of the light emission structure 70. The visibility can be adjusted. This also makes it possible to express more diverse images.
 なお、光射出構造体70は、表示体100の表面10Sの一部と対向する位置に配置されていてもよい。この場合、表示体付きデバイス110の外側から表示体100の裏面10Tに向けて白色の光が照射されている状態で、表示体100の裏面側から裏面10Tを観察すると、第1表示領域10Aのなかで光射出構造体70と重なっている部分と、光射出構造体70と重なっていない部分とが、互いに異なる色彩に見える。 In addition, the light emission structure 70 may be arrange | positioned in the position facing a part of surface 10S of the display body 100. FIG. In this case, when the back surface 10T is observed from the back surface side of the display body 100 in a state where white light is irradiated from the outside of the display body-equipped device 110 toward the back surface 10T of the display body 100, the first display area 10A In particular, a portion that overlaps the light emitting structure 70 and a portion that does not overlap the light emitting structure 70 appear to have different colors.
 以上のように、第2実施形態においても、表示体からは、プラズモン共鳴に起因して、特定の波長領域の光が反射光もしくは透過光として射出される。そして、各凸部11Tである周期要素の位置や大きさと、各周期要素によって位置が定まる金属層とを含む複数の因子によって、上記透過光や反射光の波長領域が定まるため、表示体にて透過あるいは反射される波長領域の調整の自由度を高めることができる。 As described above, also in the second embodiment, light of a specific wavelength region is emitted from the display body as reflected light or transmitted light due to plasmon resonance. Since the wavelength region of the transmitted light and the reflected light is determined by a plurality of factors including the position and size of the periodic element that is each convex portion 11T and the metal layer that is determined by each periodic element, the display body It is possible to increase the degree of freedom in adjusting the wavelength region that is transmitted or reflected.
 また、第1実施形態と同様、観察の条件に応じて互いに異なる外観の像を視認させることのできる表示体を提供することも、第2実施形態の目的である。こうした課題に対する効果を含めて、第2実施形態によれば、第1実施形態の(1-1)~(1-3),(1-7),(1-8)の効果に加えて、以下に列挙する効果が得られる。 Also, as in the first embodiment, it is an object of the second embodiment to provide a display body capable of visually recognizing images having different appearances according to observation conditions. In addition to the effects (1-1) to (1-3), (1-7), and (1-8) of the first embodiment, according to the second embodiment, including the effects on such problems, The effects listed below can be obtained.
 (2-1)表示体が、誘電体層62を備えているため、誘電体層62を構成する材料の変更によって、反射観察や透過観察で観察される色彩を調整することが可能であり、こうした色彩の調整についての自由度が高められる。特に、誘電体層62が無機化合物から構成される形態であれば、誘電体層62の屈折率を広い範囲から選択可能である。また、誘電体層62は、金属層61の表面形状に追従する形状を有しているため、誘電体層62の表面が平坦である場合と比較して、表示体の最外面付近でのフレネル反射が抑えられる。その結果、表面反射観察において観察される色彩が鮮明になる。 (2-1) Since the display body includes the dielectric layer 62, it is possible to adjust the color observed in reflection observation or transmission observation by changing the material constituting the dielectric layer 62, This increases the degree of freedom for color adjustment. In particular, if the dielectric layer 62 is composed of an inorganic compound, the refractive index of the dielectric layer 62 can be selected from a wide range. In addition, since the dielectric layer 62 has a shape that follows the surface shape of the metal layer 61, compared to the case where the surface of the dielectric layer 62 is flat, the Fresnel near the outermost surface of the display body. Reflection is suppressed. As a result, the color observed in the surface reflection observation becomes clear.
 (2-2)凸部11Tの高さである厚さT5が、構造周期PTの2分の1の長さよりも小さい構成であれば、支持部11と凸部11Tとからなる構造体の耐久性が高められ、また、凸部11Tの加工の精度が得られやすい。 (2-2) If the thickness T5, which is the height of the convex portion 11T, is smaller than half the length of the structural period PT, the durability of the structure including the support portion 11 and the convex portion 11T In addition, it is easy to obtain the processing accuracy of the convex portion 11T.
 (2-3)金属層61の厚さT6が10nm以上である構成であれば、第1格子層21および第2格子層41にてプラズモン共鳴が生じやすく、また、反射観察で視認される色彩が鮮明になる。また、金属層61の厚さT6が、凸部11Tの高さである厚さT5よりも小さい構成であれば、表示体における光の透過率が高められ、透過観察における像が明りょうになる。 (2-3) If the thickness T6 of the metal layer 61 is 10 nm or more, plasmon resonance is likely to occur in the first grating layer 21 and the second grating layer 41, and the color is visually recognized by reflection observation. Becomes clear. Further, if the thickness T6 of the metal layer 61 is smaller than the thickness T5 which is the height of the convex portion 11T, the light transmittance in the display body is increased and the image in the transmission observation becomes clear. .
 (2-4)誘電体層62の厚さT7が、凸部11Tの高さである厚さT5よりも大きい構成であれば、第2格子層41におけるプラズモン共鳴が生じやすくなり、また、誘電体層62の材料の変更が、第2格子層41でのプラズモン共鳴で消費される波長領域の変化に反映されやすくなる。また、支持部11、凸部11T、および、金属層61からなる構造体が、誘電体層62に埋没するため、上記構造体が誘電体層62によって保護される。 (2-4) If the thickness T7 of the dielectric layer 62 is larger than the thickness T5 which is the height of the convex portion 11T, plasmon resonance is likely to occur in the second lattice layer 41, and the dielectric The change of the material of the body layer 62 is easily reflected in the change of the wavelength region consumed by the plasmon resonance in the second lattice layer 41. In addition, since the structure including the support portion 11, the protrusion 11 </ b> T, and the metal layer 61 is buried in the dielectric layer 62, the structure is protected by the dielectric layer 62.
 (2-5)支持部11の表面である基準面と周期要素である凸部11Tとを含む平面において、単位面積あたりにおいて凸部11Tが占める面積の割合が0.1よりも大きい構成であれば、支持部11と凸部11Tとからなる構造体の耐久性が高められ、また、凸部11Tの加工の精度が得られやすい。また、上記面積の割合が0.5よりも小さい構成であれば、上部格子層51とその上層との界面においてフレネル反射が生じることを抑える効果が好適に得られる。 (2-5) In a plane including the reference surface that is the surface of the support portion 11 and the convex portion 11T that is a periodic element, the ratio of the area occupied by the convex portion 11T per unit area may be greater than 0.1. For example, the durability of the structure including the support portion 11 and the convex portion 11T is enhanced, and the processing accuracy of the convex portion 11T is easily obtained. In addition, if the area ratio is smaller than 0.5, an effect of suppressing the occurrence of Fresnel reflection at the interface between the upper lattice layer 51 and the upper layer can be suitably obtained.
 (2-6)表示体付きデバイス110では、光射出構造体70から射出された光の一部が表示体100の第1表示領域10Aを透過して光射出構造体70とは反対側に射出される。したがって、表面10Sおよび裏面10Tのうち、光射出構造体70が対向している面とは反対側の面に向けて光が照射されている状態でこの面を観察すると、第1表示領域10Aのなかで光射出構造体70と重なっている部分と、光射出構造体70と重なっていない部分とが、互いに異なる色に見える。それゆえ、光射出構造体70の形状に応じた像が視認され、より多様な像の表現が可能であり、表示体付きデバイス110における偽造の困難性や意匠性がより高められる。 (2-6) In the device with display 110, a part of the light emitted from the light emitting structure 70 passes through the first display region 10A of the display 100 and is emitted to the opposite side of the light emitting structure 70. Is done. Therefore, when this surface is observed in a state where light is irradiated toward the surface opposite to the surface facing the light emitting structure 70 of the front surface 10S and the back surface 10T, the first display region 10A In particular, a portion that overlaps the light emitting structure 70 and a portion that does not overlap the light emitting structure 70 appear to be different colors. Therefore, an image corresponding to the shape of the light emitting structure 70 is visually recognized, and more various images can be expressed, and the forgery difficulty and design of the display-equipped device 110 are further enhanced.
 (2-7)凸部11Tの形成にナノインプリント法を用いる製造方法、すなわち、基材11aの表面に塗工された樹脂に凹版の有する凹凸を転写することにより、支持部11と複数の凸部11Tとから構成される周期構造体を形成する製造方法であれば、微細な凹凸を有する周期構造体を、容易にかつ好適に形成することができる。 (2-7) Manufacturing method using the nanoimprint method for forming the convex portion 11T, that is, by transferring the unevenness of the intaglio to the resin coated on the surface of the substrate 11a, the support portion 11 and the plurality of convex portions If it is a manufacturing method which forms the periodic structure comprised from 11T, the periodic structure which has fine unevenness | corrugation can be formed easily and suitably.
 <第2実施形態の変形例>
 上記第2実施形態は、以下のように変更して実施することもできる。
 ・第2実施形態においても、第1実施形態と同様に、第1金属層23と第2金属層42とは、図9に示した形状的特徴を有し得る。そして、金属層61は、第1中間誘電体層32の側面に位置して第2金属層42に連続する金属層である中間金属層32Aを含み得る。中間金属層32Aは、第1中間誘電体層32と第2中間誘電体層34とに挟まれ、第1中間誘電体層32の側面上での厚みが、第1金属層23に近い部位ほど薄い。なお、中間金属層32Aの存在によって、中間格子層31でもプラズモン共鳴が生じ得る。
<Modification of Second Embodiment>
The second embodiment can be implemented with the following modifications.
In the second embodiment, as in the first embodiment, the first metal layer 23 and the second metal layer 42 may have the shape characteristics shown in FIG. The metal layer 61 may include an intermediate metal layer 32 </ b> A that is a metal layer located on the side surface of the first intermediate dielectric layer 32 and continuing to the second metal layer 42. The intermediate metal layer 32 </ b> A is sandwiched between the first intermediate dielectric layer 32 and the second intermediate dielectric layer 34, and the thickness on the side surface of the first intermediate dielectric layer 32 is closer to the first metal layer 23. thin. Note that plasmon resonance can also occur in the intermediate lattice layer 31 due to the presence of the intermediate metal layer 32A.
 ・第2実施形態においても、第1実施形態の図10で示した構造と同様に、凸部11Tの形状は、支持部11の表面から突き出る錐体状であってもよい。
 ・表示体は、第1表示領域10Aに含まれる領域として、構造周期PTが互いに一致し、かつ、表示体を構成する材料のうち誘電体層62の材料のみが互いに異なる複数の領域を備えていてもよい。こうした構成によれば、反射観察において、第1表示領域10Aにおける複数の領域に互いに異なる色彩を視認させることができる。そして、上記複数の領域に対し、凸部11Tや金属層61を同一の工程で形成することができるため、上記表示体を容易に製造することができる。
-Also in 2nd Embodiment, the shape of the convex part 11T may be the cone shape which protrudes from the surface of the support part 11 similarly to the structure shown in FIG.
The display body includes a plurality of areas having the same structure period PT as the areas included in the first display area 10A and different from each other only in the material of the dielectric layer 62 among the materials constituting the display body. May be. According to such a configuration, different colors can be visually recognized in a plurality of areas in the first display area 10A in reflection observation. And since the convex part 11T and the metal layer 61 can be formed in the same process with respect to said several area | region, the said display body can be manufactured easily.
 ・図17が示すように、表示体は、誘電体層62の上に保護層48をさらに備えてもよい。こうした構成によれば、支持部11および凸部11Tと、金属層61と、誘電体層62とから構成される構造体を保護することができる。保護層48は、第2上部誘電体層53と一体の構造体に具体化できる。この際、保護層48は、低屈折率の樹脂層であることが好ましい。低屈折率の樹脂層は、第1誘電体層22の屈折率や第1中間誘電体層32の屈折率よりも空気層の屈折率に近い屈折率を有する。 As shown in FIG. 17, the display body may further include a protective layer 48 on the dielectric layer 62. According to such a structure, the structure comprised from the support part 11 and the convex part 11T, the metal layer 61, and the dielectric material layer 62 can be protected. The protective layer 48 can be embodied in a structure that is integral with the second upper dielectric layer 53. At this time, the protective layer 48 is preferably a low refractive index resin layer. The low refractive index resin layer has a refractive index closer to the refractive index of the air layer than the refractive index of the first dielectric layer 22 and the refractive index of the first intermediate dielectric layer 32.
 また、人が素手で表示体を触る用途に表示体が用いられる場合、表示体の表面を構成する保護層48がフッ素を含む樹脂から構成されることが好ましい。こうした構成によれば、表示体の表面に皮脂などの汚れが付着することが抑えられる。 Further, when the display body is used for the purpose of touching the display body with a bare hand, the protective layer 48 constituting the surface of the display body is preferably made of a resin containing fluorine. According to such a configuration, it is possible to prevent dirt such as sebum from adhering to the surface of the display body.
 なお、保護層48は、図17が示すように平坦な表面を有していてもよいし、誘電体層62の表面形状に追従した形状を有していてもよい。
 ・表示体の表面10Sと対向する方向から見た孤立領域A2の配置は、正方配列および六方配列に限らず、二次元格子状であればよい。すなわち、複数の第1誘電体層22は二次元格子状に並んでいればよく、また、複数の第1中間誘電体層32も二次元格子状に並んでいればよく、また、複数の第2金属層42も二次元格子状に並んでいればよく、また、複数の第1上部誘電体層52も二次元格子状に並んでいればよい。換言すれば、周期構造体の周期要素は、サブ波長周期を有した二次元格子状に並んでいればよい。二次元格子状の配列は、二次元平面内において交差する2つの方向の各々に沿って要素が並ぶ配列である。この際、表示体が有する各層の厚さが構造周期PTに対して所定の範囲内であるとは、周期要素が並ぶ上記2つの方向の各々における構造周期PTに対して、各層の厚さが所定の範囲内であることを示す。
The protective layer 48 may have a flat surface as shown in FIG. 17 or may have a shape that follows the surface shape of the dielectric layer 62.
The arrangement of the isolated regions A2 viewed from the direction facing the surface 10S of the display body is not limited to a square array and a hexagonal array, and may be a two-dimensional lattice shape. That is, the plurality of first dielectric layers 22 may be arranged in a two-dimensional lattice, the plurality of first intermediate dielectric layers 32 may be arranged in a two-dimensional lattice, and the plurality of first dielectric layers 22 may be arranged. The two metal layers 42 need only be arranged in a two-dimensional lattice, and the plurality of first upper dielectric layers 52 need only be arranged in a two-dimensional lattice. In other words, the periodic elements of the periodic structure need only be arranged in a two-dimensional lattice shape having a sub-wavelength period. The two-dimensional lattice-like arrangement is an arrangement in which elements are arranged along each of two directions intersecting in a two-dimensional plane. At this time, that the thickness of each layer of the display body is within a predetermined range with respect to the structural period PT means that the thickness of each layer is relative to the structural period PT in each of the two directions in which the periodic elements are arranged. Indicates that it is within a predetermined range.
 また、表示体の表面10Sと対向する方向から見た孤立領域A2の形状、すなわち、周期要素の平面形状は、正方形に限らず、長方形や他の多角形であってもよいし、円形であってもよい。 In addition, the shape of the isolated region A2 as viewed from the direction facing the surface 10S of the display body, that is, the planar shape of the periodic element is not limited to a square, but may be a rectangle or another polygon, or may be a circle. May be.
 ・図18が示すように、孤立領域A2には、支持部11の表面から窪む凹部11Hが位置してもよい。表示体の表面10Sと対向する方向から見て、複数の凹部11Hは、サブ波長周期を有した二次元格子状に並ぶ。こうした構成においては、支持部11が周期構造体である。すなわち、周期構造体が有する周期要素は、支持部11の表面を基準面として、基準面から窪む凹部11Hであってもよい。この場合も、金属層61は、周期構造体の表面形状に追従する形状を有し、誘電体層62は、金属層61の表面形状に追従する形状を有する。この際、各凹部11Hの底面に位置する金属層71と、支持部11のなかで各金属層71を囲う網目状の部分とによって、金属と誘電体とからなる格子構造が形成される。また、金属層71上に位置する誘電体層72と、基準面に位置して各誘電体層72を囲う網目状の金属層73とによっても、金属と誘電体とからなる格子構造が形成される。表示体に光が照射されると、これらの格子構造を有する層にて、プラズモン共鳴が生じることに起因して、上記実施形態と同様に、表面反射観察と裏面透過観察とで異なる色彩が視認され、また、裏面反射観察と表面透過観察とで異なる色彩が視認され、また、表面反射観察と裏面反射観察とで異なる色彩が視認される。 As shown in FIG. 18, a recess 11H that is recessed from the surface of the support portion 11 may be located in the isolated region A2. When viewed from the direction facing the surface 10S of the display body, the plurality of recesses 11H are arranged in a two-dimensional lattice pattern having a sub-wavelength period. In such a configuration, the support portion 11 is a periodic structure. That is, the periodic element included in the periodic structure may be a concave portion 11H that is recessed from the reference surface with the surface of the support portion 11 as a reference surface. Also in this case, the metal layer 61 has a shape that follows the surface shape of the periodic structure, and the dielectric layer 62 has a shape that follows the surface shape of the metal layer 61. At this time, a lattice structure composed of a metal and a dielectric is formed by the metal layer 71 located on the bottom surface of each recess 11 </ b> H and the net-like portion surrounding each metal layer 71 in the support portion 11. A lattice structure made of metal and dielectric is also formed by the dielectric layer 72 located on the metal layer 71 and the mesh-like metal layer 73 located on the reference plane and surrounding each dielectric layer 72. The When the display body is irradiated with light, plasmon resonance occurs in the layer having these lattice structures, and as in the above embodiment, different colors are visually recognized in the surface reflection observation and the back surface transmission observation. Moreover, different colors are visually recognized in the back surface reflection observation and the front surface transmission observation, and different colors are visually recognized in the surface reflection observation and the back surface reflection observation.
 なお、周期要素が凹部11Hである場合も、基準面と周期要素とを含む平面において、単位面積あたりにおいて周期要素が占める面積の割合は、0.1よりも大きく0.5よりも小さいことが好ましい。上記面積の割合が上記範囲内であれば、金属層61および誘電体層62が、周期構造体の表面の凹凸形状に追従した形状に形成されやすい。また、上記面積の割合が上記範囲内であれば、周期構造体の耐久性が高められるとともに、凹部11Hの加工の精度が得られやすい。なお、第1実施形態の表示体においても、周期要素は、基準面から窪む凹部11Hであってもよい。 Even when the periodic element is the recess 11H, the ratio of the area occupied by the periodic element per unit area on the plane including the reference plane and the periodic element may be larger than 0.1 and smaller than 0.5. preferable. If the ratio of the area is within the above range, the metal layer 61 and the dielectric layer 62 are likely to be formed in a shape following the uneven shape on the surface of the periodic structure. Moreover, if the ratio of the said area is in the said range, while the durability of a periodic structure will be improved, the precision of the process of the recessed part 11H will be easy to be obtained. In the display body of the first embodiment, the periodic element may be the concave portion 11H that is recessed from the reference plane.
 ・表示体付きデバイスが備える表示体は、第1実施形態の表示体であってもよい。
 <付記>
 上記課題を解決するための手段には、第1実施形態、第2実施形態、および、それらの変形例から導き出される技術的思想として以下の項目が含まれる。
-The display body with which a device with a display body is provided may be the display body of 1st Embodiment.
<Appendix>
Means for solving the above-mentioned problems include the following items as technical ideas derived from the first embodiment, the second embodiment, and their modifications.
 [項目1]
 基準面を有する支持部と、前記基準面においてサブ波長周期を有した二次元格子状に並ぶ複数の周期要素であって、前記基準面から突出する凸部、もしくは、前記基準面から窪む凹部のいずれかである前記周期要素とを備える誘電体である周期構造体と、前記基準面のうち前記周期要素を囲む領域と前記周期要素の表面とを含む面である前記周期構造体の表面に位置し、前記周期構造体の表面形状に追従する形状を有した金属層と、を備える表示体。
[Item 1]
A support portion having a reference surface and a plurality of periodic elements arranged in a two-dimensional lattice shape having a sub-wavelength period on the reference surface, the protrusion protruding from the reference surface, or the recess recessed from the reference surface A periodic structure that is a dielectric including the periodic element, and a surface of the periodic structure that is a plane including a region surrounding the periodic element in the reference plane and the surface of the periodic element. And a metal layer having a shape that follows the surface shape of the periodic structure.
 上記構成によれば、表示体が、金属と誘電体とからなるサブ波長周期の格子構造を有する層を備えるため、表示体の外側から表示体の表面および裏面の一方の面に対して光が照射されると、上記格子構造を有する層にてプラズモン共鳴が生じる。プラズモン共鳴にて消費される波長領域の光は、上記一方の面からは射出されず、プラズモン共鳴の作用を受けた特定の波長領域の光が、表示体を透過して表示体の表面および裏面の他方の面から射出される。したがって、一方の面に対する反射観察と他方の面に対する透過観察とで互いに異なる色彩の像が視認され、また、一方の面に対する反射観察と透過観察とで互いに異なる色彩の像が視認される。すなわち、上記構成によれば、観察の条件に応じて互いに異なる外観の像を視認させることができる。 According to the above configuration, the display body includes a layer having a subwavelength period lattice structure made of a metal and a dielectric, so that light is emitted from the outside of the display body to one of the front surface and the back surface of the display body. When irradiated, plasmon resonance occurs in the layer having the lattice structure. The light in the wavelength region consumed by the plasmon resonance is not emitted from the one surface, and the light in the specific wavelength region affected by the plasmon resonance is transmitted through the display body and the front and back surfaces of the display body. It is injected from the other side of the. Therefore, different color images are visually recognized in the reflection observation with respect to one surface and the transmission observation with respect to the other surface, and different color images are visually recognized in the reflection observation and transmission observation with respect to the one surface. That is, according to the said structure, the image of an external appearance which is mutually different according to the observation conditions can be visually recognized.
 [項目2]
 10nm以上200nm以下の厚さを有した第1格子層と、10nm以上200nm以下の厚さを有した第2格子層と、前記第1格子層および前記第2格子層の各々よりも厚い中間格子層であって、厚さ方向に前記第1格子層と前記第2格子層とに挟まれた前記中間格子層と、を前記基準面上に含み、前記第1格子層は、正方配列と六方配列とのいずれか一方である島状配列に並ぶ複数の第1誘電体層と、各第1誘電体層を囲う網目状を有した第1金属層と、を備え、前記中間格子層は、正方配列と六方配列とのいずれか一方である島状配列に並ぶ複数の第1中間誘電体層と、各第1中間誘電体層を囲う網目状を有し、かつ、前記第1中間誘電体層よりも低い誘電率を有した第2中間誘電体層と、を備え、前記第2格子層は、正方配列と六方配列とのいずれか一方である島状配列に並ぶ複数の第2金属層と、各第2金属層を囲う網目状を有した第2誘電体層と、を備え、前記周期要素は前記凸部であって、前記第1誘電体層と前記第1中間誘電体層とが前記周期要素を構成し、前記第1金属層と前記第2金属層とが前記金属層に含まれ、前記第1格子層における前記第1金属層の体積比率が、前記第2格子層における前記第2金属層の体積比率よりも大きく、かつ、前記第2格子層における前記第2金属層の体積比率が、前記中間格子層における金属材料の体積比率よりも大きく、前記第1誘電体層の構造周期に対する前記第1誘電体層の幅の比、および、前記第2金属層の構造周期に対する前記第2金属層の幅の比の各々が、0.25以上0.75以下である項目1に記載の表示体。
[Item 2]
A first grating layer having a thickness of 10 nm to 200 nm, a second grating layer having a thickness of 10 nm to 200 nm, and an intermediate grating thicker than each of the first grating layer and the second grating layer; An intermediate lattice layer sandwiched between the first lattice layer and the second lattice layer in the thickness direction on the reference plane, the first lattice layer having a square arrangement and a hexagonal shape. A plurality of first dielectric layers arranged in an island-like arrangement which is one of the arrangements, and a first metal layer having a mesh shape surrounding each first dielectric layer, the intermediate lattice layer comprising: A plurality of first intermediate dielectric layers arranged in an island-like arrangement which is one of a square arrangement and a hexagonal arrangement; and a mesh shape surrounding each first intermediate dielectric layer; and the first intermediate dielectric layer A second intermediate dielectric layer having a lower dielectric constant than the layer, the second lattice layer comprising a square array and a hexagon A plurality of second metal layers arranged in an island-like arrangement which is one of the rows, and a second dielectric layer having a mesh shape surrounding each second metal layer, and the periodic element is the convex portion The first dielectric layer and the first intermediate dielectric layer constitute the periodic element, the first metal layer and the second metal layer are included in the metal layer, and the first The volume ratio of the first metal layer in the lattice layer is larger than the volume ratio of the second metal layer in the second lattice layer, and the volume ratio of the second metal layer in the second lattice layer is A ratio of a width of the first dielectric layer to a structure period of the first dielectric layer, and a ratio of the width of the first dielectric layer to the structure period of the second metal layer; The display according to item 1, wherein each of the width ratios is 0.25 or more and 0.75 or less .
 上記構成によれば、第1格子層の平均化された屈折率は、第1金属層の屈折率に支配される。表示体の外側から支持部に入射した光は、こうした第1格子層と支持部との界面でフレネル反射を生じやすい。これに対して、第2格子層の平均化された屈折率は、第2誘電体層に支配される。また、中間格子層の平均化された屈折率もまた、誘電体である第2中間誘電体層に支配される。そして、表示体の外側から第2格子層に入射する光は、フレネル反射を生じ難く、第2格子層、さらには中間格子層に進入する。結果として、支持部と対向する方向から表示体を観る反射観察では、フレネル反射による像が観察されやすい一方で、第2格子層と対向する方向から表示体を観る反射観察では、フレネル反射による像が観察され難い。 According to the above configuration, the averaged refractive index of the first lattice layer is governed by the refractive index of the first metal layer. Light incident on the support portion from the outside of the display body tends to cause Fresnel reflection at the interface between the first lattice layer and the support portion. On the other hand, the averaged refractive index of the second grating layer is dominated by the second dielectric layer. Also, the averaged refractive index of the intermediate grating layer is also dominated by the second intermediate dielectric layer which is a dielectric. Then, light incident on the second grating layer from the outside of the display body hardly causes Fresnel reflection, and enters the second grating layer and further the intermediate grating layer. As a result, in reflection observation in which the display body is viewed from the direction facing the support portion, an image due to Fresnel reflection is easily observed, whereas in reflection observation in which the display body is viewed from the direction facing the second grating layer, the image due to Fresnel reflection is observed. Is difficult to observe.
 さらに、第1格子層や第2格子層は、プラズモン共鳴を生じさせる。第1格子層は、第1格子層に入射した光の一部を、プラズモン共鳴に消費して透過する。第2格子層もまた、第2格子層に入射した光の一部をプラズモン共鳴に消費して透過する。そのため、支持部と対向する方向から表示体を観る反射観察では、フレネル反射による像が、黒色や白色以外の色彩を帯びて、より明りょうに視認される。なお、この際、第2格子層と対向する方向から表示体を観ると、第1格子層でのプラズモン共鳴と、第2格子層でのプラズモン共鳴とを経た透過光が、黒色や白色以外の色彩を帯びた像を形成する。 Furthermore, the first lattice layer and the second lattice layer cause plasmon resonance. The first lattice layer consumes a part of the light incident on the first lattice layer for plasmon resonance and transmits it. The second grating layer also transmits a part of the light incident on the second grating layer by consuming plasmon resonance. Therefore, in the reflection observation in which the display body is viewed from the direction facing the support portion, the image by Fresnel reflection is colored more clearly than black or white. At this time, when the display body is viewed from the direction facing the second lattice layer, the transmitted light that has undergone the plasmon resonance in the first lattice layer and the plasmon resonance in the second lattice layer is not black or white. Forms a colored image.
 他方、表示体の外側から第2格子層に入射した光は、その一部を、第2格子層でのプラズモン共鳴や、第1格子層でのプラズモン共鳴によって消費され、第2格子層の外側へは、さらに戻り難くなる。そのため、第2格子層と対向する方向から表示体を観る反射観察では、より黒色に近い色彩を帯びた像が視認される。 On the other hand, a part of the light incident on the second lattice layer from the outside of the display body is consumed by plasmon resonance in the second lattice layer or plasmon resonance in the first lattice layer, and outside the second lattice layer. It becomes even more difficult to return to Therefore, in reflection observation in which the display body is viewed from the direction facing the second lattice layer, an image having a color closer to black is visually recognized.
 以上の結果として、支持部と対向する方向から表示体を観る反射観察、第2格子層と対向する方向から表示体を観る反射観察、さらには、第2格子層と対向する方向から表示体を観る透過観察によって、各層の厚さ方向における支持部の位置、すなわち、表示体の表裏を判別することが可能である。 As a result of the above, reflection observation in which the display body is viewed from the direction facing the support portion, reflection observation in which the display body is viewed from the direction facing the second lattice layer, and further, the display body is viewed from the direction facing the second lattice layer. Through the transmission observation, it is possible to determine the position of the support portion in the thickness direction of each layer, that is, the front and back of the display body.
 [項目3]
 前記第1金属層、および、前記第2金属層の各々は、可視領域の光に対する複素誘電率の実部が負の値を有する項目2に記載の表示体。
[Item 3]
The display body according to Item 2, wherein each of the first metal layer and the second metal layer has a negative real part of a complex dielectric constant with respect to light in a visible region.
 上記構成によれば、第1格子層でのプラズモン共鳴、および、第2格子層でのプラズモン共鳴が生じやすくなるため、上述した各観察における像の色彩を、さらに鮮明にすることが可能である。 According to the above configuration, since plasmon resonance in the first lattice layer and plasmon resonance in the second lattice layer are likely to occur, the color of the image in each observation described above can be made clearer. .
 [項目4]
 前記第1誘電体層の構造周期に対する前記第1誘電体層の幅の比、および、前記第2金属層の構造周期に対する前記第2金属層の幅の比の各々が、0.40以上0.60以下である項目2または3に記載の表示体。
[Item 4]
The ratio of the width of the first dielectric layer to the structural period of the first dielectric layer and the ratio of the width of the second metal layer to the structural period of the second metal layer are each 0.40 or more and 0 The display body according to item 2 or 3, which is 60 or less.
 上記構成によれば、第1金属層の大きさに対して第1誘電体層の大きさが過剰に小さくなること、第2誘電体層の大きさに対して第2金属層の大きさが過剰に小さくなることが抑えられる。そのため、表示体を製造するうえでの加工の負荷が軽減される。 According to the above configuration, the size of the first dielectric layer becomes excessively small with respect to the size of the first metal layer, and the size of the second metal layer with respect to the size of the second dielectric layer. An excessively small size can be suppressed. Therefore, the processing load in manufacturing the display body is reduced.
 [項目5]
 前記第1誘電体層と前記第1中間誘電体層とが一体の構造体であり、前記第1格子層の厚さは、100nm以下であり、前記第2格子層の厚さは、100nm以下であり、前記中間格子層の厚さは、150nm以下である項目2~4のいずれか1つに記載の表示体。
[Item 5]
The first dielectric layer and the first intermediate dielectric layer are an integral structure, the thickness of the first lattice layer is 100 nm or less, and the thickness of the second lattice layer is 100 nm or less. The display body according to any one of items 2 to 4, wherein the thickness of the intermediate lattice layer is 150 nm or less.
 上記構成によれば、第1格子層の厚さと、第1中間格子層の厚さとの合計が、例えば、ナノインプリントなどの凹版を適用できる程度の大きさであるため、第1誘電体層と第1中間誘電体層とを一体に成形することが可能である。 According to the above configuration, since the sum of the thickness of the first lattice layer and the thickness of the first intermediate lattice layer is large enough to apply an intaglio such as nanoimprint, the first dielectric layer and the first One intermediate dielectric layer can be integrally formed.
 [項目6]
 前記第1金属層を構成する材料と、前記第2金属層を構成する材料とは等しく、前記第2誘電体層は、空気層であり、前記第1誘電体層の屈折率と前記第1金属層の屈折率との差は、前記第2誘電体層の屈折率と前記第2金属層の屈折率との差よりも大きい項目2~5のいずれか1つに記載の表示体。
[Item 6]
The material constituting the first metal layer is the same as the material constituting the second metal layer, the second dielectric layer is an air layer, and the refractive index of the first dielectric layer and the first dielectric layer Item 6. The display body according to any one of Items 2 to 5, wherein the difference between the refractive index of the metal layer and the refractive index of the second dielectric layer and the refractive index of the second metal layer is larger.
 上記構成によれば、第1金属層と第2金属層とが、相互に等しい屈折率を有し、かつ、第1誘電体層と第1金属層との間の屈折率差が、第2誘電体層と第2金属層との間の屈折率差よりも大きい構成であるから、第2格子層と他の層との界面でのフレネル反射をさらに抑え、かつ、第1格子層と他の層との界面でのフレネル反射を促すことが可能である。 According to the above configuration, the first metal layer and the second metal layer have the same refractive index, and the refractive index difference between the first dielectric layer and the first metal layer is the second. Since the refractive index difference between the dielectric layer and the second metal layer is larger than that, the Fresnel reflection at the interface between the second grating layer and the other layer is further suppressed, and the first grating layer and the other It is possible to promote Fresnel reflection at the interface with the other layer.
 [項目7]
 前記第1誘電体層と前記第1中間誘電体層とが一体の構造体であり、前記第2中間誘電体層と前記第2誘電体層とが一体の構造体である項目2~6のいずれか1つに記載の表示体。
[Item 7]
Item 2-6, wherein the first dielectric layer and the first intermediate dielectric layer are an integral structure, and the second intermediate dielectric layer and the second dielectric layer are an integral structure. The display body as described in any one.
 上記構成によれば、第1誘電体層と第1中間誘電体層とが一体の構造体であり、また、第2中間誘電体層と第2誘電体層とが一体の構造体であるため、表示体の構造を簡素化することが可能である。 According to the above configuration, the first dielectric layer and the first intermediate dielectric layer are an integral structure, and the second intermediate dielectric layer and the second dielectric layer are an integral structure. The structure of the display body can be simplified.
 [項目8]
 前記中間格子層は、前記第1中間誘電体層の側面上に位置する中間金属層であって、前記第1中間誘電体層と前記第2中間誘電体層とに挟まれた前記中間金属層をさらに備え、前記中間金属層は、前記第2金属層と一体の構造体であって前記金属層に含まれ、かつ、可視領域の光の反射を抑えるように、前記側面上での厚みが、前記第1金属層に近い部位ほど薄い項目2~7のいずれか1つに記載の表示体。
[Item 8]
The intermediate lattice layer is an intermediate metal layer located on a side surface of the first intermediate dielectric layer, and the intermediate metal layer sandwiched between the first intermediate dielectric layer and the second intermediate dielectric layer The intermediate metal layer is a structure integrated with the second metal layer, is included in the metal layer, and has a thickness on the side surface to suppress reflection of light in the visible region. The display body according to any one of items 2 to 7, wherein a portion closer to the first metal layer is thinner.
 上記構成によれば、中間金属層が反射防止機能を備えるため、第2格子層と対向する方向から表示体を観る反射観察によって視認される像の色彩を、さらに黒色に近い色彩とすることが可能である。 According to the above configuration, since the intermediate metal layer has an antireflection function, the color of the image visually recognized by the reflection observation of viewing the display body from the direction facing the second lattice layer can be made a color closer to black. Is possible.
 [項目9]
 前記金属層における前記周期構造体と接する面とは反対側の面に位置し、前記金属層の表面形状に追従する形状を有した誘電体層をさらに備える項目1に記載の表示体。
[Item 9]
The display body according to item 1, further comprising a dielectric layer having a shape that is located on a surface opposite to a surface in contact with the periodic structure in the metal layer and that follows a surface shape of the metal layer.
 上記構成によれば、誘電体層を構成する材料の変更によって、反射観察や透過観察で観察される色彩を調整することが可能であるため、こうした色彩の調整についての自由度が高められる。また、誘電体層は、金属層の表面形状に追従する形状を有しているため、誘電体層の表面が平坦である場合と比較して、誘電体層を含む層とその上層との界面でのフレネル反射を低減できる。その結果、誘電体層と対向する方向から表示体を見る反射観察によって視認される像の色彩がより鮮明になる。 According to the above configuration, since the color observed in the reflection observation or the transmission observation can be adjusted by changing the material constituting the dielectric layer, the degree of freedom in adjusting the color can be increased. In addition, since the dielectric layer has a shape that follows the surface shape of the metal layer, the interface between the layer including the dielectric layer and its upper layer is compared with the case where the surface of the dielectric layer is flat. Can reduce Fresnel reflection. As a result, the color of the image visually recognized by the reflection observation of viewing the display body from the direction facing the dielectric layer becomes clearer.
 [項目10]
 前記誘電体層は、無機化合物から構成される項目9に記載の表示体。
 上記構成によれば、誘電体層が樹脂から構成される場合と比較して、材料の選択に基づいて誘電体層の屈折率を広い範囲から選択可能である。
[Item 10]
10. The display body according to item 9, wherein the dielectric layer is made of an inorganic compound.
According to the above configuration, the refractive index of the dielectric layer can be selected from a wide range based on the selection of the material as compared with the case where the dielectric layer is made of resin.
 [項目11]
 前記周期要素は前記凸部であり、前記凸部の高さは、前記複数の周期要素が並ぶ周期の2分の1の長さよりも小さい項目9または10に記載の表示体。
[Item 11]
The display element according to item 9 or 10, wherein the periodic element is the convex part, and a height of the convex part is smaller than a length of a half of a period in which the plurality of periodic elements are arranged.
 上記構成によれば、周期構造体の耐久性が高められ、また、凸部の加工の精度が得られやすい。
 [項目12]
 前記周期要素は前記凸部であり、前記金属層の厚さは、10nm以上であり、かつ、前記凸部の高さよりも小さい項目9~11のいずれか1つに記載の表示体。
According to the said structure, durability of a periodic structure body is improved and the precision of a process of a convex part is easy to be obtained.
[Item 12]
The display body according to any one of items 9 to 11, wherein the periodic element is the convex portion, the thickness of the metal layer is 10 nm or more, and is smaller than the height of the convex portion.
 上記構成によれば、金属層の厚さが10nm以上であるため、プラズモン共鳴が生じやすく、また、反射観察で視認される色彩が鮮明になる。また、金属層の厚さが凸部の高さよりも小さいため、表示体における光の透過率が高められ、透過観察における像が明りょうになる。 According to the above configuration, since the thickness of the metal layer is 10 nm or more, plasmon resonance is likely to occur, and the color visually recognized by reflection observation becomes clear. Further, since the thickness of the metal layer is smaller than the height of the convex portion, the light transmittance in the display body is increased, and the image in the transmission observation becomes clear.
 [項目13]
 前記周期要素は前記凸部であり、前記誘電体層の厚さは、前記凸部の高さよりも大きい項目9~12のいずれか1つに記載の表示体。
[Item 13]
13. The display body according to any one of items 9 to 12, wherein the periodic element is the convex portion, and a thickness of the dielectric layer is larger than a height of the convex portion.
 上記構成によれば、金属層と誘電体層とによって構成される格子構造が好適に形成されてプラズモン共鳴が生じやすくなり、また、誘電体層の材料の変更が、プラズモン共鳴で消費される波長領域の変化に反映されやすくなる。また、周期構造体および金属層からなる構造体が、誘電体層に埋没するため、上記構造体が誘電体層によって保護される。 According to the above configuration, the lattice structure constituted by the metal layer and the dielectric layer is preferably formed, and plasmon resonance is likely to occur. Also, the change in the material of the dielectric layer is a wavelength consumed by plasmon resonance. It becomes easy to be reflected in the change of the area. In addition, since the structure including the periodic structure and the metal layer is buried in the dielectric layer, the structure is protected by the dielectric layer.
 [項目14]
 前記基準面と前記周期要素とを含む平面において、単位面積あたりにおいて前記周期要素が占める面積の割合は、0.1よりも大きく0.5よりも小さい項目9~13のいずれか1つに記載の表示体。
[Item 14]
The ratio of the area occupied by the periodic element per unit area in the plane including the reference plane and the periodic element is any one of items 9 to 13 that is greater than 0.1 and smaller than 0.5. The display body.
 上記構成によれば、上記面積の割合が0.1よりも大きいため、周期構造体の耐久性が高められ、また、凸部の加工の精度が得られやすい。また、上記面積の割合が0.5よりも小さいため、誘電体層を含む層とその上層との界面でのフレネル反射が好適に抑えられる。 According to the above configuration, since the ratio of the area is larger than 0.1, the durability of the periodic structure is improved, and the processing accuracy of the convex portion is easily obtained. Moreover, since the area ratio is smaller than 0.5, Fresnel reflection at the interface between the layer including the dielectric layer and the upper layer thereof can be suitably suppressed.
 [項目15]
 前記誘電体層における前記金属層と接する面とは反対側の面を覆う保護層をさらに備える項目9~14のいずれか1つに記載の表示体。
[Item 15]
Item 15. The display according to any one of Items 9 to 14, further comprising a protective layer that covers a surface of the dielectric layer opposite to the surface in contact with the metal layer.
 上記構成によれば、周期構造体と金属層と保護層とからなる構造体を保護することができる。
 [項目16]
 項目1~15のいずれか1つに記載の表示体と、前記表示体の有する表面と裏面とのうちの一方の面の一部と対向する位置に配置され、前記表示体に向けて光を放つことが可能に構成された光射出構造体と、を備える表示体付きデバイス。
According to the said structure, the structure which consists of a periodic structure body, a metal layer, and a protective layer can be protected.
[Item 16]
The display body according to any one of items 1 to 15, and the display body, and disposed at a position facing a part of one of the front surface and the back surface of the display body, and emits light toward the display body. A light emitting structure configured to be able to emit, and a device with a display body.
 上記構成によれば、光射出構造体から射出された光の一部が表示体を透過して光射出構造体とは反対側に位置する面から射出される。したがって、光射出構造体とは反対側の面に向けて光が照射されている状態でこの面と対向する方向から表示体を観察すると、光射出構造体の位置する部分と、光射出構造体の位置しない部分とが、互いに異なる色彩に見える。それゆえ、より多様な像の表現が可能である。 According to the above configuration, a part of the light emitted from the light emitting structure passes through the display body and is emitted from the surface located on the side opposite to the light emitting structure. Therefore, when the display body is observed from the direction facing this surface in a state where light is irradiated toward the surface opposite to the light emitting structure, the portion where the light emitting structure is located and the light emitting structure The part where is not located looks different from each other. Therefore, it is possible to express more diverse images.
 [項目17]
 基材の表面に塗工された樹脂に凹版の有する凹凸を転写することにより、前記基材の表面と対向する方向から見て、凸部または凹部である周期要素がサブ波長周期を有した二次元格子状に位置する周期構造体を形成する第1工程と、前記周期構造体の表面形状に追従する形状を有した金属層を前記周期構造体の上に形成する第2工程と、を含む表示体の製造方法。
[Item 17]
By transferring the unevenness of the intaglio to the resin coated on the surface of the base material, the periodic elements that are convex portions or concave portions have a sub-wavelength period when viewed from the direction facing the surface of the base material. A first step of forming a periodic structure located in a three-dimensional lattice, and a second step of forming a metal layer having a shape following the surface shape of the periodic structure on the periodic structure. Manufacturing method of display body.
 上記製法によれば、観察の条件に応じて互いに異なる外観の像を視認させることのできる表示体が得られる。特に、微細な凹凸を有する周期構造体を、容易にかつ好適に形成することができる。 According to the above manufacturing method, a display body capable of visually recognizing images having different appearances according to the observation conditions can be obtained. In particular, a periodic structure having fine irregularities can be easily and suitably formed.
 [項目18]
 前記金属層の上に、前記金属層の表面形状に追従する形状を有した誘電体層を形成する第3工程を含む項目17に記載の表示体の製造方法。
[Item 18]
Item 18. The method for manufacturing a display body according to Item 17, comprising a third step of forming a dielectric layer having a shape following the surface shape of the metal layer on the metal layer.
 上記製法によれば、誘電体層を構成する材料の変更によって、表示体に対する反射観察や透過観察で観察される色彩を調整することが可能であるため、こうした色彩の調整についての自由度が高められる。 According to the above manufacturing method, it is possible to adjust the color observed in the reflection observation or transmission observation with respect to the display body by changing the material constituting the dielectric layer, so that the degree of freedom in adjusting the color is increased. It is done.
 (第3実施形態)
 図19から図31を参照して、光学デバイスの一例である表示体、表示体付きデバイス、および、表示体の製造方法の実施形態を説明する。以下では、第1~第4の4つの適用形態について説明するが、これらの適用形態において、表示体の基本構造は共通しているため、まず、表示体の基本構造とその製造方法について説明する。
(Third embodiment)
With reference to FIG. 19 to FIG. 31, embodiments of a display body, a device with a display body, and a method for manufacturing the display body, which are examples of the optical device, will be described. In the following, the first to fourth application modes will be described. In these application modes, since the basic structure of the display body is common, first, the basic structure of the display body and the manufacturing method thereof will be described. .
 [表示体の構造]
 図19が示すように、表示体10は、表面10Fと、表面10Fとは反対側の面である裏面10Rとを有し、表面10Fと対向する方向から見て、表示体10は、表示領域20と補助領域30とを含んでいる。表示領域20は、第1領域20Aと第2領域20Bとの二種類の領域を含んでおり、表面10Fは、第1領域20Aと、第2領域20Bと、補助領域30とに区画されている。表示領域20は構造色を呈し、白色の光が表面10Fに照射されている状態において、第1領域20Aの呈する色相と第2領域20Bの呈する色相とは互いに異なる。補助領域30は、金属光沢を有する色を呈する。
[Display structure]
As shown in FIG. 19, the display body 10 has a front surface 10F and a back surface 10R that is a surface opposite to the front surface 10F, and the display body 10 has a display area when viewed from the direction facing the front surface 10F. 20 and the auxiliary area 30 are included. The display area 20 includes two types of areas of a first area 20A and a second area 20B, and the surface 10F is partitioned into a first area 20A, a second area 20B, and an auxiliary area 30. . The display area 20 exhibits a structural color, and the hue exhibited by the first area 20A and the hue exhibited by the second area 20B are different from each other when the surface 10F is irradiated with white light. The auxiliary region 30 exhibits a color having a metallic luster.
 例えば、第1領域20Aと第2領域20Bとによって、文字、記号、図形、模様、絵柄等が表現され、補助領域30によって背景が表現される。一例として、図19に示す構成では、緑系の色を呈する第1領域20Aと青系の色を呈する第2領域20Bとによって地球の絵柄が表現され、銀色を呈する補助領域30によって背景が表現されている。 For example, characters, symbols, figures, patterns, designs, and the like are expressed by the first region 20A and the second region 20B, and a background is expressed by the auxiliary region 30. As an example, in the configuration shown in FIG. 19, the earth pattern is represented by the first region 20A exhibiting a green color and the second region 20B exhibiting a blue color, and the background is represented by the auxiliary region 30 exhibiting a silver color. Has been.
 図20を参照して、表示領域20の構造について説明する。
 図20が示すように、表示領域20において、表示体10は、基材16と、凹凸構造層12と、金属層13と、多層膜層14とを備えている。基材16、凹凸構造層12、金属層13、および、多層膜層14は、この順に並んでおり、基材16に対して多層膜層14の位置する側が表示体10の表面側であり、多層膜層14に対して基材16の位置する側が表示体10の裏面側である。図20は、表示領域20の断面構造とともに、表示体10の表面10Fと対向する方向から見た凹凸構造層12の平面構造を示している。
The structure of the display area 20 will be described with reference to FIG.
As shown in FIG. 20, in the display region 20, the display body 10 includes a base material 16, an uneven structure layer 12, a metal layer 13, and a multilayer film layer 14. The base material 16, the concavo-convex structure layer 12, the metal layer 13, and the multilayer film layer 14 are arranged in this order, and the side where the multilayer film layer 14 is positioned with respect to the base material 16 is the surface side of the display 10. The side where the base material 16 is positioned with respect to the multilayer film layer 14 is the back surface side of the display body 10. FIG. 20 shows the planar structure of the concavo-convex structure layer 12 as viewed from the direction facing the surface 10F of the display body 10 along with the cross-sectional structure of the display region 20.
 基材16は板状を有し、基材16の有する面のうち、表示体10の表面側に位置する面が基材16の表面である。基材16は、可視領域の光に対して透明であり、可視領域の光を透過する。可視領域の光が有する波長は、400nm以上800nm以下である。基材16は誘電体であり、基材16の材料としては、例えば、合成石英や、ポリエチレンテレフタラート(PET)、ポリカーボネート(PC)、ポリエチレンナフタレート(PEN)等の樹脂が挙げられる。基材16の屈折率は、空気層よりも高く、例えば1.2以上1.7以下である。基材16は、1つの層から構成されていてもよいし、複数の層から構成されていてもよい。 The base material 16 has a plate shape, and the surface located on the surface side of the display body 10 among the surfaces of the base material 16 is the surface of the base material 16. The base material 16 is transparent to light in the visible region and transmits light in the visible region. The wavelength of light in the visible region is from 400 nm to 800 nm. The substrate 16 is a dielectric, and examples of the material of the substrate 16 include synthetic quartz, resins such as polyethylene terephthalate (PET), polycarbonate (PC), and polyethylene naphthalate (PEN). The refractive index of the base material 16 is higher than that of the air layer, and is, for example, 1.2 or more and 1.7 or less. The base material 16 may be comprised from one layer, and may be comprised from the some layer.
 凹凸構造層12と金属層13とからなる構造体であるプラズモン構造体層15は、入射光を、プラズモン共鳴などによって透過させる。
 凹凸構造層12は、基材16の表面に沿って広がる平坦部12aと、平坦部12aから表示体10の表面側に突き出した複数の凸部12bとから構成されている。すなわち、凸部12bは、表示体10の裏面10Rに沿って広がる面から表面10Fに向けて突出している。凹凸構造層12は、可視領域の光に対して透明な誘電体であり、例えば、紫外線硬化性樹脂や熱硬化性樹脂や熱可塑性樹脂から構成されている。凹凸構造層12の屈折率は、空気層よりも高い。
The plasmon structure layer 15, which is a structure composed of the concavo-convex structure layer 12 and the metal layer 13, transmits incident light by plasmon resonance or the like.
The concavo-convex structure layer 12 includes a flat portion 12a extending along the surface of the base material 16, and a plurality of convex portions 12b protruding from the flat portion 12a to the surface side of the display body 10. That is, the convex part 12b protrudes from the surface which spreads along the back surface 10R of the display body 10 toward the front surface 10F. The concavo-convex structure layer 12 is a dielectric that is transparent to light in the visible region, and is made of, for example, an ultraviolet curable resin, a thermosetting resin, or a thermoplastic resin. The refractive index of the uneven structure layer 12 is higher than that of the air layer.
 凸部12bは、四角錐台形状、すなわち、四角錐の頂部が平面となっている形状を有しており、基材16の表面に沿った方向における凸部12bの幅は、表示体10の裏面10Rから表面10Fに向かう方向に、徐々に小さくなっている。 The convex portion 12 b has a quadrangular pyramid shape, that is, a shape in which the top of the quadrangular pyramid is a plane, and the width of the convex portion 12 b in the direction along the surface of the substrate 16 is the width of the display body 10. It gradually decreases in the direction from the back surface 10R toward the front surface 10F.
 凸部12bの基端から先端までの長さ、すなわち、凸部12bの延びる方向における凸部12bの長さが、凸部高さHであり、凸部12bの基部を構成する正方形の一辺の長さが、凸部幅Dである。凸部12bの加工の精度が得られやすいこと等の観点において、凸部幅Dに対する凸部高さHの比であるアスペクト比Ar(Ar=H/D)は、3以下であることが好ましく、2以下であることがより好ましい。 The length from the proximal end to the distal end of the convex portion 12b, that is, the length of the convex portion 12b in the extending direction of the convex portion 12b is the convex portion height H, and one side of the square constituting the base portion of the convex portion 12b The length is the protrusion width D. In view of easily obtaining the processing accuracy of the convex portion 12b, the aspect ratio Ar (Ar = H / D), which is the ratio of the convex portion height H to the convex portion width D, is preferably 3 or less. More preferably, it is 2 or less.
 複数の凸部12bは、表示体10の表面10Fと対向する方向から見て、二次元格子の一例である正方配列に並んでいる。正方配列は、一辺が構造周期Pである正方形SQの各頂点に凸部12bの中心が位置する配列である。すなわち、構造周期Pは、互いに隣り合う2つの凸部12bにおける中心間の距離であり、また、構造周期Pは、互いに隣り合う2つの凸部12bの間の距離である凸部間距離Wと凸部幅Dとの合計である。構造周期Pは、可視領域の波長以下の長さであり、すなわち、構造周期Pは、サブ波長周期である。凸部12bの加工の精度が得られやすいこと等の観点において、構造周期Pは、100nm以上400nm以下であることが好ましく、200nm以上400nm以下であることがより好ましい。 The plurality of convex portions 12b are arranged in a square arrangement, which is an example of a two-dimensional lattice, when viewed from the direction facing the surface 10F of the display body 10. The square array is an array in which the center of the convex portion 12b is located at each vertex of the square SQ whose one side is the structural period P. That is, the structure period P is the distance between the centers of the two adjacent protrusions 12b, and the structure period P is the distance between the protrusions W that is the distance between the two adjacent protrusions 12b. It is the total with the convex part width D. The structural period P is a length equal to or shorter than the wavelength in the visible region, that is, the structural period P is a sub-wavelength period. From the viewpoint of easily obtaining the processing accuracy of the convex portion 12b, the structural period P is preferably not less than 100 nm and not more than 400 nm, and more preferably not less than 200 nm and not more than 400 nm.
 複数の凸部12bが配置されている領域全体の面積Saは、表示体10の表面10Fと対向する方向から見た凹凸構造層12の面積であって、すなわち、凸部12bの間に露出する平坦部12aの面積と各凸部12bの基部を構成する正方形の面積との合計である。凸部12bの加工の精度が得られやすいこと等の観点において、面積Sa×凸部高さHによって表される体積に対する複数の凸部12bの個々の体積の合計の比である体積比率Vrは、0.05以上0.5以下であることが好ましい。体積比率Vrは、すなわち、平坦部12a上で凹凸構造が形成されている空間の単位体積当たりにおいて凸部12bが占める割合である。凸部間距離Wは、所望の体積比率Vrや構造周期Pや凸部12bの形状を考慮して、決定されればよい。 The area Sa of the entire region where the plurality of convex portions 12b are arranged is the area of the concavo-convex structure layer 12 as viewed from the direction facing the surface 10F of the display body 10, that is, exposed between the convex portions 12b. This is the sum of the area of the flat part 12a and the area of the square that forms the base of each convex part 12b. From the viewpoint of easily obtaining the processing accuracy of the convex portion 12b, the volume ratio Vr that is the ratio of the individual volumes of the plurality of convex portions 12b to the volume represented by the area Sa × the convex portion height H is: 0.05 or more and 0.5 or less is preferable. In other words, the volume ratio Vr is a ratio of the convex portion 12b occupying per unit volume of the space where the concavo-convex structure is formed on the flat portion 12a. The distance W between the protrusions may be determined in consideration of the desired volume ratio Vr, the structure period P, and the shape of the protrusion 12b.
 金属層13は、凹凸構造層12に対して表示体10の表面側に位置し、凹凸構造層12の全面を覆っている。金属層13は、凹凸構造層12の表面形状に追従した形状を有している。すなわち、金属層13の表面は、凹凸構造層12の有する凹凸に追従した凹凸を有している。金属層13における凹凸構造の周期や高さは、凹凸構造層12における凹凸構造の周期や高さに依存する。凹凸構造層12における凹凸構造の周期や高さは、すなわち、構造周期P、凸部間距離W、凸部高さHおよび凸部幅Dを含めた凸部12bの形状によって規定される。 The metal layer 13 is located on the surface side of the display body 10 with respect to the uneven structure layer 12 and covers the entire surface of the uneven structure layer 12. The metal layer 13 has a shape that follows the surface shape of the concavo-convex structure layer 12. That is, the surface of the metal layer 13 has unevenness following the unevenness of the uneven structure layer 12. The period and height of the uneven structure in the metal layer 13 depend on the period and height of the uneven structure in the uneven structure layer 12. The period and height of the concavo-convex structure in the concavo-convex structure layer 12 are defined by the shape of the convex part 12b including the structural period P, the convex part distance W, the convex part height H, and the convex part width D.
 金属層13は、金属材料から構成されており、金属層13の屈折率は、空気層よりも低い。プラズモン共鳴が生じやすいこと等の観点において、金属層13は、可視領域の波長における複素誘電率の実部が負の値である金属材料から構成されており、金属層13の膜厚は、10nm以上200nm以下であることが好ましい。金属層13の材料としては、例えば、アルミニウム、金、銀、タンタル、インジウム等が挙げられる。 The metal layer 13 is made of a metal material, and the refractive index of the metal layer 13 is lower than that of the air layer. From the standpoint that plasmon resonance is likely to occur, the metal layer 13 is made of a metal material having a negative real part of the complex dielectric constant at a wavelength in the visible region, and the film thickness of the metal layer 13 is 10 nm. The thickness is preferably 200 nm or more. Examples of the material of the metal layer 13 include aluminum, gold, silver, tantalum, and indium.
 なお、表示体10の表面10Fと対向する方向から見て、凹凸構造層12において、凸部12bの間から露出する平坦部12aの面積は、各凸部12bの基部を構成する正方形の面積の合計よりも大きいことが好ましい。この場合、平坦部12aの直上の領域、すなわち、金属層13のなかで平坦部12aに積層された部分と各凸部12bの基部とを含む領域において、金属層13は、構造的および光学的に海成分であり、凸部12bの基部は、構造的および光学的に、海成分のなかに分布する島成分である。 Note that, in the concavo-convex structure layer 12, the area of the flat portion 12 a exposed from between the convex portions 12 b in the concavo-convex structure layer 12 is a square area constituting the base portion of each convex portion 12 b when viewed from the direction facing the surface 10 F of the display body 10. It is preferable to be larger than the total. In this case, in the region immediately above the flat portion 12a, that is, in the region including the portion of the metal layer 13 laminated on the flat portion 12a and the base of each convex portion 12b, the metal layer 13 is structurally and optically The base of the convex portion 12b is an island component distributed structurally and optically in the sea component.
 多層膜層14は、複数の薄膜14aが積層された構造を有し、多層膜干渉を生じさせる。すなわち、多層膜層14は、表示体10の表面側からの入射光を受けたとき、各薄膜14aにて反射された光の干渉の結果として、特定の波長領域の光を強く返す。これにより、表示体10の表面側から見て、表示領域20には、特定の色相の構造色が視認される。 The multilayer film layer 14 has a structure in which a plurality of thin films 14a are stacked, and causes multilayer film interference. That is, when the multilayer film layer 14 receives incident light from the surface side of the display body 10, the multilayer film layer 14 strongly returns light in a specific wavelength region as a result of interference of light reflected by each thin film 14a. Thereby, the structural color of a specific hue is visually recognized in the display area 20 when viewed from the front surface side of the display body 10.
 多層膜層14は、金属層13の有する凹凸に従って起伏を繰り返す形状、換言すれば、表示体10の表面側に向けて膨らむように湾曲した部分が凹凸構造層12における凸部12bの配列方向に沿って連なる形状を有している。例えば、多層膜層14にて最も表示体10の裏面10Rに近い部分、すなわち、湾曲部分の端部は、凹凸構造層12における凸部12bの間の領域にまで入り込んでいる。なお、各薄膜14aの湾曲の程度は、多層膜層14の積層方向における各薄膜14aの位置に応じて異なる。 The multilayer film layer 14 has a shape that repeats undulations according to the unevenness of the metal layer 13, in other words, a curved portion that swells toward the surface side of the display body 10 extends in the arrangement direction of the protrusions 12 b in the uneven structure layer 12. It has a shape that continues along. For example, the portion of the multilayer film 14 that is closest to the back surface 10 </ b> R of the display body 10, that is, the end portion of the curved portion, extends into the region between the convex portions 12 b in the concavo-convex structure layer 12. Note that the degree of curvature of each thin film 14 a varies depending on the position of each thin film 14 a in the stacking direction of the multilayer film layer 14.
 薄膜14aは、可視領域の光に対して透明な材料から構成されており、複数の薄膜14aの屈折率は、互いに異なる。薄膜14aの材料としては、例えば、酸化チタン(TiO)、酸化ケイ素(SiO)、酸化アルミニウム(Al)、酸化ニオブ(Nb)、酸化タンタル(Ta)、酸化ハフニウム(HfO)、硫化亜鉛(ZnS)、酸化ジルコニウム(ZrO)等の無機物や、ナイロン、ポリエステル等の高分子化合物を用いることができる。 The thin film 14a is made of a material that is transparent to light in the visible region, and the refractive indexes of the plurality of thin films 14a are different from each other. Examples of the material of the thin film 14a include titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), Inorganic substances such as hafnium oxide (HfO 2 ), zinc sulfide (ZnS), and zirconium oxide (ZrO 2 ), and polymer compounds such as nylon and polyester can be used.
 多層膜層14の有する薄膜14aの数や、各薄膜14aの材料および膜厚は、表示体10の表面側から反射光を見る場合に表示領域20の呈する色として視認させたい色相に応じて、この色相に対応する波長領域の光が強められて多層膜層14から反射されるように、設定される。 The number of thin films 14a included in the multilayer film layer 14 and the material and film thickness of each thin film 14a depend on the hue that the display area 20 wants to visually recognize when the reflected light is viewed from the surface side of the display body 10, It is set so that light in a wavelength region corresponding to this hue is intensified and reflected from the multilayer film layer 14.
 また、薄膜14aの湾曲の程度によって、薄膜14aを通る光の光路の長さが変わるため、多層膜層14にて干渉によって強められる光の波長も変わる。したがって、凹凸構造層12における構造周期Pおよび凸部間距離Wを含めた凸部12bの配置、凸部高さHおよび凸部幅Dを含めた凸部12bの形状の変更によっても、表示体10の表面側から反射光を見る場合に表示領域20にて視認される色の色相を変化させることができる。 Also, since the length of the optical path of light passing through the thin film 14a varies depending on the degree of curvature of the thin film 14a, the wavelength of light that is strengthened by interference in the multilayer film layer 14 also varies. Therefore, the display body is also changed by changing the shape of the convex portion 12b including the convex portion 12b including the structural period P and the convex portion distance W in the concave-convex structure layer 12 and the convex portion height H and the convex portion width D. When the reflected light is viewed from the front surface side, the hue of the color visually recognized in the display area 20 can be changed.
 例えば、凸部12bの形状が一定の場合においては構造周期Pが大きいほど、凸部間距離Wが大きく、凸部12bの間の領域に位置する多層膜層14の広さは大きい。結果として、薄膜14aを通る光の光路の長さが長くなるため、より長い波長の光が強められて多層膜層14から反射される。 For example, when the shape of the convex portion 12b is constant, the larger the structural period P, the larger the inter-convex distance W, and the larger the multilayer film layer 14 located in the region between the convex portions 12b. As a result, since the length of the optical path of the light passing through the thin film 14a is increased, light having a longer wavelength is strengthened and reflected from the multilayer film layer 14.
 すなわち、多層膜層14における各薄膜14aの構成と凹凸構造層12における凸部12bの配置および形状とは、表示体10の表面側から反射光を見る場合に表示領域20の呈する色として視認させたい所望の色相に応じて、この色相に対応する波長領域の光が強められて多層膜層14から反射されるように調整されている。そして、第1領域20Aと第2領域20Bとは、多層膜層14における各薄膜14aの構成や、凹凸構造層12における凸部12bの配置および形状がこれらの領域において互いに異なっていることによって、表示体10の表面側から反射光を見る場合に互いに異なる色相を呈する。 That is, the configuration of each thin film 14a in the multilayer film layer 14 and the arrangement and shape of the protrusions 12b in the concavo-convex structure layer 12 are visually recognized as colors displayed in the display region 20 when the reflected light is viewed from the surface side of the display body 10. Depending on the desired hue, light in the wavelength region corresponding to this hue is intensified and adjusted so as to be reflected from the multilayer film layer 14. The first region 20A and the second region 20B are different from each other in the configuration of each thin film 14a in the multilayer film layer 14 and the arrangement and shape of the protrusions 12b in the concavo-convex structure layer 12 in these regions. When the reflected light is viewed from the surface side of the display body 10, different hues are exhibited.
 なかでも、2つの領域20A,20Bに互いに異なる構造周期Pの凸部12bを形成することは、2つの領域20A,20Bに薄膜14aの数や材料や膜厚等の層構成が互いに異なる多層膜層14を形成することと比較して容易であるため、構造周期Pの違いによって、第1領域20Aの色相と第2領域20Bの色相とを異ならせることが好ましい。すなわち、第1領域20Aの多層膜層14と第2領域20Bの多層膜層14とは、同一の層構成を有して相互に連続する1つの多層構造体であることが好ましい。 In particular, the formation of the convex portions 12b having different structural periods P in the two regions 20A and 20B means that the two regions 20A and 20B are multilayer films having different layer configurations such as the number, material, and film thickness of the thin film 14a. Since it is easier than forming the layer 14, it is preferable that the hue of the first region 20 </ b> A and the hue of the second region 20 </ b> B are made different depending on the difference in the structural period P. That is, the multilayer film layer 14 in the first region 20A and the multilayer film layer 14 in the second region 20B are preferably one multilayer structure having the same layer configuration and continuous with each other.
 なお、上記構成において、基材16と凹凸構造層12とから周期構造体が構成される。また、凸部12bは、周期要素の一例である。また、基材16と平坦部12aとから支持部が構成され、平坦部12aの表面、すなわち、平坦部12aにおいて基材16に接している面とは反対側の面が基準面である。また、金属層13は、層全体としての形状が周期構造体の表面形状に追従する形状を有した金属層として捉えられる。周期構造体の表面は、基準面のうち各周期要素を囲む領域と各周期要素の表面とを含む面である。多層膜層14は、金属層13における周期構造体と接する面とは反対側の面に位置して、周期構造体と金属層13とからなる構造体を覆っている。 In the above configuration, the periodic structure is configured by the base material 16 and the concavo-convex structure layer 12. Moreover, the convex part 12b is an example of a periodic element. In addition, a support portion is configured by the base material 16 and the flat portion 12a, and the surface of the flat portion 12a, that is, the surface opposite to the surface in contact with the base material 16 in the flat portion 12a is the reference surface. Moreover, the metal layer 13 is regarded as a metal layer having a shape in which the shape of the entire layer follows the surface shape of the periodic structure. The surface of the periodic structure is a surface including a region surrounding each periodic element in the reference plane and the surface of each periodic element. The multilayer film layer 14 is located on the surface of the metal layer 13 opposite to the surface in contact with the periodic structure, and covers the structure including the periodic structure and the metal layer 13.
 図21を参照して、補助領域30の構造について説明する。
 図21が示すように、補助領域30は、基材16と金属層13とを備えており、基材16の表面に平坦な金属層13が位置している。基材16は、表示領域20と補助領域30とで相互に連続する1つの構造体であり、金属層13は、表示領域20と補助領域30とで相互に連続する1つの層である。これにより、表示体10の表面側からの入射光を受けたとき、表面側から見て、補助領域30は、金属層13の材料に応じた色を呈し、金属光沢を有するように見える。
The structure of the auxiliary region 30 will be described with reference to FIG.
As shown in FIG. 21, the auxiliary region 30 includes the base material 16 and the metal layer 13, and the flat metal layer 13 is located on the surface of the base material 16. The base material 16 is one structure that is continuous with the display area 20 and the auxiliary area 30, and the metal layer 13 is one layer that is continuous with the display area 20 and the auxiliary area 30. Thereby, when receiving incident light from the surface side of the display body 10, the auxiliary region 30 appears to have a metallic luster with a color corresponding to the material of the metal layer 13 when viewed from the surface side.
 [表示体の製造方法]
 上述の表示体10を製造する方法を説明する。
 初めに、表示領域20の製造方法について説明する。まず、基材16の表面に、凹凸構造層12を形成する。凹凸構造層12における凸部12bを形成する方法としては、例えば、光、あるいは、荷電粒子線を用いたフォトリソグラフィー法や、ナノインプリント法、あるいは、プラズマエッチング法などを採用できる。特に、樹脂からなる平坦部12aの表面に凸部12bを形成する方法として、例えばナノインプリント法を活用できる。また、硬い材質の基材などを加工することにより凸部12bを形成する場合には、光、あるいは、荷電粒子線を用いたフォトリソグラフィー法とプラズマエッチング法を組み合わせた方法を用いればよい。なかでも、ナノインプリント法は、微細な凹凸を有する凹凸構造層12の形成に適している。
[Manufacturing method of display body]
A method for manufacturing the display body 10 will be described.
First, a method for manufacturing the display area 20 will be described. First, the uneven structure layer 12 is formed on the surface of the substrate 16. As a method of forming the convex portion 12b in the concavo-convex structure layer 12, for example, a photolithography method using light or a charged particle beam, a nanoimprint method, a plasma etching method, or the like can be employed. In particular, as a method for forming the convex portion 12b on the surface of the flat portion 12a made of resin, for example, a nanoimprint method can be utilized. In addition, in the case where the convex portion 12b is formed by processing a hard material base material or the like, a method in which light or a photolithography method using a charged particle beam and a plasma etching method are combined may be used. Among these, the nanoimprint method is suitable for forming the uneven structure layer 12 having fine unevenness.
 ナノインプリント法を用いる場合、例えば、基材16として、ポリエチレンテレフタラートシートを用い、基材16の表面に、紫外線硬化性樹脂を塗工する。次いで、紫外線硬化性樹脂からなる塗工膜の表面に、凸部12bに対応する形状および配置の凹部を有する凹版である合成石英モールドを押し当て、塗工膜および合成石英モールドに紫外線を照射する。続いて、硬化した紫外線硬化性樹脂から合成石英モールドを離型する。これにより、凸部12bが形成されて、凹凸構造層12が成形される。なお、紫外線硬化性樹脂に代えて熱硬化性樹脂を用いてもよく、この場合、紫外線の照射を熱に変更すればよい。また、紫外線硬化性樹脂に代えて熱可塑性樹脂を用いてもよく、この場合、紫外線の照射は、加熱および冷却に変更すればよい。 When using the nanoimprint method, for example, a polyethylene terephthalate sheet is used as the base material 16 and an ultraviolet curable resin is applied to the surface of the base material 16. Next, a synthetic quartz mold, which is an intaglio plate having concave portions having a shape and arrangement corresponding to the convex portions 12b, is pressed against the surface of the coating film made of an ultraviolet curable resin, and the coating film and the synthetic quartz mold are irradiated with ultraviolet rays. . Subsequently, the synthetic quartz mold is released from the cured ultraviolet curable resin. Thereby, the convex part 12b is formed and the uneven structure layer 12 is shape | molded. Note that a thermosetting resin may be used instead of the ultraviolet curable resin, and in this case, the irradiation of the ultraviolet light may be changed to heat. In addition, a thermoplastic resin may be used instead of the ultraviolet curable resin, and in this case, the irradiation with ultraviolet light may be changed to heating and cooling.
 第1領域20Aと第2領域20Bとで、凹凸構造層12における凸部12bの配置や形状が異なっている場合には、第1領域20Aに対応する部分と第2領域20Bに対応する部分とで合成石英モールドにおける凹部の配置や形状を変えることによって、第1領域20Aの凹凸構造層12と第2領域20Bの凹凸構造層12とを同時に形成することができる。 When the first region 20A and the second region 20B are different in the arrangement and shape of the convex portions 12b in the concavo-convex structure layer 12, a portion corresponding to the first region 20A and a portion corresponding to the second region 20B Thus, by changing the arrangement and shape of the recesses in the synthetic quartz mold, the uneven structure layer 12 in the first region 20A and the uneven structure layer 12 in the second region 20B can be formed simultaneously.
 次いで、凹凸構造層12の表面に、金属層13を形成する。金属層13を形成する方法としては、例えば、真空蒸着法、スパッタリング法が挙げられる。さらに、金属層13の表面に、薄膜14aを順に成膜することによって、多層膜層14を形成する。薄膜14aを成膜する方法としては、例えば、真空蒸着法、スパッタリング法が挙げられる。これにより、表示領域20の積層構造が形成される。 Next, a metal layer 13 is formed on the surface of the uneven structure layer 12. Examples of the method for forming the metal layer 13 include a vacuum deposition method and a sputtering method. Furthermore, the multilayer film layer 14 is formed by sequentially forming the thin film 14 a on the surface of the metal layer 13. Examples of the method for forming the thin film 14a include a vacuum deposition method and a sputtering method. Thereby, the laminated structure of the display area 20 is formed.
 また、補助領域30は、表示領域20の製造工程のうち、凹凸構造層12の形成工程と多層膜層14の形成工程とを行わないことによって製造することができる。すなわち、表示領域20における金属層13の形成と同時に、補助領域30における基材16の表面に金属層13が形成される。 Further, the auxiliary region 30 can be manufactured by not performing the formation process of the uneven structure layer 12 and the formation process of the multilayer film layer 14 in the manufacturing process of the display region 20. That is, the metal layer 13 is formed on the surface of the base material 16 in the auxiliary region 30 simultaneously with the formation of the metal layer 13 in the display region 20.
 [表示体の変形例]
 表示体10における表示領域20の構造は、以下のように変更してもよい。
 基材16と凹凸構造層12とは一体であってもよい。また、凹凸構造層12は平坦部12aを備えず、凸部12bは基材16の表面から突き出していてもよい。この場合、基材16が支持部を構成し、基材16の表面が基準面である。
[Modifications of display body]
The structure of the display area 20 in the display body 10 may be changed as follows.
The base material 16 and the uneven structure layer 12 may be integrated. Further, the concavo-convex structure layer 12 may not include the flat portion 12 a and the convex portion 12 b may protrude from the surface of the base material 16. In this case, the base material 16 constitutes a support portion, and the surface of the base material 16 is a reference plane.
 凸部12bは、四角錐台形状に限らず、直方体形状であってもよいし、円錐台形状や円柱形状であってもよい。すなわち、基材16の表面に沿った方向における凸部12bの幅は一定であってもよいし、表示体10の表面10Fと対向する方向から見た凸部12bの形状は円形であってもよい。さらに、凸部12bは、角錐形状や円錐形状のように、先端に平面を有さない形状であってもよい。 The convex portion 12b is not limited to a quadrangular pyramid shape, but may be a rectangular parallelepiped shape, a truncated cone shape, or a cylindrical shape. That is, the width of the convex portion 12b in the direction along the surface of the substrate 16 may be constant, or the shape of the convex portion 12b viewed from the direction facing the surface 10F of the display body 10 may be circular. Good. Furthermore, the convex portion 12b may have a shape that does not have a flat surface at the tip, such as a pyramid shape or a cone shape.
 表示体10の表面10Fと対向する方向から見た凸部12bの配置は、正方配列に限らず、二次元格子状であればよい。正方配列は、二次元平面内において直交する2つの方向の各々に沿って一定の周期で凸部12bが並ぶ配列であり、二次元格子状の配列には、正方配列の他に、二次元平面内において90度とは異なる角度で交差する2つの方向の各々に沿って凸部12bが並ぶ配列が含まれる。 The arrangement of the convex portions 12b viewed from the direction facing the surface 10F of the display body 10 is not limited to a square arrangement, and may be a two-dimensional lattice shape. The square array is an array in which the convex portions 12b are arranged at a constant period along each of two orthogonal directions in the two-dimensional plane. The two-dimensional lattice array includes a two-dimensional plane in addition to the square array. An arrangement in which the convex portions 12b are arranged along each of two directions intersecting at an angle different from 90 degrees is included.
 金属層13は、凹凸構造層12の全面を覆わず、例えば、凸部12bの間に露出する平坦部12a上と、凸部12bの頂部上とに位置していてもよい。要は、金属層13は、層全体としての形状が凹凸構造層12の表面形状に追従した形状を有していればよく、換言すれば、金属層13は、表面側に向けて飛び出ている部分が凸部12bの配置に沿った二次元格子状に点在している形状を有していればよい。 The metal layer 13 does not cover the entire surface of the concavo-convex structure layer 12, and may be located, for example, on the flat part 12a exposed between the convex parts 12b and on the top part of the convex parts 12b. In short, the metal layer 13 only needs to have a shape in which the shape of the entire layer follows the surface shape of the uneven structure layer 12, in other words, the metal layer 13 protrudes toward the surface side. What is necessary is just to have the shape where the part is scattered in the two-dimensional lattice shape along arrangement | positioning of the convex part 12b.
 要は、凹凸構造層12と金属層13とは、これらの層からなるプラズモン構造体層15が、プラズモン共鳴などによって入射光を透過させる構造を有していればよい。入射光の透過が起こる理由は、主として、プラズモン共鳴が生じることによるが、透過理由には、プラズモン共鳴に加えて、入射光が金属層13の局所的に薄くなっている部分から構造体を透過すること等も含まれる。 In short, the concavo-convex structure layer 12 and the metal layer 13 only have to have a structure in which the plasmon structure layer 15 made of these layers transmits incident light by plasmon resonance or the like. The reason why the incident light is transmitted is mainly due to the occurrence of plasmon resonance. The reason for the transmission is that, in addition to the plasmon resonance, the incident light is transmitted through the structure from a locally thinned portion of the metal layer 13. It is also included.
 <第1適用形態>
 図22を参照して、第1適用形態について説明する。第1適用形態は、表示体の実施形態であり、第1適用形態の表示体10は、主として表面側から表示体10に光が入射し、表面側からのみ表示体10が観察される態様で用いられる。例えば、表示体10は、物品における不透明な面であって光を反射しにくい面に貼り付けられている。表示体10は、物品の偽造の困難性を高める目的で用いられてもよいし、物品の意匠性を高める目的で用いられてもよいし、これらの目的を兼ねて用いられてもよい。
<First application form>
The first application mode will be described with reference to FIG. The first application form is an embodiment of a display body, and the display body 10 of the first application form is a mode in which light is incident on the display body 10 mainly from the surface side and the display body 10 is observed only from the surface side. Used. For example, the display body 10 is affixed to an opaque surface of an article that hardly reflects light. The display body 10 may be used for the purpose of increasing the difficulty of counterfeiting the article, may be used for the purpose of improving the designability of the article, or may be used for these purposes.
 物品の偽造の困難性を高める目的としては、表示体10は、例えば、パスポートや免許証等の認証書類、商品券や小切手等の有価証券類、クレジットカードやキャッシュカード等のカード類、紙幣等に貼り付けられる。 For the purpose of increasing the difficulty of counterfeiting goods, the display 10 is used for authentication documents such as passports and licenses, securities such as gift certificates and checks, cards such as credit cards and cash cards, banknotes, etc. Is pasted.
 また、物品の意匠性を高める目的としては、表示体10は、例えば、身に着けられる装飾品や、使用者に携帯される物品、家具や家電等のように据え置かれる物品、壁や扉等の構造物等に取り付けられる。 In addition, for the purpose of improving the design of the article, the display body 10 is, for example, a decorative article that can be worn, an article that is carried by the user, an article that is stationary such as furniture or home appliances, a wall or a door. It is attached to the structure etc.
 [表示体の作用]
 図22を参照して、表示体10の表面10Fと対向する方向から表示領域20を観察した場合に視認される像について説明する。なお、図22では、理解を容易にするために、凹凸構造層12と金属層13とから構成されるプラズモン構造体層15を、1つの平坦な層として模式的に表し、多層膜層14を1つの平坦な層として模式的に表している。
[Action of display body]
With reference to FIG. 22, an image that is visually recognized when the display region 20 is observed from a direction facing the surface 10 </ b> F of the display body 10 will be described. In FIG. 22, for easy understanding, the plasmon structure layer 15 composed of the concavo-convex structure layer 12 and the metal layer 13 is schematically represented as one flat layer, and the multilayer film layer 14 is represented as It is schematically represented as one flat layer.
 表示体10の外側から表示体10の表面10Fに向けて白色の光I1が照射されると、多層膜層14では、各薄膜14aで反射された所定の波長領域の光I2が干渉により強められて、この光I2が表示体10の表面側に射出される。 When the white light I1 is irradiated from the outside of the display body 10 toward the surface 10F of the display body 10, the light I2 in a predetermined wavelength region reflected by each thin film 14a is strengthened by interference in the multilayer film layer 14. Thus, the light I2 is emitted to the surface side of the display body 10.
 多層膜層14は、白色の光I1に含まれる一部の波長領域の光I3を透過し、この光I3はプラズモン構造体層15に入る。プラズモン構造体層15における凹凸構造は誘電体に金属薄膜が積層された構造であり、凹凸構造の周期は可視領域の波長以下のサブ波長周期である。そのため、光I3を受けたプラズモン構造体層15では、一次回折光が生じることが抑えられ、光I3に含まれる特定の波長領域の光E1と電子の集団的な振動とが結合するプラズモン共鳴が生じる。そして、プラズモン構造体層15は、光I3に含まれる一部の波長領域の光E1を表面プラズモンとして透過し、プラズモン構造体層15から射出される光I4に変換する。光I4の波長領域は、凹凸構造の周期、すなわち、構造周期Pなどに応じて決まる。なお、プラズモン構造体層15から射出される光には、金属層13の局所的に薄くなっている部分から構造体を透過する等によってプラズモン構造体層15を透過した光も含まれる。ただし、表示体10の裏面側に射出される光においては、光I4が支配的である。 The multilayer film layer 14 transmits the light I3 in a part of the wavelength region included in the white light I1, and the light I3 enters the plasmon structure layer 15. The concavo-convex structure in the plasmon structure layer 15 is a structure in which a metal thin film is laminated on a dielectric, and the period of the concavo-convex structure is a sub-wavelength period equal to or less than the wavelength in the visible region. Therefore, in the plasmon structure layer 15 that has received the light I3, the generation of the first-order diffracted light is suppressed, and the plasmon resonance in which the light E1 in a specific wavelength region included in the light I3 and the collective vibration of the electrons are combined. Arise. The plasmon structure layer 15 transmits light E1 in a part of the wavelength region included in the light I3 as surface plasmon, and converts it into light I4 emitted from the plasmon structure layer 15. The wavelength region of the light I4 is determined according to the period of the uneven structure, that is, the structure period P. The light emitted from the plasmon structure layer 15 includes light transmitted through the plasmon structure layer 15 by, for example, passing through the structure from a locally thinned portion of the metal layer 13. However, in the light emitted to the back side of the display body 10, the light I4 is dominant.
 以上のように、表示体10の表面側には、多層膜層14で反射された光I2が射出される。したがって、表示体10の外側から表面10Fに向けて白色の光I1が照射されている状態で、表示体10の表面側から表面10Fを観察する表面反射観察によれば、光I2の波長領域に応じた色相、すなわち、多層膜層14によって強められた波長領域に応じた色相の色が、表示領域20にて視認される。この光I2の波長領域に応じた色は、白色および黒色とは異なる色である。 As described above, the light I <b> 2 reflected by the multilayer film layer 14 is emitted on the surface side of the display body 10. Therefore, according to the surface reflection observation in which the surface 10F is observed from the surface side of the display body 10 in a state where the white light I1 is irradiated from the outside of the display body 10 toward the surface 10F, the wavelength region of the light I2 is observed. The corresponding hue, that is, the color of the hue corresponding to the wavelength region strengthened by the multilayer film layer 14 is visually recognized in the display region 20. The color corresponding to the wavelength region of the light I2 is different from white and black.
 上記構成では、表示体10がプラズモン構造体層15を備えていることにより、プラズモン構造体層15にてプラズモン共鳴に消費される光は、プラズモン構造体層15と他の層との界面で反射しない。したがって、多層膜層14を透過した光が、例えば、基材16とその上層との界面等、表示体10の内部で反射すること等により表示体10の表面側に射出されることが抑えられる。したがって、表示体10の表面側に、多層膜層14によって強められた波長領域の光I2とは異なる波長領域の光が射出することが抑えられるため、表示領域20にて視認される色相の鮮明さが高められる。 In the above configuration, since the display body 10 includes the plasmon structure layer 15, light consumed by plasmon resonance in the plasmon structure layer 15 is reflected at the interface between the plasmon structure layer 15 and other layers. do not do. Therefore, the light transmitted through the multilayer film layer 14 is suppressed from being emitted to the surface side of the display body 10 due to reflection inside the display body 10 such as an interface between the base material 16 and the upper layer thereof. . Therefore, since light of a wavelength region different from the light I2 of the wavelength region intensified by the multilayer film layer 14 is suppressed from being emitted to the surface side of the display body 10, the hue visually recognized in the display region 20 is clear. Is increased.
 上述のように、第1領域20Aの多層膜層14によって強められる波長領域と、第2領域20Bの多層膜層14によって強められる波長領域とは異なっているため、表面反射観察においては、第1領域20Aと第2領域20Bとは、互いに異なる色相の色に見える。そして、第1領域20Aと第2領域20Bとの各々で、視認される色相の鮮明さが高められているため、第1領域20Aの色相と第2領域20Bの色相との差異が明瞭となり、これらの領域によって表現される絵柄等の像の視認性が高められる。 As described above, the wavelength region intensified by the multilayer film layer 14 in the first region 20A is different from the wavelength region intensified by the multilayer film layer 14 in the second region 20B. The region 20A and the second region 20B appear to have different hues. And since each of the first region 20A and the second region 20B has enhanced visibility of the hue, the difference between the hue of the first region 20A and the hue of the second region 20B becomes clear, The visibility of an image such as a pattern expressed by these areas is improved.
 なお、表示体10の表面10Fと対向する方向から補助領域30を観察した場合、表示体10の外側から表面10Fに向けて白色の光I1が照射されると、金属層13の材料に応じた波長領域の光が金属層13の自由電子の集団的な運動によって跳ね返される。そのため、補助領域30は、跳ね返された光の波長領域に応じた色相にて、金属光沢を有するように見える。 In addition, when the auxiliary region 30 is observed from the direction facing the surface 10F of the display body 10, when the white light I1 is irradiated from the outside of the display body 10 toward the surface 10F, depending on the material of the metal layer 13 The light in the wavelength region is rebounded by the collective movement of free electrons in the metal layer 13. Therefore, the auxiliary region 30 appears to have a metallic luster with a hue corresponding to the wavelength region of the bounced light.
 したがって、表示領域20と補助領域30とは、相互に質感が異なるように見えるため、表示体10においては、表示領域20と補助領域30とによる多彩な像の表現が可能となる。なお、表示領域20と補助領域30との観察に際して表示体10の表面10Fに照射される光は、白色の光でなくてもよい。 Therefore, since the display area 20 and the auxiliary area 30 appear to have different textures, the display body 10 can express various images by the display area 20 and the auxiliary area 30. Note that the light applied to the surface 10F of the display body 10 when observing the display region 20 and the auxiliary region 30 may not be white light.
 ところで、物品の偽造の困難性や意匠性をより高めるために、互いに異なる色相を呈する複数の表示体を1つの物品に組み込むことや、互いに異なる色相を呈する複数の領域を1つの表示体に組み込むことが試みられている。こうした試みにおいて偽造の困難性や意匠性をさらに高めるためには、互いに異なる色相の差異が明瞭であること、すなわち、1つずつの表示体が担う色相、あるいは、1つずつの領域が担う色相が鮮明であることが望ましい。このように、視認される色相の鮮明さを高めることのできる表示体を提供することも、第3実施形態の目的である。こうした課題に対する効果を含めて、第1適用形態によれば、以下に列挙する効果が得られる。 By the way, in order to further improve the forgery and design of articles, a plurality of display bodies having different hues are incorporated into one article, or a plurality of areas having different hues are incorporated into one display body. It has been tried. In order to further enhance the difficulty and design of counterfeiting in such attempts, the difference between hues that are different from each other is clear, that is, the hue that each display body bears, or the hue that each area bears. It is desirable that is clear. Thus, it is also an object of the third embodiment to provide a display body capable of enhancing the vividness of a visually recognized hue. The effects listed below are obtained according to the first application mode, including the effects on such problems.
 (3-1)表示体10がプラズモン構造体層15を備えていることにより、多層膜層14を透過した光が、表示体10の内部での反射等により表示体10の表面側に射出されることが抑えられる。したがって、表示体10の表面側に、多層膜層14によって強められた波長領域の光I2とは異なる波長領域の光が射出することが抑えられるため、表示領域20にて視認される色相の鮮明さが高められる。 (3-1) Since the display body 10 includes the plasmon structure layer 15, the light transmitted through the multilayer film layer 14 is emitted to the surface side of the display body 10 by reflection inside the display body 10. Is suppressed. Therefore, since light of a wavelength region different from the light I2 of the wavelength region intensified by the multilayer film layer 14 is suppressed from being emitted to the surface side of the display body 10, the hue visually recognized in the display region 20 is clear. Is increased.
 (3-2)表示領域20は、表面反射観察にて互いに異なる色相の色が視認される第1領域20Aと第2領域20Bとを含んでいる。そして、第1領域20Aと第2領域20Bとの各々で、視認される色相の鮮明さが高められているため、第1領域20Aの色相と第2領域20Bの色相との差異が明瞭となり、これらの領域によって表現される像の視認性が高められる。したがって、表示体10を備える物品にて、偽造の困難性や意匠性がより高められる。 (3-2) The display area 20 includes a first area 20A and a second area 20B where colors of different hues are visually recognized in the surface reflection observation. And since each of the first region 20A and the second region 20B has enhanced visibility of the hue, the difference between the hue of the first region 20A and the hue of the second region 20B becomes clear, The visibility of the image expressed by these areas is improved. Therefore, in the article provided with the display body 10, the forgery difficulty and the design are further enhanced.
 (3-3)第1領域20Aにおける凸部12bの構造周期Pと、第2領域20Bにおける凸部12bの構造周期Pとが互いに異なる構成では、多層膜層14の層数や材料や膜厚等の層構成のみによって第1領域20Aの色相と第2領域20Bの色相とを異ならせる構成と比較して、2つの領域20A,20Bにおける色相の調整についての自由度が高い。また、上記構成では、多層膜層14の層構成のみによって第1領域20Aの色相と第2領域20Bの色相とを異ならせる構成と比較して、2つの領域20A,20Bにおける多層膜層14の層構成の違いを小さくすることも可能である。2つの領域20A,20Bに互いに異なる構造周期Pの凸部12bを形成することは、2つの領域20A,20Bに互いに異なる層構成の多層膜層14を積層することと比較して容易であるため、上記構成によれば、表示体10の製造工程の簡素化を図ることができる。 (3-3) In the configuration in which the structural period P of the convex portion 12b in the first region 20A and the structural period P of the convex portion 12b in the second region 20B are different from each other, the number of layers, the material, and the film thickness of the multilayer film layer 14 Compared to a configuration in which the hue of the first region 20A and the hue of the second region 20B are made different only by the layer configuration such as, the degree of freedom in adjusting the hue in the two regions 20A and 20B is high. Further, in the above configuration, compared to the configuration in which the hue of the first region 20A is different from the hue of the second region 20B only by the layer configuration of the multilayer film layer 14, the multilayer film layer 14 in the two regions 20A and 20B is different. It is also possible to reduce the difference in the layer configuration. Forming the convex portions 12b having different structural periods P in the two regions 20A and 20B is easier than stacking the multilayer film layers 14 having different layer structures in the two regions 20A and 20B. According to the above configuration, the manufacturing process of the display body 10 can be simplified.
 なかでも、第1領域20Aの多層膜層14と第2領域20Bの多層膜層14とが、同一の層構成を有する連続した1つの多層構造体であり、構造周期Pの違いによって、第1領域20Aの色相と第2領域20Bの色相とを異ならせている構成では、表示体10の製造が特に容易である。 Among these, the multilayer film layer 14 in the first region 20A and the multilayer film layer 14 in the second region 20B are one continuous multilayer structure having the same layer configuration, and the first structure 20 In the configuration in which the hue of the region 20A is different from the hue of the second region 20B, the display body 10 is particularly easy to manufacture.
 (3-4)表示体10が、表示領域20と補助領域30とを備える構成では、表面反射観察にて表示領域20と補助領域30とは、質感が異なるように見える。したがって、表示領域20と補助領域30とによって、多彩な表現が可能であり、表示体10を備える物品にて、偽造の困難性や意匠性がより高められる。 (3-4) In the configuration in which the display body 10 includes the display area 20 and the auxiliary area 30, the display area 20 and the auxiliary area 30 appear to have different textures in the surface reflection observation. Therefore, the display area 20 and the auxiliary area 30 can be used in various expressions, and the forgery difficulty and the design are further enhanced in the article including the display body 10.
 (3-5)表示領域20の備える金属層13と補助領域30の備える金属層13とが、連続した1つの層であるため、これらの層が別々の層である構成と比較して、表示体10の製造が容易である。 (3-5) Since the metal layer 13 included in the display region 20 and the metal layer 13 included in the auxiliary region 30 are one continuous layer, the display is compared with a configuration in which these layers are separate layers. Manufacture of the body 10 is easy.
 (3-6)基材16の表面に塗工された樹脂に凹版を押し付けて樹脂を硬化させることにより複数の凸部12bを形成し、これによって凹凸構造層12を形成する製造方法によれば、微細な凹凸を有する凹凸構造層12を好適に形成することができる。 (3-6) According to the manufacturing method of forming the plurality of convex portions 12b by pressing the intaglio to the resin coated on the surface of the substrate 16 and curing the resin, thereby forming the concavo-convex structure layer 12 Thus, the uneven structure layer 12 having fine unevenness can be suitably formed.
 (3-7)第1領域20Aにおける凸部12bの構造周期Pと、第2領域20Bにおける凸部12bの構造周期Pとが互いに異なる表示体10を製造する際に、第1領域20Aの凸部12bと第2領域20Bの凸部12bとを上記凹版を用いて同時に形成する製造方法によれば、第1領域20Aの凸部12bと第2領域20Bの凸部12bとを別の工程にて形成する製造方法と比較して、効率よく表示体10を製造することができる。 (3-7) When manufacturing the display body 10 in which the structural period P of the convex portion 12b in the first region 20A and the structural period P of the convex portion 12b in the second region 20B are different from each other, the convexity of the first region 20A According to the manufacturing method in which the portion 12b and the convex portion 12b of the second region 20B are simultaneously formed using the intaglio, the convex portion 12b of the first region 20A and the convex portion 12b of the second region 20B are separated into different steps. The display body 10 can be efficiently manufactured as compared with the manufacturing method formed in this manner.
 <第2適用形態>
 図23から図25を参照して、第2適用形態について説明する。第2適用形態は、表示体の実施形態であり、第2適用形態の表示体10は、表面側および裏面側の双方から表示体10が観察される態様で用いられる。例えば、表示体10は、表示体10の表面および裏面の双方が、空気層もしくは透明な部材と接するように物品に取り付けられている。表示体10は、物品の偽造の困難性を高める目的で用いられてもよいし、物品の意匠性を高める目的で用いられてもよい。
<Second application form>
The second application mode will be described with reference to FIGS. A 2nd application form is embodiment of a display body, and the display body 10 of a 2nd application form is used in the aspect by which the display body 10 is observed from both the surface side and a back surface side. For example, the display body 10 is attached to the article so that both the front surface and the back surface of the display body 10 are in contact with an air layer or a transparent member. The display body 10 may be used for the purpose of increasing the difficulty of counterfeiting the article, or may be used for the purpose of improving the designability of the article.
 [表示体の作用:表面反射観察、裏面透過観察]
 図23を参照して、表面側から表示体10に光が入射しているときに、表面側および裏面側の各々から表示体10の表示領域20を観察した場合に視認される像について説明する。なお、図23では、理解を容易にするために、凹凸構造層12と金属層13とから構成されるプラズモン構造体層15を、1つの平坦な層として模式的に表し、多層膜層14を1つの平坦な層として模式的に表している。
[Function of display body: surface reflection observation, back surface transmission observation]
With reference to FIG. 23, an image which is visually recognized when the display area 20 of the display body 10 is observed from each of the front surface side and the back surface side when light is incident on the display body 10 from the front surface side will be described. . In FIG. 23, for easy understanding, the plasmon structure layer 15 composed of the concavo-convex structure layer 12 and the metal layer 13 is schematically represented as one flat layer, and the multilayer film layer 14 is represented as It is schematically represented as one flat layer.
 表示体10の外側から表面10Fに向けて白色の光I1が照射されているとき、表示体10の表面側には、第1適用形態と同様に、多層膜層14によって強められた波長領域の光I2が射出される。したがって、表面側から表示領域20を観察した場合、光I2の波長領域に応じた色相の色が、表示領域20にて視認される。 When the white light I1 is irradiated from the outside of the display body 10 toward the surface 10F, the surface area of the display body 10 has a wavelength region enhanced by the multilayer film layer 14 as in the first application mode. Light I2 is emitted. Therefore, when the display region 20 is observed from the surface side, the hue color corresponding to the wavelength region of the light I2 is visually recognized in the display region 20.
 第1適用形態にて説明したように、表示体10がプラズモン構造体層15を備えていることにより、多層膜層14を透過した光が、表示体10の内部での反射等によって表示体10の表面側に射出されることが抑えられるため、表面側から見た表示領域20の色相の鮮明さが高められる。 As described in the first application mode, since the display body 10 includes the plasmon structure layer 15, the light transmitted through the multilayer film layer 14 is reflected by the reflection inside the display body 10 or the like. Therefore, the clearness of the hue of the display area 20 as viewed from the surface side is enhanced.
 一方、多層膜層14を透過した光I3に含まれる一部の波長領域の光E1がプラズモン構造体層15におけるプラズモン共鳴によって消費されることに基づき、光I3に含まれる一部の波長領域の光I4がプラズモン構造体層15から射出されて基材16を透過し、表示体10の裏面側に射出される。 On the other hand, based on the fact that the light E1 in a part of the wavelength region included in the light I3 transmitted through the multilayer film layer 14 is consumed by the plasmon resonance in the plasmon structure layer 15, the light in the part of the wavelength region included in the light I3. Light I <b> 4 is emitted from the plasmon structure layer 15, passes through the base material 16, and is emitted to the back surface side of the display body 10.
 したがって、表示体10の裏面側から表示領域20を観察した場合、光I4の波長領域に応じた色相の色が表示領域20にて視認される。この光I4の波長領域に応じた色は、白色、黒色、および、光I2の波長領域に応じた色とは異なる色である。上述のように、プラズモン構造体層15から射出される光I4の波長領域は、凹凸構造層12における構造周期Pなどに応じて決まるため、構造周期Pを変更することによって、表示体10の裏面側に出る光I4の波長領域を変えることができる。 Therefore, when the display region 20 is observed from the back side of the display body 10, the color of the hue corresponding to the wavelength region of the light I4 is visually recognized in the display region 20. The color according to the wavelength region of the light I4 is white, black, and a color different from the color according to the wavelength region of the light I2. As described above, since the wavelength region of the light I4 emitted from the plasmon structure layer 15 is determined according to the structure period P in the concavo-convex structure layer 12, the back surface of the display body 10 is changed by changing the structure period P. The wavelength region of the light I4 emitted to the side can be changed.
 なお、表示体10の表面側から補助領域30を観察した場合、第1適用形態と同様に、補助領域30は、金属層13の材料に応じた色相で金属光沢を有するように見える。また、表示体10の裏面側から補助領域30を観察した場合、表示体10の外側から表面10Fに向けて照射された光I1のうち補助領域30を透過する光の強度は微小であるため、補助領域30は、黒色に近い暗色に視認される。 When the auxiliary region 30 is observed from the surface side of the display body 10, the auxiliary region 30 appears to have a metallic luster with a hue corresponding to the material of the metal layer 13, as in the first application mode. Further, when the auxiliary region 30 is observed from the back side of the display body 10, the intensity of light transmitted through the auxiliary region 30 out of the light I1 irradiated from the outside of the display body 10 toward the front surface 10F is very small. The auxiliary area 30 is visually recognized as a dark color close to black.
 以上のように、表示体10の外側から表面10Fに向けて白色の光I1が照射されている状態で、表示体10の表面側から表面10Fを観察する表面反射観察によれば、第1適用形態と同様の像が観察される。 As described above, according to the surface reflection observation in which the surface 10F is observed from the surface side of the display body 10 in the state where the white light I1 is irradiated from the outside of the display body 10 toward the surface 10F, the first application An image similar to the morphology is observed.
 一方、表示体10の外側から表面10Fに向けて白色の光I1が照射されている状態で、表示体の裏面側から裏面10Rを観察する裏面透過観察によれば、表示領域20には、表面反射観察とは異なる色相の色が視認される。また、第1領域20Aと第2領域20Bとで、凹凸構造層12における構造周期Pを異ならせることにより、裏面透過観察にて、第1領域20Aと第2領域20Bとで視認される色の色相を異ならせることができる。こうした構成によれば、裏面透過観察によっても、第1領域20Aと第2領域20Bとから構成される絵柄等の像、さらには、第1領域20Aと第2領域20Bと補助領域30とから構成される絵柄等の像が観察される。 On the other hand, according to the back surface transmission observation in which the back surface 10R is observed from the back surface side of the display body in the state where the white light I1 is irradiated from the outside of the display body 10 toward the front surface 10F, A color with a hue different from that of the reflection observation is visually recognized. Further, by making the structural period P in the concavo-convex structure layer 12 different between the first region 20A and the second region 20B, the color of the color visually recognized in the first region 20A and the second region 20B in the back surface transmission observation. The hue can be made different. According to such a configuration, an image such as a pattern composed of the first region 20A and the second region 20B, and further, the first region 20A, the second region 20B, and the auxiliary region 30 are formed even by backside transmission observation. An image such as a pattern is observed.
 なお、上記表面反射観察や裏面透過観察の結果は、表面10Fに向けた外光の光量が、裏面10Rに向けた外光の光量よりも高い場合においても、同様の傾向を示す。また、表示体10の表面10Fに照射される光は、白色の光でなくてもよい。 The results of the surface reflection observation and the back surface transmission observation show the same tendency even when the amount of external light directed toward the front surface 10F is higher than the amount of external light directed toward the back surface 10R. Moreover, the light irradiated to the surface 10F of the display body 10 may not be white light.
 [表示体の作用:表面透過観察、裏面反射観察]
 図24を参照して、裏面側から表示体10に光が入射しているときに、表面側および裏面側の各々から表示体10の表示領域20を観察した場合に視認される像について説明する。なお、図24では、理解を容易にするために、凹凸構造層12と金属層13とから構成されるプラズモン構造体層15を、1つの平坦な層として模式的に表し、多層膜層14を1つの平坦な層として模式的に表している。
[Function of display body: surface transmission observation, back surface reflection observation]
With reference to FIG. 24, an image that is visually recognized when the display area 20 of the display body 10 is observed from each of the front surface side and the back surface side when light is incident on the display body 10 from the back surface side will be described. . In FIG. 24, for easy understanding, the plasmon structure layer 15 composed of the concavo-convex structure layer 12 and the metal layer 13 is schematically represented as one flat layer, and the multilayer film layer 14 is represented as It is schematically represented as one flat layer.
 図24が示すように、表示体10の外側から裏面10Rに向けて白色の光I1が照射されると、光I1は、空気層から基材16に入り、基材16からプラズモン構造体層15に入る。 As shown in FIG. 24, when the white light I1 is irradiated from the outside of the display body 10 toward the rear surface 10R, the light I1 enters the base material 16 from the air layer and from the base material 16 to the plasmon structure layer 15 to go into.
 ここで、プラズモン構造体層15における平坦部12aの直上の領域は、凸部12bの基部と、金属層13のなかで凸部12bの間にて平坦部12aに積層されている部分とから構成されており、この領域の屈折率は、これら凸部12bの基部の屈折率と、凸部12bの間の金属層13の屈折率とによって、平均化された大きさに近似される。凸部12bの間の空間の体積が複数の凸部12bの体積よりも大きい構成であれば、平坦部12aの直上の領域の屈折率は、海成分である金属層13に支配された大きさとなり、空気層の屈折率よりも十分に低い。したがって、基材16に入射した光I1は、空気層よりも高い屈折率を有した基材16および凹凸構造層12の平坦部12aから、空気層よりも低い屈折率を有した上記平坦部12aの直上の部分に入るため、これらの境界でフレネル反射を生じやすい。 Here, the region immediately above the flat portion 12a in the plasmon structure layer 15 is composed of a base portion of the convex portion 12b and a portion of the metal layer 13 laminated on the flat portion 12a between the convex portions 12b. The refractive index of this region is approximated to the averaged size by the refractive index of the base portion of these convex portions 12b and the refractive index of the metal layer 13 between the convex portions 12b. If the volume of the space between the convex portions 12b is larger than the volume of the plurality of convex portions 12b, the refractive index of the region immediately above the flat portion 12a is controlled by the metal layer 13 that is a sea component. And is sufficiently lower than the refractive index of the air layer. Accordingly, the light I1 incident on the base material 16 has a refractive index lower than that of the air layer from the base material 16 having a higher refractive index than that of the air layer and the flat portion 12a of the concavo-convex structure layer 12. Fresnel reflection is likely to occur at these boundaries.
 一方で、プラズモン構造体層15に光I1が入射すると、プラズモン構造体層15では、プラズモン共鳴が生じる。結果として、光I1に含まれる一部の波長領域の光I5は反射光として表示体10の裏面側に射出され、光I1に含まれる一部の波長領域の光E2がプラズモン共鳴によって消費されることに基づき光I1に含まれる一部の波長領域の光I6がプラズモン構造体層15から射出される。さらに、光I6に含まれる波長領域の光I7が多層膜層14を透過して、表示体10の表面側に射出される。 On the other hand, when the light I1 enters the plasmon structure layer 15, plasmon resonance occurs in the plasmon structure layer 15. As a result, the light I5 in a part of the wavelength region included in the light I1 is emitted as reflected light to the back surface side of the display body 10, and the light E2 in a part of the wavelength region included in the light I1 is consumed by plasmon resonance. Based on this, light I6 in a partial wavelength region included in the light I1 is emitted from the plasmon structure layer 15. Further, the light I7 in the wavelength region included in the light I6 passes through the multilayer film layer 14 and is emitted to the surface side of the display body 10.
 光I5,I6の波長領域は、凹凸構造層12における構造周期Pによって調整可能であり、構造周期Pを変更することによって、表示体10の表面側に出る光I7の波長領域を変えることができる。また、光I7の波長領域は、多層膜層14における薄膜14aの構成によっても調整が可能である。 The wavelength region of the lights I5 and I6 can be adjusted by the structural period P in the concavo-convex structure layer 12. By changing the structural period P, the wavelength region of the light I7 emitted to the surface side of the display body 10 can be changed. . The wavelength region of the light I7 can also be adjusted by the configuration of the thin film 14a in the multilayer film layer 14.
 以上のように、表示体10の外側から裏面10Rに向けて白色の光I1が照射されている状態で、表示体10の表面側から表面10Fを観察する表面透過観察によれば、表示領域20にて、光I7の波長領域に応じた色相の色が視認される。この光I7の波長領域に応じた色は、白色および黒色とは異なる色である。 As described above, according to the surface transmission observation in which the surface 10F is observed from the surface side of the display body 10 in the state where the white light I1 is irradiated from the outside of the display body 10 toward the back surface 10R, the display region 20 Thus, the color of the hue corresponding to the wavelength region of the light I7 is visually recognized. The color corresponding to the wavelength region of the light I7 is different from white and black.
 また、表示体10の外側から裏面10Rに向けて白色の光I1が照射されている状態で、表示体10の裏面側から裏面10Rを観察する裏面反射観察によれば、表示領域20にて、光I5の波長領域に応じた色相の色が視認される。この光I5の波長領域に応じた色は、白色、黒色、および、光I7の波長領域に応じた色とは異なる色である。すなわち、表示領域20は、表面透過観察と裏面反射観察とで、互いに異なる色相の色に見える、あるいは、互いに異なる彩度や明度の色に見える。 Further, according to the back surface reflection observation in which the back surface 10R is observed from the back surface side of the display body 10 in the state where the white light I1 is irradiated from the outside of the display body 10 toward the back surface 10R, in the display region 20, The hue color corresponding to the wavelength region of the light I5 is visually recognized. The color corresponding to the wavelength region of the light I5 is white, black, and a color different from the color corresponding to the wavelength region of the light I7. In other words, the display area 20 appears to have a different hue color or to have a different saturation or lightness in the surface transmission observation and the back reflection observation.
 さらに、第1領域20Aと第2領域20Bとで、凹凸構造層12における構造周期Pを異ならせることにより、表面透過観察において、第1領域20Aと第2領域20Bとで視認される色の色相を異ならせることが可能であり、裏面反射観察においても、第1領域20Aと第2領域20Bとで視認される色の色相を異ならせることが可能である。こうした構成によれば、表面透過観察および裏面反射観察のいずれにおいても、第1領域20Aと第2領域20Bとから構成される絵柄等の像が観察される。 Furthermore, by changing the structural period P in the concavo-convex structure layer 12 between the first region 20A and the second region 20B, the hue of the color visually recognized in the first region 20A and the second region 20B in the surface transmission observation In the back surface reflection observation, it is possible to make the hues of the colors visually recognized in the first region 20A and the second region 20B different. According to such a configuration, an image such as a pattern composed of the first region 20A and the second region 20B is observed in both the front surface transmission observation and the back surface reflection observation.
 また、補助領域30についての表面透過観察では、裏面透過観察と同様に、補助領域30は、黒色に近い暗色に視認される。また、補助領域30についての裏面反射観察では、表面反射観察と同様に、補助領域30は、金属層13の材料に応じた色相で金属光沢を有するように見える。したがって、表面透過観察および裏面反射観察のいずれにおいても、表示領域20と補助領域30とから構成される絵柄等の像が観察される。 Further, in the surface transmission observation for the auxiliary region 30, the auxiliary region 30 is visually recognized as a dark color close to black, as in the rear surface transmission observation. In the back surface reflection observation for the auxiliary region 30, the auxiliary region 30 appears to have a metallic luster with a hue corresponding to the material of the metal layer 13, as in the front surface reflection observation. Therefore, an image such as a picture composed of the display area 20 and the auxiliary area 30 is observed in both the front surface transmission observation and the back surface reflection observation.
 なお、上記表面透過観察や裏面反射観察の結果は、裏面10Rに向けた外光の光量が、表面10Fに向けた外光の光量よりも高い場合においても、同様の傾向を示す。また、表示体10の裏面10Rに照射される光は、白色の光でなくてもよい。 The results of the surface transmission observation and the back surface reflection observation show the same tendency even when the amount of external light directed to the back surface 10R is higher than the amount of external light directed to the front surface 10F. Moreover, the light irradiated to the back surface 10R of the display body 10 may not be white light.
 また、プラズモン構造体層15にて、光I5の反射や光E2の消費が起こるため、表示体10がプラズモン構造体層15を備えていない構成と比較して、裏面10Rに向けて照射された光I1のなかで表示体10の全体を透過する光は減少する。したがって、表示体10の表面10Fと裏面10Rとに光I1が照射されている場合には、プラズモン構造体層15の存在によって、表面10Fに照射された光I1のなかで多層膜層14での反射光以外の光が表面側に返ってくることが抑えられるとともに、裏面10Rに照射された光I1に含まれる光が表示体10を透過して表面側に出ることも抑えられる。これによっても、表面反射観察に際して表示領域20にて視認される色相の鮮明さが高められる。 Further, since the reflection of the light I5 and the consumption of the light E2 occur in the plasmon structure layer 15, the display body 10 is irradiated toward the back surface 10R as compared with the configuration in which the plasmon structure layer 15 is not provided. The light transmitted through the entire display body 10 in the light I1 decreases. Therefore, when the light I1 is irradiated on the front surface 10F and the back surface 10R of the display body 10, the presence of the plasmon structure layer 15 causes the multi-layer film layer 14 in the light I1 irradiated on the front surface 10F. Light other than the reflected light is suppressed from returning to the front surface side, and light included in the light I1 irradiated to the back surface 10R is prevented from passing through the display body 10 and exiting to the front surface side. This also enhances the clearness of the hue visually recognized in the display area 20 during the surface reflection observation.
