WO2017221997A1 - Toner set for developing electrostatic images, black toner and magenta toner - Google Patents

Toner set for developing electrostatic images, black toner and magenta toner Download PDF

Info

Publication number
WO2017221997A1
WO2017221997A1 PCT/JP2017/022933 JP2017022933W WO2017221997A1 WO 2017221997 A1 WO2017221997 A1 WO 2017221997A1 JP 2017022933 W JP2017022933 W JP 2017022933W WO 2017221997 A1 WO2017221997 A1 WO 2017221997A1
Authority
WO
WIPO (PCT)
Prior art keywords
toner
developing
electrostatic
resistant resin
high heat
Prior art date
Application number
PCT/JP2017/022933
Other languages
French (fr)
Japanese (ja)
Inventor
太田 匡哉
智子 中川
勇樹 生川
岡本 真明
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2017221997A1 publication Critical patent/WO2017221997A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/09Colouring agents for toner particles

Definitions

  • the present invention relates to an electrostatic image developing toner set, a black toner, and a magenta toner that realize low-temperature fixability while maintaining blocking resistance and obtain a high-quality image even at low-temperature fixing.
  • the black toner or magenta toner for developing an electrostatic image is used for image formation for visualizing an electrostatic image in a printer, a copying machine, a facsimile machine, or the like.
  • an electrostatic latent image is first formed on a photosensitive drum, then developed with toner, transferred to transfer paper, and fixed by heat or the like. Image formation is performed.
  • a black toner or a magenta toner for developing an electrostatic image usually a binder resin and a colorant are dry-mixed with a charge control agent, a release agent, a magnetic material, etc. as necessary, and then melt-kneaded with an extruder or the like.
  • a crystalline organic compound having a melting point of 50 to 150 ° C. is contained as a fixing aid, and the resin and the fixing aid are compatibilized during heating.
  • the endothermic amount of the melting maximum derived from the fixing assistant at the second temperature increase is smaller than that at the first temperature increase, the glass transition temperature of the toner is lower than the glass transition temperature of the resin, and the glass transition temperature at the second temperature increase.
  • a black toner for developing an electrostatic charge image in which the temperature becomes smaller than that at the first temperature increase (see Patent Document 3).
  • Toner set includes yellow toner, magenta toner, cyan toner and black toner to maintain excellent releasability and good glossiness in oilless fixing, and improve fixing characteristics such as fixed image surface glossiness and OHP transparency
  • the color toners having a frequency of 6.28 rad / s for each color toner and a storage elastic modulus G1 ′ determined by dynamic viscoelasticity measurement at a temperature of 160 ° C. within a specific range, and the frequency of each color toner is 6.28 rad / s. s
  • a technology is disclosed in which a storage elastic modulus G2 ′ obtained from dynamic viscoelasticity measurement at a temperature of 180 ° C. has a specific relationship (see Patent Document 4).
  • Japanese Unexamined Patent Publication No. 2014-11949 Japanese Unexamined Patent Publication No. 2008-033057 Japanese Unexamined Patent Publication No. 2012-022331 Japanese Unexamined Patent Publication No. 2005-274963
  • the blocking resistance and the low-temperature fixability have been studied, but the focus is not on the fixing temperature or the transport temperature.
  • a difference between colors occurs, and there is a problem that the full color image quality is not satisfactory. This problem was particularly noticeable during low-temperature fixing or high-speed printing where little heat energy is applied to the toner.
  • the problem to be solved by the present invention is that, while maintaining blocking resistance, good fixability can be realized even during low-temperature fixing or high-speed printing, and the color and density of magenta and black as output pictures
  • Another object of the present invention is to provide a toner set capable of expressing an original beautiful color gamut without difference in glossiness and the like and providing an excellent output image.
  • the present inventors have measured the first measured value of the tan ⁇ maximum value (measured with a rheometer) as a form that can achieve both fixability and high gloss even at low temperature fixing or high speed printing while maintaining blocking resistance (
  • the ratio of TP1) to the second measured value (TP2) is important, and it is also effective to adjust the ratio of TP2 / TP1 of black toner and TP2 / TP1 of magenta toner to be within a specific range. And found out that the present invention.
  • a toner set including at least an electrostatic charge image developing black toner and an electrostatic charge image developing magenta toner, wherein a first measured value of a tan ⁇ maximum value observed at 40 ° C. or more and 80 ° C. or less by a rheometer is TP1,
  • TP1 a first measured value of a tan ⁇ maximum value observed at 40 ° C. or more and 80 ° C. or less by a rheometer
  • TP2 / TP1 of the electrostatic charge image developing black toner is TP2 / TP1 of the electrostatic charge image developing magenta toner. 1.03 times or more and 1.32 times or less of the toner set.
  • ⁇ 2> The toner set according to ⁇ 1>, wherein the electrostatic charge image developing black toner and the electrostatic charge image developing magenta toner include at least a binder resin, a colorant, a release agent, and an external additive.
  • ⁇ 3> The toner set according to ⁇ 1> or ⁇ 2>, wherein TP2 / TP1 of the electrostatic image developing magenta toner and the electrostatic image developing black toner is 1.20 or more and 2.50 or less.
  • ⁇ 4> The toner set according to any one of ⁇ 1> to ⁇ 3>, wherein TP2 / TP1 of the magenta toner for developing an electrostatic charge image is 1.28 or more and 1.49 or less.
  • ⁇ 5> The toner set according to any one of ⁇ 1> to ⁇ 4>, wherein TP2 / TP1 of the black toner for developing an electrostatic charge image is 1.45 or more and 1.77 or less.
  • the black toner for developing an electrostatic charge image contains carbon black, and the magenta toner for developing an electrostatic charge image contains at least one of a quinacridone dye / pigment and a monoazo dye / pigment, ⁇ 1> to ⁇ The toner set according to any one of 5>.
  • An image forming apparatus comprising the toner set according to any one of ⁇ 1> to ⁇ 6>.
  • a toner set including at least a magenta toner for developing an electrostatic image, a cyan toner for developing an electrostatic image, a yellow toner for developing an electrostatic image, and a black toner for developing an electrostatic image.
  • TP1 the first measured value of the tan ⁇ maximum value observed below
  • TP2 the second measured value of the tan ⁇ maximum value observed at 40 ° C. or more and 80 ° C. or less
  • TP2 / TP1 is 0.817 times or more and 0.951 times or less of the average value of TP2 / TP1 of the cyan toner for developing electrostatic images, the yellow toner for developing electrostatic images, and the black toner for developing electrostatic images.
  • the first measured value of TP1 is TP1
  • the second measured value of the tan ⁇ maximum value observed between 40 ° C. and 80 ° C. is TP2
  • TP2 / TP1 of the black toner for developing electrostatic images is the electrostatic charge.
  • a black toner for developing an electrostatic charge image which is 1.03 times or more and 1.32 times or less of TP2 / TP1 of magenta toner for image development.
  • TP2 / TP1 of the electrostatic charge image developing black toner is 1.13 times or more and 1.20 times or less of TP2 / TP1 of the electrostatic charge image developing magenta toner.
  • the toner comprises toner base particles containing at least a core component containing a binder resin and a colorant and a high heat-resistant resin fine particle component present around the core component, and the core component and the high component when measured with a transmission electron microscope.
  • An electrostatic image developing magenta toner used in a toner set including at least an electrostatic image developing magenta toner, an electrostatic image developing cyan toner, an electrostatic image developing yellow toner, and an electrostatic image developing black toner,
  • TP1 the first measured value of the tan ⁇ maximum value observed at 40 ° C. or higher and 80 ° C. or lower with a rheometer
  • TP2 / TP1 of the electrostatic image developing magenta toner is 0.817 times the average value of TP2 / TP1 of the electrostatic image developing cyan toner, electrostatic charge image developing yellow toner, and electrostatic charge image developing black toner.
  • TP2 / TP1 of the electrostatic image developing magenta toner is 0.849 of an average value of TP2 / TP1 of the electrostatic image developing cyan toner, electrostatic image developing yellow toner, and electrostatic image developing black toner.
  • the magenta toner for developing an electrostatic charge image according to ⁇ 14> which is not less than 2 times and not more than 0.900 times.
  • the toner comprises toner base particles containing at least a core component containing a binder resin and a colorant and a high heat-resistant resin fine particle component present around the core component, and the core component and the high component when measured with a transmission electron microscope.
  • the present invention it is possible to realize a fixing property and a high gloss property as a toner set even at low temperature fixing or high speed printing while maintaining blocking resistance, and further, magenta and black colors and It is possible to provide an electrostatic image developing black toner and an electrostatic image developing magenta toner that can express an original beautiful color gamut without differences in color density, glossiness, etc., and that can output an excellent output image.
  • a toner set, a toner cartridge, and an image forming apparatus can be provided.
  • high-adhesion-amount printing that prints three or more colors, it is possible to achieve good low-temperature fixability, and to express the original beautiful color gamut without any color difference as an output picture.
  • Output image can be provided.
  • FIG. 1 is a conceptual view of a cross-section of a molded product when the electrostatic charge image developing black toner of the present invention is measured for the first time with a rheometer.
  • FIG. 2 is a conceptual diagram when TP1 and TP2 are measured.
  • FIG. 3 is a graph showing the relationship between blocking resistance (collapse load) and TP2 / TP1 of the black toner and the magenta toner used in Examples 1 to 4 and Comparative Examples 1 and 2.
  • FIG. 4 is a graph showing the relationship between fixability (residual ratio) of the black toner and magenta toner used in Examples 1 to 4 and Comparative Examples 1 and 2, and TP2 / TP1.
  • FIG. 1 is a conceptual view of a cross-section of a molded product when the electrostatic charge image developing black toner of the present invention is measured for the first time with a rheometer.
  • FIG. 2 is a conceptual diagram when TP1 and TP2 are measured.
  • FIG. 5 is a diagram illustrating the relationship between the blocking resistance (collapse load) of each color toner used in Example 11 and Comparative Example 11 and TP2 / TP1.
  • FIG. 6 is a graph showing the relationship between the fixability (remaining rate) of each color toner used in Example 11 and Comparative Example 11 and TP2 / TP1.
  • FIG. 7 is an SEM image in which a portion of one toner of the representative toner of the present invention is enlarged. There are few thin heat-resistant resin fine particle components in the concave portions of the toner surface, and there are many such components in the convex portions. It is a figure (photograph) which shows the mode to do.
  • toner mother particle giving an external additive to the surface of the toner base particles may be simply referred to as “external addition” or “external addition”.
  • Those having an external additive on the surface of the toner base particles may be referred to as “electrostatic image developing toner” or simply “toner”.
  • black toner for developing electrostatic image “magenta toner for developing electrostatic image”
  • cyan toner for developing electrostatic image “yellow toner for developing electrostatic image”
  • TP1 which is the first measured value of the tan ⁇ maximum value observed at -80 ° C. or higher
  • TP2 which is the second measured value of the tan ⁇ maximum value observed at 40 ° C. or higher and 80 ° C. or lower”, etc.
  • first temperature increase (and “second temperature increase”) in the present invention is also defined as a temperature increase during the measurement in the measurement method described in Examples and the like.
  • the measurement method and definition of BETN, BETF, and “BETN-BETF” are also defined as those measured by the method described in Examples and the like and measured by the measurement methods described in Examples.
  • the “volume average particle diameter” in the present invention means “volume median diameter (Dv 50 )” measured by the method described in Examples unless otherwise specified.
  • the electrostatic image developing toner of the present invention is a toner having (showing) the numerical values (parameters) defined in the claims of the present application when measured by the measuring method (apparatus, setting, etc.) described in the examples and the like. It is. That is, even when the numerical value (parameter) is measured with another device or other setting, the numerical value (parameter) is not measured when the toner itself is measured by the measuring method described in the examples and the like of the present specification. Anything that has (as shown) is included in the present invention.
  • the electrostatic charge image developing black toner and the electrostatic charge image developing magenta toner preferably contain at least a binder resin, a colorant, a release agent, and an external additive.
  • the toner preferably contains toner base particles containing at least a binder resin and a colorant, and an external additive.
  • the toner of the present invention may include “a central portion (core) containing at least a binder resin and a colorant”, “a high heat-resistant resin fine particle component existing around the core”, and an external additive. Particularly preferred.
  • the high heat-resistant resin fine particle component is unevenly distributed on the surface of the toner base particles.
  • the shape of the high heat-resistant fine particle component when it becomes a toner may be a fine particle or a thin film, and further, it may cover the core component continuously or discontinuously.
  • the high heat-resistant resin fine particles are thinned into a flat shape and have a high coverage with respect to the amount of the high heat-resistant resin particles added.
  • the thin film of the high heat-resistant resin fine particles and the surface of the core component A state having no step is more preferable, and the thin film is selectively attached to the convex portion A compared to the concave portion B on the toner surface (that is, the portion where the background of the core component is visible is a convex portion compared to the concave portion). Is less preferred).
  • FIG. 7 is an enlarged photograph of a part of one toner of the representative toner of the present invention, and many skins appearing black (core component background) are observed in the concave portions B of the toner surface, and the convexity of the toner surface is observed.
  • part A a thinned skin (high heat-resistant resin fine particle component) having no wrinkles is observed.
  • the conventional core-shell structure of the toner base particles of the toner is a structure in which the core is entirely covered by the shell or the core is partially covered by the shell regardless of the irregularities on the surface of the toner base particles. It was a structure that covered the surface of the core as an independent skin (in which case the shell may look like a “scab”).
  • the high heat-resistant resin fine particle component surrounding the core may be abbreviated as “shell”.
  • the “structure consisting of a high heat-resistant resin fine particle component and an external additive” is an object with respect to the “core” in the rheometer measurement.
  • the “structure comprising a high heat-resistant resin fine particle component and an external additive” may be simply abbreviated as “structure”.
  • toner for developing electrostatic image 2.1. TP2, TP1, TP2 / TP1
  • the black toner for developing an electrostatic image of the present invention is used in a toner set including a black toner for developing an electrostatic image and a magenta toner for developing an electrostatic image, and has a tan ⁇ maximum observed at 40 ° C. or more and 80 ° C. or less with a rheometer.
  • the first measured value is TP1
  • TP2 / TP1 of the electrostatic charge image developing black toner is It is 1.03 times or more of TP2 / TP1 of the magenta toner for developing a charge image, and preferably 1.13 times or more from the viewpoint of blocking resistance.
  • the upper limit is 1.32 times or less, and from the viewpoint of fixability, it is preferably 1.20 times or less.
  • TP2 / TP1 of the black toner is 1.03 to 1.32 times, more preferably 1.13 to 1.20 times that of the magenta toner TP2 / TP1.
  • the magenta toner for developing an electrostatic image of the present invention is used in a toner set including at least a magenta toner for developing an electrostatic image, a cyan toner for developing an electrostatic image, a yellow toner for developing an electrostatic image, and a black toner for developing an electrostatic image.
  • TP2 / TP1 of the electrostatic image developing magenta toner is 0.817 of an average value of TP2 / TP1 of the electrostatic charge image developing cyan toner, electrostatic charge image developing yellow toner and electrostatic charge image developing black toner. From the viewpoint of blocking resistance, it is preferably 0.849 times or more. The upper limit is 0.951 times or less, and from the viewpoint of low temperature fixability when performing high adhesion amount printing in which three or more colors are overlaid, it is preferably 0.900 times or less.
  • TP2 / TP1 of magenta toner is 0.817 to 0.951 times the average value of TP2 / TP1 of cyan toner, yellow toner and black toner, and is 0.849 to 0.900 times. The following is more preferable.
  • TP2 / TP1 that can have preferable fixing property and anti-blocking property is a smaller value than other colors. Therefore, TP2 / TP1 of magenta toner is a constant ratio from the average value of TP2 / TP1 of other color toners. It is necessary to make it smaller.
  • setting the TP2 / TP1 of the magenta toner to a specific range provides the same fixability as the other color toners, and the difference in the glossiness of all colors including the overlaid colors. As a result, high glossiness is realized as a whole toner set, and as a result, a good image can be obtained.
  • TP2 / TP1 represents a change in the surface state of the toner due to heating and shearing.
  • TP2 / TP1 When TP2 / TP1 is large, the ratio of the high heat-resistant resin fine particles (components) and the external additive to form a continuous phase at the first measurement is relatively high, and the rheological behavior of the structure appears. It is estimated that G ′ is relatively large compared to G ′′ (TP1 is relatively small).
  • TP2 / TP1 is small, the ratio of the high heat-resistant resin fine particles and the external additive forming a continuous phase in the first measurement is relatively small, and the rheological behavior of the structure is difficult to appear. It is estimated that G ′′ is relatively large compared to (TP1 is relatively large).
  • TP2 and TP1 measured with a rheometer do not have the same value.
  • magenta toner for developing an electrostatic image used in the toner set This is considered to indicate that the structure of the toner has changed due to the heating during the first measurement, and the reason is estimated as follows.
  • the toner is not heated as much as possible and is molded into pellets having no voids between the toners as much as possible. It is presumed that a sample having a “structure comprising a heat-resistant resin fine particle component and an external additive” is measured.
  • the toner Since the high heat-resistant resin fine particle component, which is a shell component having a lower molecular entanglement density than the central component (core) component of the toner base particle, forms a structure, the toner is more elastic in the first measurement. It is estimated that tan ⁇ (TP1) is in a direction of decreasing because G ′ increases in comparison with G ′′.
  • the core component, the high heat-resistant resin fine particle component, and the external additive are melted and mixed as compared with the first measurement by heating and shearing during the first measurement, and a composition is formed. Is considered to be measured in an averaged state compared to the first measurement.
  • the property of the core component having a higher molecular entanglement density than the high heat-resistant resin fine particles (component) is emphasized and behaves more plastically, so that G ′′ is larger than G ′.
  • TP2 is presumed to take a larger value than the value of the first measurement, that is, the rheological behavior is relatively measured the rheology of the structure at the first time and 1 at the second time. Rheology closer to the mixture is measured compared to the second measurement.
  • the “heating and shearing” at the first measurement with the rheometer is performed under static conditions, and the “heating and shearing” causes a small portion of toner particles (see, for example, FIG. 1). ) Is happening.
  • the TP2 / TP1 of the magenta toner and the black toner is 1.20 or more and 2 in order to realize excellent fixability at low temperature fixing or high speed printing while maintaining blocking resistance. .50 or less is preferable.
  • the black toner TP2 / TP1 of the present invention is From the viewpoint of easily ensuring blocking resistance, it is preferably 1.45 or more, more preferably 1.50 or more, further preferably 1.52 or more, and 1.53 or more. Is particularly preferred. Further, from the viewpoint of easily ensuring low-temperature fixability (tape peeling residual rate), TP2 / TP1 of the black toner of the present invention is preferably 1.77 or less, and more preferably 1.69 or less. 1.64 or less, more preferably 1.60 or less, and most preferably 1.55 or less. Specifically, the TP2 / TP1 of the black toner is preferably 1.45 or more and 1.77 or less.
  • TP2 / TP1 of the magenta toner is preferably 1.21 or more, more preferably 1.28 or more, and more preferably 1.32 or more from the viewpoint of easily ensuring blocking resistance. More preferably, it is particularly preferably 1.33 or more. Further, from the viewpoint of easily ensuring low temperature fixability, it is preferably 1.54 or less, more preferably 1.49 or less, further preferably 1.46 or less, and 1.41 or less. It is particularly preferred. Specifically, TP2 / TP1 of magenta toner is more preferably 1.28 or more and 1.49 or less. The low temperature fixability can be evaluated by the tape peeling residual rate.
  • TP2 / TP1 of the cyan toner is preferably 1.42 or more and more preferably 1.47 or more from the viewpoint of easily ensuring blocking resistance. Further, from the viewpoint of easily ensuring low-temperature fixability, it is preferably 1.86 or less, and more preferably 1.76 or less.
  • the TP2 / TP1 of the yellow toner is preferably 1.35 or more and more preferably 1.41 or more from the viewpoint of easily ensuring blocking resistance. Further, from the viewpoint of easily ensuring low temperature fixability, it is preferably 1.74 or less, and more preferably 1.68 or less.
  • blocking resistance can be achieved by devising a packaging method for transportation. It can be implemented in use, and the low-temperature fixability can be temporarily improved by increasing the pressure of the fixing device and extending the nip time.
  • TP2 / TP1 it is possible to eliminate excessive packaging, or to reduce the load on the fixing device and suppress deterioration of the fixing device.
  • the black toner and magenta toner in which TP2 / TP1 is in this range are in a state where the high heat-resistant resin fine particle component is thinly present in a state of covering the surface of the toner base particles, and an external additive is added to the outside thereof. Furthermore, the fine heat-resistant resin fine particle component and the core component are constituted with an extraordinar polarity balance in which the second measurement is more compatible with the second measurement than the first measurement.
  • TP2 / TP1 approaches 1 because no structural change occurs (for example, incompatible).
  • the control means of TP2 / TP1 includes the following.
  • the polarity difference between the core component and the high heat-resistant resin fine particle component is increased (when the high heat-resistant resin fine particle and the core component are adhered in water, Designed with a large polarity to make it more hydrophilic), increase the molecular weight of high heat resistant resin fine particles, increase the crosslink density of high heat resistant resin fine particles, increase the amount of high heat resistant resin fine particles added,
  • the coverage of the core component in (component) is increased (the polarity difference between the core component and the high heat-resistant resin fine particle component so as to make it a thin film or not enter the core component even with the same added amount).
  • the reverse design may be performed.
  • the TP1 of the black toner indicating the formation state of the structure is preferably 1.37 or more, more preferably 1.46 or more, and further preferably 1.55 or more from the viewpoint of blocking resistance.
  • the TP1 of the black toner is preferably 1.70 or less, more preferably 1.63 or less, from the viewpoint of fixability.
  • the TP1 of the magenta toner is preferably 1.29 or more from the viewpoint of blocking resistance, more preferably 1.41 or more, and further preferably 1.53 or more. Further, the TP1 of the magenta toner is preferably 1.90 or less, more preferably 1.74 or less from the viewpoint of fixability.
  • the output picture (especially in terms of performance such as fixing property and gloss property) is magenta and black. An original beautiful color gamut without difference can be expressed, and an excellent output image can be obtained.
  • BETN, BETF, “BETN-BETF” “BETN-BETF” is obtained by removing the external additive from the toner to expose the surface of the toner base particles, and then measuring the specific surface area of the toner base particles.
  • the BET specific surface area represented by BETN is a numerical value that captures all of the particle size and circularity of the toner base particles and the minute irregularities on the surface.
  • the specific surface area measured by the flow type particle analyzer represented by BETF is calculated because the particle size and circularity of the toner base particles are calculated by image analysis taken at a coarse resolution, and the surface area is calculated from these values.
  • the surface area excluding the minute unevenness value. Therefore, the difference between BETN and BETF is estimated to represent the minute irregularities on the surface of the toner base particles, and the larger the “BETN ⁇ BETF”, the larger the minute irregularities.
  • a small BETN-BETF indicates that the surface of the toner base particles is almost smooth.
  • the low temperature fixability is not impaired by the heat insulating action of the air intervening in the minute irregularities, and the high heat resistant resin fine particles are unnecessarily formed on the outer side of the toner. Therefore, low-temperature fixability and high gloss properties are improved because less heat energy is required to melt the portion.
  • BETN-BETF when BETN-BETF is large, it indicates that fine irregularities are formed on the surface of the toner base particles, and the high heat-resistant resin fine particles (components) do not become too thin and can maintain heat resistance, or Further, since the high heat-resistant resin fine particles (components) have a structure in which they do not excessively sink into the central portion of the toner, the blocking resistance is improved. Therefore, in order to balance “blocking resistance” with “high gloss and low temperature fixability” in an advanced region, it is particularly preferable that “BETN-BETF” is in an appropriate range.
  • the BET specific surface area and the specific surface area measured with a flow particle analyzer are measured using the toner base particles obtained by removing the external additive from the toner after the external addition, not the toner base particles before the external addition. It has been found in the present invention that it is important to control the difference. As will be described later, since the shape of the high heat-resistant resin fine particles is changed by the external addition, the toner used in the printer and the copying machine is an external addition product. Therefore, the surface structure of the toner base particles after the external addition is the toner performance. Estimated to be related.
  • Black toner, BETN-BETF toner comprising magenta toner of the present invention is preferably at least 0.54 m 2 / g, more preferably not less than 0.77m 2 / g, 0.99m 2 / g or more is particularly preferable. Further, BETN-BETF is preferably 1.56 2 / g or less, more preferably 1.51 m 2 / g, and particularly preferably 1.45 m 2 / g. When BETN-BETF is small, low-temperature fixability and high gloss tend to be improved. When BETN-BETF is large, the blocking resistance tends to be improved.
  • the means for controlling BETN-BETF include the following.
  • the core component that increases the particle diameter of the high heat-resistant resin fine particles Increase the polarity difference between the high heat-resistant resin fine particle components (when attaching the high heat-resistant resin fine particles and the core component in water, the polarity of the high heat-resistant resin fine particles is designed to be more hydrophilic than the core component). For example, it is not heated above the Tg of the fine particles.
  • the temperature is lowered, the time is shortened, the rotational speed of the stirring blade is decreased, and so on, so that the high heat-resistant resin fine particles are embedded in the core component and / or excessively. It is also effective to prevent stretching.
  • the BETN-BETF can be increased by increasing the addition amount of the high heat-resistant resin fine particles.
  • the reverse design may be performed.
  • Glass transition temperature (Tg) Furthermore, Tg measured with a differential scanning calorimeter (DSC) of the toner is also important from the viewpoint of realizing excellent fixability even during low-temperature fixing or high-speed printing while maintaining blocking resistance.
  • the glass transition temperature (Tg) range of the black toner and the magenta toner is preferably 44 ° C. or less, more preferably 43 ° C. or less, and further preferably 42 ° C. or less.
  • the Tg range is preferably 34 ° C. or higher, more preferably 36 ° C. or higher, and still more preferably 38 ° C. or higher.
  • Glass transition temperature (Tg)” may be simply abbreviated as “Tg”. Tg in the present invention is measured by the method described in Examples. It is detected by the second heating measurement of DSC.
  • the Tg of the black toner and the magenta toner By adjusting the Tg of the black toner and the magenta toner within this range, a more preferable low-temperature fixability is obtained while maintaining blocking resistance within the range in which the TP2 / TP1 of the obtained toner is adjusted to the above-described suitable range. be able to. This is because the anti-blocking property can be supplemented by increasing the Tg of the toner, and the low-temperature fixability can be adjusted to a more preferable range by decreasing the Tg of the toner.
  • the copolymerization ratio of the monomer component having a high Tg is increased, the molecular weight (Mc) component that is not more than twice the molecular weight between the entanglement points is decreased (the molecular weight modifier or the like is decreased, And a plasticizer having a melting point of 100 ° C. or lower (for example, wax or crystalline resin) for plasticizing the binder resin.
  • the reverse design may be performed.
  • the “monomer component having a high Tg” refers to a monomer having a high Tg of a homopolymer produced using the same.
  • toner base particles 2.4.1. Core (central part) component
  • the toner base particles are formed by coating high-heat-resistant resin fine particles on "a core component containing at least a binder resin (for example, polymer primary particles) and a colorant".
  • the high heat-resistant resin fine particles may contain a charge control agent or the like if necessary, and it is preferable that a wax is contained from the viewpoint of preventing offset on the high temperature side. It is more preferable that it is contained in a state of being substantially encapsulated with components since problems caused by wax release such as filming can be solved.
  • the binder resin is not particularly limited as long as it is generally used as a binder resin in the production of toner.
  • polystyrene resin poly (meth) acrylic resin, polyolefin resin, epoxy resin
  • thermoplastic resins such as resins and polyester resins, and mixtures of these resins.
  • a monomer generally used in producing a toner binder resin can be appropriately used.
  • a polymerizable monomer having an acidic group hereinafter sometimes simply referred to as an acidic monomer
  • a polymerizable monomer having a basic group hereinafter simply referred to as a basic monomer
  • Any polymerizable monomer of a polymerizable monomer having neither an acidic group nor a basic group hereinafter sometimes referred to as other monomer can be used.
  • the following monomers are exemplified.
  • the acidic monomer include a polymerizable monomer having a carboxyl group such as acrylic acid, methacrylic acid, maleic acid, fumaric acid and cinnamic acid; a polymerizable monomer having a sulfonic acid group such as sulfonated styrene; Polymerizable monomers having a sulfonamide group such as vinylbenzenesulfonamide; and the like.
  • Examples of basic monomers include aromatic vinyl compounds having an amino group such as aminostyrene; nitrogen-containing heterocyclic-containing polymerizable monomers such as vinylpyridine and vinylpyrrolidone; amino acids such as dimethylaminoethyl acrylate and diethylaminoethyl methacrylate. (Meth) acrylic acid ester having a group; These acidic monomers and basic monomers contribute to the dispersion stabilization of the toner base particles. It may be used singly or as a mixture of plural kinds, and may exist as a salt with a counter ion.
  • the acidic monomer and the basic monomer may be contained in one or both of the central part (core) component of the toner base particles and the high heat-resistant resin fine particles.
  • the "resin component consisting of a binder resin and an acidic or basic monomer” and the “resin component consisting of a binder resin and an acidic or basic monomer” that constitute the high heat-resistant resin fine particles have the same composition. Preferably not. This is because the high heat-resistant resin fine particle component and the core component described above need to be configured with an extraordinar balance that the second measurement is more compatible than the first measurement of tan ⁇ . This is particularly important in the present invention in the sense of adjusting to an appropriate affinity.
  • the toner in the case where toner base particles are produced by adhering highly heat-resistant resin fine particles to the core component in water, the toner It is preferable to increase the acid value (base number) of the high heat-resistant resin fine particles compared to the core (center part) component of the mother particle.
  • the acid value (base number) of the high heat-resistant resin fine particles is set to the acid of the core component. It is preferable to adjust it to 1.1 times or more and 2.8 times or less of the valence (base number). If this magnification is too small, the high heat resistant resin fine particles may be buried in the core component, and satisfactory blocking resistance may not be obtained. If this magnification is too large, the high heat resistant resin in water compared to the core component. This is because the fine particles are too stable and do not adhere.
  • styrenes such as styrene, methyl styrene, chlorostyrene, dichlorostyrene, pt-butyl styrene, pn-butyl styrene, pn-nonyl styrene; methyl acrylate, acrylic acid Acrylic esters such as ethyl, propyl acrylate, n-butyl acrylate, isobutyl acrylate, hydroxyethyl acrylate, 2-ethylhexyl acrylate; methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate Methacrylic acid esters such as isobutyl methacrylate, hydroxyethyl methacrylate, 2-ethylhexyl methacrylate; acrylamide, N-propylacrylamide, N, N-dimethylacrylamide, N,
  • a polyfunctional monomer is used together with the above-mentioned polymerizable monomer.
  • divinylbenzene, hexanediol diacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol examples include dimethacrylate, tetraethylene glycol dimethacrylate, hexaethylene glycol dimethacrylate, nonaethylene glycol dimethacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, neopentyl glycol dimethacrylate, neopentyl glycol diacrylate, diallyl phthalate, and the like.
  • a bifunctional polymerizable monomer is preferable, and divinylbenzene, hexanediol diacrylate, and the like are particularly preferable. These polyfunctional polymerizable monomers may be used alone or as a mixture of plural kinds.
  • a polymerizable monomer having a reactive group in a pendant group for example, glycidyl methacrylate, methylol acrylamide, acrolein, or the like can be used.
  • a known chain transfer agent can be used as necessary.
  • Specific examples of the chain transfer agent include t-dodecyl mercaptan, dodecanethiol, diisopropyl xanthogen, carbon tetrachloride, trichlorobromomethane and the like.
  • the chain transfer agent may be used alone or in combination of two or more kinds, and is preferably 0 to 5% by mass with respect to the polymerizable monomer.
  • the number average molecular weight in gel permeation chromatography is preferably 5000 or more, more preferably 8000 or more, More preferably, it is 10,000 or more, preferably 40,000 or less, more preferably 30,000 or less, and still more preferably 20,000 or less.
  • the weight average molecular weight is preferably 30,000 or more, more preferably 50,000 or more, preferably 300,000 or less, more preferably 250,000 or less.
  • examples of the divalent alcohol include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, Diols such as neopentyl glycol, 1,4-butenediol, 1,5-pentanediol, 1,6-hexanediol, bisphenol A, hydrogenated bisphenol A, polyoxyethylenated bisphenol A, polyoxypropylenated bisphenol A Bisphenol A alkylene oxide adducts such as;
  • divalent acid examples include maleic acid, fumaric acid, citraconic acid, itaconic acid, glutaconic acid, phthalic acid, isophthalic acid, terephthalic acid, cyclohexanedicarboxylic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, malon Acids, anhydrides or lower alkyl esters of these acids; alkenyl succinic acids or alkyl succinic acids such as n-dodecenyl succinic acid and n-dodecyl succinic acid; and other divalent organic acids.
  • a polyfunctional monomer is used together with the above-described dihydric alcohol and acid.
  • a trihydric or higher polyhydric alcohol for example, sorbitol, 1, 2, 3, 6 -Hexanetetrol, 1,4-sorbitan, pentaerythritol, dipentaerythritol, tripentaerythritol, sucrose, 1,2,4-butanetriol, 1,2,5-pentanetriol, glycerol, 2-methylpropanetriol 2-methyl-1,2,4-butanetriol, trimethylolethane, trimethylolpropane, 1,3,5-trihydroxymethylbenzene, and the like.
  • Examples of the trivalent or higher acid include 1,2,4-benzenetricarboxylic acid, 1,2,5-benzenetricarboxylic acid, 1,2,4-cyclohexanetricarboxylic acid, 2,5,7-naphthalenetricarboxylic acid, 1,2,4-naphthalenetricarboxylic acid, 1,2,5-hexanetricarboxylic acid, 1,3-dicarboxyl-2-methyl-2-methylenecarboxypropane, tetra (methylenecarboxyl) methane, 1,2,7, Examples include 8-octanetetracarboxylic acid, anhydrides thereof, and the like.
  • the acid value of the polyester-based resin when the high heat-resistant resin fine particles are adhered to the core component in water, the acid value of the high heat-resistant resin fine particles is higher than that of the core (center) component of the toner base particles. More preferably, the acid value of the high heat-resistant resin fine particles is preferably adjusted to 1.1 times or more and 2.8 times or less of the acid value of the core component. If this magnification is large, the high heat-resistant resin fine particles are less likely to be embedded in the core component, so that satisfactory blocking resistance is obtained. If this magnification is small, the high heat-resistant resin fine particles are more stable in water than the core component. It does not become too much, and the high heat-resistant resin fine particles tend to adhere well to the core component.
  • polyester resins can be synthesized by a usual method. Specifically, conditions such as reaction temperature (170 to 250 ° C.), reaction pressure (5 mmHg to normal pressure) and the like are determined according to the reactivity of the monomer, and the reaction is terminated when predetermined physical properties are obtained. .
  • the number average molecular weight in GPC is preferably 2000 to 20000, and more preferably 3000 to 12000.
  • a wax as an anti-offset agent and to improve low-temperature fixability.
  • known waxes can be arbitrarily used. Specifically, olefin waxes such as low molecular weight polyethylene, low molecular weight polypropylene, and copolymerized polyethylene; paraffin wax; behenic acid Ester wax having a long chain aliphatic group such as behenyl, montanate ester, stearyl stearate; plant wax such as hydrogenated castor oil, carnauba wax; ketone having a long chain alkyl group such as distearyl ketone; Silicone having higher fatty acid such as stearic acid; long chain fatty acid (pentaerythritol, trimethylolpropane, glycerin, etc.) polyhydric alcohol ester or partial ester thereof; higher fatty acid amide such as oleic acid amide, stearic acid amide,
  • Exemplified Preferred examples include hydrocarbon waxes such as paraffin wax and Fischer-Tropsch wax; ester waxes; silicone waxes.
  • ester waxes are more preferable, monoester waxes mainly containing hydrocarbons having 18 and / or 22 carbon atoms are more preferable, behenyl behenate, stearyl behenate, behenyl stearate, and the like. The inclusion is most preferred.
  • Waxes may be used alone or in combination.
  • the melting point peak of wax (the endothermic peak top at the time of DSC second heating of the toner) is preferably 90 ° C. or less, more preferably 80 ° C. or less, further preferably 75 ° C. or less, preferably 50 ° C. or more, and more preferably 60 ° C. or more. Preferably, 65 degreeC or more is more preferable.
  • the melting point peak temperature of the wax is high, blocking resistance tends to be improved, and when the melting point peak of the wax is low, low temperature fixability and high gloss property tend to be improved.
  • the difference between the melting point peak of the wax and the onset temperature of the wax is 10 ° C. or less. Preferably, it is 8 ° C. or lower, more preferably 4 ° C. or lower.
  • the onset temperature of the wax is preferably 86 ° C. or lower, more preferably 76 ° C. or lower, still more preferably 71 ° C. or lower, 46 ° C. or higher, more preferably 56 ° C. or higher, and even more preferably 61 ° C. or higher.
  • the amount of wax is preferably 1 part by mass or more with respect to 100 parts by mass of toner, more preferably 2 parts by mass or more, and still more preferably 5 parts by mass or more. Moreover, it is preferable that it is 35 mass parts or less, More preferably, it is 30 mass parts or less, More preferably, it is 25 mass parts or less.
  • a known colorant can be arbitrarily used as the colorant.
  • Specific examples of the colorant include carbon black, aniline blue, phthalocyanine blue, phthalocyanine green, Hansa yellow, rhodamine dye, chrome yellow, quinacridone dye, benzidine yellow, rose bengal, triallylmethane dye, Known arbitrary dyes such as monoazo dyes, disazo dyes, and condensed azo dyes can be used alone or in combination.
  • yellow is a benzidine yellow, monoazo and / or condensed azo dye
  • magenta is a quinacridone and / or monoazo dye
  • cyan is a phthalocyanine dye
  • black Is preferably carbon black
  • C.I. I. Pigment blue 15: 3, C.I. I. Pigment Blue 15: 4 yellow includes C.I. I. Pigment Yellow 74, C.I. I. Pigment Yellow 83, a C.I. I. Pigment yellow 93, C.I. I. Pigment yellow 155, C.I. I. Pigment yellow 180, C.I. I. Pigment Yellow 185 and magenta include C.I. I. Pigment red 48: 1, C.I. I. Pigment red 53: 1, C.I. I. Pigment red 57: 1, C.I. I. Pigment Red 5 and C.I. I. Pigment red 122, C.I. I. Pigment Red 209, C.I. I. And CI Pigment Red 269 (238).
  • magenta toner include C.I. I. Pigment red 269 (238) and / or C.I. I. It is preferable to use CI Pigment Red 122.
  • the black toner preferably contains carbon black
  • the magenta toner preferably contains at least one of a quinacridone dye or pigment.
  • the colorant is preferably used in an amount of 3 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the toner.
  • charge control agent Any known charge control agent can be used.
  • charge control agents include nigrosine dyes, amino group-containing vinyl copolymers, quaternary ammonium salt compounds, polyamine resins and the like for positive chargeability, and chromium, zinc, iron and cobalt for negative chargeability.
  • metal-containing azo dyes containing metals such as aluminum, salts of salicylic acid or alkylsalicylic acid with the aforementioned metals, metal complexes, and the like.
  • the amount of the charge control agent is preferably 0.1 to 25 parts by mass, more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the toner.
  • the charge control agent may be mixed inside the toner base particles, or may be used in a form adhered to the surface of the toner base particles.
  • the toner base particles are preferably composed of the core and high heat resistant resin fine particles present around the core.
  • the core and / or the high heat-resistant resin fine particles may contain a wax, a charge control agent and the like.
  • the core and / or the high heat resistant resin fine particles preferably contain a wax. Examples of the type of “high heat resistant resin fine particle component” that is a component of the high heat resistant resin fine particles include the above-mentioned resins that are generally used as a binder resin when a toner is produced.
  • thermoplastic resins such as a polystyrene-type resin, a poly (meth) acrylic-type resin, a polyolefin-type resin, an epoxy-type resin, a polyester-type resin, the mixture of these resins, etc. are mentioned. Detailed resin selection will be described later.
  • the lower limit of the volume average particle diameter of the toner of the present invention is preferably 3 ⁇ m or more, and more preferably 5 ⁇ m or more.
  • the upper limit is preferably 8 ⁇ m or less, and more preferably 6 ⁇ m or less.
  • the shape is such that the average circularity measured using a flow particle image analyzer FPIA-3000 is preferably 0.92 or more, more preferably 0.95 or more, still more preferably 0.97 or more, Is 0.99 or less. When the average circularity is large, it is difficult to cause a decrease in image density due to deterioration of charging due to poor adhesion of the external additive to the toner base particles.
  • the toner of the present invention may be produced by any known method in a large production method classification, and is not particularly limited.
  • Emulsion polymerization A method of preparing a binder resin as “polymer primary particles” smaller than the toner base particle size and obtaining a dispersion of the polymer primary particles is described below. Also, the same method can be used for the production of the high heat-resistant resin fine particles.
  • Polymer primary particles having a styrene or (meth) acrylic monomer as a constituent element can be obtained by emulsion polymerization of the monomer composition and, if necessary, a chain transfer agent using an emulsifier.
  • Known emulsifiers can be used, but one or more emulsifiers selected from cationic surfactants, anionic surfactants, and nonionic surfactants can be used in combination.
  • Examples of the cationic surfactant include dodecyl ammonium chloride, dodecyl ammonium bromide, dodecyl trimethyl ammonium bromide, dodecyl pyridinium chloride, dodecyl pyridinium bromide, hexadecyl trimethyl ammonium bromide and the like.
  • Examples of the anionic surfactant include fatty acid soaps such as sodium stearate and sodium dodecanoate, sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, and sodium lauryl sulfate.
  • Nonionic surfactants include, for example, polyoxyethylene dodecyl ether, polyoxyethylene hexadecyl ether, polyoxyethylene nonyl phenyl ether, polyoxyethylene lauryl ether, polyoxyethylene sorbitan monooleate ether, monodecanoyl sucrose Etc.
  • the amount of the emulsifier used is preferably 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the polymerizable monomer.
  • the amount of the emulsifier used is increased, the particle size of the obtained polymer primary particles is reduced, and when the amount used is reduced, the particle size of the obtained polymer primary particles is increased.
  • 1 type, or 2 or more types such as partially or fully saponified polyvinyl alcohol, such as polyvinyl alcohol, cellulose derivatives, such as a hydroxyethyl cellulose, can be used together with these emulsifiers as a protective colloid.
  • a known polymerization initiator can be used alone or in combination of two or more as required.
  • persulfates such as potassium persulfate, sodium persulfate, and ammonium persulfate
  • redox initiators combining these persulfates as a component with a reducing agent such as acidic sodium sulfite, hydrogen peroxide, 4, 4 ′ -Water-soluble polymerization initiators such as azobiscyanovaleric acid, t-butyl hydroperoxide, cumene hydroperoxide, etc., and redox initiators combining these water-soluble polymerization initiators with reducing agents such as ferrous salts Benzoyl peroxide, 2,2′-azobis-isobutyronitrile and the like are used.
  • These polymerization initiators may be added to the polymerization system before, simultaneously with, or after the addition of the polymerizable monomer, and these addition methods may be combined as necessary.
  • the wax is added as a seed during emulsion polymerization.
  • the wax is finely and uniformly dispersed in the toner, so that deterioration of the chargeability and heat resistance of the toner can be suppressed.
  • a wax / long-chain polymerizable monomer dispersion prepared by previously dispersing a wax in a water-based dispersion medium with a long-chain polymerizable monomer such as stearyl acrylate is prepared.
  • the polymerizable monomer can also be polymerized in the presence of.
  • Emulsion polymerization is possible using a colorant as a seed, but if a polymerizable monomer is polymerized in the presence of the colorant, the metal in the colorant affects radical polymerization, making it difficult to control the molecular weight and rheology of the resin. Therefore, it is preferable to add the colorant dispersion in the next step without adding the colorant during the emulsion polymerization.
  • emulsifying resin After obtaining the resin by a method such as bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization, etc., the resin is mixed with an aqueous medium, and the temperature is higher than either the melting point of the resin or the glass transition temperature.
  • the polymer primary particles are obtained by heating to a low viscosity and emulsifying by applying shearing force.
  • the emulsifier for applying a shearing force include a homogenizer, a homomixer, a pressure kneader, an extruder, and a media disperser.
  • the viscosity of the resin during emulsification is high and does not decrease to the desired particle size, increase the temperature using an emulsifier capable of pressurization to atmospheric pressure or higher, and emulsify with the resin viscosity lowered to obtain the desired particle size.
  • Polymer primary particles having a diameter can be obtained.
  • a method of reducing the viscosity of the resin by mixing an organic solvent in advance with the resin may be used.
  • the organic solvent to be used is not particularly limited as long as it dissolves the resin, but a ketone solvent such as tetrahydrofuran (THF), methyl acetate, ethyl acetate, and methyl ethyl ketone, and a benzene solvent such as benzene, toluene, and xylene. Etc. can be used.
  • an alcohol solvent such as ethanol or isopropyl alcohol may be added to water or resin for the purpose of improving the affinity with an aqueous medium and controlling the particle size distribution.
  • an organic solvent When an organic solvent is added, it is necessary to remove the organic solvent from the emulsion after the emulsification is completed.
  • a method of removing the organic solvent there is a method of volatilizing the organic solvent while reducing the pressure at room temperature or under heating.
  • a salt such as sodium chloride or potassium chloride, ammonia or the like may be added.
  • Emulsifiers and dispersants may be added for the purpose of controlling the particle size distribution.
  • examples include water-soluble polymers such as polyvinyl alcohol, methyl cellulose, carboxymethyl cellulose, and sodium polyacrylate; the emulsifiers described above; inorganic compounds such as tricalcium phosphate, aluminum hydroxide, calcium sulfate, calcium carbonate, and barium carbonate. .
  • the amount used is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the resin.
  • phase inversion emulsification method an organic solvent, a neutralizing agent, and a dispersion stabilizer are added to the resin as necessary, and an aqueous medium is added dropwise with stirring to obtain emulsified particles.
  • an organic solvent is removed to obtain an emulsion.
  • the organic solvent the same organic solvents as those described above can be used.
  • the neutralizing agent general acids such as nitric acid, hydrochloric acid, sodium hydroxide and ammonia, and alkalis can be used.
  • the volume average particle diameter of the obtained polymer primary particles is usually 0.02 ⁇ m or more, preferably 0.05 ⁇ m. Above, particularly preferably 0.1 ⁇ m or more, usually 3 ⁇ m or less, preferably 2 ⁇ m or less, particularly preferably 1 ⁇ m or less.
  • the volume average particle diameter of the polymer primary particles is equal to or more than the lower limit value, it is easy to control the aggregation speed in the aggregation process.
  • it is not more than the above upper limit value the particle size of the toner base particles obtained by agglomeration is hardly increased, and it becomes easy to obtain the toner base particles having a target particle size.
  • the polymer primary particles, the colorant particles, the charge control agent to be blended as necessary, and the wax are mixed simultaneously or sequentially.
  • a dispersion of each component that is, a polymer primary particle dispersion, a colorant particle dispersion, a charge control agent dispersion and a wax fine particle dispersion, if necessary, are mixed and mixed to obtain a dispersion mixture. It is preferable from the viewpoint of the uniformity of the composition and the uniformity of the particle diameter.
  • the colorant is preferably used in the state of being dispersed in water in the presence of an emulsifier, and the volume average particle diameter of the colorant particles is preferably 0.01 ⁇ m or more, particularly preferably 0.05 ⁇ m or more, preferably 3 ⁇ m. Hereinafter, it is particularly preferably 1 ⁇ m or less.
  • agglomeration is usually performed in a tank equipped with a stirrer, and there are a heating method, a method of adding an electrolyte, and a method of combining them.
  • the particle size of the particle aggregate is controlled from the balance between the cohesive force between the particles and the shearing force by stirring. However, the cohesive force can be increased by heating or adding an electrolyte.
  • the electrolyte may be any of acid, alkali, and salt, and may be either organic or inorganic.
  • the acid may be hydrochloric acid, nitric acid, sulfuric acid, citric acid, or the like.
  • inorganic salts having a divalent or higher polyvalent metal cation are preferred.
  • the amount of electrolyte added varies depending on the type of electrolyte, the target particle size, etc., but is preferably 0.02 parts by mass or more, more preferably 0.05 parts by mass or more with respect to 100 parts by mass of the solid component of the mixed dispersion. preferable. Further, it is preferably 25 parts by mass or less, more preferably 15 parts by mass or less, and particularly preferably 10 parts by mass or less.
  • the aggregation temperature in the case of performing aggregation by adding an electrolyte is preferably 20 ° C. or higher, particularly preferably 30 ° C. or higher, preferably 70 ° C. or lower, particularly preferably 60 ° C. or lower.
  • the time required for agglomeration is optimized depending on the shape of the apparatus and the processing scale.
  • the toner base particles In order to reach the target particle size, the toner base particles must be held at the predetermined temperature for at least 30 minutes. Is preferred.
  • the temperature rise until reaching the predetermined temperature may be raised at a constant rate, or may be raised stepwise.
  • the timing of adding the high heat-resistant resin fine particles may be any timing, may be charged simultaneously with the raw material of the core component (for example, polymer primary particles, pigment, wax, etc.), or a part of the raw material of the core component or You may add, after making all aggregate.
  • the core component and the high heat-resistant resin fine particles are charged at the same time, if the polarity of the high heat-resistant fine particles is designed to be thermodynamically intermediate between the core component and the medium (for example, water), High heat-resistant resin fine particles are attached around.
  • the high heat-resistant resin fine particles are adhered in a wet medium such as water and / or an organic solvent, the composition of the raw material of the core component is determined (the toner base particles are produced by aggregating particles smaller than the toner base particles)
  • composition and preparation method of the high heat-resistant resin fine particles include those described above.
  • the addition may be performed once or a plurality of times.
  • the first heat-resistant resin fine particles and the high heat-resistant resin fine particles from the next time may be different or any combination.
  • the temperature of the ripening step is preferably not less than Tg of the polymer primary particles, more preferably not less than 5 ° C higher than Tg of the polymer primary particles, and preferably not more than Tg of the high heat-resistant resin fine particles, more preferably high The temperature is 5 ° C.
  • the time required for the ripening step varies depending on the shape of the intended toner base particles, but preferably reaches 0.1 to 10 hours, particularly preferably 0.5 to 5 after reaching the Tg or more of the polymer primary particles. It is desirable to keep the time.
  • a surfactant adjust pH, or use both in combination after the agglomeration step, preferably before the aging step or during the aging step.
  • a surfactant used here, one or more emulsifiers that can be used in producing the polymer primary particles can be selected and used, and particularly used when the polymer primary particles are produced. It is preferable to use the same emulsifier.
  • the addition amount in the case of adding the surfactant is not limited, but is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, and preferably with respect to 100 parts by mass of the solid component of the mixed dispersion. Is 20 parts by mass or less, more preferably 15 parts by mass or less, and still more preferably 10 parts by mass or less.
  • toner By controlling the time of the aging process, various types of toner can be used depending on the purpose, such as a cocoon shape that maintains the shape of the aggregated polymer primary particles, a potato type that has advanced fusion, and a spherical shape that has undergone further fusion. Mother particles can be produced.
  • suspension stabilizer examples include calcium phosphate, magnesium phosphate, calcium hydroxide, magnesium hydroxide and the like. These may be used alone or in combination of two or more, and an amount of 1 part by mass or more and 10 parts by mass or less is preferable with respect to 100 parts by mass of the polymerizable monomer.
  • the suspension stabilizer may be added to the polymerization system before, simultaneously with, or after the addition of the polymerizable monomer, and these addition methods may be combined as necessary.
  • the monomer composition contains a polar resin such as polyester resin or carboxyl group-containing styrene resin
  • the monomer composition is dispersed in an aqueous medium to form droplets. Easy to move to the vicinity of the droplet surface.
  • toner mother particles having a difference in composition between the inside and the surface can be obtained.
  • a polar resin having a Tg higher than the Tg after polymerization of the monomer is selected, a structure in which the Tg inside the toner base particles is low and a high Tg resin exists on the surface is obtained.
  • the blocking resistance of the toner obtained by coating the core component with the high heat-resistant resin fine particles is enhanced. However, if this method is used in combination, it becomes easier to obtain good blocking resistance.
  • the timing for adding the high heat-resistant resin fine particles may be any timing.
  • the high heat-resistant resin fine particles are dissolved in the monomer composition and then dispersed in an aqueous medium so that the high heat-resistant resin fine particles are thermodynamic.
  • the polarity of the high heat-resistant resin fine particles can be designed so as to come to the interface between the core component and water.
  • high heat-resistant resin fine particles may be added, or the monomer composition of the core component may be dispersed and the polymerizable monomer of the core component may be dispersed.
  • the high heat-resistant resin fine particles may be added after polymerizing part or almost all.
  • the high heat-resistant fine particles On the surface of the core component, it is preferable to polymerize a part of the polymerizable monomer and then add the high heat-resistant resin fine particles. It is more preferable to add the high heat-resistant resin fine particles after polymerizing all.
  • composition and preparation method of the high heat resistant resin fine particles examples include those described above.
  • the addition may be performed once or a plurality of times.
  • the first high heat-resistant resin fine particles and the next high heat-resistant resin fine particles may be different or any combination.
  • a pH adjuster, a polymerization degree adjuster, an antifoaming agent, and the like can be appropriately added to the reaction system.
  • toner mother particles by dissolution suspension
  • An oil-based dispersion in which at least a binder resin and a colorant and, if necessary, a wax and a charge control agent are dissolved or dispersed in an organic solvent is prepared, and this is used as an aqueous medium. Disperse in. Thereafter, the organic solvent is removed from the dispersion to obtain toner mother particles.
  • the high heat-resistant fine particles may be added in advance to the oil-based dispersion, may be added after being dispersed in an aqueous medium, or may be added after removing the organic solvent.
  • composition and preparation method of the high heat-resistant resin fine particles include those described above.
  • the addition of the high heat-resistant resin fine particles may be performed once or a plurality of times.
  • the first heat-resistant resin fine particles and the high heat-resistant resin fine particles from the next time may be different or any combination.
  • As an aqueous medium water alone may be used, but a solvent miscible with water may be used in combination.
  • a dispersant can be used.
  • the use of a dispersant is preferable because the particle size distribution becomes sharp and the dispersion is stable.
  • the dispersant the same emulsifiers as those used in the above emulsion polymerization can be used.
  • various hydrophilic polymer substances that form a polymeric protective colloid in an aqueous medium can be present.
  • inorganic fine particles and / or polymer fine particles can be used.
  • the inorganic fine particles various conventionally known inorganic compounds that are insoluble or hardly soluble in water are used. Examples of such materials include tricalcium phosphate, calcium carbonate, titanium oxide, colloidal silica, and hydroxyapatite.
  • the polymer fine particles may be regarded as the high heat-resistant resin fine particles.
  • a known dispersing machine such as a low-speed shearing type, a high-speed shearing type, a friction type, a high-pressure jet type, or an ultrasonic wave can be applied as a dispersing device.
  • An oil-based dispersion liquid may be prepared using a prepolymer having a reactive group instead of the binder resin, and after dispersing in an aqueous medium, the reactive group may be reacted to extend the resin.
  • the prepolymer since the prepolymer has a relatively low molecular weight, it is difficult to increase the viscosity of the oil-based dispersion, and the dispersion in an aqueous medium becomes easy.
  • the colorant may be prepared in advance as a master batch combined with a resin, and this may be dispersed in an organic solvent.
  • a method of removing the organic solvent there is a method of volatilizing the organic solvent while reducing the pressure at room temperature or under heating.
  • the active hydrogen group-containing compound such as a hydroxyl group, amino group, or carboxyl group
  • the active hydrogen group-containing compound is dispersed after dispersing the oily dispersion in an aqueous medium.
  • toner mother particles having a difference in composition between the inside and the surface can be obtained.
  • the polymer fine particles used for the dispersant are regarded as the high heat-resistant resin fine particles and adjusted to the physical properties of the high heat-resistant resin fine particles, whereby the high heat-resistant resin fine particles (polymer fine particles) are present on the surface of the toner base particles. May be made.
  • toner base particles As described above, “method of aggregating particles smaller than toner base particles to prepare toner base particles”, “method of preparing toner base particles by suspension polymerization”, “toner base by dissolution suspension”
  • the toner base particles produced by the “method for producing particles” and the like are separated from the aqueous solvent, washed, dried, subjected to an external addition treatment, and supplied to an electrostatic charge image developing toner.
  • the liquid used for cleaning includes water, but it can also be cleaned with an acid or alkali aqueous solution. Moreover, it can also wash
  • the toner base particles are made into a thick slurry or wet cake by filtration, decantation, etc., and a liquid for newly washing is added thereto to disperse the toner base particles. preferable.
  • the toner base particles after washing are preferably collected in the form of a wet cake in terms of handling in the subsequent drying process.
  • a vibration type fluid drying method such as a circulation type fluid drying method, an air flow drying method, a vacuum drying method, a freeze drying method, a spray drying method, a flash jet method or the like is used.
  • the operating conditions such as temperature, air volume, and degree of reduced pressure in the drying process are appropriately optimized based on the Tg of the toner base particles, the shape, mechanism, size, etc. of the apparatus used.
  • melt-kneading pulverization method is a method in which a charge control agent, a release agent, a magnetic material and the like are dry-mixed with a binder resin and a colorant as necessary, and then an extruder.
  • toner base particles are obtained by melt-kneading and the like, and then pulverized and classified.
  • high heat-resistant resin fine particles may be added and adhered to the surface of the core component.
  • the high heat-resistant resin fine particles are added at the same time as the core component (dissolved / dispersed / suspended).
  • the heat resistant resin fine particles may be thermodynamically disposed on the surface of the core component and the wet medium, or after the composition and / or shape of the core component is determined, Resin fine particles may be added to physically and / or discontinuously cover the surface of the core component with the high heat resistant resin fine particles.
  • the high heat-resistant resin fine particles may be added before and after the cleaning of the core component, or before and after the drying of the core component.
  • High heat-resistant resin fine particles may be added.
  • the high heat resistant resin fine particles may be added in the external addition step. When the high heat resistant resin fine particles are adhered in the external addition step, it is better to add the high heat resistant resin fine particles and fix them before adding the external additive. preferable.
  • melt-kneading pulverization method for producing toner base particles by dry method it is preferable to add the high heat-resistant resin fine particles before and after the external addition step after the pulverization and classification to adhere the high heat-resistant resin fine particles. From the viewpoint of firmly fixing the core component and the high heat-resistant resin fine particles, it is particularly preferable to add the high heat-resistant resin fine particles in water and / or an organic solvent.
  • TP2 / TP1 Production of toner satisfying parameters of the present invention 3.2.1.
  • a high heat-resistant resin fine particle component is widely present on the surface of the toner base particles, and the outside is coated with an external additive. Covering, adjusting the particle size and amount of the high heat resistant resin fine particles, and adhering in water, it is necessary to adjust the polarity balance between the core component and the high heat resistant resin fine particles, and further adjust the composition ratio of the entire toner base particles. is there.
  • the volume median diameter (Dv 50 ) of the high heat-resistant resin fine particles is preferably 50 nm or more, more preferably 70 nm or more, preferably 300 nm or less, and more preferably 250 nm or less.
  • the “volume median diameter (Dv 50 )” in the present invention is defined as a value measured by the method described in the examples according to the size and measured as such.
  • the particle diameter of the high heat-resistant resin fine particle is 100 nm or more, it is preferable to spread the high heat-resistant resin fine particle thinly on the surface of the toner base particle by externally adding the high heat-resistant resin fine particle by impact.
  • a toner having a BETN-BETF of 0.54 or more and 1.56 or less is obtained. It becomes easy.
  • the toner satisfy the parameters of the present invention.
  • the addition amount of the high heat-resistant resin fine particles it is preferable to determine based on the coverage. It can be calculated from the ratio of the surface area obtained from the target particle diameter when the toner base particles are assumed to be spherical and the projected area obtained from the average particle diameter when the high heat-resistant resin fine particles are assumed to be spherical. Specifically, the coverage is AR / (4r (1-A)) where R is the toner base particle radius, r is the high heat resistant resin fine particle radius, and A is the weight ratio of the high heat resistant resin fine particles in the resin component. expressed.
  • the coverage is preferably 25% or more and 85% or less, more preferably 35% or more and 70% or less, and 40% or more and 60% or less. It is particularly preferred.
  • the coverage is preferably 55% or more and 120% or less, more preferably 65% or more and 105% or less, and 70% or more and 95% or less. It is particularly preferred.
  • the high heat-resistant resin fine particle component is disposed in the vicinity of the surface when it is in the form of toner.
  • the shape may be particulate or spherical or may be a thin film.
  • the composition is combined so that the binder resin and the high heat-resistant resin fine particles have appropriate compatibility. Is desirable.
  • the binder resin and the high heat-resistant resin fine particles are in contact with each other without melting.
  • the binder resin and the high heat-resistant resin fine particles are melted together by the heating during the measurement. Therefore, in the second measurement, the measurement is started in a melted state. This difference appears in the difference between TP2 / TP1. Therefore, it is desirable to adjust the compatibility by selecting the type of resin contained in the high heat-resistant resin fine particles according to the type of the binder resin.
  • the adjustment method is illustrated, the numerical value quoted in the example is not limited.
  • the binder resin is a styrene acrylic resin that is a kind of poly (meth) acrylic resin
  • the resin contained in the high heat-resistant resin fine particles is also a styrene acrylic resin, and the ratio of styrene monomer to acrylic monomer.
  • the binder resin is 70:30
  • the resin contained in the high heat-resistant resin fine particles is 95: 5; or the number of hydrophilic monomers relative to 100 parts by mass of other monomers is
  • the resin is 1 part, the resin contained in the high heat-resistant resin is 1.5 parts; using a hybrid resin of styrene acrylic resin and polyester as the binder resin; It is done.
  • the difference between the solubility parameter (SP value) of the binder resin and the SP value of the high heat resistant resin fine particle component is 0.5 to 1. 0 is preferable, and 0.6 to 0.8 is more preferable.
  • the core component contains at least a binder resin and a colorant, and the “high heat-resistant resin fine particle component” is present in the vicinity thereof. It is preferable that there is no shadow difference for all color toners including black toner and magenta toner.
  • the measurement conditions of the transmission electron microscope are measured as described in the examples, and the “shadow difference” is the “shadow difference” when a photograph of such a measurement is viewed with the naked eye.
  • “there is no shadow difference” means that there is no difference in the dyeing degree (black and white degree) between the core component and the high heat resistant resin fine particle component, and the edge of the high heat resistant resin fine particle component (that is, the core component and the high heat resistant resin). This means that the boundary of the fine particle component is not visible.
  • “there is no shadow difference” does not exclude an aspect in which the shadow difference is not clear and the shadow difference is hardly visible.
  • the monomer component of the binder resin constituting the core component and the high heat-resistant resin fine particles are configured. It is preferable that at least one of the monomer components is the same. By doing so, the interface between the core component and the high heat-resistant resin fine particles becomes seamless, and the adhesive strength is increased. For example, the high heat-resistant resin is adhered to the surface of the core component by wet processing, and then the external addition process increases the strength.
  • the binder resin is a polyester resin
  • the resin contained in the high heat resistant resin fine particles is also a polyester resin
  • the binder resin is 3 mgKOH / g or less
  • the resin contained in the high heat resistant resin fine particles May be 4 mg KOH / g or more and 20 mg KOH / g or less
  • the binder resin should not have a hydroxyl group
  • the resin contained in the high heat-resistant resin fine particles should have a hydroxyl group
  • the compatibility between the binder resin and the high heat-resistant resin fine particles proceeds at the time of toner mother particle production, and therefore TP2 and TP1 measured by the rheometer are almost equal. Take the same value. Further, if the compatibility between the binder resin and the high heat-resistant resin fine particles is extremely poor, the toner structure is not melted by the heat of the first measurement and the toner structure is maintained, so that TP2 and TP1 take almost the same value.
  • the high heat-resistant resin fine particles contain a resin, but may contain other components such as wax, a charge control agent and the like.
  • the number average molecular weight by GPC of the resin contained in the high heat-resistant resin fine particles is preferably 8000 or more, more preferably 10,000 or more, still more preferably 13,000 or more, preferably 50,000 or less, more preferably 4 10,000 or less, more preferably 35,000 or less.
  • the weight average molecular weight by GPC of the resin contained in the high heat-resistant resin fine particles is preferably 20,000 or more, more preferably 30,000 or more, preferably 300,000 or less, more preferably 200,000 or less.
  • the Tg of the high heat-resistant resin fine particles is preferably 60 ° C. or higher, more preferably 70 ° C. or higher, preferably 100 ° C. or lower, and more preferably 90 ° C. or lower. Further, it is necessary to be higher than Tg of the binder resin, more preferably 10 ° C. or higher, and further preferably 20 ° C. or higher. In order to adjust the TP2 / TP1 of the toner measured by the rheometer so that it falls within the range of the present invention, it is necessary to dispose the high heat-resistant resin fine particles in the vicinity of the surface of the toner base particles.
  • the toner base particles when the toner base particles are prepared in a wet medium (water and / or an organic solvent), it is preferable to make the composition more compatible with the medium than the binder resin.
  • the medium is water
  • the ratio of the acidic monomer or the basic monomer is higher than that of the binder resin and 1.0 part by mass or more with respect to 100 parts by mass of the other monomers;
  • a suitable polymerization initiator is used.
  • the core component particles before adding the high heat-resistant resin fine particles have an uneven shape, and when the high heat-resistant resin fine particles are attached with the same charge (plus or minus) in water, There is a tendency to selectively adhere to the convex portions of the core component particles, which is a preferable tendency.
  • the polarity difference between the core component and the high heat-resistant resin fine particles was small, so even after the addition of the high heat-resistant resin fine particles, the high heat-resistant resin fine particles do not stay near the surface of the toner base particles, but are embedded deeply inside the toner. It will be crowded.
  • the high heat-resistant resin fine particles remain near the surface of the toner base particles. Further, in the case of being spread by an external addition operation, the high heat-resistant resin fine particle component is thinly spread on the surface of the toner base particles. Therefore, the high heat-resistant resin fine particles are not uniformly distributed over the entire surface of the toner base particles, but have a tendency that the adhesion rate to the convex portions is higher than the adhesion rate to the concave portions.
  • the anti-blocking property is deteriorated by fusing toners in a heating environment, but the convex portions of the toner come in contact with each other stochastically. Therefore, it becomes a preferable form that the heat resistance of a convex part is high.
  • the value of “BETN-BETF” is a parameter that clearly distinguishes the difference between the preferred form and the unfavorable form, and the toner in which “BETN-BETF” is in a suitable range is effective for the present invention ( Particularly good blocking resistance) is exhibited.
  • External attachment 4.1. External Additive
  • an external additive is added in order to obtain the physical properties of the toner of the present invention and in order to improve the fluidity and charge control properties of the toner. Since the external additive adheres to the entire surface of the toner base particles, it is preferable that the portion where the high heat-resistant resin fine particles do not exist is also coated with the external additive.
  • the external additive can be appropriately selected from various inorganic or organic fine particles. Two or more kinds of external additives may be used in combination.
  • Inorganic fine particles include silicon carbide, boron carbide, titanium carbide, zirconium carbide, hafnium carbide, vanadium carbide, tantalum carbide, niobium carbide, tungsten carbide, chromium carbide, molybdenum carbide, calcium carbide, and other carbides, boron nitride, titanium nitride.
  • nitrides such as zirconium nitride, various borides such as zirconium boride, various oxides such as titanium oxide, calcium oxide, magnesium oxide, zinc oxide, copper oxide, aluminum oxide, cerium oxide, silica, colloidal silica, titanium
  • titanate compounds such as calcium oxide, magnesium titanate, strontium titanate, phosphate compounds such as calcium phosphate, sulfides such as molybdenum disulfide, fluorides such as magnesium fluoride and fluorocarbon, aluminum stearate, stearyl Calcium, zinc stearate, various metal soaps such as magnesium stearate, talc, bentonite, various carbon black or conductive carbon black, magnetite, can be used ferrite.
  • the organic fine particles fine particles such as styrene resin, acrylic resin, epoxy resin, and melamine resin can be used.
  • charging stability can be improved by using fine particles containing fluorine atoms.
  • these external additives silica, titanium oxide, alumina, zinc oxide, various carbon blacks and the like are particularly preferably used.
  • the external additive is prepared by applying the surface of the inorganic or organic fine particles to a silane coupling agent such as hexamethyldisilazane (HMDS) or dimethyldichlorosilane (DMDS), a titanate coupling agent, silicone oil, or dimethyl silicone oil.
  • HMDS hexamethyldisilazane
  • DMDS dimethyldichlorosilane
  • Hydrophobic by treating agents such as silicone oil treating agents such as modified silicone oil and amino-modified silicone oil, silicone varnish, fluorine-based silane coupling agent, fluorine-based silicone oil, coupling agent having amino group or quaternary ammonium base
  • silicone oil treating agents such as modified silicone oil and amino-modified silicone oil, silicone varnish, fluorine-based silane coupling agent, fluorine-based silicone oil, coupling agent having amino group or quaternary ammonium base
  • surface treatment such as chemical conversion
  • Two or more kinds of the treatment agents can be used in combination.
  • the amount of the external additive added is preferably 1.0 part by mass or more, particularly preferably 1.5 parts by mass or more, and preferably 6.5 parts by mass or less with respect to 100 parts by mass of the toner base particles. Part or less is particularly preferable.
  • conductive fine particles may be used as an external additive from the viewpoint of charge control. Examples of the conductive fine particles include metal oxides such as conductive titanium oxide, silica, and magnetite or those doped with a conductive substance, and conjugated double bonds such as polyacetylene, polyphenylacetylene, and poly-p-phenylene.
  • Examples thereof include organic fine particles obtained by doping a conductive material such as a metal into the polymer, carbon typified by carbon black and graphite, etc., but from the viewpoint that conductivity can be imparted without impairing the fluidity of the toner, conductive titanium oxide. Or the metal oxide and organic fine particle which doped the electroconductive substance are more preferable.
  • the lower limit of the content of the conductive fine particles is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, with respect to 100 parts by mass of the toner base particles. It is particularly preferred.
  • the upper limit of the content of the conductive fine particles is preferably 3 parts by mass or less, more preferably 2 parts by mass or less, and particularly preferably 1 part by mass or less.
  • External Addition Method of External Additive examples include a method using a high-speed stirrer such as a Henschel mixer and a method using an apparatus capable of applying a compressive shear stress.
  • the toner can be prepared by a one-stage external addition method in which all external additives are added to the toner base particles simultaneously and externally added, but can also be prepared by a separate external addition method in which each external additive is externally added.
  • a cooling device is installed in the container, and external addition is performed.
  • the toner TP2 / TP1 obtained can be adjusted to be within the numerical range of the present invention. For example, when stirring for a long time (for example, 25 minutes or more) at 3000 rpm with a Henschel mixer, TP2 / TP1 increases, and when stirring for a short time (for example, 5 minutes or less) under the same conditions, TP2 / TP1 decreases.
  • the toner for developing an electrostatic charge image of the present invention may be used in any form of a two-component developer using a toner together with a carrier, or a magnetic or non-magnetic one-component developer not using a carrier.
  • the carrier may be a magnetic substance such as iron powder, magnetite powder or ferrite powder, or a known material such as a resin coating on the surface thereof or a magnetic carrier.
  • the coating resin of the resin coating carrier generally known styrene resin, acrylic resin, styrene acrylic copolymer resin, silicone resin, modified silicone resin, fluororesin, or a mixture thereof can be used.
  • the toner cartridge and the image forming apparatus containing the toner set of the present invention have the excellent effects exhibited by the toner set of the present invention. Further, if an image forming method for forming an image using the toner set of the present invention described above is used, the above excellent output image can be provided.
  • ⁇ Medium diameter measurement 1> The volume median diameter (Dv 50 ) of particles having a volume median diameter (Dv 50 ) of less than 1 micron is determined by the Nikkiso Co., Ltd. model Microtrac Nanotrac 150 (hereinafter abbreviated as “Nanotrack”) and its analysis software MicrotracParticle.
  • Analyzer Ver10.1.2-019EE ion-exchanged water with electric conductivity of 0.5 ⁇ S / cm as solvent, solvent refractive index: 1.333, measurement time: 120 seconds, number of measurements: 5 measurement conditions Then, it was measured by the method described in the instruction manual, and the average value was obtained.
  • Other setting conditions were particle refractive index: 1.59, transparency: transmission, shape: true sphere, density: 1.04.
  • a dispersion medium Cell Sheath: Sysmex
  • FPIA 3000 Sysmex
  • THF-soluble component of the polymer primary particle dispersion was measured by gel permeation chromatography (GPC) under the following conditions.
  • GPC gel permeation chromatography
  • Apparatus GPC apparatus HLC-8320 manufactured by Tosoh Corporation, column: TOSOH TSKgel SuperHM-H (diameter 6 mm ⁇ length 150 mm ⁇ 2), solvent: THF, column temperature 40 ° C., flow rate 0.5 mL / min, sample concentration: 0.1% by mass, calibration curve: standard polystyrene
  • emulsion solid content concentration was determined by evaporating water by heating a 2 g sample at 195 ° C. for 90 minutes using an infrared moisture meter FD-610 manufactured by Kett Science Laboratory.
  • polymerization step 10.7 parts of wax dispersion A1 (as a wax component), 252 parts of demineralized water, 0.5% in a reactor equipped with a stirrer, a heating / cooling device, a concentrating device, and each raw material / auxiliary charging device 0.02 part of iron (II) sulfate heptahydrate aqueous solution was charged, and the temperature was raised to 90 ° C. under a nitrogen stream while stirring.
  • wax dispersion A1 as a wax component
  • demineralized water 0.5% in a reactor equipped with a stirrer, a heating / cooling device, a concentrating device, and each raw material / auxiliary charging device 0.02 part of iron (II) sulfate heptahydrate aqueous solution was charged, and the temperature was raised to 90 ° C. under a nitrogen stream while stirring.
  • the mixture was cooled to 30 ° C. to obtain milky white primary polymer particles.
  • the volume median diameter (Dv 50 ) measured using Nanotrac was 239 nm.
  • the weight average molecular weight (Mw) was 67,000.
  • Solid content concentration was 24.1 mass% and Tg was 38 degreeC.
  • ⁇ Preparation of high heat-resistant resin fine particles polymerization step>
  • a reactor equipped with a stirrer, heating / cooling device, concentrating device, and each raw material / auxiliary charging device 50.6 parts of wax dispersion A2 and 20% DBS as a particle size adjusting emulsifier (DBS SP) 2.96 parts of an aqueous solution and 350 parts of demineralized water were charged, and the temperature was raised to 75 ° C. under a nitrogen stream while stirring.
  • DBS SP particle size adjusting emulsifier
  • the mixture was cooled to 30 ° C. to obtain milky white high heat-resistant resin fine particles.
  • the volume median diameter (Dv 50 ) measured using Nanotrac was 158 nm.
  • the weight average molecular weight (Mw) was 59000.
  • the solid content concentration was 20.0% and the Tg was 80 ° C.
  • the pigment premix solution was supplied as a raw material slurry to a wet bead mill and subjected to one-pass dispersion. Note that zirconia beads (true density of 6.0 g / cm 3 ) having a diameter of 120 mm ⁇ , a separator having a diameter of 60 mm ⁇ , and a diameter of 50 ⁇ m were used as a dispersion medium. Since the effective internal volume of the stator is about 2L and the filling volume of the media is 1.4L, the media filling rate is 70%.
  • the pigment premix liquid is supplied from the supply port by a non-pulsating metering pump at a supply speed of about 40 L / hr, and reaches a predetermined particle size.
  • the product was acquired from the outlet.
  • cooling water of about 10 ° C. is circulated from the jacket, and the volume median diameter (Dv 50 ) is 157 nm, the number median diameter (Dn 50 ) is 106 nm, and the solid content concentration is 2k% Bk (black). A colorant dispersion was obtained.
  • the pigment premix solution was supplied as a raw material slurry to a wet bead mill and circulated and dispersed.
  • the inner diameter of the stator was ⁇ 75 mm
  • the separator diameter was ⁇ 60 mm
  • the distance between the separator and the disk was 15 mm
  • zirconia beads having a diameter of 50 ⁇ m (true density of 6.0 g / cm 3 ) were used as a dispersion medium. Since the effective internal volume of the stator is 0.5 L and the filling volume of the media is 0.35 L, the media filling rate is 70% by mass.
  • the rotation speed of the rotor is constant (the peripheral speed of the rotor tip is about 11 m / sec), and the pigment premix liquid is continuously supplied from the supply port at a supply speed of 50 L / hr by a non-pulsating metering pump, and continuously from the discharge port.
  • the Ma colorant dispersion was obtained when it reached a predetermined particle size by being repeatedly discharged and repeatedly circulated.
  • the volume median diameter (Dv 50 ) of the Ma (magenta) colorant dispersion measured with Nanotrac was 153 nm, the pH was 5.8, and the solid content concentration was 25.5% by mass.
  • the internal temperature was raised to 40 ° C., and the temperature was raised stepwise until the volume median diameter became 5.5 ⁇ m.
  • This temperature (primary aggregation temperature) was 45 ° C.
  • 9.90 parts of polymer primary particles (as solids) were added.
  • 3.33 parts of high heat-resistant resin fine particles (as a solid content) were added.
  • 20.1 parts of 20% DBS aqueous solution and 22.9 parts of deionized water were added, and then the temperature was raised to 65 ° C. over 50 minutes, and then stepwise until the circularity reached 0.975.
  • the temperature rose.
  • the temperature (final circularization temperature) when the circularity reached 0.975 was 70 ° C. Thereafter, it was immediately cooled to 30 ° C. to obtain a Bk (black) toner base particle 1 dispersion.
  • Bk (black) toner base particle 1 dispersion was extracted and suction filtered with an aspirator using 5 types C (Toyo Roshi Kaisha, Ltd., No. 5C) filter paper.
  • the cake remaining on the filter paper was transferred to a stainless steel container equipped with a stirrer (propeller blade), and ion-exchanged water having an electric conductivity of 1 ⁇ S / cm was added and stirred uniformly, and then stirred for 30 minutes. After repeating this process until the electric conductivity of the filtrate reaches 2 ⁇ S / cm, the obtained cake is dried in a blow dryer set at 40 ° C. for 48 hours, whereby Bk (black) toner base particles are obtained. 1 was obtained.
  • Production Examples 2-3 In the preparation step (aggregation step) of the Bk (black) toner mother particle 1 dispersion in Production Example 1, the addition amount as the solid content of the polymer primary particles, and the addition as the solid content of the polymer primary particles after the completion of the primary aggregation Bk (black) toner 2 and Bk shown in Production Examples 2 and 3 in the same manner as Production Example 1, except that the amount and the addition amount of the high heat-resistant resin fine particles as solids were changed as shown in Table 1. (Black) Toner 3 was produced.
  • Production Examples 4-6 In the preparation step (aggregation step) of the Bk (black) toner mother particle 1 dispersion in Production Example 1, the amount of the polymer primary particles added as the solid content, the type of the pigment dispersion, the number of pigment parts (as the solid content), the primary Production Example as in Production Example 1 except that the addition amount as the solid content of the polymer primary particles after completion of the aggregation and the addition amount as the solid content of the high heat-resistant resin fine particles were changed as shown in Table 1. Ma (magenta) toners 1 to 3 shown in 4 to 6 were produced. However, only the Ma (magenta) toner 3 of Production Example 6 was immediately cooled to 30 ° C.
  • High heat-resistant resin fine particles coat the toner base particles (the toner base particles are assumed to be 5.6 ⁇ m).
  • Table 1 also shows the diameter (Dv 50 ), the number median diameter (Dn 50 ), the particle size distribution (Dv 50 / Dn 50 ), and the average circularity.
  • TP1 and TP2 of the toners obtained in Production Examples 1 to 6 were measured by the following method, and TP2 / TP1 was obtained by dividing the value of TP2 by TP1, and is shown in Table 1.
  • TP2 / TP1 measured with a rheometer was determined by the following procedure. The measurement was performed by the following method using a rheometer ARES (measurement control software TA Orchestrator V7.2.0.2) manufactured by TA Instruments.
  • ARES measurement control software TA Orchestrator V7.2.0.2
  • molded body About 0.3 g of a sample was put in a jig for 8 mm diameter, and the clamping force was 1.25 tons (gauge 25 kg / cm 2 ) by a press machine (5 ton press PE-5Y manufactured by Kodaira Seisakusho Co., Ltd.). ) For 15 minutes and molded into pellets. In the present invention, this may be abbreviated as “molded body”.
  • scratches were formed in a lattice shape with 12 in each direction, width and width of the opening 50 to 100 ⁇ m, and depth 1 to 10 ⁇ m (average 3 to 5 ⁇ m).
  • First temperature rise measurement The pellet (molded body) was set in a measuring apparatus equipped with a circular parallel plate having an upper and lower diameter of 8 mm, and the upper plate was lowered while the temperature was raised to 40 ° C. to adjust the force “Force” to 200 g. Then, it measured on condition of the following.
  • Second temperature increase measurement When the temperature decreased to 40 ° C., the second temperature increase measurement was performed under the same conditions as the first time. However, the settings at the end of measurement were as follows. When the first measurement was completed, the system was automatically air-cooled. When the temperature reached 40 ° C., the pellet (molded body) was not taken out, and the measurement at the second temperature increase was started immediately.
  • Tg of the toner obtained in the production example was measured by the following method and listed in Tables 1 and 4.
  • Tg measurement by a differential scanning calorimeter was performed as follows using Q20 manufactured by TA Instruments. 3 ⁇ 1 mg of toner is put in an aluminum pan and precisely weighed to the order of 0.1 mg. The aluminum pan filled with 3 mg of aluminum oxide is used as a reference, and the temperature is increased from 0 ° C. to 120 ° C. at 10 ° C./min. Warm up. After holding at 120 ° C. for 10 minutes, the temperature was lowered to 0 ° C. at 10 ° C./minute, held for 5 minutes, and then heated again to 120 ° C. at 10 ° C./minute.
  • the glass transition temperature (Tg) was defined as the temperature at the intersection of the baseline before the endothermic peak at the second temperature rise and the tangent at the first inflection point appearing at 30 to 55 ° C. after the end of the endothermic peak.
  • the Tg when the sample of the polymerized primary particles and the high heat-resistant resin fine particles was an aqueous dispersion was measured by the above method after freeze-drying to remove moisture.
  • Example 1 “Bk (TP2 / TP1) /” is a value obtained by dividing the TP2 / TP1 value of each toner and the TP2 / TP1 value of the Bk toner by the TP2 / TP1 value of the Ma toner when the Bk toner and the Ma toner are combined.
  • Ma (TP2 / TP1) ", the collapse load / determination / score as a proking resistance A of each toner, the score as a combination of Bk toner and Ma toner, the remaining rate / determination / score as a fixing test A
  • the total score A was obtained by adding the combination score of blocking resistance A to the score of the fixing test A, and the following comprehensive judgment A was performed based on the total score A.
  • the total score A is less than 10 points: ⁇ (actually unavailable, rejected)
  • Total score A is 10 points or more and less than 15 points: ⁇ (actual use, pass)
  • the total score A is 15 points or more and less than 18 points: ⁇ (Actual use possible, pass in the preferred range)
  • the total score A is 18 points or more: ⁇ (Available, pass within a more preferable range)
  • the blocking resistance A and the fixing test A were carried out as follows, and were judged and scored.
  • the fixability A was measured, judged and scored by the following method.
  • a developer was obtained by stirring and mixing 10 parts of toner and 100 parts of a ferrite carrier having a volume average particle size of 35 ⁇ m.
  • This developer is a non-magnetic two-component (using organic photoreceptor) development method, roller (PCR) charging, mag roller development method, development speed A4 horizontal conversion 50 sheets / minute, 4-color tandem method, commercially available with IH fixing device Using a full-color printer, each color was printed as a single color, and an image with an image density of about 1.7 was printed.
  • the obtained fixed image surface is subjected to a peeling test using a mending tape (manufactured by Sumitomo 3M Co., Ltd.), the image density before and after peeling is divided by the image density before peeling and multiplied by 100 to remain fixed. Rate (%). That is, the larger the remaining ratio number, the stronger the fixing strength and the better the toner.
  • Examples 2 to 4 and Comparative Examples 1 to 3 were also evaluated, judged and scored in the same manner as in Example 1 except that the combination of Bk toner and Ma toner was changed. The results are shown in Table 2.
  • FIG. 3 shows the relationship between blocking resistance (collapse load) and TP2 / TP1 for Bk toners 1 to 3 and Ma toners 1 and 2 having the same external addition.
  • FIG. 3 shows data for each color toner. The regression equation expressed in a linear form using the least square method is shown.
  • the TP2 / TP1 of the Bk toner with a collapse load of 1800 g or less that is acceptable is 1.45 or more from the regression equation
  • the TP2 of the Bk toner that has a collapse load of 1300 g or less with a preferable range is 1.45 or more from the regression equation
  • TP2 / TP1 is found to be 1.52 or more from the regression equation, and further, TP2 / TP1 of Ma toner having a collapse load of 1800 g or less that passes is 1.22 or more from the regression equation. It can be seen from the regression equation that the TP2 / TP1 of the Ma toner that is 1300 g or less that passes the load in the preferred range is 1.32 or more.
  • FIG. 4 shows the relationship between fixability (residual rate) and TP2 / TP1 of Bk toners 1 to 3 and Ma toners 1 and 2 with the same external addition.
  • FIG. 4 shows the minimum data for each color toner. The regression equation expressed in a linear form using the square method is shown.
  • TP2 / TP1 of Bk toner having a remaining rate of 20% or more, which is an index of fixability, is 1.77 or less from the regression equation, and the collapse load is acceptable within a preferable range.
  • TP2 / TP1 of the Bk toner that is at least% is 1.69 or less
  • TP2 / TP1 of the Bk toner that is 40% or more that is acceptable in a more preferable range is 1.60 or less.
  • the TP2 / TP1 of the Ma toner with a remaining rate of 20% or more that passes is 1.62 or less from the regression equation
  • the TP2 / TP1 of the Bk toner that passes 30% or more with a collapse load within a preferable range It can also be seen that TP1 is 1.54 or less, and TP2 / TP1 of Bk toner with a collapse load of 40% or more that passes within a more preferable range is 1.46 or less.
  • the TP2 / TP1 of the Bk toner is preferably 1.45 or more and 1.77 or less, and the median of the upper and lower limits of the TP2 / TP1 is 1.61.
  • This toner assuming 1.61 toner is referred to as Bk toner [4].
  • the Ma toner having the minimum TP2 / TP1 value (1.21), in which the collapsing load, which is an index of anti-blocking property, exceeds 1800 g and is rejected in the Ma toner combined therewith is defined as Ma toner [4].
  • a combination with Bk toner [4] is estimation example 1 in Table 3.
  • the Ma toner having the maximum TP2 / TP1 value (1.22) at which the collapse load, which is an index of anti-blocking property, is 1800 g or less in the Ma toner combined with the Bk toner [4] is defined as Ma toner [5].
  • a combination with Bk toner [4] is an estimation example 2 in Table 3. From estimation examples 1 and 2 shown in Table 3, when the value obtained by dividing TP2 / TP1 of Bk toner by TP2 / TP1 of Ma toner is 1.32 or less, both Bk toner and Ma toner have blocking resistance and fixing. It turns out that both tests are satisfied.
  • the internal temperature was raised to 40 ° C., and the temperature was raised stepwise until the volume median diameter became 5.5 ⁇ m.
  • This temperature (primary aggregation temperature) was 44 ° C.
  • 10.0 parts of polymer primary particles (as a solid content) were added.
  • 2.18 parts (as solid content) of high heat-resistant resin fine particles were added.
  • 20.1 parts of 20% DBS aqueous solution and 22.9 parts of deionized water were added, and then the temperature was raised to 65 ° C. over 50 minutes, and then stepwise until the circularity reached 0.975.
  • the temperature rose.
  • the temperature when the circularity reached 0.975 (final circularization temperature) was 71 ° C. Thereafter, it was immediately cooled to 30 ° C. to obtain a Ma (magenta) toner mother particle 11 dispersion.
  • Production Example 12 In the preparation step (aggregation step) of the Ma (magenta) toner base particle 11 dispersion in Production Example 11, the addition amount as the solid content of the polymer primary particles described in Table 4, the polymer primary particles after the completion of the primary aggregation Production Example 12 in the same manner as in Production Example 11 except that the addition amount as a solid content and the addition amount as a solid content of the high heat-resistant resin fine particles were changed and the coverage was changed as shown in Table 4.
  • Production Example 13 and Production Example 14 In the preparation process (aggregation process) of the Ma (magenta) toner base particle 11 dispersion, the amount of the polymer primary particles added as the solid content, the pigment dispersion liquid type, the number of pigments as the solid content, and the primary polymer after completion of the primary aggregation The amount of addition as a solid content of the particles, the addition amount as a solid content of the high heat resistant resin fine particles, and the high heat resistant resin fine particles coat the toner base particles (the toner base particles are assumed to be 5.6 ⁇ m). Cy (cyan) toners 11 and 12 shown in Production Examples 13 and 14 were produced in the same manner as in Production Example 11 except that the procedure was changed as described above.
  • pigment dispersion liquid type as a Cy (cyan) colorant dispersion liquid, Daiichi Seika Kogyo Co., Ltd. EP700 (PB15: 3, copper phthalocyanine pigment, pigment concentration 24.0%, solid content 34.3%) )It was used.
  • Production Example 15 and Production Example 16 In the preparation process (aggregation process) of the Ma (magenta) toner base particle 11 dispersion, the amount of the polymer primary particles added as the solid content, the pigment dispersion liquid type, the number of pigments as the solid content, and the primary polymer after completion of the primary aggregation The amount of addition as a solid content of the particles, the addition amount as a solid content of the high heat resistant resin fine particles, and the high heat resistant resin fine particles coat the toner base particles (the toner base particles are assumed to be 5.6 ⁇ m).
  • Ye (yellow) toners 11 and 12 shown in Production Examples 15 and 16 were produced in the same manner as in Production Example 11 except that the procedure was changed as described above.
  • a dispersion prepared as follows was used as the Ye (yellow) colorant dispersion.
  • the pigment premix solution was supplied as a raw material slurry to a wet bead mill and circulated and dispersed.
  • the inner diameter of the stator was ⁇ 75 mm
  • the separator diameter was ⁇ 60 mm
  • the distance between the separator and the disk was 15 mm
  • zirconia beads having a diameter of 50 ⁇ m (true density of 6.0 g / cm 3 ) were used as a dispersion medium. Since the effective internal volume of the stator is 0.5 L and the filling volume of the media is 0.35 L, the media filling rate is 70%.
  • the rotation speed of the rotor is constant (the peripheral speed of the rotor tip is 11 m / sec), and the pigment premix liquid is continuously supplied from the supply port by a non-pulsating metering pump at a supply speed of 50 L / hr and continuously from the discharge port.
  • the yellow (Y) colorant dispersion was obtained when a predetermined particle size was reached by repeatedly discharging and repeating this.
  • the volume median diameter (Dv 50 ) of the Ye (yellow) colorant dispersion measured with Nanotrac was 159 nm, the pH was 6.6, and the solid content concentration was 38.7% by mass.
  • Production Examples 17 to 19 In the preparation process (aggregation process) of the Ma (magenta) toner base particle 11 dispersion, the amount of the polymer primary particles added as the solid content, the pigment dispersion liquid type, the number of pigments as the solid content, and the primary polymer after completion of the primary aggregation The amount of addition as a solid content of the particles, the addition amount as a solid content of the high heat resistant resin fine particles, and the high heat resistant resin fine particles coat the toner base particles (the toner base particles are assumed to be 5.6 ⁇ m).
  • Bk (black) toners 11, 12 and 13 shown in Production Examples 17 to 19 were produced in the same manner as in Production Example 11 except that the procedure was changed as described above.
  • As the pigment dispersion liquid type a dispersion liquid prepared as follows was used as a Bk (black) colorant dispersion liquid.
  • the pigment premix solution was supplied as a raw material slurry to a wet bead mill and subjected to one-pass dispersion. Note that zirconia beads (true density of 6.0 g / cm 3 ) having a diameter of 120 mm ⁇ , a separator having a diameter of 60 mm ⁇ , and a diameter of 50 ⁇ m were used as a dispersion medium. Since the effective internal volume of the stator is about 2L and the filling volume of the media is 1.4L, the media filling rate is 70%.
  • the rotation speed of the rotor is constant (the peripheral speed at the tip of the rotor is about 11 m / sec), and the pigment premix solution is supplied from the supply port at a supply speed of about 40 L / hr by a non-pulsating metering pump, and the product is obtained from the discharge port. did.
  • cooling water of about 10 ° C. was circulated from the jacket to obtain a Bk (black) colorant dispersion having a volume median diameter (Dv 50 ) of 147 nm and a solid content concentration of 24.6%. .
  • the toners obtained in Production Examples 11 to 19 were measured, judged, and scored according to the following method, and listed in Table 4.
  • This developer is a non-magnetic two-component (using organic photoreceptor) development method, roller (PCR) charging, mag roller development method, development speed A4 horizontal conversion 50 sheets / minute, 4-color tandem method, commercially available with IH fixing device Using a full-color printer, each color was printed as a single color, and an image with an image density of about 1.7 was printed.
  • the obtained fixed image surface is subjected to a peeling test using a mending tape (manufactured by Sumitomo 3M Co., Ltd.), the image density before and after peeling is divided by the image density before peeling and multiplied by 100 to remain fixed. Rate (%). That is, the larger the remaining ratio number, the stronger the fixing strength and the better the toner.
  • Example 11 When the Ma toner 11, the Cy toner 12, the Ye toner 11, and the Bk toner 12 are combined, the TP2 / TP1 value of each color toner and the TP2 / TP1 value of the Ma toner are three colors other than the Ma toner.
  • the value divided by the average value of TP2 / TP1, the collapse load / determination / score as blocking resistance B of each toner, and the remaining rate / determination / score of fixing test B as fixability B, and further as a toner set Table 5 shows the results of scoring and determination based on the following criteria as the overall judgment B.
  • the total score B as a combination of the four colors is obtained by adding the score B as the fixing test B of each color to the total score of the blocking resistance B of each color as a total score B. B was carried out and is shown in Table 5. However, in the evaluation of each color of the blocking resistance B and the fixing test B, if there is an item judged as “ ⁇ ” (0 points) even in one item, the total score B is 0 because the toner cannot be set and can withstand actual use. Points.
  • Comparative Example 11 In Comparative Example 11, the numerical values of the respective items were measured and calculated in the same manner as in Example 11 except that the toners of the respective colors were changed to the combinations shown in Table 5 as a toner set, and determination / comprehensive determination was performed. It was shown to.
  • FIG. 5 plots the collapse load (g), which is an index of blocking resistance of each color, on the Y axis with TP2 / TP1 as the X axis for the experimental results in Table 5. Furthermore, a thick line represents a 1500 g line that is a critical point in practical use on the Y axis and a 1300 g line that passes the blocking resistance within a preferable range. Furthermore, since it was confirmed that the correlation between Bk (black circles) in FIG. 5 shows good linearity between X and Y, the regression equation expressed in a linear form using the least square method for each color is shown. Indicated.
  • Table 6 shows the lower limit and preferred lower limit of TP2 / TP1 for each color derived from the intersection of 1500 g and 1300 g of the primary line form and blocking resistance of FIG. 5, and the primary line form and fixability of FIG. 6.
  • the upper limit and the preferable upper limit value of TP2 / TP1 derived from the intersections of 45% and 35% of the remaining ratio are shown.
  • an average value of a preferable lower limit and a preferable upper limit is shown as a median value.
  • TP2 / TP1 of the Ma toner 11 of Production Example 11 used in Example 11 is 1.39, and both the blocking resistance and the fixing property are both excellent, but the Bk toner 11 of Production Example 17 used in Comparative Example 11
  • TP2 / TP1 is 1.40, which is almost the same TP2 / TP1 as Ma toner 11, it is clear from Table 6 that the blocking resistance is out of the actual use range.
  • the lower limit / preferable lower limit, the center, the preferable upper limit, and the upper limit of TP2 / TP1 are different for each color, and TP2 / TP1 needs to be different for each color. I understand.
  • the value obtained by dividing the TP2 / TP1 value of the Ma toner by the average value of the three colors TP2 / TP1 other than the Ma toner, the collapse load / determination / score as the blocking resistance of each toner, and the fixing property Table 7 also shows the remaining rate / determination / score, as well as the results of scoring and determination based on the following criteria as the overall determination B as the toner set.
  • the estimation example 11 shows an example in which four colors are manufactured with 1.37 which is the median value of the preferable TP2 / TP1 range as the performance of the Ma toner alone, but blocking resistance of the Bk toner (4) and the Cy toner (3) is shown. It can be seen that the characteristic is out of the actual use range and out of the actual use range as a four-color set.
  • Estimation Example 12 shows an example in which four colors are manufactured at 1.62 which is the median value of the TP2 / TP1 range preferable as the Cy toner single unit performance. However, the fixability of Ma toner (4) is out of the actual use range. It turns out that it is out of the actual use range as a four-color set.
  • the estimation example 13 shows an example in which four colors are manufactured at 1.54 which is the median value of the TP2 / TP1 range preferable as the single performance of each of the Ye toner and the Bk toner. However, the fixability of the Ma toner (5) is shown. It can be seen that it is outside the actual use range and out of the actual use range as a four-color set.
  • the value obtained by dividing the TP2 / TP1 value of the Ma toner by the average value of TP2 / TP1 of the three colors other than the Ma toner is 0.817 or more and 0.951 or less, it can be actually used.
  • the value obtained by dividing the TP2 / TP1 value of the toner by the average value of TP2 / TP1 of the three colors other than the Ma toner is 0.849 or more and 0.900 or less, it is understood that the four-color set is preferable.

