WO2017221773A1 - Method for manufacturing polyvinyl chloride-based artificial hair fiber - Google Patents

Method for manufacturing polyvinyl chloride-based artificial hair fiber Download PDF

Info

Publication number
WO2017221773A1
WO2017221773A1 PCT/JP2017/021872 JP2017021872W WO2017221773A1 WO 2017221773 A1 WO2017221773 A1 WO 2017221773A1 JP 2017021872 W JP2017021872 W JP 2017021872W WO 2017221773 A1 WO2017221773 A1 WO 2017221773A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinyl chloride
chloride resin
vinyl chloride
resin
mass
Prior art date
Application number
PCT/JP2017/021872
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 赤羽
篤 堀端
久米 雅士
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to SG11201811233QA priority Critical patent/SG11201811233QA/en
Priority to CN201780038080.1A priority patent/CN109328247B/en
Priority to JP2018523945A priority patent/JP6823654B2/en
Publication of WO2017221773A1 publication Critical patent/WO2017221773A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/48Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of halogenated hydrocarbons

Definitions

  • the present invention relates to a method for producing a polyvinyl chloride artificial hair fiber that has a touch characteristic peculiar to polyvinyl chloride, has low gloss, is excellent in weaving properties, gear workability and spinnability.
  • Polyvinyl chloride fibers have excellent strength, elongation, etc., and are often used as artificial hair fibers constituting hair ornaments. However, with respect to low gloss, weaving, gear workability and spinnability, there is still no satisfactory design and trial and error are repeated (Patent Documents 1 to 3).
  • Patent Document 1 a low-gloss is made by making a dent on each side of the cross section, but that alone is not sufficient.
  • Patent Document 2 a cross-linked vinyl chloride resin is added to impart low gloss to a vinyl chloride resin, and a methacrylic acid alkyl ester is added to improve spinnability.
  • this combination has insufficient low gloss.
  • the knitted yarn is knitted into a three-net or twisted shape.
  • the fiber is slippery, the knitting property deteriorates and the productivity decreases. It was.
  • Patent Document 3 proposes a shape composed of a resin composition of a vinyl chloride resin and a cross-linked vinyl chloride resin in which the particle size average molecular weight is defined, and a cross-sectional shape consisting of a circle, a parabola, and an ellipse. With only the identification, the crimping process was difficult to be applied, and the knitting property was insufficient.
  • the present invention has been made in view of such circumstances, while maintaining the tactile sensation of a fiber made of a polyvinyl chloride resin fiber containing a cross-linked vinyl chloride resin, low glossiness, knitting properties, gear workability And a method for producing a polyvinyl chloride artificial hair fiber having improved spinnability.
  • the present invention employs the following means in order to solve the above problems.
  • (1) A step of spinning a resin composition containing a polyvinyl chloride resin from a nozzle hole, wherein the resin composition contains a polyvinyl chloride resin, and the polyvinyl chloride resin has a viscosity average polymerization degree.
  • the hole has a minimum value (Imin) of the cross-sectional second moment with respect to the axis passing through the centroid of the cross-section of the nozzle hole, which is 1 ⁇ 10 ⁇ 4 mm 4 to 15 ⁇ 10 ⁇ 4 mm 4.
  • a method for producing a vinyl chloride artificial hair fiber (2) The method for producing a polyvinyl chloride artificial hair fiber according to the above (1), wherein the resin composition contains 0.01 to 1 part by mass of an antistatic agent. (3) The resin composition is at least one selected from a tin heat stabilizer, a Ca—Zn heat stabilizer, a hydrotalcite heat stabilizer, an epoxy heat stabilizer, and a ⁇ -diketone heat stabilizer.
  • a polyvinyl chloride artificial hair fiber obtained by spinning a specific resin composition from a nozzle hole having a specific moment of inertia of the cross section is a polyvinyl chloride artificial hair fiber. It has been found that it has excellent luster, knitting, gear workability and spinnability while having a unique tactile sensation.
  • the present invention comprises a step of spinning a resin composition containing a polyvinyl chloride resin from a nozzle hole, wherein the resin composition contains a polyvinyl chloride resin, and the polyvinyl chloride resin has a viscosity-average polymerization degree.
  • the difference between the viscosity average polymerization degree of the polyvinyl chloride resin (A) and the viscosity average polymerization degree of the component dissolved in tetrahydrofuran of the crosslinked vinyl chloride resin (B) is 600 to 1850,
  • the nozzle hole has a minimum value (Imin) of the second moment of section with respect to an axis passing through the centroid of the section of the nozzle hole, which is 1 ⁇ 10 ⁇ 4 mm 4 to 15 ⁇ 10 ⁇ 4 mm 4 .
  • the resin composition used in the present invention contains a polyvinyl chloride resin.
  • the resin composition may contain additives such as an antistatic agent, a heat stabilizer, and a lubricant.
  • the vinyl chloride resin used in the present invention contains 90 to 99 parts by mass of the polyvinyl chloride resin (A) and 10 to 1 part by mass of the crosslinked vinyl chloride resin (B).
  • the polyvinyl chloride resin (A) used in the present invention is a homopolymer resin that is a conventionally known homopolymer of vinyl chloride, or various conventionally known copolymer resins, and is not particularly limited.
  • copolymer resins examples include vinyl chloride-vinyl acetate copolymer resins, vinyl chloride-vinyl propionate copolymer resins and other vinyl chloride and vinyl ester copolymer resins, vinyl chloride-butyl acrylate copolymer resins, vinyl chloride-acrylic acid 2 Copolymer resins of vinyl chloride and acrylates such as ethylhexyl copolymer resin, vinyl chloride-ethylene copolymer resin such as vinyl chloride-ethylene copolymer resin, vinyl chloride-propylene copolymer resin, vinyl chloride-acrylonitrile copolymer resin, etc. Typically exemplified.
  • Preferred vinyl chloride resins include homopolymer resins that are homopolymers of vinyl chloride, vinyl chloride-ethylene copolymer resins, vinyl chloride-vinyl acetate copolymer resins, and the like.
  • the content of the comonomer is not particularly limited, and can be determined according to the moldability of the fiber, the properties of the fiber, and the like.
  • the viscosity average polymerization degree of the polyvinyl chloride resin (A) used in the present invention is in the range of 450 to 1700 in order to obtain sufficient strength and heat resistance as a fiber. If it is less than 450, the resin is less entangled and the strength is weakened. On the other hand, if it exceeds 1700, gelation does not occur, the fibers are easily cut, and the productivity is lowered. In order to achieve these moldability and fiber properties, when a polyvinyl chloride homopolymer resin is used, the viscosity average degree of polymerization is preferably in the region of 650 to 1450.
  • a copolymer When a copolymer is used, it preferably depends on the comonomer content, but preferably has a viscosity average degree of polymerization of 1000 to 1700.
  • the viscosity average degree of polymerization is calculated according to JIS-K6721 by dissolving 200 mg of resin in 50 ml of nitrobenzene, measuring the specific viscosity of this polymer solution in a constant temperature bath at 30 ° C. using an Ubbelohde viscometer.
  • the vinyl chloride resin (A) used in the present invention can be produced by emulsion polymerization, bulk polymerization or suspension polymerization.
  • a polymer produced by suspension polymerization is preferable in consideration of the initial colorability of the fiber.
  • the crosslinked vinyl chloride resin (B) used in the present invention can be easily obtained by adding a polyfunctional monomer and polymerizing it in suspension polymerization, micro suspension polymerization or emulsion polymerization of vinyl chloride in an aqueous medium. can get.
  • the polyfunctional monomer used is particularly preferably a diacrylate compound such as polyethylene glycol diacrylate or bisphenol A-modified diacrylate.
  • the resin is a mixture of a gel component having a crosslinked structure and mainly composed of vinyl chloride insoluble in tetrahydrofuran and a polyvinyl chloride component soluble in tetrahydrofuran.
  • the viscosity average polymerization degree of the component dissolved in tetrahydrofuran is 1800 to 2300, more preferably 1900 to 2200 in consideration of the knitting property and spinnability of the yarn. If it is less than 1800, the knitting property is not sufficient. Conversely, if it exceeds 2300, yarn breakage tends to occur during spinning.
  • the viscosity average polymerization degree of the component dissolved in tetrahydrofuran of the crosslinked vinyl chloride resin (B) is measured as follows. 1 g of the crosslinked vinyl chloride resin (B) is added to 60 ml of tetrahydrofuran and allowed to stand for about 24 hours. Thereafter, the resin is sufficiently dissolved using an ultrasonic cleaner. The insoluble matter in the tetrahydrofuran solution is separated using an ultracentrifuge (30,000 rpm ⁇ 1 hour), and the supernatant THF solvent is collected. Thereafter, the THF solvent was volatilized, and the viscosity average polymerization degree was measured by the same method as that for the polyvinyl chloride resin (A).
  • the cross-linked vinyl chloride resin (B) is 10 to 1 part by mass with respect to 90 to 99 parts by mass of the polyvinyl chloride resin (A), and 95 to 97 parts by mass with respect to the polyvinyl chloride resin (A). It is preferable to add 5 to 3 parts by mass of the crosslinked vinyl chloride resin (B).
  • the cross-linked vinyl chloride resin (B) is less than 1 part by mass, the gloss and knitting properties of the resulting fiber are lowered, and when it exceeds 10 parts by mass, the spinnability is lowered, which is not preferable.