 図25は、第2適用形態の表示体10の具体例として、眼鏡90のレンズに貼り付けられた表示体10を示す。例えば、表示体10の表面10Fが外側に向けられており、外光が眼鏡90に当たっている状態では、眼鏡90の外側からは、表面反射観察による像が視認され、眼鏡の内側からは、裏面透過観察による像が視認される。なお、表示体10の表示領域20がレンズの全面を覆っていてもよい。外光が強ければ、眼鏡90の装着者からは、眼鏡90の外側の光景が、表示体10の裏面10Rから出た光の波長に応じた色相を帯びつつ、視認可能である。 FIG. 25 shows the display body 10 attached to the lens of the glasses 90 as a specific example of the display body 10 of the second application form. For example, when the front surface 10F of the display body 10 is directed outward and external light hits the spectacles 90, an image obtained by surface reflection observation is visually recognized from the outside of the spectacles 90, and the back surface is transmitted from the inside of the spectacles. The image by observation is visually recognized. The display area 20 of the display body 10 may cover the entire surface of the lens. If the external light is strong, the spectacle outside the spectacles 90 can be visually recognized from the wearer of the spectacles 90 while having a hue corresponding to the wavelength of the light emitted from the back surface 10R of the display body 10.
 また、その他の例として、表示体10は、窓に取り付けられてもよい。表示体10の表面10Fが外側に向けられており、例えば昼間に外光が窓に当たっている状態では、窓の外側からは、表面反射観察による像が視認され、窓の内側からは、裏面透過観察による像が視認される。一方、例えば夜間に室内が点灯されている状態では、窓の外側からは、表面透過観察による像が視認され、窓の内側からは、裏面反射観察による像が視認される。 As another example, the display body 10 may be attached to a window. When the surface 10F of the display 10 is directed to the outside, for example, in the state in which outside light hits the window during the daytime, an image by surface reflection observation is visually recognized from the outside of the window, and backside transmission observation is performed from the inside of the window. The image by is visually recognized. On the other hand, for example, in a state where the room is lit at night, an image by front surface observation is visually recognized from the outside of the window, and an image by back surface reflection observation is visually recognized from the inside of the window.
 以上、第2適用形態によれば、第1適用形態の(3-1)~(3-7)の効果に加えて、以下の効果が得られる。
 (3-8)表示体10の外側から表面10Fに向けて光が照射されているとき、表面反射観察と裏面透過観察とで、表示領域20には異なる色相の色が視認される。また、表示体10の外側から裏面10Rに向けて光が照射されているとき、表面透過観察と裏面反射観察とで、表示領域20には異なる色相の色が視認される。このように、表示体10を表面側から観察した場合と裏面側から観察した場合とで、視認される像の色相が異なるため、表示体10を備える物品にて、偽造の困難性や意匠性がより高められる。また、表示体10の表裏の識別も容易である。
As described above, according to the second application form, in addition to the effects (3-1) to (3-7) of the first application form, the following effects can be obtained.
(3-8) When light is irradiated from the outside of the display body 10 toward the front surface 10F, colors of different hues are visually recognized in the display area 20 in the front surface reflection observation and the rear surface transmission observation. In addition, when light is irradiated from the outside of the display body 10 toward the back surface 10R, colors of different hues are visually recognized in the display region 20 in the front surface transmission observation and the back surface reflection observation. Thus, since the hue of the image visually recognized is different between the case where the display body 10 is observed from the front surface side and the case where the display body 10 is observed from the back surface side, it is difficult to counterfeit or design the article provided with the display body 10. Is further enhanced. Further, the front and back of the display body 10 can be easily identified.
 さらに、各観察における第1領域20Aと第2領域20Bとの色相の違いや、表示領域20と補助領域30との色の違い等の組み合わせによって、多様な像の表現が可能であり、表示体10を備える物品にて、偽造の困難性や意匠性が一層高められる。 Furthermore, various images can be expressed by combining the difference in hue between the first area 20A and the second area 20B in each observation, the difference in color between the display area 20 and the auxiliary area 30, and the like. In the article provided with 10, the forgery difficulty and the design are further enhanced.
 <第3適用形態>
 図26から図28を参照して、第3適用形態について説明する。第3適用形態は、表示体付きデバイスの実施形態である。
<Third application form>
The third application mode will be described with reference to FIGS. The third application form is an embodiment of a device with a display body.
 図26が示すように、表示体付きデバイス150は、表示体10と太陽電池50とを備えている。太陽電池50は、太陽電池50における受光領域が表示体10の裏面10Rと対向する位置に配置されており、例えば、表示体10の裏面10Rと太陽電池50の受光領域とは接している。太陽電池50は、受光領域に入射した光のエネルギーから電力を生成する。 As shown in FIG. 26, the display-equipped device 150 includes the display body 10 and the solar battery 50. In the solar cell 50, the light receiving region in the solar cell 50 is disposed at a position facing the back surface 10 </ b> R of the display body 10. For example, the back surface 10 </ b> R of the display body 10 and the light receiving region of the solar cell 50 are in contact with each other. The solar cell 50 generates electric power from the energy of light incident on the light receiving region.
 例えば、表示体付きデバイス150は、太陽電池によって駆動する時計に具体化され、このとき、表示体10は文字盤として用いられて、物品の意匠性を高める。例えば、図27が示すように、表示体10の表面10Fにおいて、第1領域20Aと第2領域20Bと補助領域30とは、装飾のための絵柄や、時刻表示のための数字や文字等を構成している。数字や文字や絵柄の一部は、表示領域20および補助領域30とは異なる構成、例えば、表面10Fに対する樹脂や金属の貼付によって形成されていてもよい。 For example, the display-equipped device 150 is embodied in a timepiece driven by a solar cell, and at this time, the display 10 is used as a dial to enhance the design of the article. For example, as shown in FIG. 27, on the surface 10F of the display body 10, the first area 20A, the second area 20B, and the auxiliary area 30 include a pattern for decoration, numbers and characters for time display, and the like. It is composed. Some of the numbers, characters, and patterns may be formed by a configuration different from that of the display area 20 and the auxiliary area 30, for example, by applying a resin or metal to the surface 10F.
 なお、表示体付きデバイス150は、時計に限らず、太陽電池50によって駆動するデバイスであればよく、例えば、太陽電池50の駆動対象は表示装置等であってもよい。要は、表示体付きデバイス150は、表示体10に対して裏面側に太陽電池50が位置する構成を有していればよい。また、太陽電池50は、表示体10の裏面10Rの一部の領域と対向していてもよく、少なくとも表示領域20と対向していればよい。 Note that the display-equipped device 150 is not limited to a watch, and may be any device that is driven by the solar cell 50. For example, the drive target of the solar cell 50 may be a display device or the like. In short, the device 150 with a display body should just have the structure where the solar cell 50 is located in the back surface side with respect to the display body 10. FIG. Further, the solar cell 50 may face a part of the back surface 10 </ b> R of the display body 10 as long as it faces at least the display area 20.
 [表示体付きデバイスの作用]
 図28を参照して、表示体付きデバイス150に入射した光の進行の態様について説明する。なお、図28では、理解を容易にするために、表示体10の表示領域20について、凹凸構造層12と金属層13とから構成されるプラズモン構造体層15を、1つの平坦な層として模式的に表し、多層膜層14を1つの平坦な層として模式的に表している。
[Operation of device with display]
With reference to FIG. 28, the mode of travel of light incident on the display-equipped device 150 will be described. In FIG. 28, for easy understanding, the plasmon structure body layer 15 including the concavo-convex structure layer 12 and the metal layer 13 is schematically illustrated as one flat layer in the display region 20 of the display body 10. The multilayer film layer 14 is schematically represented as one flat layer.
 図28が示すように、表示体付きデバイス150の外側から表示体10の表面10Fに向けて太陽光I1が照射されたとき、第1適用形態と同様に、表示領域20では、表示体10の表面側に、多層膜層14によって強められた波長領域の光I2が射出される。したがって、表示体10の表面側から見て、光I2の波長領域に応じた色相の色が、表示領域20にて視認される。 As shown in FIG. 28, when the sunlight I1 is irradiated from the outside of the display-equipped device 150 toward the surface 10F of the display body 10, in the display area 20, the display area 10 The light I2 in the wavelength region strengthened by the multilayer film layer 14 is emitted on the surface side. Therefore, when viewed from the surface side of the display body 10, the hue color corresponding to the wavelength region of the light I <b> 2 is visually recognized in the display region 20.
 第1適用形態にて説明したように、表示体10がプラズモン構造体層15を備えていることにより、多層膜層14を透過した光が、表示体10の内部での反射等によって表示体10の表面側に射出されることが抑えられるため、表面側から見た表示領域20の色相の鮮明さが高められる。 As described in the first application mode, since the display body 10 includes the plasmon structure layer 15, the light transmitted through the multilayer film layer 14 is reflected by the reflection inside the display body 10 or the like. Therefore, the clearness of the hue of the display area 20 as viewed from the surface side is enhanced.
 一方、多層膜層14を透過した光I3に含まれる一部の波長領域の光E1がプラズモン構造体層15におけるプラズモン共鳴によって消費されることに基づき、光I3に含まれる一部の波長領域の光I4がプラズモン構造体層15から射出されて基材16を透過し、表示体10の裏面側に射出される。そして、射出された光I4が、太陽電池50の受光領域に入射する。これにより、太陽電池50は、入射した光I4のエネルギーから電力を生成する。 On the other hand, based on the fact that the light E1 in a part of the wavelength region included in the light I3 transmitted through the multilayer film layer 14 is consumed by the plasmon resonance in the plasmon structure layer 15, the light in the part of the wavelength region included in the light I3. Light I <b> 4 is emitted from the plasmon structure layer 15, passes through the base material 16, and is emitted to the back surface side of the display body 10. Then, the emitted light I4 enters the light receiving region of the solar cell 50. Thereby, the solar cell 50 generates electric power from the energy of the incident light I4.
 上述のように、プラズモン構造体層15から射出される光I4の波長領域は、凹凸構造層12における構造周期Pなどに応じて決まるため、構造周期Pを変更することによって、表示体10の裏面側に出る光I4の波長領域を変えることができる。したがって、構造周期Pの調整によって、光I4の波長領域を太陽電池50にて効率よく吸収される波長領域に調整し、太陽電池50における光電変換に寄与しない波長領域による色を表示領域20が呈する構造色とすることもできる。 As described above, since the wavelength region of the light I4 emitted from the plasmon structure layer 15 is determined according to the structure period P in the concavo-convex structure layer 12, the back surface of the display body 10 is changed by changing the structure period P. The wavelength region of the light I4 emitted to the side can be changed. Therefore, by adjusting the structural period P, the wavelength region of the light I4 is adjusted to a wavelength region that is efficiently absorbed by the solar cell 50, and the display region 20 exhibits a color due to the wavelength region that does not contribute to photoelectric conversion in the solar cell 50. It can also be a structural color.
 なお、表示体10の表面側から補助領域30を観察した場合、第1適用形態と同様に、補助領域30は、金属層13の材料に応じた色相で金属光沢を有するように見える。
 以上のように、表示体付きデバイス150の外側から表示体10の表面10Fに向けて光I1が照射されている状態で、表示体10の表面側から表面10Fを観察すると、第1適用形態の表面反射観察と同様の像が観察される。そして、表示体10の裏面側から射出された光I4が、太陽電池50による発電に利用される。
When the auxiliary region 30 is observed from the surface side of the display body 10, the auxiliary region 30 appears to have a metallic luster with a hue corresponding to the material of the metal layer 13 as in the first application mode.
As described above, when the surface 10F is observed from the surface side of the display body 10 in the state in which the light I1 is irradiated from the outside of the device 150 with the display body toward the surface 10F of the display body 10, the first application form is obtained. An image similar to the surface reflection observation is observed. The light I <b> 4 emitted from the back side of the display body 10 is used for power generation by the solar cell 50.
 時計の文字盤に意匠性を高めるための絵柄等を付そうとするとき、光を透過しない材料によって像を形成すれば、材料選択の自由度が高まるため多様な像の表現が可能ではあるが、文字盤の一部に、太陽電池へ光を入射させるための孔を形成せざるを得ない。こうした孔を大きくすれば、太陽電池へ入射する光量が大きくなって発電効率は高まるものの意匠性は低下し、一方で、孔を小さくすれば、意匠性は高まるものの太陽電池へ入射する光量が少なくなって発電効率が低下する。 If you want to add a design to the dial of the watch to enhance its design, if you form the image with a material that does not transmit light, you will be able to express a variety of images because the freedom of material selection will increase. A hole for allowing light to enter the solar cell must be formed in a part of the dial. Increasing the size of these holes increases the amount of light incident on the solar cell and increases the power generation efficiency, but decreases the designability. On the other hand, reducing the size of the hole increases the design but reduces the amount of light incident on the solar cell. As a result, power generation efficiency decreases.
 これに対し、第3適用形態の表示体付きデバイス150を太陽電池によって駆動する時計に具体化した構成では、表示領域20を、像を形成するための領域として利用するとともに、太陽電池へ光を通す領域としても利用できる。したがって、意匠性を高めることと太陽電池の発電効率を高めることとの両立が可能である。 On the other hand, in the configuration in which the device 150 with the display body of the third application form is embodied in a watch driven by a solar cell, the display region 20 is used as a region for forming an image and light is applied to the solar cell. It can also be used as a passing area. Therefore, it is possible to improve both the design properties and the power generation efficiency of the solar cell.
 以上、第3適用形態によれば、第1適用形態の(3-1)~(3-7)の効果に加えて、以下の効果が得られる。
 (3-9)表示体付きデバイス150の外側から表示体10の表面10Fに向けて光が照射されている状態で、表示体10の表面側から表面10Fを観察すると、表示領域20にて、色相の鮮明さが高められた像が視認される。そして、表示領域20を透過して表示体10の裏面側から射出された所定の波長の光が、太陽電池50による発電に利用される。したがって、表示領域20を、像を形成するための領域として利用するとともに、太陽電池50へ光を通す領域としても利用できるため、表示体付きデバイス150の意匠性を高めることと太陽電池50の発電効率を高めることとの両立が可能である。
As described above, according to the third application form, in addition to the effects (3-1) to (3-7) of the first application form, the following effects can be obtained.
(3-9) When the surface 10F is observed from the surface side of the display body 10 in a state where light is irradiated from the outside of the device with display body 150 toward the surface 10F of the display body 10, in the display region 20, An image with enhanced hue clarity is visible. Then, light having a predetermined wavelength that is transmitted through the display region 20 and emitted from the back surface side of the display body 10 is used for power generation by the solar cell 50. Therefore, since the display region 20 can be used as a region for forming an image and also used as a region for transmitting light to the solar cell 50, it is possible to improve the design of the device 150 with a display body and to generate power from the solar cell 50. It is possible to achieve both efficiency.
 <第4適用形態>
 図29から図31を参照して、第4適用形態について説明する。第4適用形態は、表示体付きデバイスの実施形態である。
<4th application form>
The fourth application mode will be described with reference to FIGS. 29 to 31. A 4th application form is embodiment of the device with a display body.
 図29が示すように、表示体付きデバイス160は、表示体10と、光を放つことが可能に構成された光射出構造体60とを備えている。光射出構造体60は、光射出構造体60に照射された光を反射によって射出する構造体、もしくは、光射出構造体60自身の発光によって光を射出する構造体である。例えば、光射出構造体60は、白色光下において白色に見える構造体である。 As shown in FIG. 29, the display-equipped device 160 includes the display body 10 and a light emitting structure 60 configured to emit light. The light emitting structure 60 is a structure that emits light irradiated to the light emitting structure 60 by reflection, or a structure that emits light by light emission of the light emitting structure 60 itself. For example, the light emission structure 60 is a structure that looks white under white light.
 光射出構造体60は、表示体10の裏面10Rの一部と対向する位置に配置されており、光射出構造体60と裏面10Rとは離間している。すなわち、表示体10の表面10Fと対向する方向から見て、表面10Fには、光射出構造体60と重なる領域と、光射出構造体60と重ならない領域とが含まれる。詳細には、光射出構造体60は、表示領域20の一部と対向する位置に配置されている。 The light emitting structure 60 is disposed at a position facing a part of the back surface 10R of the display body 10, and the light emitting structure 60 and the back surface 10R are separated from each other. That is, when viewed from the direction facing the surface 10 </ b> F of the display body 10, the surface 10 </ b> F includes a region overlapping the light emission structure 60 and a region not overlapping the light emission structure 60. Specifically, the light emission structure 60 is disposed at a position facing a part of the display area 20.
 例えば、図30が示すように、表示体付きデバイス160は、表示体10が文字盤であって、光射出構造体60が文字盤の下に配置された歯車等の部品である時計に具体化される。なお、表示体付きデバイス160は、時計に限らず、表示体10に対して裏面側に光射出構造体60が配置された構成を有していればよい。 For example, as shown in FIG. 30, the display-equipped device 160 is embodied as a watch in which the display body 10 is a dial and the light emission structure 60 is a component such as a gear disposed below the dial. Is done. The display-equipped device 160 is not limited to the watch, and may have a configuration in which the light emitting structure 60 is disposed on the back surface side with respect to the display body 10.
 [表示体付きデバイスの作用]
 図31を参照して、表示体付きデバイス160に入射する光の進行の態様について説明する。なお、図31では、理解を容易にするために、表示体10の表示領域20について、凹凸構造層12と金属層13とから構成されるプラズモン構造体層15を、1つの平坦な層として模式的に表し、多層膜層14を1つの平坦な層として模式的に表している。
[Operation of device with display]
With reference to FIG. 31, the aspect of the light traveling on the display-equipped device 160 will be described. In FIG. 31, for easy understanding, the plasmon structure layer 15 including the concavo-convex structure layer 12 and the metal layer 13 is schematically illustrated as one flat layer in the display region 20 of the display body 10. The multilayer film layer 14 is schematically represented as one flat layer.
 図31が示すように、表示体付きデバイス160の外側から表示体10の表面10Fに向けて白色の光I1が照射されたとき、表示領域20のなかで表示体10の裏面側に光射出構造体60が配置されていない部分では、表示体10の表面側には、第1適用形態と同様に、多層膜層14によって強められた波長領域の光I2が射出される。したがって、表示体10の表面側から見た場合、表示領域20のなかで光射出構造体60と重なっていない部分では、光I2の波長領域に応じた色相の色が視認される。 As shown in FIG. 31, when the white light I <b> 1 is irradiated from the outside of the display-equipped device 160 toward the surface 10 </ b> F of the display body 10, the light emission structure is formed on the back surface side of the display body 10 in the display region 20. In the portion where the body 60 is not disposed, the light I2 in the wavelength region enhanced by the multilayer film layer 14 is emitted to the surface side of the display body 10 as in the first application mode. Accordingly, when viewed from the surface side of the display body 10, the color of the hue corresponding to the wavelength region of the light I <b> 2 is visually recognized in a portion of the display region 20 that does not overlap the light emitting structure 60.
 第1適用形態にて説明したように、表示体10がプラズモン構造体層15を備えていることにより、多層膜層14を透過した光が、表示体10の内部での反射等によって表示体10の表面側に射出されることが抑えられるため、表示領域20のなかで光射出構造体60と重なっていない部分にて視認される色相の鮮明さが高められる。 As described in the first application mode, since the display body 10 includes the plasmon structure layer 15, the light transmitted through the multilayer film layer 14 is reflected by the reflection inside the display body 10 or the like. Therefore, the clearness of the hue that is visually recognized in a portion that does not overlap the light emitting structure 60 in the display region 20 is enhanced.
 一方、多層膜層14を透過した光I3に含まれる一部の波長領域の光E1がプラズモン構造体層15におけるプラズモン共鳴によって消費されることに基づき、光I3に含まれる一部の波長領域の光I4がプラズモン構造体層15から射出されて基材16を透過し、表示体10の裏面側に射出される。そして、表示体10の裏面側に光射出構造体60が位置している部分では、光射出構造体60から、表示体10の裏面10Rに向けて、光I8が射出される。光射出構造体60が光射出構造体60に照射された光を反射によって射出する構造体である場合、この光I8は、表示体10から射出された光I4を光射出構造体60が反射した光であってもよいし、光射出構造体60の付近に設けられた光源から光射出構造体60に照射された光を光射出構造体60が反射した光であってもよい。また、光射出構造体60が自身の発光によって光を射出する構造体である場合、光I8は、光射出構造体60の発光によって生じた光である。 On the other hand, based on the fact that the light E1 in a part of the wavelength region included in the light I3 transmitted through the multilayer film layer 14 is consumed by the plasmon resonance in the plasmon structure layer 15, the light in the part of the wavelength region included in the light I3. Light I <b> 4 is emitted from the plasmon structure layer 15, passes through the base material 16, and is emitted to the back surface side of the display body 10. Then, in a portion where the light emitting structure 60 is located on the back side of the display body 10, light I8 is emitted from the light emitting structure 60 toward the back surface 10 </ b> R of the display body 10. When the light emitting structure 60 is a structure that emits the light emitted to the light emitting structure 60 by reflection, the light I8 is reflected by the light emitting structure 60 from the light I4 emitted from the display body 10. The light may be light, or may be light reflected by the light emitting structure 60 from the light emitted to the light emitting structure 60 from a light source provided in the vicinity of the light emitting structure 60. When the light emitting structure 60 is a structure that emits light by its own light emission, the light I8 is light generated by the light emission of the light emitting structure 60.
 表示体10の裏面10Rに向けて光I8が照射されると、光I8は、基材16に入り、基材16からプラズモン構造体層15に入る。
 プラズモン構造体層15に光I8が達すると、第2適用形態の表面透過観察と同様に、光I8に含まれる一部の波長領域の光I9は反射光として表示体10の裏面側に射出され、光I8に含まれる一部の波長領域の光E3がプラズモン共鳴によって消費されることに基づき光I8に含まれる一部の波長領域の光I10がプラズモン構造体層15から射出される。さらに、光I10に含まれる波長領域の光I11が多層膜層14を透過して、表示体10の表面側に射出される。
When the light I8 is irradiated toward the back surface 10R of the display body 10, the light I8 enters the base material 16 and enters the plasmon structure layer 15 from the base material 16.
When the light I8 reaches the plasmon structure layer 15, the light I9 in a part of the wavelength region included in the light I8 is emitted as reflected light to the back surface side of the display body 10 as in the surface transmission observation of the second application form. The light I3 in the partial wavelength region included in the light I8 is emitted from the plasmon structure layer 15 based on the consumption of the light E3 in the partial wavelength region included in the light I8 by plasmon resonance. Further, the light I11 in the wavelength region included in the light I10 passes through the multilayer film layer 14 and is emitted to the surface side of the display body 10.
 光I9,I10の波長領域は、凹凸構造層12における構造周期Pによって調整可能であり、構造周期Pを変更することによって、表示体10の表面側に出る光I11の波長領域を変えることができる。また、光I11の波長領域は、多層膜層14における薄膜14aの構成によっても調整が可能である。 The wavelength region of the lights I9 and I10 can be adjusted by the structural period P in the concavo-convex structure layer 12, and by changing the structural period P, the wavelength region of the light I11 emitted to the surface side of the display body 10 can be changed. . The wavelength region of the light I11 can also be adjusted by the configuration of the thin film 14a in the multilayer film layer 14.
 したがって、表示体10の表面側から見た場合、表示領域20のなかで光射出構造体60と重なっている部分では、光I2と光I11との波長領域に応じた色相の色が視認される。 Therefore, when viewed from the front surface side of the display body 10, the color of the hue corresponding to the wavelength region of the light I <b> 2 and the light I <b> 11 is visually recognized in the portion of the display region 20 that overlaps the light emitting structure 60. .
 結果として、表示体付きデバイス160の外側から表示体10の表面10Fに向けて白色の光I1が照射されている状態で、表示体10の表面側から表面10Fを観察すると、表示領域20のなかで光射出構造体60と重なっている部分と、光射出構造体60と重なっていない部分とが、互いに異なる色相の色に見える、あるいは、互いに異なる彩度や明度の色に見える。したがって、光射出構造体60の形状に応じた像が視認され、さらに、第1領域20Aと第2領域20Bとの色相の違いや、表示領域20と補助領域30との色の違い等の組み合わせによって、多様な像の表現が可能である。 As a result, when the surface 10F is observed from the surface side of the display body 10 in a state where the white light I1 is irradiated from the outside of the device with display body 160 toward the surface 10F of the display body 10, the display area 20 Thus, the portion overlapping with the light emitting structure 60 and the portion not overlapping with the light emitting structure 60 appear to have different hue colors, or appear to have different saturation and lightness colors. Therefore, an image corresponding to the shape of the light emitting structure 60 is visually recognized, and further, a combination of a difference in hue between the first region 20A and the second region 20B, a difference in color between the display region 20 and the auxiliary region 30, and the like. It is possible to express various images.
 また、光射出構造体60に対する光の照射の入切や光射出構造体60の発光の入切によって、光射出構造体60の形状に応じた像が見えたり見えなかったりするように、像の視認性の調節も可能である。これによっても、より多様な像の表現が可能である。 In addition, the image of the image is displayed so that an image corresponding to the shape of the light emitting structure 60 can be seen or not seen by turning on and off the light irradiation to the light emitting structure 60 and turning on and off the light emission of the light emitting structure 60. The visibility can be adjusted. This also makes it possible to express more diverse images.
 以上、第4適用形態によれば、第1適用形態の(3-1)~(3-7)の効果に加えて、以下の効果が得られる。
 (3-10)光射出構造体60から射出された光の一部が表示体10の表示領域20を透過して表面側に射出される。したがって、表示体付きデバイス160の外側から表示体10の表面10Fに向けて光が照射されている状態で、表示体10の表面側から表面10Fを観察すると、表示領域20のなかで光射出構造体60と重なっている部分と、光射出構造体60と重なっていない部分とが、互いに異なる色に見える。それゆえ、光射出構造体60の形状に応じた像が視認され、より多様な像の表現が可能であり、表示体付きデバイス160における偽造の困難性や意匠性がより高められる。
As described above, according to the fourth application form, in addition to the effects (3-1) to (3-7) of the first application form, the following effects can be obtained.
(3-10) Part of the light emitted from the light emitting structure 60 passes through the display area 20 of the display body 10 and is emitted to the surface side. Therefore, when the surface 10F is observed from the surface side of the display body 10 in a state where light is irradiated from the outside of the device with display body 160 toward the surface 10F of the display body 10, a light emission structure is formed in the display region 20. A portion overlapping with the body 60 and a portion not overlapping with the light emitting structure 60 appear to be different colors. Therefore, an image corresponding to the shape of the light emitting structure 60 is visually recognized, and more various images can be expressed, and the forgery difficulty and design of the display-equipped device 160 are further enhanced.
 以上のように、第3実施形態においても、表示体からは、プラズモン共鳴に起因して、特定の波長領域の光が反射光もしくは透過光として射出される。そして、各凸部12bである周期要素の位置や大きさと、各周期要素によって位置が定まる金属層とを含む複数の因子によって、上記透過光や反射光の波長領域が定まるため、表示体にて透過あるいは反射される波長領域の調整の自由度を高めることができる。 As described above, also in the third embodiment, light of a specific wavelength region is emitted from the display body as reflected light or transmitted light due to plasmon resonance. Since the wavelength region of the transmitted light and the reflected light is determined by a plurality of factors including the position and size of the periodic element that is each convex portion 12b and the metal layer that is determined by each periodic element, the display body It is possible to increase the degree of freedom in adjusting the wavelength region that is transmitted or reflected.
 <変形例>
 上記各適用形態は、以下のように変更してもよい。
 ・表示領域20が第3領域を含み、第3領域において、凹凸構造層12の構造周期Pが一定でなく、第3領域における構造周期Pの平均値に対して例えば1/10である所定の標準偏差を有して構造周期Pが分布するように、表面10Fと対向する方向から見た各凸部12bの位置が決定されていてもよい。こうした構成によれば、第3領域は、極微小な領域にて互いに異なる色相を呈し、全体としては、表面反射観察において、これらの色相が混じった色に視認される。したがって、第3領域を白色に近い色に視認されるように構成することも可能であり、表示領域20が構成する像が有する色彩についての自由度が高まる。
<Modification>
You may change each said application form as follows.
The display region 20 includes the third region, and in the third region, the structural period P of the uneven structure layer 12 is not constant, and is a predetermined value that is, for example, 1/10 of the average value of the structural period P in the third region The position of each convex part 12b seen from the direction facing the surface 10F may be determined so that the structural period P is distributed with a standard deviation. According to such a configuration, the third region exhibits different hues in a very small region, and as a whole, the surface is visually recognized as a color in which these hues are mixed in the surface reflection observation. Therefore, it is possible to configure the third region so as to be visually recognized as a color close to white, and the degree of freedom regarding the colors of the image formed in the display region 20 is increased.
 ・表示領域20には、互いに異なる色相を呈する3以上の領域が含まれてもよい。また、表示領域20は、1種類の色相を呈する領域であってもよく、この場合でも、表示体10が色相の鮮明さの高められた表示領域20を有することにより、他の表示体との組み合わせや物品に付されている装飾との組み合わせ等によって、物品の偽造の困難性や意匠性の向上が可能である。 The display area 20 may include three or more areas that exhibit different hues. Further, the display area 20 may be an area exhibiting one kind of hue, and even in this case, the display body 10 has the display area 20 with enhanced hue clarity, so It is possible to improve the difficulty of counterfeiting the article and improve the design by combining the combination with a decoration attached to the article.
 ・補助領域30は、表示体10の表面側から反射光を見る場合に金属光沢が視認される領域であればよく、例えば、金属層13と基材16との間に、凹凸構造層12の平坦部12aと連続する平坦な樹脂層を備えていてもよい。あるいは、補助領域30は、表示領域20の金属層13とは別の層である金属層を備えていてもよい。 The auxiliary region 30 may be a region where the metallic luster is visually recognized when the reflected light is viewed from the surface side of the display body 10, for example, between the metal layer 13 and the substrate 16, A flat resin layer continuous with the flat portion 12a may be provided. Alternatively, the auxiliary region 30 may include a metal layer that is a layer different from the metal layer 13 in the display region 20.
 ・表示体10は補助領域30を含まなくてもよく、表示領域20のみから構成されてもよいし、表示領域20に加えて、例えば、基材16と樹脂層とを備えて表面反射観察にて樹脂層の材料に応じた色に見える領域を有していてもよい。 The display body 10 does not need to include the auxiliary region 30 and may be configured only by the display region 20. In addition to the display region 20, for example, the display body 10 includes a base material 16 and a resin layer for surface reflection observation. And may have a region that looks like a color corresponding to the material of the resin layer.
 ・第3適用形態と第4適用形態が組み合わされてもよい。すなわち、表示体付きデバイスは、表示体10と、表示体の裏面側に配置された太陽電池50および光射出構造体60とを備えていてもよい。 · The third application form and the fourth application form may be combined. That is, the device with a display body may include the display body 10 and the solar cell 50 and the light emitting structure 60 disposed on the back surface side of the display body.
 <付記>
 上記課題を解決するための手段には、第3実施形態、および、その変形例から導き出される技術的思想として以下の項目が含まれる。
<Appendix>
Means for solving the above-mentioned problems include the following items as technical ideas derived from the third embodiment and its modifications.
 [項目21]
 表面と裏面とを有する表示体であって、前記裏面から前記表面に向かう方向に突出する複数の凸部であって、前記表面と対向する方向から見てサブ波長周期を有した二次元格子状に位置する前記複数の凸部を備えた誘電体である凹凸構造層と、前記凹凸構造層の表面に位置し、前記凹凸構造層の表面形状に追従する形状を有した金属層と、多層膜干渉を生じさせる多層膜層であって、前記金属層の表面に位置し、前記凹凸構造層と前記金属層とからなる構造体を覆う前記多層膜層と、を備える表示体。
[Item 21]
A display body having a front surface and a back surface, a plurality of convex portions protruding in a direction from the back surface toward the front surface, and having a sub-wavelength period when viewed from a direction facing the front surface A concavo-convex structure layer that is a dielectric having the plurality of convex portions located on the surface, a metal layer that is located on the surface of the concavo-convex structure layer and has a shape that follows the surface shape of the concavo-convex structure layer, and a multilayer film A display body, comprising: a multilayer film layer that causes interference, the multilayer film layer positioned on a surface of the metal layer and covering a structure including the uneven structure layer and the metal layer.
 上記構成によれば、表示体の外側から表示体の表面に向けて光が照射されると、多層膜層では所定の波長領域の光が干渉により強められて、表示体の表面側に射出される。そして、金属層と凹凸構造層とからなる構造体では、多層膜層を透過した光が、プラズモン共鳴現象により表面プラズモンとなって上記構造体を透過することや、凹凸構造層上に位置する金属層の局所的に薄くなっている部分から上記構造体を透過することが起こる。なお、上記構造体を透過した表面プラズモンは、裏面側に射出される際に光に再変換される。したがって、多層膜層を透過した光が表示体の表面側に射出されることが抑えられる。それゆえ、表示体の表面側において、多層膜層によって強められた波長領域の光とは異なる波長領域の光が射出することが抑えられるため、表面側から表示体を見た場合に視認される色相の鮮明さが高められる。 According to the above configuration, when light is irradiated from the outside of the display body toward the surface of the display body, light in a predetermined wavelength region is strengthened by interference in the multilayer film layer and emitted to the surface side of the display body. The In a structure composed of a metal layer and a concavo-convex structure layer, light transmitted through the multilayer film becomes surface plasmon by the plasmon resonance phenomenon and passes through the structure, or a metal located on the concavo-convex structure layer. Permeation of the structure occurs from locally thinned portions of the layer. In addition, the surface plasmon which permeate | transmitted the said structure is reconverted into light, when it inject | emits to a back surface side. Therefore, the light transmitted through the multilayer film layer can be suppressed from being emitted to the surface side of the display body. Therefore, on the surface side of the display body, since light in a wavelength region different from the light in the wavelength region strengthened by the multilayer film layer is suppressed, it is visually recognized when the display body is viewed from the surface side. Hue clarity is enhanced.
 [項目22]
 前記凹凸構造層と前記金属層と前記多層膜層とを備える領域が表示領域であり、前記表示領域は、前記表面と対向する方向から見て、第1領域と第2領域とを含み、前記表示体の外側から前記表面に向けて白色の光を照射して前記表示体を前記表面と対向する方向から観察する表面反射観察において、前記第1領域と前記第2領域とは、互いに異なる色相の色を呈するように構成されている項目21に記載の表示体。
[Item 22]
A region including the concavo-convex structure layer, the metal layer, and the multilayer film layer is a display region, and the display region includes a first region and a second region when viewed from a direction facing the surface, In surface reflection observation in which white light is irradiated from the outside of the display body toward the surface to observe the display body from a direction facing the surface, the first region and the second region have different hues. Item 22. The display body according to Item 21, which is configured to exhibit a color of.
 上記構成によれば、第1領域と第2領域とは、表面反射観察において、互いに異なる色相の色を呈する。そして、第1領域と第2領域との各々で、視認される色相の鮮明さが高められているため、第1領域の色相と第2領域の色相との差異が明瞭となり、これらの領域によって表現される像の視認性が高められる。したがって、表示体を備える物品にて、偽造の困難性や意匠性が高められる。 According to the above configuration, the first region and the second region exhibit different hue colors in the surface reflection observation. And since each of the first region and the second region has enhanced visibility, the difference between the hue of the first region and the hue of the second region becomes clear. The visibility of the expressed image is improved. Therefore, the forgery difficulty and the design are improved in the article including the display body.
 [請求項23]
 前記第1領域における前記凸部の配列の周期と、前記第2領域における前記凸部の配列の周期とは、互いに異なる項目22に記載の表示体。
[Claim 23]
The display body according to item 22, wherein a period of the arrangement of the convex portions in the first region and a period of the arrangement of the convex portions in the second region are different from each other.
 上記構成によれば、凸部の配列の周期の違いを利用して、第1領域の色相と第2領域の色相とが変えられている。こうした構成によれば、多層膜層の層数や材料や膜厚等の層構成のみによって第1領域の色相と第2領域の色相とを異ならせる構成と比較して、2つの領域における色相の調整についての自由度が高い。また、上記構成によれば、多層膜層における層構成のみによって第1領域の色相と第2領域の色相とを異ならせる構成と比較して、2つの領域における多層膜層の層構成の違いを小さくすることも可能である。2つの領域に互いに異なる周期の凸部を形成することは、2つの領域に互いに異なる層構成の多層膜層を積層することと比較して容易であるため、上記構成によれば、表示体の製造工程の簡素化を図ることができる。 According to the above configuration, the hue of the first region and the hue of the second region are changed using the difference in the period of the arrangement of the convex portions. According to such a configuration, compared to a configuration in which the hue of the first region is different from the hue of the second region only by the layer configuration such as the number of layers, the material, and the film thickness, the hues of the two regions are different. High degree of freedom for adjustment. Further, according to the above configuration, the difference in the layer configuration of the multilayer film layer in the two regions is compared with the configuration in which the hue of the first region is different from the hue of the second region only by the layer configuration in the multilayer film layer. It is also possible to make it smaller. Since it is easier to form convex portions having different periods in the two regions compared to stacking multilayer film layers having different layer configurations in the two regions, according to the above configuration, The manufacturing process can be simplified.
 [項目24]
 前記凹凸構造層と前記金属層と前記多層膜層とを備える領域が表示領域であり、前記表示体は、前記表示領域とは異なる領域として、金属層を備える補助領域をさらに備え、前記表示体の外側から前記表面に向けて白色の光を照射して前記表示体を前記表面と対向する方向から観察する表面反射観察において、前記補助領域は金属光沢を呈するように構成されている項目21~23のいずれか1つに記載の表示体。
[Item 24]
An area including the concavo-convex structure layer, the metal layer, and the multilayer film layer is a display area, and the display body further includes an auxiliary area including a metal layer as an area different from the display area, In the surface reflection observation in which white light is irradiated from the outside to the surface and the display body is observed from the direction facing the surface, the auxiliary region is configured to exhibit a metallic luster. 24. The display body according to any one of 23.
 上記構成によれば、表面反射観察において、表示領域と補助領域とは、質感が異なるように見える。したがって、表示領域と補助領域とによって、多彩な表現が可能であり、表示体を備える物品にて、偽造の困難性や意匠性が高められる。 According to the above configuration, in the surface reflection observation, the display area and the auxiliary area appear to have different textures. Therefore, a variety of expressions can be made by the display area and the auxiliary area, and the forgery difficulty and the design are enhanced in the article including the display body.
 [項目25]
 前記表示領域の備える前記金属層と、前記補助領域の備える前記金属層とは、相互に連続した1つの層である項目24に記載の表示体。
[Item 25]
Item 25. The display body according to Item 24, wherein the metal layer included in the display area and the metal layer included in the auxiliary area are one continuous layer.
 上記構成によれば、表示領域の備える金属層と補助領域の備える金属層とが、相互に連続した1つの層であるため、これらの層が別々の層である構成と比較して、表示体の備える層数を削減することが可能である。 According to the above configuration, the metal layer provided in the display region and the metal layer provided in the auxiliary region are one continuous layer, so that the display body is compared with the configuration in which these layers are separate layers. It is possible to reduce the number of layers included in.
 [項目26]
 項目21~25のいずれか1つに記載の表示体と、前記表示体の前記裏面と対向する位置に配置された太陽電池と、を備える表示体付きデバイス。
[Item 26]
A device with a display body, comprising: the display body according to any one of items 21 to 25; and a solar cell disposed at a position facing the back surface of the display body.
 上記構成によれば、表示体付きデバイスの外側から表示体の表面に向けて太陽光が照射されている状態で表面側から表示体を観察すると、色相の鮮明さが高められた像が視認される。そして、金属層と凹凸構造層とからなる構造体を透過して表示体の裏面側へ射出された所定の波長領域の光が、太陽電池による発電に利用される。したがって、表示体における像を形成するための領域を太陽電池へ光を通す領域としても利用できるため、表示体付きデバイスの意匠性を高めることと太陽電池の発電効率を高めることとの両立が可能である。 According to the above configuration, when the display body is observed from the surface side in a state where sunlight is irradiated from the outside of the device with the display body toward the surface of the display body, an image with enhanced hue is visually recognized. The And the light of the predetermined | prescribed wavelength range which permeate | transmitted the structure which consists of a metal layer and an uneven structure layer, and was inject | emitted on the back surface side of the display body is utilized for the electric power generation by a solar cell. Therefore, since the area for forming an image on the display body can be used as an area for transmitting light to the solar cell, it is possible to improve both the design of the device with the display body and the power generation efficiency of the solar cell. It is.
 [項目27]
 項目21~25のいずれか1つに記載の表示体と、前記表示体の裏面の一部と対向する位置に配置され、前記表示体の前記裏面に向けて光を放つことが可能に構成された光射出構造体と、を備える表示体付きデバイス。
[Item 27]
The display body according to any one of items 21 to 25 is disposed at a position facing a part of the back surface of the display body and configured to emit light toward the back surface of the display body. And a light emitting structure.
 上記構成によれば、光射出構造体から射出された光の一部が表示体を透過して表面側に射出される。したがって、表示体付きデバイスの外側から表示体の表面に向けて光が照射されている状態で表面側から表示体を観察すると、表示体のなかで光射出構造体と重なっていない部分では、色相の鮮明さが高められた像が視認され、表示体のなかで光射出構造体と重なっている部分では、上記光射出構造体と重なっていない部分とは異なる色が視認されるため、光射出構造体の形状に応じた像が見える。それゆえ、より多様な像の表現が可能であり、表示体付きデバイスにおける偽造の困難性や意匠性が高められる。 According to the above configuration, part of the light emitted from the light emitting structure passes through the display and is emitted to the surface side. Therefore, when the display body is observed from the surface side in a state where light is irradiated from the outside of the device with the display body toward the surface of the display body, the hue of the portion of the display body that does not overlap with the light emitting structure is determined. Since the image with the sharpness of the image is visually recognized, and the portion of the display that overlaps the light emitting structure is different in color from the portion that does not overlap the light emitting structure, the light emission An image corresponding to the shape of the structure can be seen. Therefore, more various images can be expressed, and the forgery difficulty and design of the display-equipped device are enhanced.
 [項目28]
 基材の表面に塗工された樹脂に凹版を押し付けて前記樹脂を硬化させることにより前記樹脂からなる複数の凸部を形成し、これによって、前記基材の表面と対向する方向から見てサブ波長周期を有した二次元格子状に位置する前記複数の凸部を備える凹凸構造層を形成する第1工程と、前記凹凸構造層の表面形状に追従する形状を有した金属層を前記凹凸構造層の上に形成する第2工程と、前記凹凸構造層と前記金属層とからなる構造体の上に、多層膜干渉を生じさせる多層膜層を形成する第3工程と、を含む表示体の製造方法。
[Item 28]
A plurality of convex portions made of the resin are formed by pressing the intaglio on the resin coated on the surface of the base material and curing the resin, thereby forming a sub-view as viewed from the direction facing the surface of the base material. A first step of forming a concavo-convex structure layer having the plurality of convex portions located in a two-dimensional lattice shape having a wavelength period; and a metal layer having a shape following the surface shape of the concavo-convex structure layer. A second step of forming on the layer, and a third step of forming a multilayer film layer that causes multilayer film interference on the structure including the concavo-convex structure layer and the metal layer. Production method.
 上記製法によれば、微細な凹凸を有する凹凸構造層を好適に形成することができる。
 [項目29]
 前記表示体において、前記凹凸構造層と前記金属層と前記多層膜層とを備える領域が表示領域であり、前記表示領域は、前記凸部の配列の周期が互いに異なる2つの領域である第1領域と第2領域とを含み、前記第1工程では、前記第1領域の前記凸部と、前記第2領域の前記凸部とを同時に形成する項目28に記載の表示体の製造方法。
According to the said manufacturing method, the uneven structure layer which has a fine unevenness | corrugation can be formed suitably.
[Item 29]
In the display body, a region provided with the concavo-convex structure layer, the metal layer, and the multilayer film layer is a display region, and the display region is a first region having two different arrangement periods of the convex portions. 29. The method for manufacturing a display body according to item 28, including a region and a second region, wherein in the first step, the convex portion of the first region and the convex portion of the second region are formed simultaneously.
 上記製法によれば、第1領域の凸部と第2領域の凸部とを別の工程にて形成する製造方法と比較して、効率よく表示体を製造することができる。
 (第4実施形態)
 図32から図39を参照して、光学デバイスの一例である表示体、および、表示体の製造方法の第4実施形態を説明する。なお、表示体に照射される入射光の波長領域は限定されないが、第4実施形態および第5実施形態では、入射光として、肉眼で認識可能な可視領域(波長:400nm以上800nm以下)を含む自然光を対象として説明する。
According to the said manufacturing method, a display body can be manufactured efficiently compared with the manufacturing method which forms the convex part of a 1st area | region, and the convex part of a 2nd area | region in another process.
(Fourth embodiment)
With reference to FIGS. 32 to 39, a display body as an example of an optical device and a fourth embodiment of a method for manufacturing the display body will be described. Although the wavelength region of incident light irradiated on the display body is not limited, the fourth and fifth embodiments include a visible region (wavelength: 400 nm or more and 800 nm or less) that can be recognized with the naked eye as the incident light. A description will be given for natural light.
 第4実施形態の表示体は、物品の偽造の困難性を高める目的で用いられてもよいし、物品の意匠性を高める目的で用いられてもよいし、これらの目的を兼ねて用いられてもよい。物品の偽造の困難性を高める目的としては、表示体は、例えば、パスポートや免許証等の認証書類、商品券や小切手等の有価証券類、クレジットカードやキャッシュカード等のカード類、紙幣等に貼り付けられる。また、物品の意匠性を高める目的としては、表示体は、例えば、身に着けられる装飾品や、使用者に携帯される物品、家具や家電等のように据え置かれる物品、壁や扉等の構造物等に取り付けられる。例えば、表示体は、時計の文字盤として用いられてもよい。 The display body of the fourth embodiment may be used for the purpose of increasing the difficulty of counterfeiting the article, may be used for the purpose of improving the designability of the article, or may be used for these purposes. Also good. For the purpose of increasing the difficulty of counterfeiting goods, for example, the display body is used for authentication documents such as passports and licenses, securities such as gift certificates and checks, cards such as credit cards and cash cards, and banknotes. It is pasted. In addition, for the purpose of improving the design of the article, the display body is, for example, a decorative article worn by the user, an article carried by the user, an article placed like a furniture or a household appliance, a wall or a door. It can be attached to structures. For example, the display body may be used as a dial of a clock.
 [表示体の構成]
 図32が示すように、表示体210は、表面210Fと、表面210Fとは反対側の面である裏面210Rとを有し、表面210Fと対向する方向から見て、表示体210は、第1表示領域220と第2表示領域230とを含んでいる。第1表示領域220は、第1表示要素の一例である第1画素の配置された領域であり、第2表示領域230は、第2表示要素の一例である第2画素の配置された領域である。
[Configuration of the display body]
As shown in FIG. 32, the display body 210 has a front surface 210F and a back surface 210R that is a surface opposite to the front surface 210F, and the display body 210 has a first surface when viewed from the direction facing the front surface 210F. A display area 220 and a second display area 230 are included. The first display area 220 is an area in which first pixels, which are examples of first display elements, are arranged, and the second display area 230 is an area in which second pixels, which are examples of second display elements, are arranged. is there.
 第1表示領域220と第2表示領域230との各々は、これらの領域単独、もしくは、これらの領域の組み合わせによって、文字、記号、図形、模様、絵柄、これらの背景等を像として表現する。これらの像の一例として、図32に示す構成では、第1表示領域220と第2表示領域230とによって、月の絵柄が表現され、第2表示領域230によって、月の周囲に位置する星が表現され、第1表示領域220によって背景が表現されている。 Each of the first display area 220 and the second display area 230 represents a character, a symbol, a figure, a pattern, a pattern, a background thereof, or the like as an image by using only these areas or a combination of these areas. As an example of these images, in the configuration shown in FIG. 32, the first display area 220 and the second display area 230 represent the design of the moon, and the second display area 230 allows stars located around the moon to be displayed. The background is expressed by the first display area 220.
 図33を参照して、第1表示領域220および第2表示領域230の構造について説明する。図33は、第1表示領域220と第2表示領域230との境界を含む部分であって、第1表示領域220を構成する第1画素220Pと、第2表示領域230を構成する第2画素230Pとが相互に並ぶ部分の構造を拡大して示す図である。 The structure of the first display area 220 and the second display area 230 will be described with reference to FIG. FIG. 33 is a portion including a boundary between the first display area 220 and the second display area 230, and includes a first pixel 220 </ b> P constituting the first display area 220 and a second pixel constituting the second display area 230. It is a figure which expands and shows the structure of the part which 230P mutually arranges.
 第1画素220Pと第2画素230Pとの各々は、基材211と、凹凸構造層212と、第1金属層213と、第2金属層214とを備えている。なお、基材211に対して凹凸構造層212の位置する側が表示体210の表面側であり、凹凸構造層212に対して基材211の位置する側が表示体210の裏面側である。図33は、第1画素220Pおよび第2画素230Pの断面構造とともに、表示体210の表面210Fと対向する方向から見た第1画素220Pおよび第2画素230Pにおける凹凸構造層212の平面構造を示している。 Each of the first pixel 220P and the second pixel 230P includes a base material 211, an uneven structure layer 212, a first metal layer 213, and a second metal layer 214. Note that the side where the uneven structure layer 212 is positioned with respect to the base material 211 is the front surface side of the display body 210, and the side where the base material 211 is positioned with respect to the uneven structure layer 212 is the back surface side of the display body 210. FIG. 33 shows a planar structure of the concavo-convex structure layer 212 in the first pixel 220P and the second pixel 230P as viewed from the direction facing the surface 210F of the display body 210, along with the cross-sectional structures of the first pixel 220P and the second pixel 230P. ing.
 第1画素220Pと第2画素230Pとにおいて、凹凸構造層212における凹凸に関わる構造以外の構造は、相互に共通している。例えば、基材211のなかで、第1画素220Pに含まれる部分は、第2画素230Pに含まれる部分と連続し、これらは一体の構造体である。また、凹凸構造層212のなかで、第1画素220Pに含まれる部分は、第2画素230Pに含まれる部分と連続し、これらもまた一体の構造体である。また、第1画素220Pを構成する第1金属層213と、第2画素230Pを構成する第1金属層213とは、それを構成する材料や厚さという構成においてほぼ共通しており、第1画素220Pを構成する第2金属層214と、第2画素230Pを構成する第2金属層214とは、それを構成する材料や厚さという構成においてほぼ共通している。 In the first pixel 220P and the second pixel 230P, structures other than the structure related to the unevenness in the uneven structure layer 212 are common to each other. For example, in the base material 211, a portion included in the first pixel 220P is continuous with a portion included in the second pixel 230P, and these are an integral structure. Further, in the concavo-convex structure layer 212, a portion included in the first pixel 220P is continuous with a portion included in the second pixel 230P, and these are also an integral structure. In addition, the first metal layer 213 constituting the first pixel 220P and the first metal layer 213 constituting the second pixel 230P are substantially common in the constitution of the material and thickness constituting the first pixel 220P. The second metal layer 214 that constitutes the pixel 220P and the second metal layer 214 that constitutes the second pixel 230P are almost common in the configuration of the material and thickness that constitute the second metal layer 214.
 第1画素220Pにおける凹凸構造層212と第1金属層213と第2金属層214とは、プラズモン共鳴を起こす構造体であるプラズモン構造体層215を構成している。第2画素230Pにおける凹凸構造層212と第1金属層213と第2金属層214とは、表示体210に対する表面側の空間と裏面側の空間とのうち、表示体210への入射光が通る空間に回折光を出射する構造体である回折格子層216を構成している。 The concavo-convex structure layer 212, the first metal layer 213, and the second metal layer 214 in the first pixel 220P constitute a plasmon structure layer 215 that is a structure that causes plasmon resonance. The concavo-convex structure layer 212, the first metal layer 213, and the second metal layer 214 in the second pixel 230P pass light incident on the display body 210 out of the space on the front surface side and the space on the back surface side with respect to the display body 210. A diffraction grating layer 216 that is a structure that emits diffracted light into space is configured.
 以下、各層の詳細な構成について説明する。
 基材211は板状を有し、基材211の有する面のうち、表示体210の表面側に位置する面が基材211の表面である。基材211は、可視領域の光に対して透明であり、可視領域の光を透過する。可視領域の光が有する波長は、400nm以上800nm以下である。基材211は誘電体であり、基材211の材料としては、例えば、合成石英や、PET(ポリエチレンテレフタラート)、PC(ポリカーボネート)、PEN(ポリエチレンナフタレート)等の樹脂が挙げられる。基材211の屈折率は、空気層よりも高く、例えば1.2以上1.7以下である。基材211は、1つの層から構成されていてもよいし、複数の層から構成されていてもよい。
Hereinafter, the detailed configuration of each layer will be described.
The substrate 211 has a plate shape, and the surface located on the surface side of the display body 210 among the surfaces of the substrate 211 is the surface of the substrate 211. The base material 211 is transparent to light in the visible region and transmits light in the visible region. The wavelength of light in the visible region is from 400 nm to 800 nm. The substrate 211 is a dielectric, and examples of the material of the substrate 211 include synthetic quartz and resins such as PET (polyethylene terephthalate), PC (polycarbonate), and PEN (polyethylene naphthalate). The refractive index of the base material 211 is higher than that of the air layer, and is, for example, 1.2 or more and 1.7 or less. The base material 211 may be comprised from one layer, and may be comprised from the some layer.
 凹凸構造層212は、基材211の表面に沿って広がる平坦部212aと、平坦部212aから表示体210の表面側に突き出した複数の凸部212bとから構成されている。すなわち、凸部212bは、表示体210の裏面210Rから表面210Fに向かう方向に突出している。凹凸構造層212は、可視領域の光に対して透明な誘電体であり、例えば、紫外線硬化性樹脂や熱硬化性樹脂や熱可塑性樹脂から構成されている。凹凸構造層212の屈折率は、空気層よりも高い。 The concavo-convex structure layer 212 includes a flat portion 212a extending along the surface of the base material 211, and a plurality of convex portions 212b protruding from the flat portion 212a to the surface side of the display body 210. That is, the convex portion 212b protrudes in a direction from the back surface 210R of the display body 210 toward the front surface 210F. The concavo-convex structure layer 212 is a dielectric that is transparent to light in the visible region, and is made of, for example, an ultraviolet curable resin, a thermosetting resin, or a thermoplastic resin. The refractive index of the concavo-convex structure layer 212 is higher than that of the air layer.
 凸部212bは、表面210Fと対向する方向から見た形状が正方形である四角柱形状を有している。凸部212bの基端から先端までの長さ、すなわち、凸部212bの延びる方向における凸部212bの長さが、凸部高さである。そして、第1画素220Pの凸部212bの凸部高さが第1凸部高さH1であり、第2画素230Pの凸部212bの凸部高さが第2凸部高さH2である。 The convex portion 212b has a quadrangular prism shape that is square when viewed from the direction facing the surface 210F. The length from the base end to the tip of the convex portion 212b, that is, the length of the convex portion 212b in the extending direction of the convex portion 212b is the convex portion height. The convex height of the convex portion 212b of the first pixel 220P is the first convex portion height H1, and the convex portion height of the convex portion 212b of the second pixel 230P is the second convex portion height H2.
 基材211の表面に沿った方向における凸部212bの長さ、すなわち、凸部212bの基部を構成する正方形の一辺の長さが、凸部幅である。そして、第1画素220Pの凸部212bの凸部幅が第1凸部幅D1であり、第2画素230Pの凸部212bの凸部幅が第2凸部幅D2である。 The length of the convex part 212b in the direction along the surface of the substrate 211, that is, the length of one side of the square constituting the base part of the convex part 212b is the convex part width. The convex width of the convex portion 212b of the first pixel 220P is the first convex portion width D1, and the convex portion width of the convex portion 212b of the second pixel 230P is the second convex portion width D2.
 複数の凸部212bは、表示体210の表面210Fと対向する方向から見て、二次元格子の一例である正方配列に並んでいる。正方配列は、正方形SQの各頂点に凸部212bの中心が位置する配列である。正方形SQの一辺の長さが凸部212bの配列の周期であり、すなわち、凸部212bの配列の周期は、互いに隣り合う2つの凸部212bにおける中心間の最短距離であり、また、凸部212bの配列の周期は、互いに隣り合う2つの凸部212b間の最短距離と凸部幅との合計である。そして、第1画素220Pの凸部212bの配列の周期が第1構造周期P1であり、第2画素230Pの凸部212bの配列の周期が第2構造周期P2である。 The plurality of convex portions 212b are arranged in a square arrangement, which is an example of a two-dimensional lattice, when viewed from the direction facing the surface 210F of the display body 210. The square array is an array in which the center of the convex portion 212b is located at each vertex of the square SQ. The length of one side of the square SQ is the period of the array of the convex parts 212b. That is, the period of the array of the convex parts 212b is the shortest distance between the centers of the two adjacent convex parts 212b. The period of the arrangement of 212b is the sum of the shortest distance between the two adjacent convex portions 212b and the convex portion width. The period of the arrangement of the protrusions 212b of the first pixel 220P is the first structure period P1, and the period of the arrangement of the protrusions 212b of the second pixel 230P is the second structure period P2.
 第1構造周期P1は、可視領域の波長でプラズモン共鳴を起こすための周期であり、可視領域の波長以下のサブ波長周期であって、さらに、可視領域の短波長側の波長よりも小さい周期である。具体的には、第1構造周期P1は、400nm未満である。また、第2構造周期P2は、可視領域の光を回折するための周期であり、第1構造周期P1よりも大きく、例えば、可視領域の短波長側の波長以上の長さである。第2構造周期P2は、例えば、可視領域の光を回折しやすい周期として400nm以上10μm以下である。 The first structure period P1 is a period for causing plasmon resonance at a wavelength in the visible region, is a sub-wavelength period equal to or smaller than the wavelength in the visible region, and is smaller than a wavelength on the short wavelength side of the visible region. is there. Specifically, the first structure period P1 is less than 400 nm. The second structural period P2 is a period for diffracting light in the visible region, and is larger than the first structural cycle P1, for example, a length equal to or longer than the wavelength on the short wavelength side of the visible region. The second structure period P2 is, for example, not less than 400 nm and not more than 10 μm as a period during which light in the visible region is easily diffracted.
 第1凸部高さH1と第2凸部高さH2とは、一致していてもよく、異なっていてもよい。ナノインプリント法を用いて凹凸構造層212を形成する場合、第1凸部高さH1よりも第2凸部高さH2が高い構成であると、凸部212bの形成に用いる凹版の加工の精度が得られやすいため、凸部212bの加工の精度が得られやすい。同様に、凸部212bの加工の精度が得られやすい観点において、第1凸部幅D1に対する第1凸部高さH1の比(H1/D1)は、3以下であることが好ましく、2以下であることがさらに好ましい。特に凸部212bの周期が小さい場合には、凸部幅に対する凸部高さの比であるアスペクト比が小さいほど、凸部212bの加工の精度が得られやすい一方で、回折格子層216では、凸部高さが高いほど光の回折効率が高まる。そのため、第1凸部高さH1よりも第2凸部高さH2が高い構成であると、相対的に周期が小さく凹凸構造層212がプラズモン共鳴を生じさせるための構造である第1画素220Pでは、アスペクト比を小さくして加工の精度を確保する一方、相対的に周期が大きく凹凸構造層212が光の回折を生じさせるための構造である第2画素230Pでは、凸部高さを高くして回折効率を高めることができる。 1st convex part height H1 and 2nd convex part height H2 may correspond, and may differ. When the concavo-convex structure layer 212 is formed using the nanoimprint method, if the second convex portion height H2 is higher than the first convex portion height H1, the processing accuracy of the intaglio used for forming the convex portion 212b is high. Since it is easy to obtain, the processing accuracy of the convex portion 212b is easily obtained. Similarly, from the viewpoint of easily obtaining the processing accuracy of the convex portion 212b, the ratio of the first convex portion height H1 to the first convex portion width D1 (H1 / D1) is preferably 3 or less, and preferably 2 or less. More preferably. In particular, when the period of the convex part 212b is small, the smaller the aspect ratio, which is the ratio of the convex part height to the convex part width, the easier it is to obtain the processing accuracy of the convex part 212b. The higher the convex height, the higher the light diffraction efficiency. Therefore, when the second protrusion height H2 is higher than the first protrusion height H1, the first pixel 220P is a structure having a relatively small period and causing the concavo-convex structure layer 212 to generate plasmon resonance. In the second pixel 230P, which has a relatively large period and a structure for causing light diffraction, the convex portion height is increased while the aspect ratio is reduced to ensure processing accuracy. Thus, the diffraction efficiency can be increased.
 さらに、ナノインプリント法を用いて凹凸構造層212を形成する場合、第1構造周期P1に対する第1凸部幅D1(D1/P1)と、第2構造周期P2に対する第2凸部幅D2(D2/P2)とがほぼ等しいと、凹凸構造層212全体で平坦部212aの厚さを均一に形成しやすいため好ましい。 Furthermore, when forming the concavo-convex structure layer 212 using the nanoimprint method, the first protrusion width D1 (D1 / P1) with respect to the first structure period P1 and the second protrusion width D2 with respect to the second structure period P2 (D2 / It is preferable that P2) is substantially equal because the flat portion 212a is easily formed uniformly in the entire concavo-convex structure layer 212.
 第1金属層213は、凸部212bの間に露出している平坦部212aを覆っている。第2金属層214は、凸部212bの先端面を覆っている。第1金属層213と第2金属層214とは、共通の金属材料から構成されており、相互にほぼ等しい膜厚を有する。金属層213,214の各々の屈折率は、空気層よりも低い。プラズモン共鳴が生じやすいこと等の観点において、金属層213,214は、可視領域の波長における複素誘電率の実部が負の値である金属材料から構成されていることが好ましく、金属層213,214の膜厚は、10nm以上200nm以下であることが好ましい。金属層213,214の材料としては、例えば、アルミニウム、金、銀、タンタル、インジウム等が挙げられる。 The first metal layer 213 covers the flat portion 212a exposed between the convex portions 212b. The second metal layer 214 covers the tip surface of the convex portion 212b. The first metal layer 213 and the second metal layer 214 are made of a common metal material and have substantially the same film thickness. The refractive index of each of the metal layers 213 and 214 is lower than that of the air layer. From the standpoint that plasmon resonance is likely to occur, the metal layers 213 and 214 are preferably made of a metal material having a negative real part of the complex dielectric constant at a wavelength in the visible region. The film thickness of 214 is preferably 10 nm or more and 200 nm or less. Examples of the material of the metal layers 213 and 214 include aluminum, gold, silver, tantalum, and indium.
 なお、少なくとも第1画素220Pにおいては、表示体210の表面210Fと対向する方向から見て、凸部212bの間から露出する平坦部212aの面積は、各凸部212bである正方形の面積の合計よりも大きいことが好ましい。この場合、平坦部212aの直上の領域、すなわち、各第1金属層213と各凸部212bの基部とを含む領域である基部領域217において、第1金属層213は、構造的および光学的に海成分であり、凸部212bの基部は、構造的および光学的に、海成分のなかに点在する島成分である。 At least in the first pixel 220P, the area of the flat portion 212a exposed from between the convex portions 212b when viewed from the direction facing the surface 210F of the display body 210 is the sum of the square areas of the convex portions 212b. Is preferably larger. In this case, in the region immediately above the flat portion 212a, that is, in the base region 217 that includes each first metal layer 213 and the base of each convex portion 212b, the first metal layer 213 is structurally and optically It is a sea component, and the base of the convex portion 212b is an island component scattered in the sea component structurally and optically.
 また、各第2金属層214と複数の第2金属層214の間の空気層とを含む領域である頂部領域219において、第2金属層214は、構造的および光学的に島成分であり、空気層は、構造的および光学的に海成分である。さらに、基部領域217と頂部領域219との間の中間領域218、すなわち、各凸部212bにおける基部以外の部分と、複数の凸部212bの間の空気層とを含む領域において、凸部212bにおける基部以外の部分は、構造的および光学的に島成分であり、空気層は、構造的および光学的に海成分である。 In the top region 219, which is a region including each second metal layer 214 and the air layer between the plurality of second metal layers 214, the second metal layer 214 is structurally and optically an island component, The air layer is structurally and optically a sea component. Further, in the intermediate region 218 between the base region 217 and the top region 219, that is, in a region including a portion other than the base in each convex portion 212b and an air layer between the plurality of convex portions 212b, in the convex portion 212b The part other than the base is structurally and optically an island component, and the air layer is structurally and optically a sea component.
 上記構成では、基部領域217、中間領域218、および、頂部領域219の各々において、海成分の体積比率は、島成分の体積比率よりも大きい。そして、基部領域217における第1金属層213の体積比率は、頂部領域219における第2金属層214の体積比率よりも大きく、頂部領域219における第2金属層214の体積比率は、中間領域218における金属材料の体積比率よりも大きい。 In the above configuration, in each of the base region 217, the intermediate region 218, and the top region 219, the volume ratio of the sea component is larger than the volume ratio of the island component. The volume ratio of the first metal layer 213 in the base region 217 is larger than the volume ratio of the second metal layer 214 in the top region 219, and the volume ratio of the second metal layer 214 in the top region 219 is in the intermediate region 218. It is larger than the volume ratio of the metal material.
 こうした構成において、基部領域217、中間領域218、および、頂部領域219の各々の屈折率は、領域ごとに、各領域に含まれる金属層213,214や凸部212bや空気層の屈折率が平均化された大きさに近似される。すなわち、基部領域217の屈折率は、海成分である第1金属層213に支配された大きさであり、空気層の屈折率よりも十分に低い。また、中間領域218の屈折率は、海成分である空気層に支配された大きさであり、凸部212bの存在に起因して空気層の屈折率よりも高く、かつ、空気層の屈折率に近い値である。また、頂部領域219の屈折率は、海成分である空気層に支配された大きさであり、第2金属層214の存在に起因して空気層の屈折率よりも低く、かつ、空気層の屈折率に近い値である。 In such a configuration, the refractive index of each of the base region 217, the intermediate region 218, and the top region 219 is the average of the refractive indexes of the metal layers 213, 214, the convex portions 212b, and the air layer included in each region. Approximated to the normalized size. That is, the refractive index of the base region 217 is a size controlled by the first metal layer 213 which is a sea component, and is sufficiently lower than the refractive index of the air layer. In addition, the refractive index of the intermediate region 218 is a size controlled by the air layer that is a sea component, and is higher than the refractive index of the air layer due to the presence of the convex portion 212b, and the refractive index of the air layer. The value is close to. In addition, the refractive index of the top region 219 is a size controlled by the air layer that is a sea component, is lower than the refractive index of the air layer due to the presence of the second metal layer 214, and It is a value close to the refractive index.
 なお、上記構成の第1表示領域220において、基材211と凹凸構造層212とから周期構造体が構成される。また、第1表示領域220に位置する凸部212bは、周期要素の一例である。また、第1表示領域220において、基材211と平坦部212aとから支持部が構成され、平坦部212aの表面、すなわち、平坦部212aにおいて基材211に接している面とは反対側の面が基準面である。また、第1金属層213と第2金属層214とから構成される層は、上部金属層の一例であり、第1表示領域220においては、層全体としての形状が周期構造体の表面形状に追従する形状を有した金属層として捉えられる。周期構造体の表面は、基準面のうち各周期要素を囲む領域と各周期要素の表面とを含む面である。 In the first display region 220 having the above-described configuration, a periodic structure is configured from the base material 211 and the uneven structure layer 212. Moreover, the convex part 212b located in the 1st display area 220 is an example of a periodic element. Further, in the first display region 220, a support portion is configured by the base material 211 and the flat portion 212a, and the surface of the flat portion 212a, that is, the surface opposite to the surface in contact with the base material 211 in the flat portion 212a. Is the reference plane. The layer formed of the first metal layer 213 and the second metal layer 214 is an example of an upper metal layer. In the first display region 220, the shape of the entire layer is the surface shape of the periodic structure. It is perceived as a metal layer having a following shape. The surface of the periodic structure is a surface including a region surrounding each periodic element in the reference plane and the surface of each periodic element.
 [表示体の製造方法]
 上述の表示体210を製造する方法を説明する。
 まず、基材211の表面に、凹凸構造層212を形成する。凹凸構造層212における凸部212bを形成する方法としては、例えば、光、あるいは、荷電粒子線を用いたフォトリソグラフィー法や、ナノインプリント法、あるいは、プラズマエッチング法などを採用できる。特に、樹脂からなる平坦部212aの表面に凸部212bを形成する方法として、例えばナノインプリント法を活用できる。また、硬い材質の基材などを加工することにより凸部212bを形成する場合には、光、あるいは、荷電粒子線を用いたフォトリソグラフィー法とプラズマエッチング法を組み合わせた方法を用いればよい。なかでも、ナノインプリント法は、第1画素220Pにおける微細な凹凸を有する凹凸構造層212の形成に適している。
[Manufacturing method of display body]
A method for manufacturing the display body 210 will be described.
First, the uneven structure layer 212 is formed on the surface of the substrate 211. As a method for forming the convex portion 212b in the concavo-convex structure layer 212, for example, a photolithography method using light or a charged particle beam, a nanoimprint method, a plasma etching method, or the like can be employed. In particular, as a method for forming the convex portion 212b on the surface of the flat portion 212a made of resin, for example, a nanoimprint method can be utilized. In the case where the convex portion 212b is formed by processing a hard material base material or the like, a method in which light or a photolithography method using a charged particle beam and a plasma etching method are combined may be used. Among these, the nanoimprint method is suitable for forming the uneven structure layer 212 having fine unevenness in the first pixel 220P.
 ナノインプリント法を用いる場合、例えば、基材211として、ポリエチレンテレフタラートシートを用い、基材211の表面に、紫外線硬化性樹脂を塗工する。次いで、紫外線硬化性樹脂からなる塗工膜の表面に、凸部212bに対応する形状および配置の凹部を有する凹版である合成石英モールドを押し当て、塗工膜および合成石英モールドに紫外線を照射する。続いて、硬化した紫外線硬化性樹脂から合成石英モールドを離型する。これによって、凸部212bが形成されるとともに、凸部212bと基材211との間には、紫外線硬化性樹脂からなる残膜として平坦部212aが形成される。なお、紫外線硬化性樹脂に代えて熱硬化性樹脂を用いてもよく、この場合、紫外線の照射を熱に変更すればよい。また、紫外線硬化性樹脂に代えて熱可塑性樹脂を用いてもよく、この場合、紫外線の照射は、加熱および冷却に変更すればよい。 When using the nanoimprint method, for example, a polyethylene terephthalate sheet is used as the substrate 211, and an ultraviolet curable resin is applied to the surface of the substrate 211. Next, a synthetic quartz mold, which is an intaglio plate having concave portions having a shape and arrangement corresponding to the convex portions 212b, is pressed against the surface of the coating film made of an ultraviolet curable resin, and the coating film and the synthetic quartz mold are irradiated with ultraviolet rays. . Subsequently, the synthetic quartz mold is released from the cured ultraviolet curable resin. As a result, a convex portion 212b is formed, and a flat portion 212a is formed between the convex portion 212b and the substrate 211 as a residual film made of an ultraviolet curable resin. Note that a thermosetting resin may be used instead of the ultraviolet curable resin, and in this case, the irradiation of the ultraviolet light may be changed to heat. In addition, a thermoplastic resin may be used instead of the ultraviolet curable resin, and in this case, the irradiation with ultraviolet light may be changed to heating and cooling.
 上記方法において、第1画素220Pに対応する部分と第2画素230Pに対応する部分とで合成石英モールドにおける凹部の配置の周期を変えることによって、第1画素220Pにおける第1構造周期P1の凸部212bと第2画素230Pにおける第2構造周期P2の凸部212bとを同時に形成することができる。 In the above method, the convex portion of the first structural period P1 in the first pixel 220P is obtained by changing the period of the concave portion arrangement in the synthetic quartz mold between the part corresponding to the first pixel 220P and the part corresponding to the second pixel 230P. 212b and the convex part 212b of the second structural period P2 in the second pixel 230P can be formed simultaneously.
 次いで、凹凸構造層212の表面に、第1金属層213および第2金属層214を形成する。第1金属層213と第2金属層214とは、凹凸構造層212の表面に対して金属薄膜の成膜が行われることによって、同時に形成される。第1金属層213および第2金属層214を形成する方法としては、例えば、真空蒸着法、スパッタリング法が挙げられる。 Next, the first metal layer 213 and the second metal layer 214 are formed on the surface of the uneven structure layer 212. The first metal layer 213 and the second metal layer 214 are simultaneously formed by forming a metal thin film on the surface of the concavo-convex structure layer 212. Examples of the method for forming the first metal layer 213 and the second metal layer 214 include a vacuum deposition method and a sputtering method.
 [表示体の作用:表面反射観察、裏面透過観察]
 図34を参照して、表面側から表示体210に光が入射しているときに、表面側および裏面側の各々から表示体210を観察した場合に視認される像について説明する。なお、図34では、理解を容易にするために、第1画素220Pが備えるプラズモン構造体層215を、1つの平坦な層として模式的に表し、第2画素230Pが備える回折格子層216を、1つの平坦な層として模式的に表している。
[Function of display body: surface reflection observation, back surface transmission observation]
With reference to FIG. 34, an image that is visually recognized when the display body 210 is observed from each of the front surface side and the back surface side when light is incident on the display body 210 from the front surface side will be described. In FIG. 34, for easy understanding, the plasmon structure layer 215 included in the first pixel 220P is schematically represented as one flat layer, and the diffraction grating layer 216 included in the second pixel 230P is represented by It is schematically represented as one flat layer.
 まず、第1画素220Pを有する第1表示領域220を観察した場合について説明する。表示体210の外側から表示体210の表面210Fに向けて白色の光I21が照射されると、光I21は、空気層からプラズモン構造体層215に入る。ここで、光I21は、プラズモン構造体層215の凹凸構造部分に入るとき、空気層から、空気層に近い屈折率を有した頂部領域219に入るため、空気層と頂部領域219との界面ではフレネル反射が生じ難い。プラズモン構造体層215における凹凸構造は、誘電体に金属薄膜が積層された構造であり、凹凸構造の周期は、可視領域の波長よりも小さい。そのため、光I21を受けたプラズモン構造体層215では、表示体210の表面側に一次回折光が生じることが抑えられ、光I21に含まれる特定の波長領域の光E21と電子の集団的な振動とが結合するプラズモン共鳴が生じる。なお、光E21は、表示体210の表面210Fに対して水平に近い角度に発生した一次回折光である。そして、プラズモン構造体層215は、光I21に含まれる一部の波長領域の光を表面プラズモンとして透過し、プラズモン構造体層215から射出される光I22に変換する。光I22の波長領域は、プラズモン構造体層215における凹凸構造の周期、すなわち、第1構造周期P1などに応じて決まる。 First, a case where the first display area 220 having the first pixels 220P is observed will be described. When the white light I21 is irradiated from the outside of the display body 210 toward the surface 210F of the display body 210, the light I21 enters the plasmon structure layer 215 from the air layer. Here, when the light I21 enters the concavo-convex structure portion of the plasmon structure layer 215, the light I21 enters the top region 219 having a refractive index close to that of the air layer from the air layer, so that at the interface between the air layer and the top region 219, Fresnel reflection hardly occurs. The uneven structure in the plasmon structure layer 215 is a structure in which a metal thin film is laminated on a dielectric, and the period of the uneven structure is smaller than the wavelength in the visible region. Therefore, in the plasmon structure layer 215 that has received the light I21, generation of the first-order diffracted light on the surface side of the display body 210 is suppressed, and collective vibrations of the light E21 and electrons in a specific wavelength region included in the light I21. The plasmon resonance which couple | bonds with occurs. The light E21 is first-order diffracted light generated at an angle close to the horizontal with respect to the surface 210F of the display body 210. The plasmon structure layer 215 transmits part of the light in the wavelength region included in the light I21 as surface plasmon, and converts it into light I22 emitted from the plasmon structure layer 215. The wavelength region of the light I22 is determined according to the period of the concavo-convex structure in the plasmon structure layer 215, that is, the first structure period P1.
 結果として、表示体210の外側から表面210Fに向けて白色の光I21が照射されている状態で、表示体210の表面側から表面210Fを観察する表面反射観察によれば、プラズモン構造体層215における界面でのフレネル反射が生じ難いこと、および、プラズモン構造体層215にてプラズモン共鳴が生じることによって、黒色、もしくは、黒色に近い色が、第1画素220Pにて視認される。すなわち、表面反射観察において、第1表示領域220は、黒色、もしくは、黒色に近い色に見える。表面210Fに対する観察者の角度、すなわち、表面210Fと観察者の視線方向とが形成する角度である観察角度が変化したとしても、第1表示領域220の色はほぼ変化しない。 As a result, according to surface reflection observation in which the surface 210F is observed from the surface side of the display body 210 in a state where the white light I21 is irradiated from the outside of the display body 210 toward the surface 210F, the plasmon structure layer 215 is observed. In the first pixel 220P, Fresnel reflection at the interface is difficult to occur and plasmon resonance occurs in the plasmon structure layer 215, so that black or a color close to black is visually recognized in the first pixel 220P. That is, in the surface reflection observation, the first display region 220 looks black or a color close to black. Even if the angle of the observer with respect to the surface 210F, that is, the angle of observation formed by the surface 210F and the direction of the line of sight of the observer changes, the color of the first display region 220 does not substantially change.
 一方、表示体210の外側から表面210Fに向けて白色の光I21が照射されている状態で、表示体210の裏面側から裏面210Rを観察する裏面透過観察によれば、プラズモン構造体層215でのプラズモン共鳴を経て表示体210の裏面側に出た光I22の波長領域に応じた色が、第1画素220Pで視認される。すなわち、裏面透過観察において、第1表示領域220は、白色および黒色とは異なる色に見える。 On the other hand, according to the back surface transmission observation in which the back surface 210R is observed from the back surface side of the display body 210 in the state where the white light I21 is irradiated from the outside of the display body 210 toward the front surface 210F, the plasmon structure layer 215 The color corresponding to the wavelength region of the light I22 emitted to the back surface side of the display body 210 through the plasmon resonance is visually recognized by the first pixel 220P. That is, in the rear surface transmission observation, the first display region 220 looks a color different from white and black.
 次に、第2画素230Pを有する第2表示領域230を観察した場合について説明する。表示体210の外側から表示体210の表面210Fに向けて白色の光I21が照射されると、回折格子層216における凹凸構造の周期は可視領域の波長以上の周期であるため、光I21が回折格子層216にて回折を起こし、回折光である光I23が表示体210の表面側に射出される。光I23には複数の波長の光が含まれ、これらの光の出射角度は互いに異なる。光I23に含まれる各波長領域の光の出射角度は、回折格子層216における凹凸構造の周期、すなわち、第2構造周期P2によって決まる。 Next, a case where the second display area 230 having the second pixels 230P is observed will be described. When the white light I21 is irradiated from the outside of the display body 210 toward the surface 210F of the display body 210, the period of the concavo-convex structure in the diffraction grating layer 216 is longer than the wavelength of the visible region, and thus the light I21 is diffracted. Diffraction occurs at the grating layer 216, and the light I 23 that is diffracted light is emitted to the surface side of the display body 210. The light I23 includes light having a plurality of wavelengths, and the emission angles of these lights are different from each other. The emission angle of light in each wavelength region included in the light I23 is determined by the period of the concavo-convex structure in the diffraction grating layer 216, that is, the second structure period P2.
 結果として、表面反射観察によれば、観察角度に応じて、色相や彩度や明度の異なる色が、第2画素230Pで視認される。すなわち、表面反射観察において、第2表示領域230の色は、観察角度の変化によって大きく変化するように見える。 As a result, according to the surface reflection observation, colors having different hue, saturation, and brightness are visually recognized by the second pixel 230P according to the observation angle. That is, in the surface reflection observation, the color of the second display region 230 seems to change greatly according to the change in the observation angle.
 一方、裏面透過観察によれば、表示体210の外側から表面210Fに向けて照射された光I21のうち、金属層213,214を有する回折格子層216を透過する光I24の強度は微小であるため、第2画素230Pには、黒色に近い色が視認される。すなわち、裏面透過観察において、第2表示領域230は、黒色に近い色に見える。 On the other hand, according to the rear surface transmission observation, the intensity of the light I24 transmitted through the diffraction grating layer 216 having the metal layers 213 and 214 is very small among the light I21 irradiated from the outside of the display body 210 toward the front surface 210F. Therefore, a color close to black is visually recognized in the second pixel 230P. That is, in the rear surface transmission observation, the second display region 230 looks a color close to black.
 以上のように、表面反射観察においては、第1表示領域220に視認される色は、観察角度の変化による変化が小さく、第2表示領域230に視認される色は、観察角度の変化による変化が大きい。したがって、凹凸構造層212における凸部212bの周期の大きさの違いによって、観察角度の変化による色の変化の程度が互いに異なる領域が実現できる。こうした色の変化の程度の違いに起因して、第1表示領域220と第2表示領域230との外観が異なるため、表面反射観察によれば、第1表示領域220と第2表示領域230とから構成される絵柄等の像が視認される。 As described above, in the surface reflection observation, the color visually recognized in the first display area 220 has a small change due to the change in the observation angle, and the color visually recognized in the second display area 230 is the change due to the change in the observation angle. Is big. Therefore, regions having different degrees of color change due to changes in the observation angle can be realized by the difference in the period of the convex portions 212b in the concavo-convex structure layer 212. Due to the difference in the degree of color change, the first display area 220 and the second display area 230 have different appearances. Therefore, according to the surface reflection observation, the first display area 220 and the second display area 230 An image such as a picture composed of is visually recognized.
 また、裏面透過観察においては、第1表示領域220に視認される色と第2表示領域230に視認される色とで、色相や彩度や明度が異なるため、裏面透過観察によっても、第1表示領域220と第2表示領域230とから構成される絵柄等の像が視認される。また、表面反射観察と裏面透過観察とで、表示体210にて視認される像は、色相や彩度や明度が互いに異なる像であり、また、観察角度の変化による色の変化の程度が互いに異なる像である。 Further, in the rear surface transmission observation, the hue, saturation, and brightness are different between the color visually recognized in the first display region 220 and the color visually recognized in the second display region 230. An image such as a pattern composed of the display area 220 and the second display area 230 is visually recognized. Further, the images visually recognized by the display body 210 in the front surface reflection observation and the rear surface transmission observation are images having different hues, saturations, and brightness values, and the degree of color change due to the change in the observation angle is mutually different. It is a different image.
 なお、上記表面反射観察や裏面透過観察の結果は、表面210Fに向けた外光の光量が、裏面210Rに向けた外光の光量よりも高い場合においても、同様の傾向を示す。また、表示体210の表面210Fに照射される光は、白色の光でなくてもよい。 The results of the surface reflection observation and the back surface transmission observation show the same tendency even when the amount of external light directed toward the front surface 210F is higher than the amount of external light directed toward the back surface 210R. Further, the light irradiated on the surface 210F of the display body 210 may not be white light.
 [表示体の作用:裏面反射観察、表面透過観察]
 図35を参照して、裏面側から表示体210に光が入射しているときに、表面側および裏面側の各々から表示体210を観察した場合に視認される像について説明する。
[Function of display body: back surface reflection observation, surface transmission observation]
With reference to FIG. 35, an image that is visually recognized when the display body 210 is observed from each of the front surface side and the back surface side when light is incident on the display body 210 from the back surface side will be described.
 まず、第1画素220Pを有する第1表示領域220を観察した場合について説明する。表示体210の外側から表示体210の裏面210Rに向けて白色の光I21が照射されると、光I21は、空気層から基材211に入り、基材211からプラズモン構造体層215に入る。ここで、光I21は、プラズモン構造体層215の凹凸構造部分に入るとき、空気層よりも高い屈折率を有した凹凸構造層212の平坦部212aから、空気層よりも低い屈折率を有した基部領域217に入るため、これらの界面でフレネル反射が生じやすい。 First, a case where the first display area 220 having the first pixels 220P is observed will be described. When the white light I21 is irradiated from the outside of the display body 210 toward the back surface 210R of the display body 210, the light I21 enters the base material 211 from the air layer and enters the plasmon structure layer 215 from the base material 211. Here, when the light I21 enters the concavo-convex structure portion of the plasmon structure layer 215, the light I21 has a lower refractive index than the air layer from the flat portion 212a of the concavo-convex structure layer 212 having a higher refractive index than the air layer. Since it enters the base region 217, Fresnel reflection tends to occur at these interfaces.
 一方で、上記界面を透過してプラズモン構造体層215の凹凸構造部分に光が入射すると、プラズモン構造体層215では、プラズモン共鳴が生じる。結果として、光I21に含まれる一部の波長領域の光I25は反射光として表示体210の裏面側に射出され、光I21に含まれる一部の波長領域の光E22がプラズモン共鳴によって消費されることに基づき光I21に含まれる一部の波長領域の光I26がプラズモン構造体層215から表面側に射出される。光I25,I26の波長領域は、プラズモン構造体層215における凹凸構造の周期、すなわち、第1構造周期P1などに応じて決まる。 On the other hand, when light enters the concavo-convex structure portion of the plasmon structure layer 215 through the interface, plasmon resonance occurs in the plasmon structure layer 215. As a result, the light I25 in a part of the wavelength region included in the light I21 is emitted as reflected light to the back surface side of the display body 210, and the light E22 in a part of the wavelength region included in the light I21 is consumed by plasmon resonance. Based on this, the light I26 in a part of the wavelength region included in the light I21 is emitted from the plasmon structure layer 215 to the surface side. The wavelength regions of the lights I25 and I26 are determined according to the period of the uneven structure in the plasmon structure layer 215, that is, the first structure period P1.
 結果として、表示体210の外側から裏面210Rに向けて白色の光I21が照射されている状態で、表示体の裏面側から裏面210Rを観察する裏面反射観察によれば、フレネル反射によって表示体210の裏面側に射出された光I25の波長領域に応じた色が、第1画素220Pで視認される。この光I25の波長領域に応じた色は、白色および黒色とは異なる色であって、観察角度による変化は小さい。 As a result, according to the back surface reflection observation in which the back surface 210R is observed from the back surface side of the display body in a state where the white light I21 is irradiated from the outside of the display body 210 toward the back surface 210R, the display body 210 is caused by Fresnel reflection. A color corresponding to the wavelength region of the light I25 emitted to the back side of the first pixel 220P is visually recognized. The color corresponding to the wavelength region of the light I25 is a color different from white and black, and changes with the observation angle are small.
 また、表示体210の外側から裏面210Rに向けて白色の光I21が照射されている状態で、表示体の表面側から表面210Fを観察する表面透過観察によれば、プラズモン構造体層215でのプラズモン共鳴を経て表示体210の表面側に出た光I26の波長領域に応じた色が、第1画素220Pで視認される。この光I26の波長領域に応じた色は、白色、黒色、および、光I25の波長領域に応じた色とは異なる色である。ただし、プラズモン構造体層215にて光I25の反射が起こるため、裏面210Rに向けて照射された光I21のなかで表示体210を透過する光の強度は高くない。それゆえ、表示体210の表面210Fと裏面210Rとに光I21が照射されている場合には、表面側から見て、第1表示領域220は、黒色に近い色に見える。 Further, according to surface transmission observation in which the surface 210F is observed from the front surface side of the display body in a state where the white light I21 is irradiated from the outside of the display body 210 toward the back surface 210R, the plasmon structure layer 215 A color corresponding to the wavelength region of the light I26 emitted to the surface side of the display body 210 through plasmon resonance is visually recognized by the first pixel 220P. The color corresponding to the wavelength region of the light I26 is white, black, and a color different from the color corresponding to the wavelength region of the light I25. However, since the reflection of the light I25 occurs in the plasmon structure layer 215, the intensity of the light transmitted through the display body 210 is not high in the light I21 irradiated toward the back surface 210R. Therefore, when the light I21 is irradiated on the front surface 210F and the back surface 210R of the display body 210, the first display region 220 looks a color close to black when viewed from the front surface side.
 次に、第2画素230Pを有する第2表示領域230を観察した場合について説明する。表示体210の外側から表示体210の裏面210Rに向けて白色の光I21が照射されると、光I21が回折格子層216にて回折を起こし、回折光である光I27が表示体210の裏面側に射出される。光I27に含まれる各波長領域の光の出射角度は、回折格子層216における凹凸構造の周期、すなわち、第2構造周期P2によって決まる。 Next, a case where the second display area 230 having the second pixels 230P is observed will be described. When the white light I21 is irradiated from the outside of the display body 210 toward the back surface 210R of the display body 210, the light I21 is diffracted by the diffraction grating layer 216, and the light I27 which is diffracted light is the back surface of the display body 210. Injected to the side. The emission angle of light in each wavelength region included in the light I27 is determined by the period of the uneven structure in the diffraction grating layer 216, that is, the second structure period P2.
 結果として、裏面反射観察によれば、観察角度に応じて、色相や彩度や明度の異なる色が、第2画素230Pで視認される。すなわち、裏面反射観察において、第2表示領域230の色は、観察角度の変化によって大きく変化するように見える。 As a result, according to the back surface reflection observation, colors having different hue, saturation, and brightness are visually recognized by the second pixel 230P according to the observation angle. That is, in the back surface reflection observation, the color of the second display region 230 seems to change greatly according to the change in the observation angle.
 一方、表面透過観察によれば、表示体210の外側から裏面210Rに向けて照射された光I21のうち、金属層213,214を有する回折格子層216を透過する光I28の強度は微小であるため、第2画素230Pには、黒色に近い色が視認される。すなわち、表面透過観察において、第2表示領域230は、黒色に近い色に見える。 On the other hand, according to the surface transmission observation, the intensity of the light I28 transmitted through the diffraction grating layer 216 having the metal layers 213 and 214 is very small among the light I21 irradiated from the outside of the display body 210 toward the back surface 210R. Therefore, a color close to black is visually recognized in the second pixel 230P. That is, in the surface transmission observation, the second display region 230 looks a color close to black.
 以上のように、裏面反射観察においては、第1表示領域220と第2表示領域230との外観が異なるため、裏面反射観察によれば、第1表示領域220と第2表示領域230とから構成される絵柄等の像が視認される。また、裏面反射観察と表面透過観察とで、表示体210にて視認される像は、色相や彩度や明度が互いに異なる像であり、また、観察角度の変化による色の変化の程度が互いに異なる像である。 As described above, in the back surface reflection observation, the first display region 220 and the second display region 230 have different appearances. Therefore, according to the back surface reflection observation, the first display region 220 and the second display region 230 are configured. An image such as a picture is visually recognized. In addition, the images visually recognized by the display body 210 in the back surface reflection observation and the front surface transmission observation are images having different hues, saturations, and brightness values, and the degree of color change due to the change in the observation angle is mutually different. It is a different image.
 なお、上記裏面反射観察や表面透過観察の結果は、裏面210Rに向けた外光の光量が、表面210Fに向けた外光の光量よりも高い場合においても、同様の傾向を示す。また、表示体210の裏面210Rに照射される光は、白色の光でなくてもよい。 Note that the results of the back surface reflection observation and the front surface transmission observation show the same tendency even when the amount of external light directed to the back surface 210R is higher than the amount of external light directed to the front surface 210F. Moreover, the light irradiated to the back surface 210R of the display body 210 may not be white light.
 このように、第4実施形態の表示体210によれば、凹凸構造層212における凸部212bの周期の大きさの違いによって、観察角度の変化による色の変化の程度が互いに異なる領域が実現できる。これらの領域の外縁は、凸部212bの位置によって規定され、第1表示領域220の有する凸部212bは、サブ波長周期で並んでいるため、インクの印刷によって形成される領域と比較して、より細かく外縁の位置を設定可能である。したがって、第1表示領域220と第2表示領域230とによって、より精細な像が形成可能であり、表示体210および表示体210を備える物品の偽造の困難性や意匠性が高められる。 As described above, according to the display body 210 of the fourth embodiment, regions having different degrees of color change due to a change in observation angle can be realized due to a difference in the period of the convex portion 212b in the concavo-convex structure layer 212. . The outer edges of these regions are defined by the positions of the convex portions 212b, and the convex portions 212b of the first display region 220 are arranged in the sub-wavelength period, so compared to the region formed by printing the ink, The position of the outer edge can be set more finely. Therefore, a finer image can be formed by the first display area 220 and the second display area 230, and the counterfeiting difficulty and design of an article including the display body 210 and the display body 210 are enhanced.
 第1表示領域220と第2表示領域230とが形成する像は、例えば、第2表示領域230が絵柄を構成し、第1表示領域220が背景を構成する像であってもよいし、第1表示領域220と第2表示領域230とが協働して1つの絵柄を構成する像であってもよいし、第2表示領域230が絵柄の輪郭を構成し、第1表示領域220が輪郭の内部を構成する像であってもよい。表面反射観察では、観察角度の変化によって第2表示領域230が虹色に光るように見える一方で、第1表示領域220は観察角度の変化に依らず黒っぽく見えるため、特に、第1表示領域220が第2表示領域230に囲まれる形態、もしくは、第2表示領域230が第1表示領域220に囲まれる形態であると、第1表示領域220が際立って見える。したがって、第1表示領域220と第2表示領域230とが形成する像の意匠性が高められる。 The image formed by the first display area 220 and the second display area 230 may be, for example, an image in which the second display area 230 forms a picture and the first display area 220 forms a background. The first display area 220 and the second display area 230 may cooperate with each other to form an image, or the second display area 230 may form an outline of the pattern, and the first display area 220 may have an outline. The image which comprises the inside of may be sufficient. In the surface reflection observation, the second display region 230 appears to shine in rainbow colors due to the change in the observation angle, while the first display region 220 looks black regardless of the change in the observation angle. Is surrounded by the second display region 230, or the second display region 230 is surrounded by the first display region 220, the first display region 220 is clearly visible. Therefore, the design of the image formed by the first display area 220 and the second display area 230 is improved.
 なお、表示体210は、少なくとも表面反射観察が可能なように利用されればよく、例えば、表面側からのみ表示体210に光が入射し、表面側からのみ表示体210の観察が可能である状態で用いられてもよい。この場合でも、第1表示領域220と第2表示領域230とによって、観察角度の変化による色の変化の程度が互いに異なる領域が実現される。 The display body 210 may be used so that at least surface reflection observation is possible. For example, light is incident on the display body 210 only from the surface side, and the display body 210 can be observed only from the surface side. It may be used in a state. Even in this case, the first display area 220 and the second display area 230 can realize areas having different degrees of color change due to changes in the observation angle.
 [表示体の構成例]
 表示体210の構造についての好ましい形態、および、変形例についてさらに説明する。
[Configuration example of display]
A preferable embodiment and a modification of the structure of the display body 210 will be further described.
 <第1表示領域220の構成例>
 第1表示領域220における第1画素220Pの構成例について説明する。なお、以下の構成例は、第2表示領域230における第2画素230Pにも適用されてもよい。
<Configuration Example of First Display Area 220>
A configuration example of the first pixel 220P in the first display region 220 will be described. Note that the following configuration example may also be applied to the second pixel 230P in the second display region 230.
 図36が示すように、第1金属層213の厚さTaが厚いほど、プラズモン構造体層215の基部領域217と平坦部212aとの界面で生じるフレネル反射によって射出される光の強度が大きく、裏面反射観察で視認される像の明度が高まる。また、第1金属層213の厚さTaが厚いほど、裏面210Rから表面210Fへ透過する光の強度が小さく、表示体210の表裏に光が照射されている場合でも、表面反射観察での色彩が、より黒色に近づく。 As shown in FIG. 36, as the thickness Ta of the first metal layer 213 increases, the intensity of light emitted by Fresnel reflection generated at the interface between the base region 217 of the plasmon structure layer 215 and the flat portion 212a increases. The brightness of the image visually recognized by back surface reflection observation increases. Further, as the thickness Ta of the first metal layer 213 is increased, the intensity of light transmitted from the back surface 210R to the front surface 210F is small, and even when light is irradiated on the front and back of the display body 210, the color in the surface reflection observation However, it is closer to black.
 また、第1構造周期P1に対する第1凸部幅D1の比が小さいほど、平坦部212aの表面を含む平面において第1金属層213の位置する領域の面積比率が大きくなるため、裏面反射観察で視認される像の明度が高まり、かつ、表面反射観察での色彩が、より黒色に近づく。 Further, the smaller the ratio of the first convex portion width D1 to the first structural period P1, the larger the area ratio of the region where the first metal layer 213 is located in the plane including the surface of the flat portion 212a. The brightness of the visually recognized image is increased, and the color in the surface reflection observation is closer to black.
 したがって、第1金属層213の厚さTaは10nm以上であることが好ましい。また、第1構造周期P1に対する第1凸部幅D1の比は0.75以下であることが好ましく、0.60以下であることがより好ましい。また、凸部212bの上面を含む平面において、第1画素220P内で凸部212bが占有する面積比率は50%以下であることが好ましい。 Therefore, the thickness Ta of the first metal layer 213 is preferably 10 nm or more. Further, the ratio of the first convex portion width D1 to the first structural period P1 is preferably 0.75 or less, and more preferably 0.60 or less. In the plane including the upper surface of the convex portion 212b, the area ratio occupied by the convex portion 212b in the first pixel 220P is preferably 50% or less.
 一方、第1金属層213の厚さTaが薄いほど、また、第2金属層214の厚さTbが薄いほど、表面透過観察や裏面透過観察では、これらを透過する光の強度が大きく、視認される像が明瞭になる。また、第1構造周期P1に対する第1凸部幅D1の比が大きいほど、これもまた、表示体210を透過する光の強度が大きい。 On the other hand, the thinner the thickness Ta of the first metal layer 213 and the thinner the thickness Tb of the second metal layer 214, the greater the intensity of light transmitted through the surface transmission observation and the rear surface transmission observation. The image will be clear. In addition, the larger the ratio of the first convex portion width D1 to the first structural period P1, the higher the intensity of the light transmitted through the display body 210.
 したがって、第1金属層213の厚さTaや、第2金属層214の厚さTbは、200nm以下であることが好ましい。また、第1構造周期P1に対する第1凸部幅D1の比は0.25以上であることが好ましく、0.40以上であることがより好ましい。また、凸部212bの上面を含む平面において、第1画素220P内で凸部212bが占有する面積比率は10%以上であることが好ましい。 Therefore, the thickness Ta of the first metal layer 213 and the thickness Tb of the second metal layer 214 are preferably 200 nm or less. The ratio of the first convex portion width D1 to the first structural period P1 is preferably 0.25 or more, and more preferably 0.40 or more. In the plane including the upper surface of the convex portion 212b, the area ratio occupied by the convex portion 212b in the first pixel 220P is preferably 10% or more.
 また、第1金属層213と第2金属層214とを、凹凸構造層212に対する金属層の成膜によって、単一の工程で形成するとき、成膜源から飛行する金属粒子は、凹凸構造層212の表面に対して、所定の角度分布を有して付着する。結果として、第2金属層214の幅Waは、凸部212bの第1凸部幅D1よりも若干大きくなり、互いに隣接する第2金属層214間の最短距離Wbは、互いに隣接する凸部212b間の最短距離Wcよりも若干小さくなる。また、第1金属層213における凸部212bの周囲の部分は、第2金属層214によるシャドウ効果の影響を受けて、凸部212bに近い部位ほど薄い。 In addition, when the first metal layer 213 and the second metal layer 214 are formed in a single step by forming a metal layer on the uneven structure layer 212, the metal particles flying from the film formation source are It adheres to the surface of 212 with a predetermined angular distribution. As a result, the width Wa of the second metal layer 214 is slightly larger than the first protrusion width D1 of the protrusion 212b, and the shortest distance Wb between the second metal layers 214 adjacent to each other is the protrusion 212b adjacent to each other. It is slightly smaller than the shortest distance Wc. Further, the portion around the convex portion 212b in the first metal layer 213 is affected by the shadow effect by the second metal layer 214, and the portion closer to the convex portion 212b is thinner.
 また、上記製造方法では、凸部212bの側面にも、第2金属層214に連続する金属層である中間金属層214Aが形成される。中間金属層214Aは、第2金属層214と一体の構造体であり、凸部212bの側面上での厚みが、第1金属層213に近い部位ほど薄い。 Further, in the above manufacturing method, the intermediate metal layer 214A that is a metal layer continuous to the second metal layer 214 is also formed on the side surface of the convex portion 212b. The intermediate metal layer 214 </ b> A is a structure integrated with the second metal layer 214, and the thickness on the side surface of the convex portion 212 b is thinner as the portion is closer to the first metal layer 213.
 第1画素220Pにおいて、こうした中間金属層214Aは、第1構造周期P1がサブ波長周期であるため、頂部領域219および中間領域218の厚さ方向での屈折率の変化を連続的とする。そして、中間金属層214Aは、表示体の外側から頂部領域219に入射した光を反射し難く、中間領域218や基部領域217へ透過しやすい。それゆえに、表面反射観察において、より黒色に近い色が、第1表示領域220にて視認される。 In the first pixel 220P, the intermediate metal layer 214A has a continuous change in refractive index in the thickness direction of the top region 219 and the intermediate region 218 since the first structural period P1 is a sub-wavelength period. The intermediate metal layer 214 </ b> A hardly reflects light incident on the top region 219 from the outside of the display body and easily transmits the light to the intermediate region 218 and the base region 217. Therefore, a color closer to black is visually recognized in the first display region 220 in the surface reflection observation.
 また、第2金属層214間の空気層である誘電体層と第2金属層214との間の屈折率差が小さいほど、頂部領域219での平均化された屈折率は、頂部領域219と頂部領域219上の空気層との界面でのフレネル反射を抑えやすい。他方、凸部212bと第1金属層213との間の屈折率差が大きいほど、基部領域217の平均化された屈折率は、基部領域217と平坦部212aとの界面でのフレネル反射を促しやすい。 In addition, the smaller the refractive index difference between the dielectric layer that is the air layer between the second metal layers 214 and the second metal layer 214, the more the average refractive index in the top region 219 is It is easy to suppress Fresnel reflection at the interface with the air layer on the top region 219. On the other hand, as the difference in refractive index between the convex portion 212b and the first metal layer 213 increases, the averaged refractive index of the base region 217 promotes Fresnel reflection at the interface between the base region 217 and the flat portion 212a. Cheap.
 したがって、第1金属層213と第2金属層214とが、相互に等しい屈折率を有し、かつ、凸部212bと第1金属層213との間の屈折率差が、上記誘電体層と第2金属層214との間の屈折率差よりも大きい構成であれば、頂部領域219と空気層との界面でのフレネル反射を抑え、かつ、基部領域217と平坦部212aとの界面でのフレネル反射を促すことが可能となる。 Therefore, the first metal layer 213 and the second metal layer 214 have the same refractive index, and the refractive index difference between the convex portion 212b and the first metal layer 213 is the same as that of the dielectric layer. If the configuration is larger than the refractive index difference between the second metal layer 214, the Fresnel reflection at the interface between the top region 219 and the air layer is suppressed, and at the interface between the base region 217 and the flat portion 212a. It is possible to promote Fresnel reflection.
 なお、第1画素220Pが、頂部領域219と頂部領域219上の空気層との界面でのフレネル反射を好適に抑えるための上述の各種の構成を有していない場合であっても、第1画素220Pにおける凸部212bの周期がサブ波長周期であることにより、第1画素220Pから回折光が射出されることは抑えられ、プラズモン構造体層215ではプラズモン共鳴が生じる。したがって、表示体210の外側から表面210Fに向けて光が照射されている状態において、表示体210の表面側に第1画素220Pから回折光が射出することが抑えられるため、観察角度の変化による色の変化の小さい第1表示領域220は実現できる。 Even if the first pixel 220P does not have the above-described various configurations for suitably suppressing Fresnel reflection at the interface between the top region 219 and the air layer on the top region 219, the first pixel 220P Since the period of the convex portion 212b in the pixel 220P is a sub-wavelength period, the diffracted light is prevented from being emitted from the first pixel 220P, and plasmon resonance occurs in the plasmon structure layer 215. Therefore, in a state where light is irradiated from the outside of the display body 210 toward the surface 210F, it is possible to suppress the diffracted light from being emitted from the first pixel 220P to the surface side of the display body 210. The first display area 220 having a small color change can be realized.
 <凸部212bの形状および配置の変形例>
 図37が示すように、凸部212bの形状は、四角錐台形状、すなわち、四角錐の頂部が平面となっている形状を有していてもよい。この場合、基材211の表面に沿った方向における凸部212bの幅は、表示体210の裏面210Rから表面210Fに向かう方向に、徐々に小さくなっており、凸部212bの基部を構成する正方形の一辺の長さが、凸部幅である。こうした構造であれば、凸部212bの形成に際して、凸部212bを形成するための凹版の離型を円滑に進めることが可能である。また、凸部212bは、円錐台形状や円柱形状であってもよいし、角錐形状や円錐形状のように、先端に平面を有さない形状であってもよい。
<Modification of shape and arrangement of convex portion 212b>
As shown in FIG. 37, the shape of the convex portion 212b may have a quadrangular pyramid shape, that is, a shape in which the top of the quadrangular pyramid is a flat surface. In this case, the width of the convex portion 212b in the direction along the surface of the base material 211 is gradually reduced in the direction from the back surface 210R of the display body 210 to the front surface 210F, and the square constituting the base portion of the convex portion 212b. The length of one side is the convex part width. With such a structure, it is possible to smoothly release the intaglio for forming the convex portion 212b when the convex portion 212b is formed. Further, the convex portion 212b may have a truncated cone shape or a columnar shape, or may have a shape that does not have a flat surface at the tip, such as a pyramid shape or a cone shape.
 第1画素220Pにおいて、表示体210の表面210Fと対向する方向から見た凸部212bの配置は、正方配列に限らず、二次元格子状であればよい。正方配列は、二次元平面内において直交する2つの方向の各々に沿って凸部212bが並ぶ配列であり、二次元格子状の配列には、正方配列の他に、二次元平面内において90度とは異なる角度で交差する2つの方向の各々に沿って凸部212bが並ぶ配列が含まれる。第1画素220Pにおいて、凹凸構造層212と第1金属層213および第2金属層214とは、これらの層からなるプラズモン構造体層215にてプラズモン共鳴が生じる構造を有していればよい。 In the first pixel 220P, the arrangement of the convex portions 212b viewed from the direction facing the surface 210F of the display body 210 is not limited to a square arrangement, and may be a two-dimensional lattice shape. The square array is an array in which convex portions 212b are arranged along each of two orthogonal directions in the two-dimensional plane, and the two-dimensional lattice-like array includes 90 degrees in the two-dimensional plane in addition to the square array. An arrangement in which the convex portions 212b are arranged along each of two directions intersecting at different angles is included. In the first pixel 220P, the concavo-convex structure layer 212, the first metal layer 213, and the second metal layer 214 only have to have a structure in which plasmon resonance occurs in the plasmon structure layer 215 including these layers.
 図38が示すように、第2画素230Pにおいて、表示体210の表面210Fと対向する方向から見た凸部212bの配置は、正方配列を含む二次元格子状に限らず、1つの方向に帯状に延びる複数の凸部212bが等間隔で並ぶ配置であってもよい。この場合、凸部212bの延びる方向と直交する方向における凸部212bの長さが第2凸部幅D2である。要は、第2画素230Pにおいて、凸部212bは、凹凸構造層212と第1金属層213および第2金属層214とからなる回折格子層216が可視領域の光を回折する回折格子を構成するように配置されていればよい。 As shown in FIG. 38, in the second pixel 230P, the arrangement of the convex portions 212b viewed from the direction facing the surface 210F of the display body 210 is not limited to a two-dimensional lattice shape including a square arrangement, but is a band shape in one direction. A plurality of protrusions 212b extending in a line may be arranged at equal intervals. In this case, the length of the convex portion 212b in the direction orthogonal to the extending direction of the convex portion 212b is the second convex portion width D2. In short, in the second pixel 230P, the convex portion 212b constitutes a diffraction grating in which the diffraction grating layer 216 composed of the uneven structure layer 212, the first metal layer 213, and the second metal layer 214 diffracts light in the visible region. It suffices if they are arranged in such a manner.
 <その他の変形例>
 図39が示すように、表示体210は、第1画素220Pと第2画素230Pとの少なくとも一方において、凹凸構造層212と第1金属層213と第2金属層214とからなる構造体を覆う保護層240を備えていてもよい。すなわち、凸部212b間の領域や第2金属層214間の領域には、空気とは異なる誘電体が位置していてもよい。保護層240は、例えば、低屈折率の樹脂から構成される。低屈折率の樹脂からなる保護層240は、凸部212bの屈折率よりも空気層の屈折率に近い屈折率を有する。
<Other variations>
As shown in FIG. 39, the display body 210 covers a structure including the concavo-convex structure layer 212, the first metal layer 213, and the second metal layer 214 in at least one of the first pixel 220P and the second pixel 230P. A protective layer 240 may be provided. That is, a dielectric different from air may be located in the region between the convex portions 212 b and the region between the second metal layers 214. The protective layer 240 is made of, for example, a low refractive index resin. The protective layer 240 made of a low refractive index resin has a refractive index closer to the refractive index of the air layer than the refractive index of the convex portion 212b.