Abstract

This toner set comprises at least a black toner for developing electrostatic images and a magenta toner for developing electrostatic images; and if TP1 is the first measurement value of the maximum tan δ observed from 40°C to 80°C (inclusive) by means of a rheometer and TP2 is the second measurement value of the maximum tan δ observed from 40°C to 80°C (inclusive) by means of a rheometer, the value of TP2/TP1 of the black toner for developing electrostatic images is from 1.03 times to 1.32 times (inclusive) the value of TP2/TP1 of the magenta toner for developing electrostatic images.

Description

静電荷像現像用トナーセット、ブラックトナー及びマゼンタトナーToner set for developing electrostatic image, black toner and magenta toner
 本発明は、耐ブロッキング性を維持したまま低温定着性を実現し、低温定着時にも高画質画像を得られる静電荷像現像用トナーセット、ブラックトナー及びマゼンタトナーに関する。 The present invention relates to an electrostatic image developing toner set, a black toner, and a magenta toner that realize low-temperature fixability while maintaining blocking resistance and obtain a high-quality image even at low-temperature fixing.
 静電荷像現像用ブラックトナーやマゼンタトナーは、プリンターや複写機、ファクシミリ等において、静電荷像を可視化する画像形成に用いられる。電子写真方式による画像の形成を例にとると、先ず感光体ドラム上に静電潜像を形成し、次いでこれをトナーにより現像した後、転写紙等に転写し、熱等により定着することによって画像形成が行われる。
 静電荷像現像用ブラックトナーやマゼンタトナーとしては、通常、結着樹脂及び着色剤に、必要に応じて帯電制御剤、離型剤、磁性体等を乾式混合した後、押出機等で溶融混練し、次いで、粉砕、分級する、いわゆる溶融混練粉砕法により得られたトナー粒子に、流動性等の各種性能を付与することを目的として、例えばシリカ等の固体微粒子を外添剤として表面に付着させた形態のものが用いられている。更に昨今の高精細化の要求により、トナーの粒径や粒度分布を制御し易い懸濁重合法、乳化凝集法、溶解懸濁法等の製造法も提案されている。
The black toner or magenta toner for developing an electrostatic image is used for image formation for visualizing an electrostatic image in a printer, a copying machine, a facsimile machine, or the like. For example, when an image is formed by electrophotography, an electrostatic latent image is first formed on a photosensitive drum, then developed with toner, transferred to transfer paper, and fixed by heat or the like. Image formation is performed.
As a black toner or a magenta toner for developing an electrostatic image, usually a binder resin and a colorant are dry-mixed with a charge control agent, a release agent, a magnetic material, etc. as necessary, and then melt-kneaded with an extruder or the like. Then, for the purpose of imparting various properties such as fluidity to the toner particles obtained by the so-called melt-kneading pulverization method, which are pulverized and classified, for example, solid fine particles such as silica are adhered to the surface as an external additive. The thing of the form made to use is used. Furthermore, due to the recent demand for higher definition, production methods such as a suspension polymerization method, an emulsion aggregation method, and a dissolution suspension method that can easily control the particle size and particle size distribution of the toner have been proposed.
 近年、複写機やカラープリンター等の電子写真方式で得られた画像をプロフェッショナル分野へ応用する取り組みが盛んに行われており、これまでの文字を印刷する用途から写真・グラフィック等の画像を美しく出力することが必要になってきた。そのため、その出力画像にはこれまで以上に高光沢性(高グロス性)を有することが強く望まれて来ている。このようなカラープリンターで同じ機種に同時に用いられるトナーセットとしては、コスト及び性能の観点から、通常、顔料以外の組成は色毎に変更しないで使用される(特許文献1参照)。 In recent years, there have been many efforts to apply images obtained by electrophotographic methods such as copiers and color printers to the professional field, and images such as photographs and graphics can be output beautifully from the purpose of printing characters so far. It has become necessary to do. Therefore, it has been strongly desired that the output image has higher gloss (high gloss) than ever before. As a toner set used for the same model in such a color printer, the composition other than the pigment is usually used without changing for each color from the viewpoint of cost and performance (see Patent Document 1).
 一方、電子写真装置の低エネルギー化、高速印字化も同時に望まれているため、トナーとしては、低熱エネルギー(時間×温度)で融けて、媒体に定着し更にその画質が高グロス性を有することが強く望まれているが、低温定着性・高グロス性は耐ブロッキング性と二律背反の関係にあり、この3点の両立を図ることが望まれている。
 低温定着性と耐ブロッキング性の両立という課題に対して、種々の検討がなされている。例えば、結晶性ポリエステル樹脂と離型剤とを含むトナーであって、ルテニウム染色したトナー断面に前記結晶性ポリエステル樹脂が前記離型剤と接触した構造体が存在し、該構造体の断面積をA、前記離型剤単独の断面積をB、前記結晶性ポリエステル樹脂単独の断面積をCとしたとき、40≦100×A/(A+B+C)≦70、10≦100×B/(A+B+C)≦30、20≦100×C/(A+B+C)≦30である静電荷像現像用トナーが開示されている(特許文献2参照)。
On the other hand, low energy and high speed printing of electrophotographic apparatus are also desired at the same time, so the toner melts with low thermal energy (time x temperature), is fixed on the medium, and the image quality has high glossiness. However, low-temperature fixability and high gloss have a trade-off relationship with blocking resistance, and it is desired to achieve both of these three points.
Various studies have been made on the problem of achieving both low-temperature fixability and blocking resistance. For example, there is a toner containing a crystalline polyester resin and a release agent, and there is a structure in which the crystalline polyester resin is in contact with the release agent on the cross section of the ruthenium-dyed toner. A, where B is the sectional area of the release agent alone and C is the sectional area of the crystalline polyester resin alone, 40 ≦ 100 × A / (A + B + C) ≦ 70, 10 ≦ 100 × B / (A + B + C) ≦ An electrostatic charge image developing toner satisfying 30, 20 ≦ 100 × C / (A + B + C) ≦ 30 is disclosed (see Patent Document 2).
 また、耐熱保存性、低温定着を目的として、定着助剤として融点50~150℃の結晶性有機化合物を含有し、加熱時に樹脂と定着助剤が相溶化するために、トナーのDSC測定において、昇温2回目の定着助剤由来の融解極大値の吸熱量は昇温1回目に比べ小さくなり、トナーのガラス転移温度が樹脂のガラス転移温度よりも低下し、昇温二回目のガラス転移温度が昇温1回目に比べ小さくなる静電荷像現像用ブラックトナーが提案されている(特許文献3参照)。 In addition, for the purpose of heat-resistant storage and low-temperature fixing, a crystalline organic compound having a melting point of 50 to 150 ° C. is contained as a fixing aid, and the resin and the fixing aid are compatibilized during heating. The endothermic amount of the melting maximum derived from the fixing assistant at the second temperature increase is smaller than that at the first temperature increase, the glass transition temperature of the toner is lower than the glass transition temperature of the resin, and the glass transition temperature at the second temperature increase. There has been proposed a black toner for developing an electrostatic charge image in which the temperature becomes smaller than that at the first temperature increase (see Patent Document 3).
 トナーセットとしては、オイルレス定着において優れた剥離性、良好な光沢性を維持し、定着像表面光沢性、OHP透明性といった定着特性を改善するためにイエロートナー、マゼンタトナー、シアントナー及びブラックトナーを有するカラートナーの内、前記各色トナーの周波数6.28rad/s、温度160℃における動的粘弾性測定から求められる貯蔵弾性率G1’が特定の範囲にあり、各色トナーの周波数6.28rad/s、温度180℃における動的粘弾性測定から求められる貯蔵弾性率G2’を特定の関係とする技術が開示されている(特許文献4参照)。 Toner set includes yellow toner, magenta toner, cyan toner and black toner to maintain excellent releasability and good glossiness in oilless fixing, and improve fixing characteristics such as fixed image surface glossiness and OHP transparency Among the color toners having a frequency of 6.28 rad / s for each color toner and a storage elastic modulus G1 ′ determined by dynamic viscoelasticity measurement at a temperature of 160 ° C. within a specific range, and the frequency of each color toner is 6.28 rad / s. s, a technology is disclosed in which a storage elastic modulus G2 ′ obtained from dynamic viscoelasticity measurement at a temperature of 180 ° C. has a specific relationship (see Patent Document 4).
日本国特開2014-119749号公報Japanese Unexamined Patent Publication No. 2014-11949 日本国特開2008-033057号公報Japanese Unexamined Patent Publication No. 2008-033057 日本国特開2012-022331号公報Japanese Unexamined Patent Publication No. 2012-022331 日本国特開2005-274963号公報Japanese Unexamined Patent Publication No. 2005-274963
 しかしながら、何れの特許文献とも、耐ブロッキング性と低温定着性の面において検討はされているが、定着温度や輸送温度に着目されておらず、両立が充分とは言えず、更にフルカラー機に使用されるトナーセットに使用されるトナーとして評価した場合に色間差が生じてしまい、フルカラー画質として満足できていない問題があった。トナーに熱エネルギーがあまり与えられない低温定着時又は高速印刷時にはこの問題が特に顕著であった。
 本発明が解決しようとする課題は、耐ブロッキング性を維持したまま、低温定着時又は高速印刷時にでも、良好な定着性を実現でき、更に出力された絵としてマゼンタとブラックの色味や色濃度、グロス性等の差が無い本来の美しい色域が表現でき、優れた出力画像を提供できるトナーセットを提供することである。
However, in any patent document, the blocking resistance and the low-temperature fixability have been studied, but the focus is not on the fixing temperature or the transport temperature. When evaluated as a toner used in a toner set, a difference between colors occurs, and there is a problem that the full color image quality is not satisfactory. This problem was particularly noticeable during low-temperature fixing or high-speed printing where little heat energy is applied to the toner.
The problem to be solved by the present invention is that, while maintaining blocking resistance, good fixability can be realized even during low-temperature fixing or high-speed printing, and the color and density of magenta and black as output pictures Another object of the present invention is to provide a toner set capable of expressing an original beautiful color gamut without difference in glossiness and the like and providing an excellent output image.
 本発明者らは、耐ブロッキング性を維持したまま、低温定着時又は高速印刷時にでも、定着性と高グロス性を両立できる形態として、レオメーターで測定されるtanδ極大値の1回目測定値(TP1)と2回目の測定値(TP2)の比が重要であり、更に、ブラックトナーのTP2/TP1と、マゼンタトナーのTP2/TP1との比を特定の範囲となるように調整することが有効であることを見出し、本発明に至った。 The present inventors have measured the first measured value of the tan δ maximum value (measured with a rheometer) as a form that can achieve both fixability and high gloss even at low temperature fixing or high speed printing while maintaining blocking resistance ( The ratio of TP1) to the second measured value (TP2) is important, and it is also effective to adjust the ratio of TP2 / TP1 of black toner and TP2 / TP1 of magenta toner to be within a specific range. And found out that the present invention.
 本発明は、上述した知見に基づくものであり、本発明の態様は以下の通りである。
  <1>
 少なくとも静電荷像現像用ブラックトナーと静電荷像現像用マゼンタトナーとを含むトナーセットであって、レオメーターで40℃以上80℃以下に観測されるtanδ極大値の1回目測定値をTP1とし、40℃以上80℃以下に観測されるtanδ極大値の2回目測定値をTP2とした場合、前記静電荷像現像用ブラックトナーのTP2/TP1が、前記静電荷像現像用マゼンタトナーのTP2/TP1の1.03倍以上1.32倍以下であることを特徴とする、トナーセット。
The present invention is based on the above-described findings, and aspects of the present invention are as follows.
<1>
A toner set including at least an electrostatic charge image developing black toner and an electrostatic charge image developing magenta toner, wherein a first measured value of a tan δ maximum value observed at 40 ° C. or more and 80 ° C. or less by a rheometer is TP1, When the second measured value of the tan δ maximum value observed between 40 ° C. and 80 ° C. is TP2, TP2 / TP1 of the electrostatic charge image developing black toner is TP2 / TP1 of the electrostatic charge image developing magenta toner. 1.03 times or more and 1.32 times or less of the toner set.
  <2>
 前記静電荷像現像用ブラックトナー及び前記静電荷像現像用マゼンタトナーは、少なくとも、結着樹脂、着色剤、離型剤及び外添剤を含む、<1>に記載のトナーセット。
  <3>
 前記静電荷像現像用マゼンタトナー及び前記静電荷像現像用ブラックトナーのTP2/TP1が、1.20以上2.50以下である、<1>又は<2>に記載のトナーセット。
  <4>
 前記静電荷像現像用マゼンタトナーのTP2/TP1が、1.28以上1.49以下である、<1>~<3>のいずれか1つに記載のトナーセット。
  <5>
 前記静電荷像現像用ブラックトナーのTP2/TP1が、1.45以上1.77以下である、<1>~<4>のいずれか1つに記載のトナーセット。
  <6>
 前記静電荷像現像用ブラックトナーはカーボンブラックを含有し、前記静電荷像現像用マゼンタトナーはキナクリドン系の染顔料及びモノアゾ系の染顔料のうちの少なくとも1種を含有する、<1>~<5>のいずれか1つに記載のトナーセット。
<2>
The toner set according to <1>, wherein the electrostatic charge image developing black toner and the electrostatic charge image developing magenta toner include at least a binder resin, a colorant, a release agent, and an external additive.
<3>
The toner set according to <1> or <2>, wherein TP2 / TP1 of the electrostatic image developing magenta toner and the electrostatic image developing black toner is 1.20 or more and 2.50 or less.
<4>
The toner set according to any one of <1> to <3>, wherein TP2 / TP1 of the magenta toner for developing an electrostatic charge image is 1.28 or more and 1.49 or less.
<5>
The toner set according to any one of <1> to <4>, wherein TP2 / TP1 of the black toner for developing an electrostatic charge image is 1.45 or more and 1.77 or less.
<6>
The black toner for developing an electrostatic charge image contains carbon black, and the magenta toner for developing an electrostatic charge image contains at least one of a quinacridone dye / pigment and a monoazo dye / pigment, <1> to < The toner set according to any one of 5>.
  <7>
 <1>~<6>のいずれか1つに記載のトナーセットを含有するトナーカートリッジ。
  <8>
 <1>~<6>のいずれか1つに記載のトナーセットを含有する画像形成装置。
  <9>
 <1>~<6>のいずれか1つに記載のトナーセットを用いて画像形成する画像形成方法。
<7>
A toner cartridge containing the toner set according to any one of <1> to <6>.
<8>
An image forming apparatus comprising the toner set according to any one of <1> to <6>.
<9>
An image forming method for forming an image using the toner set according to any one of <1> to <6>.
  <10>
 少なくとも静電荷像現像用マゼンタトナー、静電荷像現像用シアントナー、静電荷像現像用イエロートナー、及び、静電荷像現像用ブラックトナーを含むトナーセットであって、レオメーターで40℃以上80℃以下に観測されるtanδ極大値の1回目測定値をTP1とし、40℃以上80℃以下に観測されるtanδ極大値の2回目測定値をTP2とした場合、前記静電荷像現像用マゼンタトナーのTP2/TP1が、前記静電荷像現像用シアントナー、静電荷像現像用イエロートナー及び静電荷像現像用ブラックトナーのTP2/TP1の平均値の0.817倍以上0.951倍以下であることを特徴とする、トナーセット。
<10>
A toner set including at least a magenta toner for developing an electrostatic image, a cyan toner for developing an electrostatic image, a yellow toner for developing an electrostatic image, and a black toner for developing an electrostatic image. When the first measured value of the tan δ maximum value observed below is TP1, and the second measured value of the tan δ maximum value observed at 40 ° C. or more and 80 ° C. or less is TP2, the magenta toner for developing the electrostatic charge image is used. TP2 / TP1 is 0.817 times or more and 0.951 times or less of the average value of TP2 / TP1 of the cyan toner for developing electrostatic images, the yellow toner for developing electrostatic images, and the black toner for developing electrostatic images. A toner set characterized by
  <11>
 少なくとも静電荷像現像用ブラックトナーと静電荷像現像用マゼンタトナーを含むトナーセットに用いられる静電荷像現像用ブラックトナーであって、レオメーターで40℃以上80℃以下に観測されるtanδ極大値の1回目測定値をTP1とし、40℃以上80℃以下に観測されるtanδ極大値の2回目測定値をTP2とした場合、前記静電荷像現像用ブラックトナーのTP2/TP1が、前記静電荷像現像用マゼンタトナーのTP2/TP1の1.03倍以上1.32倍以下であることを特徴とする、静電荷像現像用ブラックトナー。
  <12>
 前記静電荷像現像用ブラックトナーのTP2/TP1が、前記静電荷像現像用マゼンタトナーのTP2/TP1の1.13倍以上1.20倍以下である、<11>に記載の静電荷像現像用ブラックトナー。
  <13>
 少なくとも結着樹脂と着色剤を含有するコア成分と、その周囲に存在する高耐熱樹脂微粒子成分とを含有するトナー母粒子を含み、透過型電子顕微鏡で測定したときの、前記コア成分と前記高耐熱樹脂微粒子成分に陰影差がない、<11>又は<12>に記載の静電荷像現像用ブラックトナー。
<11>
A tan δ maximum value observed in a rheometer at 40 ° C. or higher and 80 ° C. or lower, wherein the electrostatic image developing black toner is used in a toner set including at least an electrostatic image developing black toner and an electrostatic image developing magenta toner. The first measured value of TP1 is TP1, and the second measured value of the tan δ maximum value observed between 40 ° C. and 80 ° C. is TP2, and TP2 / TP1 of the black toner for developing electrostatic images is the electrostatic charge. A black toner for developing an electrostatic charge image, which is 1.03 times or more and 1.32 times or less of TP2 / TP1 of magenta toner for image development.
<12>
The electrostatic charge image development according to <11>, wherein TP2 / TP1 of the electrostatic charge image developing black toner is 1.13 times or more and 1.20 times or less of TP2 / TP1 of the electrostatic charge image developing magenta toner. For black toner.
<13>
The toner comprises toner base particles containing at least a core component containing a binder resin and a colorant and a high heat-resistant resin fine particle component present around the core component, and the core component and the high component when measured with a transmission electron microscope. The black toner for developing electrostatic images according to <11> or <12>, wherein the heat-resistant resin fine particle component has no shadow difference.
  <14>
 少なくとも静電荷像現像用マゼンタトナー、静電荷像現像用シアントナー、静電荷像現像用イエロートナー及び静電荷像現像用ブラックトナーを含むトナーセットに用いられる静電荷像現像用マゼンタトナーであって、レオメーターで40℃以上80℃以下に観測されるtanδ極大値の1回目測定値をTP1とし、40℃以上80℃以下に観測されるtanδ極大値の2回目測定値をTP2とした場合、前記静電荷像現像用マゼンタトナーのTP2/TP1が、前記静電荷像現像用シアントナー、静電荷像現像用イエロートナー、及び静電荷像現像用ブラックトナーのTP2/TP1の平均値の0.817倍以上0.951倍以下であることを特徴とする、静電荷像現像用マゼンタトナー。
  <15>
 前記静電荷像現像用マゼンタトナーのTP2/TP1が、前記静電荷像現像用シアントナー、静電荷像現像用イエロートナー、及び静電荷像現像用ブラックトナーのTP2/TP1の平均値の0.849倍以上0.900倍以下である、<14>に記載の静電荷像現像用マゼンタトナー。
  <16>
 少なくとも結着樹脂と着色剤を含有するコア成分と、その周囲に存在する高耐熱樹脂微粒子成分とを含有するトナー母粒子を含み、透過型電子顕微鏡で測定したときの、前記コア成分と前記高耐熱樹脂微粒子成分に陰影差がない、<14>又は<15>に記載の静電荷像現像用マゼンタトナー。
<14>
An electrostatic image developing magenta toner used in a toner set including at least an electrostatic image developing magenta toner, an electrostatic image developing cyan toner, an electrostatic image developing yellow toner, and an electrostatic image developing black toner, When the first measured value of the tan δ maximum value observed at 40 ° C. or higher and 80 ° C. or lower with a rheometer is TP1, and the second measured value of the tan δ maximum value observed at 40 ° C. or higher and 80 ° C. or lower is TP2, TP2 / TP1 of the electrostatic image developing magenta toner is 0.817 times the average value of TP2 / TP1 of the electrostatic image developing cyan toner, electrostatic charge image developing yellow toner, and electrostatic charge image developing black toner. A magenta toner for developing an electrostatic charge image, wherein the magenta toner is 0.951 times or more.
<15>
TP2 / TP1 of the electrostatic image developing magenta toner is 0.849 of an average value of TP2 / TP1 of the electrostatic image developing cyan toner, electrostatic image developing yellow toner, and electrostatic image developing black toner. The magenta toner for developing an electrostatic charge image according to <14>, which is not less than 2 times and not more than 0.900 times.
<16>
The toner comprises toner base particles containing at least a core component containing a binder resin and a colorant and a high heat-resistant resin fine particle component present around the core component, and the core component and the high component when measured with a transmission electron microscope. The magenta toner for developing an electrostatic charge image according to <14> or <15>, wherein the heat-resistant resin fine particle component has no shadow difference.
 本発明によれば、耐ブロッキング性を維持したまま、低温定着時又は高速印刷時にでも、トナーセットとして定着性や高グロス性を実現でき、更に、出力された絵としてマゼンタとブラックの色味や色濃度、グロス性等の差が無い本来の美しい色域が表現でき、優れた出力画像を出力できる静電荷像現像用ブラックトナー及び静電荷像現像用マゼンタトナーを提供することができ、それらを含むトナーセット、トナーカートリッジ及び画像形成装置を提供できる。
 また、3色以上重ねて印刷する高付着量印字を行う際においても、良好な低温定着性を実現でき、更に、出力された絵として色間差が無い本来の美しい色域が表現でき、優れた出力画像を提供できる。
According to the present invention, it is possible to realize a fixing property and a high gloss property as a toner set even at low temperature fixing or high speed printing while maintaining blocking resistance, and further, magenta and black colors and It is possible to provide an electrostatic image developing black toner and an electrostatic image developing magenta toner that can express an original beautiful color gamut without differences in color density, glossiness, etc., and that can output an excellent output image. A toner set, a toner cartridge, and an image forming apparatus can be provided.
In addition, when performing high-adhesion-amount printing that prints three or more colors, it is possible to achieve good low-temperature fixability, and to express the original beautiful color gamut without any color difference as an output picture. Output image can be provided.
図1は、本発明の静電荷像現像用ブラックトナーをレオメーターで1回目に測定する際の成型体の断面の概念図である。FIG. 1 is a conceptual view of a cross-section of a molded product when the electrostatic charge image developing black toner of the present invention is measured for the first time with a rheometer. 図2は、TP1とTP2を測定した際の概念図である。FIG. 2 is a conceptual diagram when TP1 and TP2 are measured. 図3は、実施例1~4、比較例1、2で使用したブラックトナーとマゼンタトナーの耐ブロッキング性(崩壊荷重)とTP2/TP1の関係を表す図である。FIG. 3 is a graph showing the relationship between blocking resistance (collapse load) and TP2 / TP1 of the black toner and the magenta toner used in Examples 1 to 4 and Comparative Examples 1 and 2. 図4は、実施例1~4、比較例1、2で使用したブラックトナーとマゼンタトナーの定着性(残存率)とTP2/TP1の関係を表す図である。FIG. 4 is a graph showing the relationship between fixability (residual ratio) of the black toner and magenta toner used in Examples 1 to 4 and Comparative Examples 1 and 2, and TP2 / TP1. 図5は、実施例11、比較例11で使用した各色トナーの耐ブロッキング性(崩壊荷重)とTP2/TP1の関係を表す図である。FIG. 5 is a diagram illustrating the relationship between the blocking resistance (collapse load) of each color toner used in Example 11 and Comparative Example 11 and TP2 / TP1. 図6は、実施例11、比較例11で使用した各色トナーの定着性(残存率)とTP2/TP1の関係を表す図である。FIG. 6 is a graph showing the relationship between the fixability (remaining rate) of each color toner used in Example 11 and Comparative Example 11 and TP2 / TP1. 図7は、本発明の代表的トナーのトナー1個の一部分を拡大したSEM画像であり、トナー表面の凹部には薄膜化した高耐熱樹脂微粒子成分が少なく、凸部には該成分が多く存在する態様を示す図(写真)である。FIG. 7 is an SEM image in which a portion of one toner of the representative toner of the present invention is enlarged. There are few thin heat-resistant resin fine particle components in the concave portions of the toner surface, and there are many such components in the convex portions. It is a figure (photograph) which shows the mode to do.
 1.測定方法、定義
 本発明においては、外添剤を有する前のものを「トナー母粒子」と称する。該トナー母粒子の表面に外添剤を付与することを、単に「外添」又は「外添する」と称する場合がある。該トナー母粒子の表面に外添剤を有するものを、「静電荷像現像用トナー」又は単に「トナー」と称する場合がある。また、「静電荷像現像用ブラックトナー」、「静電荷像現像用マゼンタトナー」、「静電荷像現像用シアントナー」、「静電荷像現像用イエロートナー」の色部分だけを残して、それぞれ、単に、「ブラックトナー」又は「Bkトナー」、「マゼンタトナー」又は「Maトナー」、「シアントナー」又は「Cyトナー」、「イエロートナー」又は「Yeトナー」等と称する場合がある。
1. Measurement Method and Definition In the present invention, the one before having the external additive is referred to as “toner mother particle”. Giving an external additive to the surface of the toner base particles may be simply referred to as “external addition” or “external addition”. Those having an external additive on the surface of the toner base particles may be referred to as “electrostatic image developing toner” or simply “toner”. In addition, leaving only the color portions of “black toner for developing electrostatic image”, “magenta toner for developing electrostatic image”, “cyan toner for developing electrostatic image”, and “yellow toner for developing electrostatic image”, respectively. These may be simply referred to as “black toner” or “Bk toner”, “magenta toner” or “Ma toner”, “cyan toner” or “Cy toner”, “yellow toner” or “Ye toner”.
 トナーのレオメーター測定は、実施例に記載の方法で行い、温度、貯蔵弾性率(G’)、損失弾性率(G”)、tanδ(=G”/G’)、tanδ極大値、「40℃以上80℃以下に観測されるtanδ極大値の1回目測定値であるTP1」、「40℃以上80℃以下に観測されるtanδ極大値の2回目測定値であるTP2」等は、実施例等に記載の測定方法で測定したものと定義される。
 また、本発明における「1回目の昇温」(及び「2回目の昇温」)も、実施例等に記載の測定方法において、該測定に際して昇温したものと定義される。
 BETN、BETF、「BETN-BETF」の測定方法と定義も、実施例等に記載の方法で行い、実施例等に記載の測定方法で測定したものと定義される。
 本発明における「体積平均粒径とは、特に断りがない限り、実施例に記載の方法で測定された「体積中位径(Dv50)」のことである。
The rheometer measurement of the toner is carried out by the method described in the examples, and the temperature, storage elastic modulus (G ′), loss elastic modulus (G ″), tan δ (= G ″ / G ′), tan δ maximum value, “40”. TP1 which is the first measured value of the tan δ maximum value observed at -80 ° C. or higher and “TP2 which is the second measured value of the tan δ maximum value observed at 40 ° C. or higher and 80 ° C. or lower”, etc. Defined by the measurement method described in the above.
In addition, “first temperature increase” (and “second temperature increase”) in the present invention is also defined as a temperature increase during the measurement in the measurement method described in Examples and the like.
The measurement method and definition of BETN, BETF, and “BETN-BETF” are also defined as those measured by the method described in Examples and the like and measured by the measurement methods described in Examples.
The “volume average particle diameter” in the present invention means “volume median diameter (Dv 50 )” measured by the method described in Examples unless otherwise specified.
 本発明の静電荷像現像用トナーとは、実施例等に記載の測定方法(装置、設定等)で測定したときに、本願請求項に定めた数値(パラメーター)を有する(示す)トナーのことである。
 すなわち、数値(パラメーター)を他の装置や他の設定で測定した場合であっても、トナー自体が、本願明細書の実施例等に記載の測定方法で測定したときに該数値(パラメーター)を有するような(示すような)ものであれば、本発明に含まれる。
The electrostatic image developing toner of the present invention is a toner having (showing) the numerical values (parameters) defined in the claims of the present application when measured by the measuring method (apparatus, setting, etc.) described in the examples and the like. It is.
That is, even when the numerical value (parameter) is measured with another device or other setting, the numerical value (parameter) is not measured when the toner itself is measured by the measuring method described in the examples and the like of the present specification. Anything that has (as shown) is included in the present invention.
 詳細は後述するが、静電荷像現像用ブラックトナー及び静電荷像現像用マゼンタトナーは、少なくとも、結着樹脂、着色剤、離型剤及び外添剤を含むことが好ましい。特に、少なくとも結着樹脂と着色剤を含有するトナー母粒子、及び、外添剤を含むものであることが好ましい。
 また、本発明のトナーは、「少なくとも結着樹脂と着色剤を含有する中心部(コア)」と、「その周囲に存在する高耐熱樹脂微粒子成分」、及び、外添剤を含むものであることが特に好ましい。
Although details will be described later, the electrostatic charge image developing black toner and the electrostatic charge image developing magenta toner preferably contain at least a binder resin, a colorant, a release agent, and an external additive. In particular, the toner preferably contains toner base particles containing at least a binder resin and a colorant, and an external additive.
In addition, the toner of the present invention may include “a central portion (core) containing at least a binder resin and a colorant”, “a high heat-resistant resin fine particle component existing around the core”, and an external additive. Particularly preferred.
 後述するような何れのトナー母粒子の調製方法においても、該高耐熱樹脂微粒子成分とは、トナー母粒子の表面に偏在しているものを言う。トナーになったときの高耐熱性微粒子成分の形状は、微粒子であっても薄膜であってもよく、更には、連続的にコア成分を覆っていても非連続的にコア成分を覆っていてもよいが、高耐熱樹脂微粒子が扁平状に薄膜化し高耐熱樹脂粒子の添加量に対して高い被覆率である状態が好ましく、この高耐熱樹脂微粒子による薄膜とコア成分の表面との境界部に段差を有さない状態がより好ましく、更に、この薄膜がトナー表面の凹部Bに比べ凸部Aにより選択的に付着している(つまりコア成分の地肌が見えている部分が凹部に比べ凸部の方が少ない)状態が更に好ましい。 In any method for preparing toner base particles as described below, the high heat-resistant resin fine particle component is unevenly distributed on the surface of the toner base particles. The shape of the high heat-resistant fine particle component when it becomes a toner may be a fine particle or a thin film, and further, it may cover the core component continuously or discontinuously. However, it is preferable that the high heat-resistant resin fine particles are thinned into a flat shape and have a high coverage with respect to the amount of the high heat-resistant resin particles added. At the boundary between the thin film of the high heat-resistant resin fine particles and the surface of the core component A state having no step is more preferable, and the thin film is selectively attached to the convex portion A compared to the concave portion B on the toner surface (that is, the portion where the background of the core component is visible is a convex portion compared to the concave portion). Is less preferred).
 例えば、図7は、本発明の代表的トナーのトナー1個の一部分の拡大写真であるが、トナー表面の凹部Bには黒く見える表皮(コア成分の地肌)が多く観測され、トナー表面の凸部Aには、庇部分がない薄膜化した表皮(高耐熱樹脂微粒子成分)が多く観測されている。
 従来のトナーのトナー母粒子のコアシェル構造は、コアをシェルが全体的に覆っているか、トナー母粒子表面の凹凸に関係なく、コアを部分的にシェルが覆っている構造であり、シェルがコアとは独立した表皮(その場合、シェルが「かさぶた」のように見えることがある。)としてコアの表面を覆っているような構造であった。
For example, FIG. 7 is an enlarged photograph of a part of one toner of the representative toner of the present invention, and many skins appearing black (core component background) are observed in the concave portions B of the toner surface, and the convexity of the toner surface is observed. In part A, a thinned skin (high heat-resistant resin fine particle component) having no wrinkles is observed.
The conventional core-shell structure of the toner base particles of the toner is a structure in which the core is entirely covered by the shell or the core is partially covered by the shell regardless of the irregularities on the surface of the toner base particles. It was a structure that covered the surface of the core as an independent skin (in which case the shell may look like a “scab”).
 湿式媒体(水系及び又は有機溶剤を連続相とする)中で、トナー母粒子を作製する場合には、コア成分と同時に高耐熱性微粒子を添加し、熱力学的にコア成分と湿式媒体の界面に高耐熱性微粒子を配置(極性をコントロール)する方法と、コア成分の後に高耐熱性微粒子を添加し、物理的にコア成分の表面に配置させる方法があり、更に、この熱力学的(極性制御)に配置させる方法と、物理的(添加の順序)に配置させる方法を組み合わせて用いることもできる。 When preparing toner base particles in a wet medium (aqueous and / or organic solvent as a continuous phase), high heat-resistant fine particles are added simultaneously with the core component, and the interface between the core component and the wet medium is thermodynamically added. There is a method of arranging high heat-resistant fine particles on the surface (controlling the polarity) and a method of adding high heat-resistant fine particles after the core component and physically arranging them on the surface of the core component. It is also possible to use a combination of a method of arranging in a controlled manner and a method of arranging physically (in the order of addition).
 また、コア成分の後に高耐熱性微粒子を添加する場合は、中心部(コア)成分の組成及び/又は形状が決まってから(その後の、加熱、熟成、撹拌等によって、中心部(コア)の形状、物性、相溶等は変化することがある。)、追添加する方法も挙げられる。
 以下、高耐熱樹脂微粒子成分が上記コアを取り囲んでなるものを「シェル」と略記する場合がある。
 トナー母粒子に外添剤が外添されてなるトナーにおいて、「高耐熱樹脂微粒子成分と外添剤からなる構造体」は、レオメーターでの測定における、上記「コア」に対しての物・概念として本発明では重要である。以下、「高耐熱樹脂微粒子成分と外添剤からなる構造体」を単に「構造体」と略記する場合がある。
In addition, when the high heat-resistant fine particles are added after the core component, after the composition and / or shape of the core (core) component is determined (by subsequent heating, aging, stirring, etc., the core (core) The shape, physical properties, compatibility, and the like may change.
Hereinafter, the high heat-resistant resin fine particle component surrounding the core may be abbreviated as “shell”.
In a toner in which an external additive is externally added to a toner base particle, the “structure consisting of a high heat-resistant resin fine particle component and an external additive” is an object with respect to the “core” in the rheometer measurement. Conceptually important in the present invention. Hereinafter, the “structure comprising a high heat-resistant resin fine particle component and an external additive” may be simply abbreviated as “structure”.
 また、本明細書において、質量で表される全ての百分率や部は、重量で表される百分率や部と同様である。 In the present specification, all percentages and parts expressed by mass are the same as percentages and parts expressed by weight.
 2.静電荷像現像用トナーの規定
 2.1.TP2、TP1、TP2/TP1
 本発明の静電荷像現像用ブラックトナーは、静電荷像現像用ブラックトナーと静電荷像現像用マゼンタトナーを含むトナーセットに用いられ、レオメーターで40℃以上80℃以下に観測されるtanδ極大値の1回目測定値をTP1とし、40℃以上80℃以下に観測されるtanδ極大値の2回目測定値をTP2とした場合、前記静電荷像現像用ブラックトナーのTP2/TP1が、前記静電荷像現像用マゼンタトナーのTP2/TP1の1.03倍以上であり、耐ブロッキング性の観点から、1.13倍以上であることが好ましい。また、上限は1.32倍以下であり、定着性の観点から、1.20倍以下であることが好ましい。具体的に、ブラックトナーのTP2/TP1は、マゼンタトナーのTP2/TP1の1.03倍以上1.32倍以下であり、1.13倍以上1.20倍以下がより好ましい。
2. Specification of toner for developing electrostatic image 2.1. TP2, TP1, TP2 / TP1
The black toner for developing an electrostatic image of the present invention is used in a toner set including a black toner for developing an electrostatic image and a magenta toner for developing an electrostatic image, and has a tan δ maximum observed at 40 ° C. or more and 80 ° C. or less with a rheometer. When the first measured value is TP1, and the second measured value of the tan δ maximum value observed between 40 ° C. and 80 ° C. is TP2, TP2 / TP1 of the electrostatic charge image developing black toner is It is 1.03 times or more of TP2 / TP1 of the magenta toner for developing a charge image, and preferably 1.13 times or more from the viewpoint of blocking resistance. The upper limit is 1.32 times or less, and from the viewpoint of fixability, it is preferably 1.20 times or less. Specifically, TP2 / TP1 of the black toner is 1.03 to 1.32 times, more preferably 1.13 to 1.20 times that of the magenta toner TP2 / TP1.
 本発明の静電荷像現像用マゼンタトナーは、少なくとも静電荷像現像用マゼンタトナー、静電荷像現像用シアントナー、静電荷像現像用イエロートナー及び静電荷像現像用ブラックトナーを含むトナーセットに用いられ、レオメーターで40℃以上80℃以下に観測されるtanδ極大値の1回目測定値をTP1とし、40℃以上80℃以下に観測されるtanδ極大値の2回目測定値をTP2とした場合、前記静電荷像現像用マゼンタトナーのTP2/TP1が、前記静電荷像現像用シアントナー、静電荷像現像用イエロートナー及び静電荷像現像用ブラックトナーのTP2/TP1の平均値の0.817倍以上であり、耐ブロッキング性の観点から、0.849倍以上であることが好ましい。また、上限は0.951倍以下であり、3色以上重ねて印刷する高付着量印字を行う際の低温定着性の観点から、0.900倍以下であることが好ましい。具体的に、マゼンタトナーのTP2/TP1は、シアントナー、イエロートナー及びブラックトナーのTP2/TP1の平均値の0.817倍以上0.951倍以下であり、0.849倍以上0.900倍以下がより好ましい。 The magenta toner for developing an electrostatic image of the present invention is used in a toner set including at least a magenta toner for developing an electrostatic image, a cyan toner for developing an electrostatic image, a yellow toner for developing an electrostatic image, and a black toner for developing an electrostatic image. When the first measured value of the tan δ maximum value observed at 40 ° C. to 80 ° C. with the rheometer is TP1, and the second measured value of the tan δ maximum value observed at 40 ° C. to 80 ° C. is TP2. TP2 / TP1 of the electrostatic image developing magenta toner is 0.817 of an average value of TP2 / TP1 of the electrostatic charge image developing cyan toner, electrostatic charge image developing yellow toner and electrostatic charge image developing black toner. From the viewpoint of blocking resistance, it is preferably 0.849 times or more. The upper limit is 0.951 times or less, and from the viewpoint of low temperature fixability when performing high adhesion amount printing in which three or more colors are overlaid, it is preferably 0.900 times or less. Specifically, TP2 / TP1 of magenta toner is 0.817 to 0.951 times the average value of TP2 / TP1 of cyan toner, yellow toner and black toner, and is 0.849 to 0.900 times. The following is more preferable.
 マゼンタトナーは、好ましい定着性や耐ブロッキング性を取り得るTP2/TP1が他色に比べて小さな値になるので、マゼンタトナーのTP2/TP1を他色のトナーのTP2/TP1の平均値より一定割合で小さくする必要がある。
 特に、3色以上重ねる場合には、マゼンタトナーのTP2/TP1を特定の範囲に設定することで他色のトナーと同じ定着性となり、色重ねされた色を含む全色のグロス性等に差がなくトナーセット全体として高グロス性が実現され、結果的に良好な画像が得られる。
In magenta toner, TP2 / TP1 that can have preferable fixing property and anti-blocking property is a smaller value than other colors. Therefore, TP2 / TP1 of magenta toner is a constant ratio from the average value of TP2 / TP1 of other color toners. It is necessary to make it smaller.
In particular, when three or more colors are superimposed, setting the TP2 / TP1 of the magenta toner to a specific range provides the same fixability as the other color toners, and the difference in the glossiness of all colors including the overlaid colors. As a result, high glossiness is realized as a whole toner set, and as a result, a good image can be obtained.
 TP2/TP1は、加熱とシェアーによるトナーの表面状態の変化を表している。TP2/TP1が大きい場合は、高耐熱樹脂微粒子(成分)と外添剤の相が1回目の測定時に連続相を形成している割合が比較的高く、前記構造体のレオロジー挙動が現れ、そのためG”に比しG’が比較的大きくなっている(TP1が比較的小さくなっている)と推定される。
 一方、TP2/TP1が小さい場合は、高耐熱樹脂微粒子と外添剤が1回目の測定において連続相を形成している割合が比較的小さく、前記構造体のレオロジー挙動が現れ難く、そのためG’に比しG”が比較的大きくなっている(TP1が比較的大きくなっている)と推定される。
TP2 / TP1 represents a change in the surface state of the toner due to heating and shearing. When TP2 / TP1 is large, the ratio of the high heat-resistant resin fine particles (components) and the external additive to form a continuous phase at the first measurement is relatively high, and the rheological behavior of the structure appears. It is estimated that G ′ is relatively large compared to G ″ (TP1 is relatively small).
On the other hand, when TP2 / TP1 is small, the ratio of the high heat-resistant resin fine particles and the external additive forming a continuous phase in the first measurement is relatively small, and the rheological behavior of the structure is difficult to appear. It is estimated that G ″ is relatively large compared to (TP1 is relatively large).
 本発明の静電荷像現像用ブラックトナーにおいては、レオメーターで測定されるTP2とTP1は同じ値をとらないことが好ましい。トナーセットで用いる静電荷像現像用マゼンタトナーも同様である。これは、1回目の測定時の加熱によってトナーの構造に変化が生じたことを示していると考えられ、その理由は以下のように推定している。
 1回目の測定は、実施例に記載の通り、トナーを極力加熱せず、かつ極力トナー間に空隙が無いペレットに成型されるので、図1に示すようなトナー母粒子表面に偏在した「高耐熱樹脂微粒子成分及び外添剤からなる構造体」を有する試料を測定していると推定される。
In the black toner for developing an electrostatic charge image of the present invention, it is preferable that TP2 and TP1 measured with a rheometer do not have the same value. The same applies to the magenta toner for developing an electrostatic image used in the toner set. This is considered to indicate that the structure of the toner has changed due to the heating during the first measurement, and the reason is estimated as follows.
In the first measurement, as described in the examples, the toner is not heated as much as possible and is molded into pellets having no voids between the toners as much as possible. It is presumed that a sample having a “structure comprising a heat-resistant resin fine particle component and an external additive” is measured.
 トナー母粒子の中心部(コア)成分よりも分子の絡み合い密度の低いシェル成分である高耐熱樹脂微粒子成分が構造体を形成しているため、1回目の測定では、トナーは、より弾性的に振る舞うことによりG”に比しG’が大きくなる方向であるために、tanδ(TP1)は小さくなる方向であると推定される。
 一方、2回目の測定では、1回目の測定時の加熱とシェアーによって、コア成分と高耐熱樹脂微粒子成分と外添剤が1回目の測定に比べて溶融混合して混合体を形成し、組成が1回目の測定に比し平均化された状態を測定しているものと考えられる。
Since the high heat-resistant resin fine particle component, which is a shell component having a lower molecular entanglement density than the central component (core) component of the toner base particle, forms a structure, the toner is more elastic in the first measurement. It is estimated that tan δ (TP1) is in a direction of decreasing because G ′ increases in comparison with G ″.
On the other hand, in the second measurement, the core component, the high heat-resistant resin fine particle component, and the external additive are melted and mixed as compared with the first measurement by heating and shearing during the first measurement, and a composition is formed. Is considered to be measured in an averaged state compared to the first measurement.
 そのため、高耐熱樹脂微粒子(成分)よりも分子の絡み合い密度の高いコア成分の性質が強調され、より塑性的に振る舞うため、G’に比しG”が大きくなる方向であるために、tanδ(TP2)は、一回目測定の値に比し大きな値をとると推定される。つまり、そのレオロジー挙動は、相対的に1回目は、構造体のレオロジーを測定しており、2回目は、1回目の測定に比べ混合体に近いレオロジーを測定している。 Therefore, the property of the core component having a higher molecular entanglement density than the high heat-resistant resin fine particles (component) is emphasized and behaves more plastically, so that G ″ is larger than G ′. TP2) is presumed to take a larger value than the value of the first measurement, that is, the rheological behavior is relatively measured the rheology of the structure at the first time and 1 at the second time. Rheology closer to the mixture is measured compared to the second measurement.
 なお、レオメーターでの1回目の測定時の「加熱とシェアー」は、静的条件下で行われており、また、該「加熱とシェアー」によって、トナー粒子単位の小さな部分(例えば図1参照)での変化が起こっている。 The “heating and shearing” at the first measurement with the rheometer is performed under static conditions, and the “heating and shearing” causes a small portion of toner particles (see, for example, FIG. 1). ) Is happening.
 本発明のトナーセットにおいては、耐ブロッキング性を維持したまま低温定着時又は高速印刷時にでも優れた定着性を実現するためには、マゼンタトナー及びブラックトナーのTP2/TP1が、1.20以上2.50以下であることが好ましい。 In the toner set of the present invention, the TP2 / TP1 of the magenta toner and the black toner is 1.20 or more and 2 in order to realize excellent fixability at low temperature fixing or high speed printing while maintaining blocking resistance. .50 or less is preferable.
 耐ブロッキング性を維持したまま低温定着時又は高速印刷時にでも、3色以上重ねて現像する高付着量印字において優れた定着性を実現するためには、本発明のブラックトナーのTP2/TP1は、耐ブロッキング性を確保し易くする観点から、1.45以上であることが好ましく、1.50以上であることがより好ましく、1.52以上であることが更に好ましく、1.53以上であることが特に好ましい。
 また、低温定着性(テープ剥離残存率)を確保し易くする観点から、本発明のブラックトナーのTP2/TP1は、1.77以下であることが好ましく、1.69以下であることがより好ましく、1.64以下であることが更に好ましく、1.60以下であることが特に好ましく、1.55以下であることが最も好ましい。具体的に、ブラックトナーのTP2/TP1は、1.45以上1.77以下であることが好ましい。
In order to achieve excellent fixability in a high adhesion amount printing in which three or more colors are developed while maintaining low blocking resistance or at high speed printing, the black toner TP2 / TP1 of the present invention is From the viewpoint of easily ensuring blocking resistance, it is preferably 1.45 or more, more preferably 1.50 or more, further preferably 1.52 or more, and 1.53 or more. Is particularly preferred.
Further, from the viewpoint of easily ensuring low-temperature fixability (tape peeling residual rate), TP2 / TP1 of the black toner of the present invention is preferably 1.77 or less, and more preferably 1.69 or less. 1.64 or less, more preferably 1.60 or less, and most preferably 1.55 or less. Specifically, the TP2 / TP1 of the black toner is preferably 1.45 or more and 1.77 or less.
 一方、マゼンタトナーのTP2/TP1は、耐ブロッキング性を確保し易くする観点から、1.21以上であることが好ましく、1.28以上であることがより好ましく、1.32以上であることが更に好ましく、1.33以上であることが特に好ましい。
 また、低温定着性を確保し易くする観点から1.54以下であることが好ましく、1.49以下であることがより好ましく、1.46以下であることが更に好ましく、1.41以下であることが特に好ましい。具体的に、マゼンタトナーのTP2/TP1は、1.28以上1.49以下であることがより好ましい。尚、低温定着性はテープ剥離残存率で評価することができる。
On the other hand, TP2 / TP1 of the magenta toner is preferably 1.21 or more, more preferably 1.28 or more, and more preferably 1.32 or more from the viewpoint of easily ensuring blocking resistance. More preferably, it is particularly preferably 1.33 or more.
Further, from the viewpoint of easily ensuring low temperature fixability, it is preferably 1.54 or less, more preferably 1.49 or less, further preferably 1.46 or less, and 1.41 or less. It is particularly preferred. Specifically, TP2 / TP1 of magenta toner is more preferably 1.28 or more and 1.49 or less. The low temperature fixability can be evaluated by the tape peeling residual rate.
 シアントナーのTP2/TP1は、耐ブロッキング性を確保し易くする観点から1.42以上であることが好ましく、1.47以上であることがより好ましい。
 また、低温定着性を確保し易くする観点から1.86以下であることが好ましく、1.76以下であることがより好ましい。
TP2 / TP1 of the cyan toner is preferably 1.42 or more and more preferably 1.47 or more from the viewpoint of easily ensuring blocking resistance.
Further, from the viewpoint of easily ensuring low-temperature fixability, it is preferably 1.86 or less, and more preferably 1.76 or less.
 イエロートナーのTP2/TP1は、耐ブロッキング性を確保し易くする観点から1.35以上であることが好ましく、1.41以上であることがより好ましい。
 また、低温定着性を確保し易くする観点から1.74以下であることが好ましく、1.68以下であることがより好ましい。
The TP2 / TP1 of the yellow toner is preferably 1.35 or more and more preferably 1.41 or more from the viewpoint of easily ensuring blocking resistance.
Further, from the viewpoint of easily ensuring low temperature fixability, it is preferably 1.74 or less, and more preferably 1.68 or less.
 トナーセットとして色毎の耐ブロッキング性・定着性の差異を無くすことが重要であり、TP2/TP1の好ましい範囲以外であっても、耐ブロッキング性については輸送形態の梱包方法を工夫することにより実使用上実施可能であり、低温定着性については定着器の圧力を上げること、ニップ時間を長くすることによっても一応向上可能である。
 しかしながら、TP2/TP1を上記した好ましい値に調整することにより、過剰な梱包を不要としたり、定着器への負荷を下げて定着器の劣化を抑制できたりする。
It is important to eliminate the difference in blocking resistance and fixing property for each color as a toner set. Even if it is outside the preferable range of TP2 / TP1, blocking resistance can be achieved by devising a packaging method for transportation. It can be implemented in use, and the low-temperature fixability can be temporarily improved by increasing the pressure of the fixing device and extending the nip time.
However, by adjusting TP2 / TP1 to the above-described preferable value, it is possible to eliminate excessive packaging, or to reduce the load on the fixing device and suppress deterioration of the fixing device.
 TP2/TP1がこの範囲であるブラックトナー及びマゼンタトナーは、トナー母粒子の表面を覆う状態で高耐熱樹脂微粒子成分が薄く存在し、更にその外側に外添剤が外添されている状態であると推定され、更には高耐熱樹脂微粒子成分とコア成分が、1回目の測定時より2回目の測定時の方がある程度相溶しているという、絶妙な極性バランスで構成されている。
 例えば、コア成分と高耐熱樹脂微粒子成分が全く異なる化学成分であったり、高耐熱樹脂微粒子成分が塩等の極端にTgが高い成分であったりすると、レオメーターでの1回目の測定前後で、(例えば相溶しない等)構造変化が起こらないため、TP2/TP1は1に近づく。
The black toner and magenta toner in which TP2 / TP1 is in this range are in a state where the high heat-resistant resin fine particle component is thinly present in a state of covering the surface of the toner base particles, and an external additive is added to the outside thereof. Furthermore, the fine heat-resistant resin fine particle component and the core component are constituted with an exquisite polarity balance in which the second measurement is more compatible with the second measurement than the first measurement.
For example, if the core component and the high heat-resistant resin fine particle component are completely different chemical components, or the high heat-resistant resin fine particle component is an extremely high Tg component such as a salt, before and after the first measurement with a rheometer, TP2 / TP1 approaches 1 because no structural change occurs (for example, incompatible).
 上記の構造体は、高耐熱樹脂微粒子成分と外添剤とで形成されていることから、この測定は、トナー母粒子を測定するのではなく、トナーを測定することが重要である。
 TP2/TP1の制御手段としては以下が挙げられる。TP2/TP1を大きくするためには、例えば、コア成分と高耐熱樹脂微粒子成分の極性差を大きくする(水中で高耐熱樹脂微粒子とコア成分を付着させる場合は、コア成分より高耐熱樹脂微粒子の極性を大きく設計し、より親水性にする)、高耐熱樹脂微粒子の分子量を大きくする、高耐熱樹脂微粒子の架橋密度を大きくする、高耐熱樹脂微粒子の添加量を多くする、高耐熱樹脂微粒子(成分)でのコア成分の被覆率を大きくする(同一添加量でも、薄い皮膜にするかコア成分に潜り込ませない様なコア成分と高耐熱樹脂微粒子成分の極性差とする)等が挙げられる。TP2/TP1を小さくするには、これらの逆の設計を行えばよい。