  • the difference between the viscosity average polymerization degree of the polyvinyl chloride resin (A) and the polymerization degree of the component dissolved in tetrahydrofuran of the crosslinked vinyl chloride resin (B) is 600 to 1850 in order to obtain sufficient low gloss. .
  • it is 800-1500. If it is less than 600, the gloss is not sufficient, and if it exceeds 1500, yarn breakage tends to occur during spinning.
  • Nonionic (nonionic), cationic, anionic and amphoteric ones can be used, preferably in the range of 0.01 to 1 part by weight. Can be used. If the amount is less than 0.01 parts by mass, static electricity is likely to be generated, and the yarns are difficult to bundle. In the winding process, the yarns are easily entangled, and yarn breakage is likely to occur. If the amount exceeds 1 part by mass, it is economically disadvantageous.
  • Heat stabilizer A conventionally well-known thing can be used for the heat stabilizer used for this invention. Among these, it is desirable to use one or more selected from a Ca—Zn heat stabilizer, a hydrotalcite heat stabilizer, a tin heat stabilizer, and a zeolite heat stabilizer.
  • the thermal stabilizer is used to improve thermal decomposition during molding, long run property, and color tone of the filament, and is particularly preferably a Ca-Zn based thermal stabilizer that has an excellent balance of molding processability and yarn characteristics.
  • the combined use of an agent and a hydrotalcite heat stabilizer is preferred. These heat stabilizers are preferably 0.1 to 5.0 parts by mass with respect to 100 parts by mass of the vinyl chloride resin.
  • the hydrotalcite-based heat stabilizer is specifically a hydrotalcite compound, more specifically, a complex salt compound composed of magnesium and / or alkali metal and aluminum or zinc, magnesium and aluminum, There is something that has been dehydrated.
  • the hydrotalcite compound may be a natural product or a synthetic product, and the synthesis method of the synthetic product may be a conventionally known method.
  • examples of the Ca—Zn heat stabilizer include zinc stearate, calcium stearate, zinc 12-hydroxystearate, and calcium 12-hydroxystearate.
  • examples of the hydrotalcite-based heat stabilizer include Alkamizer manufactured by Kyowa Chemical Industry Co., Ltd.
  • examples of tin stabilizers include dimethyltin mercapto, dimethyltin mercaptoide, dibutyltin mercapto, dioctyltin mercapto, dioctyltin mercaptopolymer, mercaptotin thermal stabilizers such as dioctyltin mercaptoacetate, dimethyltin maleate, and dibutyltin maleate.
  • Maleate tin thermal stabilizers such as dioctyl tin maleate and dioctyl tin maleate polymer, and laurate tin thermal stabilizers such as dimethyl tin laurate, dibutyl tin laurate and dioctyl tin laurate.
  • Examples of the epoxy heat stabilizer include epoxidized soybean oil and epoxidized linseed oil.
  • Examples of the ⁇ -diketone heat stabilizer include stearoylbenzoylmethane (SBM) and dibenzoylmethane (DBM).
  • a lubricant can be appropriately added, and conventionally known lubricants can be used, and in particular, metal soap lubricants, polyethylene lubricants, higher fatty acid lubricants, ester lubricants. At least one selected from the group consisting of higher alcohol lubricants is preferred.
  • the lubricant can reduce the friction with the metal surface of the processing machine and the friction between the resins, improve the fluidity, and improve the workability.
  • the lubricant is 0.2 to 5.0 parts by mass with respect to 100 parts by mass of the vinyl chloride resin. If it is less than 0.2 parts by mass, the fluidity is poor and the processability is deteriorated. Moreover, when it exceeds 5.0 mass parts, friction with the metal surface of a processing machine will decrease, and resin cannot be extruded stably.
  • metal soap lubricant examples include metal soaps such as stearates such as Na, Mg, Al, Ca and Ba, laurates, palmitates and oleates.
  • higher fatty acid lubricant examples include saturated fatty acids such as stearic acid, palmitic acid, myristic acid, lauric acid and capric acid, unsaturated fatty acids such as oleic acid, and mixtures thereof.
  • higher alcohol lubricants include stearyl alcohol, palmityl alcohol, myristyl alcohol, lauryl alcohol, oleyl alcohol, and the like.
  • ester lubricants include ester lubricants composed of alcohol and fatty acids, pentaerythritol lubricants such as pentaerythritol or monoesters, diesters, triesters, tetraesters, or mixtures thereof of pentaerythritol or dipentaerythritol and higher fatty acids, and montanic acid.
  • pentaerythritol lubricants such as pentaerythritol or monoesters, diesters, triesters, tetraesters, or mixtures thereof of pentaerythritol or dipentaerythritol and higher fatty acids
  • montanic acid wax-based lubricants of esters of stearyl alcohol, palmityl alcohol, myristyl alcohol, lauryl alcohol, oleyl alcohol, and other higher alcohols.
  • a known compounding agent used for a vinyl chloride composition can be added depending on the purpose as long as the effects of the present invention are not impaired.
  • the compounding agents include processing aids, plasticizers, reinforcing agents, ultraviolet absorbers, antioxidants, fillers, flame retardants, pigments, initial color improvers, conductivity imparting agents, and fragrances.
  • the polyvinyl chloride fiber of the present invention is preferably produced by known melt spinning after mixing all the raw materials to make a pellet compound once.
  • manufacturing conditions can be changed suitably.
  • the vinyl chloride resin (A) and the crosslinked vinyl chloride resin (B) are appropriately mixed with antistatic agent, heat stabilizer and lubricant at a predetermined ratio, stirred and mixed with a Henschel mixer, etc., and then pelleted with an extruder.
  • It can be used as a pellet compound obtained by melt-mixing a powder compound obtained by mixing using a known mixer such as a Henschel mixer, a super mixer, or a ribbon blender.
  • the powder compound can be produced by hot blending or cold blending, and normal conditions can be used as production conditions.
  • a hot blend obtained by raising the cut temperature during blending to 105 to 155 ° C. may be used.
  • the pellet compound can be produced in the same manner as ordinary vinyl chloride-based pellet compounds. For example, pellet compounding using a kneader such as a single screw extruder, a different direction twin screw extruder, a conical twin screw extruder, a same direction twin screw extruder, a kneader, a planetary gear extruder, or a roll kneader. It can be.
  • the conditions for producing the pellet compound are not particularly limited, but it is preferable to set the resin temperature to 185 ° C. or lower in order to prevent thermal deterioration of the vinyl chloride resin.
  • a mesh can be installed in the vicinity of the tip of the screw in order to remove the metal pieces of the screw and the fibers attached to the protective gloves that can be mixed in a small amount in the pellet compound.
  • the cold cut method can be used for the production of pellets. It is possible to employ means for removing “cutting powder” (fine powder generated during pellet production) and the like that may be mixed during cold cutting. In addition, if the cutter is used for a long time, the cutter spills and chips are likely to be generated.
  • the pellet compounded raw material is used with a nozzle whose cross-sectional secondary moment of the weak axis of the nozzle hole is in a predetermined range, with a cylinder temperature of 150 to 190 ° C. and a nozzle temperature of 180 ⁇ 15 ° C. under good spinning conditions.
  • the resin is extruded and melt spun.
  • the unstretched yarn (fiber of the polyvinyl chloride resin composition) melt-spun from the nozzle hole is introduced into a heated cylinder (heated cylinder temperature 250 ° C.) and instantaneously heat-treated, for example, about 4.5 m directly below the nozzle. It is wound up by a take-up machine installed at the position. The strand remains an undrawn yarn. At the time of winding, the take-up speed is adjusted so that the fineness of the undrawn yarn is preferably 120 to 250 denier (more preferably 150 to 220 denier, more preferably 175 to 185 denier).
  • a conventionally well-known extruder can be used.
  • a single screw extruder, a different-direction twin screw extruder, a conical twin screw extruder, etc. can be used, but a single screw extruder having a diameter of about 35 to 85 mm ⁇ or a conical extruder having a diameter of about 35 to 50 mm ⁇ is particularly preferable.
  • the minimum value (Imin) of the sectional second moment about the axis passing through the centroid of the section of the nozzle hole is 1 ⁇ 10 ⁇ 4 mm 4 to 15 ⁇ 10 ⁇ 4 mm 4 .
  • the minimum value (Imin) of the cross-sectional secondary moment with respect to the axis passing through the centroid of the cross section of the nozzle hole is the minimum value of the cross-sectional secondary moment with respect to the two principal axes (short axis and long axis) passing through the centroid. It refers to the value (Imin).
  • the minimum value (Imin) of the sectional moment of inertia is obtained by ⁇ a 3 b / 4.
  • the minimum value (Imin) of the sectional moment of inertia is 1 ⁇ 10 ⁇ 4 mm 4 to 15 ⁇ 10 ⁇ 4 mm 4 .
  • the yarn is too soft during gear processing and is difficult to form.
  • the yarn is too hard to be shaped. More preferably, it is in the range of 2 ⁇ 10 ⁇ 4 mm 4 to 13 ⁇ 10 ⁇ 4 mm 4 .
  • the minimum value (Imin) of the cross-sectional secondary moment of the nozzle hole cross section in the present invention is measured by the following method. 1: Using a digital microscope VH-6300C manufactured by Keyence Corporation, the nozzle hole is enlarged 400 times and the dimensions of the nozzle hole are measured. 2: Drawing the dimension measured using CADSUPER made from Andor Co., calculating on CADSUPER, and calculating a cross-sectional secondary moment.