 また、表示体210は、第1画素220Pにおいて、プラズモン構造体層215を、構造体に対して表面側で覆う多層膜層を備えていてもよい。多層膜層は、可視領域の光に対して透明な材料から構成された複数の薄膜の積層体であって、多層膜干渉を生じさせる。複数の薄膜の屈折率は、互いに異なる。そして、表示体210の外側から表面210Fに向けて光が照射されると、多層膜層では、各薄膜の界面で反射された特定の波長領域の光が干渉により強められて、表面側に射出される。第1画素220Pにおいては、表面側への一次回折光の発生が抑えられ、プラズモン共鳴が起こるため、多層膜層によって強められた波長領域の光とは異なる波長領域の光が表面側に射出されることが抑えられる。それゆえ、表面側から見て、第1画素220Pには、多層膜層によって強められた波長領域に応じた色相の色が鮮明に見える。 In addition, the display body 210 may include a multilayer film layer that covers the plasmon structure layer 215 on the surface side with respect to the structure in the first pixel 220P. The multilayer film layer is a laminated body of a plurality of thin films made of a material transparent to light in the visible region, and causes multilayer film interference. The refractive indexes of the plurality of thin films are different from each other. When light is irradiated from the outside of the display body 210 toward the surface 210F, in the multilayer film layer, light in a specific wavelength region reflected at the interface of each thin film is intensified by interference and emitted to the surface side. Is done. In the first pixel 220P, the generation of primary diffracted light on the surface side is suppressed, and plasmon resonance occurs. Therefore, light in a wavelength region different from the light in the wavelength region strengthened by the multilayer film is emitted to the surface side. Is suppressed. Therefore, when viewed from the surface side, the hue of the hue corresponding to the wavelength region strengthened by the multilayer film layer is clearly seen in the first pixel 220P.
 こうした構成によっても、表面反射観察では、第2表示領域230が観察角度の変化によって色が大きく変化するように見える一方で、第1表示領域220に視認される色は、多層膜層によって強められた波長領域に応じた色であって、この色の観察角度の変化による変化は第2表示領域230と比較して小さい。したがって、第1表示領域220と第2表示領域230とによって、観察角度の変化による色の変化の程度が互いに異なる領域が実現される。 Even with such a configuration, in the surface reflection observation, the color of the second display region 230 seems to change greatly according to the change of the observation angle, while the color visually recognized in the first display region 220 is enhanced by the multilayer film layer. The color corresponds to the wavelength region, and the change due to the change in the observation angle of this color is small compared to the second display region 230. Therefore, the first display area 220 and the second display area 230 realize areas in which the degree of color change due to the change in observation angle is different from each other.
 そして、多層膜層によって強められる波長領域は多層膜の層構成等によって調整可能であるため、観察角度の変化による色の変化の小さい領域に、黒色以外の色を視認させることが可能であり、多様な像の表現が可能である。 And since the wavelength region intensified by the multilayer film layer can be adjusted by the layer configuration of the multilayer film, it is possible to make colors other than black visible in the region where the color change due to the change in the observation angle is small, Various images can be represented.
 また、第1金属層213と第2金属層214とが、相互に連続する1つの金属層であってもよい。すなわち、金属層は、凹凸構造層212の表面に沿って、凹凸構造層212の全面を覆っていてもよい。要は、第1金属層213と第2金属層214とを含む層である金属層は、層全体としての形状が凹凸構造層212の表面形状に追従した形状を有していればよく、換言すれば、金属層は、表面側に向けて飛び出ている部分が凸部212bの配置に沿った配置で点在している形状を有していればよい。 Further, the first metal layer 213 and the second metal layer 214 may be one metal layer continuous with each other. That is, the metal layer may cover the entire surface of the uneven structure layer 212 along the surface of the uneven structure layer 212. In short, the metal layer that includes the first metal layer 213 and the second metal layer 214 only needs to have a shape in which the shape of the entire layer follows the surface shape of the concavo-convex structure layer 212. In this case, the metal layer only needs to have a shape in which portions protruding toward the surface side are scattered in an arrangement along the arrangement of the convex portions 212b.
 また、第1表示領域220の凹凸構造層212と、第2表示領域230の凹凸構造層212とは、別々の工程で形成されてもよい。また、第1金属層213と第2金属層214とは別々の工程で形成されてもよい。こうした場合、第1金属層213と第2金属層214とが互いに異なる材料から構成されていてもよい。 Further, the uneven structure layer 212 of the first display area 220 and the uneven structure layer 212 of the second display area 230 may be formed in separate steps. Further, the first metal layer 213 and the second metal layer 214 may be formed in separate steps. In such a case, the first metal layer 213 and the second metal layer 214 may be made of different materials.
 また、基材211と凹凸構造層212は一体であってもよい。あるいは、凹凸構造層212は平坦部212aを備えず、凸部212bは基材211の表面から突き出していてもよい。 Further, the base material 211 and the uneven structure layer 212 may be integrated. Alternatively, the concavo-convex structure layer 212 may not include the flat portion 212 a and the convex portion 212 b may protrude from the surface of the base material 211.
 以上のように、第4実施形態においても、表示体からは、プラズモン共鳴に起因して、特定の波長領域の光が反射光もしくは透過光として射出される。そして、各凸部212bである周期要素の位置や大きさと、各周期要素によって位置が定まる金属層とを含む複数の因子によって、上記透過光や反射光の波長領域が定まるため、表示体にて透過あるいは反射される波長領域の調整の自由度を高めることができる。 As described above, also in the fourth embodiment, light of a specific wavelength region is emitted from the display body as reflected light or transmitted light due to plasmon resonance. Since the wavelength region of the transmitted light and the reflected light is determined by a plurality of factors including the position and size of the periodic elements that are the respective convex portions 212b and the metal layer determined by each periodic element, the display body It is possible to increase the degree of freedom in adjusting the wavelength region that is transmitted or reflected.
 ところで、近年、偽造の困難性や意匠性をより高めるために、外観が互いに異なる領域を有した表示体が提案されている。例えば、微細な凹凸を有してホログラムを形成している層の一部に、インクからなる層が印刷によって積層された構造を有する表示体が提案されている。こうした表示体は、ホログラムによる色が視認される領域、すなわち、表示体に対する観察者の視線の角度が変化したときに色が大きく変化する領域と、インクの色が視認される領域、すなわち、上記角度の変化による色の変化が小さい領域とを有している。 By the way, in recent years, in order to further improve the forgery difficulty and the design, display bodies having regions with different appearances have been proposed. For example, there has been proposed a display body having a structure in which a layer made of ink is laminated by printing on a part of a layer having fine irregularities and forming a hologram. Such a display body includes a region where the color by the hologram is visually recognized, that is, a region where the color changes greatly when the angle of the line of sight of the observer with respect to the display body changes, and a region where the color of the ink is visually recognized, And a region where a change in color due to a change in angle is small.
 表示体の外観による偽造の困難性や意匠性をさらに向上するためには、上記角度の変化による色の変化の程度が互いに異なる領域によって、より精細な像が形成されることが好ましい。一方、インクからなる層が位置する領域であるインク領域は、各種の印刷法を用いたインクの塗布によって形成されるため、表示体の表面と対向する方向から見たインク領域の外縁の位置の制御には限界がある。したがって、インク領域よりも、上記外縁の位置のより細かな制御が可能な領域を用いて、上記角度の変化による色の変化の程度が互いに異なる領域を実現する表示体が望まれている。このように、表示体の外観によって発現される機能を高めることのできる表示体を提供することも、第4実施形態の目的である。こうした課題に対する効果を含めて、第4実施形態によれば、以下に列挙する効果が得られる。 In order to further improve the difficulty of counterfeiting due to the appearance of the display body and the design, it is preferable that a finer image is formed by regions having different degrees of color change due to the change in angle. On the other hand, the ink area, which is the area where the ink layer is located, is formed by applying ink using various printing methods, and therefore the position of the outer edge of the ink area as viewed from the direction facing the surface of the display body. Control is limited. Therefore, there is a demand for a display body that realizes areas in which the degree of color change due to the change in angle is different from each other using an area where the position of the outer edge can be controlled more finely than the ink area. Thus, it is also an object of the fourth embodiment to provide a display body that can enhance the function expressed by the appearance of the display body. According to the fourth embodiment, including the effects on such problems, the effects listed below can be obtained.
 (4-1)凹凸構造層212における凸部212bの周期の大きさの違いによって、観察角度の変化による色の変化の程度が互いに異なる領域である第1表示領域220と第2表示領域230とが実現される。これらの領域の外縁は、凸部212bの位置によって規定され、第1表示領域220の有する凸部212bは、サブ波長周期で並んでいるため、インクの印刷によって形成される領域と比較して、より細かく外縁の位置を設定可能である。したがって、第1表示領域220と第2表示領域230とによって、より精細な像が形成可能であり、表示体210を備える物品の偽造の困難性や意匠性が高められる。すなわち、表示体210の外観によって発現される機能を高めることができる。 (4-1) The first display area 220 and the second display area 230 are areas in which the degree of change in color due to the change in the observation angle is different from each other due to the difference in the period of the protrusion 212b in the uneven structure layer 212. Is realized. The outer edges of these regions are defined by the positions of the convex portions 212b, and the convex portions 212b of the first display region 220 are arranged in the sub-wavelength period, so compared to the region formed by printing the ink, The position of the outer edge can be set more finely. Therefore, a finer image can be formed by the first display area 220 and the second display area 230, and the forgery and design of the article including the display body 210 are enhanced. That is, the function expressed by the appearance of the display body 210 can be enhanced.
 また、表示体210の外側から表面210Fに向けて光が照射されているとき、表面反射観察と裏面透過観察とで、色相や彩度や明度が互いに異なる像が視認される。また、表示体210の外側から裏面210Rに向けて光が照射されているとき、表面透過観察と裏面反射観察とで、色相や彩度や明度が互いに異なる像が視認される。このように、表示体210を表面側から観察した場合と裏面側から観察した場合とで、視認される像が異なるため、表示体210を備える物品にて、偽造の困難性や意匠性がより高められる。また、表示体210の表裏の識別も容易である。 In addition, when light is irradiated from the outside of the display body 210 toward the front surface 210F, images having different hues, saturations, and brightness values are visually recognized in the front surface reflection observation and the rear surface transmission observation. Further, when light is irradiated from the outside of the display body 210 toward the back surface 210R, images having different hues, saturations, and brightness values are visually recognized in the front surface transmission observation and the back surface reflection observation. Thus, since the image visually recognized is different between the case where the display body 210 is observed from the front surface side and the case where the display body 210 is observed from the back surface side, the article including the display body 210 is more difficult to counterfeit or have a good design. Enhanced. Further, the front and back of the display body 210 can be easily identified.
 (4-2)凹凸構造層212が有する凸部212bでは、凸部212bのアスペクト比が小さいほど、凸部212bの加工が容易であり、また、凸部212bにおける加工の精度も高い。この傾向は、凸部212bの周期が小さいほど顕著である。これに対して、凹凸構造層212が有する凸部212bのなかで第2画素230Pが備える凸部212bでは、凸部212bの高さが高いほど、光の回折効率が高い。そのため、第1凸部高さH1よりも第2凸部高さH2が大きい構成であると、相対的に周期が小さく凹凸構造層212がプラズモン共鳴を生じさせるための構造である第1画素220Pでは、アスペクト比を小さくして加工の精度を確保する一方、相対的に周期が大きく凹凸構造層212が光の回折を生じさせるための構造である第2画素230Pでは、凸部高さを高くして回折効率を高めることができる。 (4-2) In the convex portion 212b of the concavo-convex structure layer 212, the smaller the aspect ratio of the convex portion 212b, the easier the processing of the convex portion 212b and the higher the processing accuracy in the convex portion 212b. This tendency is more remarkable as the period of the convex portion 212b is smaller. On the other hand, in the convex portion 212b included in the second pixel 230P among the convex portions 212b included in the concave-convex structure layer 212, the higher the height of the convex portion 212b, the higher the light diffraction efficiency. Therefore, when the second convex height H2 is larger than the first convex height H1, the first pixel 220P is a structure having a relatively small period and causing the concavo-convex structure layer 212 to generate plasmon resonance. In the second pixel 230P, which has a relatively large period and a structure for causing light diffraction, the convex portion height is increased while the aspect ratio is reduced to ensure processing accuracy. Thus, the diffraction efficiency can be increased.
 (4-3)凸部212bが、平坦部212aから突き出していることにより、平坦部212aは、第1表示領域220に含まれる凸部212bを支持する機能と、第2表示領域230に含まれる凸部212bを支持する機能とを有する。したがって、凸部212bが倒れることが的確に抑えられ、また、各領域に位置する凸部212bを支持するための構造が平坦部212aであるため、凸部212bが倒れることを抑えるために求められる構造の簡素化を図ることが可能である。 (4-3) Since the convex portion 212b protrudes from the flat portion 212a, the flat portion 212a is included in the second display region 230 and has a function of supporting the convex portion 212b included in the first display region 220. A function of supporting the convex portion 212b. Therefore, the convex portion 212b can be accurately prevented from falling, and the structure for supporting the convex portion 212b located in each region is the flat portion 212a. Therefore, the convex portion 212b is required to be prevented from falling. It is possible to simplify the structure.
 (4-4)基材211の表面に塗工された樹脂に凹版を押し付けて樹脂を硬化させることにより複数の凸部212bを形成し、これによって、第1領域と第2領域とを有する凹凸構造層212を形成する。そして、金属層を凹凸構造層212の上に形成する。このとき、金属層のなかの第1領域上に位置する部分と、第1領域の凸部212bとが、プラズモン共鳴を生じさせる構造体を構成するように、サブ波長周期を有した二次元格子状に、第1領域に位置する凸部212bを形成する。また、金属層のなかの第2領域上に位置する部分と、第2領域の凸部212bとが、可視領域の光を回折する回折格子を構成するように、第1領域における凸部212bの周期よりも大きい周期で、第2領域に位置する凸部212bを形成する。こうした製造方法によれば、観察角度の変化による色の変化の程度が互いに異なる領域を有する表示体210を製造することが可能であり、また、微細な凹凸を有する凹凸構造層212を好適に形成することができる。 (4-4) A plurality of convex portions 212b are formed by pressing the intaglio to the resin coated on the surface of the base material 211 and curing the resin, thereby forming irregularities having a first region and a second region. A structural layer 212 is formed. Then, a metal layer is formed on the uneven structure layer 212. At this time, a two-dimensional grating having a subwavelength period so that a portion of the metal layer located on the first region and the convex portion 212b of the first region constitute a structure that generates plasmon resonance. A convex portion 212b located in the first region is formed. Further, the portion of the metal layer located on the second region and the convex portion 212b of the second region constitute a diffraction grating that diffracts light in the visible region, so that the convex portion 212b in the first region is formed. The convex portions 212b located in the second region are formed with a period longer than the period. According to such a manufacturing method, it is possible to manufacture the display body 210 having regions with different degrees of color change due to changes in the observation angle, and suitably form the uneven structure layer 212 having fine unevenness. can do.
 (4-5)上記第1領域の凸部212bと上記第2領域の凸部212bとを上記凹版を用いて同時に形成する製造方法によれば、第1画素220Pの凸部212bと第2画素230Pの凸部212bとが同時に形成される。こうした製造方法によれば、第1画素220Pの凸部212bと第2画素230Pの凸部212bとを別の工程にて形成する製造方法と比較して、効率よく表示体210を製造することができる。また、第1画素220Pの配置された第1表示領域220と第2画素230Pの配置された第2表示領域230との境界をより精密に形成することができる。 (4-5) According to the manufacturing method in which the convex portion 212b of the first region and the convex portion 212b of the second region are simultaneously formed using the intaglio, the convex portion 212b and the second pixel of the first pixel 220P 230P convex part 212b is formed simultaneously. According to such a manufacturing method, the display 210 can be efficiently manufactured as compared with a manufacturing method in which the convex portions 212b of the first pixels 220P and the convex portions 212b of the second pixels 230P are formed in separate steps. it can. In addition, the boundary between the first display area 220 where the first pixels 220P are arranged and the second display area 230 where the second pixels 230P are arranged can be formed more precisely.
 (第5実施形態)
 図40から図45を参照して、光学デバイスの一例である表示体、および、表示体の製造方法の第5実施形態を説明する。
(Fifth embodiment)
With reference to FIG. 40 to FIG. 45, a display body that is an example of an optical device and a fifth embodiment of a method for manufacturing the display body will be described.
 第5実施形態の表示体における第1画素および第2画素の構成は、第4実施形態と同様である。ただし、第5実施形態の第2表示領域は、凸部の配列方向、および、凸部の周期の少なくとも一方が互いに異なる第2画素を含む。以下では、第5実施形態と第4実施形態との相違点を中心に説明し、第4実施形態と同様の構成については同じ符号を付してその説明を省略する。 The configuration of the first pixel and the second pixel in the display body of the fifth embodiment is the same as that of the fourth embodiment. However, the second display area of the fifth embodiment includes second pixels in which at least one of the arrangement direction of the protrusions and the period of the protrusions is different from each other. Below, it demonstrates centering around the difference between 5th Embodiment and 4th Embodiment, about the structure similar to 4th Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 [凸部の配列方向が異なる形態]
 図40および図41A,Bを参照して、第2表示領域が、凸部の配列方向が互いに異なる第2画素を含む形態について説明する。
[Forms with different arrangement directions of protrusions]
With reference to FIG. 40 and FIG. 41A, B, the form in which a 2nd display area contains the 2nd pixel from which the arrangement direction of a convex part mutually differs is demonstrated.
 図40が示すように、表面210Fと対向する方向から見て、第2表示領域230は、第1副領域230Aと第2副領域230Bと第3副領域230Cとを含んでいる。
 第1副領域230Aに位置する第2画素230Paの凸部212bは、第4実施形態の図33にて示したように、表面210Fと対向する方向から見て、二次元格子状に配置されている。
As shown in FIG. 40, the second display area 230 includes a first sub-area 230A, a second sub-area 230B, and a third sub-area 230C when viewed from the direction facing the surface 210F.
As shown in FIG. 33 of the fourth embodiment, the convex portions 212b of the second pixels 230Pa located in the first sub-region 230A are arranged in a two-dimensional lattice shape when viewed from the direction facing the surface 210F. Yes.
 第2副領域230Bに位置する第2画素230Pbの凸部212bは、第4実施形態の図38にて示したように、表面210Fと対向する方向から見て、等間隔に並ぶとともに1つの方向に延びる複数の帯状を有している。 As shown in FIG. 38 of the fourth embodiment, the convex portions 212b of the second pixels 230Pb located in the second sub-region 230B are arranged at equal intervals and in one direction as viewed from the direction facing the surface 210F. It has a plurality of strips extending in the direction.
 第3副領域230Cに位置する第2画素230Pcの凸部212bは、表面210Fと対向する方向から見て、等間隔に並ぶとともに1つの方向に延びる複数の帯状であって、第2画素230Pbの凸部212bの並ぶ方向とは異なる方向に並ぶ複数の帯状を有している。 The convex portions 212b of the second pixels 230Pc located in the third sub-region 230C are a plurality of strips that are arranged at equal intervals and extend in one direction when viewed from the direction facing the surface 210F, and the second pixels 230Pb A plurality of strips are arranged in a direction different from the direction in which the convex portions 212b are arranged.
 例えば、第2画素230Paの凸部212bは、第1方向および第1方向と直交する第2方向に沿って並ぶ。そして、第2画素230Pbの凸部212bは、第1方向に沿って延び、かつ、第2方向に沿って並ぶ。さらに、第2画素230Pcの凸部212bは、第2方向に沿って延び、かつ、第1方向に沿って並ぶ。すなわち、第2画素230Pbの凸部212bの配列方向と、第2画素230Pcの凸部212bの配列方向とは直交する。 For example, the convex portions 212b of the second pixels 230Pa are arranged along the first direction and the second direction orthogonal to the first direction. The convex portions 212b of the second pixels 230Pb extend along the first direction and are aligned along the second direction. Furthermore, the convex portions 212b of the second pixels 230Pc extend along the second direction and are arranged along the first direction. That is, the arrangement direction of the convex portions 212b of the second pixel 230Pb and the arrangement direction of the convex portions 212b of the second pixel 230Pc are orthogonal to each other.
 第1副領域230Aの第2画素230Paでは、凸部212bの配置についての方向に対する依存性が低く、表面210Fと対向する方向から見た場合の入射光の方向、すなわち、表面210Fに沿った平面に投影した場合の入射光の方向について、第2画素230Paが回折光を射出し得る入射光の方向の範囲は広い。回折光は、入射光の方向に応じた方向に射出されるため、様々な方向からの入射光を含む光が表示体210の表面210Fに照射されたとき、第2画素230Paが射出する光には様々な方向への回折光が含まれる。 In the second pixel 230Pa of the first sub-region 230A, the dependency on the direction of the arrangement of the convex portions 212b is low, and the direction of incident light when viewed from the direction facing the surface 210F, that is, the plane along the surface 210F. With respect to the direction of the incident light when projected onto, the range of the direction of the incident light from which the second pixel 230Pa can emit diffracted light is wide. Since the diffracted light is emitted in a direction according to the direction of the incident light, when light including incident light from various directions is irradiated onto the surface 210F of the display body 210, the light emitted from the second pixel 230Pa is emitted. Includes diffracted light in various directions.
 一方、第2副領域230Bの第2画素230Pbと、第3副領域230Cの第2画素230Pcとは、表面210Fに沿った平面に投影した場合の入射光の方向について、凸部212bの並ぶ方向に依存した特定の範囲の方向からの入射光に対して特定の範囲の方向へ回折光を射出する。したがって、様々な方向からの入射光を含む光が表示体210の表面210Fに照射されたとき、第2画素230Pbにおける回折光の射出方向と第2画素230Pcにおける回折光の射出方向とは互いに異なる。 On the other hand, the second pixel 230Pb in the second sub-region 230B and the second pixel 230Pc in the third sub-region 230C are in the direction in which the convex portions 212b are arranged in the direction of incident light when projected onto a plane along the surface 210F. The diffracted light is emitted in the direction of the specific range with respect to the incident light from the direction of the specific range depending on. Therefore, when the surface 210F of the display body 210 is irradiated with light including incident light from various directions, the direction of emission of diffracted light from the second pixel 230Pb is different from the direction of emission of diffracted light from the second pixel 230Pc. .
 観察者が、第2画素230Paからの回折光の出射方向の先に位置するとき、第1副領域230Aが明るく見え、また、第2画素230Pbからの回折光の出射方向の先に位置するとき、第2副領域230Bが明るく見え、また、第2画素230Pcからの回折光の出射方向の先に位置するとき、第3副領域230Cが明るく見える。各領域が明るく見えるとき、各領域は虹色に光るように、すなわち、観察角度の変化によって色が大きく変化するように見える。 When the observer is positioned ahead of the direction of emission of diffracted light from the second pixel 230Pa, the first sub-region 230A appears bright, and when it is located ahead of the direction of emission of diffracted light from the second pixel 230Pb. The second sub-region 230B appears bright, and the third sub-region 230C appears bright when positioned ahead of the direction of emission of the diffracted light from the second pixel 230Pc. When each region looks bright, each region appears to shine in iridescent colors, that is, it appears that the color changes greatly as the viewing angle changes.
 結果として、外光が表示体210の表面210Fに照射されている状態で表面側から表面210Fを観察する場合において、第2副領域230Bと第3副領域230Cとは、これらの領域と観察者との位置関係や、外光に含まれる光の方向や強度等によって、明るく見えたり暗く見えたりする。すなわち、表示体210を表面210Fに沿った方向に回転させたり、水平面に対する表示体210の角度を変化させたりするように、表示体210を観察者に対して相対的に動かすと、第2副領域230Bの明るさと第3副領域230Cの明るさとが変化するように見える。第2画素230Pbと第2画素230Pcとでは、凸部212bの配列方向が異なるため、第2副領域230Bと第3副領域230Cとの両方が暗く見える状態と、第2副領域230Bが明るく、かつ、第3副領域230Cが暗く見える状態と、第2副領域230Bが暗く、かつ、第3副領域230Cが明るく見える状態と、第2副領域230Bと第3副領域230Cとの両方が明るく見える状態とがあり得る。 As a result, in the case where the surface 210F is observed from the surface side in a state in which external light is irradiated on the surface 210F of the display body 210, the second subregion 230B and the third subregion 230C are the region and the observer. It looks bright or dark depending on the positional relationship with the light and the direction and intensity of light included in the external light. That is, when the display body 210 is moved relative to the observer so as to rotate the display body 210 in a direction along the surface 210F or change the angle of the display body 210 with respect to the horizontal plane, It seems that the brightness of the area 230B and the brightness of the third sub-area 230C change. The second pixel 230Pb and the second pixel 230Pc have different arrangement directions of the convex portions 212b, so that both the second subregion 230B and the third subregion 230C appear dark, and the second subregion 230B is bright, In addition, the state in which the third sub-region 230C looks dark, the state in which the second sub-region 230B is dark and the third sub-region 230C looks bright, and both the second sub-region 230B and the third sub-region 230C are bright. It can be visible.
 これに対し、第1副領域230Aは、表示体210を観察者に対して相対的に動かしたとき、第2副領域230Bおよび第3副領域230Cよりも、広い範囲で明るく見える。
 したがって、第1副領域230Aと第2副領域230Bと第3副領域230Cとによって、表示体210に対する観察者の位置や角度に応じた変化の大きい像を形成することができる。
On the other hand, the first sub-region 230A appears brighter in a wider range than the second sub-region 230B and the third sub-region 230C when the display body 210 is moved relative to the observer.
Therefore, the first sub-region 230A, the second sub-region 230B, and the third sub-region 230C can form an image having a large change according to the position and angle of the viewer with respect to the display body 210.
 例えば、図40に示した表示体210を観察者に対して相対的に動かしたときには、図41Aが示すように、第1副領域230Aと第2副領域230Bとが明るく、第3副領域230Cが暗く見える状態から、図41Bが示すように、第1副領域230Aと第3副領域230Cとが明るく、第2副領域230Bが暗く見える状態に、表示体210の表面210Fに視認される像が変化することが起こり得る。したがって、第1副領域230Aが表現する星と、第2副領域230Bおよび第3副領域230Cのそれぞれが表現する星の環とのなかで、光る環が変化するように見える像を観察者に提供することができる。 For example, when the display body 210 shown in FIG. 40 is moved relative to the observer, as shown in FIG. 41A, the first sub-region 230A and the second sub-region 230B are bright and the third sub-region 230C is bright. As shown in FIG. 41B, the first sub-region 230A and the third sub-region 230C are bright and the second sub-region 230B looks dark, and the image that is visually recognized on the surface 210F of the display 210 Can change. Therefore, an image that appears to change the glowing ring among the stars represented by the first sub-region 230A and the star rings represented by the second sub-region 230B and the third sub-region 230C is displayed to the observer. Can be provided.
 そして、凸部212bの配列方向が互いに異なる第2画素230Pを含む第2表示領域230と、第1表示領域220との組み合わせによって、第2表示領域230における像の変化を際立たせることができる。例えば、第2表示領域230が第1表示領域220に囲まれる形態では、第2表示領域230の周囲に、観察角度の変化による色の変化が小さい第1表示領域220が位置するため、表示体210を動かしたときの第2表示領域230における像の変化が際立つ。したがって、表示体210を備える物品の偽造の困難性や意匠性がより高められる。 Then, the combination of the second display area 230 including the second pixels 230P having the different arrangement directions of the convex portions 212b and the first display area 220 can make the image change in the second display area 230 stand out. For example, in the form in which the second display area 230 is surrounded by the first display area 220, the first display area 220 with a small color change due to a change in the observation angle is located around the second display area 230. The change in the image in the second display area 230 when the 210 is moved stands out. Therefore, the forgery difficulty and design of an article provided with the display body 210 are further enhanced.
 なお、凸部212bの配列方向が互いに異なる領域の数は特に限定されず、第2表示領域230は、第2副領域230Bと第3副領域230Cとに加えて、凸部212bの配列方向がこれらの領域とは異なる領域をさらに含んでいてもよい。また、第2表示領域230は、第2副領域230Bおよび第3副領域230Cのみを含み、凸部212bが二次元格子状に配列された第1副領域230Aを含まなくてもよい。 Note that the number of regions in which the arrangement direction of the convex portions 212b is different from each other is not particularly limited, and the second display region 230 has an arrangement direction of the convex portions 212b in addition to the second sub region 230B and the third sub region 230C. An area different from these areas may be further included. Further, the second display area 230 may include only the second sub area 230B and the third sub area 230C, and may not include the first sub area 230A in which the convex portions 212b are arranged in a two-dimensional lattice pattern.
 [凸部の周期が異なる形態]
 図42から図45を参照して、第2表示領域が、凸部の周期が互いに異なる第2画素を含む形態について説明する。
[Forms with different convex periods]
With reference to FIG. 42 to FIG. 45, a mode in which the second display area includes second pixels having different convex periods will be described.
 図42が示すように、表面210Fと対向する方向から見て、第2表示領域230は、第4副領域230Dと第5副領域230Eと第6副領域230Fと第7副領域230Gとを含んでいる。 As shown in FIG. 42, the second display area 230 includes a fourth sub area 230D, a fifth sub area 230E, a sixth sub area 230F, and a seventh sub area 230G when viewed from the direction facing the surface 210F. It is out.
 各副領域230D~230Gに位置する凸部212bの第2構造周期P2は副領域ごとに異なり、第4副領域230Dに位置する第2画素230Pdの凸部212bの周期は、第2構造周期P2dであり、第5副領域230Eに位置する第2画素230Peの凸部212bの周期は、第2構造周期P2eである。また、第6副領域230Fに位置する第2画素230Pfの凸部212bの周期は、第2構造周期P2fであり、第7副領域230Gに位置する第2画素230Pgの凸部212bの周期は、第2構造周期P2gである。 The second structural period P2 of the convex portion 212b located in each of the sub-regions 230D to 230G is different for each sub-region, and the period of the convex portion 212b of the second pixel 230Pd located in the fourth sub-region 230D is the second structural cycle P2d. The period of the convex portion 212b of the second pixel 230Pe located in the fifth sub-region 230E is the second structure period P2e. In addition, the period of the convex portion 212b of the second pixel 230Pf located in the sixth sub-region 230F is the second structure period P2f, and the cycle of the convex portion 212b of the second pixel 230Pg located in the seventh sub-region 230G is This is the second structure period P2g.
 第2構造周期P2d、第2構造周期P2e、第2構造周期P2f、第2構造周期P2gは、この順に大きくなっている。なお、各副領域230D~230Gにおける凸部212bは、二次元格子状に配置されていてもよいし、等間隔に並ぶとともに1つの方向に延びる複数の帯状に配置されていてもよい。 The second structure period P2d, the second structure period P2e, the second structure period P2f, and the second structure period P2g increase in this order. Note that the convex portions 212b in each of the sub-regions 230D to 230G may be arranged in a two-dimensional lattice shape, or may be arranged in a plurality of strips arranged at equal intervals and extending in one direction.
 図43が示すように、回折格子層216においては、入射光の入射角αが一定である場合に、第2構造周期P2が大きいほど、回折光の出射する角度である回折角βは大きい。すなわち、入射角α、回折角β、格子周期d、回折次数n、回折波長λには、下記式(1)が成り立つ。なお、格子周期dは、すなわち、第2構造周期P2である。 As shown in FIG. 43, in the diffraction grating layer 216, when the incident angle α of incident light is constant, the diffraction angle β, which is the angle at which the diffracted light is emitted, increases as the second structural period P2 increases. That is, the following formula (1) is established for the incident angle α, the diffraction angle β, the grating period d, the diffraction order n, and the diffraction wavelength λ. Note that the grating period d is the second structure period P2.
 d(sinα-sinβ)=nλ  ・・・(1)
 例えば、入射光が白色であり、入射角αが45°である条件において、第2構造周期P2が1.0μmのとき、回折角βが約0°から約20°である範囲に、分光された回折光が射出される。同条件において、第2構造周期P2が1.5μmのとき、回折角βは約18°から約30°であり、第2構造周期P2が2.0μmのとき、回折角βは約25°から約35°であり、第2構造周期P2が3.0μmのとき、回折角βは約35°から約40°である。
d (sin α−sin β) = nλ (1)
For example, when the incident light is white and the incident angle α is 45 °, when the second structural period P2 is 1.0 μm, the light is split into a range where the diffraction angle β is about 0 ° to about 20 °. Diffracted light is emitted. Under the same conditions, when the second structure period P2 is 1.5 μm, the diffraction angle β is about 18 ° to about 30 °, and when the second structure period P2 is 2.0 μm, the diffraction angle β is about 25 °. When the angle is about 35 ° and the second structure period P2 is 3.0 μm, the diffraction angle β is about 35 ° to about 40 °.
 観察者が、回折光の出射方向の先に位置するとき、その回折光を出射している第2画素230Pの位置する領域が明るく見える。したがって、各副領域230D~230Gに位置する凸部212bの第2構造周期P2が互いに異なる構成では、図44(a)および図44(b)が示すように、表面210Fと観察者の視線方向とが形成する角度である観察角度θが変化すると、明るく見える副領域230D~230Gが変わる。 When the observer is positioned ahead of the direction in which the diffracted light is emitted, the region where the second pixel 230P emitting the diffracted light appears bright. Therefore, in the configuration in which the second structural periods P2 of the convex portions 212b located in the sub-regions 230D to 230G are different from each other, as shown in FIGS. 44 (a) and 44 (b), the surface 210F and the viewing direction of the observer When the observation angle θ, which is the angle formed by the two, changes, the sub-regions 230D to 230G that appear bright change.
 例えば、α=45°、P2d=1.0μm、P2e=1.5μm、P2f=2.0μm、P2g=3.0μmのとき、観察角度θにおいては、90°-θ=βを満たす上記回折角βを有する回折光を出射している副領域230D~230Gが明るく見える。例えば、図44(a)が示す観察角度θが90°である状態、すなわち、表示体210の表面210Fに直交する方向から観察者が表面210Fを見ている状態から、図44(b)が示すように、観察角度θを徐々に小さくすると、第4副領域230D、第5副領域230E、第6副領域230F、第7副領域230Gの順に、明るく見える領域が移り変わる。 For example, when α = 45 °, P2d = 1.0 μm, P2e = 1.5 μm, P2f = 2.0 μm, and P2g = 3.0 μm, the diffraction angle satisfying 90 ° −θ = β at the observation angle θ. The subregions 230D to 230G emitting the diffracted light having β appear bright. For example, FIG. 44B shows the state in which the observation angle θ shown in FIG. 44A is 90 °, that is, the state where the observer views the surface 210F from the direction orthogonal to the surface 210F of the display body 210. As shown in the figure, when the observation angle θ is gradually decreased, the brighter regions change in order of the fourth sub region 230D, the fifth sub region 230E, the sixth sub region 230F, and the seventh sub region 230G.
 例えば、図42に示した表示体210を観察者に対して相対的に動かして観察角度θを変化させると、図45Aが示すように、第4副領域230Dが明るく、第5副領域230E、第6副領域230F、および、第7副領域230Gが暗く見える状態、図45Bが示すように、第5副領域230Eが明るく、第4副領域230D、第6副領域230F、および、第7副領域230Gが暗く見える状態、図45Cが示すように、第6副領域230Fが明るく、第4副領域230D、第5副領域230E、および、第7副領域230Gが暗く見える状態、図45Dが示すように、第7副領域230Gが明るく、第4副領域230D、第5副領域230E、および、第6副領域230Fが暗く見える状態が、順に移り変わる。したがって、第4副領域230Dが表現する星から、第5副領域230E、第6副領域230F、および、第7副領域230Gが順に表現する星の尾へ、光る部分が順に変化し、流れ星が流れるように見える像を観察者に提供することができる。 For example, when the display body 210 shown in FIG. 42 is moved relative to the observer to change the observation angle θ, as shown in FIG. 45A, the fourth sub-region 230D becomes bright and the fifth sub-region 230E, A state in which the sixth sub-region 230F and the seventh sub-region 230G appear dark, as shown in FIG. 45B, the fifth sub-region 230E is bright, the fourth sub-region 230D, the sixth sub-region 230F, and the seventh sub-region FIG. 45D shows a state in which the region 230G looks dark, as shown in FIG. 45C, where the sixth sub-region 230F is bright and the fourth sub-region 230D, the fifth sub-region 230E, and the seventh sub-region 230G appear dark. As described above, the state in which the seventh sub-region 230G is bright and the fourth sub-region 230D, the fifth sub-region 230E, and the sixth sub-region 230F appear dark is changed in order. Therefore, the shining portion changes in order from the star represented by the fourth subregion 230D to the tail of the star represented by the fifth subregion 230E, the sixth subregion 230F, and the seventh subregion 230G in order, and the shooting star changes. An image that appears to flow can be provided to the viewer.
 そして、凸部212bの周期が互いに異なる第2画素230Pを含む第2表示領域230と、第1表示領域220との組み合わせによって、第2表示領域230における像の変化を際立たせることができる。例えば、第2表示領域230が第1表示領域220に囲まれる形態では、第2表示領域230の周囲に、観察角度の変化による色の変化が小さい第1表示領域220が位置するため、表示体210を動かしたときの第2表示領域230における像の変化が際立つ。したがって、表示体210を備える物品の偽造の困難性や意匠性がより高められる。 And the change of the image in the second display area 230 can be made conspicuous by the combination of the second display area 230 including the second pixels 230P having different periods of the convex portions 212b and the first display area 220. For example, in the form in which the second display area 230 is surrounded by the first display area 220, the first display area 220 with a small color change due to a change in the observation angle is located around the second display area 230. The change in the image in the second display area 230 when the 210 is moved stands out. Therefore, the forgery difficulty and design of an article provided with the display body 210 are further enhanced.
 なお、凸部212bの周期が互いに異なる領域の数は特に限定されない。また、上述した2つの形態が組み合わされてもよい。すなわち、第2表示領域230は、凸部212bの配列方向が互いに異なる第2画素230Pと、凸部212bの周期が互いに異なる第2画素230Pとを含んでいてもよい。こうした構成によれば、表示体210を動かしたときの第2表示領域230における像の変化がより複雑になるため、偽造の困難性や意匠性がより高められる。 In addition, the number of areas where the periods of the convex portions 212b are different from each other is not particularly limited. Moreover, the two forms described above may be combined. That is, the second display area 230 may include second pixels 230P in which the convex portions 212b are arranged in different directions and second pixels 230P in which the periods of the convex portions 212b are different from each other. According to such a configuration, since the change of the image in the second display region 230 when the display body 210 is moved becomes more complicated, forgery difficulty and design are further improved.
 以上のように、第5実施形態においても、表示体からは、プラズモン共鳴に起因して、特定の波長領域の光が反射光もしくは透過光として射出される。そして、各凸部212bである周期要素の位置や大きさと、各周期要素によって位置が定まる金属層とを含む複数の因子によって、上記透過光や反射光の波長領域が定まるため、表示体にて透過あるいは反射される波長領域の調整の自由度を高めることができる。 As described above, also in the fifth embodiment, light of a specific wavelength region is emitted from the display body as reflected light or transmitted light due to plasmon resonance. Since the wavelength region of the transmitted light and the reflected light is determined by a plurality of factors including the position and size of the periodic elements that are the respective convex portions 212b and the metal layer determined by each periodic element, the display body It is possible to increase the degree of freedom in adjusting the wavelength region that is transmitted or reflected.
 また、第4実施形態と同様、表示体の外観によって発現される機能を高めることのできる表示体を提供することも、第5実施形態の目的である。こうした課題に対する効果を含めて、第5実施形態によれば、第4実施形態の(4-1)~(4-5)の効果に加えて、以下に列挙する効果が得られる。 Also, as in the fourth embodiment, it is an object of the fifth embodiment to provide a display body that can enhance the function expressed by the appearance of the display body. In addition to the effects (4-1) to (4-5) of the fourth embodiment, the effects listed below are obtained according to the fifth embodiment, including the effects on such problems.
 (5-1)第2表示領域230に、凸部212bの並ぶ方向が互いに異なる複数の第2画素230Pが含まれる構成では、観察者に対して表示体210を相対的に動かす観察の方式において、凸部212bの並ぶ方向が互いに異なる第2画素230Pの位置する領域の明暗が別々に変化するように見える。したがって、第2表示領域230によって、表示体210に対する観察者の位置や角度の変化に応じた変化が大きい像を形成することができる。さらに、第1表示領域220と第2表示領域230との組み合わせによって、第2表示領域230における像の変化を際立たせることができるため、偽造の困難性や意匠性がより高められる。 (5-1) In the configuration in which the second display area 230 includes a plurality of second pixels 230P in which the convex portions 212b are arranged in different directions, an observation method in which the display body 210 is moved relative to the observer is used. It seems that the brightness of the region where the second pixels 230P in which the protruding portions 212b are arranged in different directions are located changes separately. Therefore, the second display region 230 can form an image having a large change according to a change in the position and angle of the observer with respect to the display body 210. Further, the combination of the first display area 220 and the second display area 230 can make the change in the image in the second display area 230 stand out, so that the forgery difficulty and the design are further enhanced.
 (5-2)第2表示領域230に、凸部212bの周期が互いに異なる複数の第2画素230Pが含まれる構成では、観察角度を変化させる観察の方式において、凸部212bの周期が互いに異なる第2画素230Pの位置する領域の明暗が別々に変化するように見える。したがって、第2表示領域230によって、観察角度の変化に応じた変化が大きい像を形成することができる。さらに、第1表示領域220と第2表示領域230との組み合わせによって、第2表示領域230における像の変化を際立たせることができるため、偽造の困難性や意匠性がより高められる。 (5-2) In the configuration in which the second display region 230 includes a plurality of second pixels 230P having different periods of the convex portions 212b, the period of the convex portions 212b is different from each other in the observation method in which the observation angle is changed. It seems that the brightness of the area where the second pixel 230P is located changes separately. Therefore, the second display region 230 can form an image having a large change according to the change in the observation angle. Further, the combination of the first display area 220 and the second display area 230 can make the change in the image in the second display area 230 stand out, so that the forgery difficulty and the design are further enhanced.
 なお、第4実施形態および第5実施形態において、第1表示領域220に含まれる表示要素、および、第2表示領域230に含まれる表示要素の各々は、ラスタ画像を形成するための繰返しの最小単位である画素に限らず、ベクタ画像を形成するためのアンカを結んだ領域であってもよい。また、第2実施形態の変形例に記載したように、周期構造体が有する周期要素は、支持部の表面を基準面として、基準面から窪む凹部であってもよい。 In the fourth and fifth embodiments, each of the display elements included in the first display area 220 and the display elements included in the second display area 230 is the minimum of repetition for forming a raster image. The area is not limited to the unit pixel, and may be an area where anchors for forming a vector image are connected. In addition, as described in the modification of the second embodiment, the periodic element included in the periodic structure may be a recess that is recessed from the reference plane with the surface of the support portion as the reference plane.
 また、第2実施形態の表示体付きデバイスの構成が、第4実施形態および第5実施形態に適用されてもよい。すなわち、表示体付きデバイスは、第4実施形態または第5実施形態の表示体と、光射出構造体とを備えてもよい。 Further, the configuration of the device with a display body of the second embodiment may be applied to the fourth embodiment and the fifth embodiment. That is, the device with a display body may include the display body of the fourth embodiment or the fifth embodiment and the light emission structure.
 <付記>
 上記課題を解決するための手段には、第4実施形態、第5実施形態、および、それらの変形例から導き出される技術的思想として以下の項目が含まれる。
<Appendix>
Means for solving the above problems include the following items as technical ideas derived from the fourth embodiment, the fifth embodiment, and the modifications thereof.
 [項目31]
 表面と裏面とを有する表示体であって、前記裏面から前記表面に向かう方向に突出する複数の凸部を備えた誘電体である凹凸構造層と、前記凹凸構造層の表面に位置し、前記凹凸構造層の表面形状に追従する形状を有した金属層と、を備え、前記表示体の前記表面と対向する方向から見て、前記表示体は、第1表示要素が位置する第1表示領域と、第2表示要素が位置する第2表示領域とを含み、前記第1表示要素において、複数の前記凸部は、前記表示体の前記表面と対向する方向から見てサブ波長周期を有した二次元格子状に並び、前記金属層のなかの前記第1表示要素を構成する部分と共に、プラズモン共鳴を生じさせる構造体を構成し、前記第2表示要素において、複数の前記凸部は、前記表示体の前記表面と対向する方向から見て前記第1表示要素における前記凸部の配列の周期よりも大きい周期で並び、前記金属層のなかの前記第2表示要素を構成する部分と共に、可視領域の光を回折する回折格子を構成している表示体。
[Item 31]
A display body having a front surface and a back surface, wherein the uneven structure layer is a dielectric having a plurality of protrusions protruding in a direction from the back surface toward the surface, and is located on the surface of the uneven structure layer, A metal layer having a shape that follows the surface shape of the concavo-convex structure layer, and when viewed from a direction facing the surface of the display body, the display body is a first display region in which a first display element is located. And a second display region in which the second display element is located, and in the first display element, the plurality of convex portions have a sub-wavelength period when viewed from a direction facing the surface of the display body. In a two-dimensional grid, together with the portion constituting the first display element in the metal layer, constitutes a structure that causes plasmon resonance, and in the second display element, the plurality of protrusions are Seen from the direction facing the surface of the display A diffraction grating that diffracts light in the visible region is arranged together with a portion that constitutes the second display element in the metal layer, which is arranged with a period larger than the period of the array of the convex portions in the first display element. Display body.
 上記構成によれば、表示体の外側から表示体の表面に向けて光が照射されると、第1表示要素では、表示体の表面側に一次回折光が生じることが抑えられる。一方で、金属層と凹凸構造層とからなる構造体に入射した光のうち、表示体の表面に対して水平に近い角度に発生する一次回折光は、プラズモン共鳴を起こす。プラズモン共鳴を通じて構造体に誘起された表面プラズモンは、上記構造体を透過し、構造体の裏面側に光として射出される。このように、表示体の表面側に回折光が射出することが抑えられるため、表面と観察者の視線方向とが形成する角度である観察角度が変化したとしても、第1表示領域の色の変化は小さい。一方、第2表示要素からは、回折格子で回折した光が、表示体の表面側に射出されるため、第2表示領域の色は、観察角度の変化によって大きく変化するように見える。 According to the above configuration, when light is irradiated from the outside of the display body toward the surface of the display body, the first display element can suppress the first-order diffracted light from being generated on the surface side of the display body. On the other hand, first-order diffracted light generated at an angle close to the horizontal with respect to the surface of the display body among the light incident on the structure composed of the metal layer and the concavo-convex structure layer causes plasmon resonance. The surface plasmons induced in the structure through plasmon resonance are transmitted through the structure and emitted as light to the back side of the structure. Thus, since the diffracted light is prevented from being emitted to the surface side of the display body, even if the observation angle, which is the angle formed by the surface and the viewing direction of the observer, changes, the color of the first display region The change is small. On the other hand, since the light diffracted by the diffraction grating is emitted from the second display element to the surface side of the display body, the color of the second display region seems to change greatly according to the change of the observation angle.
 以上のように、凹凸構造層における凸部の配列の周期の大きさの違いによって、観察角度の変化による色の変化の程度が互いに異なる領域である第1表示領域と第2表示領域とが実現される。これらの領域の外縁は、凸部の位置によって規定され、第1表示領域の有する凸部は、サブ波長周期で並んでいるため、インクの印刷によって形成される領域と比較して、より細かく外縁の位置を設定可能である。したがって、第1表示領域と第2表示領域とによって、より精細な像が形成可能であり、偽造の困難性や意匠性、すなわち、表示体の外観によって発現される機能を高められる。 As described above, the first display region and the second display region, which are regions having different degrees of color change due to a change in observation angle, are realized by the difference in the period of the arrangement of the convex portions in the concavo-convex structure layer. Is done. The outer edges of these areas are defined by the positions of the protrusions, and the protrusions of the first display area are arranged in sub-wavelength periods, so that the outer edges are more finely compared with the areas formed by ink printing. Can be set. Therefore, a finer image can be formed by the first display area and the second display area, and the function expressed by the difficulty and design of counterfeiting, that is, the appearance of the display body can be enhanced.
 [項目32]
 前記第2表示要素における前記凸部の高さは、前記第1表示要素における前記凸部の高さよりも高い項目31に記載の表示体。
[Item 32]
The display body according to item 31, wherein a height of the convex portion in the second display element is higher than a height of the convex portion in the first display element.
 凹凸構造層が有する凸部では、凸部のアスペクト比が小さいほど、凸部の加工が容易であり、また、凸部における加工の精度も高い。この傾向は、凸部の周期が小さいほど顕著である。これに対して、凹凸構造層が有する凸部のなかで第2表示要素が備える凸部では、凸部の高さは回折効率に影響し、凸部の高さが低い場合、光の回折効率が低くなり回折光の視認性が悪くなる恐れがある。この点、上記構成によれば、相対的に周期が小さく凹凸構造層がプラズモン共鳴を生じさせるための構造である第1表示要素では、凸部の高さを低くしてアスペクト比を小さくしやすくし、加工の精度を得やすくする一方、相対的に周期が大きく凹凸構造層が光の回折を生じさせるための構造である第2表示要素では、凸部の高さを高くして回折効率を高めることができる。 In the convex part which the concavo-convex structure layer has, the smaller the aspect ratio of the convex part, the easier the processing of the convex part and the higher the processing accuracy in the convex part. This tendency is more conspicuous as the period of the convex portion is smaller. On the other hand, in the convex portion provided in the second display element among the convex portions of the concave-convex structure layer, the height of the convex portion affects the diffraction efficiency. When the convex portion has a low height, the light diffraction efficiency , And the visibility of the diffracted light may deteriorate. In this regard, according to the above configuration, in the first display element having a relatively small period and a structure in which the concavo-convex structure layer causes plasmon resonance, it is easy to reduce the aspect ratio by reducing the height of the convex portion. However, in the second display element having a relatively large period and a structure in which the concavo-convex structure layer causes diffraction of light while making it easy to obtain processing accuracy, the height of the convex portion is increased to increase the diffraction efficiency. Can be increased.
 [項目33]
 前記第1表示要素において、前記凸部の上面を含む平面にて前記第1表示要素内で前記凸部が占有する面積比率は10%以上50%以下である項目31または32に記載の表示体。
[Item 33]
Item 33 or Item 32. In the first display element, the area ratio occupied by the convex portion in the first display element on a plane including the upper surface of the convex portion is 10% or more and 50% or less. .
 上記構成によれば、第1表示領域において、上記面積比率が50%以下であることにより、表面側からの反射観察にて透過光が観察されることが抑えられる一方、上記面積比率が10%以上であることにより、表面側および裏面側からの透過観察での像の視認性が確保される。 According to the above configuration, when the area ratio is 50% or less in the first display region, it is possible to suppress transmission light from being observed in reflection observation from the surface side, while the area ratio is 10%. By the above, the visibility of the image in the transmission observation from the front surface side and the back surface side is ensured.
 [項目34]
 前記凹凸構造層を支持する表面を有した基材を備え、前記凹凸構造層は、前記基材の前記表面に沿って広がる形状を有した平坦部を備え、前記凸部は、前記平坦部から突き出している項目31~33のいずれか1つに記載の表示体。
[Item 34]
A substrate having a surface supporting the concavo-convex structure layer, the concavo-convex structure layer including a flat portion having a shape extending along the surface of the substrate, and the convex portion from the flat portion The display body according to any one of the protruding items 31 to 33.
 上記構成によれば、平坦部は、第1表示領域に含まれる凸部を支持する機能と、第2表示領域に含まれる凸部を支持する機能とを有する。したがって、凸部が倒れることが的確に抑えられ、また、各領域に位置する凸部を支持するための構造が平坦部であるため、凸部が倒れることを抑えるために求められる構造の簡素化を図ることが可能である。 According to the above configuration, the flat portion has a function of supporting the convex portion included in the first display area and a function of supporting the convex portion included in the second display area. Therefore, it is possible to accurately prevent the convex part from falling down, and the structure for supporting the convex part located in each region is a flat part, so that the structure required to suppress the convex part from falling down is simplified. Can be achieved.
 [項目35]
 前記第2表示領域には、前記凸部の並ぶ方向が互いに異なる複数の前記第2表示要素が含まれる項目31~34のいずれか1つに記載の表示体。
[Item 35]
The display body according to any one of items 31 to 34, wherein the second display area includes a plurality of the second display elements in which the directions in which the convex portions are arranged are different from each other.
 上記構成によれば、観察者に対して表示体を相対的に動かす観察の方式において、第2表示領域における各第2表示要素の明暗が別々に変化するように見える。したがって、表示体に対する観察者の位置や角度の変化に応じた変化が大きい像を、表示体によって形成することができる。さらに、第1表示領域と第2表示領域との組み合わせによって、第2表示領域における像の変化を際立たせることができるため、表示体の外観によって発現される機能がより高められる。 According to the above configuration, in the observation method in which the display body is moved relative to the observer, it seems that the brightness of each second display element in the second display region changes separately. Therefore, an image having a large change according to a change in the position and angle of the observer with respect to the display body can be formed by the display body. Furthermore, the combination of the first display area and the second display area can make the change in the image in the second display area stand out, so that the function expressed by the appearance of the display body is further enhanced.
 [項目36]
 前記第2表示領域には、前記凸部の配列の周期が互いに異なる複数の前記第2表示要素が含まれる項目31~35のいずれか1つに記載の表示体。
[Item 36]
The display body according to any one of items 31 to 35, wherein the second display region includes a plurality of the second display elements having different arrangement periods of the convex portions.
 上記構成によれば、観察角度を変化させる観察の方式において、第2表示領域における各第2表示要素の明暗が別々に変化するように見える。したがって、観察角度の変化に応じた変化が大きい像を、表示体によって形成することができる。さらに、第1表示領域と第2表示領域との組み合わせによって、第2表示領域における像の変化を際立たせることができるため、表示体の外観によって発現される機能がより高められる。 According to the above configuration, in the observation method in which the observation angle is changed, it appears that the brightness of each second display element in the second display region changes separately. Accordingly, an image having a large change according to the change in the observation angle can be formed by the display body. Furthermore, the combination of the first display area and the second display area can make the change in the image in the second display area stand out, so that the function expressed by the appearance of the display body is further enhanced.
 [項目37]
 基材の表面に塗工された樹脂に凹版を押し付けて前記樹脂を硬化させることにより前記樹脂からなる複数の凸部を備える凹凸構造層であって、第1領域と第2領域とを含む前記凹凸構造層を形成する第1工程と、前記凹凸構造層の表面形状に追従する形状を有した金属層を前記凹凸構造層の上に形成する第2工程と、を含み、前記第1工程では、前記金属層のなかの前記第1領域上に位置する部分と、前記第1領域の前記凸部とが、プラズモン共鳴を生じさせる構造体を構成するように、前記基材の表面と対向する方向から見て、サブ波長周期を有した二次元格子状に前記第1領域に並ぶ複数の前記凸部を形成し、前記金属層のなかの前記第2領域上に位置する部分と、前記第2領域の前記凸部とが、可視領域の光を回折する回折格子を構成するように、前記第1領域における前記凸部の配列の周期よりも大きい周期で前記第2領域に並ぶ複数の前記凸部を形成する表示体の製造方法。
[Item 37]
A concavo-convex structure layer comprising a plurality of convex portions made of the resin by pressing the intaglio to the resin coated on the surface of the substrate and curing the resin, the first and second regions including the first region and the second region A first step of forming a concavo-convex structure layer, and a second step of forming a metal layer having a shape following the surface shape of the concavo-convex structure layer on the concavo-convex structure layer, wherein the first step The portion of the metal layer located on the first region and the convex portion of the first region face the surface of the base material so as to form a structure that generates plasmon resonance. A plurality of the convex portions arranged in the first region in a two-dimensional lattice shape having a sub-wavelength period when viewed from the direction, and a portion located on the second region in the metal layer; The two convex portions constitute a diffraction grating that diffracts light in the visible region. So that the manufacturing method of the display body forming a plurality of convex portions arranged in the second region at a greater period than the period of arrangement of the convex portion in the first region.
 上記製法によれば、凹凸構造層における凸部の配列の周期の大きさの違いによって、観察角度の変化による色の変化の程度が互いに異なる領域を有する表示体を製造することができる。したがって、表示体の外観によって発現される機能が高められた表示体が得られる。そして、上記製造方法によれば、微細な凹凸を有する凹凸構造層を好適に形成することができる。 According to the above manufacturing method, it is possible to manufacture a display body having regions in which the degree of change in color due to change in observation angle is different from each other due to the difference in the period of the arrangement of protrusions in the uneven structure layer. Therefore, a display body with an enhanced function expressed by the appearance of the display body is obtained. And according to the said manufacturing method, the uneven | corrugated structure layer which has fine unevenness | corrugation can be formed suitably.
 [項目38]
 前記第1工程では、前記第1領域の前記凸部と、前記第2領域の前記凸部とを同時に形成する項目37に記載の表示体の製造方法。
[Item 38]
38. The method for manufacturing a display body according to Item 37, wherein in the first step, the convex portion of the first region and the convex portion of the second region are formed simultaneously.
 上記製法によれば、第1領域の凸部と第2領域の凸部とを別の工程にて形成する製造方法と比較して、効率よく表示体を製造することができる。また、第1領域と第2領域との境界をより精密に形成することができる。 According to the above manufacturing method, the display body can be efficiently manufactured as compared with the manufacturing method in which the convex portions in the first region and the convex portions in the second region are formed in separate steps. In addition, the boundary between the first region and the second region can be formed more precisely.
 (第6実施形態)
 図46から図55を参照して、光学デバイスの一例である表示体、および、表示体の製造方法の第6実施形態を説明する。以下では、第6実施形態と第1実施形態との相違点を中心に説明し、第1実施形態と同様の構成については同じ符号を付してその説明を省略する。
(Sixth embodiment)
46 to 55, a display body that is an example of an optical device and a sixth embodiment of a method for manufacturing the display body will be described. Below, it demonstrates centering around the difference between 6th Embodiment and 1st Embodiment, about the structure similar to 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 [表示体の構造]
 図46が示すように、表示体170の有する表面10Sは、第1表示領域10Aと、第2表示領域10Bとに区画される。第1表示領域10Aの備える断面構造と、第2表示領域10Bの備える断面構造とは、相互に異なる。
[Display structure]
As shown in FIG. 46, the surface 10S of the display body 170 is partitioned into a first display area 10A and a second display area 10B. The cross-sectional structure provided in the first display area 10A and the cross-sectional structure provided in the second display area 10B are different from each other.
 図47は図46で示した第1表示領域10Aの一部を拡大した図である。図47が示すように、第1表示領域10Aは、表示体170の表面10Sと対向する方向から見て、複数の孤立領域A12と、この孤立領域A12と大きさの異なる複数の孤立領域A13と、各孤立領域A12および各孤立領域A13を囲む単一の周辺領域A14とを含む。図47では、孤立領域A12およびA13を説明する便宜上、各孤立領域A12にドットを付して示し、各孤立領域A13に斜線を付して示す。 47 is an enlarged view of a part of the first display area 10A shown in FIG. As shown in FIG. 47, the first display area 10A includes a plurality of isolated areas A12 and a plurality of isolated areas A13 having a size different from that of the isolated area A12 when viewed from the direction facing the surface 10S of the display body 170. , Each isolated region A12 and a single peripheral region A14 surrounding each isolated region A13. In FIG. 47, for the convenience of explaining the isolated regions A12 and A13, each isolated region A12 is shown with dots, and each isolated region A13 is shown with diagonal lines.
 各孤立領域A12およびA13は、表面10Sに沿って正方配列に並ぶ。孤立領域A12が構成する正方配列は、一辺が構造周期PT2を有する正方形LT2の各頂点に孤立領域A12が位置する配列である。一方で、孤立領域A13が構成する正方配列は、一辺が構造周期PT3を有する正方形LT3の各頂点に孤立領域A13が位置する配列である。構造周期PT2と構造周期PT3とは、PT2<PT3を満たす。 The isolated regions A12 and A13 are arranged in a square array along the surface 10S. The square array formed by the isolated region A12 is an array in which the isolated region A12 is located at each vertex of the square LT2 having one side having the structural period PT2. On the other hand, the square array formed by the isolated region A13 is an array in which the isolated region A13 is positioned at each vertex of the square LT3 having one side having the structural period PT3. The structural period PT2 and the structural period PT3 satisfy PT2 <PT3.
 なお、複数の孤立領域A12は、正方配列に限らず、二次元格子状に並んでいればよく、複数の孤立領域A13もまた、正方配列に限らず、二次元格子状に並んでいればよい。二次元格子状の配列は、二次元平面内において交差する2つの方向の各々に沿って要素が並ぶ配列である。 The plurality of isolated regions A12 are not limited to a square array, but may be arranged in a two-dimensional lattice, and the plurality of isolated regions A13 are not limited to a square array and may be arranged in a two-dimensional lattice. . The two-dimensional lattice-like arrangement is an arrangement in which elements are arranged along each of two directions intersecting in a two-dimensional plane.
 図48が示すように、表示体170は、支持部11を備える。支持部11の構成は、第1実施形態の支持部11と同様である。
 第1表示領域10Aは、支持部11に近い層から順に、第1格子層21と、中間格子層31と、第2格子層41とを備える。中間格子層31は、第1格子層21と第2格子層41との間に挟まれており、支持部11に対して第1格子層21の位置する側が構造体における表面側である。反対に、第1格子層21に対して支持部11の位置する側が構造体における裏面側である。
As shown in FIG. 48, the display body 170 includes the support portion 11. The structure of the support part 11 is the same as that of the support part 11 of 1st Embodiment.
The first display area 10 </ b> A includes a first lattice layer 21, an intermediate lattice layer 31, and a second lattice layer 41 in order from the layer close to the support portion 11. The intermediate lattice layer 31 is sandwiched between the first lattice layer 21 and the second lattice layer 41, and the side where the first lattice layer 21 is located with respect to the support portion 11 is the surface side of the structure. On the contrary, the side where the support part 11 is located with respect to the first lattice layer 21 is the back surface side in the structure.
 [第1格子層21]
 支持部11が有する面の一方である表面には、第1格子層21が位置する。第1格子層21は、複数の第1誘電体層と第1金属層27とを備え、複数の第1誘電体層には、第1誘電体層の並ぶ方向である配列方向での幅が互いに異なる複数の第1誘電体層が含まれる。以下の説明では、配列方向の幅が異なる2種類の第1誘電体層である第1誘電体層25および第1誘電体層26を第1格子層21が有する場合について説明する。
[First lattice layer 21]
The first lattice layer 21 is located on the surface that is one of the surfaces of the support portion 11. The first lattice layer 21 includes a plurality of first dielectric layers and a first metal layer 27, and each of the plurality of first dielectric layers has a width in an arrangement direction that is a direction in which the first dielectric layers are arranged. A plurality of different first dielectric layers are included. In the following description, a case where the first lattice layer 21 has the first dielectric layer 25 and the first dielectric layer 26 which are two types of first dielectric layers having different widths in the arrangement direction will be described.
 表示体170の表面10Sと対向する方向から見て、第1誘電体層25は、孤立領域A12に位置する。一方で、第1誘電体層26は、孤立領域A13に位置する。単一の第1金属層27は、表面10Sと対向する方向から見て、周辺領域A14に位置する。複数の第1誘電体層25は、表面10Sに沿って、二次元格子状に並び、複数の第1誘電体層26もまた、表面10Sに沿って、二次元格子状に並ぶ。 The first dielectric layer 25 is located in the isolated region A12 when viewed from the direction facing the surface 10S of the display body 170. On the other hand, the first dielectric layer 26 is located in the isolated region A13. The single first metal layer 27 is located in the peripheral region A14 when viewed from the direction facing the surface 10S. The plurality of first dielectric layers 25 are arranged in a two-dimensional lattice pattern along the surface 10S, and the plurality of first dielectric layers 26 are also arranged in a two-dimensional lattice pattern along the surface 10S.
 各第1誘電体層25,26は、支持部11の表面から突き出た構造体である。各第1誘電体層25,26は、例えば、支持部11と一体である。あるいは、各第1誘電体層25,26は、例えば、支持部11の表面との間に境界を有し、支持部11とは別体である。 The first dielectric layers 25 and 26 are structures protruding from the surface of the support portion 11. Each first dielectric layer 25, 26 is integral with the support portion 11, for example. Or each 1st dielectric material layer 25 and 26 has a boundary between the surfaces of the support part 11, for example, and is a different body from the support part 11. FIG.
 第1金属層27は、表面10Sと対向する方向から見て、各第1誘電体層25,26を1つずつ囲う網目状を有する。第1格子層21において、単一の第1金属層27は、自由電子が行きわたる光学的な海成分であり、各第1誘電体層25,26は、海成分のなかに分布する島成分である。 The first metal layer 27 has a mesh shape surrounding each of the first dielectric layers 25 and 26 when viewed from the direction facing the surface 10S. In the first lattice layer 21, the single first metal layer 27 is an optical sea component through which free electrons pass, and each first dielectric layer 25, 26 is an island component distributed in the sea component. It is.
 表面10Sと対向する方向から見て、第1誘電体層25の位置する構造周期PT2は、隣り合う2つの第1誘電体層25の間の最短幅WP2と、第1誘電体層25の幅WT2との合計である。一方で、第1誘電体層26の位置する構造周期PT3は、隣り合う2つの第1誘電体層26の間の最短幅WP3と、第1誘電体層26の幅WT3との合計である。 When viewed from the direction facing the surface 10S, the structural period PT2 at which the first dielectric layer 25 is located has the shortest width WP2 between two adjacent first dielectric layers 25 and the width of the first dielectric layer 25. This is the sum of WT2. On the other hand, the structural period PT3 where the first dielectric layer 26 is located is the sum of the shortest width WP3 between two adjacent first dielectric layers 26 and the width WT3 of the first dielectric layer 26.
 構造周期PT2および構造周期PT3の各々は、可視領域の波長以下であるサブ波長周期であり、第1実施形態の構造周期PTと同様の条件を満たす。すなわち、孤立領域A12,A13が並ぶ二次元格子の各方向について、構造周期PT2に対する第1誘電体層25の幅WT2の比、および、構造周期PT3に対する第1誘電体層26の幅WT3の比は、0.25以上0.75以下であり、0.40以上0.60以下であることが好ましい。 Each of the structural period PT2 and the structural period PT3 is a sub-wavelength period that is equal to or less than the wavelength in the visible region, and satisfies the same condition as the structural period PT of the first embodiment. That is, for each direction of the two-dimensional lattice in which the isolated regions A12 and A13 are arranged, the ratio of the width WT2 of the first dielectric layer 25 to the structural period PT2 and the ratio of the width WT3 of the first dielectric layer 26 to the structural period PT3 Is 0.25 or more and 0.75 or less, preferably 0.40 or more and 0.60 or less.
 一方で、先の図47が示すように、表示体170を巨視的な視点で見ると、表示体170は、2つの孤立領域A12と2つの孤立領域A13とを組み合わせた構造が繰り返される構造体と捉えることもできる。こうした構造の位置する周期は、すなわち、孤立領域A12の構造周期PT2と孤立領域A13の構造周期PT3を組み合わせた、新たな構造周期PT4と捉えることができる。 On the other hand, as shown in FIG. 47, when the display body 170 is viewed from a macroscopic viewpoint, the display body 170 is a structure in which a structure in which two isolated regions A12 and two isolated regions A13 are combined is repeated. It can also be taken as. The period in which such a structure is located can be regarded as a new structure period PT4 that is a combination of the structure period PT2 of the isolated region A12 and the structure period PT3 of the isolated region A13.
 換言すると、構造周期PT4は、サブ波長周期である構造周期PT2と構造周期PT3とを組み合わせた周期である。そして、構造周期PT4はサブ波長周期よりも大きくなり、表示体170には、構造周期PT4で並ぶ構造が形成されていることから、可視領域の一次回折光が表示体170から射出される。 In other words, the structural period PT4 is a period obtained by combining the structural period PT2 and the structural period PT3, which are sub-wavelength periods. The structural period PT4 becomes larger than the sub-wavelength period, and the display body 170 is formed with a structure aligned with the structural period PT4. Therefore, the first-order diffracted light in the visible region is emitted from the display body 170.
 なお、図47に示す例では、1つの方向に沿って、孤立領域A12および孤立領域A13をそれぞれ2つずつ並べることで構造周期PT4を構成しているが、構造周期PT4を構成する孤立領域の数はこれに限定されない。すなわち、サブ波長周期の構造周期を有する孤立領域群であって、互いに異なる構造周期を有する複数の孤立領域群が並ぶことにより、これらの孤立領域群の周期を組み合わせた周期としてサブ波長周期より大きい周期が形成され、これによって、一次回折光を生じさせる構造が形成されていればよい。 In the example shown in FIG. 47, the structural period PT4 is configured by arranging two isolated regions A12 and two isolated regions A13 along one direction, but the isolated regions constituting the structural period PT4 The number is not limited to this. That is, an isolated region group having a structural period of sub-wavelength period, and by arranging a plurality of isolated region groups having different structural periods, the combined period of these isolated region groups is larger than the sub-wavelength period. It suffices if a period is formed and a structure that generates first-order diffracted light is formed.
 第1実施形態と同様、第1格子層21の厚さは、10nm以上200nm以下であることが好ましく、10nm以上100nm以下であることがより好ましい。
 [中間格子層31]
 第1格子層21の上には、中間格子層31が位置する。中間格子層31は、第1格子層21における支持部11とは反対側の面に配置されている。第1実施形態と同様、中間格子層31の厚さは、第1格子層21の厚さよりも厚く、150nm以下であることが好ましい。
Similar to the first embodiment, the thickness of the first lattice layer 21 is preferably 10 nm to 200 nm, and more preferably 10 nm to 100 nm.
[Intermediate lattice layer 31]
An intermediate lattice layer 31 is located on the first lattice layer 21. The intermediate lattice layer 31 is disposed on the surface of the first lattice layer 21 opposite to the support portion 11. Similar to the first embodiment, the thickness of the intermediate lattice layer 31 is preferably larger than the thickness of the first lattice layer 21 and 150 nm or less.
 中間格子層31は、例えば複数の第1中間誘電体層35と複数の第1中間誘電体層36とを含む複数の第1中間誘電体層と、第1中間誘電体層35,36よりも低い誘電率を有した単一の第2中間誘電体層37とを備える。各第1中間誘電体層35は、表面10Sと対向する方向から見て、孤立領域A12に位置する。一方で、各第1中間誘電体層36は、表面10Sと対向する方向から見て、孤立領域A13に位置する。単一の第2中間誘電体層37は、表面10Sと対向する方向から見て、周辺領域A14に位置する。複数の第1中間誘電体層35は、表面10Sに沿って、二次元格子状に並び、複数の第1中間誘電体層36もまた、表面10Sに沿って、二次元格子状に並ぶ。 The intermediate lattice layer 31 includes, for example, a plurality of first intermediate dielectric layers including a plurality of first intermediate dielectric layers 35 and a plurality of first intermediate dielectric layers 36, and the first intermediate dielectric layers 35 and 36. A single second intermediate dielectric layer 37 having a low dielectric constant. Each first intermediate dielectric layer 35 is located in the isolated region A12 when viewed from the direction facing the surface 10S. On the other hand, each first intermediate dielectric layer 36 is located in the isolated region A13 when viewed from the direction facing the surface 10S. The single second intermediate dielectric layer 37 is located in the peripheral region A14 when viewed from the direction facing the surface 10S. The plurality of first intermediate dielectric layers 35 are arranged in a two-dimensional lattice pattern along the surface 10S, and the plurality of first intermediate dielectric layers 36 are also arranged in a two-dimensional lattice pattern along the surface 10S.
 各第1中間誘電体層35は、第1誘電体層25から突き出た構造体である。一方で、各第1中間誘電体層36は、第1誘電体層26から突き出た構造体である。各第1中間誘電体層35は、第1誘電体層25と一体であってもよいし、別体であってもよい。各第1中間誘電体層36は、第1誘電体層26と一体であってもよいし、別体であってもよい。表面10Sと対向する方向から見て、第1中間誘電体層35の位置する周期は、第1誘電体層25と同じく、最短幅WP2と幅WT2との合計であり、上記構造周期PT2である。一方で、第1中間誘電体層36の位置する周期は、第1誘電体層26と同じく、最短幅WP3と幅WT3との合計であり、上記構造周期PT3である。孤立領域A12,A13が並ぶ二次元格子の各方向について、構造周期PT2に対する第1中間誘電体層35の幅WT2の比、および、構造周期PT3に対する第1中間誘電体層36の幅WT3の比は、0.25以上0.75以下であり、0.40以上0.60以下であることが好ましい。 Each first intermediate dielectric layer 35 is a structure protruding from the first dielectric layer 25. On the other hand, each first intermediate dielectric layer 36 is a structure protruding from the first dielectric layer 26. Each first intermediate dielectric layer 35 may be integral with the first dielectric layer 25 or may be a separate body. Each first intermediate dielectric layer 36 may be integral with the first dielectric layer 26 or may be a separate body. As viewed from the direction facing the surface 10S, the period in which the first intermediate dielectric layer 35 is located is the sum of the shortest width WP2 and the width WT2 as in the first dielectric layer 25, and is the above-described structural period PT2. . On the other hand, the period in which the first intermediate dielectric layer 36 is located is the sum of the shortest width WP3 and the width WT3, which is the above-described structural period PT3, as in the first dielectric layer 26. For each direction of the two-dimensional lattice in which the isolated regions A12 and A13 are arranged, the ratio of the width WT2 of the first intermediate dielectric layer 35 to the structural period PT2 and the ratio of the width WT3 of the first intermediate dielectric layer 36 to the structural period PT3 Is 0.25 or more and 0.75 or less, preferably 0.40 or more and 0.60 or less.
 第2中間誘電体層37は、表面10Sと対向する方向から見て、各第1中間誘電体層35および各第1中間誘電体層36を1つずつ囲う網目状を有する。中間格子層31において、単一の第2中間誘電体層37は、構造的および光学的に海成分であり、各第1中間誘電体層35,36は、構造的および光学的に島成分である。第2中間誘電体層37は、空気層、あるいは、樹脂層である。 The second intermediate dielectric layer 37 has a mesh shape surrounding each of the first intermediate dielectric layers 35 and each of the first intermediate dielectric layers 36 when viewed from the direction facing the surface 10S. In the intermediate lattice layer 31, the single second intermediate dielectric layer 37 is structurally and optically a sea component, and each first intermediate dielectric layer 35, 36 is structurally and optically an island component. is there. The second intermediate dielectric layer 37 is an air layer or a resin layer.
 [第2格子層41]
 中間格子層31の上には、第2格子層41が位置する。第2格子層41は、中間格子層31における第1格子層21とは反対側の面に配置されている。第1実施形態と同様、第2格子層41の厚さは、10nm以上200nm以下であることが好ましく、10nm以上100nm以下であることがさらに好ましい。
[Second lattice layer 41]
A second lattice layer 41 is positioned on the intermediate lattice layer 31. The second lattice layer 41 is disposed on the surface of the intermediate lattice layer 31 opposite to the first lattice layer 21. Similar to the first embodiment, the thickness of the second lattice layer 41 is preferably 10 nm or more and 200 nm or less, and more preferably 10 nm or more and 100 nm or less.
 第2格子層41は、例えば複数の第2金属層45と複数の第2金属層46とを含む複数の第2金属層と、単一の第2誘電体層47とを備える。各第2金属層45の位置は、表面10Sと対向する方向から見て、孤立領域A12を含む。各第2金属層46の位置は、表面10Sと対向する方向から見て、孤立領域A13を含む。単一の第2誘電体層47の位置は、表面10Sと対向する方向から見て、周辺領域A14に含まれる。複数の第2金属層45は、表面10Sに沿って、二次元格子状に並び、複数の第2金属層46もまた、表面10Sに沿って、二次元格子状に並ぶ。 The second lattice layer 41 includes, for example, a plurality of second metal layers including a plurality of second metal layers 45 and a plurality of second metal layers 46, and a single second dielectric layer 47. The position of each second metal layer 45 includes an isolated region A12 when viewed from the direction facing the surface 10S. The position of each second metal layer 46 includes an isolated region A13 when viewed from the direction facing the surface 10S. The position of the single second dielectric layer 47 is included in the peripheral region A14 when viewed from the direction facing the surface 10S. The plurality of second metal layers 45 are arranged in a two-dimensional lattice shape along the surface 10S, and the plurality of second metal layers 46 are also arranged in a two-dimensional lattice shape along the surface 10S.
 各第2金属層45は、第1中間誘電体層35の頂面に重なる構造体であり、第1中間誘電体層35とは別体である。各第2金属層46は、第1中間誘電体層36の頂面に重なる構造体であり、第1中間誘電体層36とは別体である。表面10Sと対向する方向から見て、第2金属層45の位置する周期は、第1誘電体層25と同じく、最短幅WP2と幅WT2との合計であり、上記構造周期PT2である。一方で、第2金属層46の位置する周期は、第1誘電体層26と同じく、最短幅WP3と幅WT3との合計であり、上記構造周期PT3である。孤立領域A12,A13が並ぶ二次元格子の各方向について、構造周期PT2に対する第2金属層45の幅WT2の比、および、構造周期PT3に対する第2金属層46の幅WT3の比は、0.25以上0.75以下であり、0.40以上0.60以下であることが好ましい。 Each second metal layer 45 is a structure that overlaps the top surface of the first intermediate dielectric layer 35, and is separate from the first intermediate dielectric layer 35. Each second metal layer 46 is a structure that overlaps the top surface of the first intermediate dielectric layer 36, and is separate from the first intermediate dielectric layer 36. As viewed from the direction facing the surface 10S, the period in which the second metal layer 45 is located is the sum of the shortest width WP2 and the width WT2 as in the first dielectric layer 25, and is the above-described structural period PT2. On the other hand, the period in which the second metal layer 46 is located is the sum of the shortest width WP3 and the width WT3, like the first dielectric layer 26, and is the structural period PT3. For each direction of the two-dimensional lattice in which the isolated regions A12 and A13 are arranged, the ratio of the width WT2 of the second metal layer 45 to the structural period PT2 and the ratio of the width WT3 of the second metal layer 46 to the structural period PT3 are 0. It is preferably 25 or more and 0.75 or less, and preferably 0.40 or more and 0.60 or less.
 第2誘電体層47は、表面10Sと対向する方向から見て、各第2金属層45および各第2金属層46を1つずつ囲う網目状を有する。第2格子層41において、単一の第2誘電体層47は、第2金属層45および第2金属層46と比べて自由電子が少ない光学的な海成分であり、各第2金属層45,46は、海成分のなかに分布する島成分である。第2誘電体層47は、空気層、あるいは、樹脂層である。 The second dielectric layer 47 has a mesh shape surrounding each of the second metal layers 45 and each of the second metal layers 46 when viewed from the direction facing the surface 10S. In the second lattice layer 41, the single second dielectric layer 47 is an optical sea component with fewer free electrons than the second metal layer 45 and the second metal layer 46, and each second metal layer 45. , 46 are island components distributed among the sea components. The second dielectric layer 47 is an air layer or a resin layer.
 構造周期が構造周期PT2である領域において、第1格子層21における海成分である第1金属層27の体積比率は、第2格子層41における島成分である第2金属層45よりも大きく、第2格子層41における島成分である第2金属層45の体積比率は、中間格子層31における金属材料の体積比率よりも大きい。構造周期が構造周期PT3である領域において、第1格子層21における海成分である第1金属層27の体積比率は、第2格子層41における島成分である第2金属層46よりも大きく、第2格子層41における島成分である第2金属層46の体積比率は、中間格子層31における金属材料の体積比率よりも大きい。 In the region where the structural period is the structural period PT2, the volume ratio of the first metal layer 27 that is the sea component in the first lattice layer 21 is larger than the second metal layer 45 that is the island component in the second lattice layer 41, The volume ratio of the second metal layer 45 that is an island component in the second lattice layer 41 is larger than the volume ratio of the metal material in the intermediate lattice layer 31. In the region where the structural period is the structural period PT3, the volume ratio of the first metal layer 27 that is the sea component in the first lattice layer 21 is larger than the second metal layer 46 that is the island component in the second lattice layer 41, The volume ratio of the second metal layer 46 that is an island component in the second lattice layer 41 is larger than the volume ratio of the metal material in the intermediate lattice layer 31.
 上記構成において、第1誘電体層25と第1中間誘電体層35とから構成される構造体、および、第1誘電体層26と第1中間誘電体層36とから構成される構造体の各々は、周期要素の一例であり、支持部11の表面を基準面として、基準面から突出する凸部でもある。そして、支持部11、第1誘電体層25,26、および、第1中間誘電体層35,36から構成される構造体は、周期構造体の一例である。また、第1金属層27と第2金属層45と第2金属層46とから構成される層は、層全体としての形状が周期構造体の表面形状に追従する形状を有した金属層として捉えられる。周期構造体の表面は、基準面のうち各周期要素を囲む領域と各周期要素の表面とを含む面である。 In the above configuration, a structure constituted by the first dielectric layer 25 and the first intermediate dielectric layer 35 and a structure constituted by the first dielectric layer 26 and the first intermediate dielectric layer 36 Each is an example of a periodic element, and is also a convex portion protruding from the reference surface with the surface of the support portion 11 as a reference surface. And the structure comprised from the support part 11, the 1st dielectric material layers 25 and 26, and the 1st intermediate | middle dielectric material layers 35 and 36 is an example of a periodic structure. Further, the layer composed of the first metal layer 27, the second metal layer 45, and the second metal layer 46 is regarded as a metal layer having a shape in which the shape of the entire layer follows the surface shape of the periodic structure. It is done. The surface of the periodic structure is a surface including a region surrounding each periodic element in the reference plane and the surface of each periodic element.
 また、第6実施形態においても、第1実施形態と同様に、支持部11は、基材と、基材に対して表面側に位置する中間層とを備え、各第1誘電体層25,26は中間層11bと一体であってもよい。 Also in the sixth embodiment, as in the first embodiment, the support portion 11 includes a base material and an intermediate layer positioned on the surface side with respect to the base material, and each first dielectric layer 25, 26 may be integral with the intermediate layer 11b.
 図49が示すように、周辺領域A14は、第1実施形態の周辺領域A3と同様の構成を有する。すなわち、周辺領域A14においては、支持部11に近い層から順に、第1格子層21の第1金属層27と、中間格子層31の第2中間誘電体層37と、第2格子層41の第2誘電体層47とが位置する。 As shown in FIG. 49, the peripheral area A14 has the same configuration as the peripheral area A3 of the first embodiment. That is, in the peripheral region A14, the first metal layer 27 of the first lattice layer 21, the second intermediate dielectric layer 37 of the intermediate lattice layer 31, and the second lattice layer 41 in order from the layer close to the support portion 11. The second dielectric layer 47 is located.
 図50が示すように、第2表示領域10Bは、第1実施形態の第2表示領域10Bと同様の構成を有し、支持部11の上に、上述した第1格子層21、中間格子層31、および、第2格子層41を備えていない。あるいは、第2表示領域10Bは、例えば、第1誘電体層25,26を構成する材料と同一の材料から構成された層や、第1金属層27を構成する材料と同一の材料から構成された金属層を備えてもよい。 As shown in FIG. 50, the second display region 10B has the same configuration as the second display region 10B of the first embodiment, and the first lattice layer 21 and the intermediate lattice layer described above are formed on the support portion 11. 31 and the second lattice layer 41 are not provided. Alternatively, the second display region 10 </ b> B is made of, for example, a layer made of the same material as that forming the first dielectric layers 25 and 26, or made of the same material as that making up the first metal layer 27. A metal layer may be provided.
 [表示体の光学的な構成]
 次に、表示体170が備える光学的な構成を説明する。構造周期が、構造周期PT2である領域と、構造周期PT3である領域との各領域の光学的な構成は、第1実施形態の表示体と同様である。したがって、図51が示すように、第1格子層21の屈折率は、海成分である第1金属層27に支配された大きさであり、空気層の屈折率よりも十分に低い。また、中間格子層31の屈折率は、海成分である第2中間誘電体層37に支配された大きさであり、空気層の屈折率よりも高く、かつ、空気層の屈折率に近い値である。また、第2格子層41の屈折率は、海成分である第2誘電体層47に支配された大きさであり、空気層の屈折率よりも低く、かつ、空気層の屈折率に近い値である。
[Optical configuration of display]
Next, an optical configuration provided in the display body 170 will be described. The optical configuration of each of the region having the structure period PT2 and the region having the structure period PT3 is the same as that of the display body of the first embodiment. Therefore, as shown in FIG. 51, the refractive index of the first lattice layer 21 is a size controlled by the first metal layer 27, which is a sea component, and is sufficiently lower than the refractive index of the air layer. The refractive index of the intermediate lattice layer 31 is a size controlled by the second intermediate dielectric layer 37 that is a sea component, and is higher than the refractive index of the air layer and close to the refractive index of the air layer. It is. The refractive index of the second lattice layer 41 is a size controlled by the second dielectric layer 47, which is a sea component, and is lower than the refractive index of the air layer and close to the refractive index of the air layer. It is.
 [表面反射観察、裏面透過観察]
 表示体の外側から第2格子層41に白色の光L1が入射するとき、第1実施形態と同様、空気層と第2格子層41との界面においては、フレネル反射を生じ難い。また、中間格子層31に光が入射するときも、第2格子層41と中間格子層31との界面においては、フレネル反射を生じ難い。
[Surface reflection observation, back surface transmission observation]
When the white light L1 is incident on the second grating layer 41 from the outside of the display body, Fresnel reflection hardly occurs at the interface between the air layer and the second grating layer 41 as in the first embodiment. In addition, even when light enters the intermediate grating layer 31, Fresnel reflection hardly occurs at the interface between the second grating layer 41 and the intermediate grating layer 31.
 一方で、第2格子層41の第2金属層45の構造周期PT2および第2金属層46の構造周期PT3が、サブ波長周期であるため、第2格子層41に入射した光の波長領域の一部の光EP2は、第2格子層41でのプラズモン共鳴に供される。結果として、第2格子層41は、第2格子層41に入射した光の波長領域の一部の光を、中間格子層31へ透過する。また、第1格子層21の第1誘電体層25の構造周期PT2および第1誘電体層26の構造周期PT3も、サブ波長周期であるため、第1格子層21に入射した光の波長領域の一部の光EP1もまた、第1格子層21でのプラズモン共鳴に供される。その結果、第1格子層21は、第1格子層21に入射した光の波長領域の一部の光LP1を、支持部11へ透過する。 On the other hand, since the structural period PT2 of the second metal layer 45 of the second lattice layer 41 and the structural period PT3 of the second metal layer 46 are sub-wavelength periods, the wavelength region of the light incident on the second lattice layer 41 A part of the light EP2 is subjected to plasmon resonance in the second grating layer 41. As a result, the second grating layer 41 transmits part of the light in the wavelength region of the light incident on the second grating layer 41 to the intermediate grating layer 31. In addition, since the structural period PT2 of the first dielectric layer 25 of the first grating layer 21 and the structural period PT3 of the first dielectric layer 26 are also sub-wavelength periods, the wavelength region of the light incident on the first grating layer 21 A part of the light EP 1 is also subjected to plasmon resonance in the first lattice layer 21. As a result, the first grating layer 21 transmits part of the light LP1 in the wavelength region of the light incident on the first grating layer 21 to the support portion 11.
 一方で、構造周期PT2と構造周期PT3とを組み合わせた構造周期PT4は、サブ波長周期よりも大きい。サブ波長周期よりも大きい周期の回折格子構造に光が照射されると、一次回折光による分光色が観察される。それゆえ、プラズモン共鳴によって消費された波長領域以外の光が分光され、観察角度による色相の変化が大きい光が一部の観察角度で視認される。 On the other hand, the structural period PT4 obtained by combining the structural period PT2 and the structural period PT3 is larger than the sub-wavelength period. When light is irradiated onto a diffraction grating structure having a period longer than the sub-wavelength period, a spectral color due to the first-order diffracted light is observed. Therefore, light outside the wavelength region consumed by plasmon resonance is dispersed, and light having a large hue change depending on the observation angle is visually recognized at some observation angles.
 結果として、表示体170の外側から第2格子層41へ光L1を入射させて、表示体170の表面側から表面10Sを観察する表面反射観察によれば、上記各界面でのフレネル反射を生じ難いこと、上記各格子層でのプラズモン共鳴を生じること、これらが相まって、黒色、もしくは、黒色に近い色彩が、第1表示領域10Aで視認される。これに加えて、サブ波長周期よりも大きい周期の回折格子構造による分光色が、観察角度に応じて視認される。 As a result, according to the surface reflection observation in which the light L1 is incident on the second lattice layer 41 from the outside of the display body 170 and the surface 10S is observed from the surface side of the display body 170, Fresnel reflection occurs at each of the interfaces. Difficult, generating plasmon resonance in each of the above-described lattice layers, combined with these, black or a color close to black is visually recognized in the first display region 10A. In addition, the spectral color due to the diffraction grating structure having a period longer than the sub-wavelength period is visually recognized according to the observation angle.
 他方、表示体170の外側から第2格子層41へ光L1を入射させて、表示体170の裏面側から裏面10Tを観察する裏面透過観察によれば、上記各格子層でのプラズモン共鳴を経て表示体170を透過した有色の光が、すなわち、白色および黒色以外の光が、第1表示領域10Aで視認される。なお、上記表面反射観察や裏面透過観察の結果は、表面10Sに向けた外光の光量が裏面10Tに向けた外光の光量よりも高い場合においても、同様の傾向を示す。 On the other hand, according to the backside transmission observation in which the light L1 is incident on the second lattice layer 41 from the outside of the display body 170 and the back surface 10T is observed from the back surface side of the display body 170, the plasmon resonance is performed in each of the lattice layers. Colored light transmitted through the display body 170, that is, light other than white and black is visually recognized in the first display region 10A. Note that the results of the front surface reflection observation and the rear surface transmission observation show the same tendency even when the amount of external light directed toward the front surface 10S is higher than the amount of external light directed toward the rear surface 10T.
 [裏面反射観察、表面透過観察]
 図52が示すように、表示体170の外側から支持部11に白色の光L1が入射するとき、第1実施形態と同様、支持部11と第1格子層21との界面では、フレネル反射を生じやすい。なお、支持部11の屈折率と、第1格子層21の屈折率との差は、第1格子層21と中間格子層31との間の屈折率差よりも大きく、また、中間格子層31と第2格子層41との間の屈折率差よりも大きい。
[Backside observation, surface transmission observation]
As shown in FIG. 52, when white light L1 is incident on the support portion 11 from the outside of the display body 170, Fresnel reflection is caused at the interface between the support portion 11 and the first lattice layer 21, as in the first embodiment. Prone to occur. The difference between the refractive index of the support portion 11 and the refractive index of the first lattice layer 21 is larger than the difference in refractive index between the first lattice layer 21 and the intermediate lattice layer 31, and the intermediate lattice layer 31. And the difference in refractive index between the second grating layer 41 and the second grating layer 41.
 一方で、支持部11と第1格子層21との界面を透過した光の波長領域の一部の光EP1は、第1格子層21でのプラズモン共鳴に供される。結果として、第1格子層21は、第1格子層21に入射した光の波長領域の一部の光を、中間格子層31へ透過する。また、中間格子層31を透過して第2格子層41に入射した光の波長領域の一部の光EP2も、第2格子層41でのプラズモン共鳴に供される。その結果、第2格子層41は、第2格子層41に入射した光の波長領域の一部の光LP2を、空気層へ透過する。 On the other hand, a part of the light EP1 in the wavelength region of the light transmitted through the interface between the support portion 11 and the first grating layer 21 is subjected to plasmon resonance in the first grating layer 21. As a result, the first grating layer 21 transmits part of the light in the wavelength region of the light incident on the first grating layer 21 to the intermediate grating layer 31. Further, a part of the light EP 2 in the wavelength region of the light that has passed through the intermediate grating layer 31 and entered the second grating layer 41 is also subjected to plasmon resonance in the second grating layer 41. As a result, the second grating layer 41 transmits part of the light LP2 in the wavelength region of the light incident on the second grating layer 41 to the air layer.
 一方で、構造周期PT2と構造周期PT3とを組み合わせた構造周期PT4は、サブ波長周期よりも大きい。サブ波長周期よりも大きい周期の回折格子構造に光が照射されると、一次回折光による分光色が観察される。それゆえ、プラズモン共鳴によって消費された波長領域以外の光が分光され、観察角度による色相の変化が大きい光が一部の観察角度で視認される。 On the other hand, the structural period PT4 obtained by combining the structural period PT2 and the structural period PT3 is larger than the sub-wavelength period. When light is irradiated onto a diffraction grating structure having a period longer than the sub-wavelength period, a spectral color due to the first-order diffracted light is observed. Therefore, light outside the wavelength region consumed by plasmon resonance is dispersed, and light having a large hue change depending on the observation angle is visually recognized at some observation angles.
 結果として、表示体の外側から支持部11へ光L1を入射させて、表示体の裏面側から裏面10Tを観察する裏面反射観察によれば、上記界面でのフレネル反射による有色の光LRが、すなわち、白色および黒色以外の光LRが、第1表示領域10Aで視認される。これに加えて、サブ波長周期よりも大きい周期の回折格子構造による分光色が、観察角度に応じて視認される。 As a result, according to the back surface reflection observation in which the light L1 is incident on the support portion 11 from the outside of the display body and the back surface 10T is observed from the back surface side of the display body, the colored light LR due to Fresnel reflection at the interface is That is, light LR other than white and black is visually recognized in the first display area 10A. In addition, the spectral color due to the diffraction grating structure having a period longer than the sub-wavelength period is visually recognized according to the observation angle.
 他方、表示体の外側から支持部11へ光L1を入射させて、表示体の表面側から表面10Sを観察する表面透過観察では、上記フレネル反射と、上記各格子層でのプラズモン共鳴とを経た有色の光が、第1表示領域10Aで視認される。なお、上記表面透過観察や裏面反射観察の結果は、表面10Sに向けた外光の光量が、裏面10Tに向けた外光の光量よりも高い場合においても、同様の傾向を示す。 On the other hand, in surface transmission observation in which the light L1 is incident on the support 11 from the outside of the display body and the surface 10S is observed from the surface side of the display body, the Fresnel reflection and plasmon resonance in each of the lattice layers are performed. Colored light is visually recognized in the first display area 10A. The results of the surface transmission observation and the back surface reflection observation show the same tendency even when the amount of external light directed to the front surface 10S is higher than the amount of external light directed to the back surface 10T.
 [表示体の製造方法]
 次に、表示体170を製造する方法の一例を説明する。
 まず、支持部11の表面に、第1誘電体層25,26と第1中間誘電体層35,36とを形成する。第1誘電体層25と第1中間誘電体層35とは、支持部11の表面から突き出た突部として一体に形成され、第1誘電体層26と第1中間誘電体層36とは、支持部11の表面から突き出た突部として一体に形成される。突部を形成する方法は、例えば、光、あるいは、荷電粒子線を用いたフォトリソグラフィー法や、ナノインプリント法、あるいは、プラズマエッチング法などを採用できる。特に、樹脂からなる支持部11の表面に突部を形成する方法として、例えばナノインプリント法を活用できる。また、硬い材質の基材などを加工することにより突部を形成する場合には、光、あるいは、荷電粒子線を用いたフォトリソグラフィー法とプラズマエッチング法を組み合わせた方法を用いればよい。
[Manufacturing method of display body]
Next, an example of a method for manufacturing the display body 170 will be described.
First, the first dielectric layers 25 and 26 and the first intermediate dielectric layers 35 and 36 are formed on the surface of the support portion 11. The first dielectric layer 25 and the first intermediate dielectric layer 35 are integrally formed as a protrusion protruding from the surface of the support portion 11, and the first dielectric layer 26 and the first intermediate dielectric layer 36 are It is integrally formed as a protrusion protruding from the surface of the support portion 11. As a method for forming the protrusion, for example, a photolithographic method using a light or charged particle beam, a nanoimprint method, a plasma etching method, or the like can be adopted. In particular, for example, a nanoimprint method can be used as a method of forming a protrusion on the surface of the support portion 11 made of resin. In addition, in the case where the protrusion is formed by processing a hard material base material or the like, a method in which light or a photolithographic method using a charged particle beam and a plasma etching method are combined may be used.
 例えば、基材として、ポリエチレンテレフタラートシートを用い、基材の表面に、紫外線硬化性樹脂を塗工する。次いで、紫外線硬化性樹脂からなる塗工膜の表面に、凹版である合成石英モールドの表面を押し当て、これらに紫外線を照射する。続いて、硬化した紫外線硬化樹脂から合成石英モールドを離型する。これによって、基材の表面の樹脂に凹版の有する凹凸が転写され、第1誘電体層25および第1中間誘電体層35からなる突部と、第1誘電体層26および第1中間誘電体層36からなる突部とが形成される。なお、紫外線硬化性樹脂は、熱硬化性樹脂に変更することも可能であり、紫外線の照射は、加熱に変更することも可能である。また、紫外線硬化性樹脂は、熱可塑性樹脂に変更することも可能であり、紫外線の照射は、加熱および冷却に変更することも可能である。 For example, a polyethylene terephthalate sheet is used as a base material, and an ultraviolet curable resin is applied to the surface of the base material. Next, the surface of the synthetic quartz mold, which is an intaglio, is pressed against the surface of the coating film made of an ultraviolet curable resin, and these are irradiated with ultraviolet rays. Subsequently, the synthetic quartz mold is released from the cured ultraviolet curable resin. As a result, the unevenness of the intaglio is transferred to the resin on the surface of the base material, and the projecting portion comprising the first dielectric layer 25 and the first intermediate dielectric layer 35, the first dielectric layer 26 and the first intermediate dielectric A protrusion made of the layer 36 is formed. Note that the ultraviolet curable resin can be changed to a thermosetting resin, and the ultraviolet irradiation can be changed to heating. Further, the ultraviolet curable resin can be changed to a thermoplastic resin, and the irradiation of the ultraviolet rays can be changed to heating and cooling.
 次いで、突部を備える支持部11の表面に、第1金属層27、第2金属層45、および、第2金属層46を形成する。これらの金属層を形成する方法は、例えば、真空蒸着法、スパッタリング法である。これによって、第1金属層27の頂面によって区画される第1格子層21が形成され、第2金属層45および第2金属層46の頂面によって区画される第2格子層41が形成され、これら第1格子層21と第2格子層41とに挟まれた中間格子層31が形成される。 Next, the first metal layer 27, the second metal layer 45, and the second metal layer 46 are formed on the surface of the support portion 11 including the protrusions. The method for forming these metal layers is, for example, a vacuum deposition method or a sputtering method. Thus, the first lattice layer 21 defined by the top surface of the first metal layer 27 is formed, and the second lattice layer 41 defined by the top surfaces of the second metal layer 45 and the second metal layer 46 is formed. Then, an intermediate lattice layer 31 sandwiched between the first lattice layer 21 and the second lattice layer 41 is formed.
 [第1表示領域の構成例]
 表示体170において、構造周期PT2を有する領域と、構造周期PT3を有する領域との各々は、第1実施形態にて第1表示領域10Aの好ましい構成として示した構成を有することが好ましい。
[Configuration example of first display area]
In the display body 170, each of the region having the structural period PT2 and the region having the structural period PT3 preferably has the configuration shown as the preferable configuration of the first display region 10A in the first embodiment.
 すなわち、図53が示すように、第1金属層27の厚さT2が10nm以上であり、かつ、孤立領域A12,A13が並ぶ二次元格子の各方向について、構造周期PT2に対する第1誘電体層25の幅WT2の比が0.75以下であり、構造周期PT3に対する第1誘電体層26の幅WT3の比が0.75以下であれば、表示体の表裏を判断するための裏面反射観察および表面反射観察において、それの精度が十分に得られる。 That is, as shown in FIG. 53, the first dielectric layer with respect to the structural period PT2 in each direction of the two-dimensional lattice in which the thickness T2 of the first metal layer 27 is 10 nm or more and the isolated regions A12 and A13 are arranged. If the ratio of the width WT2 of 25 is 0.75 or less and the ratio of the width WT3 of the first dielectric layer 26 to the structural period PT3 is 0.75 or less, the back surface reflection observation for judging the front and back of the display body In the surface reflection observation, the accuracy can be sufficiently obtained.
 他方、第1金属層27の厚さT2や、第2金属層45,46の厚さT4が、200nm以下であり、かつ、孤立領域A12,A13が並ぶ二次元格子の各方向について、構造周期PT2に対する第1誘電体層25の幅WT2の比が0.25以上であり、構造周期PT3に対する第1誘電体層26の幅WT3の比が0.25以上であれば、表面透過観察で視認される像や、裏面透過観察で視認される像が、それを視認できる程度に明瞭となる。 On the other hand, in each direction of the two-dimensional lattice in which the thickness T2 of the first metal layer 27 and the thickness T4 of the second metal layers 45 and 46 are 200 nm or less and the isolated regions A12 and A13 are arranged, the structural period If the ratio of the width WT2 of the first dielectric layer 25 to PT2 is 0.25 or more and the ratio of the width WT3 of the first dielectric layer 26 to the structural period PT3 is 0.25 or more, it is visually recognized by surface transmission observation. The image to be visually recognized and the image to be visually recognized by the back surface transmission observation are so clear that they can be visually recognized.
 また、第1格子層21の第1誘電体層25,26の厚さT2と、中間格子層31の第1中間誘電体層35,36の厚さT3との合計は、構造周期PT2よりも小さく、かつ、構造周期PT3よりも小さいことが好ましい。また、第1誘電体層25,26の厚さT2と第1中間誘電体層35,36の厚さT3との合計は、構造周期PT2の半分よりも小さく、構造周期PT3の半分よりも小さいことが、より好ましい。 The sum of the thickness T2 of the first dielectric layers 25 and 26 of the first lattice layer 21 and the thickness T3 of the first intermediate dielectric layers 35 and 36 of the intermediate lattice layer 31 is greater than the structural period PT2. It is preferably smaller and smaller than the structural period PT3. The sum of the thickness T2 of the first dielectric layers 25 and 26 and the thickness T3 of the first intermediate dielectric layers 35 and 36 is smaller than half of the structural period PT2 and smaller than half of the structural period PT3. It is more preferable.
 なお、第1中間誘電体層35の厚さと第1中間誘電体層36の厚さとは、同じであることが好ましい。こうした構成によれば、第1中間誘電体層35および第1中間誘電体層36を形成する凹版である合成石英モールドを、ドライエッチング法を用いて作製する場合、凹版の凹部を1回の加工プロセスによって形成できる。ただし、構造周期PT2と構造周期PT3とが大きく異なる場合には、加工の特性に起因して、第1中間誘電体層35と第1中間誘電体層36との厚さが異なる場合もあり得る。しかし、製法に起因して生じる第1中間誘電体層35と第1中間誘電体層36との厚さの違いは、光学的な変化として表示体170の観察において大きな影響を及ぼさないため問題はない。 The thickness of the first intermediate dielectric layer 35 and the thickness of the first intermediate dielectric layer 36 are preferably the same. According to such a configuration, when a synthetic quartz mold, which is an intaglio for forming the first intermediate dielectric layer 35 and the first intermediate dielectric layer 36, is produced by using a dry etching method, the depression of the intaglio is processed once. Can be formed by process. However, when the structural period PT2 and the structural period PT3 are greatly different, the thickness of the first intermediate dielectric layer 35 and the first intermediate dielectric layer 36 may be different due to processing characteristics. . However, the difference in thickness between the first intermediate dielectric layer 35 and the first intermediate dielectric layer 36 caused by the manufacturing method does not have a significant effect on the observation of the display body 170 as an optical change. Absent.
 第1金属層27および第2金属層45,46を構成する材料は、第1実施形態と同様、可視領域の光に対する複素誘電率の実部が負の値を有する材料であることが好ましく、例
えば、アルミニウム、銀、金、インジウム、タンタルなどであることが好ましい。
The material constituting the first metal layer 27 and the second metal layers 45 and 46 is preferably a material in which the real part of the complex dielectric constant for light in the visible region has a negative value, as in the first embodiment. For example, aluminum, silver, gold, indium, tantalum and the like are preferable.
 また、第1金属層27と第2金属層45と第2金属層46とを単一の工程で成膜する場合、第1実施形態と同様、第2金属層45の幅W2は、第1中間誘電体層35の幅WT2よりも若干大きくなり、互いに隣り合う第2金属層45の最短幅WP5は、最短幅WP2よりも若干小さくなる。同様に、第2金属層46の幅W3は、第1中間誘電体層36の幅WT3よりも若干大きくなり、互いに隣り合う第2金属層46の最短幅WP6は、最短幅WP3よりも若干小さくなる。この際、構造周期PT2に対する第2金属層45の幅W2の比は、0.25以上0.75以下であり、構造周期PT3に対する第2金属層46の幅W3の比は、0.25以上0.75以下である。第1金属層27における第1中間誘電体層35,36の周囲は、第2金属層45,46によるシャドウ効果の影響を受け、第1中間誘電体層35,36に近い部位ほど薄い。 Further, when the first metal layer 27, the second metal layer 45, and the second metal layer 46 are formed in a single process, the width W2 of the second metal layer 45 is the same as in the first embodiment. The width WT2 of the intermediate dielectric layer 35 is slightly larger, and the shortest width WP5 of the second metal layers 45 adjacent to each other is slightly smaller than the shortest width WP2. Similarly, the width W3 of the second metal layer 46 is slightly larger than the width WT3 of the first intermediate dielectric layer 36, and the shortest width WP6 of the second metal layers 46 adjacent to each other is slightly smaller than the shortest width WP3. Become. At this time, the ratio of the width W2 of the second metal layer 45 to the structural period PT2 is 0.25 or more and 0.75 or less, and the ratio of the width W3 of the second metal layer 46 to the structure period PT3 is 0.25 or more. 0.75 or less. The periphery of the first intermediate dielectric layers 35 and 36 in the first metal layer 27 is affected by the shadow effect of the second metal layers 45 and 46, and the portion closer to the first intermediate dielectric layers 35 and 36 is thinner.
 また、上記成膜方法によって形成される構造体においては、第1実施形態と同様、第1中間誘電体層35の側面にも、第2金属層45に連続する金属層である中間金属層35Aが形成される。同様に、第1中間誘電体層36の側面にも、第2金属層46に連続する金属層である中間金属層36Aが形成される。 In the structure formed by the film forming method, as in the first embodiment, an intermediate metal layer 35A that is a metal layer continuous with the second metal layer 45 is also formed on the side surface of the first intermediate dielectric layer 35. Is formed. Similarly, an intermediate metal layer 36 </ b> A that is a metal layer continuous with the second metal layer 46 is formed on the side surface of the first intermediate dielectric layer 36.
 中間金属層35Aは、第1中間誘電体層35と第2中間誘電体層37とに挟まれる。中間金属層35Aは、第2金属層45と一体の構造体であり、第1中間誘電体層35の側面上での厚みが、第1金属層27に近い部位ほど薄い。同様に、中間金属層36Aは、第1中間誘電体層36と第2中間誘電体層37とに挟まれる。中間金属層36Aは、第2金属層46と一体の構造体であり、第1中間誘電体層36の側面上での厚みが、第1金属層27に近い部位ほど薄い。 The intermediate metal layer 35 </ b> A is sandwiched between the first intermediate dielectric layer 35 and the second intermediate dielectric layer 37. The intermediate metal layer 35 </ b> A is a structure integrated with the second metal layer 45, and the thickness on the side surface of the first intermediate dielectric layer 35 is thinner as the portion is closer to the first metal layer 27. Similarly, the intermediate metal layer 36 </ b> A is sandwiched between the first intermediate dielectric layer 36 and the second intermediate dielectric layer 37. The intermediate metal layer 36 </ b> A is a structure integrated with the second metal layer 46, and the thickness on the side surface of the first intermediate dielectric layer 36 is thinner as the portion is closer to the first metal layer 27.
 こうした中間金属層35A,36Aは、構造周期PT2,PT3がサブ波長周期であるため、第2格子層41や中間格子層31の厚さ方向での屈折率の変化を連続的とする。それゆえに、上述した表面反射観察においては、より黒色に近い色が、第1表示領域10Aで視認される。 In these intermediate metal layers 35A and 36A, since the structural periods PT2 and PT3 are sub-wavelength periods, the refractive index change in the thickness direction of the second grating layer 41 and the intermediate grating layer 31 is continuous. Therefore, in the surface reflection observation described above, a color closer to black is visually recognized in the first display area 10A.
 また、第1金属層27と第2金属層45と第2金属層46とが、相互に等しい屈折率を有し、かつ、第1誘電体層25と第1金属層27との間の屈折率差、および、第1誘電体層26と第1金属層27との間の屈折率差の各々が、第2誘電体層47と第2金属層45,46との間の屈折率差よりも大きい構成であれば、第2格子層41と他の層との界面でのフレネル反射を抑え、かつ、第1格子層21と他の層との界面でのフレネル反射を促すことが可能となる。 The first metal layer 27, the second metal layer 45, and the second metal layer 46 have the same refractive index, and the refraction between the first dielectric layer 25 and the first metal layer 27. Each of the difference in refractive index and the difference in refractive index between the first dielectric layer 26 and the first metal layer 27 is different from the difference in refractive index between the second dielectric layer 47 and the second metal layers 45 and 46. Is larger, it is possible to suppress Fresnel reflection at the interface between the second grating layer 41 and the other layer, and to promote Fresnel reflection at the interface between the first grating layer 21 and the other layer. Become.
 なお、第2格子層41と他の層との界面でのフレネル反射を抑え、かつ、第1格子層21と他の層との界面でのフレネル反射を促すためには、以下の条件が満たされていることが好ましい。すなわち、第2誘電体層47に対して中間格子層31とは反対側で第2誘電体層47に接する層である表面層と、第2誘電体層47との間の屈折率差は、第1金属層27と支持部11との間の屈折率差よりも小さいことが好ましい。表面層は、例えば空気層である。そして、第2誘電体層47の屈折率は、表面層の屈折率と等しいことがさらに好ましい。 In order to suppress Fresnel reflection at the interface between the second grating layer 41 and the other layer and to promote Fresnel reflection at the interface between the first grating layer 21 and the other layer, the following conditions are satisfied. It is preferable that That is, the refractive index difference between the second dielectric layer 47 and the surface layer that is a layer in contact with the second dielectric layer 47 on the side opposite to the intermediate lattice layer 31 with respect to the second dielectric layer 47 is The refractive index difference between the first metal layer 27 and the support portion 11 is preferably smaller. The surface layer is, for example, an air layer. The refractive index of the second dielectric layer 47 is more preferably equal to the refractive index of the surface layer.
 以上のように、第6実施形態においても、表示体からは、プラズモン共鳴に起因して、特定の波長領域の光が反射光もしくは透過光として射出される。そして、各凸部である周期要素の位置や大きさと、各周期要素によって位置が定まる金属層とを含む複数の因子によって、上記透過光や反射光の波長領域が定まるため、表示体にて透過あるいは反射される波長領域の調整の自由度を高めることができる。 As described above, also in the sixth embodiment, light in a specific wavelength region is emitted from the display body as reflected light or transmitted light due to plasmon resonance. The wavelength region of the transmitted light and reflected light is determined by a plurality of factors including the position and size of the periodic elements that are the convex portions and the metal layer determined by the periodic elements. Alternatively, the degree of freedom in adjusting the reflected wavelength region can be increased.