Since the above structure is formed of the high heat-resistant resin fine particle component and the external additive, it is important to measure the toner, not the toner base particles.
The control means of TP2 / TP1 includes the following. In order to increase TP2 / TP1, for example, the polarity difference between the core component and the high heat-resistant resin fine particle component is increased (when the high heat-resistant resin fine particle and the core component are adhered in water, Designed with a large polarity to make it more hydrophilic), increase the molecular weight of high heat resistant resin fine particles, increase the crosslink density of high heat resistant resin fine particles, increase the amount of high heat resistant resin fine particles added, The coverage of the core component in (component) is increased (the polarity difference between the core component and the high heat-resistant resin fine particle component so as to make it a thin film or not enter the core component even with the same added amount). In order to reduce TP2 / TP1, the reverse design may be performed.
 また、構造体の形成状態を示すブラックトナーのTP1は、耐ブロッキング性の観点から1.37以上が好ましく、より好ましくは1.46以上であり、更に好ましくは1.55以上である。また、ブラックトナーのTP1は、定着性の観点から1.70以下が好ましく、より好ましくは1.63以下である。
 マゼンタトナーのTP1は、耐ブロッキング性の観点から1.29以上が好ましく、より好ましくは1.41以上であり、更に好ましくは1.53以上である。また、マゼンタトナーのTP1は、定着性の観点から1.90以下が好ましく、より好ましくは1.74以下である。
The TP1 of the black toner indicating the formation state of the structure is preferably 1.37 or more, more preferably 1.46 or more, and further preferably 1.55 or more from the viewpoint of blocking resistance. The TP1 of the black toner is preferably 1.70 or less, more preferably 1.63 or less, from the viewpoint of fixability.
The TP1 of the magenta toner is preferably 1.29 or more from the viewpoint of blocking resistance, more preferably 1.41 or more, and further preferably 1.53 or more. Further, the TP1 of the magenta toner is preferably 1.90 or less, more preferably 1.74 or less from the viewpoint of fixability.
 更に、ブラックトナーのTP2/TP1が、マゼンタトナーのTP2/TP1に対して、前記範囲内であれば、出力された絵に関して(特に、定着性、グロス性等の性能に関して)、マゼンタとブラックで差が無い本来の美しい色域が表現でき、優れた出力画像を得ることができる。 Further, if TP2 / TP1 of the black toner is within the above range with respect to TP2 / TP1 of the magenta toner, the output picture (especially in terms of performance such as fixing property and gloss property) is magenta and black. An original beautiful color gamut without difference can be expressed, and an excellent output image can be obtained.
 2.2.BETN、BETF、「BETN-BETF」
 「BETN-BETF」は、トナーから外添剤を除去してトナー母粒子表面を露出させたのち、該トナー母粒子の比表面積を測定することによって求める。BETNで表されるBET比表面積は、トナー母粒子の粒径と円形度と表面の微小凹凸の全てを捉えた数値である。一方、BETFで表されるフロー式粒子分析装置で測定する比表面積は、粗い解像度で撮影した画像解析によりトナー母粒子の粒径、円形度を算出し、その値から表面積を計算しているため、微小凹凸値を除いた表面積となる。よって、BETNとBETFの差は、トナー母粒子表面の微小凹凸を表していると推定されるため、「BETN-BETF」が大きい程この微小凹凸は大きくなる。
2.2. BETN, BETF, “BETN-BETF”
“BETN-BETF” is obtained by removing the external additive from the toner to expose the surface of the toner base particles, and then measuring the specific surface area of the toner base particles. The BET specific surface area represented by BETN is a numerical value that captures all of the particle size and circularity of the toner base particles and the minute irregularities on the surface. On the other hand, the specific surface area measured by the flow type particle analyzer represented by BETF is calculated because the particle size and circularity of the toner base particles are calculated by image analysis taken at a coarse resolution, and the surface area is calculated from these values. The surface area excluding the minute unevenness value. Therefore, the difference between BETN and BETF is estimated to represent the minute irregularities on the surface of the toner base particles, and the larger the “BETN−BETF”, the larger the minute irregularities.
 BETN-BETFが小さいと、トナー母粒子表面が平滑に近いことを示し、この場合、微小凹凸に介在する空気の断熱作用により低温定着性が損なわれず、不必要に高耐熱樹脂微粒子がトナーの外側に突き出していないため、その部分を溶融するのに必要な熱エネルギーの吸収が少ないため、低温定着性や高グロス性が良化する。
 一方、BETN-BETFが大きいと、トナー母粒子表面に微小凹凸が形成されていることを示し、高耐熱樹脂微粒子(成分)が薄膜化し過ぎず、耐熱性を維持できるようになっている、又は、高耐熱樹脂微粒子(成分)がトナーの中心部に過度に潜り込んでいない構造をとっているため、耐ブロッキング性が良化する。
 よって、高度な領域で、「耐ブロッキング性」と「高グロス性や低温定着性」とのバランスをとるためには、「BETN-BETF」が適正な範囲であることが特に好ましい。
A small BETN-BETF indicates that the surface of the toner base particles is almost smooth. In this case, the low temperature fixability is not impaired by the heat insulating action of the air intervening in the minute irregularities, and the high heat resistant resin fine particles are unnecessarily formed on the outer side of the toner. Therefore, low-temperature fixability and high gloss properties are improved because less heat energy is required to melt the portion.
On the other hand, when BETN-BETF is large, it indicates that fine irregularities are formed on the surface of the toner base particles, and the high heat-resistant resin fine particles (components) do not become too thin and can maintain heat resistance, or Further, since the high heat-resistant resin fine particles (components) have a structure in which they do not excessively sink into the central portion of the toner, the blocking resistance is improved.
Therefore, in order to balance “blocking resistance” with “high gloss and low temperature fixability” in an advanced region, it is particularly preferable that “BETN-BETF” is in an appropriate range.
 BET比表面積とフロー式粒子分析装置で測定する比表面積は、外添前のトナー母粒子ではなく、外添後のトナーを外添剤剥離処理して得られたトナー母粒子を用いて測定し、その差を制御することが重要であることが本発明において分かった。後述するように、外添によって高耐熱樹脂微粒子の形状が変化するため、プリンターや複写機に供されるトナーは外添品であるため、外添後のトナー母粒子の表面構造がトナー性能と関係すると推定している。 The BET specific surface area and the specific surface area measured with a flow particle analyzer are measured using the toner base particles obtained by removing the external additive from the toner after the external addition, not the toner base particles before the external addition. It has been found in the present invention that it is important to control the difference. As will be described later, since the shape of the high heat-resistant resin fine particles is changed by the external addition, the toner used in the printer and the copying machine is an external addition product. Therefore, the surface structure of the toner base particles after the external addition is the toner performance. Estimated to be related.
 本発明のブラックトナー、マゼンタトナーを含むトナーのBETN-BETFは、0.54m/g以上が好ましく、0.77m/g以上がより好ましく、0.99m/g以上が特に好ましい。また、BETN-BETFは、1.56m/g以下が好ましく、1.51m/g以下がより好ましく、1.45m/g以下が特に好ましい。
 BETN-BETFが小さいと、低温定着性と高グロス性が良化する傾向がある。BETN-BETFが大きいと、耐ブロッキング性が良化する傾向がある。
Black toner, BETN-BETF toner comprising magenta toner of the present invention is preferably at least 0.54 m 2 / g, more preferably not less than 0.77m 2 / g, 0.99m 2 / g or more is particularly preferable. Further, BETN-BETF is preferably 1.56 2 / g or less, more preferably 1.51 m 2 / g, and particularly preferably 1.45 m 2 / g.
When BETN-BETF is small, low-temperature fixability and high gloss tend to be improved. When BETN-BETF is large, the blocking resistance tends to be improved.
 BETN-BETFを制御する手段としては以下が挙げられる。BETN-BETFを大きくするためには、微小表面凹凸を大きくすることが必要であり、例えば、高耐熱樹脂微粒子の埋没を防止するために、高耐熱樹脂微粒子の粒子径を大きくする、コア成分と高耐熱樹脂微粒子成分の極性差を大きくする(水中で高耐熱樹脂微粒子とコア成分を付着させる場合は、コア成分より高耐熱樹脂微粒子の極性を大きく設計しより親水性にする)、高耐熱樹脂微粒子のTg以上に加熱しない等が挙げられる。 The means for controlling BETN-BETF include the following. In order to increase BETN-BETF, it is necessary to increase the minute surface irregularities. For example, in order to prevent the embedding of the high heat-resistant resin fine particles, the core component that increases the particle diameter of the high heat-resistant resin fine particles Increase the polarity difference between the high heat-resistant resin fine particle components (when attaching the high heat-resistant resin fine particles and the core component in water, the polarity of the high heat-resistant resin fine particles is designed to be more hydrophilic than the core component). For example, it is not heated above the Tg of the fine particles.
 更に、トナー母粒子に対して外添する際に、温度を低くする、時間を短くする、撹拌翼の回転数を落とすこと等により、高耐熱樹脂微粒子のコア成分への埋没及び/又は過度な延伸を防止することも有効である。また高耐熱樹脂微粒子の添加量を増やすことによってもBETN-BETFを大きくすることができる。一方、BETN-BETFを小さくする場合は、この逆の設計を行えばよい。 Further, when externally adding to the toner base particles, the temperature is lowered, the time is shortened, the rotational speed of the stirring blade is decreased, and so on, so that the high heat-resistant resin fine particles are embedded in the core component and / or excessively. It is also effective to prevent stretching. Also, the BETN-BETF can be increased by increasing the addition amount of the high heat-resistant resin fine particles. On the other hand, when BETN-BETF is reduced, the reverse design may be performed.
 2.3.ガラス転移温度(Tg)
 更には、トナーの示差走査熱量計(DSC)で測定されるTgも、耐ブロッキング性を維持したまま、低温定着時又は高速印刷時にでも、優れた定着性を実現するという観点から重要である。ブラックトナー及びマゼンタトナーのガラス転移温度(Tg)の範囲は、44℃以下であるのが好ましく、より好ましくは43℃以下であり、更に好ましくは42℃以下である。また、Tgの範囲は、34℃以上が好ましく、より好ましくは36℃以上、更に好ましくは38℃以上である。「ガラス転移温度(Tg)」を単に「Tg」と略記することがある。本発明におけるTgは、実施例に記載の方法で測定される。DSCの2回目の加熱測定で検出される。
2.3. Glass transition temperature (Tg)
Furthermore, Tg measured with a differential scanning calorimeter (DSC) of the toner is also important from the viewpoint of realizing excellent fixability even during low-temperature fixing or high-speed printing while maintaining blocking resistance. The glass transition temperature (Tg) range of the black toner and the magenta toner is preferably 44 ° C. or less, more preferably 43 ° C. or less, and further preferably 42 ° C. or less. The Tg range is preferably 34 ° C. or higher, more preferably 36 ° C. or higher, and still more preferably 38 ° C. or higher. “Glass transition temperature (Tg)” may be simply abbreviated as “Tg”. Tg in the present invention is measured by the method described in Examples. It is detected by the second heating measurement of DSC.
 ブラックトナー及びマゼンタトナーのTgをこの範囲に調整することにより、得られるトナーのTP2/TP1を上述の適した範囲に調整した範囲内で、耐ブロッキングを維持したまま、更に好ましい低温定着性を得ることができる。
 これは、トナーのTgを高くすることで耐ブロッキング性を補い、トナーのTgを低くすることで低温定着性をより好ましい範囲に調整することができるからである。
By adjusting the Tg of the black toner and the magenta toner within this range, a more preferable low-temperature fixability is obtained while maintaining blocking resistance within the range in which the TP2 / TP1 of the obtained toner is adjusted to the above-described suitable range. be able to.
This is because the anti-blocking property can be supplemented by increasing the Tg of the toner, and the low-temperature fixability can be adjusted to a more preferable range by decreasing the Tg of the toner.
 トナーのTgを高くする方法としては、Tgの高い単量体成分の共重合割合を増加させる、絡み合い点間分子量の2倍以下の分子量(Mc)成分を減らす(分子量調整剤等を減量する、架橋剤を増量させる等)、結着樹脂を可塑化させる融点100℃以下の可塑剤(例えばワックスや結晶性樹脂等)を増量する等が挙げられる。一方、トナーのTgを低くするには、この逆の設計を行えばよい。尚、「Tgの高い単量体成分」とはこれを用いて作製されたホモポリマーのTgが高い単量体のことである。 As a method for increasing the Tg of the toner, the copolymerization ratio of the monomer component having a high Tg is increased, the molecular weight (Mc) component that is not more than twice the molecular weight between the entanglement points is decreased (the molecular weight modifier or the like is decreased, And a plasticizer having a melting point of 100 ° C. or lower (for example, wax or crystalline resin) for plasticizing the binder resin. On the other hand, in order to lower the Tg of the toner, the reverse design may be performed. The “monomer component having a high Tg” refers to a monomer having a high Tg of a homopolymer produced using the same.
 2.4.トナー母粒子の組成
 2.4.1.コア(中心部)成分
 トナー母粒子は、「少なくとも結着樹脂(例えば重合体一次粒子からなる)、着色剤を含有するコア成分」に高耐熱樹脂微粒子が被覆してなっている。
 この高耐熱樹脂微粒子には、その他必要に応じ帯電制御剤等を含有していてもよく、ワックスが含まれていることが高温側のオフセット防止の観点から好ましく、更に、このワックスが高耐熱樹脂成分で実質的に内包された状態で含有されていることが、フィルミング等のワックス遊離により起こる問題をも解決できるのでより好ましい。
2.4. Composition of toner base particles 2.4.1. Core (central part) component The toner base particles are formed by coating high-heat-resistant resin fine particles on "a core component containing at least a binder resin (for example, polymer primary particles) and a colorant".
The high heat-resistant resin fine particles may contain a charge control agent or the like if necessary, and it is preferable that a wax is contained from the viewpoint of preventing offset on the high temperature side. It is more preferable that it is contained in a state of being substantially encapsulated with components since problems caused by wax release such as filming can be solved.
 ワックスを高耐熱樹脂成分で実質的に内包された状態にするには、水中及び/又は有機溶剤中、ワックス粒子存在下で結着樹脂をそのワックス表面に、重合、析出又は凝集させる方法等が挙げられる。
 結着樹脂としては、一般にトナーを製造する際に結着樹脂として用いられるものであればよく、特に限定されないが、例えば、ポリスチレン系樹脂、ポリ(メタ)アクリル系樹脂、ポリオレフィン系樹脂、エポキシ系樹脂、ポリエステル系樹脂等の熱可塑性樹脂、これらの樹脂の混合物等が挙げられる。
In order to make the wax substantially encapsulated with the high heat resistant resin component, there is a method of polymerizing, precipitating or agglomerating the binder resin on the surface of the wax in the presence of wax particles in water and / or an organic solvent. Can be mentioned.
The binder resin is not particularly limited as long as it is generally used as a binder resin in the production of toner. For example, polystyrene resin, poly (meth) acrylic resin, polyolefin resin, epoxy resin Examples thereof include thermoplastic resins such as resins and polyester resins, and mixtures of these resins.
 結着樹脂を製造するために用いる単量体成分としては、一般的にトナーの結着樹脂を製造する際に用いられている単量体を適宜用いることができる。
 例えば、酸性基を有する重合性単量体(以下、単に酸性単量体と称すことがある。)、塩基性基を有する重合性単量体(以下、単に塩基性単量体と称することがある。)、酸性基も塩基性基も有さない重合性単量体(以下、その他の単量体と称することがある。)の何れの重合性単量体も使用することができる。
As the monomer component used for producing the binder resin, a monomer generally used in producing a toner binder resin can be appropriately used.
For example, a polymerizable monomer having an acidic group (hereinafter sometimes simply referred to as an acidic monomer), a polymerizable monomer having a basic group (hereinafter simply referred to as a basic monomer). Any polymerizable monomer of a polymerizable monomer having neither an acidic group nor a basic group (hereinafter sometimes referred to as other monomer) can be used.
 結着樹脂としてポリスチレン系樹脂及びポリ(メタ)アクリル系樹脂を使用する場合、以下の単量体が例として挙げられる。
 酸性単量体としては、アクリル酸、メタクリル酸、マレイン酸、フマル酸、ケイ皮酸等のカルボキシル基を有する重合性単量体;スルホン化スチレン等のスルホン酸基を有する重合性単量体;ビニルベンゼンスルホンアミド等のスルホンアミド基を有する重合性単量体;等が挙げられる。
When a polystyrene resin and a poly (meth) acrylic resin are used as the binder resin, the following monomers are exemplified.
Examples of the acidic monomer include a polymerizable monomer having a carboxyl group such as acrylic acid, methacrylic acid, maleic acid, fumaric acid and cinnamic acid; a polymerizable monomer having a sulfonic acid group such as sulfonated styrene; Polymerizable monomers having a sulfonamide group such as vinylbenzenesulfonamide; and the like.
 塩基性単量体としては、アミノスチレン等のアミノ基を有する芳香族ビニル化合物;ビニルピリジン、ビニルピロリドン等の窒素含有複素環含有重合性単量体;ジメチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレート等のアミノ基を有する(メタ)アクリル酸エステル;等が挙げられる。これら酸性単量体及び塩基性単量体は、トナー母粒子の分散安定化に寄与する。単独で用いても複数種類を混合して用いてもよく、また、対イオンを伴って塩として存在していてもよい。 Examples of basic monomers include aromatic vinyl compounds having an amino group such as aminostyrene; nitrogen-containing heterocyclic-containing polymerizable monomers such as vinylpyridine and vinylpyrrolidone; amino acids such as dimethylaminoethyl acrylate and diethylaminoethyl methacrylate. (Meth) acrylic acid ester having a group; These acidic monomers and basic monomers contribute to the dispersion stabilization of the toner base particles. It may be used singly or as a mixture of plural kinds, and may exist as a salt with a counter ion.
 更に、酸性単量体及び塩基性単量体は、トナー母粒子の中心部(コア)成分及び高耐熱樹脂微粒子のどちらか一方に、あるいは双方に含まれていてもよいが、コア成分を構成する「結着樹脂と酸性又は塩基性単量体によりなる樹脂成分」と、高耐熱樹脂微粒子を構成する「結着樹脂と酸性又は塩基性単量体によりなる樹脂成分」は、同一の組成ではないことが好ましい。
 これは、前述した高耐熱樹脂微粒子成分とコア成分が、tanδの1回目の測定時より2回目の測定時の方がある程度相溶しているという、絶妙なバランスで構成される必要があるため、適切な親和性に調整するという意味で、本発明おいては特に重要である。
Further, the acidic monomer and the basic monomer may be contained in one or both of the central part (core) component of the toner base particles and the high heat-resistant resin fine particles. The "resin component consisting of a binder resin and an acidic or basic monomer" and the "resin component consisting of a binder resin and an acidic or basic monomer" that constitute the high heat-resistant resin fine particles have the same composition. Preferably not.
This is because the high heat-resistant resin fine particle component and the core component described above need to be configured with an exquisite balance that the second measurement is more compatible than the first measurement of tan δ. This is particularly important in the present invention in the sense of adjusting to an appropriate affinity.
 また、酸性(又は塩基性)単量体の添加量に依存する酸価(塩基価)について、水中でコア成分に高耐熱樹脂微粒子を付着させることによりトナー母粒子を製造する場合には、トナー母粒子のコア(中心部)成分よりも高耐熱樹脂微粒子の酸価(塩基価)を高めた方が好ましく、具体的には、高耐熱樹脂微粒子の酸価(塩基価)をコア成分の酸価(塩基価)の1.1倍以上2.8倍以下に調整することが好ましい。この倍率が小さ過ぎると、高耐熱樹脂微粒子がコア成分に埋没してしまい、満足いく耐ブロッキング性が得られない場合があり、この倍率が大き過ぎると、コア成分に比し水中で高耐熱樹脂微粒子が安定し過ぎていて付着しない場合があるからである。 In addition, regarding the acid value (base value) depending on the addition amount of the acidic (or basic) monomer, in the case where toner base particles are produced by adhering highly heat-resistant resin fine particles to the core component in water, the toner It is preferable to increase the acid value (base number) of the high heat-resistant resin fine particles compared to the core (center part) component of the mother particle. Specifically, the acid value (base number) of the high heat-resistant resin fine particles is set to the acid of the core component. It is preferable to adjust it to 1.1 times or more and 2.8 times or less of the valence (base number). If this magnification is too small, the high heat resistant resin fine particles may be buried in the core component, and satisfactory blocking resistance may not be obtained. If this magnification is too large, the high heat resistant resin in water compared to the core component. This is because the fine particles are too stable and do not adhere.
 その他の単量体としては、スチレン、メチルスチレン、クロロスチレン、ジクロロスチレン、p-t-ブチルスチレン、p-n-ブチルスチレン、p-n-ノニルスチレン等のスチレン類;アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸ヒドロキシエチル、アクリル酸2-エチルヘキシル等のアクリル酸エステル類;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸ヒドロキシエチル、メタクリル酸2-エチルヘキシル等のメタクリル酸エステル類;アクリルアミド、N-プロピルアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジプロピルアクリルアミド、N,N-ジブチルアクリルアミド等のアクリルアミド類;等が挙げられる。「その他の単量体」は、単独で用いてもよく、また複数を組み合わせて用いてもよい。 Other monomers include styrenes such as styrene, methyl styrene, chlorostyrene, dichlorostyrene, pt-butyl styrene, pn-butyl styrene, pn-nonyl styrene; methyl acrylate, acrylic acid Acrylic esters such as ethyl, propyl acrylate, n-butyl acrylate, isobutyl acrylate, hydroxyethyl acrylate, 2-ethylhexyl acrylate; methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate Methacrylic acid esters such as isobutyl methacrylate, hydroxyethyl methacrylate, 2-ethylhexyl methacrylate; acrylamide, N-propylacrylamide, N, N-dimethylacrylamide, N, N-dipropylacrylamide, N, - acrylamides such as dibutyl acrylamide; and the like. “Other monomers” may be used alone or in combination.
 結着樹脂を架橋樹脂とする場合、上述の重合性単量体と共に多官能性単量体が用いられ、例えば、ジビニルベンゼン、ヘキサンジオールジアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、ヘキサエチレングリコールジメタクリレート、ノナエチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、ネオペンチルグリコールジメタクリレート、ネオペンチルグリコールジアクリレート、ジアリルフタレート等が挙げられる。 When the binder resin is a cross-linked resin, a polyfunctional monomer is used together with the above-mentioned polymerizable monomer. For example, divinylbenzene, hexanediol diacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol Examples include dimethacrylate, tetraethylene glycol dimethacrylate, hexaethylene glycol dimethacrylate, nonaethylene glycol dimethacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, neopentyl glycol dimethacrylate, neopentyl glycol diacrylate, diallyl phthalate, and the like.
 中でも二官能性重合性単量体が好ましく、ジビニルベンゼン、ヘキサンジオールジアクリレート等が特に好ましい。これら多官能性重合性単量体は、単独で用いても複数種類を混合して用いてもよい。
 また、反応性基をペンダントグループに有する重合性単量体、例えば、グリシジルメタクリレート、メチロールアクリルアミド、アクロレイン等を用いることも可能である。
Among them, a bifunctional polymerizable monomer is preferable, and divinylbenzene, hexanediol diacrylate, and the like are particularly preferable. These polyfunctional polymerizable monomers may be used alone or as a mixture of plural kinds.
In addition, a polymerizable monomer having a reactive group in a pendant group, for example, glycidyl methacrylate, methylol acrylamide, acrolein, or the like can be used.
 必要に応じて公知の連鎖移動剤を使用することができる。連鎖移動剤の具体的な例としては、t-ドデシルメルカプタン、ドデカンチオール、ジイソプロピルキサントゲン、四塩化炭素、トリクロロブロモメタン等が挙げられる。連鎖移動剤は単独又は2種類以上の併用でもよく、重合性単量体に対して0~5質量%が好ましい。 A known chain transfer agent can be used as necessary. Specific examples of the chain transfer agent include t-dodecyl mercaptan, dodecanethiol, diisopropyl xanthogen, carbon tetrachloride, trichlorobromomethane and the like. The chain transfer agent may be used alone or in combination of two or more kinds, and is preferably 0 to 5% by mass with respect to the polymerizable monomer.
 ポリスチレン系樹脂及びポリ(メタ)アクリル系樹脂を結着樹脂とする場合は、ゲルパーミエーションクロマトグラフィー(以下、GPCと記載する。)における数平均分子量は好ましくは5000以上、より好ましくは8000以上、更に好ましくは1万以上であり、好ましくは4万以下、より好ましくは3万以下、更に好ましくは2万以下である。重量平均分子量は、好ましくは3万以上、より好ましくは5万以上、好ましくは30万以下、より好ましくは25万以下である。 When polystyrene resin and poly (meth) acrylic resin are used as the binder resin, the number average molecular weight in gel permeation chromatography (hereinafter referred to as GPC) is preferably 5000 or more, more preferably 8000 or more, More preferably, it is 10,000 or more, preferably 40,000 or less, more preferably 30,000 or less, and still more preferably 20,000 or less. The weight average molecular weight is preferably 30,000 or more, more preferably 50,000 or more, preferably 300,000 or less, more preferably 250,000 or less.
 結着樹脂としてポリエステル系樹脂を使用する場合、2価のアルコールとして、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,4-ブテンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール等のジオール類、ビスフェノールA、水素添加ビスフェノールA、ポリオキシエチレン化ビスフェノールA、ポリオキシプロピレン化ビスフェノールA等のビスフェノールAアルキレンオキシド付加物;等が挙げられる。 When a polyester resin is used as the binder resin, examples of the divalent alcohol include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, Diols such as neopentyl glycol, 1,4-butenediol, 1,5-pentanediol, 1,6-hexanediol, bisphenol A, hydrogenated bisphenol A, polyoxyethylenated bisphenol A, polyoxypropylenated bisphenol A Bisphenol A alkylene oxide adducts such as;
 2価の酸としては、例えば、マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸、フタル酸、イソフタル酸、テレフタル酸、シクロヘキサンジカルボン酸、コハク酸、アジピン酸、セバチン酸、アゼライン酸、マロン酸、これらの酸の無水物若しくは低級アルキルエステル;n-ドデセニルコハク酸、n-ドデシルコハク酸等のアルケニルコハク酸類若しくはアルキルコハク酸類;その他の2価の有機酸が挙げられる。 Examples of the divalent acid include maleic acid, fumaric acid, citraconic acid, itaconic acid, glutaconic acid, phthalic acid, isophthalic acid, terephthalic acid, cyclohexanedicarboxylic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, malon Acids, anhydrides or lower alkyl esters of these acids; alkenyl succinic acids or alkyl succinic acids such as n-dodecenyl succinic acid and n-dodecyl succinic acid; and other divalent organic acids.
 結着樹脂を架橋樹脂とする場合、上述2価アルコールや酸と共に多官能性単量体が用いられ、例えば、3価以上の多価アルコールとしては、例えば、ソルビトール、1,2,3,6-ヘキサンテトロール、1,4-ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ショ糖、1,2,4-ブタントリオール、1,2,5-ペンタントリオール、グリセロール、2-メチルプロパントリオール、2-メチル-1,2,4-ブタントリオール、トリメチロールエタン、トリメチロールプロパン、1,3,5-トリヒドロキシメチルベンゼン、その他が挙げられる。 When the binder resin is a cross-linked resin, a polyfunctional monomer is used together with the above-described dihydric alcohol and acid. For example, as a trihydric or higher polyhydric alcohol, for example, sorbitol, 1, 2, 3, 6 -Hexanetetrol, 1,4-sorbitan, pentaerythritol, dipentaerythritol, tripentaerythritol, sucrose, 1,2,4-butanetriol, 1,2,5-pentanetriol, glycerol, 2-methylpropanetriol 2-methyl-1,2,4-butanetriol, trimethylolethane, trimethylolpropane, 1,3,5-trihydroxymethylbenzene, and the like.
 3価以上の酸としては、例えば、1,2,4-ベンゼントリカルボン酸、1,2,5-ベンゼントリカルボン酸、1,2,4-シクロヘキサントリカルボン酸、2,5,7-ナフタレントリカルボン酸、1,2,4-ナフタレントリカルボン酸、1,2,5-ヘキサントリカルボン酸、1,3-ジカルボキシル-2-メチル-2-メチレンカルボキシプロパン、テトラ(メチレンカルボキシル)メタン、1,2,7,8-オクタンテトラカルボン酸、これらの無水物、その他が挙げられる。 Examples of the trivalent or higher acid include 1,2,4-benzenetricarboxylic acid, 1,2,5-benzenetricarboxylic acid, 1,2,4-cyclohexanetricarboxylic acid, 2,5,7-naphthalenetricarboxylic acid, 1,2,4-naphthalenetricarboxylic acid, 1,2,5-hexanetricarboxylic acid, 1,3-dicarboxyl-2-methyl-2-methylenecarboxypropane, tetra (methylenecarboxyl) methane, 1,2,7, Examples include 8-octanetetracarboxylic acid, anhydrides thereof, and the like.
 また、ポリエステル系樹脂の酸価について、水中でコア成分に高耐熱樹脂微粒子を付着させることにより製造する場合には、トナー母粒子のコア(中心部)成分よりも高耐熱樹脂微粒子の酸価を高めた方が好ましく、具体的には、高耐熱樹脂微粒子の酸価をコア成分の酸価の1.1倍以上2.8倍以下に調整することが好ましい。
 この倍率が大きいと、高耐熱樹脂微粒子がコア成分に埋没し難い方向であるため、満足いく耐ブロッキング性が得られ、この倍率が小さいと、コア成分に比し水中で高耐熱樹脂微粒子が安定化し過ぎず、高耐熱樹脂微粒子がコア成分に良好に付着し易い。
In addition, regarding the acid value of the polyester-based resin, when the high heat-resistant resin fine particles are adhered to the core component in water, the acid value of the high heat-resistant resin fine particles is higher than that of the core (center) component of the toner base particles. More preferably, the acid value of the high heat-resistant resin fine particles is preferably adjusted to 1.1 times or more and 2.8 times or less of the acid value of the core component.
If this magnification is large, the high heat-resistant resin fine particles are less likely to be embedded in the core component, so that satisfactory blocking resistance is obtained. If this magnification is small, the high heat-resistant resin fine particles are more stable in water than the core component. It does not become too much, and the high heat-resistant resin fine particles tend to adhere well to the core component.
 これらのポリエステル系樹脂は、通常の方法にて合成することができる。具体的には、反応温度(170~250℃)、反応圧力(5mmHg~常圧)等の条件をモノマーの反応性に応じて決め、所定の物性が得られた時点で反応を終了すればよい。
 結着樹脂としてポリエステル系樹脂を使用する場合のGPCにおける数平均分子量は、好ましくは2000~20000、より好ましくは3000~12000である。
These polyester resins can be synthesized by a usual method. Specifically, conditions such as reaction temperature (170 to 250 ° C.), reaction pressure (5 mmHg to normal pressure) and the like are determined according to the reactivity of the monomer, and the reaction is terminated when predetermined physical properties are obtained. .
When a polyester resin is used as the binder resin, the number average molecular weight in GPC is preferably 2000 to 20000, and more preferably 3000 to 12000.
 オフセット防止剤として、また、低温定着性向上のために、ワックスを使用することが好ましい。
 本発明のトナーに用いられるワックスは、公知のワックスを任意に使用することができるが、具体的には、低分子量ポリエチレン、低分子量ポリプロピレン、共重合ポリエチレン等のオレフィン系ワックス;パラフィンワックス;ベヘン酸ベヘニル、モンタン酸エステル、ステアリン酸ステアリル等の長鎖脂肪族基を有するエステル系ワックス;水添ひまし油、カルナバワックス等の植物系ワックス;ジステアリルケトン等の長鎖アルキル基を有するケトン;アルキル基を有するシリコーン;ステアリン酸等の高級脂肪酸;長鎖脂肪酸(ペンタエリスリトール、トリメチロールプロパン、グリセリン等の)多価アルコールエステル若しくはその部分エステル体;オレイン酸アミド、ステアリン酸アミド等の高級脂肪酸アミド;等が例示される。
 好ましくは、パラフィンワックス、フィッシャートロプシュワックス等の炭化水素系ワックス;エステル系ワックス;シリコーン系ワックス;等が挙げられる。中でも、エステル系ワックスがより好ましく、炭素数18及び/又は炭素数22の炭化水素を主体的に含むモノエステルワックスが更に好ましく、ベヘン酸ベヘニル、ベヘン酸ステアリル、ステアリン酸ベヘニル、それらを主体的に含むもの、が最も好ましい。ワックスは単独で用いても混合して用いてもよい。
It is preferable to use a wax as an anti-offset agent and to improve low-temperature fixability.
As the wax used in the toner of the present invention, known waxes can be arbitrarily used. Specifically, olefin waxes such as low molecular weight polyethylene, low molecular weight polypropylene, and copolymerized polyethylene; paraffin wax; behenic acid Ester wax having a long chain aliphatic group such as behenyl, montanate ester, stearyl stearate; plant wax such as hydrogenated castor oil, carnauba wax; ketone having a long chain alkyl group such as distearyl ketone; Silicone having higher fatty acid such as stearic acid; long chain fatty acid (pentaerythritol, trimethylolpropane, glycerin, etc.) polyhydric alcohol ester or partial ester thereof; higher fatty acid amide such as oleic acid amide, stearic acid amide, etc. Exemplified
Preferred examples include hydrocarbon waxes such as paraffin wax and Fischer-Tropsch wax; ester waxes; silicone waxes. Among them, ester waxes are more preferable, monoester waxes mainly containing hydrocarbons having 18 and / or 22 carbon atoms are more preferable, behenyl behenate, stearyl behenate, behenyl stearate, and the like. The inclusion is most preferred. Waxes may be used alone or in combination.
 ワックスの融点ピーク(トナーのDSC2回目昇温時における吸熱ピークトップ)は、90℃以下が好ましく、80℃以下がより好ましく、75℃以下が更に好ましく、50℃以上が好ましく、60℃以上がより好ましく、65℃以上が更に好ましい。ワックスの融点ピーク温度が高いと、耐ブロッキング性が良化する傾向にあり、ワックスの融点ピークが低いと、低温定着性と高グロス性が良化する傾向にある。 The melting point peak of wax (the endothermic peak top at the time of DSC second heating of the toner) is preferably 90 ° C. or less, more preferably 80 ° C. or less, further preferably 75 ° C. or less, preferably 50 ° C. or more, and more preferably 60 ° C. or more. Preferably, 65 degreeC or more is more preferable. When the melting point peak temperature of the wax is high, blocking resistance tends to be improved, and when the melting point peak of the wax is low, low temperature fixability and high gloss property tend to be improved.
 また、ワックスの融点ピークとワックスのオンセット温度(トナーのDSC2回目における吸熱ピーク前のベースラインと、吸熱ピーク前に現れる最初の変曲点における接線の交点温度)の差は、10℃以下であることが好ましく、8℃以下であることがより好ましく、4℃以下であることが更に好ましい。
 また、ワックスのオンセット温度は、86℃以下が好ましく、76℃以下がより好ましく、71℃以下が更に好ましく、46℃以上が好ましく、56℃以上がより好ましく、61℃以上が更に好ましい。上記オンセット温度が低い場合、低温定着性と高グロス性が良化する傾向にあり、上記オンセット温度が高い場合、耐ブロッキング性が良化する傾向にある。
The difference between the melting point peak of the wax and the onset temperature of the wax (intersection temperature of the tangent at the first inflection point appearing before the endothermic peak and the baseline before the endothermic peak in the second DSC of the toner) is 10 ° C. or less. Preferably, it is 8 ° C. or lower, more preferably 4 ° C. or lower.
The onset temperature of the wax is preferably 86 ° C. or lower, more preferably 76 ° C. or lower, still more preferably 71 ° C. or lower, 46 ° C. or higher, more preferably 56 ° C. or higher, and even more preferably 61 ° C. or higher. When the onset temperature is low, the low-temperature fixability and the high gloss property tend to improve, and when the onset temperature is high, the blocking resistance tends to improve.
 ワックスの量は、トナー100質量部に対して1質量部以上であることが好ましく、より好ましくは2質量部以上、更に好ましくは5質量部以上である。また、35質量部以下であることが好ましく、より好ましくは30質量部以下、更に好ましくは25質量部以下である。 The amount of wax is preferably 1 part by mass or more with respect to 100 parts by mass of toner, more preferably 2 parts by mass or more, and still more preferably 5 parts by mass or more. Moreover, it is preferable that it is 35 mass parts or less, More preferably, it is 30 mass parts or less, More preferably, it is 25 mass parts or less.
 着色剤としては公知の着色剤を任意に用いることができる。着色剤の具体的な例としては、カーボンブラック、アニリンブルー、フタロシアニンブルー、フタロシアニングリーン、ハンザイエロー、ローダミン系染顔料、クロムイエロー、キナクリドン系染顔料、ベンジジンイエロー、ローズベンガル、トリアリルメタン系染料、モノアゾ系染顔料、ジスアゾ系染顔料、縮合アゾ系染顔料等、公知の任意の染顔料を単独で又は混合して用いることができる。 A known colorant can be arbitrarily used as the colorant. Specific examples of the colorant include carbon black, aniline blue, phthalocyanine blue, phthalocyanine green, Hansa yellow, rhodamine dye, chrome yellow, quinacridone dye, benzidine yellow, rose bengal, triallylmethane dye, Known arbitrary dyes such as monoazo dyes, disazo dyes, and condensed azo dyes can be used alone or in combination.
 フルカラートナーの場合には、イエローは、ベンジジンイエロー系、モノアゾ系及び/又は縮合アゾ系の染顔料;マゼンタは、キナクリドン系及び/又はモノアゾ系の染顔料;シアンは、フタロシアニン系の染顔料;ブラックはカーボンブラック;等をそれぞれ用いることが好ましい。 In the case of a full-color toner, yellow is a benzidine yellow, monoazo and / or condensed azo dye; magenta is a quinacridone and / or monoazo dye; cyan is a phthalocyanine dye; black Is preferably carbon black;
 具体的には、シアンとしては、C.I.ピグメントブルー15:3、C.I.ピグメントブルー15:4、イエローとしては、C.I.ピグメントイエロー74、ジスアゾ系染顔料であるC.I.ピグメントイエロー83、縮合アゾ系染顔料であるC.I.ピグメントイエロー93、C.I.ピグメントイエロー155、C.I.ピグメントイエロー180、C.I.ピグメントイエロー185、マゼンタとしては、C.I.ピグメントレッド48:1、C.I.ピグメントレッド53:1、C.I.ピグメントレッド57:1、C.I.ピグメントレッド5、キナクリドン系染顔料であるC.I.ピグメントレッド122、C.I.ピグメントレッド209、モノアゾ系染顔料であるC.I.ピグメントレッド269(238)等を挙げることができる。
 マゼンタトナーとしては、C.I.ピグメントレッド269(238)及び/又はC.I.ピグメントレッド122を用いることが好ましい。
Specifically, as cyan, C.I. I. Pigment blue 15: 3, C.I. I. Pigment Blue 15: 4, yellow includes C.I. I. Pigment Yellow 74, C.I. I. Pigment Yellow 83, a C.I. I. Pigment yellow 93, C.I. I. Pigment yellow 155, C.I. I. Pigment yellow 180, C.I. I. Pigment Yellow 185 and magenta include C.I. I. Pigment red 48: 1, C.I. I. Pigment red 53: 1, C.I. I. Pigment red 57: 1, C.I. I. Pigment Red 5 and C.I. I. Pigment red 122, C.I. I. Pigment Red 209, C.I. I. And CI Pigment Red 269 (238).
Examples of magenta toner include C.I. I. Pigment red 269 (238) and / or C.I. I. It is preferable to use CI Pigment Red 122.
 本実施形態において、ブラックトナーはカーボンブラックを含有し、マゼンタトナーはキナクリドン系の染顔料及びモノアゾ系の染顔料のうちの少なくとも1つを含有することが好ましい。 In this embodiment, the black toner preferably contains carbon black, and the magenta toner preferably contains at least one of a quinacridone dye or pigment.
 着色剤は、トナー100質量部に対して、3質量部以上20質量部以下となるように用いることが好ましい。 The colorant is preferably used in an amount of 3 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the toner.
 帯電制御剤としては公知のものを任意に用いることができる。帯電制御剤の具体的な例としては、正帯電性用としてニグロシン染料、アミノ基含有ビニル系コポリマー、四級アンモニウム塩化合物、ポリアミン樹脂等があり、負帯電性用としてクロム、亜鉛、鉄、コバルト、アルミニウム等の金属を含有する含金属アゾ染料、サリチル酸若しくはアルキルサリチル酸の前記した金属との塩、金属錯体等がある。
 帯電制御剤の量は、トナー100質量部に対して、0.1~25質量部が好ましく、1~15質量部がより好ましい。
 帯電制御剤はトナー母粒子内部に混合してもよく、またトナー母粒子表面に付着させた形で用いてもよい。
Any known charge control agent can be used. Specific examples of charge control agents include nigrosine dyes, amino group-containing vinyl copolymers, quaternary ammonium salt compounds, polyamine resins and the like for positive chargeability, and chromium, zinc, iron and cobalt for negative chargeability. And metal-containing azo dyes containing metals such as aluminum, salts of salicylic acid or alkylsalicylic acid with the aforementioned metals, metal complexes, and the like.
The amount of the charge control agent is preferably 0.1 to 25 parts by mass, more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the toner.
The charge control agent may be mixed inside the toner base particles, or may be used in a form adhered to the surface of the toner base particles.
 2.4.2.高耐熱樹脂微粒子の成分
 トナー母粒子は、前記コアと、その周囲に存在する高耐熱樹脂微粒子とからなることが好ましい。
 その他必要に応じて、コア及び/又は高耐熱樹脂微粒子には、ワックス、帯電制御剤等を含有していてもよい。コア及び/又は高耐熱樹脂微粒子は、ワックスを含有することが好ましい。
 高耐熱樹脂微粒子の成分である「高耐熱樹脂微粒子成分」の種類としては、一般にトナーを製造する際に結着樹脂として用いられる前記樹脂が挙げられる。樹脂の種類は特に限定されないが、例えば、ポリスチレン系樹脂、ポリ(メタ)アクリル系樹脂、ポリオレフィン系樹脂、エポキシ系樹脂、ポリエステル系樹脂等の熱可塑性樹脂、これらの樹脂の混合物等が挙げられる。詳細な樹脂の選び方は後述する。
2.4.2. Components of high heat resistant resin fine particles The toner base particles are preferably composed of the core and high heat resistant resin fine particles present around the core.
In addition, if necessary, the core and / or the high heat-resistant resin fine particles may contain a wax, a charge control agent and the like. The core and / or the high heat resistant resin fine particles preferably contain a wax.
Examples of the type of “high heat resistant resin fine particle component” that is a component of the high heat resistant resin fine particles include the above-mentioned resins that are generally used as a binder resin when a toner is produced. Although the kind of resin is not specifically limited, For example, thermoplastic resins, such as a polystyrene-type resin, a poly (meth) acrylic-type resin, a polyolefin-type resin, an epoxy-type resin, a polyester-type resin, the mixture of these resins, etc. are mentioned. Detailed resin selection will be described later.
 2.5.トナーの形態
 本発明のトナーの体積平均粒径は、下限は、3μm以上が好ましく、5μm以上がより好ましい。上限は、8μm以下が好ましく、6μm以下がより好ましい。
 また、形状は、フロー式粒子像分析装置FPIA-3000を用いて測定した平均円形度が、好ましくは0.92以上、より好ましくは0.95以上、更に好ましくは0.97以上であり、好ましくは0.99以下である。
 平均円形度が大きいと、トナー母粒子への外添剤の付着不良による帯電悪化から画像濃度の低下を引き起こし難く、小さいと、形状に起因するクリーニング不良が起こり難い。
2.5. Toner Form The lower limit of the volume average particle diameter of the toner of the present invention is preferably 3 μm or more, and more preferably 5 μm or more. The upper limit is preferably 8 μm or less, and more preferably 6 μm or less.
Further, the shape is such that the average circularity measured using a flow particle image analyzer FPIA-3000 is preferably 0.92 or more, more preferably 0.95 or more, still more preferably 0.97 or more, Is 0.99 or less.
When the average circularity is large, it is difficult to cause a decrease in image density due to deterioration of charging due to poor adhesion of the external additive to the toner base particles.
 3.静電荷像現像用トナーの作製
 本発明のトナーは、大きな製造法分類においては、公知の何れの分類の方法で製造してもよく、特に限定されない。
3. Production of Toner for Developing Electrostatic Image The toner of the present invention may be produced by any known method in a large production method classification, and is not particularly limited.
 3.1.トナー母粒子の作製方法
 3.1.1.トナー母粒子より小さい粒子を凝集してトナー母粒子を作製する方法
 各原料をトナー母粒子サイズより小さい粒子として用意し、これらを混合・凝集することでトナー母粒子を得る方法を用いることができる。
3.1. Preparation method of toner mother particles 3.1.1. Method of aggregating particles smaller than toner base particles to produce toner base particles A method of preparing toner base particles by preparing each raw material as particles smaller than the toner base particle size, and mixing and aggregating them can be used. .
 3.1.1.1.乳化重合
 結着樹脂をトナー母粒子サイズより小さい「重合体一次粒子」として調製し、該重合体一次粒子の分散液を得る方法を以下に述べる。
 また、高耐熱樹脂微粒子の作製にも、これと同様の方法を用いることができる。
 スチレン系又は(メタ)アクリル系単量体を構成要素とする重合体一次粒子は、該単量体組成物と、必要に応じ連鎖移動剤を、乳化剤を用いて乳化重合することによって得られる。乳化剤としては公知のものが使用できるが、カチオン性界面活性剤、アニオン性界面活性剤、ノニオン性界面活性剤の中から選ばれる1種又は2種以上の乳化剤を併用して用いることができる。
3.1.1.1. Emulsion polymerization A method of preparing a binder resin as “polymer primary particles” smaller than the toner base particle size and obtaining a dispersion of the polymer primary particles is described below.
Also, the same method can be used for the production of the high heat-resistant resin fine particles.
Polymer primary particles having a styrene or (meth) acrylic monomer as a constituent element can be obtained by emulsion polymerization of the monomer composition and, if necessary, a chain transfer agent using an emulsifier. Known emulsifiers can be used, but one or more emulsifiers selected from cationic surfactants, anionic surfactants, and nonionic surfactants can be used in combination.
 カチオン性界面活性剤としては、例えば、ドデシルアンモニウムクロライド、ドデシルアンモニウムブロマイド、ドデシルトリメチルアンモニウムブロマイド、ドデシルピリジニウムクロライド、ドデシルピリジニウムブロマイド、ヘキサデシルトリメチルアンモニウムブロマイド等が挙げられる。
 アニオン性界面活性剤としては、例えば、ステアリン酸ナトリウム、ドデカン酸ナトリウム、等の脂肪酸石けん、硫酸ドデシルナトリウム、ドデシルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウム等が挙げられる。
Examples of the cationic surfactant include dodecyl ammonium chloride, dodecyl ammonium bromide, dodecyl trimethyl ammonium bromide, dodecyl pyridinium chloride, dodecyl pyridinium bromide, hexadecyl trimethyl ammonium bromide and the like.
Examples of the anionic surfactant include fatty acid soaps such as sodium stearate and sodium dodecanoate, sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, and sodium lauryl sulfate.
 ノニオン性界面活性剤としては、例えば、ポリオキシエチレンドデシルエーテル、ポリオキシエチレンヘキサデシルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンソルビタンモノオレアートエーテル、モノデカノイルショ糖等が挙げられる。 Nonionic surfactants include, for example, polyoxyethylene dodecyl ether, polyoxyethylene hexadecyl ether, polyoxyethylene nonyl phenyl ether, polyoxyethylene lauryl ether, polyoxyethylene sorbitan monooleate ether, monodecanoyl sucrose Etc.
 乳化剤の使用量は、重合性単量体100質量部に対して0.1質量部以上、10質量部以下で用いられることが好ましい。乳化剤の使用量を多くすると、得られる重合体一次粒子の粒径が小さくなり、使用量を少なくすると、得られる重合体一次粒子の粒径が大きくなる。また、これらの乳化剤に、例えば、部分又は完全ケン化ポリビニルアルコール等のポリビニルアルコール類、ヒドロキシエチルセルロース等のセルロース誘導体類等の1種又は2種以上を保護コロイドとして併用することができる。 The amount of the emulsifier used is preferably 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the polymerizable monomer. When the amount of the emulsifier used is increased, the particle size of the obtained polymer primary particles is reduced, and when the amount used is reduced, the particle size of the obtained polymer primary particles is increased. Moreover, 1 type, or 2 or more types, such as partially or fully saponified polyvinyl alcohol, such as polyvinyl alcohol, cellulose derivatives, such as a hydroxyethyl cellulose, can be used together with these emulsifiers as a protective colloid.
 また、必要に応じて公知の重合開始剤を1種又は2種以上組み合わせて使用することができる。例えば、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の過硫酸塩、及び、これら過硫酸塩を一成分として酸性亜硫酸ナトリウム等の還元剤を組み合わせたレドックス開始剤、過酸化水素、4,4’-アゾビスシアノ吉草酸、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等の水溶性重合開始剤、及び、これら水溶性重合開始剤を一成分として第一鉄塩等の還元剤と組み合わせたレドックス開始剤、過酸化ベンゾイル、2,2’-アゾビス-イソブチロニトリル等が用いられる。これら重合開始剤は重合性単量体添加前、添加と同時、添加後の何れの時期に重合系に添加してもよく、必要に応じてこれらの添加方法を組み合わせてもよい。 Further, a known polymerization initiator can be used alone or in combination of two or more as required. For example, persulfates such as potassium persulfate, sodium persulfate, and ammonium persulfate, and redox initiators combining these persulfates as a component with a reducing agent such as acidic sodium sulfite, hydrogen peroxide, 4, 4 ′ -Water-soluble polymerization initiators such as azobiscyanovaleric acid, t-butyl hydroperoxide, cumene hydroperoxide, etc., and redox initiators combining these water-soluble polymerization initiators with reducing agents such as ferrous salts Benzoyl peroxide, 2,2′-azobis-isobutyronitrile and the like are used. These polymerization initiators may be added to the polymerization system before, simultaneously with, or after the addition of the polymerizable monomer, and these addition methods may be combined as necessary.
 トナー中に好適な分散粒径でワックスを分散させるために、乳化重合時にワックスをシードとして添加する、いわゆるシード重合とすることが好ましい。シードとして添加することにより、ワックスがトナー中に微細かつ均一に分散するため、トナーの帯電性や耐熱性の悪化を抑制することができる。
 また、ワックスをステアリルアクリレート等の長鎖重合性単量体と予め水系分散媒体中で分散し得られるワックス・長鎖重合性単量体分散液を調製し、ワックス・長鎖重合性単量体の存在下において重合性単量体を重合することもできる。
 着色剤をシードとして乳化重合することも可能だが、着色剤存在下で重合性単量体を重合すると、着色剤中の金属がラジカル重合に影響し、樹脂の分子量やレオロジー制御が困難となり、所望の物性が得られないおそれがあるため、着色剤を乳化重合時には添加せず、次工程で着色剤分散液を添加する方法が好ましい。
In order to disperse the wax with a suitable dispersed particle size in the toner, it is preferable to use so-called seed polymerization in which the wax is added as a seed during emulsion polymerization. By adding as a seed, the wax is finely and uniformly dispersed in the toner, so that deterioration of the chargeability and heat resistance of the toner can be suppressed.
Also, a wax / long-chain polymerizable monomer dispersion prepared by previously dispersing a wax in a water-based dispersion medium with a long-chain polymerizable monomer such as stearyl acrylate is prepared. The polymerizable monomer can also be polymerized in the presence of.
Emulsion polymerization is possible using a colorant as a seed, but if a polymerizable monomer is polymerized in the presence of the colorant, the metal in the colorant affects radical polymerization, making it difficult to control the molecular weight and rheology of the resin. Therefore, it is preferable to add the colorant dispersion in the next step without adding the colorant during the emulsion polymerization.
 3.1.1.2.樹脂を乳化する方法
 塊状重合、溶液重合、懸濁重合、乳化重合等の方法で樹脂を得た後、該樹脂を水系媒体と混合し、樹脂の融点かガラス転移温度の何れかの高い温度以上に加熱して樹脂の粘性を下げて、剪断力を与えて乳化することで、重合体一次粒子が得られる。
 剪断力を与えるための乳化機としては、例えば、ホモジナイザー、ホモミキサー、加圧ニーダー、エクストルーダー、メディア分散機等が挙げられる。乳化時の樹脂の粘度が高く所望の粒径まで小さくならない場合は、大気圧以上に加圧可能な乳化装置を用いて温度を上げ、樹脂粘度を下げた状態で乳化することで、所望の粒径の重合体一次粒子を得ることができる。
3.1.1.2. Method of emulsifying resin After obtaining the resin by a method such as bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization, etc., the resin is mixed with an aqueous medium, and the temperature is higher than either the melting point of the resin or the glass transition temperature. The polymer primary particles are obtained by heating to a low viscosity and emulsifying by applying shearing force.
Examples of the emulsifier for applying a shearing force include a homogenizer, a homomixer, a pressure kneader, an extruder, and a media disperser. If the viscosity of the resin during emulsification is high and does not decrease to the desired particle size, increase the temperature using an emulsifier capable of pressurization to atmospheric pressure or higher, and emulsify with the resin viscosity lowered to obtain the desired particle size. Polymer primary particles having a diameter can be obtained.