  • the undrawn yarn is drawn 2 to 5 times (for example, 3 times) with a drawing machine (105 ° C. in an air atmosphere), and then the fiber length is 0.5 by using a heat treatment machine (110 ° C. under an air atmosphere). A heat treatment is applied so that the fineness becomes 40 to 80 denier (preferably 50 to 70 denier, for example, 58 to 62 denier). Artificial hair fibers are made.
  • Gear processing is performed to crimp the produced polyvinyl chloride artificial hair fiber.
  • Gear processing is a method of crimping by passing a fiber bundle between two meshing high-temperature gears, and the material of the gear used, the shape of the gear wave, the fraction of the gear, etc. are not particularly limited.
  • the crimp wave shape can vary depending on the fiber material, fineness, pressure condition between the gears, etc., but in the present invention, the crimp wave shape can be controlled by the gear wave groove depth, gear surface temperature, and processing speed. .
  • processing conditions are not particularly limited, but preferably the depth of the groove of the gear corrugation is 0.2 mm to 6 mm, more preferably 0.5 mm to 5 mm, and the gear surface temperature is 30 to 100 ° C., more preferably The processing speed is 40 to 80 ° C., and the processing speed is 0.5 to 10 m / min, more preferably 1.0 to 8.0 m / min.
  • the total fineness of the fiber bundle during gear processing is not particularly limited, but is 100,000 to 2 million dtex, more preferably 500,000 to 1.5 million dtex. If the total fineness of the fiber bundle is less than 100,000 decitex, the productivity of gear processing is deteriorated, and further thread breakage may occur during gear-crimping. On the other hand, if the total fineness of the fiber bundle exceeds 2 million dtex, it may be difficult to obtain a uniform wave shape.
  • the polyvinyl chloride fiber of the present invention obtained as described above improves the spinnability and low glossiness while having the tactile sensation characteristic of the conventional vinyl chloride fiber, and is newly knitted and gear processed. It is possible to impart the property of sex.
  • the reason why the spinnability is improved is that the blending amount of the crosslinked vinyl chloride resin (B) is made appropriate.
  • the low glossiness makes the blending amount of the crosslinked vinyl chloride resin (B) appropriate, the viscosity average polymerization degree of the polyvinyl chloride resin (A) and the viscosity of the component dissolved in the tetrahydrofuran of the crosslinked vinyl chloride resin (B). This is because the difference in average polymerization degree was controlled.
  • the reason that the knitting property can be imparted is that a component of the crosslinked vinyl chloride resin (B) having a high viscosity average polymerization degree is dissolved.
  • the reason why the gear workability can be imparted is that a nozzle having a cross-sectional shape that improves the gear workability is used.
  • polyvinyl chloride resin (A) (manufactured by Taiyo PVC Co., Ltd., TH-500), 10 parts by mass of crosslinked vinyl chloride resin (B) (manufactured by Shin-Etsu Chemical Co., Ltd., GR-2500S), antistatic agent ( 0.5 parts by mass of Nippon Oil Co., Ltd., New Elegan ASK), 3 parts by mass of hydrotalcite composite thermal stabilizer (manufactured by Nissan Chemical Industries, CP-410A), epoxidized soybean oil (Asahi Denka Kogyo Co., Ltd.) O-130P) and a vinyl chloride resin composition containing 0.5 parts by mass of an ester lubricant (EW-100 manufactured by Riken Vitamin Co., Ltd.) were mixed with a ribbon blender, and the cylinder temperature was 130 to 170 ° C.
  • an ester lubricant EW-100 manufactured by Riken Vitamin Co., Ltd.
  • an extruder with a diameter of 40 mm was used and compounded to produce pellets.
  • the pellets were in the range of a cylinder temperature of 140 to 190 ° C. and a nozzle temperature of 180 ⁇ 15 ° C.
  • melt spinning was performed with an extruder having a diameter of 30 mm at an extrusion rate of 10 kg / hour. Thereafter, it was heat-treated for about 0.5 to 1.5 seconds in a heated cylinder (under conditions with a good spinnability in an atmosphere of 200 to 300 ° C.) provided directly under the nozzle to obtain 150 dtex fiber.
  • the processability and the obtained fibers for artificial hair were evaluated in terms of spinnability, low gloss, knitting, gear workability and tactile feel according to the evaluation method and criteria described below. Table 1 shows the results.
  • Cross-linked vinyl chloride resin (B) Viscosity average polymerization degree of THF-soluble matter: 1600 (manufactured by Shin-Etsu Chemical Co., Ltd., GR-1300T) Viscosity average polymerization degree of THF-soluble matter: 2020 (manufactured by Shin-Etsu Chemical Co., Ltd., GR-2500S) Viscosity average polymerization degree of THF-soluble matter: 2280 (manufactured by Kaneka Corporation, K25S)
  • Gear processability was performed on the fiber and evaluated in four stages as follows. At this time, gear machining was performed at a groove depth of 2.5 mm, a gear surface temperature of 70 to 80 ° C., and a machining speed of 2 m / min.
  • the vinyl chloride fiber M-TYPE manufactured by Denka Co., Ltd. was ranked 3 (with good crimp). 1: Almost no crimp. 2: It is hard to be crimped. 3: Crimped well 4: Crimped very well.
  • Tactile sensation The fiber bundle after melt spinning was judged by tactile sensation, and was evaluated in four stages as follows.
  • the vinyl chloride fiber M-TYPE manufactured by Denka was ranked 4 (very soft and supple). 1: Very hard. 2: Slightly hard. 3: Soft and supple. 4: Very soft and supple.
  • the polyvinyl chloride resin (A) is more than 99 parts by mass and the cross-linked vinyl chloride resin (B) is less than 1 part by mass.
  • the knitting property was greatly deteriorated.
  • the amount of the polyvinyl chloride resin (A) is less than 90 parts by mass and the amount of the crosslinked vinyl chloride resin (B) is more than 10 parts by mass, so that the incompatible component is increased and the spinnability is greatly deteriorated. .
  • the comparative example 3 is a case where the viscosity average polymerization degree of the component dissolved in tetrahydrofuran of the crosslinked vinyl chloride resin (B) is 1800 or less, and the unevenness on the surface of the yarn is reduced, so that the knitting property is deteriorated.
  • Comparative Example 4 the difference in viscosity average degree of polymerization between the components of the polyvinyl chloride resin (A) and the crosslinked vinyl chloride resin (B) dissolved in tetrahydrofuran was 20, which was smaller than 600, so that the low gloss was deteriorated.
  • Comparative Example 5 since the minimum value (Imin) of the moment of inertia of the cross section is smaller than 1 ⁇ 10 ⁇ 4 mm 4 , the yarn becomes too soft and the shape of the gear is difficult to be attached. Workability deteriorated. In Comparative Example 6, since the minimum value (Imin) of the moment of inertia of the cross section is larger than 15 ⁇ 10 ⁇ 4 mm 4 , the yarn becomes too hard and the shape of the gear is difficult to be attached. Workability deteriorated.
  • the artificial hair fiber made by the production method of the present invention can improve the low glossiness and impart the knitting property without impairing the touch and spinnability which are the characteristics of the conventional vinyl chloride fiber. is there. Moreover, since the fiber of the present invention can be stably produced by melt spinning, it is industrially advantageous.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a method for manufacturing a polyvinyl chloride-based artificial hair fiber which maintains the texture of a fiber formed of a polyvinyl chloride-based resin fiber containing a crosslinked vinyl chloride-based resin and has a low glossiness and in which the knitting properties, gear processability and spinning properties are improved. The method according to the present invention for manufacturing a polyvinyl chloride-based artificial hair fiber comprises a step for spinning a polyvinyl chloride-based resin-containing resin composition from a nozzle hole, wherein: the resin composition contains a polyvinyl chloride-based resin; the polyvinyl chloride-based resin contains 90-99 parts by mass of a polyvinyl chloride-based resin (A) having a viscosity-average degree of polymerization of 450-1700 and 10-1 parts by mass of a crosslinked vinyl chloride-based resin (B) in which the viscosity-average degree of polymerization of a tetrahydrofuran soluble component is 1800-2300; the difference in viscosity-average degree of polymerization between the polyvinyl chloride-based resin (A) and the tetrahydrofuran soluble component in the crosslinked vinyl chloride-based resin (B) is 600-1850; and the minimum cross-sectional secondary moment (Imin) of the nozzle hole, relative to an axis passing through the centroid of a cross section of the nozzle hole, is 1×10-4 mm4-15×10-4 mm4.

Description

ポリ塩化ビニル系人工毛髪繊維の製造方法Method for producing polyvinyl chloride artificial hair fiber
 本発明は、ポリ塩化ビニル特有の触感を有したまま、低光沢であり、編み込み性、ギア加工性及び紡糸性に優れたポリ塩化ビニル系人工毛髪用繊維の製造方法に関するものである。 The present invention relates to a method for producing a polyvinyl chloride artificial hair fiber that has a touch characteristic peculiar to polyvinyl chloride, has low gloss, is excellent in weaving properties, gear workability and spinnability.