 ところで、従来から、偽造防止機能を備える表示体の一例として、回折格子を含む表示体が用いられている。回折格子は、例えば、ホログラムを構成する。こうした表示体が備える回折格子は、例えば、透明な樹脂層と、樹脂層上に位置する金属層とを備える。例えば、正弦二次構造を有した数学的な関数によって表現される回折格子の形状は、回折格子の傾斜部において、他の部位よりも薄い金属層を有し、傾斜部間での構造の差異によって、透過率や反射率の差異を金属層に付加する。そして、グレースケールによる表現や、反射像の色彩と透過像の色彩とが相互に異なる表現を可能にする。しかしながら、こうした回折格子の形状は、回折格子における構造の高さ方向、すなわち、表示体における表裏方向に、高い対称性を必要とする。結果として、表示体の表面から観察される像と、表示体の裏面から観察される像との色彩の差異も微々たるものであり、これらの視認に基づいて、表示体の表裏を判別することも困難である。また、表示体の意匠性を高めるために、表示体における回折格子を構成する層に接する着色層を設けて、有色のホログラムを形成することが提案されている。しかしながら、こうしたホログラムでは、充分な回折効果が得られ難いことや、所望の色で十分に明るく見えるホログラムが得られ難いことなどの問題がある。また、ホログラム層とは別に着色層を設ける必要があるため、製造工程における工程数の増加も招いていた。 Incidentally, conventionally, a display body including a diffraction grating has been used as an example of a display body having an anti-counterfeit function. The diffraction grating constitutes a hologram, for example. The diffraction grating included in such a display body includes, for example, a transparent resin layer and a metal layer positioned on the resin layer. For example, the shape of a diffraction grating expressed by a mathematical function having a sinusoidal secondary structure has a metal layer that is thinner than other parts in the inclined part of the diffraction grating, and the difference in structure between the inclined parts. Thus, a difference in transmittance and reflectance is added to the metal layer. In addition, it is possible to express in gray scale or in different colors between the reflected image and the transmitted image. However, such a shape of the diffraction grating requires high symmetry in the height direction of the structure in the diffraction grating, that is, the front and back direction in the display body. As a result, the difference in color between the image observed from the front surface of the display body and the image observed from the back surface of the display body is also slight, and the front and back of the display body are discriminated based on these visual recognitions. It is also difficult. In order to improve the design of the display body, it has been proposed to form a colored hologram by providing a colored layer in contact with a layer constituting a diffraction grating in the display body. However, such holograms have problems that it is difficult to obtain a sufficient diffraction effect and that it is difficult to obtain a hologram that looks sufficiently bright with a desired color. In addition, since it is necessary to provide a colored layer separately from the hologram layer, the number of steps in the manufacturing process is also increased.
 以上のことから、表示体が形成する像の観察によって表示体の表裏の判別を可能とし、かつ、意匠性および偽造の困難性の優れた、回折格子による動的な色彩表現を可能とする表示体を提供することも、第6実施形態の目的である。こうした課題に対する効果を含めて、第6実施形態によれば、第1実施形態の(1-1),(1-2),(1-4)~(1-8)の効果に加えて、以下に列挙する効果が得られる。 From the above, a display that enables discrimination of the front and back sides of the display body by observing the image formed by the display body, and enables dynamic color expression using a diffraction grating, which is excellent in design and forgery. Providing a body is also an object of the sixth embodiment. In addition to the effects (1-1), (1-2), (1-4) to (1-8) of the first embodiment, according to the sixth embodiment, including the effects on such problems, The effects listed below can be obtained.
 (6-1)構造周期PT2および構造周期PT3の大きさが、可視領域の波長以下であるサブ波長周期であるため、これらの構造周期を有する領域単位では、一次回折光が反射されず、観察角度による色相の変化が小さい静的な色彩表現が可能である。その一方で、構造周期PT4の大きさが、サブ波長周期よりも大きい周期であるため、構造周期PT4を有する領域単位では、一次回折光による分光色が観察され、観察角度による色相の変化が大きい動的な色彩表現が可能である。したがって、観察角度による色相の変化が異なる色彩表現を同一平面上に実現することができる。 (6-1) Since the size of the structural period PT2 and the structural period PT3 is a sub-wavelength period that is equal to or smaller than the wavelength of the visible region, the first-order diffracted light is not reflected in the region unit having these structural periods, and is observed. Static color expression with small change in hue due to angle is possible. On the other hand, since the size of the structural period PT4 is larger than the sub-wavelength period, the spectral color due to the first-order diffracted light is observed in the region unit having the structural period PT4, and the change in hue due to the observation angle is large. Dynamic color expression is possible. Therefore, it is possible to realize color expressions having different hue changes depending on the observation angle on the same plane.
 以上のことから、表示体170の表裏の判別が、視認される像の観察によって可能であり、さらに、意匠性および偽造の困難性の優れる動的な色彩表現の付与された表示体170が実現される。 From the above, it is possible to discriminate between the front and back sides of the display body 170 by observing a visually recognized image, and further, the display body 170 to which dynamic color expression having excellent design characteristics and forgery difficulty is provided is realized. Is done.
 <第6実施形態の変形例>
 ・上記実施形態では、第1格子層21が、配列方向の幅が互いに異なる2種類の第1誘電体層を有する形態について説明した。その他の例として、第1格子層21は、配列方向の幅が互いに異なるn種類(nは2以上の整数)の第1誘電体層を有していてもよい。種類ごとの第1誘電体層の数は複数である。この場合、配列方向の幅が互いに異なるn種類の第1誘電体層のうち、配列方向の幅が等しい同一種類の第1誘電体層間における構造周期はサブ波長周期である必要がある。また、n種類の第1誘電体層には、配列方向の幅が互いに異なり、かつ、同一の構造周期を有する複数種類の第1誘電体層が含まれてもよい。換言すると、n種類の第1誘電体層において、構造周期はn種類以下である。種類ごとの複数の第1誘電体層のまとまりを第1誘電体層団とし、複数種類の第1誘電体層団のまとまりを第1誘電体層群とするとき、各第1誘電体層団において、構造周期はサブ波長周期であり、複数の第1誘電体層群を周期的に配置することでサブ波長周期よりも大きい構造周期を形成することができる。
<Modification of Sixth Embodiment>
In the embodiment described above, the first lattice layer 21 has been described as having two types of first dielectric layers having different widths in the arrangement direction. As another example, the first lattice layer 21 may include n types (n is an integer of 2 or more) of first dielectric layers having different widths in the arrangement direction. There are a plurality of first dielectric layers for each type. In this case, among the n types of first dielectric layers having different widths in the arrangement direction, the structural period between the same types of first dielectric layers having the same width in the arrangement direction needs to be sub-wavelength periods. The n types of first dielectric layers may include a plurality of types of first dielectric layers having different widths in the arrangement direction and having the same structural period. In other words, in the n types of first dielectric layers, the structural period is n types or less. When a group of a plurality of first dielectric layers for each type is a first dielectric layer group, and a group of a plurality of types of first dielectric layer groups is a first dielectric layer group, each first dielectric layer group The structural period is a sub-wavelength period, and a structural period larger than the sub-wavelength period can be formed by periodically arranging a plurality of first dielectric layer groups.
 図54は第1格子層21が3種類(n=3)の第1誘電体層を有する例を示している。配列方向の幅が等しい第1誘電体層間の構造周期PT2、構造周期PT3、構造周期PTnの各々はサブ波長周期である。また、各構造周期PT2,PT3,PTnを有する第1誘電体層団のまとまりが第1誘電体層群である。複数の第1誘電体層群を周期的に配置することでサブ波長周期よりも大きい構造周期PT4を形成している。 FIG. 54 shows an example in which the first lattice layer 21 has three types (n = 3) of first dielectric layers. Each of the structural period PT2, the structural period PT3, and the structural period PTn between the first dielectric layers having the same width in the arrangement direction is a sub-wavelength period. A group of first dielectric layer groups having the respective structural periods PT2, PT3, PTn is a first dielectric layer group. A structural period PT4 larger than the sub-wavelength period is formed by periodically arranging a plurality of first dielectric layer groups.
 ・第1格子層21の第1誘電体層が有する配列方向の幅はすべて同一であってもよい。すなわち、第1格子層21は、1種類(n=1)の第1誘電体層を有していてもよい。この場合、第1誘電体層間における構造周期はサブ波長周期である必要がある。この構造周期がサブ波長周期である複数の第1誘電体層を第1誘電体層団とし、1つの第1誘電体層団から第1誘電体層群が構成されるとき、複数の第1誘電体層群を、間隔をあけて周期的に配置することで、サブ波長周期よりも大きい構造周期を形成してもよい。 The widths in the arrangement direction of the first dielectric layer of the first lattice layer 21 may all be the same. That is, the first lattice layer 21 may have one type (n = 1) of first dielectric layers. In this case, the structure period between the first dielectric layers needs to be a sub-wavelength period. When a plurality of first dielectric layers whose structural period is a sub-wavelength period are defined as a first dielectric layer group, and a first dielectric layer group is configured from one first dielectric layer group, a plurality of first dielectric layers are formed. A structural period larger than the sub-wavelength period may be formed by periodically arranging the dielectric layer groups at intervals.
 図55は第1格子層21が1種類(n=1)の第1誘電体層を有する例を示している。第1誘電体層間の構造周期PT2はサブ波長周期である。図55では、4行×4列に配置された16個の第1誘電体層が第1誘電体層団および第1誘電体層群を構成する例を示しているが、第1誘電体層群を構成する第1誘電体層の数は16に限定されない。複数の第1誘電体層群を、間隔をあけて周期的に配置することで、サブ波長周期よりも大きい構造周期PT4を形成している。 FIG. 55 shows an example in which the first lattice layer 21 has one type (n = 1) of first dielectric layers. The structural period PT2 between the first dielectric layers is a sub-wavelength period. FIG. 55 shows an example in which 16 first dielectric layers arranged in 4 rows × 4 columns constitute a first dielectric layer group and a first dielectric layer group. The number of the first dielectric layers constituting the group is not limited to 16. A plurality of first dielectric layer groups are periodically arranged at intervals to form a structural period PT4 that is larger than the sub-wavelength period.
 ・第1表示領域10Aにおいて、互いに異なる構造周期を有する領域の各々には、第1実施形態の変形例と同様の構成が適用可能である。また、表示体は、金属層の上に、第2実施形態と同様の誘電体層を備えていてもよい。また、第2実施形態の変形例に記載したように、周期構造体が有する周期要素は、支持部11の表面を基準面として、基準面から窪む凹部であってもよい。 In the first display area 10A, the same configuration as that of the modified example of the first embodiment can be applied to each of the areas having different structural periods. The display body may include a dielectric layer similar to that of the second embodiment on the metal layer. In addition, as described in the modification of the second embodiment, the periodic element included in the periodic structure may be a recess that is recessed from the reference surface with the surface of the support portion 11 as the reference surface.
 ・第2実施形態の表示体付きデバイスの構成が、第6実施形態およびその変形例に適用されてもよい。すなわち、表示体付きデバイスは、第6実施形態もしくはその変形例の表示体と、光射出構造体とを備えてもよい。 The configuration of the device with a display according to the second embodiment may be applied to the sixth embodiment and its modifications. In other words, the device with a display body may include the display body according to the sixth embodiment or a modification thereof and the light emission structure.
 <付記>
 上記課題を解決するための手段には、第6実施形態、および、その変形例から導き出される技術的思想として以下の項目が含まれる。
<Appendix>
Means for solving the above-described problems include the following items as technical ideas derived from the sixth embodiment and its modifications.
 [項目41]
 可視領域の光を透過する誘電体からなる支持部と、前記支持部の有する面の一方に配置された第1格子層と、前記第1格子層における前記支持部とは反対側の面に配置された中間格子層と、前記中間格子層における前記第1格子層とは反対側の面に配置された第2格子層と、を備え、前記第1格子層は、二次元格子状に並ぶ複数の第1誘電体層と、各第1誘電体層を囲う網目状を有した第1金属層と、を備え、前記中間格子層は、二次元格子状に並ぶ複数の第1中間誘電体層と、各第1中間誘電体層を囲う網目状を有し、かつ、前記第1中間誘電体層よりも低い誘電率を有した第2中間誘電体層と、を備え、前記第2格子層は、二次元格子状に並ぶ複数の第2金属層と、各第2金属層を囲う網目状を有した第2誘電体層と、を備え、前記複数の第1誘電体層において、前記二次元格子に沿った前記第1誘電体層の配列方向での幅の大きさは1種類以上であり、前記第1格子層は、前記幅の種類ごとに複数の前記第1誘電体層を有し、前記幅が等しい複数の前記第1誘電体層が第1誘電体層団であり、各第1誘電体層団における前記第1誘電体層の構造周期はサブ波長周期であり、1以上の前記第1誘電体層団が第1誘電体層群を構成し、複数の前記第1誘電体層群が規則的に配置されることにより、前記サブ波長周期よりも大きい構造周期が形成されている表示体。
[Item 41]
A support portion made of a dielectric material that transmits light in the visible region; a first lattice layer disposed on one of the surfaces of the support portion; and a surface of the first lattice layer opposite to the support portion. And a second lattice layer disposed on a surface of the intermediate lattice layer opposite to the first lattice layer, the first lattice layer being arranged in a two-dimensional lattice shape. A first metal layer having a mesh shape surrounding each first dielectric layer, and the intermediate lattice layer includes a plurality of first intermediate dielectric layers arranged in a two-dimensional lattice shape. And a second intermediate dielectric layer having a mesh shape surrounding each first intermediate dielectric layer and having a dielectric constant lower than that of the first intermediate dielectric layer, the second lattice layer Comprises a plurality of second metal layers arranged in a two-dimensional lattice, and a second dielectric layer having a mesh shape surrounding each second metal layer, In the first dielectric layer, the width of the first dielectric layer in the arrangement direction of the first dielectric layer along the two-dimensional lattice is one or more kinds, and a plurality of the first lattice layers are provided for each kind of the width. A plurality of the first dielectric layers having the same width are first dielectric layer groups, and the structural period of the first dielectric layer in each first dielectric layer group Is a sub-wavelength period, and one or more first dielectric layer groups constitute a first dielectric layer group, and a plurality of the first dielectric layer groups are regularly arranged, whereby the sub-wavelength A display body in which a structural period larger than the period is formed.
 [項目42]
 前記第1金属層、および、前記第2金属層の各々は、可視領域の光に対する複素誘電率の実部が負の値を有する項目41に記載の表示体。
[Item 42]
42. A display according to item 41, wherein each of the first metal layer and the second metal layer has a negative real part of a complex dielectric constant with respect to light in a visible region.
 [項目43]
 前記二次元格子状の配列は、正方配列および六方配列のいずれかである項目41または42に記載の表示体。
[Item 43]
43. A display according to item 41 or 42, wherein the two-dimensional grid-like array is either a square array or a hexagonal array.
 [項目44]
 前記第1誘電体層の構造周期に対する前記第1誘電体層の幅の比、および、前記第2金属層の構造周期に対する前記第2金属層の幅の比の各々が、0.40以上0.60以下である項目41~43のいずれか1つに記載の表示体。
[Item 44]
The ratio of the width of the first dielectric layer to the structural period of the first dielectric layer and the ratio of the width of the second metal layer to the structural period of the second metal layer are each 0.40 or more and 0 The display according to any one of items 41 to 43, which is 60 or less.
 [項目45]
 前記第1格子層の厚さは、100nm以下であり、前記第2格子層の厚さは、100nm以下であり、前記中間格子層の厚さは、150nm以下であり、前記第1格子層、前記第2格子層、および、前記中間格子層のうち、前記中間格子層の厚さが最も厚い項目41~44のいずれか1つに記載の表示体。
[Item 45]
The first lattice layer has a thickness of 100 nm or less, the second lattice layer has a thickness of 100 nm or less, the intermediate lattice layer has a thickness of 150 nm or less, the first lattice layer, 45. The display body according to any one of items 41 to 44, wherein the intermediate lattice layer has the largest thickness among the second lattice layer and the intermediate lattice layer.
 [項目46]
 前記第1金属層を構成する材料と、前記第2金属層を構成する材料とは等しく、前記第2誘電体層は、空気層であり、前記第1誘電体層の屈折率と前記第1金属層の屈折率との差は、前記第2誘電体層の屈折率と前記第2金属層の屈折率との差よりも大きい項目41~45のいずれか1つに記載の表示体。
[Item 46]
The material constituting the first metal layer is the same as the material constituting the second metal layer, the second dielectric layer is an air layer, and the refractive index of the first dielectric layer and the first dielectric layer Item 46. The display body according to any one of items 41 to 45, wherein a difference between the refractive index of the metal layer and the refractive index of the second dielectric layer is larger than that of the second metal layer.
 (第7実施形態)
 図56から図58を参照して、光学デバイスの一例である表示体、および、表示体の製造方法の第7実施形態を説明する。なお、表示体に照射される入射光の波長領域は限定されないが、第7実施形態および第8実施形態では、入射光として、肉眼で認識可能な可視領域(波長:400nm以上800nm以下)を含む自然光を対象として説明する。
(Seventh embodiment)
With reference to FIGS. 56 to 58, a display body as an example of an optical device and a seventh embodiment of a method for manufacturing the display body will be described. Although the wavelength region of incident light irradiated on the display body is not limited, the seventh and eighth embodiments include a visible region (wavelength: 400 nm or more and 800 nm or less) that can be recognized with the naked eye as the incident light. A description will be given for natural light.
 第7実施形態および第8実施形態の表示体は、物品の偽造の困難性を高める目的で用いられてもよいし、物品の意匠性を高める目的で用いられてもよいし、これらの目的を兼ねて用いられてもよい。 The display bodies of the seventh embodiment and the eighth embodiment may be used for the purpose of increasing the difficulty of counterfeiting the article, may be used for the purpose of improving the designability of the article, and these purposes may be used. It may also be used.
 図56Aから図56Cが示すように、第7実施形態の表示体300は、入射光Iに対して透明な材料で構成された支持層312と、支持層312の表面に形成された凹凸構造層314と、凹凸構造層314上に設けられた金属層316とを備えた積層体318を有する。凹凸構造層314は誘電体材料からなる。誘電体材料としては、例えば、入射光Iが可視領域の光である場合、可視領域の光を透過する合成石英や樹脂等が好適である。 As shown in FIGS. 56A to 56C, the display body 300 of the seventh embodiment includes a support layer 312 made of a material that is transparent to the incident light I, and an uneven structure layer formed on the surface of the support layer 312. 314 and a stacked body 318 including a metal layer 316 provided over the uneven structure layer 314. The uneven structure layer 314 is made of a dielectric material. As the dielectric material, for example, when the incident light I is light in the visible region, synthetic quartz or resin that transmits light in the visible region is suitable.
 凹凸構造層314は、周期性を有するように配置された複数の凸部314aと、凸部314a以外の部分である凹部314bとからなる。図56Aに示す凹凸構造層314の例は、複数の凸部314aを、二次元格子状の配列の一例である六方配列に並べた構成を示す。凹部314bには、平坦面315が存在する。 The concavo-convex structure layer 314 includes a plurality of convex portions 314a arranged so as to have periodicity, and a concave portion 314b which is a portion other than the convex portions 314a. The example of the concavo-convex structure layer 314 shown in FIG. 56A shows a configuration in which a plurality of convex portions 314a are arranged in a hexagonal array that is an example of a two-dimensional lattice-like array. A flat surface 315 exists in the recess 314b.
 図56Aに示す例では、隣接する3つの凸部314aの頂点が正三角形317を形成するように、各凸部314aが配列されている。正三角形317の一辺の長さPSが、凸部314aの構造周期となる。 In the example shown in FIG. 56A, the convex portions 314a are arranged so that the apexes of the three adjacent convex portions 314a form an equilateral triangle 317. The length PS of one side of the equilateral triangle 317 is the structural period of the convex portion 314a.
 なお、隣接する3つの凸部314aの頂点が、正三角形を形成する配列に限定されず、隣接する4つの凸部314aの頂点が、正方形を形成するように、すなわち、正方配列に、複数の凸部314aが配列されてもよい。さらに、隣接する3つの凸部314aの頂点が、正三角形ではなく二等辺三角形を形成するように、あるいは、隣接する4つの凸部314aの頂点が、正方形ではなく長方形を形成するように、複数の凸部314aが配列されてもよい。図57Aは、隣接する3つの凸部314aの頂点が二等辺三角形を形成する配列の例を示し、図57Bは、隣接する4つの凸部314aの頂点が長方形を形成する配列の例を示す。これらの場合、凸部314aの構造周期は、それぞれ2つ存在する。すなわち、図57Aに示す例では、二等辺三角形の辺の長さPS1およびPS2の各々が構造周期であり、図57Bに示す例では、長方形の辺の長さPSxおよびPSyの各々が構造周期である。 In addition, the vertexes of the three adjacent convex portions 314a are not limited to the array forming a regular triangle, and the vertexes of the four adjacent convex portions 314a form a square, that is, a plurality of squares are arranged in a square array. The convex portions 314a may be arranged. Further, a plurality of adjacent ridges 314a may form an isosceles triangle instead of an equilateral triangle, or vertices of four adjacent ridges 314a may form a rectangle instead of a square. Convex portions 314a may be arranged. FIG. 57A shows an example of an array in which the vertices of three adjacent convex portions 314a form an isosceles triangle, and FIG. 57B shows an example of an array in which the vertices of four adjacent convex portions 314a form a rectangle. In these cases, there are two structural periods of the convex portion 314a. That is, in the example shown in FIG. 57A, each of the side lengths PS1 and PS2 of the isosceles triangle is a structural period, and in the example shown in FIG. 57B, each of the rectangular side lengths PSx and PSy is a structural period. is there.
 凹凸構造層314における凸部314aの構造周期PSは、入射光Iの波長以下であるサブ波長周期である。図57Aおよび図57Bのように、構造周期が複数ある場合には、すべての構造周期PSが入射光Iの波長以下である。例えば、図57Aが示す例では、構造周期PS1および構造周期PS2の各々が、入射光Iの波長以下であり、図57Bが示す例では、構造周期PSxおよび構造周期PSyの各々が、入射光Iの波長以下である。入射光Iが可視領域の光である場合、一次回折光による分光色の影響を小さくするため、構造周期PSは、500nm以下であることが好ましく、特に400nm以下であることが好ましい。 The structural period PS of the convex part 314a in the concave-convex structure layer 314 is a sub-wavelength period that is equal to or less than the wavelength of the incident light I. As shown in FIGS. 57A and 57B, when there are a plurality of structural periods, all the structural periods PS are equal to or less than the wavelength of the incident light I. For example, in the example shown in FIG. 57A, each of the structural period PS1 and the structural period PS2 is less than or equal to the wavelength of the incident light I. In the example shown in FIG. 57B, each of the structural period PSx and the structural period PSy is incident light I. Or less. When the incident light I is light in the visible region, the structural period PS is preferably 500 nm or less, and particularly preferably 400 nm or less in order to reduce the influence of the spectral color due to the first-order diffracted light.
 凸部314aの側壁314cは、図58A~図58Dに例示するように、凸部314aに隣接する凹部314bに向かって傾くことなく、凸部314aの側壁314cの少なくとも一部が、凸部314aの中心に向かって傾いている。 As illustrated in FIGS. 58A to 58D, the side wall 314c of the convex portion 314a is not inclined toward the concave portion 314b adjacent to the convex portion 314a, and at least a part of the side wall 314c of the convex portion 314a is Inclined towards the center.
 図58Aは、図56Bに例示されている凸部314aの側壁314cの形状を拡大して示している。凸部314aの側壁314cの形状は、図58Aに例示されているように、凸部314aの中心に向かって連続的に傾く形状に限定されない。図58Bに示されるように、側壁314cは、支持層312からの高さh1までは傾かず、高さh1よりも高い部分で、凸部314aの中心に向かって傾く形状であってもよい。また、図58Cに示されるように、側壁314cは、支持層312からの高さh2までの少なくとも一部で凸部314aの中心に向かって傾いているものの、高さh2から高さh3までは傾かず、高さh3よりも高い部分で、凸部314aの中心に向かって再び傾く形状であってもよい。さらには、図58Dに示されるように、側壁314cは、支持層312からの高さh2までは傾かず、高さh2において凸部314aの径が細くなるものの側壁314cは高さh3まで傾かず、高さh3よりも高い部分で、側壁314cが凸部314aの中心に向かって傾いてもよい。 FIG. 58A shows an enlarged shape of the side wall 314c of the convex portion 314a illustrated in FIG. 56B. The shape of the side wall 314c of the convex portion 314a is not limited to a shape that continuously inclines toward the center of the convex portion 314a, as illustrated in FIG. 58A. As shown in FIG. 58B, the side wall 314c may not be inclined to the height h1 from the support layer 312 but may be inclined toward the center of the convex portion 314a at a portion higher than the height h1. As shown in FIG. 58C, the side wall 314c is inclined toward the center of the convex portion 314a at least partly from the support layer 312 to the height h2, but from the height h2 to the height h3. A shape that does not tilt but tilts again toward the center of the convex portion 314a at a portion higher than the height h3 may be used. Further, as shown in FIG. 58D, the side wall 314c does not tilt to the height h2 from the support layer 312, and the side wall 314c does not tilt to the height h3 although the diameter of the convex portion 314a becomes small at the height h2. The side wall 314c may be inclined toward the center of the convex portion 314a at a portion higher than the height h3.
 上記構成において、凸部314aは、周期要素の一例であり、支持部の一例である支持層312の表面を基準面として、基準面から突出する凸部である。そして、支持層312および凹凸構造層314から構成される構造体は、周期構造体の一例である。また、金属層316は、層全体としての形状が周期構造体の表面形状に追従する形状を有した金属層として捉えられる。周期構造体の表面は、基準面のうち各周期要素を囲む領域と各周期要素の表面とを含む面である。そして、凸部314aの側壁314cである周期要素の側面は、基準面に近づくように傾斜する部分を有さず、換言すれば、基準面から離れるほど周期要素の中心から離れるように傾斜する部分を有さない。さらに、周期要素の側面の少なくとも一部は、基準面から離れるほど周期要素の中心に近づくように傾斜している。なお、上記周期要素の中心は、基準面と対向する方向から見た周期要素の中心である。 In the above configuration, the convex portion 314a is an example of a periodic element, and is a convex portion that protrudes from the reference plane with the surface of the support layer 312 that is an example of the support portion as a reference plane. The structure including the support layer 312 and the uneven structure layer 314 is an example of a periodic structure. Further, the metal layer 316 is regarded as a metal layer having a shape in which the shape of the entire layer follows the surface shape of the periodic structure. The surface of the periodic structure is a surface including a region surrounding each periodic element in the reference plane and the surface of each periodic element. Further, the side surface of the periodic element that is the side wall 314c of the convex portion 314a does not have a portion that inclines so as to approach the reference plane, in other words, a portion that inclines away from the center of the periodic element as the distance from the reference plane increases. Does not have. Furthermore, at least a part of the side surface of the periodic element is inclined so as to approach the center of the periodic element as the distance from the reference plane increases. The center of the periodic element is the center of the periodic element as viewed from the direction facing the reference plane.
 次に、表示体300の製造方法について説明する。
 表示体300を製造するためには、まず、例えば合成石英や樹脂等の誘電体材料からなる基材の表面に、例えば、光、あるいは、荷電粒子線を用いたフォトリソグラフィー法や、ナノインプリント法、あるいは、プラズマエッチング法などの公知の加工技術を用いて、凹凸構造層314を形成することにより、支持層312と凹凸構造層314との積層体を形成する。特に、樹脂からなる支持層312の表面に凸部314aを形成する方法として、例えばナノインプリント法を活用できる。また、硬い材質の基材などを加工することにより凸部314aを形成する場合には、光、あるいは、荷電粒子線を用いたフォトリソグラフィー法とプラズマエッチング法を組み合わせた方法を用いればよい。
Next, a method for manufacturing the display body 300 will be described.
In order to manufacture the display body 300, for example, on the surface of a base material made of a dielectric material such as synthetic quartz or resin, for example, a photolithographic method using light or a charged particle beam, a nanoimprint method, Alternatively, a laminated body of the support layer 312 and the concavo-convex structure layer 314 is formed by forming the concavo-convex structure layer 314 using a known processing technique such as a plasma etching method. In particular, as a method for forming the convex portions 314a on the surface of the support layer 312 made of resin, for example, a nanoimprint method can be used. In addition, in the case where the convex portion 314a is formed by processing a hard material base material or the like, a method in which light or a photolithography method using a charged particle beam and a plasma etching method are combined may be used.
 続いて、図56Cの断面図に例示するように、凹凸構造層314上に、例えば、真空蒸着法などの公知の技術を用いて金属を堆積させることによって、金属層316を形成する。金属層316を構成する材料としては、表面プラズモン共鳴を起こしやすい観点から、表示体300に入射する光の波長領域における複素誘電率の実部が負の値の材料が好ましい。例として、可視領域の光を含む自然光を表示体300に照射する場合は、金属層316を構成する材料は、アルミニウム、銀、金、インジウム、タンタルなどの金属材料であることが好ましい。ただし、金属層316を構成する材料は、上述の材料に限られず、上記以外の金属であってもよい。 Subsequently, as illustrated in the cross-sectional view of FIG. 56C, a metal layer 316 is formed on the concavo-convex structure layer 314 by depositing a metal using a known technique such as a vacuum evaporation method. The material constituting the metal layer 316 is preferably a material having a negative real part of the complex dielectric constant in the wavelength region of light incident on the display body 300 from the viewpoint of easily causing surface plasmon resonance. For example, in the case where the display body 300 is irradiated with natural light including light in the visible region, the material forming the metal layer 316 is preferably a metal material such as aluminum, silver, gold, indium, or tantalum. However, the material constituting the metal layer 316 is not limited to the above-described material, and may be a metal other than the above.
 金属層316の厚さは、10nm以上300nm以下の範囲であることが好ましく、特に20nm以上が好適である。上限値である300nmは、表示体300の透過率(透過スペクトルにおけるピーク透過率)が1%を超えるようになる金属層316の厚さとして定めた値であり、下限値である10nmは、自然酸化膜の形成を考慮して定めた値である。なお、表示体300にて、後述する反射防止効果や表面プラズモン共鳴現象が発現する構成であれば、金属層316の厚さは10nm未満であってもよい。 The thickness of the metal layer 316 is preferably in the range of 10 nm or more and 300 nm or less, and particularly preferably 20 nm or more. The upper limit of 300 nm is a value determined as the thickness of the metal layer 316 at which the transmittance of the display 300 (the peak transmittance in the transmission spectrum) exceeds 1%, and the lower limit of 10 nm is a natural value. This value is determined in consideration of the formation of an oxide film. Note that the thickness of the metal layer 316 may be less than 10 nm as long as the anti-reflection effect and surface plasmon resonance phenomenon described later are exhibited in the display body 300.
 次に、第7実施形態の表示体300の作用について説明する。以下では、入射光Iが可視領域の光である場合について説明する。
 凹凸構造層314の有する凹凸の構造周期PSは、可視領域の波長以下であり、凹凸構造層314上に形成された金属層316の有する凹凸の構造周期も、可視領域の波長以下となる。そのため、図56Cに示すように、表示体300に金属層316の位置する側から入射光Iが入射するとき、一次回折光による虹色に輝く分光色が観察されにくい。
Next, the operation of the display body 300 of the seventh embodiment will be described. Hereinafter, a case where the incident light I is visible light will be described.
The concavo-convex structure period PS of the concavo-convex structure layer 314 is less than or equal to the wavelength in the visible region, and the concavo-convex structure period of the metal layer 316 formed on the concavo-convex structure layer 314 is also less than or equal to the wavelength in the visible region. Therefore, as shown in FIG. 56C, when the incident light I is incident on the display body 300 from the side where the metal layer 316 is located, it is difficult to observe the iridescent spectral color due to the first-order diffracted light.
 また、凹凸構造層314は、図56Bに示すように、複数の凸部314aを有する凹凸形状を有しているため、金属層316、凹凸構造層314、および、支持層312からなる積層体318は、厚さ方向に連続的に屈折率が変化する層に近似される。よって、例えば、凹凸構造層314が位置する領域では、フレネル反射が生じにくくなるため、図56Cにおける上側である支持層312の表面側から入射した入射光Iに対して、反射防止効果が発現する。 Further, as shown in FIG. 56B, the uneven structure layer 314 has an uneven shape having a plurality of convex portions 314 a, and thus a laminate 318 including the metal layer 316, the uneven structure layer 314, and the support layer 312. Is approximated to a layer whose refractive index continuously changes in the thickness direction. Therefore, for example, in the region where the concavo-convex structure layer 314 is located, Fresnel reflection is less likely to occur, and thus an antireflection effect is exerted on the incident light I incident from the surface side of the support layer 312 that is the upper side in FIG. 56C. .
 このような反射防止効果は、凸部314aの高さが高くなるにつれて大きくなる。しかしながら、例えばドライエッチング法を用いて凹凸構造層314を形成する場合には、凸部314aの高さが高くなるほど、加工のために要する時間が長くなり、また、ドライエッチングに用いるプラズマの密度のばらつきの影響を受けて、歩留まりが低下することも懸念される。したがって、製造が容易になる観点から、構造周期PSに対する凸部314aの高さの比は、0.5以下であることが好ましい。 Such an antireflection effect increases as the height of the convex portion 314a increases. However, in the case where the concavo-convex structure layer 314 is formed using, for example, a dry etching method, the time required for processing increases as the height of the convex portion 314a increases, and the density of plasma used for dry etching increases. There is also concern that the yield will be affected by the variation. Therefore, from the viewpoint of facilitating production, the ratio of the height of the convex portion 314a to the structural period PS is preferably 0.5 or less.
 また、表示体300においては、凹部314bに平坦面315が存在しており、凹凸構造層314と金属層316とが、サブ波長周期の凹凸構造を有し、金属層316を構成する材料として、可視領域の光に対する複素誘電率の実部が負の値である金属材料が選択されている。これらによって、入射光Iの一部と電子の集団的な振動とが結合し、プラズモン共鳴が生じる。 Further, in the display body 300, a flat surface 315 exists in the recess 314b, and the uneven structure layer 314 and the metal layer 316 have an uneven structure with a sub-wavelength period, and the material constituting the metal layer 316 is as follows. A metal material having a negative real part of the complex dielectric constant for light in the visible region is selected. As a result, a part of the incident light I and the collective vibration of the electrons are coupled to generate plasmon resonance.
 例えば、図56Cにおける下側である支持層312の裏面側から自然光を照射した場合、平坦面315においてフレネル反射が発生するが、プラズモン共鳴にて消費される波長領域の光は反射されない。このため、プラズモン共鳴にて消費される波長領域が可視領域に存在すれば、反射光としては、プラズモン共鳴にて消費される波長領域に対応する色の補色が観察される。 For example, when natural light is irradiated from the back side of the support layer 312 which is the lower side in FIG. 56C, Fresnel reflection occurs on the flat surface 315, but light in the wavelength region consumed by plasmon resonance is not reflected. For this reason, if the wavelength region consumed by plasmon resonance exists in the visible region, the complementary color of the color corresponding to the wavelength region consumed by plasmon resonance is observed as the reflected light.
 さらには、金属層316の厚さが十分薄い場合、可視領域の入射光Iの一部は、表示体300を透過することができる。ただし、プラズモン共鳴に起因して透過光は波長選択性を有する。 Furthermore, when the thickness of the metal layer 316 is sufficiently thin, a part of the incident light I in the visible region can pass through the display body 300. However, the transmitted light has wavelength selectivity due to plasmon resonance.
 したがって、表示体300は、自然光の下での観察において、図56Cにおける上側である表面側からの反射光の観察や、表面側あるいは図56Cにおける下側である裏面側からの透過光の観察や、裏面側からの反射光の観察といった、各観察によって異なる色彩表現を実現することが可能である。 Therefore, the display body 300 observes reflected light from the upper surface side in FIG. 56C or observation of transmitted light from the front surface side or the lower surface side in FIG. 56C in observation under natural light. It is possible to realize different color expressions depending on each observation, such as observation of reflected light from the back side.
 以上のように、第7実施形態においても、表示体からは、プラズモン共鳴に起因して、特定の波長領域の光が反射光もしくは透過光として射出される。そして、各凸部314aである周期要素の位置や大きさと、各周期要素によって位置が定まる金属層とを含む複数の因子によって、上記透過光や反射光の波長領域が定まるため、表示体にて透過あるいは反射される波長領域の調整の自由度を高めることができる。 As described above, also in the seventh embodiment, light of a specific wavelength region is emitted from the display body as reflected light or transmitted light due to plasmon resonance. Since the wavelength region of the transmitted light and the reflected light is determined by a plurality of factors including the position and size of the periodic element that is each convex portion 314a and the metal layer that is determined by each periodic element, the display body It is possible to increase the degree of freedom in adjusting the wavelength region that is transmitted or reflected.
 ところで、従来から、偽造防止機能を備える表示体の一例として、回折格子を含む表示体が用いられている。こうした表示体が備える回折格子は、例えば、透明な樹脂層と、樹脂層上に位置する金属層とを備える。例えば、正弦二次構造を有した数学的な関数によって表現される回折格子の形状は、回折格子の傾斜部において、他の部位よりも薄い金属層を有し、傾斜部間での構造の差異によって、透過率や反射率の差異を金属層に付加する。そして、グレースケールによる表現や、反射像の色彩と透過像の色彩とが相互に異なる表現を可能にする。しかしながら、こうした回折格子の形状は、回折格子における構造の高さ方向、すなわち、表示体における表裏方向に、高い対称性を必要とする。結果として、表示体の表面から観察される像と、表示体の裏面から観察される像との色彩の差異も微々たるものであり、これらの視認に基づいて、表示体の表裏を判別することも困難である。 Incidentally, conventionally, a display body including a diffraction grating has been used as an example of a display body having an anti-counterfeit function. The diffraction grating included in such a display body includes, for example, a transparent resin layer and a metal layer positioned on the resin layer. For example, the shape of a diffraction grating expressed by a mathematical function having a sinusoidal secondary structure has a metal layer that is thinner than other parts in the inclined part of the diffraction grating, and the difference in structure between the inclined parts. Thus, a difference in transmittance and reflectance is added to the metal layer. In addition, it is possible to express in gray scale or in different colors between the reflected image and the transmitted image. However, such a shape of the diffraction grating requires high symmetry in the height direction of the structure in the diffraction grating, that is, the front and back direction in the display body. As a result, the difference in color between the image observed from the front surface of the display body and the image observed from the back surface of the display body is also slight, and the front and back of the display body are discriminated based on these visual recognitions. It is also difficult.
 以上のことから、表示体が形成する像の観察によって表示体の表裏の判別を可能とする表示体を提供することも、第7実施形態の目的である。上述のように、第7実施形態の表示体300によれば、表裏の反射光の観察、および、透過光の観察の各々において、互いに異なる色彩が観察される。それゆえ、真贋判定の容易性が損なわれることのない表示体を実現することができる。 From the above, it is also an object of the seventh embodiment to provide a display body that can distinguish the front and back of the display body by observing an image formed by the display body. As described above, according to the display body 300 of the seventh embodiment, different colors are observed in each of the observation of the reflected light on the front and back surfaces and the observation of the transmitted light. Therefore, it is possible to realize a display body that does not impair the ease of authenticity determination.
 <第7実施形態の変形例>
 図59および図60を参照して、第7実施形態の変形例について説明する。
 上記実施形態では、凹部314bにのみ平坦面が存在していたが、本変形例では、図59Bに例示されるように、凸部314aの先端にも平坦面319が存在している。
<Modification of the seventh embodiment>
A modification of the seventh embodiment will be described with reference to FIGS. 59 and 60.
In the above embodiment, a flat surface exists only in the concave portion 314b. However, in the present modification, a flat surface 319 also exists at the tip of the convex portion 314a as illustrated in FIG. 59B.
 支持層312の表面に沿った凸部314aの断面形状は、図56Aに示したように円形でもよいし、多角形でもよい。図59Aは、一例として、支持層312の表面に沿った凸部314aの断面形状が正方形である構成を示している。さらに、凸部314aは、図59Bに示されるように、凸部314aの幅が先端に向かって狭くなる形状を有している。そして、図59Cに示されるように、図56Cと同様に、凹凸構造層314の表面が、金属層316で覆われる。 The cross-sectional shape of the convex portion 314a along the surface of the support layer 312 may be circular as shown in FIG. 56A or polygon. FIG. 59A shows, as an example, a configuration in which the cross-sectional shape of the convex portion 314a along the surface of the support layer 312 is a square. Furthermore, as shown in FIG. 59B, the convex portion 314a has a shape in which the width of the convex portion 314a becomes narrower toward the tip. And as FIG. 59C shows, the surface of the uneven structure layer 314 is covered with the metal layer 316 similarly to FIG. 56C.
 さらには、図60A~図60Dに例示されるように、凸部314aの側壁314cは、隣接する凹部314bに向かって傾くことなく、凸部314aの側壁314cの少なくとも一部が、凸部314aの中心に向かって傾いている。図60Aに示す凸部314aは、図58Aに示す凸部314aの頂部を平坦面319に変更した形状を有し、図60Bに示す凸部314aは、図58Bに示す凸部314aの頂部を平坦面319に変更した形状を有する。図60Cに示す凸部314aは、図58Cに示す凸部314aの頂部を平坦面319に変更した形状を有し、図60Dに示す凸部314aは、図58Dに示す凸部314aの頂部を平坦面319に変更した形状を有する。 Furthermore, as illustrated in FIGS. 60A to 60D, the side wall 314c of the convex portion 314a is not inclined toward the adjacent concave portion 314b, and at least a part of the side wall 314c of the convex portion 314a is not in the convex portion 314a. Inclined towards the center. The convex portion 314a shown in FIG. 60A has a shape obtained by changing the top of the convex portion 314a shown in FIG. 58A to a flat surface 319, and the convex portion 314a shown in FIG. 60B is flat on the top of the convex portion 314a shown in FIG. The surface 319 has a changed shape. The convex part 314a shown in FIG. 60C has a shape obtained by changing the top part of the convex part 314a shown in FIG. 58C to a flat surface 319, and the convex part 314a shown in FIG. 60D is flat on the top part of the convex part 314a shown in FIG. The surface 319 has a changed shape.
 このように、凹部314bのみならず、凸部314aにも平坦面を設けた構造であっても、第7実施形態にて説明した作用と同様の作用により、表裏の反射光の観察、および、透過光の観察の各々において、互いに異なる色彩が観察される。それゆえ、真贋判定の容易性が損なわれることのない表示体を実現することができる。 Thus, even in the structure in which not only the concave portion 314b but also the convex portion 314a is provided with a flat surface, observation of reflected light on the front and back surfaces by the same operation as that described in the seventh embodiment, and In each observation of transmitted light, different colors are observed. Therefore, it is possible to realize a display body that does not impair the ease of authenticity determination.
 (第8実施形態)
 図61および図62を参照して、光学デバイスの一例である表示体、および、表示体の製造方法の第8実施形態を説明する。以下では、第8実施形態と第7実施形態との相違点を中心に説明し、第7実施形態と同様の構成については同じ符号を付してその説明を省略する。
(Eighth embodiment)
With reference to FIGS. 61 and 62, an eighth embodiment of a display body which is an example of an optical device and a method for manufacturing the display body will be described. Below, it demonstrates centering around the difference between 8th Embodiment and 7th Embodiment, about the structure similar to 7th Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 第7実施形態の表示体300における凹凸構造層314が有する凹凸構造が、ドット配列型構造と称されることに対して、第8実施形態の表示体における凹凸構造層314が有する凹凸構造は、ホール配列型構造と称される。 The concavo-convex structure of the concavo-convex structure layer 314 in the display body 300 of the seventh embodiment is referred to as a dot array structure, whereas the concavo-convex structure of the concavo-convex structure layer 314 of the display body of the eighth embodiment is It is called a hole arrangement type structure.
 図61A~図61Cが示すように、第8実施形態の表示体310は、入射光Iに対して透明な材料で構成された支持層312であって、凹凸構造層314を含む支持層312と、凹凸構造層314上に設けられた金属層316とを備えた積層体318を有する。 As shown in FIGS. 61A to 61C, the display 310 of the eighth embodiment is a support layer 312 made of a material transparent to the incident light I, and includes a support layer 312 including an uneven structure layer 314, And a laminated body 318 including a metal layer 316 provided over the uneven structure layer 314.
 凹凸構造層314は、第7実施形態と同様に、誘電体材料からなる。誘電体材料としては、例えば、入射光Iが可視領域の光である場合、可視領域の光を透過する合成石英や樹脂等が好適である。 The concavo-convex structure layer 314 is made of a dielectric material as in the seventh embodiment. As the dielectric material, for example, when the incident light I is light in the visible region, synthetic quartz or resin that transmits light in the visible region is suitable.
 第8実施形態では、支持層312に、周期性を有するように配置された複数の凹部314eが設けられることによって、凹凸構造層314が構成されている。そして、凹凸構造層314において、凹部314e以外の領域である凸部314gには、平坦面322が存在する。 In the eighth embodiment, the concavo-convex structure layer 314 is configured by providing the support layer 312 with a plurality of recesses 314e arranged to have periodicity. And in the uneven structure layer 314, the flat surface 322 exists in the convex part 314g which is areas | regions other than the recessed part 314e.
 なお、図61Aに示す凹凸構造層314の例は、凹部314eを、二次元格子状の配列の一例である六方配列に並べた構成を示すが、凹部314eの配列パターンは、第7実施形態でも説明したように、六方配列に限定されない。 The example of the concavo-convex structure layer 314 shown in FIG. 61A shows a configuration in which the recesses 314e are arranged in a hexagonal array, which is an example of a two-dimensional lattice-like array. The array pattern of the recesses 314e is the same as in the seventh embodiment. As explained, it is not limited to a hexagonal arrangement.
 凹凸構造層314が有する凹凸の構造周期PS、すなわち、第8実施形態の場合では凹部314eの配列周期もまた、第7実施形態で説明したように、入射光Iの波長以下のサブ波長周期である。 The concave-convex structure period PS of the concave-convex structure layer 314, that is, in the case of the eighth embodiment, the arrangement period of the concave parts 314e is also a sub-wavelength period equal to or less than the wavelength of the incident light I as described in the seventh embodiment. is there.
 そして、凹部314eの側壁314fは、図62A~図62Dに例示するように、隣接する凸部314gに向かって傾くことなく、凹部314eの側壁314fの少なくとも一部が、凹部314eの中心に向かって傾いている。 As illustrated in FIGS. 62A to 62D, the side wall 314f of the recess 314e is not inclined toward the adjacent projection 314g, and at least a part of the side wall 314f of the recess 314e is directed toward the center of the recess 314e. Tilted.
 図62Aは、図61Bに例示されている凹部314eの側壁314fの形状を拡大して示している。凹部314eの側壁314fの形状は、図62Aに例示されているように、凹部314eの中心に向かって連続的に傾く形状に限定されない。図62Bに示されるように、側壁314fは、支持層312の表面からの深さh1までは傾かず、深さh1よりも深い部分で、凹部314eの中心に向かって傾く形状であってもよい。また、図62Cに示されるように、側壁314fは、支持層312の表面からの深さh2までの少なくとも一部で凹部314eの中心に向かって傾いているものの、深さh2から深さh3までは傾かず、深さh3よりも深い部分で、凹部314eの中心に向かって再び傾く形状であってもよい。さらには、図62Dに示されるように、側壁314fは、支持層312の表面からの深さh2までは傾かず、深さh2において凹部314eの径が細くなるものの側壁314fは深さh3まで傾かず、深さh3よりも深い部分で、側壁314fが凹部314eの中心に向かって傾いてもよい。 FIG. 62A shows an enlarged shape of the side wall 314f of the recess 314e illustrated in FIG. 61B. The shape of the side wall 314f of the recess 314e is not limited to a shape that continuously inclines toward the center of the recess 314e, as illustrated in FIG. 62A. As shown in FIG. 62B, the side wall 314f does not tilt to the depth h1 from the surface of the support layer 312 and may have a shape tilted toward the center of the recess 314e at a portion deeper than the depth h1. . As shown in FIG. 62C, the side wall 314f is inclined toward the center of the recess 314e at least partially from the surface of the support layer 312 to the depth h2, but from the depth h2 to the depth h3. May not be inclined, and may be a shape deeper than the depth h3 and inclined again toward the center of the recess 314e. Furthermore, as shown in FIG. 62D, the side wall 314f does not tilt to the depth h2 from the surface of the support layer 312, but the side wall 314f tilts to the depth h3 although the diameter of the concave portion 314e decreases at the depth h2. However, the side wall 314f may be inclined toward the center of the recess 314e at a portion deeper than the depth h3.
 なお、図示は省略するが、第7実施形態の変形例の構成と同様に、凹部314eの底に平坦面が位置してもよい。
 上記構成の第8実施形態の表示体310によれば、第7実施形態にて説明した作用と同様の作用により、表裏の反射光の観察、および、透過光の観察の各々において、互いに異なる色彩が観察される。それゆえ、真贋判定の容易性が損なわれることのない表示体を実現することができる。
In addition, although illustration is abbreviate | omitted, a flat surface may be located in the bottom of the recessed part 314e similarly to the structure of the modification of 7th Embodiment.
According to the display 310 of the eighth embodiment having the above-described configuration, colors different from each other in the observation of the reflected light on the front and back and the observation of the transmitted light due to the same actions as those described in the seventh embodiment. Is observed. Therefore, it is possible to realize a display body that does not impair the ease of authenticity determination.
 上記構成において、凹部314eは、周期要素の一例であり、支持部の一例である支持層312の表面を基準面として、基準面から窪む凹部である。そして、凹凸構造層314を含む支持層312から構成される構造体は、周期構造体の一例である。また、金属層316は、層全体としての形状が周期構造体の表面形状に追従する形状を有した金属層として捉えられる。周期構造体の表面は、基準面のうち各周期要素を囲む領域と各周期要素の表面とを含む面である。そして、凹部314eの側壁314fである周期要素の側面は、基準面から離れるほど周期要素の中心から離れるように傾斜する部分を有さない。さらに、周期要素の側面の少なくとも一部は、基準面から離れるほど周期要素の中心に近づくように傾斜している。なお、上記周期要素の中心は、基準面と対向する方向から見た周期要素の中心である。 In the above configuration, the concave portion 314e is an example of a periodic element, and is a concave portion that is recessed from the reference plane with the surface of the support layer 312 that is an example of the support portion as a reference plane. The structure including the support layer 312 including the uneven structure layer 314 is an example of a periodic structure. Further, the metal layer 316 is regarded as a metal layer having a shape in which the shape of the entire layer follows the surface shape of the periodic structure. The surface of the periodic structure is a surface including a region surrounding each periodic element in the reference plane and the surface of each periodic element. The side surface of the periodic element that is the side wall 314f of the recess 314e does not have a portion that is inclined so as to be farther from the center of the periodic element as it is farther from the reference plane. Furthermore, at least a part of the side surface of the periodic element is inclined so as to approach the center of the periodic element as the distance from the reference plane increases. The center of the periodic element is the center of the periodic element as viewed from the direction facing the reference plane.
 以上のように、第8実施形態においても、表示体からは、プラズモン共鳴に起因して、特定の波長領域の光が反射光もしくは透過光として射出される。そして、各凹部314eである周期要素の位置や大きさと、各周期要素によって位置が定まる金属層とを含む複数の因子によって、上記透過光や反射光の波長領域が定まるため、表示体にて透過あるいは反射される波長領域の調整の自由度を高めることができる。 As described above, also in the eighth embodiment, light of a specific wavelength region is emitted from the display body as reflected light or transmitted light due to plasmon resonance. Since the wavelength region of the transmitted light and reflected light is determined by a plurality of factors including the position and size of the periodic elements that are the concave portions 314e and the metal layer determined by the periodic elements, the transmitted light is transmitted through the display body. Alternatively, the degree of freedom in adjusting the reflected wavelength region can be increased.
 また、第7実施形態と同様に、表示体が形成する像の観察によって表示体の表裏の判別を可能とする表示体を提供することも、第8実施形態の目的であり、上述のように、第8実施形態によれば、真贋判定の容易性が損なわれることのない表示体を実現することができる。 In addition, as in the seventh embodiment, it is an object of the eighth embodiment to provide a display body that enables discrimination between the front and back of the display body by observing an image formed by the display body. According to the eighth embodiment, it is possible to realize a display body that does not impair the ease of authenticity determination.
 <第7実施形態および第8実施形態の変形例>
 図63A~図63Cを参照して、第7実施形態および第8実施形態の変形例について説明する。以下では、第7実施形態との相違点を中心に説明し、第7実施形態と同様の構成については同じ符号を付してその説明を省略する。
<Modification of the seventh embodiment and the eighth embodiment>
A modification of the seventh embodiment and the eighth embodiment will be described with reference to FIGS. 63A to 63C. Below, it demonstrates centering around difference with 7th Embodiment, the same code | symbol is attached | subjected about the structure similar to 7th Embodiment, and the description is abbreviate | omitted.
 本変形例の表示体320は、図63Cが示すように、第7実施形態の表示体300と同様の構造を有する積層体が、基材332の上に配置された構成を有する。
 基材332は、支持層312と同様に、入射光Iが可視領域の光である場合、例えば合成石英や樹脂等のように、可視領域の光を透過する誘電体材料から構成することが好適である。このような基材332に、例えば接着層としての機能を付与することができる。基材332を、接着層として用いることによって、表示体320を、所望の場所に接着することができる。
As shown in FIG. 63C, the display body 320 of this modification has a configuration in which a stacked body having a structure similar to that of the display body 300 of the seventh embodiment is disposed on a base material 332.
Similarly to the support layer 312, the base material 332 is preferably made of a dielectric material that transmits light in the visible region, such as synthetic quartz or resin, when the incident light I is light in the visible region. It is. Such a base material 332 can be provided with a function as an adhesive layer, for example. By using the base material 332 as an adhesive layer, the display body 320 can be adhered to a desired place.
 なお、図示は省略するが、第7実施形態の変形例の構成と同様に、凸部314aの先端には、平坦面が位置してもよい。また、第8実施形態の表示体310と同様の構造を有する積層体が基材332の上に配置されることにより、表示体が構成されてもよい。 In addition, although illustration is abbreviate | omitted, a flat surface may be located in the front-end | tip of the convex part 314a similarly to the structure of the modification of 7th Embodiment. Moreover, a display body may be comprised by arrange | positioning the laminated body which has the structure similar to the display body 310 of 8th Embodiment on the base material 332. FIG.
 上記構成においては、基材332と支持層312とが支持部を構成する。
 次に、上述の表示体320の製造方法について説明する。
 まず、光または熱を利用したナノインプリント法などの公知の技術を用いて、凹凸構造層314を形成する。例えば、ポリエチレンテレフタレートからなる基材332に紫外線硬化性樹脂を塗工し、図63A~図63Cのような凹凸構造層314の凹凸が反転された構造が形成された合成石英モールドの表面を、紫外線硬化性樹脂に押し付ける。さらに、紫外線を照射して紫外線硬化性樹脂を硬化させ、その後、基材332とモールドとを離型する。
In the above configuration, the base material 332 and the support layer 312 constitute a support portion.
Next, a method for manufacturing the display body 320 will be described.
First, the concavo-convex structure layer 314 is formed using a known technique such as a nanoimprint method using light or heat. For example, an ultraviolet curable resin is applied to a base material 332 made of polyethylene terephthalate, and the surface of the synthetic quartz mold on which the unevenness of the uneven structure layer 314 as shown in FIGS. Press against curable resin. Further, the ultraviolet curable resin is cured by irradiating ultraviolet rays, and then the base material 332 and the mold are released.
 なお、紫外線硬化性樹脂の代わりに、熱硬化性樹脂または熱可塑性樹脂を用いて、モールドとの加圧、および、加熱もしくは冷却を行った後、基材332とモールドとを離型してもよい。 Note that, instead of the ultraviolet curable resin, a thermosetting resin or a thermoplastic resin may be used to press and heat or cool the mold, and then the base material 332 and the mold may be released. Good.
 凹凸構造層314における好適な構造周期PSと凸部314aの高さとの関係もまた、第7実施形態と同様に、構造周期PSに対する凸部314aの高さの比が0.5以下であることが好ましい。 The relationship between the preferred structural period PS and the height of the convex part 314a in the concavo-convex structure layer 314 is that the ratio of the height of the convex part 314a to the structural period PS is 0.5 or less, as in the seventh embodiment. Is preferred.
 以上により、例えばナノインプリント法を用いた大量生産に好適な製造方法を適用して、表裏の反射光の観察、および、透過光の観察の各々において、互いに異なる色彩が観察される表示体320を実現することが可能となる。ただし、凹凸構造層314を構成する支持層312の屈折率により、反射光や透過光の波長選択性が変化するため、支持層312の材料を、所望の発色に応じて選択することが好ましい。さらには、基材332を接着層として機能させることによって、表示体320を、所望の場所に接着して使用することもできる。 As described above, for example, by applying a manufacturing method suitable for mass production using the nanoimprint method, a display body 320 in which different colors are observed in each of observation of reflected light on the front and back and observation of transmitted light is realized. It becomes possible to do. However, since the wavelength selectivity of reflected light or transmitted light changes depending on the refractive index of the support layer 312 constituting the uneven structure layer 314, the material of the support layer 312 is preferably selected according to the desired color development. Furthermore, the display body 320 can be used by being bonded to a desired place by causing the base material 332 to function as an adhesive layer.
 なお、第7実施形態、第8実施形態、および、これらの変形例の凸部314aや凹部314eの構成が、第1~第6実施形態の表示体における周期要素の構成に適用されてもよい。また、第2実施形態の表示体付きデバイスの構成が、第7実施形態、第8実施形態、および、これらの変形例に適用されてもよい。すなわち、表示体付きデバイスは、第7実施形態、第8実施形態、もしくは、これらの変形例の表示体と、光射出構造体とを備えてもよい。 The configurations of the convex portions 314a and the concave portions 314e of the seventh embodiment, the eighth embodiment, and the modified examples thereof may be applied to the configuration of the periodic elements in the display bodies of the first to sixth embodiments. . Moreover, the structure of the device with a display body of 2nd Embodiment may be applied to 7th Embodiment, 8th Embodiment, and these modifications. That is, the device with a display body may include the display body according to the seventh embodiment, the eighth embodiment, or a modification thereof, and the light emission structure.
 <付記>
 上記課題を解決するための手段には、第7実施形態、第8実施形態、および、それらの変形例から導き出される技術的思想として以下の項目が含まれる。
<Appendix>
Means for solving the above problems include the following items as technical ideas derived from the seventh embodiment, the eighth embodiment, and the modifications thereof.
 [項目51]
 入射する光に対して透明な材料で構成された支持層と、前記支持層の表面に形成された凹凸構造層と、前記凹凸構造層の表面を覆うように設けられた金属層とを備えた表示体であって、前記凹凸構造層は、周期性を有するように配置された複数の凸部を備え、前記凹凸構造層における前記凸部以外の部分である凹部に平坦面が存在し、前記凸部の側壁が、当該凸部に隣接する前記凹部に向かって傾くことなく、前記凸部の側壁の少なくとも一部が、当該凸部の中心に向かって傾いている表示体。
[Item 51]
A support layer made of a material transparent to incident light, an uneven structure layer formed on the surface of the support layer, and a metal layer provided so as to cover the surface of the uneven structure layer In the display body, the concavo-convex structure layer includes a plurality of convex portions arranged to have periodicity, and there is a flat surface in a concave portion that is a portion other than the convex portions in the concavo-convex structure layer, A display body in which at least a part of the side wall of the convex portion is inclined toward the center of the convex portion without the side wall of the convex portion being inclined toward the concave portion adjacent to the convex portion.
 [項目52]
 前記複数の凸部が二次元格子状に配列されている項目51に記載の表示体。
 [項目53]
 前記凸部に平坦面が位置する項目51または52に記載の表示体。
[Item 52]
52. A display according to item 51, wherein the plurality of convex portions are arranged in a two-dimensional lattice pattern.
[Item 53]
53. A display according to item 51 or 52, wherein a flat surface is located on the convex portion.
 [項目54]
 前記凸部に平坦面が位置しない項目51または52に記載の表示体。
 [項目55]
 入射する光に対して透明な材料で構成された支持層であって、凹凸構造層を含む前記支持層と、前記凹凸構造層の表面を覆うように設けられた金属層とを備えた表示体であって、前記凹凸構造層は、周期性を有するように配置された複数の凹部を備え、前記凹凸構造層における前記凹部以外の部分である凸部に平坦面が存在し、前記凹部の側壁が、当該凹部に隣接する前記凸部に向かって傾くことなく、前記凹部の側壁の少なくとも一部が、当該凹部の中心に向かって傾いている表示体。
[Item 54]
Item 53. The display body according to Item 51 or 52, wherein a flat surface is not located on the convex portion.
[Item 55]
A display layer comprising a support layer made of a material transparent to incident light, the support layer including an uneven structure layer, and a metal layer provided so as to cover the surface of the uneven structure layer The concavo-convex structure layer includes a plurality of concave portions arranged so as to have periodicity, a flat surface is present in a convex portion that is a portion other than the concave portions in the concavo-convex structure layer, and the side wall of the concave portion. However, the display body in which at least a part of the side wall of the concave portion is inclined toward the center of the concave portion without being inclined toward the convex portion adjacent to the concave portion.
 [項目56]
 前記凹部が二次元格子状に配列されている項目55に記載の表示体。
 [項目57]
 前記凹部に平坦面が位置する項目55または56に記載の表示体。
[Item 56]
56. A display according to item 55, wherein the recesses are arranged in a two-dimensional grid.
[Item 57]
57. A display according to item 55 or 56, wherein a flat surface is located in the recess.
 [項目58]
 前記凹部に平坦面が位置しない項目55または56に記載の表示体。
 [項目59]
 前記凹凸構造層は誘電体材料から構成されている項目51~58のいずれか1つに記載の表示体。
[Item 58]
57. A display according to item 55 or 56, wherein a flat surface is not located in the recess.
[Item 59]
The display according to any one of items 51 to 58, wherein the uneven structure layer is made of a dielectric material.
 [項目60]
 前記凹凸構造層における凹凸の構造周期が、前記入射する光の波長以下である項目51~59のいずれか1つに記載の表示体。
[Item 60]
Item 60. The display body according to any one of Items 51 to 59, wherein a structure period of unevenness in the uneven structure layer is not more than a wavelength of the incident light.
 [項目61]
 前記構造周期が、400nm以下である項目60に記載の表示体。
 [項目62]
 前記金属層の厚さが、10nm以上200nm以下である項目51~61のいずれか1つに記載の表示体。
[Item 61]
Item 61. The display body according to Item 60, wherein the structural period is 400 nm or less.
[Item 62]
62. The display according to any one of items 51 to 61, wherein the metal layer has a thickness of 10 nm to 200 nm.
 [項目63]
 前記金属層が、アルミ、金、銀、タンタル、および、インジウムの少なくとも1つを含む材料から構成される項目51~62のいずれか1つに記載の表示体。
[Item 63]
Item 65. The display body according to any one of items 51 to 62, wherein the metal layer is made of a material containing at least one of aluminum, gold, silver, tantalum, and indium.
 (第9実施形態)
 図64から図71を参照して光学デバイスの一例である光学フィルタ、表示装置、撮像素子、および、光学フィルタの製造方法の実施形態である第9実施形態を説明する。
(Ninth embodiment)
With reference to FIGS. 64 to 71, an optical filter, a display device, an image sensor, and a ninth embodiment that is an embodiment of a method for manufacturing the optical filter, which are examples of the optical device, will be described.
 図64が示すように、表示装置は、光学フィルタの一例であるカラーフィルタ1と、光源装置2とを備える。カラーフィルタ1は、光源装置2から入射する光の色を変換する。光源装置2は、カラーフィルタ1に入射するための光を出射する。光源装置2は、例えば、バックライトを備える液晶装置、複数の自発光素子を備えるEL装置、複数のLED(Light Emitting Diode)素子を備えるLED装置である。光源装置2は、マトリックス状に並ぶ複数の単位領域を備え、光源装置2の出射する光の強度を単位領域ごとに変える。 64, the display device includes a color filter 1 which is an example of an optical filter, and a light source device 2. The color filter 1 converts the color of light incident from the light source device 2. The light source device 2 emits light for entering the color filter 1. The light source device 2 is, for example, a liquid crystal device including a backlight, an EL device including a plurality of self-luminous elements, and an LED device including a plurality of LED (Light Emitting Diode) elements. The light source device 2 includes a plurality of unit regions arranged in a matrix, and changes the intensity of light emitted from the light source device 2 for each unit region.
 カラーフィルタ1は、各単位領域に1つずつの画素410を備え、各画素410に3種類の副画素410Aを備える。副画素410Aは、フィルタ要素の一例である。副画素410Aの種類は、副画素410Aの出射する光の色によって定められる。3種類の副画素410Aは、赤色用副画素410R、緑色用副画素410G、青色用副画素410Bである。赤色用副画素410Rは、赤色用副画素410Rに入射した光を赤色の光に変換して出射する。緑色用副画素410Gは、緑色用副画素410Gに入射した光を緑色の光に変換して出射する。青色用副画素410Bは、青色用副画素410Bに入射した光を青色の光に変換して出射する。 The color filter 1 includes one pixel 410 in each unit region, and each pixel 410 includes three types of sub-pixels 410A. The sub-pixel 410A is an example of a filter element. The type of the sub-pixel 410A is determined by the color of light emitted from the sub-pixel 410A. The three types of subpixels 410A are a red subpixel 410R, a green subpixel 410G, and a blue subpixel 410B. The red sub-pixel 410R converts the light incident on the red sub-pixel 410R into red light and emits it. The green subpixel 410G converts the light incident on the green subpixel 410G into green light and emits it. The blue subpixel 410B converts the light incident on the blue subpixel 410B into blue light and emits it.
 [副画素の構造]
 図65が示すように、副画素410Aは、副画素410Aと対向する方向から見て、複数の孤立領域A2と、各孤立領域A2を囲む単一の周辺領域A3とを含む。図65では、孤立領域A2を説明する便宜上、各孤立領域A2にドットを付して示す。
[Sub-pixel structure]
As shown in FIG. 65, the sub-pixel 410A includes a plurality of isolated regions A2 and a single peripheral region A3 surrounding each isolated region A2 when viewed from the direction facing the sub-pixel 410A. In FIG. 65, for the convenience of explaining the isolated region A2, each isolated region A2 is shown with dots.
 各孤立領域A2は、副画素410Aの表面410Sに沿って正方配列に並ぶ。正方配列は、一辺が構造周期PTを有する正方形LTの各頂点に孤立領域A2が位置する配列である。なお、各孤立領域A2は、六方配列に並ぶことも可能である。すなわち、孤立領域A2は、正方配列と六方配列とのいずれか一方である島状配列に並ぶ。なお、六方配列は、正三角形の各頂点に孤立領域A2が位置する配列である。 The isolated regions A2 are arranged in a square array along the surface 410S of the sub-pixel 410A. The square array is an array in which an isolated region A2 is located at each vertex of a square LT having a structure period PT on one side. Note that the isolated regions A2 can be arranged in a hexagonal array. That is, the isolated regions A2 are arranged in an island-like array that is either a square array or a hexagonal array. The hexagonal array is an array in which an isolated region A2 is located at each vertex of an equilateral triangle.
 図66が示すように、カラーフィルタは、可視領域の光を透過する透明な支持部11を備える。可視領域の光が有する波長は、400nm以上800nm以下である。支持部11の有する断面構造は、単層構造であってもよいし、多層構造であってもよい。 As shown in FIG. 66, the color filter includes a transparent support portion 11 that transmits light in the visible region. The wavelength of light in the visible region is from 400 nm to 800 nm. The cross-sectional structure of the support part 11 may be a single layer structure or a multilayer structure.
 支持部11を構成する材料は、誘電体であり、例えば、光硬化性樹脂などの樹脂や、石英などの無機材料である。支持部11を構成する材料は、樹脂であることが好ましい。支持部11の屈折率は、空気層よりも高く、例えば1.2以上1.7以下であることが好ましい。 The material constituting the support portion 11 is a dielectric, for example, a resin such as a photo-curable resin, or an inorganic material such as quartz. It is preferable that the material which comprises the support part 11 is resin. The refractive index of the support portion 11 is higher than that of the air layer, and is preferably 1.2 or more and 1.7 or less, for example.
 副画素410Aは、支持部11に近い層から順に、第1格子層21と、中間格子層31と、第2格子層41とを備える。中間格子層31は、第1格子層21と第2格子層41とに挟まれている。なお、支持部11において第1格子層21の位置する面が、支持部11の表面であり、支持部11に対して第1格子層21の位置する側が、構造体における表面側である。反対に、第1格子層21に対して支持部11の位置する側が、構造体における裏面側である。 The subpixel 410 </ b> A includes a first lattice layer 21, an intermediate lattice layer 31, and a second lattice layer 41 in order from a layer close to the support portion 11. The intermediate lattice layer 31 is sandwiched between the first lattice layer 21 and the second lattice layer 41. In addition, in the support part 11, the surface where the 1st lattice layer 21 is located is the surface of the support part 11, and the side where the 1st lattice layer 21 is located with respect to the support part 11 is the surface side in the structure. On the contrary, the side where the support part 11 is located with respect to the first lattice layer 21 is the back side of the structure.
 [第1格子層21]
 支持部11の表面には、第1格子層21が位置する。第1格子層21は、複数の第1誘電体層22と、単一の第1金属層23とを備える。各第1誘電体層22は、副画素410Aの表面410Sと対向する方向から見て、孤立領域A2に位置する。単一の第1金属層23は、表面410Sと対向する方向から見て、周辺領域A3に位置する。複数の第1誘電体層22は、表面410Sに沿って、正方配列と六方配列とのいずれか一方である島状配列に並ぶ。
[First lattice layer 21]
The first lattice layer 21 is located on the surface of the support portion 11. The first lattice layer 21 includes a plurality of first dielectric layers 22 and a single first metal layer 23. Each first dielectric layer 22 is located in the isolated region A2 when viewed from the direction facing the surface 410S of the sub-pixel 410A. The single first metal layer 23 is located in the peripheral region A3 when viewed from the direction facing the surface 410S. The plurality of first dielectric layers 22 are arranged in an island-like arrangement that is either a square arrangement or a hexagonal arrangement along the surface 410S.
 各第1誘電体層22は、支持部11の表面から突き出た構造体である。各第1誘電体層22は、例えば、支持部11と一体である。あるいは、各第1誘電体層22は、例えば、支持部11の表面との間に境界を有し、支持部11とは別体である。 Each first dielectric layer 22 is a structure protruding from the surface of the support portion 11. Each first dielectric layer 22 is integral with the support portion 11, for example. Alternatively, each first dielectric layer 22 has a boundary with the surface of the support part 11, for example, and is separate from the support part 11.
 第1金属層23は、表面410Sと対向する方向から見て、各第1誘電体層22を1つずつ囲う網目状を有する。第1格子層21において、単一の第1金属層23は、自由電子が行きわたる光学的な海成分であり、各第1誘電体層22は、海成分のなかに分布する島成分である。 The first metal layer 23 has a net shape surrounding each first dielectric layer 22 when viewed from the direction facing the surface 410S. In the first lattice layer 21, the single first metal layer 23 is an optical sea component through which free electrons pass, and each first dielectric layer 22 is an island component distributed in the sea component. .
 表面410Sと対向する方向から見て、第1誘電体層22の位置する周期である構造周期PTは、相互に隣り合う第1誘電体層22の最短幅WPと、第1誘電体層22の幅WTとの合計である。構造周期PTは、可視領域の波長以下であるサブ波長周期である。また、副画素410Aの出射する光の色味が鮮明となることや、第1格子層21の加工の精度が得られることなどの観点において、構造周期PTは、200nm以上400nm以下であることが好ましい。 When viewed from the direction facing the surface 410S, the structural period PT, which is the period in which the first dielectric layer 22 is located, is the shortest width WP of the first dielectric layers 22 adjacent to each other and the first dielectric layer 22 This is the sum of the width WT. The structural period PT is a sub-wavelength period that is equal to or shorter than the wavelength in the visible region. In addition, the structural period PT may be 200 nm or more and 400 nm or less from the viewpoint that the color of the light emitted from the sub-pixel 410A becomes clear and the processing accuracy of the first lattice layer 21 is obtained. preferable.
 構造周期PTに対する第1誘電体層22の幅WTの比は、0.30以上0.65以下である。第1格子層21の加工の精度が得られること、第1格子層21においてプラズモン共鳴が生じやすいことなどの観点において、構造周期PTに対する第1誘電体層22の幅WTの比は、好ましくは、0.40以上0.60以下である。 The ratio of the width WT of the first dielectric layer 22 to the structural period PT is 0.30 or more and 0.65 or less. From the standpoint that the processing accuracy of the first lattice layer 21 is obtained and that plasmon resonance is likely to occur in the first lattice layer 21, the ratio of the width WT of the first dielectric layer 22 to the structural period PT is preferably 0.40 or more and 0.60 or less.
 第1格子層21の厚さは、200nm以下であることが好ましい。第1格子層21の加工の精度が得られること、第1格子層21においてプラズモン共鳴が生じやすいこと、第1格子層21における光の透過性が高まること、各観察による像の色彩が鮮明となることなどの観点において、第1格子層21の厚さは、15nm以下であることが好ましい。 The thickness of the first lattice layer 21 is preferably 200 nm or less. The processing accuracy of the first lattice layer 21 can be obtained, plasmon resonance is likely to occur in the first lattice layer 21, the light transmittance in the first lattice layer 21 is increased, and the color of the image by each observation is clear. From the viewpoint of becoming, the thickness of the first lattice layer 21 is preferably 15 nm or less.
 [中間格子層31]
 第1格子層21の上には、中間格子層31が位置する。中間格子層31の厚さは、第1格子層21の厚さよりも厚い。中間格子層31の加工の精度が得られる観点において、中間格子層31の厚さは、第1格子層21との合計として、100nm以上200nm以下であることが好ましい。
[Intermediate lattice layer 31]
An intermediate lattice layer 31 is located on the first lattice layer 21. The thickness of the intermediate lattice layer 31 is thicker than the thickness of the first lattice layer 21. From the viewpoint of obtaining the processing accuracy of the intermediate lattice layer 31, the thickness of the intermediate lattice layer 31 is preferably 100 nm or more and 200 nm or less in total with the first lattice layer 21.
 中間格子層31は、複数の第1中間誘電体層32と、単一の第2中間誘電体層33とを備える。各第1中間誘電体層32は、表面410Sと対向する方向から見て、孤立領域A2に位置する。単一の第2中間誘電体層33は、表面410Sと対向する方向から見て、周辺領域A3に位置する。複数の第1中間誘電体層32は、表面410Sに沿って、正方配列と六方配列とのいずれか一方である島状配列に並ぶ。 The intermediate lattice layer 31 includes a plurality of first intermediate dielectric layers 32 and a single second intermediate dielectric layer 33. Each first intermediate dielectric layer 32 is located in the isolated region A2 when viewed from the direction facing the surface 410S. The single second intermediate dielectric layer 33 is located in the peripheral region A3 when viewed from the direction facing the surface 410S. The plurality of first intermediate dielectric layers 32 are arranged in an island-like arrangement that is either a square arrangement or a hexagonal arrangement along the surface 410S.
 各第1中間誘電体層32は、第1誘電体層22から突き出た構造体である。各第1中間誘電体層32は、例えば、第1誘電体層22と一体である。あるいは、各第1中間誘電体層32は、例えば、第1誘電体層22との間に境界を有し、第1誘電体層22とは別体である。表面410Sと対向する方向から見て、第1中間誘電体層32の位置する周期は、第1誘電体層22と同じく、最短幅WPと幅WTとの合計であり、上記構造周期PTである。構造周期PTに対する第1中間誘電体層32の幅WTの比は、0.30以上0.65以下である。また、構造周期PTに対する第1中間誘電体層32の幅WTの比は、好ましくは、0.4以上0.6以下である。 Each first intermediate dielectric layer 32 is a structure protruding from the first dielectric layer 22. Each first intermediate dielectric layer 32 is, for example, integral with the first dielectric layer 22. Alternatively, each first intermediate dielectric layer 32 has a boundary with the first dielectric layer 22, for example, and is separate from the first dielectric layer 22. When viewed from the direction facing the surface 410S, the period in which the first intermediate dielectric layer 32 is located is the sum of the shortest width WP and the width WT, like the first dielectric layer 22, and is the above-described structural period PT. . The ratio of the width WT of the first intermediate dielectric layer 32 to the structural period PT is not less than 0.30 and not more than 0.65. The ratio of the width WT of the first intermediate dielectric layer 32 to the structural period PT is preferably 0.4 or more and 0.6 or less.
 第2中間誘電体層33は、表面410Sと対向する方向から見て、各第1中間誘電体層32を1つずつ囲う網目状を有する。中間格子層31において、単一の第2中間誘電体層33は、構造的および光学的に海成分であり、各第1中間誘電体層32は、構造的および光学的に島成分である。第2中間誘電体層33は、空気層、あるいは、樹脂層である。 The second intermediate dielectric layer 33 has a mesh shape surrounding each first intermediate dielectric layer 32 as viewed from the direction facing the surface 410S. In the intermediate lattice layer 31, the single second intermediate dielectric layer 33 is structurally and optically a sea component, and each first intermediate dielectric layer 32 is structurally and optically an island component. The second intermediate dielectric layer 33 is an air layer or a resin layer.
 [第2格子層41]
 中間格子層31の上には、第2格子層41が位置する。第2格子層41の厚さは、200nm以下であることが好ましく、また、第2格子層41の厚さは、中間格子層31の厚さよりも薄い。第2格子層41の加工の精度が得られること、第2格子層41においてプラズモン共鳴が生じやすいこと、第2格子層41における光の透過性が高まること、各観察による像の色彩が鮮明になることなどの観点において、第2格子層41の厚さは、15nm以下であることが好ましい。
[Second lattice layer 41]
A second lattice layer 41 is positioned on the intermediate lattice layer 31. The thickness of the second lattice layer 41 is preferably 200 nm or less, and the thickness of the second lattice layer 41 is smaller than the thickness of the intermediate lattice layer 31. The processing accuracy of the second grating layer 41 can be obtained, plasmon resonance is likely to occur in the second grating layer 41, the light transmittance in the second grating layer 41 is increased, and the color of the image by each observation is clear In view of becoming, the thickness of the second lattice layer 41 is preferably 15 nm or less.
 第2格子層41は、複数の第2金属層42と、単一の第2誘電体層43とを備える。各第2金属層42の位置は、表面410Sと対向する方向から見て、孤立領域A2を含む。単一の第2誘電体層43の位置は、表面410Sと対向する方向から見て、周辺領域A3に含まれる。複数の第2金属層42は、表面410Sに沿って、正方配列と六方配列とのいずれか一方である島状配列に並ぶ。 The second lattice layer 41 includes a plurality of second metal layers 42 and a single second dielectric layer 43. The position of each second metal layer 42 includes an isolated region A2 when viewed from the direction facing the surface 410S. The position of the single second dielectric layer 43 is included in the peripheral region A3 when viewed from the direction facing the surface 410S. The plurality of second metal layers 42 are arranged in an island-like arrangement that is either a square arrangement or a hexagonal arrangement along the surface 410S.
 各第2金属層42は、第1中間誘電体層32の頂面に重なる構造体である。各第2金属層42は、第1中間誘電体層32との間に境界を有し、第1中間誘電体層32とは別体である。表面410Sと対向する方向から見て、第2金属層42の位置する周期は、第1誘電体層22と同じく、最短幅WPと幅WTとの合計であり、上記構造周期PTである。構造周期PTに対する第2金属層42の幅の比は、0.30以上0.65以下である。また、構造周期PTに対する第2金属層42の幅の比は、好ましくは、0.4以上0.6以下である。 Each second metal layer 42 is a structure that overlaps the top surface of the first intermediate dielectric layer 32. Each second metal layer 42 has a boundary with the first intermediate dielectric layer 32, and is separate from the first intermediate dielectric layer 32. As seen from the direction facing the surface 410S, the period in which the second metal layer 42 is located is the sum of the shortest width WP and the width WT, as in the first dielectric layer 22, and is the structural period PT. The ratio of the width of the second metal layer 42 to the structural period PT is not less than 0.30 and not more than 0.65. The ratio of the width of the second metal layer 42 to the structural period PT is preferably 0.4 or more and 0.6 or less.
 第2誘電体層43は、表面410Sと対向する方向から見て、各第2金属層42を1つずつ囲う網目状を有する。第2格子層41において、単一の第2誘電体層43は、第2金属層42と比べて自由電子が少ない光学的な海成分であり、各第2金属層42は、海成分のなかに分布する島成分である。第2誘電体層43は、空気層、あるいは、樹脂層である。 The second dielectric layer 43 has a mesh shape surrounding each second metal layer 42 one by one when viewed from the direction facing the surface 410S. In the second lattice layer 41, the single second dielectric layer 43 is an optical sea component with fewer free electrons than the second metal layer 42, and each second metal layer 42 is a sea component. It is an island component distributed in The second dielectric layer 43 is an air layer or a resin layer.
 第1格子層21における海成分である第1金属層23の体積比率は、第2格子層41における島成分である第2金属層42の体積比率よりも大きい。また、第2格子層41における島成分である第2金属層42の体積比率は、中間格子層31における金属材料の体積比率よりも大きい。 The volume ratio of the first metal layer 23 that is the sea component in the first lattice layer 21 is larger than the volume ratio of the second metal layer 42 that is the island component in the second lattice layer 41. The volume ratio of the second metal layer 42 that is an island component in the second lattice layer 41 is larger than the volume ratio of the metal material in the intermediate lattice layer 31.
 なお、第1誘電体層22と第1中間誘電体層32とから構成される構造体は、周期要素の一例であり、支持部11の表面を基準面として、基準面から突出する凸部11Tでもある。第1誘電体層22の裏面は、周期要素における一端部の一例であり、第1中間誘電体層32の表面は、周期要素における他端部の一例である。そして、支持部11、第1誘電体層22、および、第1中間誘電体層32とから構成される構造体は、周期構造体の一例である。また、第1金属層23と第2金属層42とから構成される層は、層全体としての形状が周期構造体の表面形状に追従する形状を有した金属層として捉えられる。周期構造体の表面は、基準面のうち各周期要素を囲む領域と各周期要素の表面とを含む面である。 The structure constituted by the first dielectric layer 22 and the first intermediate dielectric layer 32 is an example of a periodic element, and the convex portion 11T protruding from the reference plane with the surface of the support portion 11 as the reference plane. But there is. The back surface of the first dielectric layer 22 is an example of one end portion of the periodic element, and the surface of the first intermediate dielectric layer 32 is an example of the other end portion of the periodic element. And the structure comprised from the support part 11, the 1st dielectric material layer 22, and the 1st intermediate | middle dielectric material layer 32 is an example of a periodic structure. Moreover, the layer comprised from the 1st metal layer 23 and the 2nd metal layer 42 is caught as a metal layer with the shape in which the shape as the whole layer follows the surface shape of a periodic structure body. The surface of the periodic structure is a surface including a region surrounding each periodic element in the reference plane and the surface of each periodic element.
 図67が示すように、周辺領域A3においては、支持部11に近い層から順に、第1格子層21の第1金属層23と、中間格子層31の第2中間誘電体層33と、第2格子層41の第2誘電体層43とが位置する。第2中間誘電体層33は、第1金属層23と第2誘電体層43とに挟まれている。 As shown in FIG. 67, in the peripheral region A3, in order from the layer close to the support portion 11, the first metal layer 23 of the first lattice layer 21, the second intermediate dielectric layer 33 of the intermediate lattice layer 31, and the first The second dielectric layer 43 of the two lattice layer 41 is located. The second intermediate dielectric layer 33 is sandwiched between the first metal layer 23 and the second dielectric layer 43.
 なお、上述のように、支持部11の有する断面構造は、多層構造であってもよいし、各第1誘電体層22は支持部11との間に境界を有していなくてもよい。図68は、支持部11が2つの層から構成され、これらの層のうち支持部11の表面側の層が各第1誘電体層22と一体である構造を示す。すなわち、支持部11は、基材11aと中間層11bとを備え、中間層11bは、基材11aに対して表面側に位置する。各第1誘電体層22は、中間層11bから突き出ており、各第1誘電体層22と中間層11bとは一体である。 As described above, the cross-sectional structure of the support portion 11 may be a multilayer structure, and each first dielectric layer 22 may not have a boundary with the support portion 11. FIG. 68 shows a structure in which the support portion 11 is composed of two layers, and of these layers, the layer on the surface side of the support portion 11 is integrated with each first dielectric layer 22. That is, the support part 11 is provided with the base material 11a and the intermediate | middle layer 11b, and the intermediate | middle layer 11b is located in the surface side with respect to the base material 11a. Each first dielectric layer 22 protrudes from the intermediate layer 11b, and each first dielectric layer 22 and the intermediate layer 11b are integrated.
 [カラーフィルタの光学的な構成]
 次に、カラーフィルタが備える光学的な構成を説明する。
 ここでは、副画素410Aの表面410S、および、副画素410Aの裏面410Tが、それぞれ空気層と接し、第2中間誘電体層33と第2誘電体層43との各々が、空気層である構成、あるいは、空気層に近い屈折率を有した樹脂層である構成を例として説明する。
[Optical configuration of color filter]
Next, an optical configuration provided in the color filter will be described.
Here, the front surface 410S of the subpixel 410A and the back surface 410T of the subpixel 410A are in contact with the air layer, respectively, and each of the second intermediate dielectric layer 33 and the second dielectric layer 43 is an air layer. Alternatively, a configuration that is a resin layer having a refractive index close to that of an air layer will be described as an example.
 図69が示すように、支持部11の屈折率は、誘電体に支配された大きさであって、空気層の屈折率よりも大きい。
 第1誘電体層22の屈折率は、空気層の屈折率よりも高く、第1金属層23の屈折率は、空気層の屈折率よりも低い。第1格子層21の屈折率は、これら第1金属層23の屈折率と、第1誘電体層22の屈折率とによって、平均化された大きさに近似される。構造周期PTに対する第1誘電体層22の幅WTの比は、0.30以上0.65以下であるため、第1格子層21の屈折率は、結局のところ、海成分である第1金属層23に支配された大きさであり、空気層の屈折率よりも十分に低い。
As FIG. 69 shows, the refractive index of the support part 11 is a size dominated by the dielectric, and is larger than the refractive index of the air layer.
The refractive index of the first dielectric layer 22 is higher than the refractive index of the air layer, and the refractive index of the first metal layer 23 is lower than the refractive index of the air layer. The refractive index of the first lattice layer 21 is approximated to an averaged size by the refractive index of the first metal layer 23 and the refractive index of the first dielectric layer 22. Since the ratio of the width WT of the first dielectric layer 22 to the structural period PT is not less than 0.30 and not more than 0.65, the refractive index of the first lattice layer 21 is eventually the first metal that is a sea component. The size is controlled by the layer 23 and is sufficiently lower than the refractive index of the air layer.
 第1中間誘電体層32の屈折率は、空気層の屈折率よりも高く、第2中間誘電体層33の屈折率は、空気層の屈折率と等しい、もしくは、空気層の屈折率よりも高い。中間格子層31の屈折率は、これら第2中間誘電体層33の屈折率と、第1中間誘電体層32の屈折率とによって、平均化された大きさに近似される。構造周期PTに対する第1中間誘電体層32の幅WTの比は、0.30以上0.65以下であるため、中間格子層31の屈折率は、結局のところ、海成分である第2中間誘電体層33に支配された大きさであり、空気層の屈折率よりも高く、かつ、空気層の屈折率に近い値である。 The refractive index of the first intermediate dielectric layer 32 is higher than the refractive index of the air layer, and the refractive index of the second intermediate dielectric layer 33 is equal to the refractive index of the air layer or is higher than the refractive index of the air layer. high. The refractive index of the intermediate grating layer 31 is approximated to an averaged size by the refractive index of the second intermediate dielectric layer 33 and the refractive index of the first intermediate dielectric layer 32. Since the ratio of the width WT of the first intermediate dielectric layer 32 to the structural period PT is not less than 0.30 and not more than 0.65, the refractive index of the intermediate lattice layer 31 is eventually the second intermediate that is a sea component. The size is governed by the dielectric layer 33, which is higher than the refractive index of the air layer and close to the refractive index of the air layer.
 第2金属層42の屈折率は、空気層の屈折率よりも低く、第2誘電体層43の屈折率は、空気層の屈折率と等しい、もしくは、空気層の屈折率よりも高い。第2格子層41の屈折率は、これら第2誘電体層43の屈折率と、第2金属層42の屈折率とによって、平均化された大きさに近似される。構造周期PTに対する第2金属層42の幅WTの比は、0.30以上0.65以下であるため、第2格子層41の屈折率は、結局のところ、海成分である第2誘電体層43に支配された大きさであり、空気層の屈折率よりも低く、かつ、空気層に近い値である。 The refractive index of the second metal layer 42 is lower than the refractive index of the air layer, and the refractive index of the second dielectric layer 43 is equal to the refractive index of the air layer or higher than the refractive index of the air layer. The refractive index of the second lattice layer 41 is approximated to the averaged size by the refractive index of the second dielectric layer 43 and the refractive index of the second metal layer 42. Since the ratio of the width WT of the second metal layer 42 to the structural period PT is not less than 0.30 and not more than 0.65, the refractive index of the second lattice layer 41 is eventually the second dielectric that is a sea component. The size is governed by the layer 43, which is lower than the refractive index of the air layer and close to the air layer.
 [非点灯時観察]
 光源装置2が非点灯状態であるとき、カラーフィルタに入射する主な光は、カラーフィルタの表面側から入射する外光L1である。ここで、副画素410Aの表面410Sから第2格子層41に入射する外光L1は、空気層から第2格子層41に入り、第2格子層41から中間格子層31に入る。第2格子層41に入射する外光L1は、空気層に近い屈折率を有した第2格子層41に空気層から入るため、また、第2金属層42の厚さが十分に薄いため、空気層と第2格子層41との界面においては、フレネル反射を生じ難い。また、中間格子層31に入射する光は、空気層に近い屈折率を有した第2格子層41から、空気層に近い屈折率を有した中間格子層31に入るため、ここでも、第2格子層41と中間格子層31との界面においては、フレネル反射を生じ難い。
[Observation when not lit]
When the light source device 2 is in a non-lighting state, main light incident on the color filter is external light L1 incident from the surface side of the color filter. Here, external light L1 incident on the second grating layer 41 from the surface 410S of the sub-pixel 410A enters the second grating layer 41 from the air layer, and enters the intermediate grating layer 31 from the second grating layer 41. Since the external light L1 incident on the second grating layer 41 enters the second grating layer 41 having a refractive index close to that of the air layer from the air layer, and the thickness of the second metal layer 42 is sufficiently thin, Fresnel reflection is unlikely to occur at the interface between the air layer and the second lattice layer 41. Further, since the light incident on the intermediate grating layer 31 enters the intermediate grating layer 31 having a refractive index close to that of the air layer from the second grating layer 41 having a refractive index close to that of the air layer, the second grating is also used here. Fresnel reflection hardly occurs at the interface between the lattice layer 41 and the intermediate lattice layer 31.
 一方で、第2金属層42の構造周期PTが、可視領域の波長以下のサブ波長周期であるため、第2格子層41に入射した外光L1の一部は、第2格子層41でのプラズモン共鳴によって表面プラズモンに変換され、表面プラズモンは第2格子層41を透過する。第2格子層41を透過した表面プラズモンは、光に再変換されて出射される。プラズモン共鳴は、第2格子層41に入射した外光L1の一部を、第2格子層41での電子の集団的な振動と結合する現象である。プラズモン共鳴に起因して第2格子層41が出射する光EP2の波長領域は、第2金属層42の構造周期PTを含む格子構造および材料に依存した特定の波長領域である。結果として、第2格子層41は、第2格子層41に入射した外光L1の波長領域の一部の光を、中間格子層31へ透過する。 On the other hand, since the structural period PT of the second metal layer 42 is a sub-wavelength period equal to or smaller than the wavelength in the visible region, a part of the external light L1 incident on the second grating layer 41 is generated in the second grating layer 41. The surface plasmon is converted into surface plasmon by plasmon resonance, and the surface plasmon passes through the second lattice layer 41. The surface plasmon transmitted through the second lattice layer 41 is reconverted into light and emitted. Plasmon resonance is a phenomenon in which a part of the external light L1 incident on the second lattice layer 41 is coupled with collective vibration of electrons in the second lattice layer 41. The wavelength region of the light EP2 emitted from the second grating layer 41 due to plasmon resonance is a specific wavelength region depending on the grating structure and material including the structural period PT of the second metal layer 42. As a result, the second grating layer 41 transmits a part of the light in the wavelength region of the external light L 1 incident on the second grating layer 41 to the intermediate grating layer 31.
 また、第1誘電体層22の構造周期PTも、可視領域の波長以下のサブ波長周期であるため、第1格子層21に入射する光の一部もまた、第1格子層21でのプラズモン共鳴によって表面プラズモンに変換され、表面プラズモンは第1格子層21を透過する。第1格子層21を透過した表面プラズモンは、光に再変換されて出射される。プラズモン共鳴に起因して第1格子層21が出射する光EP1の波長領域は、第1誘電体層22の構造周期PTを含む格子構造および材料に依存した特定の波長領域である。結果として、第1格子層21は、第1格子層21に入射した光の波長領域の一部の光LP1を、支持部11へ透過する。 Further, since the structural period PT of the first dielectric layer 22 is also a sub-wavelength period equal to or smaller than the wavelength in the visible region, a part of the light incident on the first lattice layer 21 is also plasmon in the first lattice layer 21. It is converted into surface plasmon by resonance, and the surface plasmon passes through the first lattice layer 21. The surface plasmon that has passed through the first lattice layer 21 is converted back to light and emitted. The wavelength region of the light EP1 emitted from the first grating layer 21 due to plasmon resonance is a specific wavelength region depending on the grating structure and material including the structural period PT of the first dielectric layer 22. As a result, the first grating layer 21 transmits part of the light LP1 in the wavelength region of the light incident on the first grating layer 21 to the support unit 11.
 以上により、カラーフィルタの外側から第2格子層41へ外光L1を入射させて、カラーフィルタの表面側から表面410Sを観察する非点灯時観察によれば、上記各界面でのフレネル反射を生じ難いこと、上記各格子層でのプラズモン共鳴を生じること、これらが相まって、黒色、もしくは、黒色に近い色彩が、副画素410Aで視認される。 As described above, according to the non-lighting observation in which the external light L1 is incident on the second grating layer 41 from the outside of the color filter and the surface 410S is observed from the surface side of the color filter, Fresnel reflection occurs at each of the interfaces. Difficult, generating plasmon resonance in each of the lattice layers, combined with these, a black color or a color close to black is visually recognized by the sub-pixel 410A.
 [点灯時観察]
 図70が示すように、副画素410Aの裏面410Tから支持部11に入射する光源装置2からの白色の光LAは、空気層から支持部11に入り、支持部11から第1格子層21に入る。支持部11に入射した光LAは、空気層よりも高い屈折率を有した支持部11から、空気層よりも低い屈折率を有した第1格子層21に入るため、支持部11と第1格子層21との界面では、フレネル反射を生じやすい。ただし、第1金属層23の厚さが十分に薄いため、フレネル反射による反射光LRの強度は、十分に抑えられる。
[Observation when lighting]
As shown in FIG. 70, the white light LA from the light source device 2 that enters the support unit 11 from the back surface 410T of the sub-pixel 410A enters the support unit 11 from the air layer, and enters the first lattice layer 21 from the support unit 11. enter. The light LA incident on the support unit 11 enters the first lattice layer 21 having a refractive index lower than that of the air layer from the support unit 11 having a higher refractive index than that of the air layer. Fresnel reflection is likely to occur at the interface with the lattice layer 21. However, since the thickness of the first metal layer 23 is sufficiently thin, the intensity of the reflected light LR due to Fresnel reflection is sufficiently suppressed.
 一方で、支持部11と第1格子層21との界面を透過した光の一部は、第1格子層21でのプラズモン共鳴によって消費される。ここでも、プラズモン共鳴に起因して第1格子層21が出射する光EP1の波長領域は、第1金属層23の構造周期PTを含む格子構造および材料に依存した特定の波長領域である。結果として、第1格子層21は、第1格子層21に入射した光における特定の波長領域の光を、中間格子層31へ透過する。 On the other hand, a part of the light transmitted through the interface between the support portion 11 and the first lattice layer 21 is consumed by plasmon resonance in the first lattice layer 21. Again, the wavelength region of the light EP1 emitted from the first grating layer 21 due to plasmon resonance is a specific wavelength region depending on the grating structure and material including the structural period PT of the first metal layer 23. As a result, the first grating layer 21 transmits light in a specific wavelength region in the light incident on the first grating layer 21 to the intermediate grating layer 31.
 また、中間格子層31を透過して第2格子層41に入射した光の一部も、第2格子層41でのプラズモン共鳴によって消費される。ここでも、プラズモン共鳴に起因して第2格子層41が出射する光EP2の波長領域は、第2誘電体層43の構造周期PTを含む格子構造および材料に依存した特定の波長領域である。結果として、第2格子層41は、第2格子層41に入射した光における特定の波長領域の光を、空気層へ透過する。 Further, part of the light that has passed through the intermediate grating layer 31 and entered the second grating layer 41 is also consumed by plasmon resonance in the second grating layer 41. Again, the wavelength region of the light EP2 emitted from the second grating layer 41 due to plasmon resonance is a specific wavelength region depending on the grating structure and material including the structural period PT of the second dielectric layer 43. As a result, the second grating layer 41 transmits light in a specific wavelength region in the light incident on the second grating layer 41 to the air layer.
 以上により、光源装置2からカラーフィルタへ光LAを入射させて、カラーフィルタの表面側から表面410Sを観察する点灯時観察では、上記各格子層でのプラズモン共鳴を経た有色の光、すなわち、副画素410Aの種類に応じた色変換後の光LP2が、副画素410Aで視認される。 As described above, in lighting observation in which the light LA is incident on the color filter from the light source device 2 and the surface 410S is observed from the surface side of the color filter, the colored light that has undergone plasmon resonance in each of the lattice layers, The light LP2 after color conversion corresponding to the type of the pixel 410A is visually recognized by the sub-pixel 410A.
 [カラーフィルタの製造方法]
 次に、カラーフィルタを製造する方法の一例を説明する。
 まず、支持部11の表面に、第1誘電体層22と第1中間誘電体層32とを形成する。第1誘電体層22と第1中間誘電体層32とは、支持部11の表面から突き出た凸部11Tとして一体に形成される。凸部11Tを形成する方法は、例えば、光、あるいは、荷電粒子線を用いたフォトリソグラフィー法や、ナノインプリント法、あるいは、プラズマエッチング法などを採用できる。特に、樹脂からなる支持部11の表面に凸部11Tを形成する方法として、例えばナノインプリント法を活用できる。また、硬い材質の基材などを加工することにより凸部11Tを形成する場合には、光、あるいは、荷電粒子線を用いたフォトリソグラフィー法とプラズマエッチング法を組み合わせた方法を用いればよい。
[Color filter manufacturing method]
Next, an example of a method for manufacturing a color filter will be described.
First, the first dielectric layer 22 and the first intermediate dielectric layer 32 are formed on the surface of the support portion 11. The first dielectric layer 22 and the first intermediate dielectric layer 32 are integrally formed as a convex portion 11T protruding from the surface of the support portion 11. As a method of forming the convex portion 11T, for example, a photolithographic method using a light or charged particle beam, a nanoimprint method, a plasma etching method, or the like can be adopted. In particular, as a method of forming the convex portion 11T on the surface of the support portion 11 made of resin, for example, a nanoimprint method can be used. Further, in the case where the convex portion 11T is formed by processing a hard material base material or the like, a method in which light or a photolithographic method using a charged particle beam and a plasma etching method are combined may be used.
 例えば、図68に示したように基材11aと中間層11bとから構成される支持部11を有する副画素410Aを製造する場合、まず、基材11aとして、ポリエチレンテレフタラートシートを用い、基材11aの表面に、紫外線硬化性樹脂を塗工する。次いで、紫外線硬化性樹脂からなる塗工膜の表面に、凹版である合成石英モールドの表面を押し当て、これらに紫外線を照射する。続いて、硬化した紫外線硬化性樹脂から合成石英モールドを離型する。これによって、基材11aの表面の樹脂に凹版の有する凹凸が転写され、第1誘電体層22と第1中間誘電体層32とからなる凸部11Tおよび中間層11bが形成される。なお、紫外線硬化性樹脂は、熱硬化性樹脂に変更することも可能であり、紫外線の照射は、加熱に変更することも可能である。また、紫外線硬化性樹脂は、熱可塑性樹脂に変更することも可能であり、紫外線の照射は、加熱および冷却に変更することも可能である。 For example, when manufacturing the subpixel 410A having the support portion 11 composed of the base material 11a and the intermediate layer 11b as shown in FIG. 68, first, a polyethylene terephthalate sheet is used as the base material 11a. An ultraviolet curable resin is applied to the surface of 11a. Next, the surface of the synthetic quartz mold, which is an intaglio, is pressed against the surface of the coating film made of an ultraviolet curable resin, and these are irradiated with ultraviolet rays. Subsequently, the synthetic quartz mold is released from the cured ultraviolet curable resin. As a result, the unevenness of the intaglio is transferred to the resin on the surface of the base material 11a, and the convex portion 11T and the intermediate layer 11b composed of the first dielectric layer 22 and the first intermediate dielectric layer 32 are formed. Note that the ultraviolet curable resin can be changed to a thermosetting resin, and the ultraviolet irradiation can be changed to heating. Further, the ultraviolet curable resin can be changed to a thermoplastic resin, and the irradiation of the ultraviolet rays can be changed to heating and cooling.
 次いで、凸部11Tを備える支持部11の表面に、第1金属層23、および、第2金属層42を形成する。第1金属層23、および、第2金属層42を形成する方法は、例えば、真空蒸着法、スパッタリング法である。これによって、第1金属層23の頂面によって区画される第1格子層21が形成され、第2金属層42の頂面によって区画される第2格子層41が形成され、これら第1格子層21と第2格子層41とに挟まれた中間格子層31が形成される。 Next, the first metal layer 23 and the second metal layer 42 are formed on the surface of the support portion 11 including the convex portions 11T. The method for forming the first metal layer 23 and the second metal layer 42 is, for example, a vacuum evaporation method or a sputtering method. As a result, the first lattice layer 21 defined by the top surface of the first metal layer 23 is formed, and the second lattice layer 41 defined by the top surface of the second metal layer 42 is formed, and these first lattice layers are formed. An intermediate lattice layer 31 sandwiched between the first lattice layer 21 and the second lattice layer 41 is formed.
 [副画素の構成例]
 図71が示すように、第1金属層23の厚さT2が薄いほど、第1格子層21における透過光の強度が大きく、点灯時観察での像の明度が高まる。構造周期PTに対する第1誘電体層22の幅WTの比が大きいほど、これもまた、点灯時観察での像の明度が高まる。
[Sub-pixel configuration example]
As shown in FIG. 71, the thinner the thickness T2 of the first metal layer 23, the greater the intensity of the transmitted light in the first grating layer 21, and the brightness of the image in the lighting observation increases. The larger the ratio of the width WT of the first dielectric layer 22 to the structural period PT, the higher the lightness of the image in observation during lighting.
 なお、第1金属層23の領域が過剰に少ない、また、第2金属層42の領域が過剰に少ないと、第1金属層23の連続性や、第2金属層42の連続性に欠陥が生じ、上述したプラズモン共鳴による波長の選択性が得られ難い。 If the area of the first metal layer 23 is excessively small and if the area of the second metal layer 42 is excessively small, defects in the continuity of the first metal layer 23 and the continuity of the second metal layer 42 occur. As a result, it is difficult to obtain wavelength selectivity due to the above-described plasmon resonance.
 この点、第1金属層23の厚さT2や、第2金属層42の厚さT4が、第1格子層21の厚さT2と、中間格子層31の厚さT3との合計の10分の1以下であり、かつ、構造周期PTに対する第1誘電体層22の幅WTの比が0.30以上であれば、点灯時観察における像の色味が十分に得られる。 In this respect, the thickness T2 of the first metal layer 23 and the thickness T4 of the second metal layer 42 are 10 minutes of the total of the thickness T2 of the first lattice layer 21 and the thickness T3 of the intermediate lattice layer 31. If the ratio of the width WT of the first dielectric layer 22 to the structural period PT is 0.30 or more, the color of the image during lighting observation can be sufficiently obtained.
 また、第1金属層23の厚さT2や、第2金属層42の厚さT4が、第1格子層21の厚さT2と、中間格子層31の厚さT3との合計の10分の1以下であり、かつ、構造周期PTに対する第1誘電体層22の幅WTの比が0.65以下であれば、上記点灯時観察における像の明度が十分に得られる。さらに、構造周期PTに対する第1誘電体層22の幅WTの比は、0.6以下であることが好ましく、0.5以下であることがより好ましい。 Further, the thickness T2 of the first metal layer 23 and the thickness T4 of the second metal layer 42 are 10 minutes of the total of the thickness T2 of the first lattice layer 21 and the thickness T3 of the intermediate lattice layer 31. If the ratio of the width WT of the first dielectric layer 22 to the structural period PT is 1 or less and 0.65 or less, the brightness of the image in the lighting observation can be sufficiently obtained. Furthermore, the ratio of the width WT of the first dielectric layer 22 to the structural period PT is preferably 0.6 or less, and more preferably 0.5 or less.
 第1誘電体層22の厚さT2と、第1中間誘電体層32の厚さT3との合計は、第1誘電体層22の幅WTと、最短幅WPとの合計である構造周期PTよりも小さいことが好ましい。また、第1誘電体層22の厚さT2と第1中間誘電体層32の厚さT3との合計は、構造周期PTの半分よりも小さいことが、より好ましい。 The sum of the thickness T2 of the first dielectric layer 22 and the thickness T3 of the first intermediate dielectric layer 32 is the sum of the width WT of the first dielectric layer 22 and the shortest width WP. Is preferably smaller. The total of the thickness T2 of the first dielectric layer 22 and the thickness T3 of the first intermediate dielectric layer 32 is more preferably smaller than half of the structural period PT.
 こうした構成であれば、第1誘電体層22と第1中間誘電体層32とが一体となる凸部11Tにおいて、その形状の精度を高めることが可能であり、また、凸部11Tが支持部11の表面で倒れることが抑えられる。 With such a configuration, it is possible to increase the accuracy of the shape of the convex portion 11T in which the first dielectric layer 22 and the first intermediate dielectric layer 32 are integrated, and the convex portion 11T is a support portion. 11 is prevented from falling on the surface.
 可視領域の波長における複素誘電率の実部が負の値である金属材料は、それを用いた第1格子層21や第2格子層41において、プラズモン共鳴を生じやすい。そこで、第1金属層23を構成する材料は、上記複素誘電率の実部が負の値の材料である。第2金属層42を構成する材料もまた、上記複素誘電率の実部が負の値の材料である。 A metal material having a negative real part of the complex dielectric constant at a wavelength in the visible region is likely to cause plasmon resonance in the first lattice layer 21 and the second lattice layer 41 using the metal material. Therefore, the material constituting the first metal layer 23 is a material having a negative real part of the complex dielectric constant. The material forming the second metal layer 42 is also a material having a negative real part of the complex dielectric constant.
 これら第1金属層23や第2金属層42を構成する材料は、例えば、アルミニウム、銀、金、インジウム、タンタルなどである。
 なお、上記製造方法において説明したように、第1金属層23と第2金属層42とは、第1誘電体層22と第1中間誘電体層32とを有した支持部11に対する金属層の成膜によって、単一の工程で形成することができる。
Examples of the material constituting the first metal layer 23 and the second metal layer 42 include aluminum, silver, gold, indium, and tantalum.
As described in the above manufacturing method, the first metal layer 23 and the second metal layer 42 are metal layers with respect to the support portion 11 having the first dielectric layer 22 and the first intermediate dielectric layer 32. The film can be formed in a single process.
 この場合、成膜源から飛行する金属粒子は、支持部11の表面に対して、所定の角度分布を有して付着する。結果として、第2金属層42の幅W4は、第1中間誘電体層32の幅WTよりも若干大きくなり、相互に隣り合う第2金属層42の最短幅WP4は、最短幅WPよりも若干小さくなる。この際、構造周期PTに対する第2金属層42の幅W4の比は、0.30以上0.65以下である。ちなみに、第1金属層23における第1中間誘電体層32の周囲は、第2金属層42によるシャドウ効果の影響を受け、第1中間誘電体層32に近い部位ほど薄い。 In this case, the metal particles flying from the film forming source adhere to the surface of the support portion 11 with a predetermined angular distribution. As a result, the width W4 of the second metal layer 42 is slightly larger than the width WT of the first intermediate dielectric layer 32, and the shortest width WP4 of the second metal layers 42 adjacent to each other is slightly larger than the shortest width WP. Get smaller. At this time, the ratio of the width W4 of the second metal layer 42 to the structural period PT is not less than 0.30 and not more than 0.65. Incidentally, the periphery of the first intermediate dielectric layer 32 in the first metal layer 23 is affected by the shadow effect by the second metal layer 42, and the portion closer to the first intermediate dielectric layer 32 is thinner.
 また、上記成膜方法によって形成される構造体においては、第1中間誘電体層32の側面にも、第2金属層42に連続する金属層である中間金属層32Aが形成される。
 中間金属層32Aは、第1中間誘電体層32と第2中間誘電体層33とに挟まれる。中間金属層32Aは、第2金属層42と一体の構造体であり、第1中間誘電体層32の側面上での厚さが、第1金属層23に近い部位ほど薄い。
In the structure formed by the film forming method, an intermediate metal layer 32 </ b> A that is a metal layer continuous with the second metal layer 42 is also formed on the side surface of the first intermediate dielectric layer 32.
The intermediate metal layer 32A is sandwiched between the first intermediate dielectric layer 32 and the second intermediate dielectric layer 33. The intermediate metal layer 32 </ b> A is a structure that is integral with the second metal layer 42, and the thickness on the side surface of the first intermediate dielectric layer 32 is thinner as the portion is closer to the first metal layer 23.
 こうした中間金属層32Aは、構造周期PTがサブ波長周期であるため、第2格子層41や中間格子層31の厚さ方向での屈折率の変化を連続的とする。そして、中間金属層32Aは、副画素410Aの表面410Sから第2格子層41に入射した光を反射し難く、中間格子層31や第1格子層21へ透過しやすい。それゆえに、上述した非点灯時観察においては、より黒色に近い色が、副画素410Aで視認される。 In such an intermediate metal layer 32A, since the structural period PT is a sub-wavelength period, the refractive index change in the thickness direction of the second grating layer 41 and the intermediate grating layer 31 is continuous. The intermediate metal layer 32 </ b> A hardly reflects light incident on the second grating layer 41 from the surface 410 </ b> S of the subpixel 410 </ b> A and easily transmits the light to the intermediate grating layer 31 and the first grating layer 21. Therefore, in the non-lighting observation described above, a color closer to black is visually recognized by the sub-pixel 410A.
 なお、副画素410Aの特に表面側においてフレネル反射を抑えるためには、以下の条件が満たされていることが好ましい。すなわち、第2誘電体層43に対して中間格子層31とは反対側で第2誘電体層43に接する層である表面層と、第2誘電体層43との間の屈折率差は、第1金属層23と支持部11との間の屈折率差よりも小さいことが好ましい。表面層は、例えば空気層である。そして、第2誘電体層43の屈折率は、表面層の屈折率と等しいことがさらに好ましい。 In order to suppress Fresnel reflection particularly on the surface side of the sub-pixel 410A, it is preferable that the following conditions are satisfied. That is, the refractive index difference between the second dielectric layer 43 and the surface layer that is the layer in contact with the second dielectric layer 43 on the side opposite to the intermediate lattice layer 31 with respect to the second dielectric layer 43 is The refractive index difference between the first metal layer 23 and the support portion 11 is preferably smaller. The surface layer is, for example, an air layer. The refractive index of the second dielectric layer 43 is more preferably equal to the refractive index of the surface layer.
 以上のように、第9実施形態において、光学フィルタからは、プラズモン共鳴に起因して、特定の波長領域の光が反射光もしくは透過光として射出される。そして、各凸部11Tである周期要素の位置や大きさと、各周期要素によって位置が定まる金属層とを含む複数の因子によって、上記透過光や反射光の波長領域が定まるため、光学フィルタにて透過あるいは反射される波長領域の調整の自由度を高めることができる。 As described above, in the ninth embodiment, light in a specific wavelength region is emitted from the optical filter as reflected light or transmitted light due to plasmon resonance. Since the wavelength region of the transmitted light and the reflected light is determined by a plurality of factors including the position and size of the periodic element that is each convex portion 11T and the metal layer that is determined by each periodic element, the optical filter It is possible to increase the degree of freedom in adjusting the wavelength region that is transmitted or reflected.
 ところで、従来のカラーフィルタが有する色変換部は、所定の波長領域の光を吸収する単一の薄膜層であり、色変換部による色変換後の色味は、薄膜層の厚さが厚いほど濃い。一方で、薄膜層の有する厚さは、薄膜層内において区々であり、薄膜層の縁で厚い場合もあれば、薄膜層の中央で厚い場合もある。薄膜層の厚さを副画素内において所望の分布に調整することは困難であり、上述したカラーフィルタは、副画素が選択的に透過する波長領域の分布を副画素内で調整する自由度を備えていない。そして、こうした課題は、表示装置に用いられるカラーフィルタに限らず、光源から出射された光のうち特定の波長領域の光を透過するフィルタ要素を備える光学フィルタにおいて共通する。 By the way, the color conversion part which the conventional color filter has is a single thin film layer that absorbs light in a predetermined wavelength region, and the color after color conversion by the color conversion part increases as the thickness of the thin film layer increases. It ’s dark. On the other hand, the thickness of the thin film layer varies in the thin film layer, and may be thick at the edge of the thin film layer or thick at the center of the thin film layer. It is difficult to adjust the thickness of the thin film layer to a desired distribution in the sub-pixel, and the color filter described above has a degree of freedom to adjust the distribution of the wavelength region that the sub-pixel selectively transmits in the sub-pixel. I do not have. Such a problem is not limited to the color filter used in the display device, but is common in an optical filter including a filter element that transmits light in a specific wavelength region among light emitted from a light source.