 別の方法として、あらかじめ樹脂に有機溶剤を混合して樹脂の粘度を下げる方法を用いてもよい。使用される有機溶剤としては、樹脂を溶解させるものであれば特に限定はないが、テトラヒドロフラン(THF)、酢酸メチル、酢酸エチル、メチルエチルケトン等のケトン系溶剤、ベンゼン、トルエン、キシレン等のベンゼン系溶剤等を用いることができる。更に、水系媒体との親和性向上、及び、粒度分布制御の目的で、エタノールやイソプロピルアルコール等のアルコール系溶剤を水若しくは樹脂に添加してもよい。有機溶剤を添加した場合は、乳化終了後、乳化液から有機溶剤を除去する必要がある。有機溶剤を除去する方法としては、常温若しくは加熱下で減圧しながら有機溶剤を揮発させる方法等がある。また、粒度分布制御の目的で、塩化ナトリウム、塩化カリウム等の塩や、アンモニア等を添加してもよい。 As another method, a method of reducing the viscosity of the resin by mixing an organic solvent in advance with the resin may be used. The organic solvent to be used is not particularly limited as long as it dissolves the resin, but a ketone solvent such as tetrahydrofuran (THF), methyl acetate, ethyl acetate, and methyl ethyl ketone, and a benzene solvent such as benzene, toluene, and xylene. Etc. can be used. Furthermore, an alcohol solvent such as ethanol or isopropyl alcohol may be added to water or resin for the purpose of improving the affinity with an aqueous medium and controlling the particle size distribution. When an organic solvent is added, it is necessary to remove the organic solvent from the emulsion after the emulsification is completed. As a method of removing the organic solvent, there is a method of volatilizing the organic solvent while reducing the pressure at room temperature or under heating. Further, for the purpose of controlling the particle size distribution, a salt such as sodium chloride or potassium chloride, ammonia or the like may be added.
 粒度分布制御の目的で、乳化剤や分散剤を添加してもよい。例えば、ポリビニルアルコール、メチルセルロース、カルボキシメチルセルロース、ポリアクリル酸ナトリウム等の水溶性高分子;前記の乳化剤;リン酸三カルシウム、水酸化アルミニウム、硫酸カルシウム、炭酸カルシウム、炭酸バリウム等の無機化合物等が挙げられる。使用量としては、樹脂100質量部に対して、0.01~20質量部が好ましい。 Emulsifiers and dispersants may be added for the purpose of controlling the particle size distribution. Examples include water-soluble polymers such as polyvinyl alcohol, methyl cellulose, carboxymethyl cellulose, and sodium polyacrylate; the emulsifiers described above; inorganic compounds such as tricalcium phosphate, aluminum hydroxide, calcium sulfate, calcium carbonate, and barium carbonate. . The amount used is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the resin.
 酸性基又は塩基性基を含有する樹脂を用いると、乳化剤や分散剤の添加量を減らすことができるが、樹脂の吸湿性が高くなり、帯電性が悪化する場合がある。
 また、転相乳化法を用いてもよい。転相乳化法は、樹脂に、必要に応じて有機溶剤や中和剤や分散安定剤を添加して、撹拌下にて、水系媒体を滴下して、乳化粒子を得た後、樹脂分散液中の有機溶剤を除去して、乳化液を得る方法である。有機溶剤は、前述の有機溶剤と同様のものを用いることができる。中和剤としては、硝酸、塩酸、水酸化ナトリウム、アンモニア等一般の酸、アルカリを用いることができる。
When a resin containing an acidic group or a basic group is used, the amount of emulsifier or dispersant added can be reduced, but the hygroscopicity of the resin increases and the chargeability may deteriorate.
Further, a phase inversion emulsification method may be used. In the phase inversion emulsification method, an organic solvent, a neutralizing agent, and a dispersion stabilizer are added to the resin as necessary, and an aqueous medium is added dropwise with stirring to obtain emulsified particles. In this method, an organic solvent is removed to obtain an emulsion. As the organic solvent, the same organic solvents as those described above can be used. As the neutralizing agent, general acids such as nitric acid, hydrochloric acid, sodium hydroxide and ammonia, and alkalis can be used.
 3.1.1.3.凝集・熟成によるトナー母粒子の形成
 上記乳化重合及び樹脂の乳化の何れの調製方法においても、得られる重合体一次粒子の体積平均粒径は、通常0.02μm以上であり、好ましくは0.05μm以上であり、特に好ましくは0.1μm以上であり、通常3μm以下であり、好ましくは2μm以下であり、特に好ましくは1μm以下である。
 重合体一次粒子の体積平均粒径が前記下限値以上であると、凝集工程において凝集速度の制御が容易になる。一方で、前記上限値以下であると、凝集して得られるトナー母粒子の粒径が大きくなり難く、目的とする粒径のトナー母粒子を得ることが容易になる。
3.1.1.3. Formation of toner mother particles by aggregation and ripening In any of the above preparation methods for emulsion polymerization and resin emulsification, the volume average particle diameter of the obtained polymer primary particles is usually 0.02 μm or more, preferably 0.05 μm. Above, particularly preferably 0.1 μm or more, usually 3 μm or less, preferably 2 μm or less, particularly preferably 1 μm or less.
When the volume average particle diameter of the polymer primary particles is equal to or more than the lower limit value, it is easy to control the aggregation speed in the aggregation process. On the other hand, if it is not more than the above upper limit value, the particle size of the toner base particles obtained by agglomeration is hardly increased, and it becomes easy to obtain the toner base particles having a target particle size.
 凝集工程において、前記の、重合体一次粒子、着色剤粒子、必要に応じて配合する帯電制御剤、ワックス等は、同時に又は逐次に混合する。予めそれぞれの成分の分散液、即ち、重合体一次粒子分散液、着色剤粒子分散液、必要に応じ帯電制御剤分散液、ワックス微粒子分散液を作製しておき、これらを混合して混合分散液を得ることが、組成の均一性及び粒径の均一性の観点で好ましい。 In the aggregation step, the polymer primary particles, the colorant particles, the charge control agent to be blended as necessary, and the wax are mixed simultaneously or sequentially. First, a dispersion of each component, that is, a polymer primary particle dispersion, a colorant particle dispersion, a charge control agent dispersion and a wax fine particle dispersion, if necessary, are mixed and mixed to obtain a dispersion mixture. It is preferable from the viewpoint of the uniformity of the composition and the uniformity of the particle diameter.
 着色剤は、乳化剤の存在下で水中に分散した状態で用いるのが好ましく、着色剤粒子の体積平均粒径は、好ましくは0.01μm以上、特に好ましくは0.05μm以上であり、好ましくは3μm以下、特に好ましくは1μm以下である。
 凝集工程において、凝集は、通常、撹拌装置を備えた槽内で行われるが、加熱する方法、電解質を加える方法と、これらを組み合わせる方法とがある。重合体一次粒子を撹拌下に凝集して目的とする大きさの粒子凝集体を得ようとする場合、粒子同士の凝集力と撹拌による剪断力とのバランスから粒子凝集体の粒径が制御されるが、加熱するか又は電解質を加えることによって凝集力を大きくすることができる。
The colorant is preferably used in the state of being dispersed in water in the presence of an emulsifier, and the volume average particle diameter of the colorant particles is preferably 0.01 μm or more, particularly preferably 0.05 μm or more, preferably 3 μm. Hereinafter, it is particularly preferably 1 μm or less.
In the aggregating step, agglomeration is usually performed in a tank equipped with a stirrer, and there are a heating method, a method of adding an electrolyte, and a method of combining them. When polymer primary particles are aggregated with stirring to obtain particle aggregates of the desired size, the particle size of the particle aggregate is controlled from the balance between the cohesive force between the particles and the shearing force by stirring. However, the cohesive force can be increased by heating or adding an electrolyte.
 電解質を添加して凝集を行う場合の電解質としては、酸、アルカリ、塩の何れでもよく、有機系、無機系の何れでもよいが、具体的には、酸として、塩酸、硝酸、硫酸、クエン酸等;アルカリとして、水酸化ナトリウム、水酸化カリウム、アンモニア水等;塩として、NaCl、KCl、LiCl、NaSO、KSO、LiSO、MgCl、CaCl、MgSO、CaSO、ZnSO、Al(SO、Fe(SO、CHCOONa、CSONa等が挙げられる。
 これらのうち、2価以上の多価の金属カチオンを有する無機塩が好ましい。
In the case of performing aggregation by adding an electrolyte, the electrolyte may be any of acid, alkali, and salt, and may be either organic or inorganic. Specifically, the acid may be hydrochloric acid, nitric acid, sulfuric acid, citric acid, or the like. Acid, etc .; alkali, sodium hydroxide, potassium hydroxide, ammonia water, etc .; salt, NaCl, KCl, LiCl, Na 2 SO 4 , K 2 SO 4 , Li 2 SO 4 , MgCl 2 , CaCl 2 , MgSO 4 , CaSO 4 , ZnSO 4 , Al 2 (SO 4 ) 3 , Fe 2 (SO 4 ) 3 , CH 3 COONa, C 6 H 5 SO 3 Na, and the like.
Of these, inorganic salts having a divalent or higher polyvalent metal cation are preferred.
 電解質の添加量は、電解質の種類、目的とする粒径等によって異なるが、混合分散液の固形成分100質量部に対して、0.02質量部以上が好ましく、0.05質量部以上が更に好ましい。また、25質量部以下が好ましく、更には15質量部以下、特に10質量部以下が好ましい。 The amount of electrolyte added varies depending on the type of electrolyte, the target particle size, etc., but is preferably 0.02 parts by mass or more, more preferably 0.05 parts by mass or more with respect to 100 parts by mass of the solid component of the mixed dispersion. preferable. Further, it is preferably 25 parts by mass or less, more preferably 15 parts by mass or less, and particularly preferably 10 parts by mass or less.
 電解質の添加量が多いと、凝集の進行が速くなり、凝集後も1μm以下の微粉が残らず、得られた粒子凝集体の平均粒径が目的の粒径に達し易い。一方、添加量が少ないと、急速な凝集が起こり難く、粒径の制御が容易となり、得られた凝集粒子中に粗粉や不定形のものが含まれ難い。
 電解質を加えて凝集を行う場合の凝集温度は、好ましくは20℃以上、特に好ましくは30℃以上であり、好ましくは70℃以下、特に好ましくは60℃以下である。
When the amount of the electrolyte added is large, the progress of aggregation is accelerated, fine particles of 1 μm or less do not remain even after aggregation, and the average particle size of the obtained particle aggregate easily reaches the target particle size. On the other hand, when the addition amount is small, rapid agglomeration hardly occurs and the particle size can be easily controlled, and the obtained agglomerated particles do not easily contain coarse powder or irregular shapes.
The aggregation temperature in the case of performing aggregation by adding an electrolyte is preferably 20 ° C. or higher, particularly preferably 30 ° C. or higher, preferably 70 ° C. or lower, particularly preferably 60 ° C. or lower.
 凝集に要する時間は装置形状や処理スケールにより最適化されるが、トナー母粒子の粒径が目的とする粒径に到達するためには、前記した所定の温度で、少なくとも30分以上保持することが好ましい。所定の温度へ到達するまでの昇温は、一定速度で昇温してもよいし、段階的に昇温することもできる。
 高耐熱樹脂微粒子を添加するタイミングは、どのタイミングであってもよく、コア成分の原料(例えば、重合体一次粒子、顔料、ワックス等)と同時に仕込んでもよいし、コア成分の原料の一部若しくは全てを凝集させた後に添加してもよい。
The time required for agglomeration is optimized depending on the shape of the apparatus and the processing scale. In order to reach the target particle size, the toner base particles must be held at the predetermined temperature for at least 30 minutes. Is preferred. The temperature rise until reaching the predetermined temperature may be raised at a constant rate, or may be raised stepwise.
The timing of adding the high heat-resistant resin fine particles may be any timing, may be charged simultaneously with the raw material of the core component (for example, polymer primary particles, pigment, wax, etc.), or a part of the raw material of the core component or You may add, after making all aggregate.
 コア成分と高耐熱樹脂微粒子を同時に仕込む場合は、熱力学的にコア成分と媒体(例えば水)の中間の極性になる様に高耐熱性微粒子の極性を設計すれば、自発的にコア成分の周りに高耐熱樹脂微粒子が付着した状態になる。
 水中及び/又は有機溶剤の様な湿式媒体中で、高耐熱樹脂微粒子を付着させる場合は、コア成分の原料の組成が決まった(トナー母粒子より小さい粒子を凝集してトナー母粒子を作製する場合には、コア成分の一部若しくは全てを凝集させた)後に、高耐熱樹脂微粒子を添加することが、よりコア成分の表面に高耐熱性微粒子を配置させられる観点から好ましい。
When the core component and the high heat-resistant resin fine particles are charged at the same time, if the polarity of the high heat-resistant fine particles is designed to be thermodynamically intermediate between the core component and the medium (for example, water), High heat-resistant resin fine particles are attached around.
When the high heat-resistant resin fine particles are adhered in a wet medium such as water and / or an organic solvent, the composition of the raw material of the core component is determined (the toner base particles are produced by aggregating particles smaller than the toner base particles) In some cases, it is preferable to add the high heat-resistant resin fine particles after agglomerating a part or all of the core component) from the viewpoint of arranging the high heat-resistant fine particles on the surface of the core component.
 高耐熱樹脂微粒子の組成や調製方法としては、前述のものが挙げられる。添加は1回であってもよいし、複数回であってもよい。1回目の高耐熱樹脂微粒子と、次回以降の高耐熱樹脂微粒子とは、異なっていてもよく、いかなる組み合わせであってもよい。
 凝集工程で得られた粒子凝集体の安定性を増すために、凝集工程の後の熟成工程において凝集粒子内の融着を行うことが好ましい。熟成工程の温度は、好ましくは重合体一次粒子のTg以上、より好ましくは重合体一次粒子のTgより5℃高い温度以上であり、また、好ましくは高耐熱樹脂微粒子のTg以下、より好ましくは高耐熱樹脂微粒子のTgより5℃低い温度以下である。また、熟成工程に要する時間は、目的とするトナー母粒子の形状により異なるが、重合体一次粒子のTg以上に到達した後、好ましくは0.1~10時間、特に好ましくは0.5~5時間保持することが望ましい。
Examples of the composition and preparation method of the high heat-resistant resin fine particles include those described above. The addition may be performed once or a plurality of times. The first heat-resistant resin fine particles and the high heat-resistant resin fine particles from the next time may be different or any combination.
In order to increase the stability of the particle aggregate obtained in the aggregation step, it is preferable to perform fusion in the aggregated particles in the aging step after the aggregation step. The temperature of the ripening step is preferably not less than Tg of the polymer primary particles, more preferably not less than 5 ° C higher than Tg of the polymer primary particles, and preferably not more than Tg of the high heat-resistant resin fine particles, more preferably high The temperature is 5 ° C. or lower than the Tg of the heat-resistant resin fine particles. The time required for the ripening step varies depending on the shape of the intended toner base particles, but preferably reaches 0.1 to 10 hours, particularly preferably 0.5 to 5 after reaching the Tg or more of the polymer primary particles. It is desirable to keep the time.
 凝集工程以降、好ましくは熟成工程以前又は熟成工程中の段階で、界面活性剤を添加するか、pHを調整するか、両者を併用することが好ましい。ここで用いられる界面活性剤としては、重合体一次粒子を製造する際に用いることのできる乳化剤から1種以上を選択して用いることができるが、特に重合体一次粒子を製造した際に用いた乳化剤と同じものを用いることが好ましい。 It is preferable to add a surfactant, adjust pH, or use both in combination after the agglomeration step, preferably before the aging step or during the aging step. As the surfactant used here, one or more emulsifiers that can be used in producing the polymer primary particles can be selected and used, and particularly used when the polymer primary particles are produced. It is preferable to use the same emulsifier.
 界面活性剤を添加する場合の添加量は限定されないが、混合分散液の固形成分100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.3質量部以上、また、好ましくは20質量部以下、より好ましくは15質量部以下、更に好ましくは10質量部以下である。
 凝集工程以降、熟成工程の完了前の間に界面活性剤を添加するか、pHを調整することにより、凝集工程で得られた粒子凝集体同士の凝集等を抑制することができ、熟成工程後の粗大粒子生成を抑制できる場合がある。
 熟成工程の時間を制御することにより、重合体一次粒子が凝集した形状を保った葡萄型、融着が進んだジャガイモ型、更に融着が進んだ球状等、目的に応じて様々な形状のトナー母粒子を製造することができる。
The addition amount in the case of adding the surfactant is not limited, but is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, and preferably with respect to 100 parts by mass of the solid component of the mixed dispersion. Is 20 parts by mass or less, more preferably 15 parts by mass or less, and still more preferably 10 parts by mass or less.
After the aggregation process, before the completion of the aging process, by adding a surfactant or adjusting the pH, aggregation of the particle aggregates obtained in the aggregation process can be suppressed. The generation of coarse particles may be suppressed.
By controlling the time of the aging process, various types of toner can be used depending on the purpose, such as a cocoon shape that maintains the shape of the aggregated polymer primary particles, a potato type that has advanced fusion, and a spherical shape that has undergone further fusion. Mother particles can be produced.
 3.1.2.微粒化によりトナー母粒子のサイズの粒子を作製する方法
 各原料を混合した後、該混合物をトナー母粒子のサイズに微粒化し、微粒化する前後に高耐熱樹脂微粒子を添加することで、トナー母粒子を得る方法を用いることができる。
3.1.2. Method for producing particles of toner mother particle size by atomization After mixing the respective raw materials, the mixture is atomized to the size of toner mother particles, and high heat resistant resin fine particles are added before and after the atomization, thereby adding toner mother particles. A method of obtaining particles can be used.
 3.1.2.1.懸濁重合でトナー母粒子を作製する方法
 上述と同様のスチレン系又は(メタ)アクリル系単量体中に、着色剤、重合開始剤、必要に応じて、ワックス、極性樹脂、帯電制御剤、架橋剤等の添加剤を加え、均一に溶解又は分散させた単量体組成物を調製する。
 この単量体組成物を、必要に応じ懸濁安定剤等を含有する水系媒体中に分散させる。単量体組成物の液滴が所望のトナー母粒子のサイズを有するように撹拌速度・時間を調整し、造粒する。その後、分散安定剤の作用により、粒子状態が維持され、かつ粒子の沈降が防止される程度の撹拌を行い、重合を行うことによりトナー母粒子を得ることができる。
3.1.2.1. Method for preparing toner mother particles by suspension polymerization In the same styrene-based or (meth) acrylic monomer as described above, a colorant, a polymerization initiator, and, if necessary, a wax, a polar resin, a charge control agent, An additive such as a cross-linking agent is added to prepare a monomer composition that is uniformly dissolved or dispersed.
This monomer composition is dispersed in an aqueous medium containing a suspension stabilizer or the like as necessary. Granulation is performed by adjusting the stirring speed and time so that the droplets of the monomer composition have the desired toner base particle size. Thereafter, by the action of the dispersion stabilizer, the toner base particles can be obtained by performing polymerization by stirring to such an extent that the particle state is maintained and the sedimentation of the particles is prevented.
 懸濁安定剤の具体的な例としては、リン酸カルシウム、リン酸マグネシウム、水酸化カルシウム、水酸化マグネシウム等が挙げられる。これらは、1種又は2種以上を組み合わせて用いてもよく、重合性単量体100質量部に対して、1質量部以上、10質量部以下の量が好ましい。懸濁安定剤は、重合性単量体添加前、添加と同時、添加後の何れの時期に重合系に添加してもよく、必要に応じてこれらの添加方法を組み合わせてもよい。 Specific examples of the suspension stabilizer include calcium phosphate, magnesium phosphate, calcium hydroxide, magnesium hydroxide and the like. These may be used alone or in combination of two or more, and an amount of 1 part by mass or more and 10 parts by mass or less is preferable with respect to 100 parts by mass of the polymerizable monomer. The suspension stabilizer may be added to the polymerization system before, simultaneously with, or after the addition of the polymerizable monomer, and these addition methods may be combined as necessary.
 単量体組成物にポリエステル系樹脂、カルボキシル基含有スチレン系樹脂などの極性樹脂が含まれている場合、水系媒体中に単量体組成物を分散させて液滴を形成したのち、極性樹脂が液滴表面近傍に移行し易い。この状態で重合を行うことによって、内部と表面で組成に差のあるトナー母粒子が得られる。例えば、単量体の重合後のTgよりもTgの高い極性樹脂を選ぶと、トナー母粒子の内部はTgが低く、表面にはTgの高い樹脂が高い比率で存在している構造が得られる。本発明ではコア成分に高耐熱樹脂微粒子を被覆することで得られるトナーの耐ブロッキング性を高めているのだが、この方法を併用すれば、良好な耐ブロッキング性が更に得られ易くなる。 When the monomer composition contains a polar resin such as polyester resin or carboxyl group-containing styrene resin, the monomer composition is dispersed in an aqueous medium to form droplets. Easy to move to the vicinity of the droplet surface. By carrying out the polymerization in this state, toner mother particles having a difference in composition between the inside and the surface can be obtained. For example, if a polar resin having a Tg higher than the Tg after polymerization of the monomer is selected, a structure in which the Tg inside the toner base particles is low and a high Tg resin exists on the surface is obtained. . In the present invention, the blocking resistance of the toner obtained by coating the core component with the high heat-resistant resin fine particles is enhanced. However, if this method is used in combination, it becomes easier to obtain good blocking resistance.
 高耐熱樹脂微粒子を添加するタイミングは、どのタイミングであってもよく、例えば、単量体組成物に溶解させておいて、その後、水系媒体中に分散させて、高耐熱樹脂微粒子が、熱力学的にコア成分と水の界面に来るように、該高耐熱樹脂微粒子の極性を設計することもできる。
 また、コア成分の単量体組成物を分散させた後に、高耐熱樹脂微粒子を添加してもよいし、コア成分の単量体組成物を分散させて、コア成分の重合性単量体の一部又はほぼ全てを重合してから、高耐熱樹脂微粒子を添加してもよい。コア成分の表面に高耐熱性微粒子を配置させる観点からは、重合性単量体の一部を重合してから高耐熱樹脂微粒子を添加することが好ましく、実質的に重合性単量体のほぼ全てを重合させてから、高耐熱樹脂微粒子を添加することがより好ましい。
The timing for adding the high heat-resistant resin fine particles may be any timing. For example, the high heat-resistant resin fine particles are dissolved in the monomer composition and then dispersed in an aqueous medium so that the high heat-resistant resin fine particles are thermodynamic. In particular, the polarity of the high heat-resistant resin fine particles can be designed so as to come to the interface between the core component and water.
Further, after dispersing the monomer composition of the core component, high heat-resistant resin fine particles may be added, or the monomer composition of the core component may be dispersed and the polymerizable monomer of the core component may be dispersed. The high heat-resistant resin fine particles may be added after polymerizing part or almost all. From the viewpoint of disposing the high heat-resistant fine particles on the surface of the core component, it is preferable to polymerize a part of the polymerizable monomer and then add the high heat-resistant resin fine particles. It is more preferable to add the high heat-resistant resin fine particles after polymerizing all.
 高耐熱樹脂微粒子の組成や調製方法としては、前述のものが挙げられる。添加は1回であってもよいし、複数回であってもよい。1回目の高耐熱樹脂微粒子と、次回以降の高耐熱樹脂微粒子は、異なっていてもよく、いかなる組み合わせであってもよい。その他、反応系には、pH調整剤、重合度調節剤、消泡剤等を適宜添加することができる。 Examples of the composition and preparation method of the high heat resistant resin fine particles include those described above. The addition may be performed once or a plurality of times. The first high heat-resistant resin fine particles and the next high heat-resistant resin fine particles may be different or any combination. In addition, a pH adjuster, a polymerization degree adjuster, an antifoaming agent, and the like can be appropriately added to the reaction system.
 3.1.2.2.溶解懸濁でトナー母粒子を作製する方法
 有機溶媒中に、少なくとも結着樹脂と着色剤、必要に応じワックスや帯電制御剤等が溶解又は分散している油性分散液を作り、これを水系媒体中に分散させる。その後、分散液から有機溶剤を除去し、トナー母粒子を得ることができる。高耐熱性微粒子は、油性分散液に予め添加しておいてもよいし、水系媒体中に分散させてから添加してもよいし、有機溶剤を除去してから添加してもよい。
3.1.2.2. Method for producing toner mother particles by dissolution suspension An oil-based dispersion in which at least a binder resin and a colorant and, if necessary, a wax and a charge control agent are dissolved or dispersed in an organic solvent is prepared, and this is used as an aqueous medium. Disperse in. Thereafter, the organic solvent is removed from the dispersion to obtain toner mother particles. The high heat-resistant fine particles may be added in advance to the oil-based dispersion, may be added after being dispersed in an aqueous medium, or may be added after removing the organic solvent.
 高耐熱樹脂微粒子の組成や調製方法としては、前述のものが挙げられる。高耐熱樹脂微粒子の添加は、1回であってもよいし、複数回であってもよい。1回目の高耐熱樹脂微粒子と、次回以降の高耐熱樹脂微粒子とは、異なっていてもよく、いかなる組み合わせであってもよい。
 水系媒体としては、水単独でもよいが、水と混和可能な溶剤を併用することもできる。必要に応じて、分散剤を用いることができる。分散剤を用いた方が、粒度分布がシャープになるとともに分散が安定するので好ましい。分散剤としては、上述の乳化重合に用いる乳化剤と同様のものが使用できる。また、水系媒体中で高分子系保護コロイドを形成する各種の親水性高分子物質を存在させることができる。
Examples of the composition and preparation method of the high heat-resistant resin fine particles include those described above. The addition of the high heat-resistant resin fine particles may be performed once or a plurality of times. The first heat-resistant resin fine particles and the high heat-resistant resin fine particles from the next time may be different or any combination.
As an aqueous medium, water alone may be used, but a solvent miscible with water may be used in combination. If necessary, a dispersant can be used. The use of a dispersant is preferable because the particle size distribution becomes sharp and the dispersion is stable. As the dispersant, the same emulsifiers as those used in the above emulsion polymerization can be used. In addition, various hydrophilic polymer substances that form a polymeric protective colloid in an aqueous medium can be present.
 また、高耐熱樹脂微粒子の粒径を制御するために、無機微粒子及び/又はポリマー微粒子を用いることができる。無機微粒子としては、水に不溶ないし難溶の従来公知の各種の無機化合物が用いられる。このようなものとしては、リン酸三カルシウム、炭酸カルシウム、酸化チタン、コロイダルシリカ、ヒドロキシアパタイト等が挙げられる。ここで、ポリマー微粒子を、前記の高耐熱樹脂微粒子とみなしてもよい。 In addition, in order to control the particle size of the high heat-resistant resin fine particles, inorganic fine particles and / or polymer fine particles can be used. As the inorganic fine particles, various conventionally known inorganic compounds that are insoluble or hardly soluble in water are used. Examples of such materials include tricalcium phosphate, calcium carbonate, titanium oxide, colloidal silica, and hydroxyapatite. Here, the polymer fine particles may be regarded as the high heat-resistant resin fine particles.
 油性分散液を水系媒体中に分散させる場合、分散装置として低速剪断式、高速剪断式、摩擦式、高圧ジェット式、超音波等の公知の分散機が適用できる。
 結着樹脂の代わりに反応性基をもつプレポリマーを用いて油性分散液を作製し、水系媒体中に分散させたのち反応性基を反応させて樹脂を伸長させてもよい。この方法は、プレポリマーが比較的低分子量なため、油性分散液の粘度が上がり難く、水系媒体中への分散が容易になる。
When the oil dispersion is dispersed in an aqueous medium, a known dispersing machine such as a low-speed shearing type, a high-speed shearing type, a friction type, a high-pressure jet type, or an ultrasonic wave can be applied as a dispersing device.
An oil-based dispersion liquid may be prepared using a prepolymer having a reactive group instead of the binder resin, and after dispersing in an aqueous medium, the reactive group may be reacted to extend the resin. In this method, since the prepolymer has a relatively low molecular weight, it is difficult to increase the viscosity of the oil-based dispersion, and the dispersion in an aqueous medium becomes easy.
 着色剤を油性分散液中に均一分散させ易くするために、予め着色剤を樹脂と複合化されたマスターバッチとして調製し、これを有機溶剤に分散してもよい。
 有機溶剤を除去する方法としては、常温若しくは加熱下で減圧しながら有機溶剤を揮発させる方法等がある。
 結着樹脂として、極性の高い樹脂と、極性の低い樹脂を併用すると、水系媒体中に単量体組成物を分散させて液滴を形成したのち、極性の高い樹脂は液滴表面近傍に、極性の低い樹脂は液滴中心付近に移行する。その後有機溶剤を除去することによって、内部と表面で組成に差のあるトナー母粒子が得られる。
In order to facilitate the uniform dispersion of the colorant in the oily dispersion, the colorant may be prepared in advance as a master batch combined with a resin, and this may be dispersed in an organic solvent.
As a method of removing the organic solvent, there is a method of volatilizing the organic solvent while reducing the pressure at room temperature or under heating.
When a highly polar resin and a low polarity resin are used in combination as the binder resin, after the monomer composition is dispersed in the aqueous medium to form droplets, the highly polar resin is in the vicinity of the droplet surface, The resin with low polarity moves to the vicinity of the droplet center. Thereafter, by removing the organic solvent, toner mother particles having a difference in composition between the inside and the surface can be obtained.
 水酸基、アミノ基、カルボキシル基などの活性水素基含有化合物と反応可能なプレポリマーを用いて油性分散液を作製する場合は、油性分散液を水系媒体中に分散させたのち、活性水素基含有化合物を添加し、該水系媒体中で液滴表面から両者を伸長反応又は架橋反応させることにより、液滴表面に優先的に伸長又は架橋樹脂が生成する。その後有機溶剤を除去することによって、内部と表面で組成に差のあるトナー母粒子が得られる。 When preparing an oily dispersion using a prepolymer capable of reacting with an active hydrogen group-containing compound such as a hydroxyl group, amino group, or carboxyl group, the active hydrogen group-containing compound is dispersed after dispersing the oily dispersion in an aqueous medium. And an extension reaction or a cross-linking reaction between the two from the surface of the droplet in the aqueous medium, whereby a stretched or cross-linked resin is preferentially generated on the surface of the droplet. Thereafter, by removing the organic solvent, toner mother particles having a difference in composition between the inside and the surface can be obtained.
 これらの方法で、得られる樹脂のTgを考慮して原料を選択することにより、トナー母粒子の内部よりも表面の方が高Tgの樹脂の比率が高い構造が得られる。また、分散剤に用いるポリマー微粒子を、前記の高耐熱樹脂微粒子とみなして、該高耐熱樹脂微粒子の物性に調整することで、高耐熱樹脂微粒子(ポリマー微粒子)がトナー母粒子表面に存在する構造を作ってもよい。 In these methods, by selecting the raw material in consideration of the Tg of the obtained resin, a structure in which the ratio of the resin having a high Tg is higher on the surface than on the inside of the toner base particles can be obtained. Further, the polymer fine particles used for the dispersant are regarded as the high heat-resistant resin fine particles and adjusted to the physical properties of the high heat-resistant resin fine particles, whereby the high heat-resistant resin fine particles (polymer fine particles) are present on the surface of the toner base particles. May be made.
 3.1.3.トナー母粒子の洗浄・乾燥
 前記した「トナー母粒子より小さい粒子を凝集してトナー母粒子を作製する方法」、「懸濁重合でトナー母粒子を作製する方法」、「溶解懸濁でトナー母粒子を作製する方法」等で作製されたトナー母粒子は、水系溶媒から分離され、洗浄、乾燥され、外添処理が施されて静電荷像現像用トナーに供される。
3.1.3. Cleaning and drying of toner base particles As described above, “method of aggregating particles smaller than toner base particles to prepare toner base particles”, “method of preparing toner base particles by suspension polymerization”, “toner base by dissolution suspension” The toner base particles produced by the “method for producing particles” and the like are separated from the aqueous solvent, washed, dried, subjected to an external addition treatment, and supplied to an electrostatic charge image developing toner.
 洗浄に用いる液体としては、水が挙げられるが、酸又はアルカリの水溶液で洗浄することもできる。また、温水や熱水で洗浄することもでき、これらの方法を併用することもできる。このような洗浄工程を経ることによって、懸濁安定剤や乳化剤、未反応モノマー等を低減、除去することができる。
 洗浄工程は、例えば、濾過、デカンテーション等することによって、トナー母粒子を濃厚スラリー又はウエットケーキ状とし、これに新たに洗浄するための液体を加えてトナー母粒子を分散する操作を繰り返すことが好ましい。洗浄後のトナー母粒子は、ウエットケーキ状で回収することが、引き続き行われる乾燥工程における取り扱いの面で好ましい。
The liquid used for cleaning includes water, but it can also be cleaned with an acid or alkali aqueous solution. Moreover, it can also wash | clean with warm water or hot water, and these methods can also be used together. Through such a washing step, suspension stabilizers, emulsifiers, unreacted monomers and the like can be reduced and removed.
In the washing step, for example, the toner base particles are made into a thick slurry or wet cake by filtration, decantation, etc., and a liquid for newly washing is added thereto to disperse the toner base particles. preferable. The toner base particles after washing are preferably collected in the form of a wet cake in terms of handling in the subsequent drying process.
 乾燥工程では、振動型流動乾燥法、循環型流動乾燥法等流動乾燥法、気流乾燥法、真空乾燥法、凍結乾燥法、スプレードライ法、フラッシュジェット法等が用いられる。乾燥工程における温度、風量、減圧度等の操作条件は、トナー母粒子のTg、使用する装置の形状、機構、大きさ等をもとに、適宜最適化される。 In the drying process, a vibration type fluid drying method, a fluidized drying method such as a circulation type fluid drying method, an air flow drying method, a vacuum drying method, a freeze drying method, a spray drying method, a flash jet method or the like is used. The operating conditions such as temperature, air volume, and degree of reduced pressure in the drying process are appropriately optimized based on the Tg of the toner base particles, the shape, mechanism, size, etc. of the apparatus used.
 3.1.4.溶融混練粉砕法でトナー母粒子を作製する方法
 溶融混練粉砕法とは、結着樹脂及び着色剤に、必要に応じて帯電制御剤、離型剤、磁性体等を乾式混合した後、押出機等で溶融混練し、次いで粉砕、分級しトナー母粒子を得る方法であり、トナー母粒子を得た後の外添工程で、高耐熱樹脂微粒子を添加しコア成分表面に付着させてもよい。
3.1.4. Method for preparing toner mother particles by melt-kneading pulverization method Melt-kneading pulverization method is a method in which a charge control agent, a release agent, a magnetic material and the like are dry-mixed with a binder resin and a colorant as necessary, and then an extruder. In this method, toner base particles are obtained by melt-kneading and the like, and then pulverized and classified. In the external addition step after obtaining the toner base particles, high heat-resistant resin fine particles may be added and adhered to the surface of the core component.
 3.1.5.高耐熱樹脂微粒子の添加時期
 湿式媒体中(水中及び/又は有機溶剤中)でトナー母粒子を作製する場合、上述の様にコア成分と同時に高耐熱樹脂微粒子を添加(溶解・分散・懸濁のいかなる状態であってもよい)し、熱力学的に、高耐熱樹脂微粒子を、コア成分と湿式媒体の表面に配置させてもよいし、コア成分の組成及び/又は形状が決まった後に高耐熱樹脂微粒子を添加し、物理的にコア成分の表面を高耐熱性樹脂微粒子が連続的及び/又は非連続的に覆う形としてもよい。
3.1.5. Timing of adding high heat-resistant resin fine particles When preparing toner base particles in a wet medium (in water and / or in an organic solvent), the high heat-resistant resin fine particles are added at the same time as the core component (dissolved / dispersed / suspended). The heat resistant resin fine particles may be thermodynamically disposed on the surface of the core component and the wet medium, or after the composition and / or shape of the core component is determined, Resin fine particles may be added to physically and / or discontinuously cover the surface of the core component with the high heat resistant resin fine particles.
 更には、湿式媒体中(水中及び/又は有機溶剤中)でトナー母粒子を作製する場合、コア成分の洗浄の前後で高耐熱樹脂微粒子を添加してもよいし、コア成分の乾燥の前後で高耐熱樹脂微粒子を添加してもよい。また、外添工程で高耐熱樹脂微粒子を添加してもよく、外添工程で高耐熱樹脂微粒子を付着させる場合は、高耐熱樹脂微粒子を添加し固着させてから外添剤を添加する方が好ましい。
 乾式でトナー母粒子を作製する溶融混練粉砕法においては、粉砕し分級した後の外添工程の前後で高耐熱樹脂微粒子を添加して、該高耐熱樹脂微粒子を付着させることが好ましい。
 より強固にコア成分と高耐熱樹脂微粒子を固着させる観点から、水中及び/又は有機溶剤中で、高耐熱樹脂微粒子を添加することが特に好ましい。
Furthermore, when the toner base particles are prepared in a wet medium (in water and / or in an organic solvent), the high heat-resistant resin fine particles may be added before and after the cleaning of the core component, or before and after the drying of the core component. High heat-resistant resin fine particles may be added. In addition, the high heat resistant resin fine particles may be added in the external addition step. When the high heat resistant resin fine particles are adhered in the external addition step, it is better to add the high heat resistant resin fine particles and fix them before adding the external additive. preferable.
In the melt-kneading pulverization method for producing toner base particles by dry method, it is preferable to add the high heat-resistant resin fine particles before and after the external addition step after the pulverization and classification to adhere the high heat-resistant resin fine particles.
From the viewpoint of firmly fixing the core component and the high heat-resistant resin fine particles, it is particularly preferable to add the high heat-resistant resin fine particles in water and / or an organic solvent.
 3.2.本発明のパラメーターを満たすトナーの作製
 3.2.1.「TP2/TP1」について
 レオメーターで測定されるTP2/TP1が特定の値範囲を満たすようにするには、トナー母粒子表面に高耐熱樹脂微粒子成分を広く存在させ、その外側を外添剤で覆い、高耐熱樹脂微粒子の粒径と量を調整し、水中で付着させる場合はコア成分と高耐熱樹脂微粒子の極性バランスを調整し、更にトナー母粒子全体の組成比を調整することが必要である。
3.2. Production of toner satisfying parameters of the present invention 3.2.1. About “TP2 / TP1” In order for TP2 / TP1 measured with a rheometer to satisfy a specific value range, a high heat-resistant resin fine particle component is widely present on the surface of the toner base particles, and the outside is coated with an external additive. Covering, adjusting the particle size and amount of the high heat resistant resin fine particles, and adhering in water, it is necessary to adjust the polarity balance between the core component and the high heat resistant resin fine particles, and further adjust the composition ratio of the entire toner base particles. is there.
 高耐熱樹脂微粒子の体積中位径(Dv50)は、50nm以上が好ましく、70nm以上がより好ましく、300nm以下が好ましく、250nm以下がより好ましい。本発明における「体積中位径(Dv50)」は、その大きさによって実施例に記載の方法で測定し、そのように測定したものとして定義される。
 高耐熱樹脂微粒子の粒径が100nm以上の時は、外添操作で高耐熱樹脂微粒子を衝撃によって押し広げて、高耐熱樹脂微粒子成分をトナー母粒子表面に薄く広げることが好ましい。粒径が100nm以上の高耐熱樹脂微粒子が外添操作の衝撃によって押し広げられると、BETN-BETFが0.54以上1.56以下のトナーが得られるので、BETN-BETFを前記の範囲に入れ易くなる。
The volume median diameter (Dv 50 ) of the high heat-resistant resin fine particles is preferably 50 nm or more, more preferably 70 nm or more, preferably 300 nm or less, and more preferably 250 nm or less. The “volume median diameter (Dv 50 )” in the present invention is defined as a value measured by the method described in the examples according to the size and measured as such.
When the particle diameter of the high heat-resistant resin fine particle is 100 nm or more, it is preferable to spread the high heat-resistant resin fine particle thinly on the surface of the toner base particle by externally adding the high heat-resistant resin fine particle by impact. When high heat-resistant resin fine particles having a particle diameter of 100 nm or more are expanded by impact of external addition operation, a toner having a BETN-BETF of 0.54 or more and 1.56 or less is obtained. It becomes easy.
 一方、高耐熱樹脂微粒子の粒径が100nmより小さいときは、外添操作で高耐熱樹脂微粒子が押し広げられる変化が生じ難い傾向があるので、添加量を多くすることで母粒子表面を広く覆うことで、本発明のパラメーターを満たすトナーにすることが好ましい。
 高耐熱樹脂微粒子の添加量を決定するときは、被覆率を基準に決定することが好ましい。トナー母粒子を球体と仮定したときの目標粒径から求められる表面積と、高耐熱樹脂微粒子を球体と仮定したときの平均粒径から求められる投影面積との比から計算できる。具体的に被覆率は、Rをトナー母粒子半径、rを高耐熱樹脂微粒子半径、Aを樹脂成分中の高耐熱樹脂微粒子の重量比としたとき、AR/(4r(1-A))で表される。
On the other hand, when the particle size of the high heat-resistant resin fine particles is smaller than 100 nm, there is a tendency that the change in which the high heat-resistant resin fine particles are expanded by the external addition operation tends to hardly occur. Therefore, it is preferable that the toner satisfy the parameters of the present invention.
When determining the addition amount of the high heat-resistant resin fine particles, it is preferable to determine based on the coverage. It can be calculated from the ratio of the surface area obtained from the target particle diameter when the toner base particles are assumed to be spherical and the projected area obtained from the average particle diameter when the high heat-resistant resin fine particles are assumed to be spherical. Specifically, the coverage is AR / (4r (1-A)) where R is the toner base particle radius, r is the high heat resistant resin fine particle radius, and A is the weight ratio of the high heat resistant resin fine particles in the resin component. expressed.
 高耐熱樹脂微粒子の粒径が100nm以上のときは、被覆率は25%以上85%以下であることが好ましく、35%以上70%以下であることがより好ましく、40%以上60%以下であることが特に好ましい。
 高耐熱樹脂微粒子の粒径が100nmより小さいときは、被覆率は55%以上120%以下であることが好ましく、65%以上105%以下であることがより好ましく、70%以上95%以下であることが特に好ましい。
When the particle size of the high heat-resistant resin fine particles is 100 nm or more, the coverage is preferably 25% or more and 85% or less, more preferably 35% or more and 70% or less, and 40% or more and 60% or less. It is particularly preferred.
When the particle size of the high heat-resistant resin particles is smaller than 100 nm, the coverage is preferably 55% or more and 120% or less, more preferably 65% or more and 105% or less, and 70% or more and 95% or less. It is particularly preferred.
 高耐熱樹脂微粒子成分は、トナーの形態となった際に表面近傍に配置されていることが望ましい。その形状としては、本発明を逸脱しない範囲であれば、粒子状・球状でもよく、薄膜状でもよい。
 レオメーターで測定されるTP2/TP1が前述したように各色トナーに適した値になるように調整するために、結着樹脂と高耐熱樹脂微粒子が適度な相溶性を持つように組成を組み合わせることが望ましい。
It is desirable that the high heat-resistant resin fine particle component is disposed in the vicinity of the surface when it is in the form of toner. As long as it does not deviate from the present invention, the shape may be particulate or spherical or may be a thin film.
In order to adjust the TP2 / TP1 measured by the rheometer so as to be a value suitable for each color toner as described above, the composition is combined so that the binder resin and the high heat-resistant resin fine particles have appropriate compatibility. Is desirable.
 レオメーターによるtanδ極大値の1回目測定では、結着樹脂と高耐熱樹脂微粒子が溶融せずに接している状態である。1回目測定が終了すると、測定時の加熱によって結着樹脂と高耐熱樹脂微粒子が互いに溶融する。よって、2回目測定では互いに溶融した状態で測定を開始する。この違いが、TP2/TP1の違いに表れている。
 よって、結着樹脂の種類に応じて高耐熱樹脂微粒子に含有する樹脂の種類を選定して相溶性を調整することが望ましい。以下、その調整方法を例示するが、例に挙げた数値は限定されない。
In the first measurement of the tan δ maximum value with a rheometer, the binder resin and the high heat-resistant resin fine particles are in contact with each other without melting. When the first measurement is completed, the binder resin and the high heat-resistant resin fine particles are melted together by the heating during the measurement. Therefore, in the second measurement, the measurement is started in a melted state. This difference appears in the difference between TP2 / TP1.
Therefore, it is desirable to adjust the compatibility by selecting the type of resin contained in the high heat-resistant resin fine particles according to the type of the binder resin. Hereinafter, although the adjustment method is illustrated, the numerical value quoted in the example is not limited.
 すなわち、例えば、結着樹脂がポリ(メタ)アクリル系樹脂の1種であるスチレンアクリル系樹脂であれば、高耐熱樹脂微粒子に含有する樹脂もスチレンアクリル系樹脂として、スチレンモノマーとアクリルモノマーの比率を、例えば、結着樹脂が70:30の場合は高耐熱樹脂微粒子に含有する樹脂は95:5とする;あるいはその他の単量体100質量部に対する親水性単量体の部数を、結着樹脂が1部の場合は高耐熱樹脂に含有する樹脂は1.5部とする;結着樹脂にスチレンアクリル系樹脂とポリエステルのハイブリッド樹脂を用いる;等といった方法で組成に差をつけることが挙げられる。 That is, for example, if the binder resin is a styrene acrylic resin that is a kind of poly (meth) acrylic resin, the resin contained in the high heat-resistant resin fine particles is also a styrene acrylic resin, and the ratio of styrene monomer to acrylic monomer. For example, when the binder resin is 70:30, the resin contained in the high heat-resistant resin fine particles is 95: 5; or the number of hydrophilic monomers relative to 100 parts by mass of other monomers is When the resin is 1 part, the resin contained in the high heat-resistant resin is 1.5 parts; using a hybrid resin of styrene acrylic resin and polyester as the binder resin; It is done.
 コア成分と高耐熱性樹脂微粒子成分の適切な相溶性が得られることから、結着樹脂の溶解度パラメータ(SP値)と、高耐熱樹脂微粒子成分のSP値との差が0.5~1.0であることが好ましく、0.6~0.8であることがより好ましい。 Since appropriate compatibility between the core component and the high heat resistant resin fine particle component can be obtained, the difference between the solubility parameter (SP value) of the binder resin and the SP value of the high heat resistant resin fine particle component is 0.5 to 1. 0 is preferable, and 0.6 to 0.8 is more preferable.
 また、紙などの記録媒体との接着強度を高くし部材汚染を減らす観点から、透過型電子顕微鏡で測定したときの、コア成分と高耐熱樹脂微粒子成分に陰影差がないことが特に好ましい。「コア成分」は少なくとも結着樹脂と着色剤を含有し、「高耐熱樹脂微粒子成分」はその周囲に存在する。ブラックトナーやマゼンタトナーを含む全ての色のトナーについて陰影差がないことが好ましい。
 透過型電子顕微鏡の測定条件は、実施例に記載の通り測定し、「陰影差」については、そのように測定したときの写真を肉眼で見たときの「陰影差」とする。
 ここで、「陰影差がない」とは、コア成分と高耐熱樹脂微粒子成分の染色度合い(白黒度合い)の差がなく、高耐熱性樹脂微粒子成分の縁(すなわち、コア成分と高耐熱性樹脂微粒子成分の境界)が見えないことを言う。ただし、上記「陰影差がない」は、陰影差が明瞭ではなく殆ど陰影差が見えない態様まで除外するものではない。
Further, from the viewpoint of increasing the adhesive strength with a recording medium such as paper and reducing member contamination, it is particularly preferable that there is no shadow difference between the core component and the high heat-resistant resin fine particle component when measured with a transmission electron microscope. The “core component” contains at least a binder resin and a colorant, and the “high heat-resistant resin fine particle component” is present in the vicinity thereof. It is preferable that there is no shadow difference for all color toners including black toner and magenta toner.
The measurement conditions of the transmission electron microscope are measured as described in the examples, and the “shadow difference” is the “shadow difference” when a photograph of such a measurement is viewed with the naked eye.
Here, “there is no shadow difference” means that there is no difference in the dyeing degree (black and white degree) between the core component and the high heat resistant resin fine particle component, and the edge of the high heat resistant resin fine particle component (that is, the core component and the high heat resistant resin). This means that the boundary of the fine particle component is not visible. However, “there is no shadow difference” does not exclude an aspect in which the shadow difference is not clear and the shadow difference is hardly visible.
 高耐熱性樹脂微粒子がコア成分から離脱しないように、ある程度の親和性を有していることが重要なため、コア成分を構成する結着樹脂の単量体成分と高耐熱性樹脂微粒子を構成する単量体成分の少なくとも一つは同一とすることが好ましい。こうすることで、コア成分と高耐熱性樹脂微粒子の界面がシームレスとなり、接着強度が上がることにより、例えば、湿式で高耐熱性樹脂をコア成分の表面に付着させ、その後、外添工程で高耐熱性樹脂を引き伸ばす際に、高耐熱性樹脂の一部分は、コア成分にアンカーリングし、コア成分から突き出た部分を延伸化でき被覆率を稼ぐことができ、好ましい高耐熱性樹脂微粒子成分の被覆形態を得ることができる。 It is important to have a certain degree of affinity so that the high heat-resistant resin fine particles do not leave the core component, so the monomer component of the binder resin constituting the core component and the high heat-resistant resin fine particles are configured. It is preferable that at least one of the monomer components is the same. By doing so, the interface between the core component and the high heat-resistant resin fine particles becomes seamless, and the adhesive strength is increased. For example, the high heat-resistant resin is adhered to the surface of the core component by wet processing, and then the external addition process increases the strength. When stretching the heat-resistant resin, a part of the high heat-resistant resin can be anchored to the core component, and the portion protruding from the core component can be stretched to increase the coverage, and the preferred high heat-resistant resin fine particle component coating A form can be obtained.
 また、結着樹脂がポリエステル系樹脂であれば、高耐熱樹脂微粒子に含有する樹脂もポリエステル系樹脂として、酸価を、結着樹脂が3mgKOH/g以下の場合は高耐熱樹脂微粒子に含有する樹脂は4mgKOH/g以上20mgKOH/g以下とする;結着樹脂は水酸基を有さないものにし、高耐熱樹脂微粒子に含有する樹脂は水酸基を有するものにする;等といった方法が挙げられる。 Further, if the binder resin is a polyester resin, the resin contained in the high heat resistant resin fine particles is also a polyester resin, and if the binder resin is 3 mgKOH / g or less, the resin contained in the high heat resistant resin fine particles May be 4 mg KOH / g or more and 20 mg KOH / g or less; the binder resin should not have a hydroxyl group, and the resin contained in the high heat-resistant resin fine particles should have a hydroxyl group;
 結着樹脂と高耐熱樹脂微粒子に含有される樹脂が同一であると、トナー母粒子作製時に結着樹脂と高耐熱樹脂微粒子の相溶が進むため、レオメーターで測定されるTP2とTP1がほぼ同じ値をとる。また、結着樹脂と高耐熱樹脂微粒子の相溶性がきわめて悪いと、1回目測定の熱で互いに溶融せずトナーの構造が維持されて、TP2とTP1がほぼ同じ値をとる。高耐熱樹脂微粒子は樹脂を含むが、それ以外の成分、例えばワックス、帯電制御剤等を含んでもよい。 If the resin contained in the binder resin and the high heat-resistant resin fine particles are the same, the compatibility between the binder resin and the high heat-resistant resin fine particles proceeds at the time of toner mother particle production, and therefore TP2 and TP1 measured by the rheometer are almost equal. Take the same value. Further, if the compatibility between the binder resin and the high heat-resistant resin fine particles is extremely poor, the toner structure is not melted by the heat of the first measurement and the toner structure is maintained, so that TP2 and TP1 take almost the same value. The high heat-resistant resin fine particles contain a resin, but may contain other components such as wax, a charge control agent and the like.
 高耐熱樹脂微粒子に含有される樹脂のGPCによる数平均分子量は、好ましくは8000以上、より好ましくは1万以上、更に好ましくは1.3万以上であり、好ましくは5万以下、より好ましくは4万以下、更に好ましくは3.5万以下である。
 高耐熱樹脂微粒子に含有する樹脂のGPCによる重量平均分子量は、好ましくは2万以上、より好ましくは3万以上、好ましくは30万以下、より好ましくは20万以下である。
The number average molecular weight by GPC of the resin contained in the high heat-resistant resin fine particles is preferably 8000 or more, more preferably 10,000 or more, still more preferably 13,000 or more, preferably 50,000 or less, more preferably 4 10,000 or less, more preferably 35,000 or less.