 ポリ塩化ビニル系繊維は、優れた強度、伸度などを有しており、頭髪装飾品を構成する人工毛髪用繊維として、多く使用されている。しかしながら、低光沢性、編み込み性、ギア加工性及び紡糸性に関しては、未だに満足のいく設計が無く試行錯誤を繰り返している(特許文献1~3)。 Polyvinyl chloride fibers have excellent strength, elongation, etc., and are often used as artificial hair fibers constituting hair ornaments. However, with respect to low gloss, weaving, gear workability and spinnability, there is still no satisfactory design and trial and error are repeated (Patent Documents 1 to 3).
実公昭60-14729号公報Japanese Utility Model Publication No. 60-14729 特開2000-191871号公報JP 2000-191871 A WO2006/093009号公報WO2006 / 093009
 特許文献1では、断面の各辺にくぼみをつけて低光沢化を行なっているがそれだけでは不十分である。 In Patent Document 1, a low-gloss is made by making a dent on each side of the cross section, but that alone is not sufficient.
 特許文献2では、塩化ビニル系樹脂に低光沢性を付与するため架橋塩化ビニル系樹脂、紡糸性を改善するためメタアクリル酸アルキルエステルを加えているが、この組み合わせでは、低光沢性が不十分であり、また塩化ビニル系樹脂特有の触感が失われる問題がある。 In Patent Document 2, a cross-linked vinyl chloride resin is added to impart low gloss to a vinyl chloride resin, and a methacrylic acid alkyl ester is added to improve spinnability. However, this combination has insufficient low gloss. In addition, there is a problem that the touch unique to the vinyl chloride resin is lost.
 また、頭髪装飾品の中にブレイドといわれるスタイルがあり、捲縮加工を行なっているが糸の断面形状によっては捲縮が付き難い課題がある。 In addition, there is a style called braid in hair ornaments, and crimping is performed, but there is a problem that crimps are difficult to be attached depending on the cross-sectional shape of the yarn.
 更に、捲縮加工をした糸を編み込んで、三つ網状やツイスト状等に加工しているが、その際、繊維が滑りやすいと編み込み性が悪くなり、生産性が低下してしまう問題があった。 In addition, the knitted yarn is knitted into a three-net or twisted shape. However, if the fiber is slippery, the knitting property deteriorates and the productivity decreases. It was.
 特許文献3では、塩化ビニル系樹脂と粒度平均分子量を規定した架橋塩化ビニル系樹脂の樹脂組成物からなり、かつ、断面形状が円、放物線、楕円からなる形状を提案しているが、断面形状の特定のみでは、捲縮加工が付き難く、また編み込み性が不十分であった。 Patent Document 3 proposes a shape composed of a resin composition of a vinyl chloride resin and a cross-linked vinyl chloride resin in which the particle size average molecular weight is defined, and a cross-sectional shape consisting of a circle, a parabola, and an ellipse. With only the identification, the crimping process was difficult to be applied, and the knitting property was insufficient.
 本発明はこのような事情に鑑みてなされたものであり、架橋塩化ビニル系樹脂を含有するポリ塩化ビニル系樹脂繊維からなる繊維の触感を保持しつつ、低光沢性、編み込み性、ギア加工性及び紡糸性を向上させたポリ塩化ビニル系人工毛髪繊維の製造方法を提供するものである。 The present invention has been made in view of such circumstances, while maintaining the tactile sensation of a fiber made of a polyvinyl chloride resin fiber containing a cross-linked vinyl chloride resin, low glossiness, knitting properties, gear workability And a method for producing a polyvinyl chloride artificial hair fiber having improved spinnability.
 本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)ポリ塩化ビニル系樹脂を含む樹脂組成物をノズル孔から紡糸する工程を備え、前記樹脂組成物は、ポリ塩化ビニル系樹脂を含み、前記ポリ塩化ビニル系樹脂は、粘度平均重合度が450~1700であるポリ塩化ビニル系樹脂(A)90~99質量部と、テトラヒドロフランに溶解する成分の粘度平均重合度が1800~2300である架橋塩化ビニル系樹脂(B)10~1質量部を含有し、前記ポリ塩化ビニル系樹脂(A)の粘度平均重合度と、前記架橋塩化ビニル系樹脂(B)のテトラヒドロフランに溶解する成分の粘度平均重合度の差が600~1850であり、前記ノズル孔は、前記ノズル孔の断面の図心を通る軸に関する断面二次モーメントの最小値(Imin)が1×10-4mm~15×10-4mmである、ポリ塩化ビニル系人工毛髪繊維の製造方法。
(2)前記樹脂組成物が帯電防止剤を0.01質量部~1質量部含有することを特徴とする上記(1)に記載のポリ塩化ビニル系人工毛髪繊維の製造方法。
(3)前記樹脂組成物が錫系熱安定剤、Ca-Zn系熱安定剤、ハイドロタルサイト系熱安定剤、エポキシ系熱安定剤及びβ-ジケトン系熱安定剤から選択される少なくとも一種以上の熱安定剤を0.1~5質量部含有することを特徴とする上記(1)又は(2)に記載のポリ塩化ビニル系人工毛髪繊維の製造方法。
The present invention employs the following means in order to solve the above problems.
(1) A step of spinning a resin composition containing a polyvinyl chloride resin from a nozzle hole, wherein the resin composition contains a polyvinyl chloride resin, and the polyvinyl chloride resin has a viscosity average polymerization degree. 90 to 99 parts by mass of the polyvinyl chloride resin (A) 450 to 1700 and 10 to 1 part by mass of the crosslinked vinyl chloride resin (B) having a viscosity average polymerization degree of 1800 to 2300 of the component dissolved in tetrahydrofuran And the difference between the viscosity average polymerization degree of the polyvinyl chloride resin (A) and the viscosity average polymerization degree of the component dissolved in tetrahydrofuran of the crosslinked vinyl chloride resin (B) is 600 to 1850, The hole has a minimum value (Imin) of the cross-sectional second moment with respect to the axis passing through the centroid of the cross-section of the nozzle hole, which is 1 × 10 −4 mm 4 to 15 × 10 −4 mm 4. A method for producing a vinyl chloride artificial hair fiber.
(2) The method for producing a polyvinyl chloride artificial hair fiber according to the above (1), wherein the resin composition contains 0.01 to 1 part by mass of an antistatic agent.
(3) The resin composition is at least one selected from a tin heat stabilizer, a Ca—Zn heat stabilizer, a hydrotalcite heat stabilizer, an epoxy heat stabilizer, and a β-diketone heat stabilizer. The method for producing a polyvinyl chloride artificial hair fiber according to (1) or (2) above, comprising 0.1 to 5 parts by mass of a heat stabilizer.
 本発明者らは鋭意研究の結果、特定の樹脂組成物を特定の断面2次モーメントを有するノズル孔から紡糸することによって得られるポリ塩化ビニル系人工毛髪繊維が、ポリ塩化ビニル系人工毛髪繊維の特有の触感を持ちながら、低光沢性、編み込み性、ギア加工性及び紡糸性に優れることを見出した。 As a result of intensive studies, the present inventors have found that a polyvinyl chloride artificial hair fiber obtained by spinning a specific resin composition from a nozzle hole having a specific moment of inertia of the cross section is a polyvinyl chloride artificial hair fiber. It has been found that it has excellent luster, knitting, gear workability and spinnability while having a unique tactile sensation.
 以下、本発明を実施するための形態について、詳細に説明する。
なお、本発明は、以下に説明する実施形態に限定されるものではない。
Hereinafter, embodiments for carrying out the present invention will be described in detail.
Note that the present invention is not limited to the embodiments described below.
 本発明は、ポリ塩化ビニル系樹脂を含む樹脂組成物をノズル孔から紡糸する工程を備え、前記樹脂組成物は、ポリ塩化ビニル系樹脂を含み、前記ポリ塩化ビニル系樹脂は、粘度平均重合度が450~1700であるポリ塩化ビニル系樹脂(A)90~99質量部と、テトラヒドロフランに溶解する成分の粘度平均重合度が1800~2300である架橋塩化ビニル系樹脂(B)10~1質量部を含有し、前記ポリ塩化ビニル系樹脂(A)の粘度平均重合度と、前記架橋塩化ビニル系樹脂(B)のテトラヒドロフランに溶解する成分の粘度平均重合度の差が600~1850であり、前記ノズル孔は、前記ノズル孔の断面の図心を通る軸に関する断面二次モーメントの最小値(Imin)が1×10-4mm~15×10-4mmである、ポリ塩化ビニル系人工毛髪繊維の製造方法である。 The present invention comprises a step of spinning a resin composition containing a polyvinyl chloride resin from a nozzle hole, wherein the resin composition contains a polyvinyl chloride resin, and the polyvinyl chloride resin has a viscosity-average polymerization degree. 90 to 99 parts by mass of a polyvinyl chloride resin (A) having a polymer content of 450 to 1700, and 10 to 1 part by mass of a crosslinked vinyl chloride resin (B) having a viscosity average polymerization degree of 1800 to 2300 of a component dissolved in tetrahydrofuran The difference between the viscosity average polymerization degree of the polyvinyl chloride resin (A) and the viscosity average polymerization degree of the component dissolved in tetrahydrofuran of the crosslinked vinyl chloride resin (B) is 600 to 1850, The nozzle hole has a minimum value (Imin) of the second moment of section with respect to an axis passing through the centroid of the section of the nozzle hole, which is 1 × 10 −4 mm 4 to 15 × 10 −4 mm 4 . This is a method for producing a polyvinyl chloride artificial hair fiber.