 以上のことから、フィルタ要素が透過する光の波長領域の分布をフィルタ要素内において調整する自由度を高めることを可能とした光学フィルタを提供することも、第9実施形態の目的である。こうした課題に対する効果を含めて、第9実施形態によれば、以下に列挙する効果が得られる。 From the above, it is also an object of the ninth embodiment to provide an optical filter that can increase the degree of freedom in adjusting the distribution of the wavelength region of light transmitted through the filter element within the filter element. According to the ninth embodiment, including the effects on such problems, the effects listed below can be obtained.
 (9-1)表面410Sと対向する方向からカラーフィルタを観る点灯時観察によれば、黒色や白色以外の色彩を帯びた像が、副画素410Aで視認される。この際、各周期要素である凸部11Tの位置や大きさと、各凸部11Tによって位置が定まる各金属層23,42とによって、各副画素410Aでの色味が定まる。そのため、各副画素410Aにおける色味の分布、すなわち、各副画素410Aが透過する光の波長領域の分布を各副画素410A内において調整する自由度を高めることが可能である。 (9-1) According to the lighting observation in which the color filter is viewed from the direction facing the surface 410S, an image having a color other than black or white is visually recognized by the sub-pixel 410A. At this time, the color of each sub-pixel 410A is determined by the position and size of the convex portion 11T, which is each periodic element, and the metal layers 23 and 42 whose positions are determined by the respective convex portions 11T. Therefore, it is possible to increase the degree of freedom for adjusting the distribution of the color tone in each sub-pixel 410A, that is, the distribution of the wavelength region of light transmitted through each sub-pixel 410A, in each sub-pixel 410A.
 例えば、副画素410Aの縁で色味が薄い場合に、副画素410Aの縁に位置する各凸部11Tの位置や大きさ、また、副画素410Aの縁に位置する各金属層23,42の厚さを、その色味が濃くなるように、副画素410Aにおける他の部位と異ならせることが可能である。 For example, when the color is light at the edge of the sub-pixel 410A, the position and size of each convex portion 11T located at the edge of the sub-pixel 410A, and the metal layers 23 and 42 located at the edge of the sub-pixel 410A. It is possible to make the thickness different from other parts in the sub-pixel 410A so that the color becomes darker.
 例えば、副画素410Aの中央で色味が濃い場合に、副画素410Aの中央に位置する各凸部11Tの位置や大きさ、また、副画素410Aの中央に位置する各金属層23,42の厚さを、その色味が薄くなるように、副画素410Aにおける他の部位と異ならせることが可能である。 For example, when the color is dark at the center of the subpixel 410A, the position and size of each convex portion 11T located at the center of the subpixel 410A, and the metal layers 23 and 42 located at the center of the subpixel 410A. The thickness can be different from other portions of the sub-pixel 410A so that the color becomes lighter.
 (9-2)構造周期PTが200nm以上400nm以下であるため、凸部11Tの繰り返しによる回折が、可視領域の光に対して抑えられる。結果として、点灯時観察による像の色彩に虹色が混ざることが抑えられ、像の有する色彩を副画素410Aごとに鮮明とすることが可能となる。 (9-2) Since the structure period PT is 200 nm or more and 400 nm or less, diffraction due to the repetition of the convex portion 11T is suppressed for light in the visible region. As a result, it is possible to prevent the rainbow color from being mixed with the color of the image observed during lighting, and to make the color of the image clear for each sub-pixel 410A.
 (9-3)第1格子層21の厚さT2と中間格子層31の厚さT3との合計が、100nm以上200nm以下であるため、これら第1格子層21や中間格子層31を、可視領域の光が十分に透過できる。それゆえに、各副画素410Aにおける色味の鮮明さや、各副画素410Aにおける光の輝度を、さらに高めることが可能ともなる。 (9-3) Since the total of the thickness T2 of the first lattice layer 21 and the thickness T3 of the intermediate lattice layer 31 is not less than 100 nm and not more than 200 nm, the first lattice layer 21 and the intermediate lattice layer 31 are visible. The light in the region can be sufficiently transmitted. Therefore, it is possible to further increase the vividness of each sub-pixel 410A and the luminance of light in each sub-pixel 410A.
 (9-4)さらに、第1金属層23の厚さT2や、第2金属層42の厚さT4が、15nm以下であるため、各副画素410Aにおける色味の鮮明さや、各副画素410Aにおける光の輝度を、より一層に高めることが可能ともなる。 (9-4) Further, since the thickness T2 of the first metal layer 23 and the thickness T4 of the second metal layer 42 are 15 nm or less, the vividness of each subpixel 410A, the subpixel 410A, It is also possible to further increase the brightness of the light.
 (9-5)第1格子層21の厚さT2と、中間格子層31の厚さT3との合計が、ナノインプリントなどの凹版を適用できる程度の大きさであるため、第1誘電体層22と第1中間誘電体層32との機能を兼ね備える凸部11Tを、単一の構造体として成形することが可能ともなる。 (9-5) Since the sum of the thickness T2 of the first lattice layer 21 and the thickness T3 of the intermediate lattice layer 31 is large enough to apply an intaglio such as nanoimprint, the first dielectric layer 22 It is also possible to form the convex portion 11T having the functions of the first intermediate dielectric layer 32 and the first intermediate dielectric layer 32 as a single structure.
 (9-6)非点灯時観察においては、空気層と第2格子層41との界面や、第2格子層41と中間格子層31との界面でのフレネル反射が生じ難いため、また、第1格子層21や第2格子層41でのプラズモン共鳴が生じるため、黒色、もしくは、黒色に近い色彩が、副画素410Aで視認される。それゆえに、非点灯時に適した表示を表示装置に付与することが可能ともなる。 (9-6) In non-lighting observation, Fresnel reflection hardly occurs at the interface between the air layer and the second lattice layer 41 or the interface between the second lattice layer 41 and the intermediate lattice layer 31. Since plasmon resonance occurs in the first lattice layer 21 and the second lattice layer 41, black or a color close to black is visually recognized by the sub-pixel 410A. Therefore, it is possible to give a display suitable for non-lighting to the display device.
 (9-7)中間金属層32Aが反射防止機能を備えるため、非点灯時観察によって視認される像の色彩を、さらに黒色に近い色彩とすることが可能ともなる。
 (9-8)凸部11Tの形成にナノインプリント法を用いる製造方法、すなわち、基材11aの表面に塗工された樹脂に凹版の有する凹凸を転写することにより、支持部11と複数の凸部11Tとから構成される周期構造体を形成する製造方法であれば、微細な凹凸を有する周期構造体を、容易にかつ好適に形成することができる。
(9-7) Since the intermediate metal layer 32A has an antireflection function, it is possible to make the color of the image visually recognized by the non-lighting observation closer to black.
(9-8) Manufacturing method using the nanoimprint method for forming the convex portion 11T, that is, by transferring the unevenness of the intaglio to the resin coated on the surface of the substrate 11a, the support portion 11 and the plurality of convex portions If it is a manufacturing method which forms the periodic structure comprised from 11T, the periodic structure which has fine unevenness | corrugation can be formed easily and suitably.
 例えば、平坦な金属層にサブ波長周期で並ぶ複数の孔を形成して、この孔の内部に誘電体を充填することでも、プラズモン共鳴の生じる格子構造の形成は可能である。しかしながら、金属層に微小な孔を形成するためには、フォトリソグラフィー法やナノインプリント法を用いたエッチングマスクの形成、および、プラズマエッチング法による金属層のエッチングが必要であるため、カラーフィルタの製造工程が複雑になる。結果として、カラーフィルタの歩留まりの低下が生じやすい。これに対し、本実施形態のように、ナノインプリント法を用いて形成した凹凸に金属層を積層することによってプラズモン共鳴の生じる格子構造を形成する方法であれば、歩留まりの低下を抑えることができる。 For example, it is possible to form a lattice structure in which plasmon resonance occurs by forming a plurality of holes arranged in a subwavelength period in a flat metal layer and filling the holes with a dielectric. However, in order to form minute holes in the metal layer, it is necessary to form an etching mask using a photolithography method or a nanoimprint method, and to etch the metal layer by a plasma etching method. Becomes complicated. As a result, the yield of the color filter tends to decrease. On the other hand, a yield reduction can be suppressed by a method of forming a lattice structure in which plasmon resonance occurs by laminating a metal layer on the unevenness formed using the nanoimprint method as in this embodiment.
 <第9実施形態の変形例>
 上記第9実施形態は、以下のように変更して実施することもできる。
 [中間格子層31]
 ・第1中間誘電体層32と第2中間誘電体層33とは、各別の構造体に具体化できる。この際、第2中間誘電体層33は、第1中間誘電体層32の屈折率よりも空気層の屈折率に近い屈折率を有した樹脂層であることが好ましい。
<Modification of Ninth Embodiment>
The ninth embodiment can be implemented with the following modifications.
[Intermediate lattice layer 31]
The first intermediate dielectric layer 32 and the second intermediate dielectric layer 33 can be embodied as separate structures. At this time, the second intermediate dielectric layer 33 is preferably a resin layer having a refractive index closer to the refractive index of the air layer than the refractive index of the first intermediate dielectric layer 32.
 ・第2中間誘電体層33と第2誘電体層43とは、各別の構造体に具体化できる。この際、第2中間誘電体層33は、第2誘電体層43の屈折率よりも空気層の屈折率に近い屈折率を有した樹脂層であることが好ましい。 The second intermediate dielectric layer 33 and the second dielectric layer 43 can be embodied as separate structures. At this time, the second intermediate dielectric layer 33 is preferably a resin layer having a refractive index closer to the refractive index of the air layer than the refractive index of the second dielectric layer 43.
 [第1格子層21]
 ・図72が示すように、第1誘電体層22と第1中間誘電体層32とから構成される凸部11Tの形状は、支持部11の表面から突き出る錐体状に具体化できる。こうした構造であれば、第1誘電体層22や第1中間誘電体層32の形成に際して、それを形成するための凹版の離型を円滑に進めることが可能である。
[First lattice layer 21]
72, as shown in FIG. 72, the shape of the convex portion 11T composed of the first dielectric layer 22 and the first intermediate dielectric layer 32 can be embodied as a cone shape protruding from the surface of the support portion 11. With such a structure, it is possible to smoothly release the intaglio for forming the first dielectric layer 22 and the first intermediate dielectric layer 32 when forming the first dielectric layer 22 and the first intermediate dielectric layer 32.
 [周期要素]
 ・基準面に並ぶ周期要素は、支持部11の表面が備える有底の孔である凹部に具体化できる。この際、基準面は、支持部11の表面である。また、周期要素の一端部は、各孔の備える開口部であり、周期要素の他端部は、各孔の備える底面である。そして、各孔の開口部を囲う網目状に第1金属層23が位置し、各孔の底面に、第2金属層42が位置する。各孔の内部は、第2金属層42と、その上方に位置する第1中間誘電体層32とに区画される。また、第1金属層23の囲う空間が、第1誘電体層22として機能する。このような構成であっても、上記(9-1)~(9-4)、(9-6)~(9-8)に準じた効果を得ることは可能である。
[Periodic element]
The periodic elements arranged on the reference plane can be embodied in a concave portion that is a bottomed hole provided on the surface of the support portion 11. At this time, the reference surface is the surface of the support portion 11. One end of the periodic element is an opening provided in each hole, and the other end of the periodic element is a bottom surface provided in each hole. And the 1st metal layer 23 is located in the mesh shape surrounding the opening part of each hole, and the 2nd metal layer 42 is located in the bottom face of each hole. The interior of each hole is partitioned into a second metal layer 42 and a first intermediate dielectric layer 32 located above the second metal layer 42. The space surrounded by the first metal layer 23 functions as the first dielectric layer 22. Even with such a configuration, it is possible to obtain effects according to the above (9-1) to (9-4) and (9-6) to (9-8).
 また、周期要素である凸部または凹部には、第7実施形態、第8実施形態、および、これらの変形例の凸部や凹部の形状が適用されてもよい。
 [保護層]
 ・カラーフィルタは、第2金属層42の上に保護層をさらに備える。この際、保護層と第2金属層42との界面におけるフレネル反射の強度、および、それに伴うカラーフィルタでの波長の選択性が、保護層の屈折率によって変わる。そこで、保護層を構成する材料は、カラーフィルタに選択させる波長領域に基づき、適宜選択される。
Moreover, the shape of the convex part or recessed part of 7th Embodiment, 8th Embodiment, and these modifications may be applied to the convex part or recessed part which is a periodic element.
[Protective layer]
The color filter further includes a protective layer on the second metal layer 42. At this time, the intensity of Fresnel reflection at the interface between the protective layer and the second metal layer 42 and the wavelength selectivity in the color filter associated therewith vary depending on the refractive index of the protective layer. Therefore, the material constituting the protective layer is appropriately selected based on the wavelength region selected by the color filter.
 なお、図73が示すように、保護層48は、第2誘電体層43、および、第2中間誘電体層33と一体の構造体に具体化できる。この際、保護層48は、低屈折率の樹脂層であることが好ましい。低屈折率の樹脂層は、第1誘電体層22の屈折率や第1中間誘電体層32の屈折率よりも空気層の屈折率に近い屈折率を有する。 As shown in FIG. 73, the protective layer 48 can be embodied in a structure that is integral with the second dielectric layer 43 and the second intermediate dielectric layer 33. At this time, the protective layer 48 is preferably a low refractive index resin layer. The low refractive index resin layer has a refractive index closer to the refractive index of the air layer than the refractive index of the first dielectric layer 22 and the refractive index of the first intermediate dielectric layer 32.
 [その他の形態]
 ・副画素410Aの表面410Sと対向する方向から見た孤立領域A2の配置は、正方配列および六方配列に限らず、二次元格子状の配列であればよい。すなわち、複数の第1誘電体層22は二次元格子状に並んでいればよく、また、複数の第1中間誘電体層32も二次元格子状に並んでいればよく、また、複数の第2金属層42も二次元格子状に並んでいればよい。換言すれば、周期構造体の周期要素は、サブ波長周期を有した二次元格子状に並んでいればよい。二次元格子状の配列は、二次元平面内において交差する2つの方向の各々に沿って要素が並ぶ配列である。この際、構造周期PTに対する幅WTの比は、1つの方向での構造周期PTに対する幅WTの比であり、当該比が所定の範囲内であるとは、周期要素が並ぶ上記2つの方向の各々について、構造周期PTに対する幅WTの比が所定の範囲内であることを示す。また、カラーフィルタが有する各層の厚さが構造周期PTに対して所定の範囲内であるとは、周期要素が並ぶ上記2つの方向の各々における構造周期PTに対して、各層の厚さが所定の範囲内であることを示す。
[Other forms]
The arrangement of the isolated region A2 viewed from the direction facing the surface 410S of the subpixel 410A is not limited to a square array and a hexagonal array, and may be a two-dimensional lattice array. That is, the plurality of first dielectric layers 22 may be arranged in a two-dimensional lattice, the plurality of first intermediate dielectric layers 32 may be arranged in a two-dimensional lattice, and the plurality of first dielectric layers 22 may be arranged. The two metal layers 42 need only be arranged in a two-dimensional lattice. In other words, the periodic elements of the periodic structure need only be arranged in a two-dimensional lattice shape having a sub-wavelength period. The two-dimensional lattice-like arrangement is an arrangement in which elements are arranged along each of two directions intersecting in a two-dimensional plane. At this time, the ratio of the width WT to the structural period PT is the ratio of the width WT to the structural period PT in one direction, and that the ratio is within a predetermined range means that the two elements in which the periodic elements are arranged Each indicates that the ratio of the width WT to the structural period PT is within a predetermined range. The thickness of each layer included in the color filter is within a predetermined range with respect to the structural period PT. The thickness of each layer is predetermined with respect to the structural period PT in each of the two directions in which the periodic elements are arranged. It is within the range of.
 また、副画素410Aの表面410Sと対向する方向から見た孤立領域A2の形状、すなわち、周期要素の平面形状は、正方形に限らず、長方形や他の多角形であってもよいし、円形であってもよい。 Further, the shape of the isolated region A2 viewed from the direction facing the surface 410S of the sub-pixel 410A, that is, the planar shape of the periodic element is not limited to a square, but may be a rectangle or other polygons, There may be.
 ・第9実施形態の光学フィルタの構成は、撮像素子に用いられるフィルタに適用されてもよい。撮像素子は、例えば、CCD(Charge Coupled Device)型やCMOS(Complementary Metal Oxide Semiconductor)型のイメージセンサなどである。図74が示すように、撮像素子140は、複数のフィルタ要素121を有する光学フィルタ120と、複数の受光素子131を有する受光素子群130とを備える。フィルタ要素121は、上記第9実施形態の副画素410Aと同様の積層構造、すなわち、周期構造体と金属層とからなる構造を有し、フィルタ要素121に入射した光のうち特定の波長領域の光を透過する。受光素子131は、受光素子131に入射した光を電荷に変換する素子である。 -The structure of the optical filter of 9th Embodiment may be applied to the filter used for an image pick-up element. The imaging element is, for example, a CCD (Charge Coupled Device) type or a CMOS (Complementary Metal Oxide Semiconductor) type image sensor. As shown in FIG. 74, the imaging element 140 includes an optical filter 120 having a plurality of filter elements 121 and a light receiving element group 130 having a plurality of light receiving elements 131. The filter element 121 has a stacked structure similar to that of the sub-pixel 410A of the ninth embodiment, that is, a structure composed of a periodic structure and a metal layer, and has a specific wavelength region of light incident on the filter element 121. Transmits light. The light receiving element 131 is an element that converts light incident on the light receiving element 131 into electric charges.
 光学フィルタ120と受光素子群130とは対向し、1つのフィルタ要素121を透過した光が、1つの受光素子131に入射するように配置される。換言すれば、光学フィルタ120のなかで、1つの受光素子131に対して透過光を射出する部分が、1つのフィルタ要素121である。受光素子131が、フィルタ要素121を透過した光を受光して電気信号に変換し、受光素子131からの電気信号が信号処理回路にて演算に供されることに基づき、光学フィルタ120に対し受光素子群130とは反対側に位置する物品等の像が記録される。 The optical filter 120 and the light receiving element group 130 face each other and are arranged so that light transmitted through one filter element 121 enters one light receiving element 131. In other words, a portion of the optical filter 120 that emits transmitted light to one light receiving element 131 is one filter element 121. The light receiving element 131 receives the light transmitted through the filter element 121 and converts it into an electrical signal. The electrical signal from the light receiving element 131 is received by the signal processing circuit, and is received by the optical filter 120. An image of an article or the like located on the side opposite to the element group 130 is recorded.
 光学フィルタ120は、例えば、オンチップカラーフィルタであって、複数のフィルタ要素121には、透過する波長領域の異なる複数種類のフィルタ要素121が含まれる。例えば、複数のフィルタ要素121には、赤色の光を透過するフィルタ要素121と、緑色の光を透過するフィルタ要素121と、青色の光を透過するフィルタ要素121との3種類のフィルタ要素121が含まれる。あるいは、複数のフィルタ要素121には、黄色(イエロー)の光を透過するフィルタ要素121と、水色(シアン)の光を透過するフィルタ要素121と、赤紫(マゼンタ)の光を透過するフィルタ要素121と、緑色(グリーン)の光を透過するフィルタ要素121との4種類のフィルタ要素121が含まれる。 The optical filter 120 is, for example, an on-chip color filter, and the plurality of filter elements 121 include a plurality of types of filter elements 121 having different transmission wavelength regions. For example, the plurality of filter elements 121 include three types of filter elements 121: a filter element 121 that transmits red light, a filter element 121 that transmits green light, and a filter element 121 that transmits blue light. included. Alternatively, the plurality of filter elements 121 include a filter element 121 that transmits yellow (yellow) light, a filter element 121 that transmits light of cyan (cyan), and a filter element that transmits magenta light. Four types of filter elements 121, 121 and a filter element 121 that transmits green light, are included.
 あるいは、撮像素子140が、赤外線カメラに用いられる撮像素子のように、1色での像の記録のために利用される撮像素子である場合、複数のフィルタ要素121の各々が透過する波長領域は一致していてもよい。 Alternatively, when the image sensor 140 is an image sensor that is used for recording an image in one color, such as an image sensor used in an infrared camera, the wavelength region that each of the plurality of filter elements 121 transmits is as follows. It may match.
 フィルタ要素121が備える周期構造体の周期要素の構造周期PTは、フィルタ要素121が透過する波長領域以下であればよい。すなわち、第9実施形態および第10実施形態において、サブ波長周期とは、フィルタ要素121が透過する波長領域以下の周期として定義される。 The structural period PT of the periodic element of the periodic structure provided in the filter element 121 may be equal to or smaller than the wavelength region that the filter element 121 transmits. That is, in the ninth embodiment and the tenth embodiment, the sub-wavelength period is defined as a period equal to or less than the wavelength region that the filter element 121 transmits.
 フィルタ要素121が透過する光の波長領域は、構造周期PTや周期要素の幅WT、周期要素における一端部と他端部との距離、金属層23,42の膜厚等、複数の因子によって調整することが可能である。それゆえ、光学フィルタ120がいずれのデバイスに用いられる場合であれ、フィルタ要素121が透過する光の波長領域の分布をフィルタ要素121内において調整する自由度を高めることができる。 The wavelength region of light transmitted through the filter element 121 is adjusted by a plurality of factors such as the structural period PT, the width WT of the periodic element, the distance between one end and the other end of the periodic element, and the film thickness of the metal layers 23 and 42. Is possible. Therefore, regardless of the device in which the optical filter 120 is used, the degree of freedom for adjusting the distribution of the wavelength region of light transmitted through the filter element 121 within the filter element 121 can be increased.
 (第10実施形態)
 図75から図78を参照して光学デバイスの一例である光学フィルタ、表示装置、撮像素子、および、光学フィルタの製造方法の実施形態である第10実施形態を説明する。第10実施形態も、光学フィルタを表示装置に備えられるカラーフィルタに具体化した形態である。以下では、第10実施形態と第9実施形態との相違点を中心に説明し、第9実施形態と同様の構成については同じ符号を付してその説明を省略する。
(10th Embodiment)
With reference to FIGS. 75 to 78, an optical filter, which is an example of an optical device, a display device, an image sensor, and a tenth embodiment that is an embodiment of a method for manufacturing the optical filter will be described. The tenth embodiment is also a form in which the optical filter is embodied as a color filter provided in the display device. Below, it demonstrates centering around the difference between 10th Embodiment and 9th Embodiment, about the structure similar to 9th Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 [副画素の構造]
 図75が示すように、副画素410Aは、支持部11、第1格子層21、中間格子層31、および、第2格子層41に加えて、上部格子層51を備えている。第1格子層21、中間格子層31、第2格子層41、および、上部格子層51は、支持部11の表面からこの順に並んでいる。すなわち、第2格子層41は、中間格子層31と上部格子層51とに挟まれている。
[Sub-pixel structure]
As shown in FIG. 75, the sub-pixel 410 </ b> A includes an upper lattice layer 51 in addition to the support portion 11, the first lattice layer 21, the intermediate lattice layer 31, and the second lattice layer 41. The first lattice layer 21, the intermediate lattice layer 31, the second lattice layer 41, and the upper lattice layer 51 are arranged in this order from the surface of the support portion 11. That is, the second lattice layer 41 is sandwiched between the intermediate lattice layer 31 and the upper lattice layer 51.
 支持部11は、第9実施形態と同様の構成を有する。図75は、支持部11が基材11aと中間層11bとから構成された形態を示している。なお、支持部11が、基材11aと中間層11bとから構成される場合、基材11aを構成する材料の屈折率と、中間層11bを構成する材料の屈折率とは近いほど好ましい。基材11aおよび中間層11bの各々の屈折率は、空気層よりも高く、例えば、1.2以上1.7以下である。 The support part 11 has the same configuration as that of the ninth embodiment. FIG. 75 shows a form in which the support portion 11 is composed of a base material 11a and an intermediate layer 11b. In addition, when the support part 11 is comprised from the base material 11a and the intermediate | middle layer 11b, it is so preferable that the refractive index of the material which comprises the base material 11a and the refractive index of the material which comprises the intermediate | middle layer 11b are near. Each of the base material 11a and the intermediate layer 11b has a refractive index higher than that of the air layer, for example, not less than 1.2 and not more than 1.7.
 [第1格子層21]
 第1格子層21は、第9実施形態と同様の構成を有し、各々が孤立領域A2に位置する複数の第1誘電体層22と、周辺領域A3に位置する単一の第1金属層23とを備える。構造周期PTに対する第1誘電体層22の幅WTの比は、0.30以上0.65以下であり、好ましくは、0.40以上0.60以下である。さらに、上記比は、0.5以下であることが好ましい。また、第1格子層21の厚さは、200nm以下であることが好ましく、15nm以下であることが特に好ましい。
[First lattice layer 21]
The first lattice layer 21 has the same configuration as that of the ninth embodiment, and each includes a plurality of first dielectric layers 22 located in the isolated region A2 and a single first metal layer located in the peripheral region A3. 23. The ratio of the width WT of the first dielectric layer 22 to the structural period PT is 0.30 or more and 0.65 or less, preferably 0.40 or more and 0.60 or less. Furthermore, the ratio is preferably 0.5 or less. Further, the thickness of the first lattice layer 21 is preferably 200 nm or less, and particularly preferably 15 nm or less.
 [中間格子層31]
 中間格子層31は、各々が孤立領域A2に位置する複数の第1中間誘電体層32と、周辺領域A3に位置する単一の第2中間誘電体層34とを備える。第2中間誘電体層34の材料が、第9実施形態の第2中間誘電体層33と異なることを除いては、中間格子層31は、第9実施形態と同様の構成を有する。
[Intermediate lattice layer 31]
The intermediate lattice layer 31 includes a plurality of first intermediate dielectric layers 32 each located in the isolated region A2, and a single second intermediate dielectric layer 34 located in the peripheral region A3. The intermediate lattice layer 31 has the same configuration as that of the ninth embodiment except that the material of the second intermediate dielectric layer 34 is different from that of the second intermediate dielectric layer 33 of the ninth embodiment.
 すなわち、中間格子層31の厚さは、第1格子層21の厚さよりも厚く、第1格子層21と中間格子層31との厚さの合計は、100nm以上200nm以下であることが好ましい。構造周期PTに対する第1中間誘電体層32の幅WTの比は、0.30以上0.65以下であり、好ましくは、0.4以上0.6以下である。さらに、上記比は、0.5以下であることが好ましい。 That is, the thickness of the intermediate lattice layer 31 is thicker than the thickness of the first lattice layer 21, and the total thickness of the first lattice layer 21 and the intermediate lattice layer 31 is preferably 100 nm or more and 200 nm or less. The ratio of the width WT of the first intermediate dielectric layer 32 to the structural period PT is not less than 0.30 and not more than 0.65, and preferably not less than 0.4 and not more than 0.6. Furthermore, the ratio is preferably 0.5 or less.
 [第2格子層41]
 第2格子層41は、各々が孤立領域A2を含む領域に位置する複数の第2金属層42と、周辺領域A3に含まれる単一の第2誘電体層44とを備える。第2誘電体層44の材料が、第9実施形態の第2誘電体層43と異なることを除いては、第2格子層41は、第9実施形態と同様の構成を有する。
[Second lattice layer 41]
The second lattice layer 41 includes a plurality of second metal layers 42 each positioned in a region including the isolated region A2, and a single second dielectric layer 44 included in the peripheral region A3. The second lattice layer 41 has the same configuration as that of the ninth embodiment except that the material of the second dielectric layer 44 is different from that of the second dielectric layer 43 of the ninth embodiment.
 第2格子層41の厚さは、中間格子層31の厚さよりも薄い。第2格子層41の厚さは、200nm以下であることが好ましく、15nm以下であることが特に好ましい。構造周期PTに対する第2金属層42の幅の比は、0.30以上0.65以下であり、好ましくは、0.4以上0.6以下である。さらに、上記比は、0.5以下であることが好ましい。 The thickness of the second lattice layer 41 is thinner than the thickness of the intermediate lattice layer 31. The thickness of the second lattice layer 41 is preferably 200 nm or less, and particularly preferably 15 nm or less. The ratio of the width of the second metal layer 42 to the structural period PT is 0.30 or more and 0.65 or less, and preferably 0.4 or more and 0.6 or less. Furthermore, the ratio is preferably 0.5 or less.
 [上部格子層51]
 上部格子層51は、複数の第1上部誘電体層52と、単一の第2上部誘電体層53とを備える。各第1上部誘電体層52の位置は、表面410Sと対向する方向から見て、孤立領域A2を含む。単一の第2上部誘電体層53の位置は、表面410Sと対向する方向から見て、周辺領域A3に含まれる。上部格子層51の厚さは、200nm以下であることが好ましい。
[Upper lattice layer 51]
The upper lattice layer 51 includes a plurality of first upper dielectric layers 52 and a single second upper dielectric layer 53. The position of each first upper dielectric layer 52 includes an isolated region A2 when viewed from the direction facing the surface 410S. The position of the single second upper dielectric layer 53 is included in the peripheral region A3 when viewed from the direction facing the surface 410S. The thickness of the upper lattice layer 51 is preferably 200 nm or less.
 各第1上部誘電体層52は、第2金属層42の頂面に重なる構造体である。各第1上部誘電体層52は、第2金属層42とは別体である。表面410Sと対向する方向から見て、第1上部誘電体層52の位置する周期は、構造周期PTである。構造周期PTに対する第1上部誘電体層52の幅の比は、0.30以上0.65以下であり、好ましくは、0.4以上0.6以下である。さらに、上記比は、0.5以下であることが好ましい。 Each first upper dielectric layer 52 is a structure that overlaps the top surface of the second metal layer 42. Each first upper dielectric layer 52 is separate from the second metal layer 42. When viewed from the direction facing the surface 410S, the period in which the first upper dielectric layer 52 is located is the structural period PT. The ratio of the width of the first upper dielectric layer 52 to the structural period PT is 0.30 or more and 0.65 or less, and preferably 0.4 or more and 0.6 or less. Furthermore, the ratio is preferably 0.5 or less.
 第2上部誘電体層53は、表面410Sと対向する方向から見て、各第1上部誘電体層52を1つずつ囲う網目状を有する。第2上部誘電体層53は、第2誘電体層44とは別体である。上部格子層51において、第2上部誘電体層53は、構造的および光学的に海成分であり、各第1上部誘電体層52は、構造的および光学的に島成分である。 The second upper dielectric layer 53 has a mesh shape surrounding each first upper dielectric layer 52 as viewed from the direction facing the surface 410S. The second upper dielectric layer 53 is separate from the second dielectric layer 44. In the upper lattice layer 51, the second upper dielectric layer 53 is structurally and optically a sea component, and each first upper dielectric layer 52 is structurally and optically an island component.
 図76が示すように、周辺領域A3においては、支持部11に近い層から順に、第1格子層21の第1金属層23と、中間格子層31の第2中間誘電体層34と、第2格子層41の第2誘電体層44と、上部格子層51の第2上部誘電体層53とが位置する。 As shown in FIG. 76, in the peripheral region A3, in order from the layer close to the support portion 11, the first metal layer 23 of the first lattice layer 21, the second intermediate dielectric layer 34 of the intermediate lattice layer 31, and the first The second dielectric layer 44 of the two lattice layer 41 and the second upper dielectric layer 53 of the upper lattice layer 51 are located.
 [各格子層の材料]
 第1誘電体層22および第1中間誘電体層32は、誘電体であり、第9実施形態と同様、例えば、光硬化性樹脂などの樹脂や、石英などの無機材料から構成される。第1誘電体層22および第1中間誘電体層32の各々の屈折率は、空気層よりも高く、例えば、1.2以上1.7以下である。例えば、基材11aの中間層11b、第1誘電体層22、および、第1中間誘電体層32は一体の構造物であり、これらは同一の材料から構成される。
[Material of each lattice layer]
The first dielectric layer 22 and the first intermediate dielectric layer 32 are dielectrics, and are made of, for example, a resin such as a photocurable resin or an inorganic material such as quartz, as in the ninth embodiment. The refractive index of each of the first dielectric layer 22 and the first intermediate dielectric layer 32 is higher than that of the air layer, for example, not less than 1.2 and not more than 1.7. For example, the intermediate layer 11b, the first dielectric layer 22, and the first intermediate dielectric layer 32 of the base material 11a are an integral structure, and are composed of the same material.
 第1金属層23および第2金属層42は、金属材料から構成されている。第1金属層23および第2金属層42を構成する材料は、第9実施形態と同様、可視領域の波長における複素誘電率の実部が負の値の材料であり、例えば、アルミニウム、銀、金、インジウム、タンタルなどであることが好ましい。第1金属層23と第2金属層42とは、例えば、同一の材料から構成される。 The first metal layer 23 and the second metal layer 42 are made of a metal material. The material constituting the first metal layer 23 and the second metal layer 42 is a material in which the real part of the complex dielectric constant at a wavelength in the visible region is a negative value, as in the ninth embodiment. For example, aluminum, silver, Gold, indium, tantalum and the like are preferable. The first metal layer 23 and the second metal layer 42 are made of the same material, for example.
 第2中間誘電体層34、第2誘電体層44、および、第1上部誘電体層52は、可視領域の光を透過する透明な誘電体である。第2中間誘電体層34、第2誘電体層44、および、第1上部誘電体層52は、二酸化珪素(SiO)、酸化アルミニウム(Al)、酸化タンタル(Ta)、酸化ニオブ(Nb)、二酸化ジルコニウム(ZrO)、二酸化チタン(TiO)、弗化マグネシウム(MgF)、弗化カルシウム(CaF)などの無機化合物から構成されることが好ましい。なかでも、第2中間誘電体層34、第2誘電体層44、および、第1上部誘電体層52を構成する材料は、チタン、ニオブ、アルミニウム、タンタル、ハフニウム、ジルコニウム、珪素、マグネシウムからなる群から選択されるいずれか1つの材料の酸化物を含むことが好ましい。 The second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 are transparent dielectrics that transmit light in the visible region. The second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 are composed of silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and tantalum oxide (Ta 2 O 5 ). , Niobium oxide (Nb 2 O 5 ), zirconium dioxide (ZrO 2 ), titanium dioxide (TiO 2 ), magnesium fluoride (MgF 2 ), and calcium fluoride (CaF 2 ). . Among these, the materials constituting the second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 are made of titanium, niobium, aluminum, tantalum, hafnium, zirconium, silicon, and magnesium. It is preferable to include an oxide of any one material selected from the group.
 ただし、第2中間誘電体層34、第2誘電体層44、および、第1上部誘電体層52は、有機化合物から構成されてもよい。第2中間誘電体層34、第2誘電体層44、および、第1上部誘電体層52の各々の屈折率は、空気層よりも高く、例えば、1.3以上3.0以下である。 However, the second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 may be made of an organic compound. The refractive index of each of the second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 is higher than that of the air layer, for example, 1.3 or more and 3.0 or less.
 例えば、第2中間誘電体層34と第2誘電体層44とは一体の構造物であり、第2中間誘電体層34、第2誘電体層44、および、第1上部誘電体層52は、同一の材料から構成される。 For example, the second intermediate dielectric layer 34 and the second dielectric layer 44 are an integral structure, and the second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 are , Composed of the same material.
 第2上部誘電体層53は、可視領域の光を透過する透明な誘電体であり、空気層、もしくは、空気層に近い屈折率を有した樹脂層である。第2上部誘電体層53の屈折率は、第1上部誘電体層52および第2誘電体層44の各々の屈折率よりも低い。 The second upper dielectric layer 53 is a transparent dielectric that transmits light in the visible region, and is an air layer or a resin layer having a refractive index close to that of the air layer. The refractive index of the second upper dielectric layer 53 is lower than the refractive index of each of the first upper dielectric layer 52 and the second dielectric layer 44.
 上記構成において、第1誘電体層22と第1中間誘電体層32とから構成される構造体は、周期要素の一例であり、支持部11の表面を基準面として、基準面から突出する凸部11Tでもある。そして、支持部11、第1誘電体層22、および、第1中間誘電体層32から構成される構造体は、周期構造体の一例である。また、第1金属層23と第2金属層42とから構成される層は、周期構造体の表面に位置し、層全体としての形状が周期構造体の表面形状に追従する形状を有した金属層61として捉えられる。また、第2中間誘電体層34、第2誘電体層44、および、第1上部誘電体層52から構成される層は、金属層61における周期構造体と接する面とは反対側の面に位置し、層全体としての形状が金属層61の表面形状に追従する形状を有した誘電体層62として捉えられる。 In the above-described configuration, the structure configured by the first dielectric layer 22 and the first intermediate dielectric layer 32 is an example of a periodic element, and is a protrusion protruding from the reference plane with the surface of the support portion 11 as the reference plane. It is also part 11T. And the structure comprised from the support part 11, the 1st dielectric material layer 22, and the 1st intermediate | middle dielectric material layer 32 is an example of a periodic structure. Further, the layer composed of the first metal layer 23 and the second metal layer 42 is located on the surface of the periodic structure, and the shape of the entire layer follows the surface shape of the periodic structure. Captured as layer 61. Further, the layer composed of the second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 is on the surface opposite to the surface in contact with the periodic structure in the metal layer 61. The dielectric layer 62 is positioned so that the shape of the entire layer follows the surface shape of the metal layer 61.
 この際、上述の各格子層21,31,41,51の構成の実現のためには、凸部11Tの高さである厚さT5は、100nm以上200nm以下であることが好ましい。また、金属層61の厚さT6は、200nm以下であることが好ましく、15nm以下であることが特に好ましい。そして、誘電体層62の厚さT7は、凸部11Tの高さである厚さT5以下であり、200nm以下であることが好ましい。なお、隣り合う凸部11Tの間の領域に位置する誘電体層62が凸部11T上の金属層61よりも窪んでいるとき、第2格子層41の第2誘電体層44の一部もしくは全部は、上部格子層51の第2上部誘電体層53と同一の材料から構成される。すなわち、この場合、第2誘電体層44の一部もしくは全部は、空気層もしくは樹脂層である。ただし、第2誘電体層44は、上述のように、第2中間誘電体層34から連続する構造体であることが好ましい。 At this time, in order to realize the configuration of each of the lattice layers 21, 31, 41, 51 described above, the thickness T5 which is the height of the convex portion 11T is preferably 100 nm or more and 200 nm or less. Moreover, the thickness T6 of the metal layer 61 is preferably 200 nm or less, and particularly preferably 15 nm or less. And the thickness T7 of the dielectric material layer 62 is below the thickness T5 which is the height of the convex part 11T, and it is preferable that it is 200 nm or less. In addition, when the dielectric layer 62 located in the area | region between adjacent convex parts 11T is depressed rather than the metal layer 61 on the convex part 11T, a part of 2nd dielectric layer 44 of the 2nd grating | lattice layer 41 or All are made of the same material as the second upper dielectric layer 53 of the upper lattice layer 51. That is, in this case, part or all of the second dielectric layer 44 is an air layer or a resin layer. However, the second dielectric layer 44 is preferably a structure continuous from the second intermediate dielectric layer 34 as described above.
 さらに、第9実施形態と同様、金属層61の厚さT6は、凸部11Tの高さである厚さT5の10分の1以下であることが好ましい。また、凸部11Tの高さである厚さT5は、構造周期PTよりも小さいことが好ましく、構造周期PTの半分よりも小さいことが、より好ましい。 Furthermore, as in the ninth embodiment, the thickness T6 of the metal layer 61 is preferably 1/10 or less of the thickness T5 which is the height of the convex portion 11T. The thickness T5, which is the height of the convex portion 11T, is preferably smaller than the structural period PT, and more preferably smaller than half of the structural period PT.
 なお、金属層61の製法によっては、金属層61の厚さは、凸部11T上の領域、すなわち第2金属層42と、隣り合う凸部11Tの間の領域、すなわち第1金属層23とで異なる場合がある。本実施形態において金属層61の厚さT6とは、周辺領域A3における帯状に延びる領域、すなわち、1つの方向に沿って凸部11Tが存在しない領域の幅方向の中央部に位置する金属層61の厚さとして定義される。なお、第9実施形態も同様である。 Depending on the manufacturing method of the metal layer 61, the thickness of the metal layer 61 may be such that the region on the convex portion 11T, that is, the second metal layer 42, and the region between the adjacent convex portions 11T, that is, the first metal layer 23 and the like. May vary. In the present embodiment, the thickness T6 of the metal layer 61 refers to a band-shaped region in the peripheral region A3, that is, the metal layer 61 located in the center in the width direction of the region where the convex portion 11T does not exist along one direction. Is defined as the thickness of The same applies to the ninth embodiment.
 同様に、誘電体層62の製法によっては、誘電体層62の厚さは、凸部11T上の領域、すなわち第1上部誘電体層52と、隣り合う凸部11Tの間の領域、すなわち第2中間誘電体層34および第2誘電体層44とで異なる場合がある。本実施形態において誘電体層62の厚さT7とは、周辺領域A3における帯状に延びる領域、すなわち、1つの方向に沿って凸部11Tが存在しない領域の幅方向の中央部に位置する誘電体層62の厚さとして定義される。なお、第9実施形態も同様である。 Similarly, depending on the manufacturing method of the dielectric layer 62, the thickness of the dielectric layer 62 may be a region on the convex portion 11T, that is, a region between the first upper dielectric layer 52 and the adjacent convex portion 11T, that is, the first thickness. The two intermediate dielectric layers 34 and the second dielectric layer 44 may be different. In the present embodiment, the thickness T7 of the dielectric layer 62 is a dielectric located in the central portion in the width direction of a region extending in a strip shape in the peripheral region A3, that is, a region where the convex portion 11T does not exist along one direction. Defined as the thickness of layer 62. The same applies to the ninth embodiment.
 [カラーフィルタの製造方法]
 次に、第10実施形態のカラーフィルタを製造する方法の一例を説明する。
 支持部11、第1誘電体層22、第1中間誘電体層32、第1金属層23、および、第2金属層42は、第9実施形態と同様に形成される。すなわち、第1誘電体層22と第1中間誘電体層32とは、支持部11の表面から突き出た凸部11Tとして一体に形成される。凸部11Tの形成には、例えば、光、あるいは、荷電粒子線を用いたフォトリソグラフィー法や、ナノインプリント法、あるいは、プラズマエッチング法などを採用できる。特に、樹脂からなる支持部11の表面に凸部11Tを形成する方法として、例えばナノインプリント法を活用できる。また、硬い材質の基材などを加工することにより凸部11Tを形成する場合には、光、あるいは、荷電粒子線を用いたフォトリソグラフィー法とプラズマエッチング法を組み合わせた方法を用いればよい。
[Color filter manufacturing method]
Next, an example of a method for manufacturing the color filter of the tenth embodiment will be described.
The support portion 11, the first dielectric layer 22, the first intermediate dielectric layer 32, the first metal layer 23, and the second metal layer 42 are formed in the same manner as in the ninth embodiment. That is, the first dielectric layer 22 and the first intermediate dielectric layer 32 are integrally formed as a convex portion 11T protruding from the surface of the support portion 11. For the formation of the convex portion 11T, for example, a photolithography method using light or a charged particle beam, a nanoimprint method, a plasma etching method, or the like can be employed. In particular, as a method of forming the convex portion 11T on the surface of the support portion 11 made of resin, for example, a nanoimprint method can be used. Further, in the case where the convex portion 11T is formed by processing a hard material base material or the like, a method in which light or a photolithographic method using a charged particle beam and a plasma etching method are combined may be used.
 次いで、凸部11Tが形成された支持部11の表面に、真空蒸着法やスパッタリング法などを用いて、金属層61が形成される。金属層61は、支持部11と凸部11Tとからなる周期構造体の表面形状に追従する形状に形成される。これにより、第1金属層23、および、第2金属層42が形成される。 Next, the metal layer 61 is formed on the surface of the support portion 11 on which the convex portions 11T are formed using a vacuum deposition method, a sputtering method, or the like. The metal layer 61 is formed in a shape that follows the surface shape of the periodic structure including the support portion 11 and the convex portion 11T. Thereby, the first metal layer 23 and the second metal layer 42 are formed.
 次いで、金属層61が形成された構造体の表面に、誘電体層62が形成される。誘電体層62の形成には、例えば、真空蒸着法やスパッタリング法が用いられる。誘電体層62は、金属層61の表面形状に追従する形状に形成される。これにより、第2中間誘電体層34、第2誘電体層44、および、第1上部誘電体層52が形成される。 Next, the dielectric layer 62 is formed on the surface of the structure on which the metal layer 61 is formed. For example, a vacuum deposition method or a sputtering method is used to form the dielectric layer 62. The dielectric layer 62 is formed in a shape that follows the surface shape of the metal layer 61. Thus, the second intermediate dielectric layer 34, the second dielectric layer 44, and the first upper dielectric layer 52 are formed.
 こうした製造方法によって、第1金属層23の頂面によって区画される第1格子層21が形成され、第1中間誘電体層32の頂面、すなわち、凸部11Tの頂面によって区画される中間格子層31が区画される。さらに、第2金属層42の頂面によって区画される第2格子層41が形成され、第1上部誘電体層52の頂面によって区画される上部格子層51が形成される。 By such a manufacturing method, the first lattice layer 21 defined by the top surface of the first metal layer 23 is formed, and the top surface of the first intermediate dielectric layer 32, that is, the middle defined by the top surface of the convex portion 11T. A lattice layer 31 is defined. Further, the second lattice layer 41 defined by the top surface of the second metal layer 42 is formed, and the upper lattice layer 51 defined by the top surface of the first upper dielectric layer 52 is formed.
 [カラーフィルタの光学的な作用]
 図77および図78を参照して、第10実施形態のカラーフィルタにおける光学的な構成および作用を説明する。
[Optical action of color filter]
With reference to FIGS. 77 and 78, the optical configuration and operation of the color filter of the tenth embodiment will be described.
 図77が示すように、光源装置2が非点灯状態であるとき、カラーフィルタの表面側から入射する外光L1は、空気層から上部格子層51に入る。上部格子層51の屈折率は、第1上部誘電体層52の屈折率と第2上部誘電体層53の屈折率とによって平均化された大きさに近似される。すなわち、上部格子層51の屈折率は、海成分である第2上部誘電体層53に支配された大きさであり、空気層に近い値である。このとき、外光L1は、空気層に近い屈折率を有した上部格子層51に空気層から入るため、空気層と上部格子層51との界面においては、フレネル反射を生じ難い。したがって、空気層と上部格子層51との界面での反射が抑えられ、上部格子層51に入射した光は上部格子層51を透過して第2格子層41に到達する。 As shown in FIG. 77, when the light source device 2 is in a non-lighting state, external light L1 incident from the surface side of the color filter enters the upper lattice layer 51 from the air layer. The refractive index of the upper grating layer 51 is approximated to a size averaged by the refractive index of the first upper dielectric layer 52 and the refractive index of the second upper dielectric layer 53. That is, the refractive index of the upper lattice layer 51 is a size controlled by the second upper dielectric layer 53, which is a sea component, and a value close to that of the air layer. At this time, since the external light L1 enters the upper lattice layer 51 having a refractive index close to that of the air layer from the air layer, Fresnel reflection hardly occurs at the interface between the air layer and the upper lattice layer 51. Therefore, reflection at the interface between the air layer and the upper lattice layer 51 is suppressed, and light incident on the upper lattice layer 51 passes through the upper lattice layer 51 and reaches the second lattice layer 41.
 第2格子層41の屈折率は、第2金属層42の屈折率と第2誘電体層44の屈折率とによって平均化された大きさに近似される。すなわち、第2格子層41の屈折率は、海成分である第2誘電体層44に支配された大きさであり、空気層の屈折率よりも高い値である。また、第2格子層41は金属と誘電体とからなる格子構造を有し、第2金属層42の構造周期PTはサブ波長周期であるため、第2格子層41ではプラズモン共鳴が生じる。したがって、第2格子層41に到達した光の一部は、上部格子層51と第2格子層41との界面で反射し、第2格子層41に到達した光の一部は、表面プラズモンに変換されて第2格子層41を透過する。プラズモン共鳴によって消費される波長領域の光EP2は、上部格子層51と第2格子層41との界面で反射されない。 The refractive index of the second lattice layer 41 is approximated to a size averaged by the refractive index of the second metal layer 42 and the refractive index of the second dielectric layer 44. That is, the refractive index of the second lattice layer 41 is a size controlled by the second dielectric layer 44, which is a sea component, and is higher than the refractive index of the air layer. Further, since the second lattice layer 41 has a lattice structure composed of a metal and a dielectric, and the structural period PT of the second metal layer 42 is a sub-wavelength period, plasmon resonance occurs in the second lattice layer 41. Therefore, a part of the light reaching the second grating layer 41 is reflected at the interface between the upper grating layer 51 and the second grating layer 41, and a part of the light reaching the second grating layer 41 is reflected on the surface plasmon. It is converted and passes through the second lattice layer 41. Light EP2 in the wavelength region consumed by plasmon resonance is not reflected at the interface between the upper grating layer 51 and the second grating layer 41.
 中間格子層31の屈折率は、第1中間誘電体層32の屈折率と第2中間誘電体層34の屈折率とによって平均化された大きさに近似される。すなわち、中間格子層31の屈折率は、海成分である第2中間誘電体層34に支配された大きさである。第1中間誘電体層32と第2中間誘電体層34とは、可視領域の光を透過する透明な誘電体であるため、中間格子層31は、可視領域の光の透過性が高い。第2格子層41の屈折率と中間格子層31の屈折率との差によっては、中間格子層31に到達した光の一部は、第2格子層41と中間格子層31との界面で反射する。 The refractive index of the intermediate grating layer 31 is approximated to a size averaged by the refractive index of the first intermediate dielectric layer 32 and the refractive index of the second intermediate dielectric layer 34. That is, the refractive index of the intermediate lattice layer 31 is a size controlled by the second intermediate dielectric layer 34 that is a sea component. Since the first intermediate dielectric layer 32 and the second intermediate dielectric layer 34 are transparent dielectric materials that transmit light in the visible region, the intermediate lattice layer 31 has high light transmittance in the visible region. Depending on the difference between the refractive index of the second grating layer 41 and the refractive index of the intermediate grating layer 31, a part of the light reaching the intermediate grating layer 31 is reflected at the interface between the second grating layer 41 and the intermediate grating layer 31. To do.
 第1格子層21の屈折率は、第1誘電体層22の屈折率と第1金属層23の屈折率とによって平均化された大きさに近似される。すなわち、第1格子層21の屈折率は、海成分である第1金属層23に支配された大きさである。また、第1格子層21は金属と誘電体とからなる格子構造を有し、第1誘電体層22の構造周期PTはサブ波長周期であるため、第1格子層21ではプラズモン共鳴が生じる。したがって、第1格子層21に到達した光の一部は、中間格子層31と第1格子層21との界面で反射し、第1格子層21に到達した光の一部は、表面プラズモンに変換されて第1格子層21を透過する。プラズモン共鳴によって消費される波長領域の光EP1は、中間格子層31と第1格子層21との界面で反射されない。 The refractive index of the first lattice layer 21 is approximated to a size averaged by the refractive index of the first dielectric layer 22 and the refractive index of the first metal layer 23. That is, the refractive index of the first lattice layer 21 is controlled by the first metal layer 23 that is a sea component. In addition, the first lattice layer 21 has a lattice structure made of a metal and a dielectric, and the structural period PT of the first dielectric layer 22 is a sub-wavelength period. Therefore, plasmon resonance occurs in the first lattice layer 21. Therefore, a part of the light reaching the first lattice layer 21 is reflected at the interface between the intermediate lattice layer 31 and the first lattice layer 21, and a part of the light reaching the first lattice layer 21 is reflected on the surface plasmon. It is converted and passes through the first lattice layer 21. The light EP 1 in the wavelength region consumed by plasmon resonance is not reflected at the interface between the intermediate grating layer 31 and the first grating layer 21.
 第1格子層21を透過した光の一部は、第1格子層21と支持部11との界面や、中間層11bと基材11aとの界面や、支持部11と空気層との界面で反射され得る。そして、第1格子層21を透過した光の波長領域の一部の光LP1は、支持部11を透過してカラーフィルタの裏面側に射出される。 A part of the light transmitted through the first grating layer 21 is at the interface between the first grating layer 21 and the support part 11, the interface between the intermediate layer 11b and the substrate 11a, or the interface between the support part 11 and the air layer. Can be reflected. Then, a part of the light LP1 in the wavelength region of the light transmitted through the first grating layer 21 passes through the support portion 11 and is emitted to the back surface side of the color filter.
 各層の界面で反射した光は、カラーフィルタの表面側に射出され、これらの光の光路差に起因して干渉を起こす。結果として、カラーフィルタの外側から外光L1を入射させたとき、カラーフィルタの表面側には、プラズモン共鳴および光の干渉が作用した特定の波長領域の光LR1が射出される。ただし、第1金属層23および第2金属層42の厚さが十分に薄いため、反射光である光LR1の強度は抑えられる。結果として、カラーフィルタの外側から上部格子層51へ外光L1を入射させて、カラーフィルタの表面側から表面410Sを観察する非点灯時観察によれば、黒色および白色とは異なる有色の色彩であって、かつ、暗色の色彩が、副画素410Aで視認される。 The light reflected at the interface of each layer is emitted to the surface side of the color filter and causes interference due to the optical path difference between these lights. As a result, when external light L1 is incident from the outside of the color filter, light LR1 in a specific wavelength region in which plasmon resonance and light interference act is emitted on the surface side of the color filter. However, since the first metal layer 23 and the second metal layer 42 are sufficiently thin, the intensity of the light LR1 that is the reflected light can be suppressed. As a result, according to the non-lighting observation in which the external light L1 is incident on the upper lattice layer 51 from the outside of the color filter and the surface 410S is observed from the surface side of the color filter, the color is different from black and white. In addition, a dark color is visually recognized by the sub-pixel 410A.
 図78が示すように、光源装置2から副画素410Aの裏面410Tに白色の光LAを入射させたとき、同様に、第1格子層21および第2格子層41の各々ではプラズモン共鳴が生じる。そして、カラーフィルタの表面側には、第1格子層21および第2格子層41の各々を透過した表面プラズモンが再変換された光と、すべての層を透過した光とを含む特定の波長領域の光LP2が射出される。したがって、光源装置2からカラーフィルタへ光LAを入射させて、カラーフィルタの表面側から表面410Sを観察する点灯時観察では、副画素410Aの種類に応じた色変換後の光LP2、すなわち、黒色および白色とは異なる有色の色彩が、副画素410Aで視認される。 As shown in FIG. 78, when the white light LA is incident on the back surface 410T of the sub-pixel 410A from the light source device 2, similarly, plasmon resonance occurs in each of the first grating layer 21 and the second grating layer 41. On the surface side of the color filter, a specific wavelength region including light obtained by reconverting the surface plasmons transmitted through each of the first grating layer 21 and the second grating layer 41 and light transmitted through all the layers. Light LP2 is emitted. Therefore, in the lighting observation in which the light LA is incident on the color filter from the light source device 2 and the surface 410S is observed from the surface side of the color filter, the light LP2 after color conversion corresponding to the type of the sub-pixel 410A, that is, black In addition, a colored color different from white is visually recognized by the sub-pixel 410A.
 一方、光源装置2から副画素410Aの裏面410Tに白色の光LAを入射させたとき、カラーフィルタの裏面側には、各層の界面で反射した光として、フレネル反射に加えてプラズモン共鳴や光の干渉が作用した特定の波長領域の光LR2が射出されるが、光LR2の強度は低く抑えられる。 On the other hand, when the white light LA is incident from the light source device 2 to the back surface 410T of the sub-pixel 410A, the light reflected from the interface of each layer is reflected on the back surface side of the color filter in addition to Fresnel reflection and plasmon resonance or light. The light LR2 in a specific wavelength region where the interference acts is emitted, but the intensity of the light LR2 is kept low.
 なお、上述のように、第1格子層21および第2格子層41の各々において特定の波長領域の光に対しプラズモン共鳴が生じるため、格子層21,41ごとに、プラズモン共鳴によって消費されて格子層21,41を透過する波長領域と、プラズモン共鳴によって消費されずに格子層21,41と他の層との界面で反射される波長領域とは異なる波長領域となる。したがって、反射光である光LR1,LR2と、透過光である光LP1,LP2との波長領域は互いに異なる。 As described above, since plasmon resonance occurs with respect to light in a specific wavelength region in each of the first grating layer 21 and the second grating layer 41, each of the grating layers 21 and 41 is consumed by plasmon resonance. The wavelength region transmitted through the layers 21 and 41 is different from the wavelength region that is not consumed by plasmon resonance and is reflected at the interface between the lattice layers 21 and 41 and other layers. Therefore, the wavelength regions of the light beams LR1 and LR2 that are reflected light and the light beams LP1 and LP2 that are transmitted light are different from each other.
 また、構造周期PTに対する幅WTの比が0.30以上0.65以下であるため、プラズモン共鳴が生じる第1格子層21と第2格子層41のうち、第1格子層21は、第1金属層23が支配的に位置する層となり、第2格子層41は、第2誘電体層44が支配的に位置する層となる。こうした構造の違いに起因して、第1格子層21と第2格子層41とで、プラズモン共鳴により消費される波長領域は異なり、また、第1格子層21と他の層との界面と、第2格子層41と他の層との界面とで、光の反射率は異なる。カラーフィルタの表面側から副画素410Aに入射する光は、第1格子層21よりも第2格子層41に先に到達し、第2格子層41による光学的作用を大きく受ける。一方、カラーフィルタの裏面側から副画素410Aに入射する光は、第2格子層41よりも第1格子層21に先に到達し、第1格子層21による光学的作用を大きく受ける。結果として、表面側から副画素410Aに光が入射する場合と、裏面側から副画素410Aに光が入射する場合とで、特に反射光の色彩が大きく異なる。 Further, since the ratio of the width WT to the structural period PT is not less than 0.30 and not more than 0.65, the first lattice layer 21 of the first lattice layer 21 and the second lattice layer 41 in which plasmon resonance occurs is the first lattice layer 21. The metal layer 23 is a dominant layer, and the second lattice layer 41 is a layer where the second dielectric layer 44 is dominant. Due to the difference in structure, the wavelength region consumed by plasmon resonance is different between the first lattice layer 21 and the second lattice layer 41, and the interface between the first lattice layer 21 and the other layers, The light reflectance is different at the interface between the second lattice layer 41 and other layers. Light incident on the sub-pixel 410A from the surface side of the color filter reaches the second grating layer 41 earlier than the first grating layer 21, and is greatly subjected to the optical action by the second grating layer 41. On the other hand, light incident on the sub-pixel 410A from the back side of the color filter reaches the first grating layer 21 earlier than the second grating layer 41, and is greatly affected by the optical action of the first grating layer 21. As a result, the color of the reflected light is particularly different between when light enters the subpixel 410A from the front side and when light enters the subpixel 410A from the back side.
 さらに、各格子層21,41においてプラズモン共鳴によって消費される波長領域は、各格子層21,41の格子構造、すなわち、構造周期PTや各格子層21,41の厚さや第1誘電体層22および第2金属層42の幅WTによって変わり、また、各格子層21,41の材料、すなわち、金属層61の材料や凸部11Tの材料の屈折率や誘電体層62の材料の屈折率によって変わる。したがって、例えば、第1格子層21における第1誘電体層22の材料の選択や、第2格子層41における第2誘電体層44の材料の選択によって、反射光や透過光の波長領域を調整することができる。すなわち、副画素410Aによる変換後の光の色の調整が可能である。 Furthermore, the wavelength region consumed by plasmon resonance in each of the lattice layers 21 and 41 is the lattice structure of each of the lattice layers 21 and 41, that is, the structural period PT, the thickness of each of the lattice layers 21 and 41, and the first dielectric layer 22. Depending on the width WT of the second metal layer 42, and also depending on the material of each of the lattice layers 21, 41, that is, the refractive index of the metal layer 61 and the convex portion 11T and the refractive index of the dielectric layer 62. change. Therefore, for example, the wavelength region of reflected light or transmitted light is adjusted by selecting the material of the first dielectric layer 22 in the first lattice layer 21 or selecting the material of the second dielectric layer 44 in the second lattice layer 41. can do. That is, the color of light after conversion by the sub-pixel 410A can be adjusted.
 例えば、同一の構造周期PTを有する2つの副画素410Aであって、凸部11Tおよび金属層61の各々の材料が2つの副画素410Aで同一であり、誘電体層62の材料が2つの副画素410Aで異なる副画素410Aを比較する。すなわち、2つの副画素410Aにおいて、第1格子層21の構成は同一であり、中間格子層31における第1中間誘電体層32の材料も同一であり、第2格子層41における第2金属層42の材料も同一である。一方、2つの副画素410Aにおいて、中間格子層31における第2中間誘電体層34の材料は互いに異なり、第2格子層41における第2誘電体層44の材料は互いに異なり、上部格子層51における第1上部誘電体層52の材料も互いに異なっている。このように、2つの副画素410Aにおいて、中間格子層31、第2格子層41、および、上部格子層51の各々の構成が互いに異なっていることにより、これらの層を透過する光の波長領域は、2つの副画素410Aで互いに異なる。したがって、2つの副画素410Aが出射する色変換後の光の波長領域は互いに異なる。 For example, in the two subpixels 410A having the same structural period PT, the materials of the convex portion 11T and the metal layer 61 are the same in the two subpixels 410A, and the material of the dielectric layer 62 is the two subpixels. Different sub-pixels 410A are compared in pixel 410A. That is, in the two subpixels 410A, the configuration of the first lattice layer 21 is the same, the material of the first intermediate dielectric layer 32 in the intermediate lattice layer 31 is also the same, and the second metal layer in the second lattice layer 41 is the same. The material of 42 is also the same. On the other hand, in the two subpixels 410A, the materials of the second intermediate dielectric layer 34 in the intermediate lattice layer 31 are different from each other, the materials of the second dielectric layer 44 in the second lattice layer 41 are different from each other, and in the upper lattice layer 51 The materials of the first upper dielectric layer 52 are also different from each other. As described above, in the two subpixels 410A, the structures of the intermediate lattice layer 31, the second lattice layer 41, and the upper lattice layer 51 are different from each other, so that the wavelength region of light transmitted through these layers is different. Are different from each other in the two sub-pixels 410A. Therefore, the wavelength regions of the light after color conversion emitted from the two subpixels 410A are different from each other.
 以上のように、第10実施形態においても、光学フィルタからは、プラズモン共鳴に起因して、特定の波長領域の光が反射光もしくは透過光として射出される。そして、各凸部11Tである周期要素の位置や大きさと、各周期要素によって位置が定まる金属層とを含む複数の因子によって、上記透過光や反射光の波長領域が定まるため、光学フィルタにて透過あるいは反射される波長領域の調整の自由度を高めることができる。 As described above, also in the tenth embodiment, light in a specific wavelength region is emitted from the optical filter as reflected light or transmitted light due to plasmon resonance. Since the wavelength region of the transmitted light and the reflected light is determined by a plurality of factors including the position and size of the periodic element that is each convex portion 11T and the metal layer that is determined by each periodic element, the optical filter It is possible to increase the degree of freedom in adjusting the wavelength region that is transmitted or reflected.
 また、第9実施形態と同様、フィルタ要素が透過する光の波長領域の分布をフィルタ要素内において調整する自由度を高めることを可能とした光学フィルタを提供することも、第10実施形態の目的である。こうした課題に対する効果を含めて、第10実施形態によれば、第9実施形態の(9-1)~(9-5),(9-8)の効果に加えて、以下に列挙する効果が得られる。 Further, as in the ninth embodiment, it is also an object of the tenth embodiment to provide an optical filter that can increase the degree of freedom of adjusting the distribution of the wavelength region of light transmitted through the filter element within the filter element. It is. In addition to the effects (9-1) to (9-5) and (9-8) of the ninth embodiment, according to the tenth embodiment, including the effects on these problems, the effects listed below are provided. can get.
 (10-1)副画素410Aが誘電体層62を備えているため、誘電体層62を構成する材料の変更によって、副画素410Aが透過する波長領域を調整することができる。したがって、副画素410Aが透過する光の波長領域の分布を副画素410A内において調整する自由度がさらに高められる。 (10-1) Since the sub-pixel 410A includes the dielectric layer 62, the wavelength region transmitted through the sub-pixel 410A can be adjusted by changing the material constituting the dielectric layer 62. Therefore, the degree of freedom for adjusting the distribution of the wavelength region of light transmitted through the sub-pixel 410A within the sub-pixel 410A is further increased.
 (10-2)誘電体層62が、チタン、ニオブ、アルミニウム、タンタル、ハフニウム、ジルコニウム、珪素、マグネシウムからなる群から選択されるいずれか1つの材料の酸化物を含む材料から構成される形態であれば、誘電体層62の屈折率を広い範囲から選択可能である。したがって、副画素410Aが透過する波長領域の調整の自由度が高められる。 (10-2) The dielectric layer 62 is composed of a material including an oxide of any one material selected from the group consisting of titanium, niobium, aluminum, tantalum, hafnium, zirconium, silicon, and magnesium. If so, the refractive index of the dielectric layer 62 can be selected from a wide range. Therefore, the degree of freedom in adjusting the wavelength region transmitted through the subpixel 410A is increased.
 (10-3)誘電体層62の厚さT7が、凸部11Tの高さである厚さT5以下である構成であれば、副画素410Aにおける光の透過性が高められるため、副画素410Aの透過する光の強度が高められる。したがって、各副画素410Aにおける色味の鮮明さや各副画素410Aにおける光の輝度を高めることが可能ともなる。また、誘電体層62の厚さT7が、200nm以下である構成であれば、副画素410Aにおける光の透過性が十分に高められる。 (10-3) If the thickness T7 of the dielectric layer 62 is equal to or less than the thickness T5 that is the height of the convex portion 11T, the light transmittance in the subpixel 410A is improved, and thus the subpixel 410A. The intensity of transmitted light is increased. Accordingly, it is possible to increase the vividness of the color in each sub-pixel 410A and the luminance of light in each sub-pixel 410A. Further, if the thickness T7 of the dielectric layer 62 is 200 nm or less, the light transmittance in the sub-pixel 410A is sufficiently enhanced.
 <第10実施形態の変形例>
 上記第10実施形態は、以下のように変更して実施することもできる。
 ・孤立領域A2と周辺領域A3とからなる平面において、孤立領域A2が占める面積比率、すなわち、基準面と凸部11Tとを含む平面において、単位面積あたりにおいて凸部11Tが占める面積の割合は、0.1より大きいことが好ましい。上記面積比率が0.1より大きい構成であれば、凸部11Tの幅に対する高さの比であるアスペクト比が過度に大きくなることが抑えられるため、支持部11と凸部11Tとからなる構造体の耐久性が高められ、また、凸部11Tの加工の精度が得られやすい。
<Modification of 10th Embodiment>
The tenth embodiment can be implemented with the following modifications.
The ratio of the area occupied by the isolated region A2 in the plane composed of the isolated region A2 and the peripheral region A3, that is, the ratio of the area occupied by the convex portion 11T per unit area in the plane including the reference surface and the convex portion 11T is: Preferably it is greater than 0.1. If the area ratio is greater than 0.1, the aspect ratio, which is the ratio of the height to the width of the convex portion 11T, can be prevented from becoming excessively large. Therefore, the structure including the support portion 11 and the convex portion 11T. The durability of the body is improved and the processing accuracy of the convex portion 11T is easily obtained.
 一方、上記面積比率が0.5より小さい構成であれば、上部格子層51とその上層との界面においてフレネル反射が生じることが好適に抑えられる。なお、金属層61や誘電体層62の製法によっては、これらの層の形成の際に凸部11Tの側面にも材料が付着する。上記面積比率が0.5より小さい構成であれば、互いに隣り合う凸部11T間の領域の大きさが十分に確保され、凸部11T間の領域が、金属層61や誘電体層62の形成の際に凸部11Tの側面に付着した材料によって埋まることが抑えられる。したがって、金属層61および誘電体層62が下層の表面形状に追従した形状に形成されやすい。その結果、第1上部誘電体層52が点在する上部格子層51が好適に形成され、上部格子層51の界面でフレネル反射を抑える効果が好適に得られる。 On the other hand, if the area ratio is smaller than 0.5, it is possible to suitably suppress the occurrence of Fresnel reflection at the interface between the upper lattice layer 51 and the upper layer. Note that, depending on the manufacturing method of the metal layer 61 and the dielectric layer 62, the material also adheres to the side surface of the convex portion 11T when these layers are formed. If the area ratio is smaller than 0.5, the area between the adjacent protrusions 11T is sufficiently large, and the area between the protrusions 11T forms the metal layer 61 and the dielectric layer 62. In this case, it is possible to prevent the material from adhering to the side surface of the convex portion 11T from being buried. Therefore, the metal layer 61 and the dielectric layer 62 are easily formed in a shape that follows the surface shape of the lower layer. As a result, the upper lattice layer 51 interspersed with the first upper dielectric layer 52 is preferably formed, and the effect of suppressing Fresnel reflection at the interface of the upper lattice layer 51 is preferably obtained.
 副画素410Aの特に表面側でフレネル反射を抑えるためには、第2上部誘電体層53に対して第2格子層41とは反対側で第2上部誘電体層53に接する層である表面層と、第2上部誘電体層53との間の屈折率差は、第1金属層23と支持部11との間の屈折率差よりも小さいことが好ましい。表面層は、例えば空気層である。そして、第2上部誘電体層53の屈折率は、表面層の屈折率と等しいことがさらに好ましい。 In order to suppress Fresnel reflection particularly on the surface side of the sub-pixel 410A, a surface layer that is a layer in contact with the second upper dielectric layer 53 on the side opposite to the second grating layer 41 with respect to the second upper dielectric layer 53. The refractive index difference between the first upper dielectric layer 53 and the second upper dielectric layer 53 is preferably smaller than the refractive index difference between the first metal layer 23 and the support portion 11. The surface layer is, for example, an air layer. The refractive index of the second upper dielectric layer 53 is more preferably equal to the refractive index of the surface layer.
 ・第10実施形態においても、第9実施形態と同様に、第1金属層23と第2金属層42とは、図71に示した形状的特徴を有し得る。そして、金属層61は、第1中間誘電体層32の側面に位置して第2金属層42に連続する金属層である中間金属層32Aを含み得る。中間金属層32Aは、第1中間誘電体層32と第2中間誘電体層34とに挟まれ、第1中間誘電体層32の側面上での厚さが、第1金属層23に近い部位ほど薄い。なお、中間金属層32Aの存在によって、中間格子層31でもプラズモン共鳴が生じ得る。 In the tenth embodiment as well, as in the ninth embodiment, the first metal layer 23 and the second metal layer 42 may have the shape characteristics shown in FIG. The metal layer 61 may include an intermediate metal layer 32 </ b> A that is a metal layer located on the side surface of the first intermediate dielectric layer 32 and continuing to the second metal layer 42. The intermediate metal layer 32 </ b> A is sandwiched between the first intermediate dielectric layer 32 and the second intermediate dielectric layer 34, and the thickness on the side surface of the first intermediate dielectric layer 32 is close to the first metal layer 23. It is so thin. Note that plasmon resonance can also occur in the intermediate lattice layer 31 due to the presence of the intermediate metal layer 32A.
 ・第10実施形態においても、第9実施形態の図72で示した構造と同様に、凸部11Tの形状は、支持部11の表面から突き出る錐体状であってもよい。
 ・図79が示すように、カラーフィルタは、誘電体層62の上に保護層48をさらに備えてもよい。こうした構成によれば、支持部11および凸部11Tと、金属層61と、誘電体層62とから構成される構造体を保護することができる。保護層48は、第2上部誘電体層53と一体の構造体に具体化できる。この際、保護層48は、低屈折率の樹脂層であることが好ましい。低屈折率の樹脂層は、第1誘電体層22の屈折率や第1中間誘電体層32の屈折率よりも空気層の屈折率に近い屈折率を有する。
-Also in 10th Embodiment, the shape of the convex part 11T may be the cone shape which protrudes from the surface of the support part 11 similarly to the structure shown in FIG. 72 of 9th Embodiment.
As shown in FIG. 79, the color filter may further include a protective layer 48 on the dielectric layer 62. According to such a structure, the structure comprised from the support part 11 and the convex part 11T, the metal layer 61, and the dielectric material layer 62 can be protected. The protective layer 48 can be embodied in a structure that is integral with the second upper dielectric layer 53. At this time, the protective layer 48 is preferably a low refractive index resin layer. The low refractive index resin layer has a refractive index closer to the refractive index of the air layer than the refractive index of the first dielectric layer 22 and the refractive index of the first intermediate dielectric layer 32.
 また、カラーフィルタの表面を構成する保護層48がフッ素を含む樹脂から構成される形態であれば、カラーフィルタの表面に汚れが付着することが抑えられる。
 なお、保護層48は、図79が示すように平坦な表面を有していてもよいし、誘電体層62の表面形状に追従した形状を有していてもよい。
Further, if the protective layer 48 constituting the surface of the color filter is made of a resin containing fluorine, it is possible to prevent dirt from adhering to the surface of the color filter.
Note that the protective layer 48 may have a flat surface as shown in FIG. 79, or may have a shape following the surface shape of the dielectric layer 62.
 ・副画素410Aの表面410Sと対向する方向から見た孤立領域A2の配置は、正方配列および六方配列に限らず、二次元格子状であればよい。すなわち、複数の第1誘電体層22は二次元格子状に並んでいればよく、また、複数の第1中間誘電体層32も二次元格子状に並んでいればよく、また、複数の第2金属層42も二次元格子状に並んでいればよく、また、複数の第1上部誘電体層52も二次元格子状に並んでいればよい。換言すれば、周期構造体の周期要素は、サブ波長周期を有した二次元格子状に並んでいればよい。二次元格子状の配列は、二次元平面内において交差する2つの方向の各々に沿って要素が並ぶ配列である。この際、構造周期PTに対する幅WTの比は、1つの方向での構造周期PTに対する幅WTの比であり、当該比が所定の範囲内であるとは、周期要素が並ぶ上記2つの方向の各々について、構造周期PTに対する幅WTの比が所定の範囲内であることを示す。また、カラーフィルタが有する各層の厚さが構造周期PTに対して所定の範囲内であるとは、周期要素が並ぶ上記2つの方向の各々における構造周期PTに対して、各層の厚さが所定の範囲内であることを示す。 The arrangement of the isolated region A2 viewed from the direction facing the surface 410S of the subpixel 410A is not limited to a square array and a hexagonal array, and may be a two-dimensional lattice shape. That is, the plurality of first dielectric layers 22 may be arranged in a two-dimensional lattice, the plurality of first intermediate dielectric layers 32 may be arranged in a two-dimensional lattice, and the plurality of first dielectric layers 22 may be arranged. The two metal layers 42 need only be arranged in a two-dimensional lattice, and the plurality of first upper dielectric layers 52 need only be arranged in a two-dimensional lattice. In other words, the periodic elements of the periodic structure need only be arranged in a two-dimensional lattice shape having a sub-wavelength period. The two-dimensional lattice-like arrangement is an arrangement in which elements are arranged along each of two directions intersecting in a two-dimensional plane. At this time, the ratio of the width WT to the structural period PT is the ratio of the width WT to the structural period PT in one direction, and that the ratio is within a predetermined range means that the two elements in which the periodic elements are arranged Each indicates that the ratio of the width WT to the structural period PT is within a predetermined range. The thickness of each layer included in the color filter is within a predetermined range with respect to the structural period PT. The thickness of each layer is predetermined with respect to the structural period PT in each of the two directions in which the periodic elements are arranged. It is within the range of.
 また、副画素410Aの表面410Sと対向する方向から見た孤立領域A2の形状、すなわち、周期要素の平面形状は、正方形に限らず、長方形や他の多角形であってもよいし、円形であってもよい。 Further, the shape of the isolated region A2 viewed from the direction facing the surface 410S of the sub-pixel 410A, that is, the planar shape of the periodic element is not limited to a square, but may be a rectangle or other polygons, There may be.
 ・第10実施形態においても、基準面に並ぶ周期要素は、支持部11の表面が備える有底の孔であってもよい。具体的には、図80が示すように、孤立領域A2には、支持部11の表面から窪む孔である凹部11Hが位置する。副画素410Aの表面410Sと対向する方向から見て、複数の凹部11Hは、サブ波長周期を有した二次元格子状に並ぶ。こうした構成においては、支持部11が周期構造体である。そして、周期構造体が有する周期要素は、支持部11の表面を基準面として、基準面から窪む凹部11Hである。また、周期要素の一端部は、各凹部11Hの備える開口部であり、周期要素の他端部は、各凹部11Hの備える底面である。 In the tenth embodiment, the periodic element arranged on the reference plane may be a bottomed hole provided on the surface of the support portion 11. Specifically, as illustrated in FIG. 80, a recessed portion 11 </ b> H that is a hole recessed from the surface of the support portion 11 is located in the isolated region A <b> 2. When viewed from the direction facing the surface 410S of the sub-pixel 410A, the plurality of recesses 11H are arranged in a two-dimensional lattice pattern having a sub-wavelength period. In such a configuration, the support portion 11 is a periodic structure. And the periodic element which a periodic structure has is the recessed part 11H recessed from a reference plane by using the surface of the support part 11 as a reference plane. One end of the periodic element is an opening provided in each recess 11H, and the other end of the periodic element is a bottom surface provided in each recess 11H.
 この場合も、金属層61は、周期構造体の表面形状に追従する形状を有し、誘電体層62は、金属層61の表面形状に追従する形状を有する。そして、各凹部11Hの開口部を囲う網目状に第1金属層23が位置し、各凹部11Hの底面に、第2金属層42が位置する。第1金属層23の上に網目状の誘電体層75が位置し、第2金属層42の上に、二次元格子状に並ぶ誘電体層76が位置する。この際、各第2金属層42と、支持部11のなかで各第2金属層42を囲う網目状の部分とによって、金属と誘電体とからなる格子構造が形成される。また、第2金属層42上に位置する誘電体層76と、第1金属層23とによっても、金属と誘電体とからなる格子構造が形成される。カラーフィルタに光が照射されると、これらの格子構造を有する層にて、プラズモン共鳴が生じることに起因して、副画素410Aは、特定の波長領域の光を透過する。こうした構成によっても、上記(10-1)~(10-3)に準じた効果が得られる。 Also in this case, the metal layer 61 has a shape that follows the surface shape of the periodic structure, and the dielectric layer 62 has a shape that follows the surface shape of the metal layer 61. And the 1st metal layer 23 is located in the mesh shape surrounding the opening part of each recessed part 11H, and the 2nd metal layer 42 is located in the bottom face of each recessed part 11H. A mesh-like dielectric layer 75 is positioned on the first metal layer 23, and a dielectric layer 76 arranged in a two-dimensional lattice pattern is positioned on the second metal layer 42. At this time, a lattice structure made of a metal and a dielectric is formed by each second metal layer 42 and a mesh-like portion surrounding each second metal layer 42 in the support portion 11. Further, the dielectric layer 76 located on the second metal layer 42 and the first metal layer 23 also form a lattice structure made of metal and dielectric. When the color filter is irradiated with light, the sub-pixel 410A transmits light in a specific wavelength region due to plasmon resonance occurring in the layer having these lattice structures. Even with such a configuration, the effects according to the above (10-1) to (10-3) can be obtained.
 なお、周期要素である凸部または凹部には、第7実施形態、第8実施形態、および、これらの変形例の凸部や凹部の形状が適用されてもよい。
 ・第10実施形態の光学フィルタの構成は、第9実施形態と同様に、撮像素子に用いられるフィルタに適用されてもよい。
In addition, the shape of the convex part or recessed part of 7th Embodiment, 8th Embodiment, and these modifications may be applied to the convex part or recessed part which is a periodic element.
-The structure of the optical filter of 10th Embodiment may be applied to the filter used for an image pick-up element similarly to 9th Embodiment.
 <付記>
 上記課題を解決するための手段には、第9実施形態、第10実施形態、および、それらの変形例から導き出される技術的思想として以下の項目が含まれる。
<Appendix>
Means for solving the above-mentioned problems include the following items as technical ideas derived from the ninth embodiment, the tenth embodiment, and modifications thereof.
 [項目71]
 特定の波長領域の光を選択的に透過する複数のフィルタ要素を備え、前記フィルタ要素は、誘電体から構成される周期構造体であって、二次元格子状に並ぶ複数の周期要素を備えた前記周期構造体と、前記周期構造体の表面に位置する金属層と、を備え、前記周期構造体において前記複数の周期要素の並ぶ平面が基準面であり、前記周期要素は、前記基準面に一端部を有して前記基準面から突出する凸部と、前記基準面に一端部を有して前記基準面から窪む凹部とのいずれか一方であり、前記金属層は、前記基準面のなかで各周期要素の前記一端部を囲む網目状を有した第1金属層と、各周期要素の他端部に位置する第2金属層とを備え、前記周期要素の構造周期が、前記フィルタ要素が透過する前記波長領域以下のサブ波長周期であり、前記二次元格子に沿った各方向での前記構造周期に対する前記周期要素の幅の比が、0.30以上0.65以下であり、前記金属層は、可視領域の光に対する複素誘電率の実部が負の値であり、前記金属層の厚さが、前記周期要素における前記一端部と前記他端部との距離の10分の1以下である光学フィルタ。
[Item 71]
A plurality of filter elements that selectively transmit light in a specific wavelength region, the filter element is a periodic structure composed of a dielectric, and includes a plurality of periodic elements arranged in a two-dimensional lattice pattern The periodic structure and a metal layer positioned on the surface of the periodic structure, wherein a plane in which the plurality of periodic elements are arranged in the periodic structure is a reference plane, and the periodic element is arranged on the reference plane. One of a convex portion projecting from the reference surface with one end portion and a concave portion having one end portion on the reference surface and recessed from the reference surface, and the metal layer of the reference surface A first metal layer having a mesh shape surrounding the one end of each periodic element, and a second metal layer positioned at the other end of each periodic element, wherein the structural period of the periodic element is the filter. Sub-wavelength period below the wavelength region through which the element is transmitted, The ratio of the width of the periodic element to the structural period in each direction along the two-dimensional lattice is not less than 0.30 and not more than 0.65, and the metal layer is a real part of a complex dielectric constant for light in the visible region Is a negative value, and the thickness of the metal layer is 1/10 or less of the distance between the one end and the other end of the periodic element.
 上記光学フィルタにおいて、基準面に沿う仮想的な層であって第1金属層を含む層は、第1格子層であり、第1格子層では、金属層と誘電体との界面が、サブ波長周期で繰り返される。また、基準面に沿う仮想的な層であって複数の第2金属層を含む層は、第2格子層であり、第2格子層でも、金属層と誘電体との界面が、サブ波長周期で繰り返される。これら第1格子層や第2格子層では、プラズモン共鳴が生じる。第1格子層では、第1格子層に入射した光の一部が、プラズモン共鳴により表面プラズモンに変換され、表面プラズモンは第1格子層を透過する。第2格子層でもまた、第2格子層に入射した光の一部が、プラズモン共鳴により表面プラズモンに変換され、第2格子層を透過する。第1格子層、あるいは第2格子層を透過した表面プラズモンは、光に再変換されて射出される。 In the optical filter, a virtual layer along the reference plane and including the first metal layer is a first lattice layer, and the interface between the metal layer and the dielectric is a sub-wavelength in the first lattice layer. Repeated in a cycle. Further, the virtual layer along the reference plane and including the plurality of second metal layers is the second lattice layer, and even in the second lattice layer, the interface between the metal layer and the dielectric has a sub-wavelength period. Is repeated. Plasmon resonance occurs in these first and second lattice layers. In the first lattice layer, part of the light incident on the first lattice layer is converted into surface plasmons by plasmon resonance, and the surface plasmons are transmitted through the first lattice layer. Also in the second lattice layer, a part of the light incident on the second lattice layer is converted into surface plasmon by plasmon resonance and is transmitted through the second lattice layer. The surface plasmon transmitted through the first lattice layer or the second lattice layer is reconverted into light and emitted.
 この際、構造周期に対する周期要素の幅の比が、0.30以上0.65以下であり、また、金属層の厚さが、各周期要素における一端部と他端部との距離の10分の1以下であるため、第1金属層と第2金属層との両方において、光の透過性が確保される。また、第1格子層で透過される光の波長領域や、第2格子層で透過される光の波長領域は、構造周期の大きさや、周期要素の厚さに応じて変わる。結果として、フィルタ要素からは、黒色や白色以外の有色の光が射出される。そして、各周期要素の位置や大きさと、各周期要素によって位置が定まる金属層とによって、フィルタ要素が透過する光の波長領域が定まるため、フィルタ要素が透過する光の波長領域の分布をフィルタ要素内において調整する自由度を高めることができる。 At this time, the ratio of the width of the periodic element to the structural period is 0.30 or more and 0.65 or less, and the thickness of the metal layer is 10 minutes of the distance between one end and the other end of each periodic element. Therefore, light transmission is ensured in both the first metal layer and the second metal layer. Further, the wavelength region of light transmitted through the first lattice layer and the wavelength region of light transmitted through the second lattice layer vary depending on the size of the structural period and the thickness of the periodic element. As a result, colored light other than black or white is emitted from the filter element. Since the wavelength region of light transmitted through the filter element is determined by the position and size of each periodic element and the metal layer whose position is determined by each periodic element, the distribution of the wavelength region of light transmitted through the filter element is determined by the filter element. The degree of freedom of adjustment can be increased.
 [項目72]
 前記周期要素における前記一端部と前記他端部との距離が、100nm以上200nm以下である項目71に記載の光学フィルタ。
[Item 72]
72. The optical filter according to item 71, wherein a distance between the one end and the other end of the periodic element is 100 nm or more and 200 nm or less.
 上記構成によれば、周期要素の一端部と他端部との距離と、それに応じて定まる金属層の厚みとが、フィルタ要素へ入射する光を十分に透過する大きさである。それゆえに、フィルタ要素が透過する光の強度や色味の鮮明さを、さらに高めることが可能である。 According to the above configuration, the distance between the one end portion and the other end portion of the periodic element and the thickness of the metal layer determined accordingly are large enough to transmit light incident on the filter element. Therefore, it is possible to further increase the intensity of light transmitted through the filter element and the vividness of the color.
 [項目73]
 前記金属層の厚さは、15nm以下である項目71または72に記載の光学フィルタ。
 上記構成によれば、金属層の厚さが十分に薄いため、フィルタ要素が透過する光の強度を、十分に確保することが可能である。
[Item 73]
73. The optical filter according to item 71 or 72, wherein the metal layer has a thickness of 15 nm or less.
According to the said structure, since the thickness of a metal layer is thin enough, it is possible to fully ensure the intensity | strength of the light which a filter element permeate | transmits.
 [項目74]
 前記周期要素は、前記凸部であり、前記二次元格子に沿った各方向での前記構造周期に対する前記周期要素の幅の比は、0.5以下である項目71~73のいずれか1つに記載の光学フィルタ。
[Item 74]
The periodic element is the convex part, and the ratio of the width of the periodic element to the structural period in each direction along the two-dimensional lattice is 0.5 or less, and any one of items 71 to 73 The optical filter described in 1.
 上記構成によれば、フィルタ要素の透過する光の強度が高められる。
 [項目75]
 前記金属層を構成する材料が、アルミニウム、タンタル、銀、金からなる群から選択されるいずれか1つの金属材料を含む項目71~74のいずれか1つに記載の光学フィルタ。
According to the said structure, the intensity | strength of the light which a filter element permeate | transmits is raised.
[Item 75]
75. The optical filter according to any one of items 71 to 74, wherein the material constituting the metal layer includes any one metal material selected from the group consisting of aluminum, tantalum, silver, and gold.
 上記構成によれば、金属層を構成する材料が、プラズモン共鳴を生じやすい材料であるため、第1格子層や第2格子層における波長の選択性を高めることができる。したがって、フィルタ要素が透過する光の波長の選択性を高めることができる。 According to the above configuration, since the material constituting the metal layer is a material that easily causes plasmon resonance, the selectivity of the wavelength in the first grating layer and the second grating layer can be enhanced. Therefore, the selectivity of the wavelength of light transmitted through the filter element can be increased.
 [項目76]
 前記金属層の表面に位置し、前記金属層の表面形状に追従する形状を有した誘電体層を備え、前記誘電体層の厚さは、前記周期要素における前記一端部と前記他端部との距離以下である項目71~75のいずれか1つに記載の光学フィルタ。
[Item 76]
The dielectric layer is located on the surface of the metal layer and has a shape following the surface shape of the metal layer, and the thickness of the dielectric layer includes the one end and the other end of the periodic element. 76. The optical filter according to any one of items 71 to 75, which is equal to or less than the distance of.
 上記構成によれば、誘電体層を構成する材料の変更によって、フィルタ要素が透過する光の波長領域を調整することができる。したがって、フィルタ要素が透過する光の波長領域を調整する自由度がさらに高められる。 According to the above configuration, the wavelength region of light transmitted through the filter element can be adjusted by changing the material constituting the dielectric layer. Therefore, the degree of freedom for adjusting the wavelength region of light transmitted through the filter element is further increased.
 [項目77]
 前記誘電体層の厚さは、200nm以下である項目76に記載の光学フィルタ。
 上記構成によれば、フィルタ要素の透過する光の強度が高められる。
[Item 77]
77. The optical filter according to item 76, wherein the dielectric layer has a thickness of 200 nm or less.
According to the said structure, the intensity | strength of the light which a filter element permeate | transmits is raised.
 [項目78]
 前記誘電体層を構成する材料が、チタン、ニオブ、アルミニウム、タンタル、ハフニウム、ジルコニウム、珪素、マグネシウムからなる群から選択されるいずれか1つの材料の酸化物を含む項目76または77に記載の光学フィルタ。
[Item 78]
80. The optical element according to item 76 or 77, wherein the material constituting the dielectric layer includes an oxide of any one material selected from the group consisting of titanium, niobium, aluminum, tantalum, hafnium, zirconium, silicon, and magnesium. filter.
 上記構成によれば、誘電体層が樹脂から構成される場合と比較して、誘電体層の屈折率を広い範囲から選択可能である。したがって、フィルタ要素が透過する光の波長領域を調整する自由度がさらに高められる。 According to the above configuration, the refractive index of the dielectric layer can be selected from a wide range as compared with the case where the dielectric layer is made of resin. Therefore, the degree of freedom for adjusting the wavelength region of light transmitted through the filter element is further increased.
 [項目79]
 前記光学フィルタは、表示装置に備えられるフィルタであり、前記光学フィルタが備える複数の前記フィルタ要素には、各種類に固有の波長領域の光を選択的に透過する複数種類の前記フィルタ要素が含まれる項目71~78のいずれか1つに記載の光学フィルタ。
[Item 79]
The optical filter is a filter included in a display device, and the plurality of filter elements included in the optical filter include a plurality of types of filter elements that selectively transmit light in a wavelength region specific to each type. 79. The optical filter according to any one of items 71 to 78.
 上記構成によれば、表示装置に備えられるカラーフィルタにおいて、副画素として機能するフィルタ要素が透過する光の波長領域の分布を調整する自由度が高められる。
 [項目80]
 前記光学フィルタは、撮像素子に備えられるフィルタである項目71~78のいずれか1つに記載の光学フィルタ。
According to the above configuration, in the color filter provided in the display device, the degree of freedom for adjusting the distribution of the wavelength region of the light transmitted by the filter element that functions as a subpixel is increased.
[Item 80]
79. The optical filter according to any one of items 71 to 78, wherein the optical filter is a filter provided in an image sensor.
 上記構成によれば、撮像素子に備えられるフィルタにおいて、フィルタ要素が透過する光の波長領域の分布を調整する自由度が高められる。
 [項目81]
 項目71~79のいずれか1つに記載の光学フィルタと、前記フィルタ要素に可視領域の光を入射させる光源装置と、を備える表示装置。
According to the above configuration, in the filter provided in the image sensor, the degree of freedom for adjusting the distribution of the wavelength region of the light transmitted by the filter element is increased.
[Item 81]
80. A display device comprising: the optical filter according to any one of items 71 to 79; and a light source device that causes light in a visible region to enter the filter element.
 上記構成によれば、光学フィルタのフィルタ要素は副画素として機能し、こうしたフィルタ要素が透過する光の波長領域の分布を調整する自由度が高められた光学フィルタを備える表示装置が実現される。 According to the above configuration, a display device including an optical filter in which the filter element of the optical filter functions as a sub-pixel and the degree of freedom for adjusting the distribution of the wavelength region of light transmitted by such a filter element is increased is realized.
 [項目82]
 項目71~78,80のいずれか1つに記載の光学フィルタと、前記フィルタ要素を透過した光を受光して電気信号に変換する受光素子と、を備える撮像素子。
[Item 82]
An image pickup device comprising: the optical filter according to any one of items 71 to 78, and 80; and a light receiving element that receives light transmitted through the filter element and converts the light into an electric signal.
 上記構成によれば、フィルタ要素が透過する光の波長領域の分布を調整する自由度が高められた光学フィルタを備える撮像素子が実現される。
 [項目83]
 特定の波長領域の光を選択的に透過する複数のフィルタ要素を備える光学フィルタの製造方法であって、前記フィルタ要素を形成する工程が、基材の表面に塗工された樹脂に凹版の有する凹凸を転写することにより、前記基材の表面と対向する方向から見て、凸部または凹部である複数の周期要素が、前記フィルタ要素が透過する前記波長領域以下のサブ波長周期を有した二次元格子状に位置する周期構造体であって、前記二次元格子に沿った各方向での前記周期要素の構造周期に対する前記周期要素の幅の比が、0.30以上0.65以下である前記周期構造体を形成する第1工程と、前記周期構造体の上に、前記周期構造体の表面形状に追従する形状を有した金属層であって、可視領域の光に対する複素誘電率の実部が負の値の前記金属層を、前記周期構造体において前記複数の周期要素の並ぶ平面に位置する前記周期要素の一端部と前記周期要素の他端部との距離の10分の1以下の厚さに形成する第2工程と、を含む光学フィルタの製造方法。
According to the above configuration, an imaging element including an optical filter with an increased degree of freedom for adjusting the distribution of the wavelength region of light transmitted through the filter element is realized.
[Item 83]
A method of manufacturing an optical filter comprising a plurality of filter elements that selectively transmit light in a specific wavelength region, wherein the step of forming the filter elements has an intaglio in a resin coated on the surface of a substrate By transferring irregularities, a plurality of periodic elements that are convex portions or concave portions, as viewed from the direction facing the surface of the base material, have a sub-wavelength period equal to or less than the wavelength region that the filter element transmits. A periodic structure located in a two-dimensional lattice, wherein the ratio of the width of the periodic element to the structural period of the periodic element in each direction along the two-dimensional lattice is 0.30 or more and 0.65 or less A first step of forming the periodic structure, and a metal layer having a shape following the surface shape of the periodic structure on the periodic structure, and having a complex dielectric constant with respect to light in a visible region. Metal with negative value Is formed to a thickness of 1/10 or less of the distance between one end of the periodic element and the other end of the periodic element located on the plane in which the plurality of periodic elements are arranged in the periodic structure. And a method for manufacturing an optical filter.
 上記製法によれば、光学フィルタにおいて、フィルタ要素が透過する光の波長領域の分布をフィルタ要素内において調整する自由度が高く得られる。また、微細な凹凸を有する周期構造体を、容易にかつ好適に形成することができる
 [項目84]
 前記金属層の上に、前記金属層の表面形状に追従する形状を有した誘電体層を、前記周期要素における前記一端部と前記他端部との距離以下の厚さに形成する第3工程を含む項目83に記載の光学フィルタの製造方法。
According to the said manufacturing method, in the optical filter, the freedom degree which adjusts distribution of the wavelength range of the light which a filter element permeate | transmits within a filter element is acquired highly. In addition, a periodic structure having fine irregularities can be formed easily and suitably [Item 84]
A third step of forming a dielectric layer having a shape following the surface shape of the metal layer on the metal layer to a thickness equal to or less than the distance between the one end and the other end of the periodic element. 84. A method for producing an optical filter according to item 83, comprising:
 上記製法によれば、誘電体層を構成する材料の変更によって、フィルタ要素が透過する光の波長領域を調整することができる。したがって、フィルタ要素が透過する光の波長領域を調整する自由度がさらに高く得られる。 According to the above manufacturing method, the wavelength region of light transmitted through the filter element can be adjusted by changing the material constituting the dielectric layer. Therefore, the degree of freedom for adjusting the wavelength region of light transmitted through the filter element can be further increased.
 (実施例) 
 上述した光学デバイスおよびその製造方法について、具体的な実施例を用いて説明する。
(Example)
The above-described optical device and manufacturing method thereof will be described using specific examples.
 [実施例1]
 実施例1は、第1実施形態の表示体の実施例である。
 まず、光ナノインプリント法で用いる凹版であるモールドを用意した。具体的には、合成石英基板の表面に、クロム(Cr)からなる膜をスパッタリングによって10nmの厚さに成膜し、電子線リソグラフィによって電子線レジストパターンをCr膜上に形成した。使用したレジストはポジ型であり、膜厚は150nmとした。形成したパターンは、一辺が1cmである正方形形状の領域内に、一辺が160nmである正方形を、構造周期PTが320nmの六方配列に配置したパターンであり、電子線を描画した領域は上記正方形の内側領域である。
[Example 1]
Example 1 is an example of the display body of the first embodiment.
First, a mold which is an intaglio used in the optical nanoimprint method was prepared. Specifically, a film made of chromium (Cr) was formed on the surface of the synthetic quartz substrate to a thickness of 10 nm by sputtering, and an electron beam resist pattern was formed on the Cr film by electron beam lithography. The resist used was a positive type, and the film thickness was 150 nm. The formed pattern is a pattern in which squares with a side of 160 nm are arranged in a hexagonal array with a structural period PT of 320 nm in a square-shaped region with a side of 1 cm, and the region where the electron beam is drawn is The inner area.
 次に、塩素と酸素との混合ガスに高周波を印加して発生させたプラズマにより、レジストから露出した領域のCr膜をエッチングした。続いて、六弗化エタンガスに高周波を印加して発生させたプラズマにより、レジストおよびCr膜から露出した領域の合成石英基板をエッチングした。これによりエッチングした合成石英基板の深さは150nmであった。残存したレジストおよびCr膜を除去し、凹凸構造が形成されたモールドを得た。モールドの表面には、離型剤としてオプツールHD-1100(ダイキン工業製)を塗布した。 Next, the Cr film exposed from the resist was etched by plasma generated by applying a high frequency to a mixed gas of chlorine and oxygen. Subsequently, the synthetic quartz substrate in the region exposed from the resist and the Cr film was etched by a plasma generated by applying a high frequency to hexafluoroethane gas. The depth of the etched synthetic quartz substrate was 150 nm. The remaining resist and Cr film were removed to obtain a mold having an uneven structure. On the surface of the mold, OPTOOL HD-1100 (manufactured by Daikin Industries) was applied as a release agent.
 次に、上記モールドのパターンが形成された面である表面に紫外線硬化性樹脂を塗工した。そして、片面に易接着処理が施されたポリエチレンテレフタラートフィルムを用い、このフィルムの易接着処理が施された面でモールドの表面を覆った。さらに、モールドにおけるパターンの形成された領域の全体に紫外線硬化性樹脂が広がるように、ローラーを用いて紫外線硬化性樹脂を延ばし、紫外線を照射して紫外線硬化性樹脂を硬化した後、モールドからポリエチレンテレフタラートフィルムを剥離した。これにより、六方配列に並ぶ凸部のパターンが紫外線硬化性樹脂の表面に形成され、この紫外線硬化性樹脂からなる層とポリエチレンテレフタラートフィルムである基材との積層体である周期構造体を得た。 Next, an ultraviolet curable resin was applied to the surface on which the mold pattern was formed. And the surface of the mold was covered with the surface which gave the easy-adhesion process of this film using the polyethylene terephthalate film by which the easy-adhesion process was given to the single side | surface. Further, the ultraviolet curable resin is extended using a roller so that the ultraviolet curable resin spreads over the entire pattern-formed region in the mold, and the ultraviolet curable resin is cured by irradiating the ultraviolet ray, and then the polyethylene is removed from the mold. The terephthalate film was peeled off. As a result, a pattern of convex portions arranged in a hexagonal array is formed on the surface of the ultraviolet curable resin, and a periodic structure that is a laminate of the layer made of the ultraviolet curable resin and the base material that is a polyethylene terephthalate film is obtained. It was.
 次に、上記周期構造体の表面に真空蒸着法を用いてアルミニウム(Al)からなる膜を100nmの厚さに成膜することにより、金属層を形成した。これにより、実施例1の表示体を得た。基材に対して金属層の位置する側が表示体の表面側であり、金属層に対して基材の位置する側が表示体の裏面側である。 Next, a metal layer was formed by forming a film made of aluminum (Al) to a thickness of 100 nm on the surface of the periodic structure using a vacuum deposition method. Thereby, the display body of Example 1 was obtained. The side where the metal layer is located with respect to the base material is the surface side of the display body, and the side where the base material is located with respect to the metal layer is the back side of the display body.
 実施例1の表示体に対し白色の光を照射して、凸部のパターンが形成されている領域における、表面側の反射光の波長および反射率、裏面側の反射光の波長および反射率、ならびに、透過光の波長および透過率を測定した。これらの結果を図81に示す。図81に示されるように、表面側の反射光、裏面側の反射光、および、透過光のピーク波長は、互いに異なっている。また、凸部のパターンが形成されていない領域では、アルミニウムからなる金属層からの反射光として、金属光沢を有する色が観察された。 Irradiating the display body of Example 1 with white light, the wavelength and reflectance of the reflected light on the front surface side, the wavelength and reflectance of the reflected light on the back surface side in the region where the pattern of the convex portion is formed, In addition, the wavelength and transmittance of the transmitted light were measured. These results are shown in FIG. As shown in FIG. 81, the peak wavelengths of the reflected light on the front surface side, the reflected light on the back surface side, and the transmitted light are different from each other. Moreover, in the area | region where the pattern of a convex part is not formed, the color which has metallic luster was observed as reflected light from the metal layer which consists of aluminum.
 [実施例2]
 実施例2は、第1実施形態の実施例である。
 まず、光ナノインプリント法で用いる凹版であるモールドを用意した。具体的には、合成石英基板の表面に、クロム(Cr)からなる膜をスパッタリングによって10nmの厚さに成膜し、電子線リソグラフィによって電子線レジストパターンをCr膜上に形成した。使用したレジストはポジ型であり、膜厚は150nmとした。
[Example 2]
Example 2 is an example of the first embodiment.
First, a mold which is an intaglio used in the optical nanoimprint method was prepared. Specifically, a film made of chromium (Cr) was formed on the surface of the synthetic quartz substrate to a thickness of 10 nm by sputtering, and an electron beam resist pattern was formed on the Cr film by electron beam lithography. The resist used was a positive type, and the film thickness was 150 nm.
 次に、塩素と酸素との混合ガスに高周波を印加して発生させたプラズマにより、レジストから露出した領域のCr膜をエッチングした。続いて、六弗化エタンガスに高周波を印加して発生させたプラズマにより、レジストおよびCr膜から露出した領域の合成石英基板をエッチングした。これによりエッチングした合成石英基板の深さは150nmであった。残存したレジストおよびCr膜を除去し、凹凸構造が形成されたモールドを得た。モールドの表面には、離型剤としてオプツールHD-1100(ダイキン工業製)を塗布した。 Next, the Cr film exposed from the resist was etched by plasma generated by applying a high frequency to a mixed gas of chlorine and oxygen. Subsequently, the synthetic quartz substrate in the region exposed from the resist and the Cr film was etched by a plasma generated by applying a high frequency to hexafluoroethane gas. The depth of the etched synthetic quartz substrate was 150 nm. The remaining resist and Cr film were removed to obtain a mold having an uneven structure. On the surface of the mold, OPTOOL HD-1100 (manufactured by Daikin Industries) was applied as a release agent.
 形成されたモールドは、図82Aに示す図柄340を表面に含むモールド350である。モールド350の一辺の長さLは1cmである。図82Bに拡大して示すように、図柄340は、一辺の長さMが150nmである正方形342を、構造周期PSが300nmの六方配列に配置したパターンから構成される。電子線を描画した領域は正方形342の内側領域に相当する。図82Cは、モールド350における図柄340が形成されている領域の断面構造を示す。 The formed mold is a mold 350 including a pattern 340 shown in FIG. 82A on the surface. The length L of one side of the mold 350 is 1 cm. As shown in an enlarged view in FIG. 82B, the pattern 340 is composed of a pattern in which squares 342 having a side length M of 150 nm are arranged in a hexagonal array having a structural period PS of 300 nm. The region where the electron beam is drawn corresponds to the inner region of the square 342. FIG. 82C shows a cross-sectional structure of a region of the mold 350 where the pattern 340 is formed.
 次に、合成石英からなる基材の上に、紫外線硬化性樹脂をスピンコートによって塗布し、膜厚が50nmである樹脂層を形成した。続いて、この樹脂層の表面と、上記モールドの表面とを、減圧下で、50kNの圧力で押し付け、365nmの波長の光を照射して、紫外線硬化性樹脂を硬化させた。その後、基材からモールドを離型することにより、モールドの表面の凹凸が反転された凹凸を有する樹脂層と基材とからなる構造体を得た。 Next, on the base material made of synthetic quartz, an ultraviolet curable resin was applied by spin coating to form a resin layer having a film thickness of 50 nm. Subsequently, the surface of the resin layer and the surface of the mold were pressed at a pressure of 50 kN under reduced pressure, and irradiated with light having a wavelength of 365 nm to cure the ultraviolet curable resin. Thereafter, the mold was released from the base material to obtain a structure composed of a resin layer having a concavo-convex in which the concavo-convexity of the surface of the mold was inverted and the base material.
 その後、上記構造体を、Oのプラズマに暴露して、紫外線硬化性樹脂からなる残膜を除去し、オクタフルオロシクロブタンガスに高周波を印加して発生させたプラズマにより、紫外線硬化性樹脂からなるパターンが完全に消失するまで基材をエッチングした。これにより、表面に凹凸が形成された基材である周期構造体を得た。この工程により形成された凹凸構造の凸部の高さHは140nmであった。 Thereafter, the structure is exposed to O 2 plasma to remove the remaining film made of ultraviolet curable resin, and is made of ultraviolet curable resin by plasma generated by applying a high frequency to octafluorocyclobutane gas. The substrate was etched until the pattern disappeared completely. This obtained the periodic structure which is a base material in which the unevenness | corrugation was formed in the surface. The height H of the convex part of the concavo-convex structure formed by this process was 140 nm.
 次に、上記周期構造体の表面に真空蒸着法を用いてアルミニウム(Al)からなる膜を300nmの厚さに成膜することにより、金属層を形成した。これにより、実施例2の表示体を得た。基材に対して金属層の位置する側が表示体の表面側であり、金属層に対して基材の位置する側が表示体の裏面側である。図83(a)は、実施例2の表示体360を表面側から見た像を示し、図83(b)は、実施例2の表示体360を裏面側から見た像を示す。 Next, a metal layer was formed by depositing a film made of aluminum (Al) to a thickness of 300 nm on the surface of the periodic structure using a vacuum deposition method. Thereby, the display body of Example 2 was obtained. The side where the metal layer is located with respect to the base material is the surface side of the display body, and the side where the base material is located with respect to the metal layer is the back side of the display body. FIG. 83A shows an image of the display body 360 of Example 2 viewed from the front side, and FIG. 83B shows an image of the display body 360 of Example 2 viewed from the back side.
 実施例2の表示体360において、表面にて図柄が描かれていない領域α、表面にて図柄が描かれている領域β、裏面にて図柄が描かれている領域γの3つの領域について、反射光の波長を測定した。その結果を図84に示す。 In the display 360 of the second embodiment, the three regions of the region α where the design is not drawn on the front surface, the region β where the design is drawn on the front surface, and the region γ where the design is drawn on the back surface, The wavelength of the reflected light was measured. The result is shown in FIG.
 図84が示すように、領域αのスペクトルに比べて、領域βのスペクトルは、400nm以上700nm以下の可視領域において反射率が一様に低い。このため、自然光を表示体360に照射して表面側から肉眼で表示体360の反射像を観察すると、図柄は黒色に近い色に見えた。 84, as shown in FIG. 84, the spectrum of the region β has a uniform lower reflectance in the visible region of 400 nm to 700 nm than the spectrum of the region α. For this reason, when natural light was irradiated to the display body 360 and the reflected image of the display body 360 was observed with the naked eye from the surface side, the design looked a color close to black.
 一方、領域γのスペクトルは、520nm付近の波長領域の反射率が急激に下がっている。このため、自然光を表示体360に照射して裏面側から肉眼で表示体360の反射像を観察すると、図柄はマゼンタに近い色に見えた。 On the other hand, in the spectrum of the region γ, the reflectance in the wavelength region near 520 nm is drastically decreased. For this reason, when natural light was irradiated to the display body 360 and the reflected image of the display body 360 was observed with the naked eye from the back side, the design looked like a magenta color.
 さらに、実施例2の表示体360の表面側から光を照射して、図柄が描かれている領域の透過光の波長を測定した。その結果を図85に示す。図85が示すように、透過率は1~2%であったが、440nm付近の波長領域の透過率が急激に下がっている。このため、自然光を表示体360に照射して裏面側から肉眼で表示体360の透過像を観察すると、図柄は黄緑に近い色に見えた。 Furthermore, light was irradiated from the surface side of the display body 360 of Example 2, and the wavelength of the transmitted light in the region where the design was drawn was measured. The result is shown in FIG. As shown in FIG. 85, the transmittance was 1 to 2%, but the transmittance in the wavelength region near 440 nm is drastically decreased. For this reason, when natural light was irradiated to the display body 360 and the transmission image of the display body 360 was observed with the naked eye from the back side, the design looked a color close to yellowish green.
 このように、実施例2の表示体は、自然光の下での観察において、表面側からの反射光の観察、裏面側からの反射光の観察、および、透過光の観察の各々において、互いに異なる色彩表現を実現できることが確認された。 Thus, the display body of Example 2 is different from each other in observation of reflected light from the front surface side, observation of reflected light from the back surface side, and observation of transmitted light in observation under natural light. It was confirmed that color expression can be realized.
 [実施例3]
 実施例3は、第2実施形態の表示体の実施例である。
 まず、光ナノインプリント法で用いる凹版であるモールドを用意した。具体的には、合成石英基板の表面に、クロム(Cr)からなる膜をスパッタリングによって10nmの厚さに成膜し、電子線リソグラフィによって電子線レジストパターンをCr膜上に形成した。使用したレジストはポジ型であり、膜厚は150nmとした。形成したパターンは、一辺が1cmである正方形形状の領域内に、一辺が160nmである正方形を、構造周期PTが320nmの六方配列に配置したパターンであり、電子線を描画した領域は上記正方形の内側領域である。
[Example 3]
Example 3 is an example of the display body of the second embodiment.
First, a mold which is an intaglio used in the optical nanoimprint method was prepared. Specifically, a film made of chromium (Cr) was formed on the surface of the synthetic quartz substrate to a thickness of 10 nm by sputtering, and an electron beam resist pattern was formed on the Cr film by electron beam lithography. The resist used was a positive type, and the film thickness was 150 nm. The formed pattern is a pattern in which squares with a side of 160 nm are arranged in a hexagonal array with a structural period PT of 320 nm in a square-shaped region with a side of 1 cm, and the region where the electron beam is drawn is The inner area.
 次に、塩素と酸素との混合ガスに高周波を印加して発生させたプラズマにより、レジストから露出した領域のCr膜をエッチングした。続いて、六弗化エタンガスに高周波を印加して発生させたプラズマにより、レジストおよびCr膜から露出した領域の合成石英基板をエッチングした。これによりエッチングした合成石英基板の深さは100nmであった。残存したレジストおよびCr膜を除去し、凹凸構造が形成されたモールドを得た。モールドの表面には、離型剤としてオプツールHD-1100(ダイキン工業製)を塗布した。 Next, the Cr film exposed from the resist was etched by plasma generated by applying a high frequency to a mixed gas of chlorine and oxygen. Subsequently, the synthetic quartz substrate in the region exposed from the resist and the Cr film was etched by a plasma generated by applying a high frequency to hexafluoroethane gas. The depth of the synthetic quartz substrate etched by this was 100 nm. The remaining resist and Cr film were removed to obtain a mold having an uneven structure. On the surface of the mold, OPTOOL HD-1100 (manufactured by Daikin Industries) was applied as a release agent.
 次に、上記モールドのパターンが形成された面である表面に紫外線硬化性樹脂を塗工した。そして、片面に易接着処理が施されたポリエチレンテレフタラートフィルムを用い、このフィルムの易接着処理が施された面でモールドの表面を覆った。さらに、モールドにおけるパターンの形成された領域の全体に紫外線硬化性樹脂が広がるように、ローラーを用いて紫外線硬化性樹脂を延ばし、紫外線を照射して紫外線硬化性樹脂を硬化した後、モールドからポリエチレンテレフタラートフィルムを剥離した。これにより、六方配列に並ぶ凸部のパターンが紫外線硬化性樹脂の表面に形成され、この紫外線硬化性樹脂からなる層とポリエチレンテレフタラートフィルムである基材との積層体である周期構造体を得た。硬化後の紫外線硬化性樹脂の屈折率は1.52であった。 Next, an ultraviolet curable resin was applied to the surface on which the mold pattern was formed. And the surface of the mold was covered with the surface which gave the easy-adhesion process of this film using the polyethylene terephthalate film by which the easy-adhesion process was given to the single side | surface. Further, the ultraviolet curable resin is extended using a roller so that the ultraviolet curable resin spreads over the entire pattern-formed region in the mold, and the ultraviolet curable resin is cured by irradiating the ultraviolet ray, and then the polyethylene is removed from the mold. The terephthalate film was peeled off. As a result, a pattern of convex portions arranged in a hexagonal array is formed on the surface of the ultraviolet curable resin, and a periodic structure that is a laminate of the layer made of the ultraviolet curable resin and the base material that is a polyethylene terephthalate film is obtained. It was. The refractive index of the ultraviolet curable resin after curing was 1.52.
 次に、上記周期構造体の表面に真空蒸着法を用いてアルミニウム(Al)からなる膜を50nmの厚さに成膜することにより、金属層を形成した。さらに、金属層の表面に、二酸化珪素(SiO)からなる膜を150nmの厚さに成膜することにより、誘電体層を形成した。これにより、実施例3の表示体を得た。基材に対して誘電体層の位置する側が表示体の表面側であり、誘電体層に対して基材の位置する側が表示体の裏面側である。 Next, a metal layer was formed by forming a film made of aluminum (Al) to a thickness of 50 nm on the surface of the periodic structure using a vacuum deposition method. Furthermore, a dielectric layer was formed by forming a film made of silicon dioxide (SiO 2 ) to a thickness of 150 nm on the surface of the metal layer. Thereby, the display body of Example 3 was obtained. The side where the dielectric layer is positioned with respect to the base material is the front side of the display body, and the side where the base material is positioned with respect to the dielectric layer is the back side of the display body.
 実施例3の表示体に対し白色の光を照射して観察したところ、凸部のパターンが形成されている領域においては、表面反射観察によって黒色に近い青色が観察され、裏面反射観察によって紫色が観察され、表面透過観察および裏面透過観察によって橙色が観察された。また、凸部のパターンが形成されていない領域では、アルミニウムからなる金属層からの反射光として、金属光沢を有する色が観察された。 When the display of Example 3 was irradiated with white light and observed, in the region where the pattern of the convex portions was formed, a blue color close to black was observed by the surface reflection observation, and the purple color was observed by the back surface reflection observation. Observed, orange was observed by surface transmission observation and back surface transmission observation. Moreover, in the area | region where the pattern of a convex part is not formed, the color which has metallic luster was observed as reflected light from the metal layer which consists of aluminum.