The weight average molecular weight by GPC of the resin contained in the high heat-resistant resin fine particles is preferably 20,000 or more, more preferably 30,000 or more, preferably 300,000 or less, more preferably 200,000 or less.
 高耐熱樹脂微粒子のTgは、60℃以上が好ましく、70℃以上がより好ましく、100℃以下が好ましく、90℃以下がより好ましい。また、結着樹脂のTgより高いことが必要で、10℃以上高いことがより好ましく、20℃以上高いことが更に好ましい。
 レオメーターで測定されるトナーのTP2/TP1が、本発明の範囲に入るように調整するためには、高耐熱樹脂微粒子をトナー母粒子の表面近傍に配置することが必要である。
The Tg of the high heat-resistant resin fine particles is preferably 60 ° C. or higher, more preferably 70 ° C. or higher, preferably 100 ° C. or lower, and more preferably 90 ° C. or lower. Further, it is necessary to be higher than Tg of the binder resin, more preferably 10 ° C. or higher, and further preferably 20 ° C. or higher.
In order to adjust the TP2 / TP1 of the toner measured by the rheometer so that it falls within the range of the present invention, it is necessary to dispose the high heat-resistant resin fine particles in the vicinity of the surface of the toner base particles.
 そのために有効な高耐熱樹脂微粒子の組成としては、湿式媒体(水及び又は有機溶剤)中でトナー母粒子を作製する場合、結着樹脂よりも媒体になじみ易い組成にしておくことが挙げられ、例えば、媒体が水の場合は酸性単量体若しくは塩基性単量体の比率を結着樹脂より高く、かつ、その他の単量体100質量部に対して1.0質量部以上にする;イオン性の重合開始剤を使用する;等が挙げられる。 Therefore, as an effective composition of the high heat-resistant resin fine particles, when the toner base particles are prepared in a wet medium (water and / or an organic solvent), it is preferable to make the composition more compatible with the medium than the binder resin. For example, when the medium is water, the ratio of the acidic monomer or the basic monomer is higher than that of the binder resin and 1.0 part by mass or more with respect to 100 parts by mass of the other monomers; A suitable polymerization initiator is used.
 3.2.2.「BETN-BETF」について
 BETN-BETFが小さ過ぎるときは、トナー母粒子表面の高耐熱樹脂微粒子が少ない;外添操作の衝撃による変形が過剰である;等の平滑に近い状態を示す。BETN-BETFが大き過ぎるときは、高耐熱樹脂微粒子が過剰;外添操作の衝撃による変形が不足;高耐熱樹脂微粒子の粒径が非常に大きい;等の微小凹凸が激しい状態を示す。
3.2.2. About “BETN-BETF” When BETN-BETF is too small, the surface of the toner base particles is low in heat-resistant resin fine particles; the deformation due to the impact of the external addition operation is excessive; When BETN-BETF is too large, high heat-resistant resin fine particles are excessive; deformation due to impact of external addition operation is insufficient; particle diameter of high heat-resistant resin fine particles is very large;
 高耐熱樹脂微粒子を添加する前のコア成分粒子が凹凸を持った形状であり、水中で高耐熱樹脂微粒子を同一の電荷(プラス同士、又はマイナス同士)で付着させる場合は、高耐熱樹脂微粒子はコア成分粒子の凸部に選択的に付着し易い傾向があり、これは好ましい傾向である。従来のトナーでは、コア成分と高耐熱樹脂微粒子の極性差が小さかったため、高耐熱樹脂微粒子を添加しても付着後に、高耐熱樹脂微粒子がトナー母粒子の表面近傍に留まることなく内部に深く埋まり込んでしまう。 The core component particles before adding the high heat-resistant resin fine particles have an uneven shape, and when the high heat-resistant resin fine particles are attached with the same charge (plus or minus) in water, There is a tendency to selectively adhere to the convex portions of the core component particles, which is a preferable tendency. In conventional toners, the polarity difference between the core component and the high heat-resistant resin fine particles was small, so even after the addition of the high heat-resistant resin fine particles, the high heat-resistant resin fine particles do not stay near the surface of the toner base particles, but are embedded deeply inside the toner. It will be crowded.
 本発明では、高耐熱樹脂微粒子がトナー母粒子の表面近傍に留まる。また、外添操作によって押し広げられる場合は、高耐熱樹脂微粒子成分がトナー母粒子の表面に薄く広がって存在する。
 よって、高耐熱樹脂微粒子は、トナー母粒子表面全体に均一に分布するのではなく、凸部への付着率が凹部への付着率に比べ高い傾向にある。耐ブロッキング性は、加熱環境下でトナー同士が融着することにより悪化するが、確率論的にトナーの凸部が優位に接触する。よって凸部の耐熱性が高いことが好ましい形態となる。
 従って、「BETN-BETF」の値は、上記好ましい形態と好ましくない形態の差を明確に区別するパラメーターであり、「BETN-BETF」が好適な範囲に入っているトナーは、本発明の効果(特に良好な耐ブロッキング性)を特に奏する。
In the present invention, the high heat-resistant resin fine particles remain near the surface of the toner base particles. Further, in the case of being spread by an external addition operation, the high heat-resistant resin fine particle component is thinly spread on the surface of the toner base particles.
Therefore, the high heat-resistant resin fine particles are not uniformly distributed over the entire surface of the toner base particles, but have a tendency that the adhesion rate to the convex portions is higher than the adhesion rate to the concave portions. The anti-blocking property is deteriorated by fusing toners in a heating environment, but the convex portions of the toner come in contact with each other stochastically. Therefore, it becomes a preferable form that the heat resistance of a convex part is high.
Therefore, the value of “BETN-BETF” is a parameter that clearly distinguishes the difference between the preferred form and the unfavorable form, and the toner in which “BETN-BETF” is in a suitable range is effective for the present invention ( Particularly good blocking resistance) is exhibited.
 4.外添
 4.1.外添剤
 本発明においては、本発明のトナーの物性を得るために、また、トナーの流動性向上や帯電制御性向上のために、外添剤を添加する。外添剤はトナー母粒子表面全体に付着するため、高耐熱樹脂微粒子が存在しない部分も外添剤で被覆されることが好ましい。外添剤としては、各種無機又は有機微粒子の中から適宜選択して使用することができる。また、2種類以上の外添剤を併用してもよい。
4). External attachment 4.1. External Additive In the present invention, an external additive is added in order to obtain the physical properties of the toner of the present invention and in order to improve the fluidity and charge control properties of the toner. Since the external additive adheres to the entire surface of the toner base particles, it is preferable that the portion where the high heat-resistant resin fine particles do not exist is also coated with the external additive. The external additive can be appropriately selected from various inorganic or organic fine particles. Two or more kinds of external additives may be used in combination.
 無機微粒子としては、炭化ケイ素、炭化ホウ素、炭化チタン、炭化ジルコニウム、炭化ハフニウム、炭化バナジウム、炭化タンタル、炭化ニオブ、炭化タングステン、炭化クロム、炭化モリブデン、炭化カルシウム等の各種炭化物、窒化ホウ素、窒化チタン、窒化ジルコニウム等の各種窒化物、ホウ化ジルコニウム等の各種ホウ化物、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化亜鉛、酸化銅、酸化アルミニウム、酸化セリウム、シリカ、コロイダルシリカ等の各種酸化物、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ストロンチウム等の各種チタン酸化合物、リン酸カルシウム等のリン酸化合物、二硫化モリブデン等の硫化物、フッ化マグネシウム、フッ化炭素等のフッ化物、ステアリン酸アルミニウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム等の各種金属石鹸、滑石、ベントナイト、各種カーボンブラックや導電性カーボンブラック、マグネタイト、フェライト等を用いることができる。 Inorganic fine particles include silicon carbide, boron carbide, titanium carbide, zirconium carbide, hafnium carbide, vanadium carbide, tantalum carbide, niobium carbide, tungsten carbide, chromium carbide, molybdenum carbide, calcium carbide, and other carbides, boron nitride, titanium nitride. , Various nitrides such as zirconium nitride, various borides such as zirconium boride, various oxides such as titanium oxide, calcium oxide, magnesium oxide, zinc oxide, copper oxide, aluminum oxide, cerium oxide, silica, colloidal silica, titanium Various titanate compounds such as calcium oxide, magnesium titanate, strontium titanate, phosphate compounds such as calcium phosphate, sulfides such as molybdenum disulfide, fluorides such as magnesium fluoride and fluorocarbon, aluminum stearate, stearyl Calcium, zinc stearate, various metal soaps such as magnesium stearate, talc, bentonite, various carbon black or conductive carbon black, magnetite, can be used ferrite.
 有機微粒子としては、スチレン系樹脂、アクリル系樹脂、エポキシ系樹脂、メラミン系樹脂等の微粒子を用いることができる。また、フッ素原子を含有する微粒子を用いて帯電安定性を向上させることができる。これら外添剤の中では、特に、シリカ、酸化チタン、アルミナ、酸化亜鉛、各種カーボンブラック等が好適に使用される。
 また、外添剤は、前記の無機又は有機微粒子の表面を、ヘキサメチルジシラザン(HMDS)、ジメチルジクロロシラン(DMDS)等のシランカップリング剤、チタネート系カップリング剤、シリコーンオイル、ジメチルシリコーンオイル、変性シリコーンオイル、アミノ変性シリコーンオイル等のシリコーンオイル処理剤、シリコーンワニス、フッ素系シランカップリング剤、フッ素系シリコーンオイル、アミノ基や第4級アンモニウム塩基を有するカップリング剤等の処理剤によって疎水化等の表面処理が施されているものを使用することもできる。該処理剤は2種以上を併用することもできる。
As the organic fine particles, fine particles such as styrene resin, acrylic resin, epoxy resin, and melamine resin can be used. In addition, charging stability can be improved by using fine particles containing fluorine atoms. Among these external additives, silica, titanium oxide, alumina, zinc oxide, various carbon blacks and the like are particularly preferably used.
In addition, the external additive is prepared by applying the surface of the inorganic or organic fine particles to a silane coupling agent such as hexamethyldisilazane (HMDS) or dimethyldichlorosilane (DMDS), a titanate coupling agent, silicone oil, or dimethyl silicone oil. Hydrophobic by treating agents such as silicone oil treating agents such as modified silicone oil and amino-modified silicone oil, silicone varnish, fluorine-based silane coupling agent, fluorine-based silicone oil, coupling agent having amino group or quaternary ammonium base Those subjected to surface treatment such as chemical conversion can also be used. Two or more kinds of the treatment agents can be used in combination.
 外添剤の添加量は、トナー母粒子100質量部に対して、1.0質量部以上が好ましく、1.5質量部以上が特に好ましく、6.5質量部以下が好ましく、5.5質量部以下が特に好ましい。
 本発明のトナーにおいては、帯電制御の観点から、外添剤として導電性微粒子を使用してもよい。導電性微粒子としては、例えば、導電性酸化チタン、シリカ、マグネタイト等の金属酸化物又はそれらに導電性物質をドープしたもの、ポリアセチレンやポリフェニルアセチレン、ポリ-p-フェニレン等の共役2重結合を有するポリマーに金属等の導電性物質をドープした有機微粒子、カーボンブラックやグラファイトに代表される炭素等が挙げられるが、トナーの流動性を損なわず導電性を付与できるという観点から、導電性酸化チタン又はその導電性物質をドープした金属酸化物や有機微粒子がより好ましい。
The amount of the external additive added is preferably 1.0 part by mass or more, particularly preferably 1.5 parts by mass or more, and preferably 6.5 parts by mass or less with respect to 100 parts by mass of the toner base particles. Part or less is particularly preferable.
In the toner of the present invention, conductive fine particles may be used as an external additive from the viewpoint of charge control. Examples of the conductive fine particles include metal oxides such as conductive titanium oxide, silica, and magnetite or those doped with a conductive substance, and conjugated double bonds such as polyacetylene, polyphenylacetylene, and poly-p-phenylene. Examples thereof include organic fine particles obtained by doping a conductive material such as a metal into the polymer, carbon typified by carbon black and graphite, etc., but from the viewpoint that conductivity can be imparted without impairing the fluidity of the toner, conductive titanium oxide. Or the metal oxide and organic fine particle which doped the electroconductive substance are more preferable.
 導電性微粒子の含有量は、トナー母粒子100質量部に対して、下限は、0.05質量部以上が好ましく、0.1質量部以上であることがより好ましく、0.2質量部以上であることが特に好ましい。一方、導電性微粒子の含有量の上限は、3質量部以下が好ましく、2質量部以下がより好ましく、特に好ましくは1質量部以下である。 The lower limit of the content of the conductive fine particles is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, with respect to 100 parts by mass of the toner base particles. It is particularly preferred. On the other hand, the upper limit of the content of the conductive fine particles is preferably 3 parts by mass or less, more preferably 2 parts by mass or less, and particularly preferably 1 part by mass or less.
 4.2.外添剤の外添方法
 外添剤の添加方法は、ヘンシェルミキサー等の高速撹拌機を用いる方法や、圧縮剪断応力を加えることのできる装置による方法等が挙げられる。トナーは、トナー母粒子に全ての外添剤を同時添加して外添する一段外添法により作製できるが、外添剤毎に外添する分段外添法により作製することもできる。
4.2. External Addition Method of External Additive Examples of the external additive addition method include a method using a high-speed stirrer such as a Henschel mixer and a method using an apparatus capable of applying a compressive shear stress. The toner can be prepared by a one-stage external addition method in which all external additives are added to the toner base particles simultaneously and externally added, but can also be prepared by a separate external addition method in which each external additive is externally added.
 外添中の温度上昇を防止するために、容器に冷却装置を設置する、分段外添する等が挙げられる。外添の温度、回転数、時間等を調整することで、得られるトナーのTP2/TP1が本発明の数値範囲となるように調整することができる。例えば、ヘンシェルミキサーで、3000回転で長時間(例えば25分以上)撹拌すると、TP2/TP1が大きくなり、同様の条件で短時間(例えば5分以下)撹拌すると、TP2/TP1が小さくなる。 In order to prevent a temperature rise during external addition, a cooling device is installed in the container, and external addition is performed. By adjusting the temperature, rotation speed, time, etc. of the external addition, the toner TP2 / TP1 obtained can be adjusted to be within the numerical range of the present invention. For example, when stirring for a long time (for example, 25 minutes or more) at 3000 rpm with a Henschel mixer, TP2 / TP1 increases, and when stirring for a short time (for example, 5 minutes or less) under the same conditions, TP2 / TP1 decreases.
 5.その他(用途等)
 本発明の静電荷像現像用トナーは、トナーをキャリアとともに用いる二成分系現像剤、又は、キャリアを使用しない磁性若しくは非磁性一成分系現像剤の何れの形態で用いてもよい。
 二成分系現像剤として用いる場合、キャリアとしては、鉄粉、マグネタイト粉、フェライト粉等の磁性物質又はそれらの表面に樹脂コーティングを施したものや磁性キャリア等公知のものを用いることができる。樹脂コーティングキャリアの被覆樹脂としては一般的に知られているスチレン系樹脂、アクリル系樹脂、スチレンアクリル共重合系樹脂、シリコーン樹脂、変性シリコーン樹脂、フッ素樹脂、又はこれらの混合物等が利用できる。
5). Other (use etc.)
The toner for developing an electrostatic charge image of the present invention may be used in any form of a two-component developer using a toner together with a carrier, or a magnetic or non-magnetic one-component developer not using a carrier.
When used as a two-component developer, the carrier may be a magnetic substance such as iron powder, magnetite powder or ferrite powder, or a known material such as a resin coating on the surface thereof or a magnetic carrier. As the coating resin of the resin coating carrier, generally known styrene resin, acrylic resin, styrene acrylic copolymer resin, silicone resin, modified silicone resin, fluororesin, or a mixture thereof can be used.
 前記した本発明のトナーセットを含有するトナーカートリッジや画像形成装置は、前記した本発明のトナーセットが示す優れた効果を奏する。また、前記した本発明のトナーセットを用いて画像形成する画像形成方法を使用すれば、前記した優れた出力画像を提供できる。 The toner cartridge and the image forming apparatus containing the toner set of the present invention have the excellent effects exhibited by the toner set of the present invention. Further, if an image forming method for forming an image using the toner set of the present invention described above is used, the above excellent output image can be provided.
 以下、本発明を製造例・実施例・比較例・推算例により更に具体的に説明するが、本発明はその要旨を越えない限り、以下の例に限定されるものではない。
 以下の例で単に「部」「%」とあるのは、質量に関するものは、それぞれ「質量部」、「質量%」を意味する。
 体積中位径(Dv50)、個数中位径(Dn50)、粒子径分布(Dv50/Dn50)、平均円形度、重量平均分子量(Mw)等は次のように測定した。本発明では、それぞれの数値は、次のように測定したものとして定義される。
EXAMPLES Hereinafter, although this invention is demonstrated more concretely with a manufacture example, an Example, a comparative example, and an estimation example, this invention is not limited to the following examples, unless the summary is exceeded.
In the following examples, “parts” and “%” simply mean “parts by mass” and “mass%”, respectively, in terms of mass.
Volume median diameter (Dv 50 ), number median diameter (Dn 50 ), particle diameter distribution (Dv 50 / Dn 50 ), average circularity, weight average molecular weight (Mw), and the like were measured as follows. In the present invention, each numerical value is defined as measured as follows.
 <中位径測定1>
 1ミクロン未満の体積中位径(Dv50)を有す粒子の体積中位径(Dv50)は、日機装株式会社製型式MicrotracNanotrac150(以下、「ナノトラック」と略す)、及び、同社解析ソフトMicrotracParticle Analyzer Ver10.1.2-019EEを用い、電気伝導度が0.5μS/cmのイオン交換水を溶媒とし、溶媒屈折率:1.333、測定時間:120秒、測定回数:5回の測定条件で、取り扱い説明書に記載された方法で測定し、その平均値を求めた。
 その他の設定条件は、粒子屈折率:1.59、透過性:透過、形状:真球形、密度:1.04とした。
<Medium diameter measurement 1>
The volume median diameter (Dv 50 ) of particles having a volume median diameter (Dv 50 ) of less than 1 micron is determined by the Nikkiso Co., Ltd. model Microtrac Nanotrac 150 (hereinafter abbreviated as “Nanotrack”) and its analysis software MicrotracParticle. Analyzer Ver10.1.2-019EE, ion-exchanged water with electric conductivity of 0.5 μS / cm as solvent, solvent refractive index: 1.333, measurement time: 120 seconds, number of measurements: 5 measurement conditions Then, it was measured by the method described in the instruction manual, and the average value was obtained.
Other setting conditions were particle refractive index: 1.59, transparency: transmission, shape: true sphere, density: 1.04.
 <中位径測定2>
 1ミクロン以上の体積中位径(Dv50)を有す粒子の体積中位径(Dv50)と個数中位径(Dn50)は、ベックマン・コールター社製、マルチサイザーIII(アパーチャー径100μm)(以下、「マルチサイザー」と略す。)を用い、同社アイソトンIIを分散媒として、分散質濃度0.03質量%になるように分散させて測定した。粒子径分布は、Dv50をDn50で除した値とした。
<Medium diameter measurement 2>
1 micron or more volume median diameter volume median diameter of the particles having a (Dv 50) (Dv 50) and the number median diameter (Dn 50) is Beckman Coulter Multisizer III (aperture diameter 100 [mu] m) (Hereinafter, abbreviated as “Multisizer”), and using the company's Isoton II as a dispersion medium, the dispersion was dispersed to a concentration of 0.03% by mass. The particle size distribution was a value obtained by dividing Dv 50 by Dn 50 .
 <平均円形度>
 平均円形度は、分散質を分散媒(セルシース:シスメックス社製)に、5720~7140個/μLとなるように分散させ、フロー式粒子分析装置(FPIA3000:シスメックス社製)を用いて、HPF分析量0.35μL、HPF検出量2000~2500個の条件下でHPFモードにより測定した。
<Average circularity>
The average circularity is determined by dispersing the dispersoid in a dispersion medium (Cell Sheath: Sysmex) at 5720-7140 / μL, and using a flow particle analyzer (FPIA 3000: Sysmex) to perform HPF analysis. The amount was measured in the HPF mode under the condition of 0.35 μL and HPF detection amount of 2000 to 2500.
 <重量平均分子量(Mw)>
 重合体一次粒子分散液のTHF可溶成分を、以下の条件でゲルパーミエーションクロマトグラフィー(GPC)により測定した。
 装置:東ソー株式会社製GPC装置 HLC-8320、カラム:TOSOH TSKgel SuperHM-H(直径6mm×長さ150mm×2本)、溶媒:THF、カラム温度40℃、流量0.5mL/分、試料濃度:0.1質量%、検量線:標準ポリスチレン
<Weight average molecular weight (Mw)>
The THF-soluble component of the polymer primary particle dispersion was measured by gel permeation chromatography (GPC) under the following conditions.
Apparatus: GPC apparatus HLC-8320 manufactured by Tosoh Corporation, column: TOSOH TSKgel SuperHM-H (diameter 6 mm × length 150 mm × 2), solvent: THF, column temperature 40 ° C., flow rate 0.5 mL / min, sample concentration: 0.1% by mass, calibration curve: standard polystyrene
  <エマルション固形分濃度>
 エマルション固形分濃度は、株式会社ケット科学研究所製、赤外線水分計FD-610を用い、2gの試料を195℃で90分加熱して水分を蒸発させることにより求めた。
<Emulsion solid content concentration>
The emulsion solid content concentration was determined by evaporating water by heating a 2 g sample at 195 ° C. for 90 minutes using an infrared moisture meter FD-610 manufactured by Kett Science Laboratory.
  <透過型電子顕微鏡での測定方法、陰影差の測定方法>
 トナーをエポキシ系樹脂に包埋して硬化させた後、四酸化ルテニウムで5分間ガス暴露することでシェルとコアを識別染色した。次に、ナイフで断面出しして、ウルトラミクロトームを用いて、厚さが200nmのトナーの超薄切片を作製した。更に、TEM(透過型電子顕微鏡)H7500(日立ハイテク社製)を用いて、加速電圧100kVでトナーの超薄切片を観察し、陰影差を肉眼で確認した。
<Measurement method with transmission electron microscope, measurement method of shadow difference>
After the toner was embedded in an epoxy resin and cured, the shell and the core were subjected to differential dyeing by gas exposure with ruthenium tetroxide for 5 minutes. Next, the cross section was cut out with a knife, and an ultrathin section of toner having a thickness of 200 nm was prepared using an ultramicrotome. Furthermore, using a TEM (transmission electron microscope) H7500 (manufactured by Hitachi High-Tech), an ultrathin section of the toner was observed at an acceleration voltage of 100 kV, and the shadow difference was confirmed with the naked eye.
 製造例1
 <ワックス分散液A1の作製:乳化工程>
 ワックスとしてエステルワックス1(日油株式会社製、品名:WEP-3、DSC2回目測定融点ピーク:71.0℃、DSC2回目測定オンセット温度:68.6℃、DSC2回目測定変曲点:69.9℃、カタログ酸価0.1mgKOH/g、カタログ水酸基価3mgKOH/g以下)30.00部(1440g)、デカグリセリンデカベヘネート(三菱化学フーズ株式会社製、品名:B100D、水酸基価27、融点70℃)0.24部、20%ドデシルベンゼンスルホン酸ナトリウム水溶液(以下、「20%DBS水溶液」と略す。)1.93部、脱塩水67.83部、を90℃に加熱して、45℃傾斜3段パドル翼を備えたCSTR型撹拌層内で20分混合した。
Production Example 1
<Preparation of Wax Dispersion A1: Emulsification Process>
Ester wax 1 (manufactured by NOF Corporation, product name: WEP-3, DSC second measurement melting point peak: 71.0 ° C., DSC second measurement onset temperature: 68.6 ° C., DSC second measurement inflection point: 69. 9 ° C., catalog acid value 0.1 mg KOH / g, catalog hydroxyl value 3 mg KOH / g or less) 30.00 parts (1440 g), decaglycerin decabehenate (Mitsubishi Chemical Foods, Inc., product name: B100D, hydroxyl value 27, 0.24 parts of 20% sodium dodecylbenzenesulfonate aqueous solution (hereinafter abbreviated as “20% DBS aqueous solution”) 1.93 parts and 67.83 parts of demineralized water were heated to 90 ° C. The mixture was mixed for 20 minutes in a CSTR type stirring layer equipped with a 45 ° C. inclined three-stage paddle blade.
 次いで、この分散液を90℃に加熱したまま、バルブホモジナイザー(ゴーリン社製、15-M-8PA型)を用いて25MPaの加圧条件で循環乳化を開始し、ナノトラックで粒子径を測定し、体積中位径(Dv50)が245nmになるまで分散して、ワックス分散液A1(エマルション固形分濃度=31.2%、ワックス成分濃度30.8%)を作製した。 Next, while this dispersion was heated to 90 ° C., circulation emulsification was started under a pressure of 25 MPa using a valve homogenizer (manufactured by Gorin Co., Ltd., 15-M-8PA type), and the particle size was measured with Nanotrac. the volume median diameter (Dv 50) is dispersed until 245 nm, to prepare a wax dispersion A1 (emulsion solid content concentration = 31.2%, a wax component concentration 30.8%).
 <ワックス分散液A2の作製:乳化工程>
 原料として上記エステルワックス1を22.50部、エステルワックス2(日油株式会社製、品名:WEP-5、カタログ融点82℃、カタログ酸価0.1mgKOH/g、カタログ水酸基価3mgKOH/g以下)7.50部(1080g)、デカグリセリンデカベヘネート0.24部、20%DBS水溶液1.93部、脱塩水67.83部を用い、ワックス分散液A1と同様の方法で、ワックス分散液A2(エマルション固形分濃度=31.4%)を作製した。
<Preparation of Wax Dispersion A2: Emulsification Process>
22.50 parts of the ester wax 1 as a raw material, ester wax 2 (manufactured by NOF Corporation, product name: WEP-5, catalog melting point 82 ° C., catalog acid value 0.1 mgKOH / g, catalog hydroxyl value 3 mgKOH / g or less) Using a method similar to that of the wax dispersion A1, using 7.50 parts (1080 g), 0.24 parts decaglycerin decabehenate, 1.93 parts 20% DBS aqueous solution, 67.83 parts demineralized water, A2 (emulsion solid content concentration = 31.4%) was prepared.
 <重合体一次粒子の作製:重合工程>
 撹拌装置、加熱冷却装置、濃縮装置、及び、各原料・助剤仕込み装置を備えた反応器に、ワックス分散液A1を10.7部(ワックス成分として)、脱塩水252部、0.5%硫酸鉄(II)7水和物水溶液0.02部を仕込み、撹拌しながら窒素気流下で90℃に昇温した。
<Production of polymer primary particles: polymerization step>
10.7 parts of wax dispersion A1 (as a wax component), 252 parts of demineralized water, 0.5% in a reactor equipped with a stirrer, a heating / cooling device, a concentrating device, and each raw material / auxiliary charging device 0.02 part of iron (II) sulfate heptahydrate aqueous solution was charged, and the temperature was raised to 90 ° C. under a nitrogen stream while stirring.
 その後、撹拌を続けたまま、事前にホモジナイザーで30分間撹拌した下記のモノマー類・乳化剤溶液の混合物を240分かけて添加した。
 このモノマー類・乳化剤水溶液の混合物を添加開始した時間を重合開始とし、下記の開始剤水溶液を重合開始0分から480分かけて添加した。重合開始240分に下記の硫酸鉄水溶液を添加した。重合開始300分に95℃に昇温した。重合開始540分まで加熱撹拌を継続した。
Thereafter, with the stirring continued, the following mixture of monomers and emulsifier solution, which was previously stirred for 30 minutes with a homogenizer, was added over 240 minutes.
The time when the addition of the monomer / emulsifier aqueous solution started to be added was set as the polymerization start, and the following initiator aqueous solution was added over 0 to 480 minutes from the start of the polymerization. The following iron sulfate aqueous solution was added 240 minutes after the start of polymerization. The temperature was raised to 95 ° C. 300 minutes after the start of polymerization. Heating and stirring were continued until 540 minutes from the start of polymerization.
 [モノマー類]
  スチレン               70.9部
  アクリル酸ブチル           29.1部
  アクリル酸               0.85部
  トリクロロブロモメタン         1.0部
  ヘキサンジオールジアクリレート     0.95部
 [乳化剤水溶液]
  20%DBS水溶液           1.0部
  脱塩水                66.9部
 [開始剤水溶液]
  8%過酸化水素水溶液         28.0部
  8%L-(+)アスコルビン酸水溶液  28.0部
 [硫酸鉄水溶液]
  0.5%硫酸鉄(II)7水和物水溶液  0.08部
[Monomers]
Styrene 70.9 parts Butyl acrylate 29.1 parts Acrylic acid 0.85 parts Trichlorobromomethane 1.0 part Hexanediol diacrylate 0.95 parts [Emulsifier aqueous solution]
20% DBS aqueous solution 1.0 part Demineralized water 66.9 parts [Initiator aqueous solution]
8% aqueous hydrogen peroxide solution 28.0 parts 8% L-(+) ascorbic acid aqueous solution 28.0 parts [iron sulfate aqueous solution]
0.5% iron (II) sulfate heptahydrate aqueous solution 0.08 parts
 重合開始540分後、30℃まで冷却し、乳白色の重合体一次粒子を得た。ナノトラックを用いて測定した体積中位径(Dv50)は239nmだった。重量平均分子量(Mw)は67000だった。固形分濃度は24.1質量%であり、Tgは38℃であった。 After 540 minutes from the start of polymerization, the mixture was cooled to 30 ° C. to obtain milky white primary polymer particles. The volume median diameter (Dv 50 ) measured using Nanotrac was 239 nm. The weight average molecular weight (Mw) was 67,000. Solid content concentration was 24.1 mass% and Tg was 38 degreeC.
 <高耐熱樹脂微粒子の調製:重合工程>
 撹拌装置、加熱冷却装置、濃縮装置、及び、各原料・助剤仕込み装置を備えた反応器に、ワックス分散液A2を50.6部、粒子径調整用乳化剤(DBS SP)として、20%DBS水溶液2.96部、脱塩水350部を仕込み、撹拌しながら窒素気流下で75℃に昇温した。
<Preparation of high heat-resistant resin fine particles: polymerization step>
In a reactor equipped with a stirrer, heating / cooling device, concentrating device, and each raw material / auxiliary charging device, 50.6 parts of wax dispersion A2 and 20% DBS as a particle size adjusting emulsifier (DBS SP) 2.96 parts of an aqueous solution and 350 parts of demineralized water were charged, and the temperature was raised to 75 ° C. under a nitrogen stream while stirring.
 下記の開始剤水溶液1を添加して5分後、撹拌を続けたまま、事前にホモジナイザーで30分間撹拌した下記のモノマー類・乳化剤水溶液の混合物を180分かけて添加した。
 このモノマー類・乳化剤水溶液の混合物の添加を開始した時間を重合開始とし、下記の開始剤水溶液2を重合開始240分から60分かけて連続的に添加した。下記の開始剤水溶液3を重合開始240分から120分かけて連続的に添加した。重合開始180分に下記の硫酸鉄水溶液を添加した。重合開始180分に93℃に昇温した。重合開始480分まで加熱撹拌を継続した。
5 minutes after adding the following initiator aqueous solution 1, the mixture of the following monomers / emulsifier aqueous solution previously stirred for 30 minutes with a homogenizer was added over 180 minutes while continuing stirring.
The time when the addition of the monomer / emulsifier aqueous mixture was started was set as the polymerization start, and the following initiator aqueous solution 2 was continuously added over a period of 240 minutes to 60 minutes from the start of the polymerization. The following initiator aqueous solution 3 was continuously added over a period of 240 minutes to 120 minutes from the start of polymerization. The following iron sulfate aqueous solution was added 180 minutes after the start of polymerization. The temperature was raised to 93 ° C. 180 minutes after the start of polymerization. Heating and stirring were continued until 480 minutes from the start of polymerization.
 [モノマー類]
  スチレン                97.9部
  アクリル酸ブチル             2.1部
  アクリル酸                1.5部
  1-ドデカンチオール           1.0部
 [乳化剤水溶液]
  20%DBS水溶液            1.0部
  脱塩水                 66.7部
 [開始剤水溶液1]
  20%過硫酸アンモニウム水溶液      6.0部
 [開始剤水溶液2]
  8%過酸化水素水溶液          14.2部
 [開始剤水溶液3]
  8%L-(+)アスコルビン酸水溶液   21.3部
 [硫酸鉄水溶液]
  0.5%硫酸鉄(II)7水和物水溶液   0.05部
[Monomers]
Styrene 97.9 parts Butyl acrylate 2.1 parts Acrylic acid 1.5 parts 1-Dodecanethiol 1.0 part [Emulsifier aqueous solution]
20% DBS aqueous solution 1.0 part Demineralized water 66.7 parts [Initiator aqueous solution 1]
20% ammonium persulfate aqueous solution 6.0 parts [initiator aqueous solution 2]
14.2 parts of 8% aqueous hydrogen peroxide solution [Initiator aqueous solution 3]
21.3 parts of 8% L-(+) ascorbic acid aqueous solution [iron sulfate aqueous solution]
0.05% aqueous solution of 0.5% iron (II) sulfate heptahydrate
 重合開始480分後、30℃まで冷却し、乳白色の高耐熱樹脂微粒子を得た。ナノトラックを用いて測定した体積中位径(Dv50)は158nmだった。重量平均分子量(Mw)は59000だった。固形分濃度は20.0%であり、Tgは80℃であった。 480 minutes after the start of polymerization, the mixture was cooled to 30 ° C. to obtain milky white high heat-resistant resin fine particles. The volume median diameter (Dv 50 ) measured using Nanotrac was 158 nm. The weight average molecular weight (Mw) was 59000. The solid content concentration was 20.0% and the Tg was 80 ° C.
 <Bk(ブラック)色着色剤分散液の調製>
 プロペラ翼を備えた撹拌機の容器に、三菱化学株式会社製カーボンブラック♯44(カタログ物性:粒子径24nm、窒素吸着比表面積110m/g、着色力129%、粒状77cm/100g、揮発分0.8%、pH値8、PVC黒度10)20部、アニオン性界面活性剤(第一工業製薬社製、ネオゲンS-20D)1部、非イオン性界面活性剤(花王株式会社製、エマルゲン120)4部、導電率が1μS/cmのイオン交換水75部を加え、体積中位径Dv50は約90μmになるまで予備分散して顔料プレミックス液を得た。
<Preparation of Bk (black) colorant dispersion>
The container stirrer equipped with a propeller blade, Mitsubishi Chemical Co., Ltd. Carbon black # 44 (catalog properties: particle size 24 nm, a nitrogen adsorption specific surface area 110m 2 / g, coloring power 129%, granular 77cm 3/100 g, volatile content 0.8%, pH value 8, PVC blackness 10) 20 parts, anionic surfactant (Daiichi Kogyo Seiyaku, Neogen S-20D) 1 part, nonionic surfactant (manufactured by Kao Corporation, 4 parts of Emulgen 120) and 75 parts of ion-exchanged water having an electrical conductivity of 1 μS / cm were added, and the mixture was predispersed until the volume median diameter Dv 50 was about 90 μm, to obtain a pigment premix solution.
 前記顔料プレミックス液を原料スラリーとして湿式ビーズミルに供給し、ワンパス分散を行った。なお、ステータの内径は120mmφ、セパレータの径が60mmφ、分散用のメディアとして直径が50μmのジルコニアビーズ(真密度6.0g/cm)を用いた。ステータの有効内容積は約2Lであり、メデイアの充填容積は1.4Lとしたので、メディア充填率は70%である。 The pigment premix solution was supplied as a raw material slurry to a wet bead mill and subjected to one-pass dispersion. Note that zirconia beads (true density of 6.0 g / cm 3 ) having a diameter of 120 mmφ, a separator having a diameter of 60 mmφ, and a diameter of 50 μm were used as a dispersion medium. Since the effective internal volume of the stator is about 2L and the filling volume of the media is 1.4L, the media filling rate is 70%.
 ロータの回転速度を一定(ロータ先端の周速が約11m/sec)として、供給口より前記顔料プレミックス液を無脈動定量ポンプにより供給速度約40L/hrで供給し、所定粒度に達した時点で排出口より製品を取得した。なお、運転時にはジャケットから約10℃の冷却水を循環させながら行い、体積中位径(Dv50)157nm、個数中位径(Dn50)106nm、固形分濃度24.6%のBk(ブラック)色着色剤分散液を得た。 When the rotational speed of the rotor is constant (the peripheral speed at the tip of the rotor is about 11 m / sec), the pigment premix liquid is supplied from the supply port by a non-pulsating metering pump at a supply speed of about 40 L / hr, and reaches a predetermined particle size. The product was acquired from the outlet. During operation, cooling water of about 10 ° C. is circulated from the jacket, and the volume median diameter (Dv 50 ) is 157 nm, the number median diameter (Dn 50 ) is 106 nm, and the solid content concentration is 2k% Bk (black). A colorant dispersion was obtained.
 <Ma(マゼンタ)色着色剤分散液の調製>
 撹拌機(プロペラ翼)を備えた内容積300Lの容器に、P.R.238 N-(5-クロロ-2-メトキシフェニル)-3-ヒドロキシ-4-[{2-メトキシ-5-[(フェニルアミノ)カルボニル]フェニル}アゾ]ナフタレン-2-カルボキシアミドを20部(40kg)、20%のドデシルベンゼンスルホン酸ナトリウム水溶液を1部、HLB15.3のポリオキシエチレンラウリルエーテルを4部、および電気伝導度が1.5μS/cm以下のイオン交換水75部を加えて予備分散して顔料プレミックス液を得た。
<Preparation of Ma (magenta) colorant dispersion>
Into a container having an internal volume of 300 L equipped with a stirrer (propeller blade), P.I. R. 20 parts (40 kg) of 238 N- (5-chloro-2-methoxyphenyl) -3-hydroxy-4-[{2-methoxy-5-[(phenylamino) carbonyl] phenyl} azo] naphthalene-2-carboxamide ), 1 part of 20% sodium dodecylbenzenesulfonate aqueous solution, 4 parts of polyoxyethylene lauryl ether of HLB15.3, and 75 parts of ion-exchanged water having an electric conductivity of 1.5 μS / cm or less are preliminarily dispersed. Thus, a pigment premix solution was obtained.
 上記顔料プレミックス液を原料スラリーとして湿式ビーズミルに供給し、循環分散を行った。なお、ステータの内径はφ75mm、セパレータの径がφ60mm、セパレータとディスク間の間隔は15mmとし、分散用のメディアとして直径が50μmのジルコニアビーズ(真密度6.0g/cm)を用いた。
 ステータの有効内容積は0.5Lであり、メデイアの充填容積は0.35Lとしたので、メディア充填率は70質量%である。
 ロータの回転速度を一定(ロータ先端の周速が約11m/sec)として、供給口より前記顔料プレミックス液を無脈動定量ポンプにより供給速度50L/hrで連続的に供給し、排出口より連続的に排出させ、これを繰り返し循環させることにより所定の粒径に達した時点でMa色着色剤分散液を得た。
 Ma(マゼンタ)色着色剤分散液をナノトラックで測定した体積中位径(Dv50)は153nmであり、pHは5.8、固形分濃度は25.5質量%であった。
The pigment premix solution was supplied as a raw material slurry to a wet bead mill and circulated and dispersed. The inner diameter of the stator was φ75 mm, the separator diameter was φ60 mm, the distance between the separator and the disk was 15 mm, and zirconia beads having a diameter of 50 μm (true density of 6.0 g / cm 3 ) were used as a dispersion medium.
Since the effective internal volume of the stator is 0.5 L and the filling volume of the media is 0.35 L, the media filling rate is 70% by mass.
The rotation speed of the rotor is constant (the peripheral speed of the rotor tip is about 11 m / sec), and the pigment premix liquid is continuously supplied from the supply port at a supply speed of 50 L / hr by a non-pulsating metering pump, and continuously from the discharge port. The Ma colorant dispersion was obtained when it reached a predetermined particle size by being repeatedly discharged and repeatedly circulated.
The volume median diameter (Dv 50 ) of the Ma (magenta) colorant dispersion measured with Nanotrac was 153 nm, the pH was 5.8, and the solid content concentration was 25.5% by mass.
 <Bk(ブラック)トナー母粒子1分散液の調製:凝集工程>
 撹拌装置、加熱冷却装置、及び各原料・助剤仕込み装置を備えた混合器に、上記で得られた重合体一次粒子89.1部(固形分として)、20%DBS水溶液0.45部、脱イオン水75.8部、5%硫酸鉄(II)七水和物水溶液11.5部、Bk色着色剤分散液7.38部(固形分として)を撹拌しながら順に添加して均一に混合した。
<Preparation of Bk (Black) Toner Base Particle 1 Dispersion: Aggregation Step>
In a mixer equipped with a stirrer, a heating / cooling device, and each raw material / auxiliary charging device, 89.1 parts (as solids) of the polymer primary particles obtained above, 0.45 part of 20% DBS aqueous solution, Add 75.8 parts of deionized water, 11.5 parts of 5% iron (II) sulfate heptahydrate aqueous solution, and 7.38 parts of Bk colorant dispersion (as solids) in order and stir uniformly. Mixed.
 その後、内温を40℃まで昇温し、更に体積中位径が5.5μmになるまで段階的に昇温した。この温度(一次凝集温度)は45℃であった。
 すみやかに一次凝集温度より1℃温度を下げると同時に重合体一次粒子9.90部(固形分として)を添加した。180分後、高耐熱樹脂微粒子3.33部(固形分として)を添加した。30分後、20%DBS水溶液20.1部と脱イオン水22.9部を添加してから、50分かけて65℃まで昇温し、その後円形度が0.975になるまで段階的に昇温した。
 円形度が0.975に到達した時の温度(最終円形化温度)は、70℃であった。その後、すみやかに30℃まで冷却し、Bk(ブラック)トナー母粒子1分散液を得た。
Thereafter, the internal temperature was raised to 40 ° C., and the temperature was raised stepwise until the volume median diameter became 5.5 μm. This temperature (primary aggregation temperature) was 45 ° C.
As soon as the temperature was lowered by 1 ° C. from the primary aggregation temperature, 9.90 parts of polymer primary particles (as solids) were added. After 180 minutes, 3.33 parts of high heat-resistant resin fine particles (as a solid content) were added. After 30 minutes, 20.1 parts of 20% DBS aqueous solution and 22.9 parts of deionized water were added, and then the temperature was raised to 65 ° C. over 50 minutes, and then stepwise until the circularity reached 0.975. The temperature rose.
The temperature (final circularization temperature) when the circularity reached 0.975 was 70 ° C. Thereafter, it was immediately cooled to 30 ° C. to obtain a Bk (black) toner base particle 1 dispersion.
 <Bk(ブラック)トナー母粒子1の作製:洗浄・乾燥工程>
 得られたBk(ブラック)トナー母粒子1分散液を抜き出し、5種C(東洋濾紙社(株)製、No.5C)の濾紙を用いてアスピレーターにより吸引濾過した。濾紙上に残ったケーキを、撹拌機(プロペラ翼)を備えたステンレス容器に移し、電気伝導度が1μS/cmのイオン交換水を加え撹拌することにより均一に分散させ、その後30分間撹拌した。
 この工程をろ液の電気伝導度が2μS/cmになるまで繰り返した後、得られたケーキを、40℃に設定された送風乾燥機内で48時間乾燥することにより、Bk(ブラック)トナー母粒子1を得た。
<Preparation of Bk (Black) Toner Base Particle 1: Cleaning and Drying Step>
The obtained Bk (black) toner base particle 1 dispersion was extracted and suction filtered with an aspirator using 5 types C (Toyo Roshi Kaisha, Ltd., No. 5C) filter paper. The cake remaining on the filter paper was transferred to a stainless steel container equipped with a stirrer (propeller blade), and ion-exchanged water having an electric conductivity of 1 μS / cm was added and stirred uniformly, and then stirred for 30 minutes.
After repeating this process until the electric conductivity of the filtrate reaches 2 μS / cm, the obtained cake is dried in a blow dryer set at 40 ° C. for 48 hours, whereby Bk (black) toner base particles are obtained. 1 was obtained.
 <Bk(ブラック)トナー1の製造:外添工程>
 上記で得られたBk(ブラック)トナー母粒子1(100部)に対し、ポリマー/シリカ複合体粒子(ATLAS100:キャボット社製:シリカ/ポリマー比=70/30、真比重=1.7g/cm)、オクタヒドロペンタレン含有)を4部、チタニアとシリカ複合酸化物粒子(STX501:日本アエロジル(株)製)を0.5部、小粒径シリカ(RY200L:日本アエロジル(株)製)を0.4部添加し、ヘンシェルミキサーにて、3000rpmで15分間撹拌・混合して篩別することによりBk(ブラック)トナー1を得た。
<Manufacture of Bk (Black) Toner 1: External Addition Step>
Polymer / silica composite particles (ATLAS100: manufactured by Cabot Corporation: silica / polymer ratio = 70/30, true specific gravity = 1.7 g / cm) with respect to Bk (black) toner base particles 1 (100 parts) obtained above. 3 ), 4 parts of octahydropentalene), 0.5 part of titania and silica composite oxide particles (STX501: manufactured by Nippon Aerosil Co., Ltd.), small particle size silica (RY200L: manufactured by Nippon Aerosil Co., Ltd.) Was added, and the mixture was stirred and mixed at 3000 rpm for 15 minutes with a Henschel mixer and sieved to obtain Bk (black) toner 1.
 製造例2~3
 製造例1のBk(ブラック)トナー母粒子1分散液の調製工程(凝集工程)において、重合体一次粒子の固形分としての添加量、一次凝集終了後の重合体一次粒子の固形分としての添加量、高耐熱樹脂微粒子の固形分としての添加量を表1記載の通りに変更したこと以外は、製造例1と同様にして、製造例2及び3に示す、Bk(ブラック)トナー2とBk(ブラック)トナー3を製造した。
Production Examples 2-3
In the preparation step (aggregation step) of the Bk (black) toner mother particle 1 dispersion in Production Example 1, the addition amount as the solid content of the polymer primary particles, and the addition as the solid content of the polymer primary particles after the completion of the primary aggregation Bk (black) toner 2 and Bk shown in Production Examples 2 and 3 in the same manner as Production Example 1, except that the amount and the addition amount of the high heat-resistant resin fine particles as solids were changed as shown in Table 1. (Black) Toner 3 was produced.
 製造例4~6
 製造例1のBk(ブラック)トナー母粒子1分散液の調製工程(凝集工程)において、重合体一次粒子の固形分としての添加量、顔料分散液の種類、顔料部数(固形分として)、一次凝集終了後の重合体一次粒子の固形分としての添加量、高耐熱樹脂微粒子の固形分としての添加量を表1記載の通りに変更したこと以外は、製造例1と同様にして、製造例4~6に示すMa(マゼンタ)トナー1~3を製造した。
 但し、製造例6のMa(マゼンタ)トナー3のみ、凝集工程において、円形度が0.965に到達した後にすみやかに30℃まで冷却し、外添工程において、Ma(マゼンタ)トナー母粒子3を100部に対し、粒径110nmのシリカ3部、粒径30nmのシリカ1部、粒径15nmのチタニア0.4部、粒径10nmのシリカ0.4部を添加し、5500rpmで10分間撹拌・混合して篩別することによりMa(マゼンタ)トナー3を得た。
Production Examples 4-6
In the preparation step (aggregation step) of the Bk (black) toner mother particle 1 dispersion in Production Example 1, the amount of the polymer primary particles added as the solid content, the type of the pigment dispersion, the number of pigment parts (as the solid content), the primary Production Example as in Production Example 1 except that the addition amount as the solid content of the polymer primary particles after completion of the aggregation and the addition amount as the solid content of the high heat-resistant resin fine particles were changed as shown in Table 1. Ma (magenta) toners 1 to 3 shown in 4 to 6 were produced.
However, only the Ma (magenta) toner 3 of Production Example 6 was immediately cooled to 30 ° C. after the circularity reached 0.965 in the aggregation step, and the Ma (magenta) toner mother particles 3 were removed in the external addition step. 100 parts of silica with a particle size of 110 nm, 1 part of silica with a particle diameter of 30 nm, 0.4 part of titania with a particle diameter of 15 nm, 0.4 part of silica with a particle diameter of 10 nm are added and stirred at 5500 rpm for 10 minutes. By mixing and sieving, Ma (magenta) toner 3 was obtained.
 高耐熱樹脂微粒子がトナー母粒子を被覆する(トナー母粒子は5.6μmと仮定)被覆率、凝集工程での一次凝集温度・最終円形化温度、トナー母粒子を外添したトナーの体積中位径(Dv50)、個数中位径(Dn50)、粒子径分布(Dv50/Dn50)、平均円形度も表1に示す。
 更に、製造例1~6で得られたトナーについて以下の方法でTP1及びTP2を測定し、TP2の値をTP1で除すことによりTP2/TP1を求め表1に示す。
High heat-resistant resin fine particles coat the toner base particles (the toner base particles are assumed to be 5.6 μm). Table 1 also shows the diameter (Dv 50 ), the number median diameter (Dn 50 ), the particle size distribution (Dv 50 / Dn 50 ), and the average circularity.
Further, TP1 and TP2 of the toners obtained in Production Examples 1 to 6 were measured by the following method, and TP2 / TP1 was obtained by dividing the value of TP2 by TP1, and is shown in Table 1.
 [TP2とTP1の測定方法とTP2/TP1の定義]
 レオメーターで測定されるTP2/TP1は以下の手順で求めた。
 測定装置は、TA Instruments製、レオメーターARES(測定制御ソフトウェアTA Orchestrator V7.2.0.2)を用い、以下の方法で測定を行った。
[Measurement method of TP2 and TP1 and definition of TP2 / TP1]
TP2 / TP1 measured with a rheometer was determined by the following procedure.
The measurement was performed by the following method using a rheometer ARES (measurement control software TA Orchestrator V7.2.0.2) manufactured by TA Instruments.
 <8mm円筒ペレット測定>
 サンプル約0.3gを8mm径用の治具に入れ、50℃に加熱したプレス機((株)小平製作所製 5トンプレス PE-5Y)によって型締力1.25トン(ゲージ25kg/cm)で15分間加圧し、ペレットに成型した。本発明において、これを「成型体」と略記する場合がある。
<8mm cylindrical pellet measurement>
About 0.3 g of a sample was put in a jig for 8 mm diameter, and the clamping force was 1.25 tons (gauge 25 kg / cm 2 ) by a press machine (5 ton press PE-5Y manufactured by Kodaira Seisakusho Co., Ltd.). ) For 15 minutes and molded into pellets. In the present invention, this may be abbreviated as “molded body”.
 測定に使用するアルミニウム製8mmディスポーザブルプレート表面には、格子状に縦横各12本、開口部の幅50~100μm、深さ1~10μm(平均3~5μm)の傷を形成しておいた。 On the surface of an aluminum 8 mm disposable plate used for the measurement, scratches were formed in a lattice shape with 12 in each direction, width and width of the opening 50 to 100 μm, and depth 1 to 10 μm (average 3 to 5 μm).
 1回目昇温測定:ペレット(成型体)を上下直径8mmの円形パラレルプレートを装着した測定装置にセットし、40℃に昇温した状態で上部プレートを下げてフォース‘Force’を200gに調整した後、以下の条件で測定した。 First temperature rise measurement: The pellet (molded body) was set in a measuring apparatus equipped with a circular parallel plate having an upper and lower diameter of 8 mm, and the upper plate was lowered while the temperature was raised to 40 ° C. to adjust the force “Force” to 200 g. Then, it measured on condition of the following.
  治具コンプライアンス ‘Fixture   compliance’ 0
   プレート慣性 ‘Tool inertia’ 0
   測定周波数 ‘Frequency’   6.28rad/sec
   初期温度 ‘Initial Temp.’   40.0℃
   最終温度 ‘Final Temp.’   120.0℃
   昇温速度 ‘Ramp Rate’ 4.0℃/min
   昇温後保持時間 ‘Soak Time   After Ramp’ 20s(秒)
   測定サイクル時間 ‘Time Per   Measure’ 10s(秒)
   歪み ‘Strain’ 0.025%
   オプション ‘Option’
   初期温度到達後測定前保持時間 ‘Delay   Before Test’ 非設定
   自動テンション調整 ‘Auto Tension   Adjustment’
   自動テンション調整 ‘Auto Tension   Adjustment’ 設定
   自動テンション方向 ‘Auto Tension   Direction’ Compression (圧縮)
   初期フォース ‘Initial Static   Force’ 204.0g
   自動テンション感度 ‘Auto Tension   Sensitivity’ 2.0g
   自動テンション切り替え ‘Switch Auto   Tension to Programmed Extension’
   サンプル弾性率設定 ‘When Sample   Modulus’ < 3.00e+05Pa
   最大自動テンション速度 ‘Max Auto   Tension Rate’ 0.01mm/s(mm毎秒)
   自動歪み調整 ‘Auto Strain   Adjustment’
   自動歪み調整 ‘Auto Strain’ 設定
   最大歪み ‘Max Applied   Strain’ 40.0%
   最大許容トルク ‘Max Allowed   Torque’ 100.0gf・cm
   最小許容トルク ‘Min Allowed   Torque’ 0.2gf・cm
   歪み調整 ‘Strain Adjustment’   20.0%
   測定終了時設定 ‘End of Test’
   温度制御オフ ‘Turn OFF Temp   Controller’ No
   測定終了後温度設定 ‘Set End of   Test Temp’ Yes
   測定終了後温度 ‘Set End of   Test Temp to’ 40.0℃
   モーターオフ ‘Turn OFF Motor’   No
   ホールド ‘Turn Hold ON’ Yes
Fixture compliance 'Fixture compliance' 0
Plate inertia 'Tool inertia' 0
Measurement frequency 'Frequency' 6.28rad / sec
Initial temperature 'Initial Temp.' 40.0 ℃
Final temperature 'Final Temp.' 120.0 ℃
Temperature rising rate 'Ramp Rate' 4.0 ℃ / min
Holding time after temperature rise 'Soak Time After Ramp' 20s (seconds)
Measurement cycle time 'Time Per Measure' 10s (seconds)
Strain 'Strain' 0.025%
Option 'Option'
Holding time before measurement after reaching initial temperature 'Delay Before Test' Not set Automatic tension adjustment 'Auto Tension Adjustment'
Automatic tension adjustment 'Auto Tension Adjustment' setting Automatic tension direction 'Auto Tension Direction' Compression
Initial Force 'Initial Static Force' 204.0g
Automatic tension sensitivity 'Auto Tension Sensitivity' 2.0g
Automatic tension switching 'Switch Auto Tension to Programmed Extension'
Sample modulus setting 'When Sample Modulus'<3.00e + 05Pa
Maximum automatic tension rate 'Max Auto Tension Rate' 0.01mm / s (mm per second)
Automatic strain adjustment 'Auto Strain Adjustment'
Automatic strain adjustment 'Auto Strain' setting Maximum strain 'Max Applied Strain' 40.0%
Maximum allowable torque 'Max Allowed Torque' 100.0gf ・ cm
Minimum allowable torque 'Min Allowed Torque' 0.2gf ・ cm
Distortion adjustment 'Strain Adjustment' 20.0%
Measurement end setting 'End of Test'
Temperature control off 'Turn OFF Temp Controller' No
Set temperature after measurement 'Set End of Test Temp' Yes
Temperature after measurement 'Set End of Test Temp to' 40.0 ℃
Motor off 'Turn OFF Motor' No
Hold 'Turn Hold ON' Yes
 2回目昇温測定:40℃まで温度が下がったら、1回目と同じ条件で2回目昇温時の測定を行った。ただし測定終了時の設定は以下の通りとした。1回目の測定が終了したら、自動的に空冷し、40℃になった時点で、ペレット(成型体)を取り出さず、直ぐに2回目昇温時の測定を開始した。 Second temperature increase measurement: When the temperature decreased to 40 ° C., the second temperature increase measurement was performed under the same conditions as the first time. However, the settings at the end of measurement were as follows. When the first measurement was completed, the system was automatically air-cooled. When the temperature reached 40 ° C., the pellet (molded body) was not taken out, and the measurement at the second temperature increase was started immediately.