<樹脂組成物>
 本発明に使用する樹脂組成物は、ポリ塩化ビニル系樹脂を含む。この樹脂組成物は、帯電防止剤、熱安定剤、滑剤などの添加剤を含んでもよい。
<Resin composition>
The resin composition used in the present invention contains a polyvinyl chloride resin. The resin composition may contain additives such as an antistatic agent, a heat stabilizer, and a lubricant.
 <ポリ塩化ビニル系樹脂>
 本発明に使用する塩化ビニル系樹脂は、ポリ塩化ビニル系樹脂(A)90~99質量部と、架橋塩化ビニル系樹脂(B)10~1質量部を含有する。
<Polyvinyl chloride resin>
The vinyl chloride resin used in the present invention contains 90 to 99 parts by mass of the polyvinyl chloride resin (A) and 10 to 1 part by mass of the crosslinked vinyl chloride resin (B).
(ポリ塩化ビニル系樹脂(A))
 本発明に使用するポリ塩化ビニル系樹脂(A)は、従来公知の塩化ビニルの単独重合物であるホモポリマー樹脂、または従来公知の各種のコポリマー樹脂であり、特に限定されるものではない。該コポリマー樹脂としては、塩化ビニル-酢酸ビニルコポリマー樹脂、塩化ビニル-プロピオン酸ビニルコポリマー樹脂などの塩化ビニルとビニルエステル類とのコポリマー樹脂、塩化ビニル-アクリル酸ブチルコポリマー樹脂、塩化ビニル-アクリル酸2エチルヘキシルコポリマー樹脂などの塩化ビニルとアクリル酸エステル類とのコポリマー樹脂、塩化ビニル-エチレンコポリマー樹脂、塩化ビニル-プロピレンコポリマー樹脂などの塩化ビニルとオレフィン類とのコポリマー樹脂、塩化ビニル-アクリロニトリルコポリマー樹脂などが代表的に例示される。好ましい塩化ビニル系樹脂は、塩化ビニルの単独重合物であるホモポリマー樹脂、塩化ビニル-エチレンコポリマー樹脂、塩化ビニル-酢酸ビニルコポリマー樹脂などがあげられる。該コポリマー樹脂において、コモノマーの含有量は特に限定されず、繊維への成型加工性、繊維の特性などに応じて決めることができる。
(Polyvinyl chloride resin (A))
The polyvinyl chloride resin (A) used in the present invention is a homopolymer resin that is a conventionally known homopolymer of vinyl chloride, or various conventionally known copolymer resins, and is not particularly limited. Examples of the copolymer resins include vinyl chloride-vinyl acetate copolymer resins, vinyl chloride-vinyl propionate copolymer resins and other vinyl chloride and vinyl ester copolymer resins, vinyl chloride-butyl acrylate copolymer resins, vinyl chloride-acrylic acid 2 Copolymer resins of vinyl chloride and acrylates such as ethylhexyl copolymer resin, vinyl chloride-ethylene copolymer resin such as vinyl chloride-ethylene copolymer resin, vinyl chloride-propylene copolymer resin, vinyl chloride-acrylonitrile copolymer resin, etc. Typically exemplified. Preferred vinyl chloride resins include homopolymer resins that are homopolymers of vinyl chloride, vinyl chloride-ethylene copolymer resins, vinyl chloride-vinyl acetate copolymer resins, and the like. In the copolymer resin, the content of the comonomer is not particularly limited, and can be determined according to the moldability of the fiber, the properties of the fiber, and the like.
 本発明に使用するポリ塩化ビニル系樹脂(A)の粘度平均重合度は、繊維としての十分な強度、耐熱性を得るためには、450~1700の範囲である。450未満であると樹脂の絡み合いが少なく強度が弱くなる。また、1700を超過するとゲル化が起こらず、繊維が切れやすくなり、生産性が低下する。これら成型加工性と繊維特性を達成するために、ポリ塩化ビニルのホモポリマー樹脂を使用する場合、好ましくは、粘度平均重合度が650~1450の領域である。コポリマーを使用する場合は、コモノマーの含有量にも依存するが、好ましくは、粘度平均重合度が1000~1700の領域である。前記粘度平均重合度は、樹脂200mgをニトロベンゼン50mlに溶解させ、このポリマー溶液を30℃恒温槽中、ウベローデ型粘度計を用いて比粘度を測定し、JIS-K6721により算出したものである。 The viscosity average polymerization degree of the polyvinyl chloride resin (A) used in the present invention is in the range of 450 to 1700 in order to obtain sufficient strength and heat resistance as a fiber. If it is less than 450, the resin is less entangled and the strength is weakened. On the other hand, if it exceeds 1700, gelation does not occur, the fibers are easily cut, and the productivity is lowered. In order to achieve these moldability and fiber properties, when a polyvinyl chloride homopolymer resin is used, the viscosity average degree of polymerization is preferably in the region of 650 to 1450. When a copolymer is used, it preferably depends on the comonomer content, but preferably has a viscosity average degree of polymerization of 1000 to 1700. The viscosity average degree of polymerization is calculated according to JIS-K6721 by dissolving 200 mg of resin in 50 ml of nitrobenzene, measuring the specific viscosity of this polymer solution in a constant temperature bath at 30 ° C. using an Ubbelohde viscometer.
 本発明に使用する塩化ビニル系樹脂(A)は、乳化重合、塊状重合または懸濁重合などによって製造することができる。繊維の初期着色性などを勘案して、懸濁重合によって製造した重合体が好ましい。 The vinyl chloride resin (A) used in the present invention can be produced by emulsion polymerization, bulk polymerization or suspension polymerization. A polymer produced by suspension polymerization is preferable in consideration of the initial colorability of the fiber.
(架橋塩化ビニル系樹脂(B))
 本発明で使用する架橋塩化ビニル系樹脂(B)は、水性媒体中で塩化ビニルを懸濁重合、ミクロ懸濁重合あるいは乳化重合する際に多官能性モノマーを添加して重合することにより容易に得られる。この際、使用される多官能性モノマーとしては、ポリエチレングリコールジアクリレート、ビスフェノールA変性ジアクリレートなどのジアクリレート化合物が特に好ましい。該樹脂は、架橋構造を有し、テトラヒドロフランに不溶な塩化ビニルを主成分とするゲル分とテトラヒドロフランに可溶なポリ塩化ビニル成分の混合物である。
(Crosslinked vinyl chloride resin (B))
The crosslinked vinyl chloride resin (B) used in the present invention can be easily obtained by adding a polyfunctional monomer and polymerizing it in suspension polymerization, micro suspension polymerization or emulsion polymerization of vinyl chloride in an aqueous medium. can get. In this case, the polyfunctional monomer used is particularly preferably a diacrylate compound such as polyethylene glycol diacrylate or bisphenol A-modified diacrylate. The resin is a mixture of a gel component having a crosslinked structure and mainly composed of vinyl chloride insoluble in tetrahydrofuran and a polyvinyl chloride component soluble in tetrahydrofuran.
 本発明では、テトラヒドロフランに溶解する成分の粘度平均重合度は、糸の編み込み性や紡糸性を考慮すると1800~2300であり、さらに好ましくは1900~2200である。1800未満であると、編み込み性が十分ではない。逆に2300を超過すると、紡糸時に糸切れが発生しやすくなる。 In the present invention, the viscosity average polymerization degree of the component dissolved in tetrahydrofuran is 1800 to 2300, more preferably 1900 to 2200 in consideration of the knitting property and spinnability of the yarn. If it is less than 1800, the knitting property is not sufficient. Conversely, if it exceeds 2300, yarn breakage tends to occur during spinning.
 架橋塩化ビニル系樹脂(B)のテトラヒドロフランに溶解する成分の粘度平均重合度は次のように測定される。架橋塩化ビニル系樹脂(B)1gをテトラヒドロフラン60mlに添加し約24時間静置する。その後超音波洗浄機を用いて樹脂を十分に溶解させる。テトラヒドロフラン溶液中の不溶分を、超遠心分離機(3万rpm×1時間)を用いて分離し、上澄みのTHF溶媒を採取する。その後、THF溶媒を揮発させ、ポリ塩化ビニル系樹脂(A)と同様な方法で粘度平均重合度を測定した。 The viscosity average polymerization degree of the component dissolved in tetrahydrofuran of the crosslinked vinyl chloride resin (B) is measured as follows. 1 g of the crosslinked vinyl chloride resin (B) is added to 60 ml of tetrahydrofuran and allowed to stand for about 24 hours. Thereafter, the resin is sufficiently dissolved using an ultrasonic cleaner. The insoluble matter in the tetrahydrofuran solution is separated using an ultracentrifuge (30,000 rpm × 1 hour), and the supernatant THF solvent is collected. Thereafter, the THF solvent was volatilized, and the viscosity average polymerization degree was measured by the same method as that for the polyvinyl chloride resin (A).
 架橋塩化ビニル系樹脂(B)は、ポリ塩化ビニル系樹脂(A)90~99質量部に対して、10~1質量部であり、ポリ塩化ビニル系樹脂(A)95~97質量部に対して架橋塩化ビニル系樹脂(B)5~3質量部添加するのが好ましい。架橋塩化ビニル系樹脂(B)が1質量部未満であると、得られる繊維の光沢性と編み込み性が低下し、10質量部を超過すると、紡糸性が低下し、好ましくない。 The cross-linked vinyl chloride resin (B) is 10 to 1 part by mass with respect to 90 to 99 parts by mass of the polyvinyl chloride resin (A), and 95 to 97 parts by mass with respect to the polyvinyl chloride resin (A). It is preferable to add 5 to 3 parts by mass of the crosslinked vinyl chloride resin (B). When the cross-linked vinyl chloride resin (B) is less than 1 part by mass, the gloss and knitting properties of the resulting fiber are lowered, and when it exceeds 10 parts by mass, the spinnability is lowered, which is not preferable.