Claims (20)

  1.  基準面を有する支持部と、前記基準面においてサブ波長周期を有した二次元格子状に並ぶ複数の周期要素であって、前記基準面から突出する凸部、もしくは、前記基準面から窪む凹部のいずれかである前記周期要素とを備える誘電体である周期構造体と、
     前記基準面のうち前記周期要素を囲む領域と前記周期要素の表面とを含む面である前記周期構造体の表面に位置し、前記周期構造体の表面形状に追従する形状を有した金属層と、
     を備える光学デバイス。
    A support portion having a reference surface and a plurality of periodic elements arranged in a two-dimensional lattice shape having a sub-wavelength period on the reference surface, the protrusion protruding from the reference surface, or the recess recessed from the reference surface A periodic structure that is a dielectric comprising the periodic element that is any one of
    A metal layer having a shape that follows the surface shape of the periodic structure, located on the surface of the periodic structure, which is a surface including the region surrounding the periodic element and the surface of the periodic element in the reference surface; ,
    An optical device comprising:
  2.  請求項1に記載の光学デバイスの構成を有する表示体であって、
     10nm以上200nm以下の厚さを有した第1格子層と、
     10nm以上200nm以下の厚さを有した第2格子層と、
     前記第1格子層および前記第2格子層の各々よりも厚い中間格子層であって、厚さ方向に前記第1格子層と前記第2格子層とに挟まれた前記中間格子層と、を前記基準面上に含み、
     前記第1格子層は、正方配列と六方配列とのいずれか一方である島状配列に並ぶ複数の第1誘電体層と、各第1誘電体層を囲う網目状を有した第1金属層と、を備え、
     前記中間格子層は、正方配列と六方配列とのいずれか一方である島状配列に並ぶ複数の第1中間誘電体層と、各第1中間誘電体層を囲う網目状を有し、かつ、前記第1中間誘電体層よりも低い誘電率を有した第2中間誘電体層と、を備え、
     前記第2格子層は、正方配列と六方配列とのいずれか一方である島状配列に並ぶ複数の第2金属層と、各第2金属層を囲う網目状を有した第2誘電体層と、を備え、
     前記周期要素は前記凸部であって、前記第1誘電体層と前記第1中間誘電体層とが前記周期要素を構成し、前記第1金属層と前記第2金属層とが前記金属層に含まれ、
     前記第1格子層における前記第1金属層の体積比率が、前記第2格子層における前記第2金属層の体積比率よりも大きく、かつ、前記第2格子層における前記第2金属層の体積比率が、前記中間格子層における金属材料の体積比率よりも大きく、
     前記第1誘電体層の構造周期に対する前記第1誘電体層の幅の比、および、前記第2金属層の構造周期に対する前記第2金属層の幅の比の各々が、0.25以上0.75以下である
     表示体。
    A display body having the configuration of the optical device according to claim 1,
    A first lattice layer having a thickness of 10 nm or more and 200 nm or less;
    A second lattice layer having a thickness of 10 nm or more and 200 nm or less;
    An intermediate lattice layer thicker than each of the first lattice layer and the second lattice layer, the intermediate lattice layer sandwiched between the first lattice layer and the second lattice layer in a thickness direction; Including on the reference plane;
    The first lattice layer includes a plurality of first dielectric layers arranged in an island-like arrangement that is either a square arrangement or a hexagonal arrangement, and a first metal layer having a mesh shape that surrounds each first dielectric layer And comprising
    The intermediate lattice layer has a plurality of first intermediate dielectric layers arranged in an island-like arrangement that is either a square arrangement or a hexagonal arrangement, and a mesh shape that surrounds each first intermediate dielectric layer, and A second intermediate dielectric layer having a lower dielectric constant than the first intermediate dielectric layer,
    The second lattice layer includes a plurality of second metal layers arranged in an island-like arrangement that is one of a square arrangement and a hexagon arrangement, and a second dielectric layer having a mesh shape surrounding each second metal layer, With
    The periodic element is the convex portion, the first dielectric layer and the first intermediate dielectric layer constitute the periodic element, and the first metal layer and the second metal layer are the metal layer. Included in
    The volume ratio of the first metal layer in the first lattice layer is larger than the volume ratio of the second metal layer in the second lattice layer, and the volume ratio of the second metal layer in the second lattice layer. Is larger than the volume ratio of the metal material in the intermediate lattice layer,
    The ratio of the width of the first dielectric layer to the structural period of the first dielectric layer and the ratio of the width of the second metal layer to the structural period of the second metal layer are each 0.25 or more and 0 Display body which is .75 or less.
  3.  前記第1金属層、および、前記第2金属層の各々は、可視領域の光に対する複素誘電率の実部が負の値を有する
     請求項2に記載の表示体。
    The display body according to claim 2, wherein each of the first metal layer and the second metal layer has a negative real part of a complex dielectric constant with respect to light in a visible region.
  4.  前記第1誘電体層の構造周期に対する前記第1誘電体層の幅の比、および、前記第2金属層の構造周期に対する前記第2金属層の幅の比の各々が、0.40以上0.60以下である
     請求項2または3に記載の表示体。
    The ratio of the width of the first dielectric layer to the structural period of the first dielectric layer and the ratio of the width of the second metal layer to the structural period of the second metal layer are each 0.40 or more and 0 The display body according to claim 2 or 3, wherein the display body is 60 or less.
  5.  前記第1誘電体層と前記第1中間誘電体層とが一体の構造体であり、
     前記第1格子層の厚さは、100nm以下であり、
     前記第2格子層の厚さは、100nm以下であり、
     前記中間格子層の厚さは、150nm以下である
     請求項2~4のいずれか一項に記載の表示体。
    The first dielectric layer and the first intermediate dielectric layer are integral structures;
    The first lattice layer has a thickness of 100 nm or less,
    The thickness of the second lattice layer is 100 nm or less,
    The display body according to any one of claims 2 to 4, wherein a thickness of the intermediate lattice layer is 150 nm or less.
  6.  前記第1金属層を構成する材料と、前記第2金属層を構成する材料とは等しく、
     前記第2誘電体層は、空気層であり、
     前記第1誘電体層の屈折率と前記第1金属層の屈折率との差は、前記第2誘電体層の屈折率と前記第2金属層の屈折率との差よりも大きい
     請求項2~5のいずれか一項に記載の表示体。
    The material constituting the first metal layer is equal to the material constituting the second metal layer,
    The second dielectric layer is an air layer;
    The difference between the refractive index of the first dielectric layer and the refractive index of the first metal layer is larger than the difference between the refractive index of the second dielectric layer and the refractive index of the second metal layer. The display body according to any one of 1 to 5.
  7.  前記第1誘電体層と前記第1中間誘電体層とが一体の構造体であり、
     前記第2中間誘電体層と前記第2誘電体層とが一体の構造体である
     請求項2~6のいずれか一項に記載の表示体。
    The first dielectric layer and the first intermediate dielectric layer are integral structures;
    The display body according to any one of claims 2 to 6, wherein the second intermediate dielectric layer and the second dielectric layer are an integral structure.
  8.  前記中間格子層は、前記第1中間誘電体層の側面上に位置する中間金属層であって、前記第1中間誘電体層と前記第2中間誘電体層とに挟まれた前記中間金属層をさらに備え、
     前記中間金属層は、前記第2金属層と一体の構造体であって前記金属層に含まれ、かつ、可視領域の光の反射を抑えるように、前記側面上での厚みが、前記第1金属層に近い部位ほど薄い
     請求項2~7のいずれか一項に記載の表示体。
    The intermediate lattice layer is an intermediate metal layer located on a side surface of the first intermediate dielectric layer, and the intermediate metal layer sandwiched between the first intermediate dielectric layer and the second intermediate dielectric layer Further comprising
    The intermediate metal layer is a structure integrated with the second metal layer, is included in the metal layer, and has a thickness on the side surface so as to suppress reflection of light in a visible region. The display body according to any one of claims 2 to 7, wherein the portion closer to the metal layer is thinner.
  9.  請求項1に記載の光学デバイスの構成を有する表示体であって、
     前記金属層における前記周期構造体と接する面とは反対側の面に位置し、前記金属層の表面形状に追従する形状を有した誘電体層をさらに備える
     表示体。
    A display body having the configuration of the optical device according to claim 1,
    The display body further includes a dielectric layer having a shape that is located on a surface opposite to a surface in contact with the periodic structure in the metal layer and that follows a surface shape of the metal layer.
  10.  前記誘電体層は、無機化合物から構成される
     請求項9に記載の表示体。
    The display body according to claim 9, wherein the dielectric layer is made of an inorganic compound.
  11.  前記周期要素は前記凸部であり、
     前記金属層の厚さは、10nm以上であり、かつ、前記凸部の高さよりも小さい
     請求項9または10に記載の表示体。
    The periodic element is the convex portion,
    The display body according to claim 9 or 10, wherein a thickness of the metal layer is 10 nm or more and is smaller than a height of the convex portion.
  12.  前記誘電体層における前記金属層と接する面とは反対側の面を覆う保護層をさらに備える
     請求項9~11のいずれか一項に記載の表示体。
    The display body according to any one of claims 9 to 11, further comprising a protective layer that covers a surface of the dielectric layer opposite to a surface in contact with the metal layer.
  13.  請求項1に記載の光学デバイスの構成を有する表示体であって、
     多層膜干渉を生じさせる多層膜層であって、前記金属層における前記周期構造体と接する面とは反対側の面に位置して、前記周期構造体と前記金属層とからなる構造体を覆う前記多層膜層をさらに備える
     表示体。
    A display body having the configuration of the optical device according to claim 1,
    A multilayer film layer that causes multilayer film interference, and is located on a surface of the metal layer opposite to a surface in contact with the periodic structure body, and covers a structure body including the periodic structure body and the metal layer. A display body further comprising the multilayer film layer.
  14.  請求項1に記載の光学デバイスの構成を有し、表面と裏面とを備える表示体であって、
     前記裏面から前記表面に向かう方向に突出する複数の凸部を備えた誘電体である凹凸構造層と、
     前記凹凸構造層の表面に位置し、前記凹凸構造層の表面形状に追従する形状を有した上部金属層と、を備え、
     前記表示体の前記表面と対向する方向から見て、前記表示体は、第1表示要素と第2表示要素とを含み、
     前記第1表示要素において、前記凹凸構造層は前記周期構造体を構成し、前記上部金属層は前記金属層を構成し、前記周期構造体と前記金属層とは、プラズモン共鳴を生じさせる構造体を構成し、
     前記第2表示要素において、複数の前記凸部は、前記表示体の前記表面と対向する方向から見て前記第1表示要素における前記凸部の配列の周期よりも大きい周期で並び、前記上部金属層のなかの前記第2表示要素に含まれる部分と共に、可視領域の光を回折する回折格子を構成している
     表示体。
    A display body having the configuration of the optical device according to claim 1 and comprising a front surface and a back surface,
    A concavo-convex structure layer that is a dielectric having a plurality of convex portions projecting in a direction from the back surface toward the front surface;
    An upper metal layer located on the surface of the concavo-convex structure layer and having a shape following the surface shape of the concavo-convex structure layer; and
    When viewed from the direction facing the surface of the display body, the display body includes a first display element and a second display element,
    In the first display element, the uneven structure layer constitutes the periodic structure, the upper metal layer constitutes the metal layer, and the periodic structure and the metal layer cause plasmon resonance. Configure
    In the second display element, the plurality of convex portions are arranged with a period larger than a period of the arrangement of the convex parts in the first display element when viewed from a direction facing the surface of the display body, and the upper metal The display body which comprises the diffraction grating which diffracts the light of visible region with the part contained in the said 2nd display element in a layer.
  15.  請求項1に記載の光学デバイスの構成を有する表示体であって、
     第1格子層と、
     第2格子層と、
     厚さ方向に前記第1格子層と前記第2格子層とに挟まれた中間格子層と、を前記基準面上に含み、
     前記第1格子層は、前記二次元格子状に並ぶ複数の第1誘電体層と、各第1誘電体層を囲う網目状を有した第1金属層と、を備え、
     前記中間格子層は、前記二次元格子状に並ぶ複数の第1中間誘電体層と、各第1中間誘電体層を囲う網目状を有し、かつ、前記第1中間誘電体層よりも低い誘電率を有した第2中間誘電体層と、を備え、
     前記第2格子層は、前記二次元格子状に並ぶ複数の第2金属層と、各第2金属層を囲う網目状を有した第2誘電体層と、を備え、
     前記周期要素は前記凸部であって、前記第1誘電体層と前記第1中間誘電体層とが前記周期要素を構成し、前記第1金属層と前記第2金属層とが前記金属層に含まれ、
     前記複数の第1誘電体層において、前記二次元格子に沿った前記第1誘電体層の配列方向での幅の大きさは1種類以上であり、前記第1格子層は、前記幅の種類ごとに複数の前記第1誘電体層を有し、前記幅が等しい複数の前記第1誘電体層が第1誘電体層団であり、各第1誘電体層団における前記第1誘電体層の構造周期はサブ波長周期であり、
     1以上の前記第1誘電体層団が第1誘電体層群を構成し、複数の前記第1誘電体層群が規則的に配置されることにより、前記サブ波長周期よりも大きい構造周期が形成されている
     表示体。
    A display body having the configuration of the optical device according to claim 1,
    A first lattice layer;
    A second lattice layer;
    An intermediate lattice layer sandwiched between the first lattice layer and the second lattice layer in the thickness direction on the reference plane;
    The first lattice layer includes a plurality of first dielectric layers arranged in a two-dimensional lattice shape, and a first metal layer having a mesh shape surrounding each first dielectric layer,
    The intermediate lattice layer has a plurality of first intermediate dielectric layers arranged in a two-dimensional lattice shape and a mesh shape surrounding each first intermediate dielectric layer, and is lower than the first intermediate dielectric layer A second intermediate dielectric layer having a dielectric constant,
    The second lattice layer includes a plurality of second metal layers arranged in a two-dimensional lattice shape, and a second dielectric layer having a mesh shape surrounding each second metal layer,
    The periodic element is the convex portion, the first dielectric layer and the first intermediate dielectric layer constitute the periodic element, and the first metal layer and the second metal layer are the metal layer. Included in
    In the plurality of first dielectric layers, the width in the arrangement direction of the first dielectric layers along the two-dimensional lattice is one or more kinds, and the first lattice layer has the kind of the width. A plurality of the first dielectric layers, and the plurality of first dielectric layers having the same width are first dielectric layer groups, and the first dielectric layer in each first dielectric layer group Is the sub-wavelength period,
    One or more first dielectric layer groups constitute a first dielectric layer group, and a plurality of the first dielectric layer groups are regularly arranged, so that a structural period larger than the sub-wavelength period is obtained. Formed display body.
  16.  請求項1に記載の光学デバイスの構成を有する表示体であって、
     前記周期要素の側面は、前記基準面から離れるほど前記周期要素の中心から離れるように傾斜する部分を有さず、前記周期要素の側面の少なくとも一部が、前記基準面から離れるほど前記周期要素の中心に近づくように傾斜している
     表示体。
    A display body having the configuration of the optical device according to claim 1,
    The side surface of the periodic element does not have a portion that is inclined away from the center of the periodic element as the distance from the reference surface increases, and at least a part of the side surface of the periodic element increases as the distance from the reference surface increases. A display that is tilted to approach the center of the display.
  17.  請求項13に記載の表示体と、
     前記支持部と対向する位置に配置された太陽電池と、
     を備える表示体付きデバイス。
    A display body according to claim 13;
    A solar cell disposed at a position facing the support,
    A device with a display body.
  18.  請求項2~16のいずれか一項に記載の表示体と、
     前記表示体の有する表面と裏面とのうちの一方の面の一部と対向する位置に配置され、前記表示体に向けて光を放つことが可能に構成された光射出構造体と、
     を備える表示体付きデバイス。
    A display body according to any one of claims 2 to 16,
    A light emitting structure that is arranged at a position facing a part of one of the front and back surfaces of the display body and configured to emit light toward the display body;
    A device with a display body.
  19.  請求項1に記載の光学デバイスの構成を有する光学フィルタであって、
     特定の波長領域の光を選択的に透過する複数のフィルタ要素を備え、
     前記フィルタ要素において、
     前記周期要素は、一端部と他端部とを有し、前記一端部は前記基準面に位置し、
     前記金属層は、前記基準面のなかで各周期要素の前記一端部を囲む網目状を有した第1金属層と、各周期要素の他端部に位置する第2金属層とを備え、
     前記周期要素が並ぶ前記二次元格子に沿った各方向での前記周期要素の構造周期に対する前記周期要素の幅の比が、0.30以上0.65以下であり、
     前記金属層は、可視領域の光に対する複素誘電率の実部が負の値であり、
     前記金属層の厚さが、前記周期要素における前記一端部と前記他端部との距離の10分の1以下である
     光学フィルタ。
    An optical filter having the configuration of the optical device according to claim 1,
    A plurality of filter elements that selectively transmit light in a specific wavelength region;
    In the filter element,
    The periodic element has one end and the other end, and the one end is located on the reference plane,
    The metal layer includes a first metal layer having a mesh shape surrounding the one end of each periodic element in the reference plane, and a second metal layer located at the other end of each periodic element,
    The ratio of the width of the periodic element to the structural period of the periodic element in each direction along the two-dimensional lattice in which the periodic elements are arranged is 0.30 or more and 0.65 or less,
    The metal layer has a negative real part of the complex dielectric constant for light in the visible region,
    The thickness of the said metal layer is 1/10 or less of the distance of the said one end part in the said periodic element, and the said other end part. Optical filter.
  20.  基材の表面に塗工された樹脂に凹版の有する凹凸を転写することにより、前記基材の表面と対向する方向から見て、凸部または凹部である周期要素がサブ波長周期を有した二次元格子状に位置する周期構造体を形成する第1工程と、
     前記周期構造体の表面形状に追従する形状を有した金属層を前記周期構造体の上に形成する第2工程と、
     を含む光学デバイスの製造方法。
    By transferring the unevenness of the intaglio to the resin coated on the surface of the base material, the periodic elements that are convex portions or concave portions have a sub-wavelength period when viewed from the direction facing the surface of the base material. A first step of forming a periodic structure located in a three-dimensional lattice;
    A second step of forming a metal layer having a shape following the surface shape of the periodic structure on the periodic structure;
    An optical device manufacturing method including:
PCT/JP2017/023301 2016-06-24 2017-06-23 Optical device, display body, device provided with display body, optical filter, and method for manufacturing optical device WO2017222064A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780039380.1A CN109328314A (en) 2016-06-24 2017-06-23 Optical devices, display body, the manufacturing method of the device with display body, optical filtering and Optical devices
EP17815529.7A EP3477346B1 (en) 2016-06-24 2017-06-23 Display body, a device provided with a display body and corresponding manufacturing method
KR1020187036539A KR102419708B1 (en) 2016-06-24 2017-06-23 An optical device, a display body, a device with a display body, an optical filter, and the manufacturing method of an optical device
US16/228,739 US11097568B2 (en) 2016-06-24 2018-12-20 Optical device, display body, device provided with a display body, optical filter, and method for manufacturing an optical device