  測定終了時設定 ‘End of Test’
  温度制御オフ ‘Turn OFF Temp   Controller’ No
   測定終了後温度設定 ‘Set End of Test   Temp’ Yes
   測定終了後温度 ‘Set End of   Test Temp to’ 120.0℃
   モーターオフ ‘Turn OFF Motor’   No
   ホールド ‘Turn Hold ON’ No
Measurement end setting 'End of Test'
Temperature control off 'Turn OFF Temp Controller' No
Set temperature after measurement 'Set End of Test Temp' Yes
Temperature after measurement 'Set End of Test Temp to' 120.0 ℃
Motor off 'Turn OFF Motor' No
Hold 'Turn Hold ON' No
 1回目昇温測定で得られた損失弾性率(G”)を貯蔵弾性率(G’)で除すことによりtanδ(=G”/G’)を求め、40℃~80℃の範囲に現れるtanδの極大値TP1(図2参照)を求めた。
 同様に、2回目測定の40℃~80℃の範囲に現れるtanδの極大値TP2(図2参照)を求め、TP2をTP1で除すことにより、TP2/TP1を求めた。また、製造例で得られたトナーについて以下の方法でTgを測定し、表1、表4に記載した。
By dividing the loss elastic modulus (G ″) obtained by the first temperature rise measurement by the storage elastic modulus (G ′), tan δ (= G ″ / G ′) is obtained and appears in the range of 40 ° C. to 80 ° C. The maximum value TP1 (see FIG. 2) of tan δ was determined.
Similarly, the maximum value TP2 (see FIG. 2) of tan δ appearing in the range of 40 ° C. to 80 ° C. in the second measurement was obtained, and TP2 / TP1 was obtained by dividing TP2 by TP1. Further, Tg of the toner obtained in the production example was measured by the following method and listed in Tables 1 and 4.
 [Tgの測定と定義]
 示差走査熱量計(DSC)によるTg測定は、ティー・エイ・インスツルメント社のQ20を用い、次の通り行った。
 トナー3±1mgをアルミニウム製パンに入れて0.1mgの桁まで精秤し、酸化アルミニウム3mgを充填したアルミニウム製パンをリファレンスとして、窒素気流中、0℃から120℃まで10℃/分で昇温した。
 120℃にて10分間保持した後、10℃/分で0℃まで降温し、5分間保持した後に10℃/分で再び120℃まで昇温した。
[Measurement and definition of Tg]
Tg measurement by a differential scanning calorimeter (DSC) was performed as follows using Q20 manufactured by TA Instruments.
3 ± 1 mg of toner is put in an aluminum pan and precisely weighed to the order of 0.1 mg. The aluminum pan filled with 3 mg of aluminum oxide is used as a reference, and the temperature is increased from 0 ° C. to 120 ° C. at 10 ° C./min. Warm up.
After holding at 120 ° C. for 10 minutes, the temperature was lowered to 0 ° C. at 10 ° C./minute, held for 5 minutes, and then heated again to 120 ° C. at 10 ° C./minute.
 2回目昇温時の吸熱ピーク前のベースラインと、吸熱ピーク開始後30~55℃に現れる最初の変曲点における接線の交点の温度をガラス転移温度(Tg)とした。
 なお、重合一次体粒子、高耐熱樹脂微粒子の試料が水分散体の場合のTgは、凍結乾燥して水分を除去してから上記方法で測定した。
The glass transition temperature (Tg) was defined as the temperature at the intersection of the baseline before the endothermic peak at the second temperature rise and the tangent at the first inflection point appearing at 30 to 55 ° C. after the end of the endothermic peak.
The Tg when the sample of the polymerized primary particles and the high heat-resistant resin fine particles was an aqueous dispersion was measured by the above method after freeze-drying to remove moisture.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1
 BkトナーとMaトナーの組み合わせた際の、各々のトナーのTP2/TP1の値、BkトナーのTP2/TP1値をMaトナーのTP2/TP1値で除した値である「Bk(TP2/TP1)/Ma(TP2/TP1)」、各々のトナーの耐プロキング性Aとしての崩壊荷重・判定・点数、及び、BkトナーとMaトナーの組み合わせとしての点数、定着試験Aとして残存率・判定・点数、並びに、耐ブロッキング性Aの組み合わせ点数に定着試験Aの点数に加えたものを総合点数Aとして、総合点数Aにより以下の総合判定Aを実施し表2に示した。但し、耐ブロッキング性A及び定着試験Aの各色の評価において、1項目でも「×」(0点)と判定される項目がある場合、トナーセットして実使用に耐えないため総合点数Aは0点とした。
Example 1
“Bk (TP2 / TP1) /” is a value obtained by dividing the TP2 / TP1 value of each toner and the TP2 / TP1 value of the Bk toner by the TP2 / TP1 value of the Ma toner when the Bk toner and the Ma toner are combined. Ma (TP2 / TP1) ", the collapse load / determination / score as a proking resistance A of each toner, the score as a combination of Bk toner and Ma toner, the remaining rate / determination / score as a fixing test A, In addition, the total score A was obtained by adding the combination score of blocking resistance A to the score of the fixing test A, and the following comprehensive judgment A was performed based on the total score A. The results are shown in Table 2. However, in the evaluation of each color of the blocking resistance A and the fixing test A, if there is an item determined to be “×” (0 points) even in one item, the total score A is 0 because the toner cannot be set and withstand actual use. Points.
 [総合判定A]
  総合点数Aが10点未満       :×(実使用不能、不合格)
  総合点数Aが10点以上15点未満  :△(実使用可能、合格)
  総合点数Aが15点以上18点未満  :○(実使用可能、好ましい範囲で合格)
  総合点数Aが18点以上       :◎(実使用可能、更に好ましい範囲で合格)
[Comprehensive judgment A]
The total score A is less than 10 points: × (actually unavailable, rejected)
Total score A is 10 points or more and less than 15 points: △ (actual use, pass)
The total score A is 15 points or more and less than 18 points: ○ (Actual use possible, pass in the preferred range)
The total score A is 18 points or more: ◎ (Available, pass within a more preferable range)
 なお、耐ブロッキング性Aと定着試験Aは以下の様に実施し、判定・点数付した。 In addition, the blocking resistance A and the fixing test A were carried out as follows, and were judged and scored.
 [耐ブロッキング性Aの測定方法]
 トナー10gを内径3cm、高さ6cmの円筒形の容器に入れ、20gの荷重をのせ、温度50℃、湿度55%の環境下に48時間放置した後、トナーを容器から取り出し、上から荷重をかけることで凝集の程度を確認した。
 その崩壊荷重について表2に記載し、更に、以下の判定基準で判定し、結果を表2に記載した。
[Measurement method of blocking resistance A]
10 g of toner is put in a cylindrical container having an inner diameter of 3 cm and a height of 6 cm, and a load of 20 g is put on it and left in an environment of a temperature of 50 ° C. and a humidity of 55% for 48 hours, and then the toner is taken out of the container and the load is applied from above. The degree of aggregation was confirmed by applying.
The collapse load is described in Table 2, and further judged according to the following criteria, and the results are shown in Table 2.
 [耐ブロッキング性Aの判定基準と点数付]
  1800gを超える荷重をかけないと崩れない :×
    (0点 実使用不能、不合格)
  1300gを超え1800g以下の荷重で崩れる:○
    (3点 実使用可能、合格)
  1300g以下の荷重で崩れる        :◎
    (5点 好ましい範囲で合格)
[Judgment criteria and points for blocking resistance A]
It will not collapse unless a load exceeding 1800 g is applied: ×
(0 points cannot be used or rejected)
It collapses with a load exceeding 1300 g and not exceeding 1800 g:
(3 points available, pass)
Collapses with a load of 1300 g or less: ◎
(5 points pass in the preferred range)
 [組み合わせ点数の点数付]
 組み合わせ点数は、BkトナーとMaトナーの点数を合計することにより求めたが、どちらか一方が0点の場合は、一色でも実使用不能で不合格な場合、同一セットとしての組み合わせとして実使用不能となるので0点とした。
[Combined score]
The combination score was obtained by summing the scores of Bk toner and Ma toner. If either one is 0, even if one color is not usable or rejected, it cannot be used as a combination as the same set. Therefore, the score was 0.
 [定着試験Aの測定方法]
 以下の方法で定着性Aを測定・判定・点数付した。
 トナー10部と体積平均粒径35μmフェライトキャリア100部とを撹拌・混合し現像剤を得た。この現像剤を非磁性二成分(有機感光体使用)現像方式、ローラー(PCR)帯電、マグローラー現像方式、現像速度 A4横換算50枚/分、4色タンデム方式、IH定着器を有する市販のフルカラープリンターに用いて各色が単色で印字され、画像濃度が1.7程度になる画像を印刷した。
[Measurement Method of Fixing Test A]
The fixability A was measured, judged and scored by the following method.
A developer was obtained by stirring and mixing 10 parts of toner and 100 parts of a ferrite carrier having a volume average particle size of 35 μm. This developer is a non-magnetic two-component (using organic photoreceptor) development method, roller (PCR) charging, mag roller development method, development speed A4 horizontal conversion 50 sheets / minute, 4-color tandem method, commercially available with IH fixing device Using a full-color printer, each color was printed as a single color, and an image with an image density of about 1.7 was printed.
 得られた定着画像面に対して、メンディングテープ(住友スリーエム株式会社製)を用いて剥離テストを実施し、剥離前後の画像濃度を剥離前の画像濃度で除し100を乗ずることで定着残存率(%)とした。つまりこの残存率の数字が大きい程、定着強度が強く好ましいトナーとなることを示す。 The obtained fixed image surface is subjected to a peeling test using a mending tape (manufactured by Sumitomo 3M Co., Ltd.), the image density before and after peeling is divided by the image density before peeling and multiplied by 100 to remain fixed. Rate (%). That is, the larger the remaining ratio number, the stronger the fixing strength and the better the toner.
 [定着試験Aの判定基準と点数付]
  残存率20%未満     :×(実使用不能 不合格 0点)
  残存率20%以上30%未満:△(実使用可能 合格 2点)
  残存率30%以上40%未満:○(実使用可能 好ましい範囲で合格 3点)
  残存率40%以上     :◎(実使用可能 更に好ましい範囲で合格 5点)
[Judgment criteria and points for fixing test A]
Remaining rate less than 20%: × (actual use failure 0 points)
Remaining rate 20% or more and less than 30%: △ (Acceptable use 2 points)
Residual rate of 30% or more and less than 40%: ○ (Acceptable 3 acceptable points for actual use)
Residual rate 40% or more: ◎ (Acceptable 5 points in a more preferable range)
 実施例2~4及び比較例1~3も、BkトナーとMaトナーの組み合わせを変更したこと以外は実施例1と同様に評価・判定・点数付を行った。その結果を表2に示した。 Examples 2 to 4 and Comparative Examples 1 to 3 were also evaluated, judged and scored in the same manner as in Example 1 except that the combination of Bk toner and Ma toner was changed. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [推算例1と2の説明]
 図3には、同じ外添をしたBkトナー1~3並びにMaトナー1及び2の、耐ブロッキング性(崩壊荷重)とTP2/TP1の関係を示し、図3中に各色のトナー毎のデータについて最小二乗法を用い一次線形式で表した回帰式を示す。図3において、崩壊荷重が合格となる1800g以下となるBkトナーのTP2/TP1は、その回帰式より1.45以上であり、崩壊荷重が好ましい範囲で合格となる1300g以下となるBkトナーのTP2/TP1は、その回帰式より1.52以上であることが解り、更に、崩壊荷重が合格となる1800g以下となるMaトナーのTP2/TP1は、その回帰式より1.22以上であり、崩壊荷重が好ましい範囲で合格となる1300g以下となるMaトナーのTP2/TP1は、その回帰式より1.32以上であることが解る。
[Explanation of Estimation Examples 1 and 2]
FIG. 3 shows the relationship between blocking resistance (collapse load) and TP2 / TP1 for Bk toners 1 to 3 and Ma toners 1 and 2 having the same external addition. FIG. 3 shows data for each color toner. The regression equation expressed in a linear form using the least square method is shown. In FIG. 3, the TP2 / TP1 of the Bk toner with a collapse load of 1800 g or less that is acceptable is 1.45 or more from the regression equation, and the TP2 of the Bk toner that has a collapse load of 1300 g or less with a preferable range. / TP1 is found to be 1.52 or more from the regression equation, and further, TP2 / TP1 of Ma toner having a collapse load of 1800 g or less that passes is 1.22 or more from the regression equation. It can be seen from the regression equation that the TP2 / TP1 of the Ma toner that is 1300 g or less that passes the load in the preferred range is 1.32 or more.
 図4には、同じ外添をしたBkトナー1~3並びにMaトナー1及び2の、定着性(残存率)とTP2/TP1の関係を示し、図4中に各色のトナー毎のデータについて最小二乗法を用い一次線形式で表した回帰式を示す。
 図4において、定着性の指標である残存率が合格となる20%以上となるBkトナーのTP2/TP1は、その回帰式より1.77以下であり、崩壊荷重が好ましい範囲で合格となる30%以上となるBkトナーのTP2/TP1は、1.69以下であり、崩壊荷重が更に好ましい範囲で合格となる40%以上となるBkトナーのTP2/TP1は、1.60以下であり、更に、残存率が合格となる20%以上となるMaトナーのTP2/TP1は、その回帰式より1.62以下であり、崩壊荷重が好ましい範囲で合格となる30%以上となるBkトナーのTP2/TP1は、1.54以下であり、崩壊荷重が更に好ましい範囲で合格となる40%以上となるBkトナーのTP2/TP1は、1.46以下であることも解る。
FIG. 4 shows the relationship between fixability (residual rate) and TP2 / TP1 of Bk toners 1 to 3 and Ma toners 1 and 2 with the same external addition. FIG. 4 shows the minimum data for each color toner. The regression equation expressed in a linear form using the square method is shown.
In FIG. 4, TP2 / TP1 of Bk toner having a remaining rate of 20% or more, which is an index of fixability, is 1.77 or less from the regression equation, and the collapse load is acceptable within a preferable range. TP2 / TP1 of the Bk toner that is at least% is 1.69 or less, and TP2 / TP1 of the Bk toner that is 40% or more that is acceptable in a more preferable range is 1.60 or less. The TP2 / TP1 of the Ma toner with a remaining rate of 20% or more that passes is 1.62 or less from the regression equation, and the TP2 / TP1 of the Bk toner that passes 30% or more with a collapse load within a preferable range. It can also be seen that TP1 is 1.54 or less, and TP2 / TP1 of Bk toner with a collapse load of 40% or more that passes within a more preferable range is 1.46 or less.
 これらの関係より、BkトナーのTP2/TP1は1.45以上1.77以下であることが望ましく、そのTP2/TP1の上限下限の中央値は1.61となる。この1.61のトナーを仮定したものを、Bkトナー[4]とする。更に、これと組み合わせるMaトナーにおいて耐ブロッキング性の指標である崩壊荷重が1800gを超えて不合格となる、最少のTP2/TP1値(1.21)を持つMaトナーをMaトナー[4]とし、Bkトナー[4]との組み合わせとしたものが、表3における推算例1である。 From these relationships, the TP2 / TP1 of the Bk toner is preferably 1.45 or more and 1.77 or less, and the median of the upper and lower limits of the TP2 / TP1 is 1.61. This toner assuming 1.61 toner is referred to as Bk toner [4]. Further, the Ma toner having the minimum TP2 / TP1 value (1.21), in which the collapsing load, which is an index of anti-blocking property, exceeds 1800 g and is rejected in the Ma toner combined therewith is defined as Ma toner [4]. A combination with Bk toner [4] is estimation example 1 in Table 3.
 更に、Bkトナー[4]とこれと組み合わせるMaトナーにおいて耐ブロッキング性の指標である崩壊荷重が1800g以下となる最大のTP2/TP1値(1.22)を持つMaトナーをMaトナー[5]とし、Bkトナー[4]との組み合わせとしたものが、表3における推算例2である。
 表3に示した推算例1と2より、BkトナーのTP2/TP1をMaトナーのTP2/TP1で除した値が、1.32以下になる場合にBkトナーもMaトナーも耐ブロッキング性と定着試験を双方満足することが解る。
Further, the Ma toner having the maximum TP2 / TP1 value (1.22) at which the collapse load, which is an index of anti-blocking property, is 1800 g or less in the Ma toner combined with the Bk toner [4] is defined as Ma toner [5]. A combination with Bk toner [4] is an estimation example 2 in Table 3.
From estimation examples 1 and 2 shown in Table 3, when the value obtained by dividing TP2 / TP1 of Bk toner by TP2 / TP1 of Ma toner is 1.32 or less, both Bk toner and Ma toner have blocking resistance and fixing. It turns out that both tests are satisfied.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 <結果>
 表2から、実施例1~4のBkトナーとMaトナーの組み合わせでは、総合判定が「◎」、「○」であり、耐ブロッキング性が良好のまま、定着試験の結果も良好であったが(耐ブロッキング性と低温定着性を双方のトナーとも両立できたが)、比較例1~3のトナーでは、それをなし得ていないことが解る。
<Result>
From Table 2, in the combination of Bk toner and Ma toner of Examples 1 to 4, the overall judgment was “◎” and “○”, and the anti-blocking property was good and the result of the fixing test was also good. (Although both the blocking resistance and the low-temperature fixability were compatible with both toners), it can be seen that the toners of Comparative Examples 1 to 3 could not achieve this.
 製造例11
 <Ma(マゼンタ)トナー母粒子11分散液の調製:凝集工程>
 撹拌装置、加熱冷却装置、及び各原料・助剤仕込み装置を備えた混合器に、上記で得られた重合体一次粒子90.2部(固形分として)、20%DBS水溶液0.45部、脱イオン水75.8部、5%硫酸鉄(II)七水和物水溶液11.5部、Ma色着色剤分散液6.38部(固形分として)を撹拌しながら順に添加して均一に混合した。
Production Example 11
<Preparation of Ma (Magenta) Toner Base Particle 11 Dispersion: Aggregation Step>
In a mixer equipped with a stirrer, a heating / cooling device, and each raw material / auxiliary charging device, 90.2 parts (as solids) of the polymer primary particles obtained above, 0.45 part of a 20% DBS aqueous solution, Add 75.8 parts of deionized water, 11.5 parts of 5% iron (II) sulfate heptahydrate aqueous solution, 6.38 parts of Ma colorant dispersion (as solids) in order and stir uniformly. Mixed.
 その後、内温を40℃まで昇温し、更に体積中位径が5.5μmになるまで段階的に昇温した。この温度(一次凝集温度)は44℃であった。
 すみやかに一次凝集温度より1℃温度を下げると同時に重合体一次粒子10.0部(固形分として)を添加した。180分後、高耐熱樹脂微粒子2.18部(固形分として)を添加した。30分後、20%DBS水溶液20.1部と脱イオン水22.9部を添加してから、50分かけて65℃まで昇温し、その後円形度が0.975になるまで段階的に昇温した。円形度が0.975に到達した時の温度(最終円形化温度)は、71℃であった。その後、すみやかに30℃まで冷却し、Ma(マゼンタ)トナー母粒子11分散液を得た。
Thereafter, the internal temperature was raised to 40 ° C., and the temperature was raised stepwise until the volume median diameter became 5.5 μm. This temperature (primary aggregation temperature) was 44 ° C.
As soon as the temperature was lowered by 1 ° C. from the primary aggregation temperature, 10.0 parts of polymer primary particles (as a solid content) were added. After 180 minutes, 2.18 parts (as solid content) of high heat-resistant resin fine particles were added. After 30 minutes, 20.1 parts of 20% DBS aqueous solution and 22.9 parts of deionized water were added, and then the temperature was raised to 65 ° C. over 50 minutes, and then stepwise until the circularity reached 0.975. The temperature rose. The temperature when the circularity reached 0.975 (final circularization temperature) was 71 ° C. Thereafter, it was immediately cooled to 30 ° C. to obtain a Ma (magenta) toner mother particle 11 dispersion.
 <Ma(マゼンタ)トナー母粒子11の作製:洗浄・乾燥工程>
 得られたトナー母粒子11分散液を抜き出し、5種C(東洋濾紙社(株)製、No.5C)の濾紙を用いてアスピレーターにより吸引濾過した。濾紙上に残ったケーキを、撹拌機(プロペラ翼)を備えたステンレス容器に移し、電気伝導度が1μS/cmのイオン交換水を加え撹拌することにより均一に分散させ、その後30分間撹拌した。
 この工程をろ液の電気伝導度が2μS/cmになるまで繰り返した後、得られたケーキを、40℃に設定された送風乾燥機内で48時間乾燥することにより、Ma(マゼンタ)トナー母粒子11を得た。
<Preparation of Ma (Magenta) Toner Base Particles 11: Cleaning and Drying Step>
The obtained toner mother particle 11 dispersion was extracted, and suction filtered with an aspirator using 5 types C (manufactured by Toyo Roshi Kaisha, Ltd., No. 5C) filter paper. The cake remaining on the filter paper was transferred to a stainless steel container equipped with a stirrer (propeller blade), and ion-exchanged water having an electric conductivity of 1 μS / cm was added and stirred uniformly, and then stirred for 30 minutes.
After repeating this process until the electric conductivity of the filtrate reaches 2 μS / cm, the obtained cake is dried in an air dryer set at 40 ° C. for 48 hours to obtain Ma (magenta) toner base particles. 11 was obtained.
 <Ma(マゼンタ)トナー11の製造:外添工程>
 上記で得られたMa(マゼンタ)トナー母粒子11(100部)に対し、ポリマー/シリカ複合体粒子(ATLAS100:キャボット社製:シリカ/ポリマー比=70/30、真比重=1.7g/cm)、オクタヒドロペンタレン含有)を4部、チタニアとシリカ複合酸化物粒子(STX501:日本アエロジル(株)製)を0.5部、小粒径シリカ(RY200L:日本アエロジル(株)製)を0.4部添加し、ヘンシェルミキサーにて、3000rpmで15分間撹拌・混合して篩別することによりMa(マゼンタ)トナー11を得た。
<Manufacture of Ma (Magenta) Toner 11: External Addition Step>
Polymer / silica composite particles (ATLAS100: manufactured by Cabot Corporation: silica / polymer ratio = 70/30, true specific gravity = 1.7 g / cm) with respect to Ma (magenta) toner base particles 11 (100 parts) obtained above. 3 ), 4 parts of octahydropentalene), 0.5 part of titania and silica composite oxide particles (STX501: manufactured by Nippon Aerosil Co., Ltd.), small particle size silica (RY200L: manufactured by Nippon Aerosil Co., Ltd.) Was added, and the mixture was stirred and mixed at 3000 rpm for 15 minutes with a Henschel mixer and sieved to obtain Ma (magenta) toner 11.
 製造例12
 製造例11のMa(マゼンタ)トナー母粒子11分散液の調製工程(凝集工程)において、表4に記載する、重合体一次粒子の固形分としての添加量、一次凝集終了後の重合体一次粒子の固形分としての添加量、高耐熱樹脂微粒子の固形分としての添加量に設定して、被覆率を表4記載の通りに変更したこと以外は、製造例11と同様にして、製造例12に示す、Maトナー12を製造した。
Production Example 12
In the preparation step (aggregation step) of the Ma (magenta) toner base particle 11 dispersion in Production Example 11, the addition amount as the solid content of the polymer primary particles described in Table 4, the polymer primary particles after the completion of the primary aggregation Production Example 12 in the same manner as in Production Example 11 except that the addition amount as a solid content and the addition amount as a solid content of the high heat-resistant resin fine particles were changed and the coverage was changed as shown in Table 4. Ma toner 12 shown in FIG.
 製造例13及び製造例14
 Ma(マゼンタ)トナー母粒子11分散液の調製工程(凝集工程)において、重合体一次粒子の固形分としての添加量、顔料分散液種、固形分としての顔料部数、一次凝集終了後重合体一次粒子の固形分としての添加量、高耐熱樹脂微粒子の固形分としての添加量、高耐熱樹脂微粒子がトナー母粒子を被覆する(トナー母粒子は5.6μmと仮定)被覆率を表4記載の通りに変更したこと以外は、製造例11と同様にして、製造例13及び14に示す、Cy(シアン)トナー11及び12を製造した。
 なお、顔料分散液種には、Cy(シアン)色着色剤分散液として、大日精化工業株式会社製 EP700(PB15:3、銅フタロシアニン顔料、顔料濃度24.0%、固形分34.3%)を使用した。
Production Example 13 and Production Example 14
In the preparation process (aggregation process) of the Ma (magenta) toner base particle 11 dispersion, the amount of the polymer primary particles added as the solid content, the pigment dispersion liquid type, the number of pigments as the solid content, and the primary polymer after completion of the primary aggregation The amount of addition as a solid content of the particles, the addition amount as a solid content of the high heat resistant resin fine particles, and the high heat resistant resin fine particles coat the toner base particles (the toner base particles are assumed to be 5.6 μm). Cy (cyan) toners 11 and 12 shown in Production Examples 13 and 14 were produced in the same manner as in Production Example 11 except that the procedure was changed as described above.
In addition, as a pigment dispersion liquid type, as a Cy (cyan) colorant dispersion liquid, Daiichi Seika Kogyo Co., Ltd. EP700 (PB15: 3, copper phthalocyanine pigment, pigment concentration 24.0%, solid content 34.3%) )It was used.
 製造例15及び製造例16
 Ma(マゼンタ)トナー母粒子11分散液の調製工程(凝集工程)において、重合体一次粒子の固形分としての添加量、顔料分散液種、固形分としての顔料部数、一次凝集終了後重合体一次粒子の固形分としての添加量、高耐熱樹脂微粒子の固形分としての添加量、高耐熱樹脂微粒子がトナー母粒子を被覆する(トナー母粒子は5.6μmと仮定)被覆率を表4記載の通りに変更したこと以外は、製造例11と同様にして、製造例15及び16に示す、Ye(イエロー)トナー11及び12を製造した。
 なお、顔料分散液種には、Ye(イエロー)色着色剤分散液として、以下の様に調製した分散液を使用した。
Production Example 15 and Production Example 16
In the preparation process (aggregation process) of the Ma (magenta) toner base particle 11 dispersion, the amount of the polymer primary particles added as the solid content, the pigment dispersion liquid type, the number of pigments as the solid content, and the primary polymer after completion of the primary aggregation The amount of addition as a solid content of the particles, the addition amount as a solid content of the high heat resistant resin fine particles, and the high heat resistant resin fine particles coat the toner base particles (the toner base particles are assumed to be 5.6 μm). Ye (yellow) toners 11 and 12 shown in Production Examples 15 and 16 were produced in the same manner as in Production Example 11 except that the procedure was changed as described above.
For the pigment dispersion type, a dispersion prepared as follows was used as the Ye (yellow) colorant dispersion.
 <Ye(イエロー)色着色剤分散液の調製>
 撹拌機(プロペラ翼)を備えた内容積300Lの容器に、PY-74として2-[(2-メトキシ-4-ニトロフェニル)アゾ]-N-(2-メトキシフェニル)-3-オキソブタンアミドを32部(64kg)、20%のドデシルベンゼンスルホン酸ナトリウム水溶液1.0部、HLB15.3のポリオキシエチレンラウリルエーテル5.5部、及び、電気伝導度が1.5μS/cm以下のイオン交換水61.5部を加えて予備分散して顔料プレミックス液を得た。
<Preparation of Ye (yellow) colorant dispersion>
2-[(2-methoxy-4-nitrophenyl) azo] -N- (2-methoxyphenyl) -3-oxobutanamide as PY-74 in a 300 L internal volume container equipped with a stirrer (propeller blade) 32 parts (64 kg), 1.0 part of 20% sodium dodecylbenzenesulfonate aqueous solution, 5.5 parts of polyoxyethylene lauryl ether of HLB15.3, and ion exchange with an electric conductivity of 1.5 μS / cm or less 61.5 parts of water was added and predispersed to obtain a pigment premix solution.
 上記顔料プレミックス液を原料スラリーとして湿式ビーズミルに供給し、循環分散を行った。なお、ステータの内径はφ75mm、セパレータの径がφ60mm、セパレータとディスク間の間隔は15mmとし、分散用のメディアとして直径が50μmのジルコニアビーズ(真密度6.0g/cm)を用いた。ステータの有効内容積は0.5Lであり、メデイアの充填容積は0.35Lとしたので、メディア充填率は70%である。
 ロータの回転速度を一定(ロータ先端の周速が11m/秒)として、供給口より前記顔料プレミックス液を無脈動定量ポンプにより、供給速度50L/hrで連続的に供給し、排出口より連続的に排出させ、これを繰り返し循環させることにより所定の粒径に達した時点でYe(イエロー)色着色剤分散液を得た。Ye(イエロー)色着色剤分散液をナノトラックで測定した体積中位径(Dv50)は159nmであり、pHは6.6、固形分濃度は38.7質量%であった。
The pigment premix solution was supplied as a raw material slurry to a wet bead mill and circulated and dispersed. The inner diameter of the stator was φ75 mm, the separator diameter was φ60 mm, the distance between the separator and the disk was 15 mm, and zirconia beads having a diameter of 50 μm (true density of 6.0 g / cm 3 ) were used as a dispersion medium. Since the effective internal volume of the stator is 0.5 L and the filling volume of the media is 0.35 L, the media filling rate is 70%.
The rotation speed of the rotor is constant (the peripheral speed of the rotor tip is 11 m / sec), and the pigment premix liquid is continuously supplied from the supply port by a non-pulsating metering pump at a supply speed of 50 L / hr and continuously from the discharge port. The yellow (Y) colorant dispersion was obtained when a predetermined particle size was reached by repeatedly discharging and repeating this. The volume median diameter (Dv 50 ) of the Ye (yellow) colorant dispersion measured with Nanotrac was 159 nm, the pH was 6.6, and the solid content concentration was 38.7% by mass.
 製造例17~19
 Ma(マゼンタ)トナー母粒子11分散液の調製工程(凝集工程)において、重合体一次粒子の固形分としての添加量、顔料分散液種、固形分としての顔料部数、一次凝集終了後重合体一次粒子の固形分としての添加量、高耐熱樹脂微粒子の固形分としての添加量、高耐熱樹脂微粒子がトナー母粒子を被覆する(トナー母粒子は5.6μmと仮定)被覆率を表4記載の通りに変更したこと以外は、製造例11と同様にして、製造例17~19に示す、Bk(ブラック)トナー11、12及び13を製造した。
 なお、顔料分散液種には、Bk(ブラック)色着色剤分散液として、以下の様に調製した分散液を使用した。
Production Examples 17 to 19
In the preparation process (aggregation process) of the Ma (magenta) toner base particle 11 dispersion, the amount of the polymer primary particles added as the solid content, the pigment dispersion liquid type, the number of pigments as the solid content, and the primary polymer after completion of the primary aggregation The amount of addition as a solid content of the particles, the addition amount as a solid content of the high heat resistant resin fine particles, and the high heat resistant resin fine particles coat the toner base particles (the toner base particles are assumed to be 5.6 μm). Bk (black) toners 11, 12 and 13 shown in Production Examples 17 to 19 were produced in the same manner as in Production Example 11 except that the procedure was changed as described above.
As the pigment dispersion liquid type, a dispersion liquid prepared as follows was used as a Bk (black) colorant dispersion liquid.
 <Bk(ブラック)色着色剤分散液の調製>
 プロペラ翼を備えた撹拌機の容器に、三菱化学社製カーボンブラック♯44(カタログ物性:粒子径24nm、窒素吸着比表面積110m/g、着色力129%、粒状77cm/100g、揮発分0.8%、pH値8、PVC黒度10)20部、アニオン性界面活性剤(第一工業製薬社製、ネオゲンS-20D)1部、非イオン性界面活性剤(花王社製、エマルゲン120)4部、及び、導電率が1μS/cmのイオン交換水75部を加え、体積中位径Dv50は約90μmになるまで予備分散して顔料プレミックス液を得た。
<Preparation of Bk (black) colorant dispersion>
The container stirrer equipped with a propeller blade, manufactured by Mitsubishi Chemical Corporation Carbon black # 44 (catalog properties: particle size 24 nm, a nitrogen adsorption specific surface area 110m 2 / g, coloring power 129%, granular 77cm 3/100 g, volatile content 0 0.8%, pH value 8, PVC blackness 10) 20 parts, anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd., Neogen S-20D) 1 part, nonionic surfactant (Kao Co., Emulgen 120) 4 parts and 75 parts of ion-exchanged water having an electric conductivity of 1 μS / cm were added, and the mixture was predispersed until the volume median diameter Dv 50 was about 90 μm to obtain a pigment premix solution.
 前記顔料プレミックス液を原料スラリーとして湿式ビーズミルに供給し、ワンパス分散を行った。なお、ステータの内径は120mmφ、セパレータの径が60mmφ、分散用のメディアとして直径が50μmのジルコニアビーズ(真密度6.0g/cm)を用いた。ステータの有効内容積は約2Lであり、メデイアの充填容積は1.4Lとしたので、メディア充填率は70%である。 The pigment premix solution was supplied as a raw material slurry to a wet bead mill and subjected to one-pass dispersion. Note that zirconia beads (true density of 6.0 g / cm 3 ) having a diameter of 120 mmφ, a separator having a diameter of 60 mmφ, and a diameter of 50 μm were used as a dispersion medium. Since the effective internal volume of the stator is about 2L and the filling volume of the media is 1.4L, the media filling rate is 70%.
 ロータの回転速度を一定(ロータ先端の周速が約11m/sec)として、供給口より前記顔料プレミックス液を無脈動定量ポンプにより供給速度約40L/hrで供給し、排出口より製品を取得した。なお、運転時にはジャケットから約10℃の冷却水を循環させながら行い、体積中位径(Dv50)147nmであり、固形分濃度24.6%のBk(ブラック)色着色剤分散液を得た。 The rotation speed of the rotor is constant (the peripheral speed at the tip of the rotor is about 11 m / sec), and the pigment premix solution is supplied from the supply port at a supply speed of about 40 L / hr by a non-pulsating metering pump, and the product is obtained from the discharge port. did. During operation, cooling water of about 10 ° C. was circulated from the jacket to obtain a Bk (black) colorant dispersion having a volume median diameter (Dv 50 ) of 147 nm and a solid content concentration of 24.6%. .
 凝集工程での一次凝集温度・最終円形化温度、トナー母粒子を外添したトナーの体積中位径(Dv50)、個数中位径(Dn50)、粒子径分布(Dv50/Dn50)、平均円形度も表4に示す。
 更に、製造例11~19で得られたトナーについて、前記の方法でTP1及びTP2を測定し、TP2の値をTP1で除すことによりTP2/TP1を求め表4に示す。
Primary aggregation temperature / final rounding temperature in the aggregation process, volume median diameter (Dv 50 ), number median diameter (Dn 50 ), particle diameter distribution (Dv 50 / Dn 50 ) The average circularity is also shown in Table 4.
Further, for the toners obtained in Production Examples 11 to 19, TP1 and TP2 were measured by the above-described method, and TP2 / TP1 was obtained by dividing the value of TP2 by TP1, and is shown in Table 4.
 製造例11~19で得られたトナーについて、以下の方法で耐ブロッキング性Bを測定・判定・点数付し、表4に記載した。 For the toners obtained in Production Examples 11 to 19, blocking resistance B was measured, judged and scored by the following method, and listed in Table 4.
 [耐ブロッキング性Bの測定方法]
 トナー10gを内径3cm、高さ6cmの円筒形の容器に入れ、20gの荷重をのせ、温度50℃、湿度55%の環境下に48時間放置した後、トナーを容器から取り出し、上から荷重をかけることで凝集の程度を確認した。
 その崩壊荷重について表4に記載し、更に、以下の判定基準で判定及び点数付し、結果を表4に記載した。
[Measurement method of blocking resistance B]
10 g of toner is put in a cylindrical container having an inner diameter of 3 cm and a height of 6 cm, and a load of 20 g is put on it and left in an environment of a temperature of 50 ° C. and a humidity of 55% for 48 hours, and then the toner is taken out of the container and the load is applied from above. The degree of aggregation was confirmed by applying.
The collapse load is described in Table 4, and further, determined and scored according to the following criteria, and the results are shown in Table 4.
 [耐ブロッキング性Bの判定基準と点数付]
  1500gを超える荷重をかけないと崩れない :×
  (0点 3色重ね可能カラー機で実使用不能 不合格)
  1300gを超え1500g以下の荷重で崩れる:○
  (3点 3色重ね可能カラー機で実使用可能 合格)
  1300g以下の荷重で崩れる        :◎
   (5点 3色重ね可能カラー機で実使用可能 低温定着時及び高速印刷時でも合格)
[Decision criteria and points for blocking resistance B]
It will not collapse unless a load exceeding 1500 g is applied: ×
(0 points, 3 colors can be overlaid, color machine cannot be used)
It collapses with a load exceeding 1300 g and 1500 g or less:
(3 points, 3 colors can be overlaid, can be used with color machines)
Collapses with a load of 1300 g or less: ◎
(5 points can be used with a color machine that can superimpose three colors. Can be used even at low-temperature fixing and high-speed printing.)
 また、製造例11~19で得られたトナーについて、以下の方法で定着性Bを測定・判定・点数付し、表4に記載した。 The toners obtained in Production Examples 11 to 19 were measured, judged, and scored according to the following method, and listed in Table 4.
 [定着試験Bの測定方法]
 トナー10部と体積中位粒径35μmフェライトキャリア100部とを撹拌・混合し現像剤を得た。この現像剤を非磁性二成分(有機感光体使用)現像方式、ローラー(PCR)帯電、マグローラー現像方式、現像速度 A4横換算50枚/分、4色タンデム方式、IH定着器を有する市販のフルカラープリンターに用いて各色が単色で印字され、画像濃度が1.7程度になる画像を印刷した。
[Measurement method of fixing test B]
10 parts of toner and 100 parts of a volume median particle size 35 μm ferrite carrier were stirred and mixed to obtain a developer. This developer is a non-magnetic two-component (using organic photoreceptor) development method, roller (PCR) charging, mag roller development method, development speed A4 horizontal conversion 50 sheets / minute, 4-color tandem method, commercially available with IH fixing device Using a full-color printer, each color was printed as a single color, and an image with an image density of about 1.7 was printed.
 得られた定着画像面に対して、メンディングテープ(住友スリーエム株式会社製)を用いて剥離テストを実施し、剥離前後の画像濃度を剥離前の画像濃度で除し100を乗ずることで定着残存率(%)とした。つまりこの残存率の数字が大きい程、定着強度が強く好ましいトナーとなることを示す。 The obtained fixed image surface is subjected to a peeling test using a mending tape (manufactured by Sumitomo 3M Co., Ltd.), the image density before and after peeling is divided by the image density before peeling and multiplied by 100 to remain fixed. Rate (%). That is, the larger the remaining ratio number, the stronger the fixing strength and the better the toner.
 3色以上のトナーが同時に現像され、高付着量となる場合にも、低温定着性が実使用上耐え得る指標として、以下の様に判定・点数付した。
 [定着試験Bの判定基準と点数付]
  残存率35%未満     :×
    (3色重ね可能カラー機で実使用不能 不合格 0点)
   残存率35%以上45%未満:○
    (3色重ね可能カラー機で実使用可能 低温定着時でも合格 3点)
   残存率45%以上     :◎
    (3色重ね可能カラー機で実使用可能 低温定着時及び高速印刷時でも合格 5点)
Even when three or more colors of toner were developed at the same time and had a high adhesion amount, the following determination / score was given as an index that low-temperature fixability could withstand in practical use.
[Judgment criteria and points for fixing test B]
Residual rate less than 35%: ×
(Can not be used with 3 color superimposing color machines. Fail 0 points)
Remaining rate 35% or more and less than 45%: ○
(Three colors can be overlaid. Can be used on a color machine. Pass even at low temperature fixing. 3 points)
Residual rate 45% or more: ◎
(Available with 3 color superimposing color machines. 5 points for low temperature fixing and high speed printing)
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例11
 Maトナー11、Cyトナー12、Yeトナー11、Bkトナー12を組み合わせた際のトナーセットの、各々の色のトナーのTP2/TP1の値、MaトナーのTP2/TP1値をMaトナー以外の3色のTP2/TP1の平均値で除した値、各々のトナーの耐ブロッキング性Bとしての崩壊荷重・判定・点数、及び、定着性Bとして定着試験Bの残存率・判定・点数、更にトナーセットとしての総合判定Bとして以下の基準で点数付・及び判定した結果を表5に示す。
Example 11
When the Ma toner 11, the Cy toner 12, the Ye toner 11, and the Bk toner 12 are combined, the TP2 / TP1 value of each color toner and the TP2 / TP1 value of the Ma toner are three colors other than the Ma toner. The value divided by the average value of TP2 / TP1, the collapse load / determination / score as blocking resistance B of each toner, and the remaining rate / determination / score of fixing test B as fixability B, and further as a toner set Table 5 shows the results of scoring and determination based on the following criteria as the overall judgment B.
 [トナーセットとしての総合点数Bと判定]
 4色の組み合わせとしての総合点数Bは、各色の耐ブロッキング性Bの点数の合計に、各色の定着試験Bとしての点数Bを加えた値を総合点数Bとして、総合点数Bにより以下の総合判定Bを実施し表5に示した。但し、耐ブロッキング性B及び定着試験Bの各色の評価において、1項目でも「×」(0点)と判定される項目がある場合、トナーセットして実使用に耐えないため総合点数Bは0点とした。
[Determined as total score B as toner set]
The total score B as a combination of the four colors is obtained by adding the score B as the fixing test B of each color to the total score of the blocking resistance B of each color as a total score B. B was carried out and is shown in Table 5. However, in the evaluation of each color of the blocking resistance B and the fixing test B, if there is an item judged as “×” (0 points) even in one item, the total score B is 0 because the toner cannot be set and can withstand actual use. Points.
 [総合判定B]
   総合点数24点未満     :×
    (3色重ね可能カラー機で実使用不能、不合格)
   総合点数24点以上32点未満:△
    (3色重ね可能カラー機で実使用可能、合格)
   総合点数32点以上39点未満:○
    (3色重ね可能カラー機で実使用可能、低温定着時でも合格)
   総合点数39点以上     :◎
    (3色重ね可能カラー機で実使用可能、低温定着時及び高速印刷時でも合格)
[Comprehensive judgment B]
Total score less than 24 points: ×
(Three color stackable color machines cannot be used or rejected)
Total score 24 points or more and less than 32 points:
(Acceptable for use with 3 color superimposing color machines)
Total score 32 points or more and less than 39 points: ○
(It can be used with a color machine that can superimpose three colors.
Total score 39 points or more: ◎
(It can be used with a color machine that can superimpose three colors, and passes even when fixing at low temperatures and at high speeds.)
 比較例11
 比較例11は、トナーセットとして表5に示す組み合わせに各色のトナーを変更したこと以外は実施例11と同様の方法で各項目の数値を測定・算出し、判定・総合判定をし、表5に示した。
Comparative Example 11
In Comparative Example 11, the numerical values of the respective items were measured and calculated in the same manner as in Example 11 except that the toners of the respective colors were changed to the combinations shown in Table 5 as a toner set, and determination / comprehensive determination was performed. It was shown to.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 推算例11~21の説明
 図5には、表5の実験結果についてTP2/TP1をX軸に各色の耐ブロッキング性の指標である崩壊荷重(g)をY軸にプロットした。更に、Y軸には実使用上の臨界点である1500g、また、好ましい範囲で耐ブロッキング性が合格となる1300gのラインを太線で示した。
 更に、図5においてBk(黒丸)の相関性を確認するとXとYの間には良い直線性を示すことが確認されたので、各色において最小二乗法を用い一次線形式で表した回帰式を示した。
Explanation of Estimation Examples 11 to 21 FIG. 5 plots the collapse load (g), which is an index of blocking resistance of each color, on the Y axis with TP2 / TP1 as the X axis for the experimental results in Table 5. Furthermore, a thick line represents a 1500 g line that is a critical point in practical use on the Y axis and a 1300 g line that passes the blocking resistance within a preferable range.
Furthermore, since it was confirmed that the correlation between Bk (black circles) in FIG. 5 shows good linearity between X and Y, the regression equation expressed in a linear form using the least square method for each color is shown. Indicated.
 図6には、表5の実験結果について、TP2/TP1をX軸に各色の定着性の指標である残存率(%)をY軸にプロットした。更に、Y軸には実使用上の臨界点である35%、また、好ましい範囲で定着性が合格となる45%のラインを太線で示した。
 更に、図6においてBk(黒丸)の相関性を確認すると、XとYの間には良い直線性を示すことが確認されたので、各色において最小二乗法を用い一次線形式で表した回帰式を示した。
In FIG. 6, with respect to the experimental results shown in Table 5, TP2 / TP1 is plotted on the X axis, and the residual ratio (%), which is an index of fixability of each color, is plotted on the Y axis. Further, the bold line represents the line of 35%, which is a critical point in practical use, and 45% where the fixability is acceptable in a preferable range on the Y axis.
Furthermore, when the correlation of Bk (black circle) in FIG. 6 is confirmed, it is confirmed that a good linearity is shown between X and Y. Therefore, the regression equation expressed in a linear form using the least square method for each color. showed that.
 表6には、図5の一次線形式と耐ブロッキング性の1500g及び1300gの交点から導出される色毎のTP2/TP1の下限と、好ましい下限、及び、図6の一次線形式と定着性としての残存率45%及び35%の交点から導出されるTP2/TP1の上限及び好ましい上限値を示す。
 また、最も好ましいTP2/TP1として、好ましい下限と好ましい上限の平均値を中央値として示す。
Table 6 shows the lower limit and preferred lower limit of TP2 / TP1 for each color derived from the intersection of 1500 g and 1300 g of the primary line form and blocking resistance of FIG. 5, and the primary line form and fixability of FIG. 6. The upper limit and the preferable upper limit value of TP2 / TP1 derived from the intersections of 45% and 35% of the remaining ratio are shown.
Moreover, as the most preferable TP2 / TP1, an average value of a preferable lower limit and a preferable upper limit is shown as a median value.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例11で用いた製造例11のMaトナー11のTP2/TP1は1.39で、耐ブロッキング性も定着性も双方◎であるが、比較例11で用いた製造例17のBkトナー11のTP2/TP1は1.40で、Maトナー11とほぼ同じTP2/TP1であるにも関わらず、耐ブロッキング性が実使用範囲外となってしまっていることからも明らかであるが、表6からも明らかなように、色毎に、下限・好ましい下限、中央、好ましい上限、上限の値であるTP2/TP1が異なっており、TP2/TP1を色毎に異なる値にする必要性があることが解る。 The TP2 / TP1 of the Ma toner 11 of Production Example 11 used in Example 11 is 1.39, and both the blocking resistance and the fixing property are both excellent, but the Bk toner 11 of Production Example 17 used in Comparative Example 11 Although TP2 / TP1 is 1.40, which is almost the same TP2 / TP1 as Ma toner 11, it is clear from Table 6 that the blocking resistance is out of the actual use range. As is clear, the lower limit / preferable lower limit, the center, the preferable upper limit, and the upper limit of TP2 / TP1 are different for each color, and TP2 / TP1 needs to be different for each color. I understand.
 表7に示す推算例11から21までは、これらの相関性をより詳しく解析・説明し、各々の臨界点を明らかにする目的で、図5に示したTP2/TP1を説明変数とした耐ブロッキング性の崩壊荷重を一次線形式に基づき算出し、更に、図6に示したTP2/TP1を説明変数とした定着性に関する残存率を一次線形式に基づき、TP2/TP1を仮定した際の値として算出した結果に基づき各々判定・点数付した結果を示す。
 また、MaトナーのTP2/TP1値をMaトナー以外の3色のTP2/TP1の平均値で除した値、各々のトナーの耐ブロッキング性としての崩壊荷重・判定・点数、及び、定着性としての残存率・判定・点数、更に、トナーセットとしての総合判定Bとして、以下の基準で点数付及び判定した結果も表7に示す。
In the estimation examples 11 to 21 shown in Table 7, these correlations are analyzed and explained in more detail, and for the purpose of clarifying each critical point, anti-blocking resistance using TP2 / TP1 shown in FIG. 5 as an explanatory variable. 6 is calculated based on the primary line format, and the remaining rate regarding the fixability with TP2 / TP1 shown in FIG. 6 as an explanatory variable is based on the assumption of TP2 / TP1 based on the primary line format. Based on the calculated result, the result of each determination / score is shown.
Further, the value obtained by dividing the TP2 / TP1 value of the Ma toner by the average value of the three colors TP2 / TP1 other than the Ma toner, the collapse load / determination / score as the blocking resistance of each toner, and the fixing property Table 7 also shows the remaining rate / determination / score, as well as the results of scoring and determination based on the following criteria as the overall determination B as the toner set.
 推算例11には、Maトナー単体性能として好ましいTP2/TP1範囲の中央値である1.37で4色製造した場合の例を示すが、Bkトナー(4)とCyトナー(3)の耐ブロッキング性が実使用範囲外となり、四色セットとして実使用範囲外となることが解る。
 推算例12には、Cyトナー単体性能として好ましいTP2/TP1範囲の中央値である1.62で4色製造した場合の例を示すが、Maトナー(4)の定着性が実使用範囲外となり四色セットとして実使用範囲外となることが解る。
The estimation example 11 shows an example in which four colors are manufactured with 1.37 which is the median value of the preferable TP2 / TP1 range as the performance of the Ma toner alone, but blocking resistance of the Bk toner (4) and the Cy toner (3) is shown. It can be seen that the characteristic is out of the actual use range and out of the actual use range as a four-color set.
Estimation Example 12 shows an example in which four colors are manufactured at 1.62 which is the median value of the TP2 / TP1 range preferable as the Cy toner single unit performance. However, the fixability of Ma toner (4) is out of the actual use range. It turns out that it is out of the actual use range as a four-color set.
 推算例13には、YeトナーとBkトナーそれぞれの単体性能として好ましいTP2/TP1範囲の中央値である1.54で4色製造した場合の例を示すが、Maトナー(5)の定着性が実使用範囲外となり四色セットとして実使用範囲外となることが解る。 The estimation example 13 shows an example in which four colors are manufactured at 1.54 which is the median value of the TP2 / TP1 range preferable as the single performance of each of the Ye toner and the Bk toner. However, the fixability of the Ma toner (5) is shown. It can be seen that it is outside the actual use range and out of the actual use range as a four-color set.
 よって、どの色の好ましいTP2/TP1の値に4色を調整したとしても、4色セットとして実使用範囲外となることが解る。 Therefore, it can be seen that, even if four colors are adjusted to the preferred TP2 / TP1 value of any color, the actual color is out of the usable range as a four-color set.
 更に、推算例14~21には、四色セットとしてMaトナーのTP2/TP1値をMaトナー以外の3色のTP2/TP1の平均値で除した値が、どの値の範囲になれば、四色セットとして、実使用上可能かあるいは好ましい範囲で実使用可能となるかを解析した結果を示す。
 具体的には、Cy、Ye、Bkトナーが最も好ましい中央値(TP2/TP1)であった場合に、MaトナーがどのTP2/TP1値を取れば、四色セットとして実使用可能であり、更に好ましい範囲で実使用可能となるかを解析した。
Further, in the estimation examples 14 to 21, in the four-color set, if the value obtained by dividing the TP2 / TP1 value of the Ma toner by the average value of the three colors TP2 / TP1 other than the Ma toner is in any range, The result of analyzing whether the color set is actually usable or actually usable within a preferable range is shown.
Specifically, when Cy, Ye, and Bk toners have the most preferable median value (TP2 / TP1), any TP2 / TP1 value that Ma toner takes can be used as a four-color set. It was analyzed whether it could be used in the preferred range.
 この結果より、MaトナーのTP2/TP1値をMaトナー以外の3色のTP2/TP1の平均値で除した値が0.817以上0.951以下である場合に実使用可能となり、更に、MaトナーのTP2/TP1値をMaトナー以外の3色のTP2/TP1の平均値で除した値が0.849以上0.900以下である場合、四色セットとして好ましいセットとなることが解る。 As a result, when the value obtained by dividing the TP2 / TP1 value of the Ma toner by the average value of TP2 / TP1 of the three colors other than the Ma toner is 0.817 or more and 0.951 or less, it can be actually used. When the value obtained by dividing the TP2 / TP1 value of the toner by the average value of TP2 / TP1 of the three colors other than the Ma toner is 0.849 or more and 0.900 or less, it is understood that the four-color set is preferable.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 <結果>
 表5と表7から、MaトナーのTP2/TP1値をMaトナー以外の3色のTP2/TP1の平均値で除した値が、0.817以上0.951以下である場合に、総合判定が「◎」、「○」、「△」であり、耐ブロッキング性が良好のまま、定着試験の結果も良好となるが、MaトナーのTP2/TP1値をMaトナー以外の3色のTP2/TP1の平均値で除した値が、0.817未満、又は、0.951を超える場合は、総合判定が「×」となり、それをなし得ていないことが解る。
<Result>
From Tables 5 and 7, when the value obtained by dividing the TP2 / TP1 value of the Ma toner by the average value of TP2 / TP1 of the three colors other than the Ma toner is 0.817 or more and 0.951 or less, the comprehensive determination is made. “◎”, “◯”, “△”, the anti-blocking property remains good, and the result of the fixing test is also good, but the TP2 / TP1 value of Ma toner is TP2 / TP1 of three colors other than Ma toner. When the value divided by the average value is less than 0.817 or exceeds 0.951, the overall judgment is “x”, and it is understood that it cannot be achieved.
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2016年6月22日出願の日本特許出願(特願2016-123827)及び2016年7月15日出願の日本特許出願(特願2016-140670)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on June 22, 2016 (Japanese Patent Application No. 2016-1223827) and a Japanese patent application filed on July 15, 2016 (Japanese Patent Application No. 2016-140670). Incorporated herein by reference.
  1 高耐熱樹脂微粒子と外添剤からなる構造体(不連続部分があってもよい)
  2 コア成分(トナーの中心部を構成する成分)
  3 1回目測定のtanδ曲線とTP1
  4 2回目測定のtanδ曲線とTP2
  A 薄膜化した高耐熱樹脂微粒子成分が多いトナー表面の凸部
  B 薄膜化した高耐熱樹脂微粒子成分が少ないトナー表面の凹部
1 Structure composed of high heat resistant resin fine particles and external additives (may have discontinuous parts)
2 Core component (component constituting the central part of the toner)
3 tan δ curve of the first measurement and TP1
4 Tan δ curve and TP2 of the second measurement
A Convex part of toner surface with many thin heat-resistant resin fine particle components B Concave part of toner surface with few thin heat-resistant resin fine particle components