 ポリ塩化ビニル系樹脂(A)の粘度平均重合度と架橋塩化ビニル系樹脂(B)のテトラヒドロフランに溶解する成分の重合度の差は、十分な低光沢性を得るために、600~1850である。好ましくは、800~1500である。600未満であると光沢性が十分でなく、逆に1500を超過すると紡糸時に糸切れが発生しやすくなる。 The difference between the viscosity average polymerization degree of the polyvinyl chloride resin (A) and the polymerization degree of the component dissolved in tetrahydrofuran of the crosslinked vinyl chloride resin (B) is 600 to 1850 in order to obtain sufficient low gloss. . Preferably, it is 800-1500. If it is less than 600, the gloss is not sufficient, and if it exceeds 1500, yarn breakage tends to occur during spinning.
<添加剤>
(帯電防止剤)
 本発明に使用する帯電防止剤には非イオン性(ノニオン系)、カチオン系、アニオン系、両性系のものを使用することができ、好ましくは、0.01質量部~1質量部の範囲で使用できる。0.01質量部未満であると静電気が発生しやすく糸が纏まり難くなり、巻き取られる過程で絡まりやすくなり糸切れが発生し易くなり、1質量部を超過すると経済的に不利である。
<Additives>
(Antistatic agent)
As the antistatic agent used in the present invention, nonionic (nonionic), cationic, anionic and amphoteric ones can be used, preferably in the range of 0.01 to 1 part by weight. Can be used. If the amount is less than 0.01 parts by mass, static electricity is likely to be generated, and the yarns are difficult to bundle. In the winding process, the yarns are easily entangled, and yarn breakage is likely to occur. If the amount exceeds 1 part by mass, it is economically disadvantageous.
(熱安定剤)
本発明に使用する熱安定剤には従来公知のものが使用できる。中でも、Ca-Zn系熱安定剤、ハイドロタルサイト系熱安定剤、錫系熱安定剤、ゼオライト系熱安定剤から選択される1種又は2種以上を使用するのが望ましい。熱安定剤は、成形時の熱分解、ロングラン性、フィラメントの色調を改良するために使用するもので、特に好ましくは、成形加工性、糸特性のバランスが優れている、Ca-Zn系熱安定剤とハイドロタルサイト系熱安定剤の併用が好ましい。これらの熱安定剤は、塩化ビニル系樹脂100質量部に対して、好ましくは0.1~5.0質量部である。0.1質量部未満であるとポリ塩化ビニル系樹脂が熱劣化し、黄変する場合がある。また、5.0質量部を超過すると経済的に不利である。ハイドロタルサイト系熱安定剤は、具体的にはハイドロタルサイト化合物であり、さらに具体的には、マグネシウム及び/又はアルカリ金属とアルミニウムあるいは亜鉛、マグネシウム及びアルミニウムからなる複合塩化合物であり、結晶水を脱水したものがある。又、ハイドロタルサイト化合物は、天然物であっても合成品であってもよく、合成品の合成方法は、従来公知の方法でよい。
(Heat stabilizer)
A conventionally well-known thing can be used for the heat stabilizer used for this invention. Among these, it is desirable to use one or more selected from a Ca—Zn heat stabilizer, a hydrotalcite heat stabilizer, a tin heat stabilizer, and a zeolite heat stabilizer. The thermal stabilizer is used to improve thermal decomposition during molding, long run property, and color tone of the filament, and is particularly preferably a Ca-Zn based thermal stabilizer that has an excellent balance of molding processability and yarn characteristics. The combined use of an agent and a hydrotalcite heat stabilizer is preferred. These heat stabilizers are preferably 0.1 to 5.0 parts by mass with respect to 100 parts by mass of the vinyl chloride resin. If it is less than 0.1 parts by mass, the polyvinyl chloride resin may be thermally deteriorated and yellowed. Moreover, when it exceeds 5.0 mass parts, it is economically disadvantageous. The hydrotalcite-based heat stabilizer is specifically a hydrotalcite compound, more specifically, a complex salt compound composed of magnesium and / or alkali metal and aluminum or zinc, magnesium and aluminum, There is something that has been dehydrated. The hydrotalcite compound may be a natural product or a synthetic product, and the synthesis method of the synthetic product may be a conventionally known method.
 熱安定剤の中で、Ca-Zn系熱安定剤としては、ステアリン酸亜鉛、ステアリン酸カルシウム、12-ヒドロキシステアリン酸亜鉛、12-ヒドロキシステアリン酸カルシウムなどがある。ハイドロタルサイト系熱安定剤としては、例えば協和化学工業株式会社製のアルカマイザーなどがある。錫系安定剤としては、ジメチルスズメルカプト、ジメチルスズメルカプタイド、ジブチルスズメルカプト、ジオクチルスズメルカプト、ジオクチルスズメルカプトポリマー、ジオクチルスズメルカプトアセテートなどのメルカプト錫系熱安定剤、ジメチルスズマレエート、ジブチルスズマレエート、ジオクチルスズマレエート、ジオクチルスズマレエートポリマーなどのマレエート錫系熱安定剤、ジメチルスズラウレート、ジブチルスズラウレート、ジオクチルスズラウレートなどのラウレート錫系熱安定剤がある。エポキシ系熱安定剤としては、例えば、エポキシ化大豆油、エポキシ化アマニ油などがある。βジケトン系熱安定剤としては、例えば、ステアロイルベンゾイルメタン(SBM)、ジベンゾイルメタン(DBM)などがある。 Among the heat stabilizers, examples of the Ca—Zn heat stabilizer include zinc stearate, calcium stearate, zinc 12-hydroxystearate, and calcium 12-hydroxystearate. Examples of the hydrotalcite-based heat stabilizer include Alkamizer manufactured by Kyowa Chemical Industry Co., Ltd. Examples of tin stabilizers include dimethyltin mercapto, dimethyltin mercaptoide, dibutyltin mercapto, dioctyltin mercapto, dioctyltin mercaptopolymer, mercaptotin thermal stabilizers such as dioctyltin mercaptoacetate, dimethyltin maleate, and dibutyltin maleate. , Maleate tin thermal stabilizers such as dioctyl tin maleate and dioctyl tin maleate polymer, and laurate tin thermal stabilizers such as dimethyl tin laurate, dibutyl tin laurate and dioctyl tin laurate. Examples of the epoxy heat stabilizer include epoxidized soybean oil and epoxidized linseed oil. Examples of the β-diketone heat stabilizer include stearoylbenzoylmethane (SBM) and dibenzoylmethane (DBM).
(滑剤)
 本発明には、適宜、滑剤を添加することができ、使用される滑剤は、従来公知のものを用いることができるが、特に金属石鹸系滑剤、ポリエチレン系滑剤、高級脂肪酸系滑剤、エステル系滑剤、高級アルコール系滑剤からなる群から選択される少なくとも1種が好ましい。該滑剤は、加工機の金属面との摩擦や樹脂間の摩擦を減少させ、流動性を良くし、加工性を改良させることが出来る。好ましくは、滑剤を塩化ビニル系樹脂100質量部に対して、0.2~5.0質量部が好ましい。0.2質量部未満であると流動性が悪く加工性が悪化する。また、5.0質量部を超過すると加工機の金属面との摩擦が少なくなり、安定的に樹脂を押し出すことができない。
(Lubricant)
In the present invention, a lubricant can be appropriately added, and conventionally known lubricants can be used, and in particular, metal soap lubricants, polyethylene lubricants, higher fatty acid lubricants, ester lubricants. At least one selected from the group consisting of higher alcohol lubricants is preferred. The lubricant can reduce the friction with the metal surface of the processing machine and the friction between the resins, improve the fluidity, and improve the workability. Preferably, the lubricant is 0.2 to 5.0 parts by mass with respect to 100 parts by mass of the vinyl chloride resin. If it is less than 0.2 parts by mass, the fluidity is poor and the processability is deteriorated. Moreover, when it exceeds 5.0 mass parts, friction with the metal surface of a processing machine will decrease, and resin cannot be extruded stably.