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
JP2016-126071 2016-06-24
JP2016125705A JP2017227837A (en) 2016-06-24 2016-06-24 Display body
JP2016126072 2016-06-24
JP2016125704A JP6790498B2 (en) 2016-06-24 2016-06-24 Display
JP2016-126072 2016-06-24
JP2016126071 2016-06-24
JP2016-125705 2016-06-24
JP2016-125704 2016-06-24
JP2016-181036 2016-09-15
JP2016181037A JP2018045156A (en) 2016-09-15 2016-09-15 Display body, and display body manufacturing method
JP2016-181037 2016-09-15
JP2016181036A JP6805668B2 (en) 2016-09-15 2016-09-15 Display body, device with display body, and manufacturing method of display body
JP2017-092883 2017-05-09
JP2017092883A JP2018189831A (en) 2017-05-09 2017-05-09 Display body
JP2017122323A JP2018005230A (en) 2016-06-24 2017-06-22 Optical filter, display device, image pickup device, and method for manufacturing optical filter
JP2017-122322 2017-06-22
JP2017122322A JP7024221B2 (en) 2016-06-24 2017-06-22 Display body, device with display body, and manufacturing method of display body
JP2017-122323 2017-06-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/228,739 Continuation US11097568B2 (en) 2016-06-24 2018-12-20 Optical device, display body, device provided with a display body, optical filter, and method for manufacturing an optical device