Claims (16)

  1.  少なくとも静電荷像現像用ブラックトナーと静電荷像現像用マゼンタトナーとを含むトナーセットであって、レオメーターで40℃以上80℃以下に観測されるtanδ極大値の1回目測定値をTP1とし、40℃以上80℃以下に観測されるtanδ極大値の2回目測定値をTP2とした場合、前記静電荷像現像用ブラックトナーのTP2/TP1が、前記静電荷像現像用マゼンタトナーのTP2/TP1の1.03倍以上1.32倍以下であることを特徴とする、トナーセット。 A toner set including at least an electrostatic charge image developing black toner and an electrostatic charge image developing magenta toner, wherein a first measured value of a tan δ maximum value observed at 40 ° C. or more and 80 ° C. or less by a rheometer is TP1, When the second measured value of the tan δ maximum value observed between 40 ° C. and 80 ° C. is TP2, TP2 / TP1 of the electrostatic charge image developing black toner is TP2 / TP1 of the electrostatic charge image developing magenta toner. 1.03 times or more and 1.32 times or less of the toner set.
  2.  前記静電荷像現像用ブラックトナー及び前記静電荷像現像用マゼンタトナーは、少なくとも、結着樹脂、着色剤、離型剤及び外添剤を含む、請求項1に記載のトナーセット。 The toner set according to claim 1, wherein the electrostatic charge image developing black toner and the electrostatic charge image developing magenta toner include at least a binder resin, a colorant, a release agent, and an external additive.
  3.  前記静電荷像現像用マゼンタトナー及び前記静電荷像現像用ブラックトナーのTP2/TP1が、1.20以上2.50以下である、請求項1又は請求項2に記載のトナーセット。 3. The toner set according to claim 1, wherein TP2 / TP1 of the electrostatic charge image developing magenta toner and the electrostatic charge image developing black toner is 1.20 or more and 2.50 or less.
  4.  前記静電荷像現像用マゼンタトナーのTP2/TP1が、1.28以上1.49以下である、請求項1ないし請求項3のいずれか1項に記載のトナーセット。 The toner set according to any one of claims 1 to 3, wherein TP2 / TP1 of the magenta toner for developing an electrostatic charge image is 1.28 or more and 1.49 or less.
  5.  前記静電荷像現像用ブラックトナーのTP2/TP1が、1.45以上1.77以下である、請求項1ないし請求項4のいずれか1項に記載のトナーセット。 The toner set according to any one of claims 1 to 4, wherein TP2 / TP1 of the black toner for developing an electrostatic charge image is 1.45 or more and 1.77 or less.
  6.  前記静電荷像現像用ブラックトナーはカーボンブラックを含有し、前記静電荷像現像用マゼンタトナーはキナクリドン系の染顔料及びモノアゾ系の染顔料のうちの少なくとも1種を含有する、請求項1ないし請求項5のいずれか1項に記載のトナーセット。 The black toner for developing electrostatic images contains carbon black, and the magenta toner for developing electrostatic images contains at least one of quinacridone dyes and pigments and monoazo dyes. 6. The toner set according to any one of items 5.
  7.  請求項1ないし請求項6のいずれか1項に記載のトナーセットを含有するトナーカートリッジ。 A toner cartridge containing the toner set according to any one of claims 1 to 6.
  8.  請求項1ないし請求項6のいずれか1項に記載のトナーセットを含有する画像形成装置。 An image forming apparatus containing the toner set according to any one of claims 1 to 6.
  9.  請求項1ないし請求項6のいずれか1項に記載のトナーセットを用いて画像形成する画像形成方法。 An image forming method for forming an image using the toner set according to any one of claims 1 to 6.
  10.  少なくとも静電荷像現像用マゼンタトナー、静電荷像現像用シアントナー、静電荷像現像用イエロートナー、及び、静電荷像現像用ブラックトナーを含むトナーセットであって、レオメーターで40℃以上80℃以下に観測されるtanδ極大値の1回目測定値をTP1とし、40℃以上80℃以下に観測されるtanδ極大値の2回目測定値をTP2とした場合、前記静電荷像現像用マゼンタトナーのTP2/TP1が、前記静電荷像現像用シアントナー、静電荷像現像用イエロートナー及び静電荷像現像用ブラックトナーのTP2/TP1の平均値の0.817倍以上0.951倍以下であることを特徴とする、トナーセット。 A toner set including at least a magenta toner for developing an electrostatic image, a cyan toner for developing an electrostatic image, a yellow toner for developing an electrostatic image, and a black toner for developing an electrostatic image. When the first measured value of the tan δ maximum value observed below is TP1, and the second measured value of the tan δ maximum value observed at 40 ° C. or more and 80 ° C. or less is TP2, the magenta toner for developing the electrostatic charge image is used. TP2 / TP1 is 0.817 times or more and 0.951 times or less of the average value of TP2 / TP1 of the cyan toner for developing electrostatic images, the yellow toner for developing electrostatic images, and the black toner for developing electrostatic images. A toner set characterized by
  11.  少なくとも静電荷像現像用ブラックトナーと静電荷像現像用マゼンタトナーを含むトナーセットに用いられる静電荷像現像用ブラックトナーであって、レオメーターで40℃以上80℃以下に観測されるtanδ極大値の1回目測定値をTP1とし、40℃以上80℃以下に観測されるtanδ極大値の2回目測定値をTP2とした場合、前記静電荷像現像用ブラックトナーのTP2/TP1が、前記静電荷像現像用マゼンタトナーのTP2/TP1の1.03倍以上1.32倍以下であることを特徴とする、静電荷像現像用ブラックトナー。 A tan δ maximum value observed in a rheometer at 40 ° C. or higher and 80 ° C. or lower, wherein the electrostatic image developing black toner is used in a toner set including at least an electrostatic image developing black toner and an electrostatic image developing magenta toner. The first measured value of TP1 is TP1, and the second measured value of the tan δ maximum value observed between 40 ° C. and 80 ° C. is TP2, and TP2 / TP1 of the black toner for developing electrostatic images is the electrostatic charge. A black toner for developing an electrostatic charge image, which is 1.03 times or more and 1.32 times or less of TP2 / TP1 of magenta toner for image development.
  12.  前記静電荷像現像用ブラックトナーのTP2/TP1が、前記静電荷像現像用マゼンタトナーのTP2/TP1の1.13倍以上1.20倍以下である、請求項11に記載の静電荷像現像用ブラックトナー。 12. The electrostatic charge image development according to claim 11, wherein TP2 / TP1 of the electrostatic charge image developing black toner is 1.13 times or more and 1.20 times or less of TP2 / TP1 of the electrostatic charge image development magenta toner. For black toner.
  13.  少なくとも結着樹脂と着色剤を含有するコア成分と、その周囲に存在する高耐熱樹脂微粒子成分とを含有するトナー母粒子を含み、透過型電子顕微鏡で測定したときの、前記コア成分と前記高耐熱樹脂微粒子成分に陰影差がない、請求項11又は請求項12に記載の静電荷像現像用ブラックトナー。 The toner comprises toner base particles containing at least a core component containing a binder resin and a colorant and a high heat-resistant resin fine particle component present around the core component, and the core component and the high component when measured with a transmission electron microscope. The black toner for developing an electrostatic charge image according to claim 11, wherein the heat-resistant resin fine particle component has no shadow difference.
  14.  少なくとも静電荷像現像用マゼンタトナー、静電荷像現像用シアントナー、静電荷像現像用イエロートナー及び静電荷像現像用ブラックトナーを含むトナーセットに用いられる静電荷像現像用マゼンタトナーであって、レオメーターで40℃以上80℃以下に観測されるtanδ極大値の1回目測定値をTP1とし、40℃以上80℃以下に観測されるtanδ極大値の2回目測定値をTP2とした場合、前記静電荷像現像用マゼンタトナーのTP2/TP1が、前記静電荷像現像用シアントナー、静電荷像現像用イエロートナー、及び静電荷像現像用ブラックトナーのTP2/TP1の平均値の0.817倍以上0.951倍以下であることを特徴とする、静電荷像現像用マゼンタトナー。 An electrostatic image developing magenta toner used in a toner set including at least an electrostatic image developing magenta toner, an electrostatic image developing cyan toner, an electrostatic image developing yellow toner, and an electrostatic image developing black toner, When the first measured value of the tan δ maximum value observed at 40 ° C. or higher and 80 ° C. or lower with a rheometer is TP1, and the second measured value of the tan δ maximum value observed at 40 ° C. or higher and 80 ° C. or lower is TP2, TP2 / TP1 of the electrostatic image developing magenta toner is 0.817 times the average value of TP2 / TP1 of the electrostatic image developing cyan toner, electrostatic charge image developing yellow toner, and electrostatic charge image developing black toner. A magenta toner for developing an electrostatic charge image, wherein the magenta toner is 0.951 times or more.
  15.  前記静電荷像現像用マゼンタトナーのTP2/TP1が、前記静電荷像現像用シアントナー、静電荷像現像用イエロートナー、及び静電荷像現像用ブラックトナーのTP2/TP1の平均値の0.849倍以上0.900倍以下である、請求項14に記載の静電荷像現像用マゼンタトナー。 TP2 / TP1 of the electrostatic image developing magenta toner is 0.849 of an average value of TP2 / TP1 of the electrostatic image developing cyan toner, electrostatic image developing yellow toner, and electrostatic image developing black toner. The magenta toner for developing an electrostatic charge image according to claim 14, which is not less than twice and not more than 0.900 times.
  16.  少なくとも結着樹脂と着色剤を含有するコア成分と、その周囲に存在する高耐熱樹脂微粒子成分とを含有するトナー母粒子を含み、透過型電子顕微鏡で測定したときの、前記コア成分と前記高耐熱樹脂微粒子成分に陰影差がない、請求項14又は請求項15に記載の静電荷像現像用マゼンタトナー。 The toner comprises toner base particles containing at least a core component containing a binder resin and a colorant and a high heat-resistant resin fine particle component present around the core component, and the core component and the high component when measured with a transmission electron microscope. The magenta toner for developing an electrostatic charge image according to claim 14 or 15, wherein the heat-resistant resin fine particle component has no shadow difference.
PCT/JP2017/022933 2016-06-22 2017-06-21 Toner set for developing electrostatic images, black toner and magenta toner WO2017221997A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016123827 2016-06-22
JP2016-123827 2016-06-22
JP2016-140670 2016-07-15
JP2016140670 2016-07-15