 金属石鹸系滑剤としては、例えば、Na、Mg、Al、Ca、Baなどのステアレート、ラウレート、パルミテート、オレエートなどの金属石鹸が例示される。高級脂肪酸系滑剤としては、例えば、ステアリン酸、パルミチン酸、ミリスチン酸、ラウリン酸、カプリン酸などの飽和脂肪酸、オレイン酸などの不飽和脂肪酸、またはこれらの混合物などが例示される。高級アルコール系滑剤としては、ステアリルアルコール、パルミチルアルコール、ミリスチルアルコール、ラウリルアルコール、オレイルアルコールなどが例示される。エステル系滑剤としては、アルコールと脂肪酸からなるエステル系滑剤やペンタエリスリトールまたはジペンタエリスリトールと高級脂肪酸とのモノエステル、ジエステル、トリエステル、テトラエステル、またはこれらの混合物などのペンタエリスリトール系滑剤
やモンタン酸とステアリルアルコール、パルミチルアルコール、ミリスチルアルコール、ラウリルアルコール、オレイルアルコールなどの高級アルコールとのエステル類のモンタン酸ワックス系滑剤が例示される。
Examples of the metal soap lubricant include metal soaps such as stearates such as Na, Mg, Al, Ca and Ba, laurates, palmitates and oleates. Examples of the higher fatty acid lubricant include saturated fatty acids such as stearic acid, palmitic acid, myristic acid, lauric acid and capric acid, unsaturated fatty acids such as oleic acid, and mixtures thereof. Examples of higher alcohol lubricants include stearyl alcohol, palmityl alcohol, myristyl alcohol, lauryl alcohol, oleyl alcohol, and the like. Examples of ester lubricants include ester lubricants composed of alcohol and fatty acids, pentaerythritol lubricants such as pentaerythritol or monoesters, diesters, triesters, tetraesters, or mixtures thereof of pentaerythritol or dipentaerythritol and higher fatty acids, and montanic acid. Examples thereof include montanic acid wax-based lubricants of esters of stearyl alcohol, palmityl alcohol, myristyl alcohol, lauryl alcohol, oleyl alcohol, and other higher alcohols.
 本発明においては、目的に応じて塩化ビニル系組成物に使用される公知の配合剤を本発明の効果を阻害しない範囲で添加できる。該配合剤の例としては、加工助剤、可塑剤、強化剤、紫外線吸収剤、酸化防止剤、充填剤、難燃剤、顔料、初期着色改善剤、導電性付与剤、香料等がある。 In the present invention, a known compounding agent used for a vinyl chloride composition can be added depending on the purpose as long as the effects of the present invention are not impaired. Examples of the compounding agents include processing aids, plasticizers, reinforcing agents, ultraviolet absorbers, antioxidants, fillers, flame retardants, pigments, initial color improvers, conductivity imparting agents, and fragrances.
<製造方法>
本発明のポリ塩化ビニル系繊維は、好ましくは全ての原料を混ぜ、一度ペレットコンパウンドにしてから公知の溶融紡糸により製造される。以下、製造条件の一例を示すが、製造条件は、適宜変更可能である。
(混合~ペレット)
 塩化ビニル系樹脂(A)、架橋塩化ビニル系樹脂(B)に適宜、帯電防止剤、熱安定剤及び滑剤を所定の割合で混合し、ヘンシェルミキサーなどで攪拌混合した後、押出機でペレットコンパウンドにする。従来公知の混合機、例えばヘンシェルミキサー、スーパーミキサー、リボンブレンダーなどを使用して混合してなるパウダーコンパウンドを溶融混合してなるペレットコンパウンドとして使用することができる。該パウダーコンパウンドの製造は、ホットブレンドでもコールドブレンドでも製造でき、製造条件として通常の条件を使用できる。好ましくは、組成物中の揮発分を減少するために、ブレンド時のカット温度を105~155℃迄上げてなるホットブレンドを使用するのが良い。該ペレットコンパウンドは、通常の塩化ビニル系ペレットコンパウンドの製造と同様にして製造できる。例えば、単軸押出し機、異方向2軸押出し機、コニカル2軸押出し機、同方向2軸押出し機、コニーダー、プラネタリーギアー押出し機、ロール混練り機などの混練り機を使用してペレットコンパウンドとすることができる。該ペレットコンパウンドを製造する際の条件は、特に限定はされないが、塩化ビニル系樹脂の熱劣化を防ぐため樹脂温度を185℃以下になるように設定することが好ましい。また該ペレットコンパウンド中に少量混入しうるスクリューの金属片や保護手袋についている繊維を取り除くため、スクリューの先端付近にメッシュを設置できる。
<Manufacturing method>
The polyvinyl chloride fiber of the present invention is preferably produced by known melt spinning after mixing all the raw materials to make a pellet compound once. Hereinafter, although an example of manufacturing conditions is shown, manufacturing conditions can be changed suitably.
(Mixing to pellet)
The vinyl chloride resin (A) and the crosslinked vinyl chloride resin (B) are appropriately mixed with antistatic agent, heat stabilizer and lubricant at a predetermined ratio, stirred and mixed with a Henschel mixer, etc., and then pelleted with an extruder. To. It can be used as a pellet compound obtained by melt-mixing a powder compound obtained by mixing using a known mixer such as a Henschel mixer, a super mixer, or a ribbon blender. The powder compound can be produced by hot blending or cold blending, and normal conditions can be used as production conditions. Preferably, in order to reduce the volatile matter in the composition, a hot blend obtained by raising the cut temperature during blending to 105 to 155 ° C. may be used. The pellet compound can be produced in the same manner as ordinary vinyl chloride-based pellet compounds. For example, pellet compounding using a kneader such as a single screw extruder, a different direction twin screw extruder, a conical twin screw extruder, a same direction twin screw extruder, a kneader, a planetary gear extruder, or a roll kneader. It can be. The conditions for producing the pellet compound are not particularly limited, but it is preferable to set the resin temperature to 185 ° C. or lower in order to prevent thermal deterioration of the vinyl chloride resin. In addition, a mesh can be installed in the vicinity of the tip of the screw in order to remove the metal pieces of the screw and the fibers attached to the protective gloves that can be mixed in a small amount in the pellet compound.
 ペレットの製造にはコールドカット法を採用できる。コールドカットの際に混入し得る「切り粉」(ペレット製造時に生じる微粉)などを除去する手段を採用することが可能である。また、長時間使用しているとカッターが刃こぼれをおこし、切り粉が発生しやすくなるため、適宜交換することが好ましい。 The cold cut method can be used for the production of pellets. It is possible to employ means for removing “cutting powder” (fine powder generated during pellet production) and the like that may be mixed during cold cutting. In addition, if the cutter is used for a long time, the cutter spills and chips are likely to be generated.
(紡糸)
 ペレットコンパウンドした原料をノズル孔断面の弱軸の断面2次モーメントが所定の範囲にあるノズルを用いて、シリンダー温度150~190℃、ノズル温度180±15℃の範囲で、紡糸性の良い条件で樹脂を押出し、溶融紡糸する。
(spinning)
The pellet compounded raw material is used with a nozzle whose cross-sectional secondary moment of the weak axis of the nozzle hole is in a predetermined range, with a cylinder temperature of 150 to 190 ° C. and a nozzle temperature of 180 ± 15 ° C. under good spinning conditions. The resin is extruded and melt spun.
 ノズル孔から溶融紡糸された未延伸の糸(ポリ塩化ビニル樹脂組成物の繊維)は、加熱円筒(加熱円筒温度250℃)に導入されて瞬間的に熱処理され、例えばノズル直下約4.5mの位置に設置した引取機にて巻き取られる。該ストランドは、未延伸糸のままである。この巻き取りの際、該未延伸糸の繊度が好ましくは120~250デニール(さらに好ましくは150~220デニール、さらに好ましくは175~185デニール)になる様に引取速度を調節する。 The unstretched yarn (fiber of the polyvinyl chloride resin composition) melt-spun from the nozzle hole is introduced into a heated cylinder (heated cylinder temperature 250 ° C.) and instantaneously heat-treated, for example, about 4.5 m directly below the nozzle. It is wound up by a take-up machine installed at the position. The strand remains an undrawn yarn. At the time of winding, the take-up speed is adjusted so that the fineness of the undrawn yarn is preferably 120 to 250 denier (more preferably 150 to 220 denier, more preferably 175 to 185 denier).
 なお、前記塩化ビニル系樹脂組成物を未延伸の糸にする際には、従来公知の押出し機を使用できる。例えば単軸押出し機、異方向2軸押出し機、コニカル2軸押出し機などを使用できるが、特に好ましくは、口径が35~85mmφ程度の単軸押出し機または口径が35~50mmφ程度のコニカル押出し機を使用するのが良い。口径が過大であると、押出し量が多くなり、またノズル圧力が過大になり、樹脂の温度が高くなり劣化しやすくなるため好ましくない。 In addition, when making the said vinyl chloride resin composition into an undrawn thread | yarn, a conventionally well-known extruder can be used. For example, a single screw extruder, a different-direction twin screw extruder, a conical twin screw extruder, etc. can be used, but a single screw extruder having a diameter of about 35 to 85 mmφ or a conical extruder having a diameter of about 35 to 50 mmφ is particularly preferable. Good to use. If the diameter is excessive, the amount of extrusion increases, the nozzle pressure becomes excessive, the temperature of the resin increases, and the resin tends to deteriorate, which is not preferable.
(ノズル孔形状)
 本発明に使用するノズル孔は、前記ノズル孔の断面の図心を通る軸に関する断面二次モーメントの最小値(Imin)が1×10-4mm~15×10-4mmである。ここで、前記ノズル孔の断面の図心を通る軸に関する断面二次モーメントの最小値(Imin)とは、該図心を通る2つの主軸(短軸、長軸)に関する断面二次モーメントの最小値(Imin)をいう。例えば、前記ノズル孔の断面が単純な幾何学図形である、長径2a、短径2bの楕円のときは断面二次モーメントの最小値(Imin)はπab/4で求められる。
(Nozzle hole shape)
In the nozzle hole used in the present invention, the minimum value (Imin) of the sectional second moment about the axis passing through the centroid of the section of the nozzle hole is 1 × 10 −4 mm 4 to 15 × 10 −4 mm 4 . Here, the minimum value (Imin) of the cross-sectional secondary moment with respect to the axis passing through the centroid of the cross section of the nozzle hole is the minimum value of the cross-sectional secondary moment with respect to the two principal axes (short axis and long axis) passing through the centroid. It refers to the value (Imin). For example, when the cross section of the nozzle hole is a simple geometric figure and is an ellipse having a major axis 2a and a minor axis 2b, the minimum value (Imin) of the sectional moment of inertia is obtained by πa 3 b / 4.