Publications (1)

Publication Number Publication Date
WO2017222064A1 true WO2017222064A1 (en) 2017-12-28

Family

ID=60783204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023301 WO2017222064A1 (en) 2016-06-24 2017-06-23 Optical device, display body, device provided with display body, optical filter, and method for manufacturing optical device

Country Status (1)

Country Link
WO (1) WO2017222064A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111736359A (en) * 2018-10-26 2020-10-02 唯亚威通讯技术有限公司 Optical element comprising a plurality of regions
CN113555608A (en) * 2021-07-20 2021-10-26 南京大学 Electrochemical system with near-zero energy consumption display device, preparation method and display method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124272B1 (en) 1970-05-12 1976-07-22
JP2008275740A (en) * 2007-04-26 2008-11-13 Toppan Printing Co Ltd Display body and laminate
JP2009145764A (en) * 2007-12-17 2009-07-02 Toppan Printing Co Ltd Display material, self-adhesive label, transferring foil and labeled article
WO2013080473A1 (en) * 2011-11-30 2013-06-06 ソニー株式会社 Chemical sensor, chemical sensor module, chemical substance detector and method for detecting chemical substance
WO2013099875A1 (en) * 2011-12-27 2013-07-04 旭化成株式会社 Optical substrate and light-emitting device
JP2013174683A (en) * 2012-02-24 2013-09-05 Toppan Printing Co Ltd Display body and display body observation method
JP2014098780A (en) 2012-11-14 2014-05-29 Toppan Printing Co Ltd Color filter and flat color display device
JP2015055482A (en) * 2013-09-10 2015-03-23 セイコーエプソン株式会社 Analysis device, analysis method, and optical element and electronic device used therein

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124272B1 (en) 1970-05-12 1976-07-22
JP2008275740A (en) * 2007-04-26 2008-11-13 Toppan Printing Co Ltd Display body and laminate
JP2009145764A (en) * 2007-12-17 2009-07-02 Toppan Printing Co Ltd Display material, self-adhesive label, transferring foil and labeled article
WO2013080473A1 (en) * 2011-11-30 2013-06-06 ソニー株式会社 Chemical sensor, chemical sensor module, chemical substance detector and method for detecting chemical substance
WO2013099875A1 (en) * 2011-12-27 2013-07-04 旭化成株式会社 Optical substrate and light-emitting device
JP2013174683A (en) * 2012-02-24 2013-09-05 Toppan Printing Co Ltd Display body and display body observation method
JP2014098780A (en) 2012-11-14 2014-05-29 Toppan Printing Co Ltd Color filter and flat color display device
JP2015055482A (en) * 2013-09-10 2015-03-23 セイコーエプソン株式会社 Analysis device, analysis method, and optical element and electronic device used therein

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3477346A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111736359A (en) * 2018-10-26 2020-10-02 唯亚威通讯技术有限公司 Optical element comprising a plurality of regions
CN111736359B (en) * 2018-10-26 2023-01-10 唯亚威通讯技术有限公司 Optical element comprising a plurality of regions
CN113555608A (en) * 2021-07-20 2021-10-26 南京大学 Electrochemical system with near-zero energy consumption display device, preparation method and display method

Similar Documents

Publication Publication Date Title
KR102419708B1 (en) An optical device, a display body, a device with a display body, an optical filter, and the manufacturing method of an optical device
US9557461B2 (en) Two-dimensionally periodic, color-filtering grating
US9592701B2 (en) Security element and security document
US10527765B2 (en) Surfaces having structured optical appearances
WO2016111348A1 (en) Display body and article
JP5434144B2 (en) Display and labeled goods
JP5338177B2 (en) Display and labeled goods
JP2012159589A (en) Display body and article with label
WO2020071359A1 (en) Coloring structure
JP2018112732A (en) Color development structure, display body, color development sheet, compact, and method for manufacturing color development structure
JP6171291B2 (en) True / false judgment method of display
JP5082378B2 (en) Display and printed matter
WO2017222064A1 (en) Optical device, display body, device provided with display body, optical filter, and method for manufacturing optical device
US8164833B2 (en) Optical window member
JP7024221B2 (en) Display body, device with display body, and manufacturing method of display body
WO2019111826A1 (en) Display body, device provided with display body, and display body manufacturing method
WO2020175464A1 (en) Wavelength selection filter, method of manufacturing wavelength selection filter, and display device
US20220113458A1 (en) Wavelength selective filter, display, optical device, and method of producing wavelength selective filter
JP6805668B2 (en) Display body, device with display body, and manufacturing method of display body
JP7139595B2 (en) DISPLAY, DEVICE WITH DISPLAY, AND METHOD FOR MANUFACTURING DISPLAY
JP2018005230A (en) Optical filter, display device, image pickup device, and method for manufacturing optical filter
JP7225612B2 (en) Display body
JP6627481B2 (en) Display body and display body observation method
JP2019117289A (en) Display body
WO2023111864A1 (en) Diffractive displays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815529

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187036539

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017815529

Country of ref document: EP

Effective date: 20190124