Publications (1)

Publication Number Publication Date
WO2017221997A1 true WO2017221997A1 (en) 2017-12-28

Family

ID=60784663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022933 WO2017221997A1 (en) 2016-06-22 2017-06-21 Toner set for developing electrostatic images, black toner and magenta toner

Country Status (2)

Country Link
JP (1) JP2018018060A (en)
WO (1) WO2017221997A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050300A1 (en) * 2012-09-28 2014-04-03 三菱化学株式会社 Image forming method and image forming device
WO2015030208A1 (en) * 2013-08-29 2015-03-05 三菱化学株式会社 Toner for developing electrostatic images
JP2016085292A (en) * 2014-10-23 2016-05-19 三菱化学株式会社 Manufacturing method of magenta toner for electrostatic charge image development
JP2017120422A (en) * 2015-12-28 2017-07-06 三菱ケミカル株式会社 Toner for electrostatic charge image development

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050300A1 (en) * 2012-09-28 2014-04-03 三菱化学株式会社 Image forming method and image forming device
WO2015030208A1 (en) * 2013-08-29 2015-03-05 三菱化学株式会社 Toner for developing electrostatic images
JP2016085292A (en) * 2014-10-23 2016-05-19 三菱化学株式会社 Manufacturing method of magenta toner for electrostatic charge image development
JP2017120422A (en) * 2015-12-28 2017-07-06 三菱ケミカル株式会社 Toner for electrostatic charge image development

Also Published As

Publication number Publication date
JP2018018060A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
US9612544B2 (en) Electrostatic image developing toner
US11194261B2 (en) Electrostatic charge image developing toner
JP6446914B2 (en) Toner for electrostatic image development
JP2014067021A (en) Toner for electrostatic charge image development
JPWO2005093522A1 (en) Toner for electrostatic image development
JP5671993B2 (en) Method for producing toner for developing electrostatic image and toner
JP2004163807A (en) Toner for nonmagnetic single component development and image forming method
JP2007310261A (en) Toner
JP6503797B2 (en) Negatively charged toner for electrostatic image development
JP2011180298A (en) Toner for electrostatic charge image development and method for producing toner
JP2002196532A (en) Dry toner, method for producing the same and image forming method
JP6354224B2 (en) Negatively charged toner for electrostatic image development
JP3875032B2 (en) Toner for developing electrostatic image and method for producing the same
WO2017221997A1 (en) Toner set for developing electrostatic images, black toner and magenta toner
JP2015079150A (en) Toner for electrostatic charge image development
JP6874365B2 (en) Toner for static charge image development
JP6870322B2 (en) Toner for static charge image development
JP2004279771A (en) Electrostatic charge image developing toner
JP2014186256A (en) Magenta toner for electrostatic charge image development
WO2005083527A1 (en) Toner for electrostatic charge image development
JP2017146570A (en) Toner for electrostatic charge image development
JP6870323B2 (en) Toner for static charge image development
US10725392B2 (en) Electrostatic charge image developing toner
JP5617528B2 (en) Method for producing toner for developing electrostatic image and toner
JP4189601B2 (en) Toner, toner manufacturing method, and image forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815465

Country of ref document: EP

Kind code of ref document: A1