 断面2次モーメントの最小値(Imin)が1×10-4mm~15×10-4mmであることが好ましい。1×10-4mm以下であるとギア加工時に糸が柔らかすぎて形状が付き難い。逆に15×10-4mmを超えると糸が硬すぎて形状が付き難い。さらに好ましくは、2×10-4mm~13×10-4mmの範囲である。 It is preferable that the minimum value (Imin) of the sectional moment of inertia is 1 × 10 −4 mm 4 to 15 × 10 −4 mm 4 . When it is 1 × 10 −4 mm 4 or less, the yarn is too soft during gear processing and is difficult to form. On the other hand, if it exceeds 15 × 10 −4 mm 4 , the yarn is too hard to be shaped. More preferably, it is in the range of 2 × 10 −4 mm 4 to 13 × 10 −4 mm 4 .
 本発明におけるノズル孔断面の断面2次モーメントの最小値(Imin)は下記の方法で測定される。
1:ノズル孔断面を、キーエンス社製のデジタルマイクロスコープ VH-6300Cを用いて、ノズル孔を400倍に拡大してノズル孔の寸法を測定する。
2:アンドール社製のCADSUPERを用いて測定した寸法を図面化し、CADSUPER上で計算を行い、断面二次モーメントを算出する。
The minimum value (Imin) of the cross-sectional secondary moment of the nozzle hole cross section in the present invention is measured by the following method.
1: Using a digital microscope VH-6300C manufactured by Keyence Corporation, the nozzle hole is enlarged 400 times and the dimensions of the nozzle hole are measured.
2: Drawing the dimension measured using CADSUPER made from Andor Co., calculating on CADSUPER, and calculating a cross-sectional secondary moment.
(延伸~熱処理)
 次に、該未延伸糸を延伸機( 空気雰囲気下105℃)で2~5倍(例えば3倍)に延伸後、熱処理機(空気雰囲気下110℃)を用いて、繊維長が0.5~0.9倍(例えば0.75倍)になるように熱処理を施し、繊度が40~80デニール(好ましくは、50~70デニール、例えば58~62デニール)になるようにし、ポリ塩化ビニル系人工毛髪繊維を作製する。
(Stretching to heat treatment)
Next, the undrawn yarn is drawn 2 to 5 times (for example, 3 times) with a drawing machine (105 ° C. in an air atmosphere), and then the fiber length is 0.5 by using a heat treatment machine (110 ° C. under an air atmosphere). A heat treatment is applied so that the fineness becomes 40 to 80 denier (preferably 50 to 70 denier, for example, 58 to 62 denier). Artificial hair fibers are made.
(ギア加工)
 作製したポリ塩化ビニル系人工毛髪繊維に捲縮を施すためギア加工を行なう。
(Gear processing)
Gear processing is performed to crimp the produced polyvinyl chloride artificial hair fiber.
 ギア加工とは、2つの噛み合う高温のギアの間に繊維束を通すことによって捲縮を施す方法であり、使用するギアの材質、ギアの波の形、ギアの端数などは特に限定されない。繊維材質、繊度、ギア間の圧力条件等によってクリンプの波形状は変化しうるが、本発明においては、ギア波形の溝の深さ、ギアの表面温度、加工速度によってクリンプの波形状をコントロールできる。これらの加工条件に特に制限はないが、好ましくは、ギア波形の溝の深さは0.2mm~6mm、より好ましくは0.5mm~5mm、ギアの表面温度は30~100℃、より好ましくは40~80℃、加工速度は0.5~10m/分、より好ましくは1.0~8.0m/分である。 Gear processing is a method of crimping by passing a fiber bundle between two meshing high-temperature gears, and the material of the gear used, the shape of the gear wave, the fraction of the gear, etc. are not particularly limited. The crimp wave shape can vary depending on the fiber material, fineness, pressure condition between the gears, etc., but in the present invention, the crimp wave shape can be controlled by the gear wave groove depth, gear surface temperature, and processing speed. . These processing conditions are not particularly limited, but preferably the depth of the groove of the gear corrugation is 0.2 mm to 6 mm, more preferably 0.5 mm to 5 mm, and the gear surface temperature is 30 to 100 ° C., more preferably The processing speed is 40 to 80 ° C., and the processing speed is 0.5 to 10 m / min, more preferably 1.0 to 8.0 m / min.
 ギア加工する際の繊維束の総繊度は、特に限定はないが、10万~200万デシテックス、より好ましくは50万~150万デシテックスである。繊維束の総繊度が、10万デシテックス未満であると、ギア加工の生産性が悪くなり、さらにギア-クリンプ加工をする際に糸切れを起こす場合がある。一方、繊維束の総繊度が、200万デシテックスを超えると、均一な波形状を得にくくなる場合がある。 The total fineness of the fiber bundle during gear processing is not particularly limited, but is 100,000 to 2 million dtex, more preferably 500,000 to 1.5 million dtex. If the total fineness of the fiber bundle is less than 100,000 decitex, the productivity of gear processing is deteriorated, and further thread breakage may occur during gear-crimping. On the other hand, if the total fineness of the fiber bundle exceeds 2 million dtex, it may be difficult to obtain a uniform wave shape.
 上記のようにして得られる本発明のポリ塩化ビニル系繊維は、従来の塩化ビニル系繊維の特徴である触感を有しながら、紡糸性、低光沢性を向上させ、新たに編み込み性、ギア加工性という特性を付与することが可能である。紡糸性が向上した理由は、架橋塩化ビニル系樹脂(B)の配合量を適切にしたためである。低光沢性は、架橋塩化ビニル系樹脂(B)の配合量を適切にし、ポリ塩化ビニル系樹脂(A)の粘度平均重合度と架橋塩化ビニル系樹脂(B)のテトラヒドロフランに溶解する成分の粘度平均重合度の差をコントロールしたためである。また、編み込み性が付与できた理由は、架橋塩化ビニル系樹脂(B)のテトラヒドロフランに溶解する成分の粘度平均重合度が高いものを配合したためである。最後に、ギア加工性が付与できた理由は、ギア加工性が向上する断面形状になるノズルを使用したためである。 The polyvinyl chloride fiber of the present invention obtained as described above improves the spinnability and low glossiness while having the tactile sensation characteristic of the conventional vinyl chloride fiber, and is newly knitted and gear processed. It is possible to impart the property of sex. The reason why the spinnability is improved is that the blending amount of the crosslinked vinyl chloride resin (B) is made appropriate. The low glossiness makes the blending amount of the crosslinked vinyl chloride resin (B) appropriate, the viscosity average polymerization degree of the polyvinyl chloride resin (A) and the viscosity of the component dissolved in the tetrahydrofuran of the crosslinked vinyl chloride resin (B). This is because the difference in average polymerization degree was controlled. Further, the reason that the knitting property can be imparted is that a component of the crosslinked vinyl chloride resin (B) having a high viscosity average polymerization degree is dissolved. Finally, the reason why the gear workability can be imparted is that a nozzle having a cross-sectional shape that improves the gear workability is used.
 以下に実施例及び比較例を示して、本発明の具体的な実施態様をより詳細に説明するが、本発明は、この実施例のみに限定されるものではない。
<実施例1>
EXAMPLES Specific examples of the present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to only these examples.
<Example 1>
 ポリ塩化ビニル系樹脂(A)(大洋塩ビ株式会社製、TH-500)90質量部、架橋塩化ビニル系樹脂(B)(信越化学株式会社製、GR-2500S)10質量部、帯電防止剤(日油株式会社製、ニューエレガンASK)0.5質量部、ハイドロタルサイト系複合熱安定剤(日産化学工業株式会社製、CP-410A)3質量部、エポキシ化大豆油(旭電化工業株式会社O-130P)0.5質量部、エステル系滑剤(理研ビタミン社製EW-100)0.8質量部を配合した塩化ビニル系樹脂組成物をリボンブレンダーで混合し、シリンダー温度130~170℃の範囲において、直径40mmの押出機を使用し、コンパウンドを行い、ペレットを作製した。前記ペレットを弱軸の断面2次モーメントが5.0×10-4mm、孔数120個のX型のノズルを用いて、シリンダー温度140~190℃、ノズル温度180±15℃の範囲において、押出し量10kg/時間で直径30mmの押出機で溶融紡糸した。その後、ノズル直下に設けた加熱円筒(200~300℃雰囲気で紡糸性の良い条件)で約0.5~1.5秒熱処理し、150デシテックスの繊維とした。次に、前記溶融紡糸した繊維を100℃の空気雰囲気下で300%に延伸する工程、そして、前記延伸した繊維に120℃の空気雰囲気下で繊維全長が処理前の75%の長さに収縮するまで熱収縮する工程を順次経て、67デシテックスの人工毛髪用繊維を得た。 90 parts by mass of polyvinyl chloride resin (A) (manufactured by Taiyo PVC Co., Ltd., TH-500), 10 parts by mass of crosslinked vinyl chloride resin (B) (manufactured by Shin-Etsu Chemical Co., Ltd., GR-2500S), antistatic agent ( 0.5 parts by mass of Nippon Oil Co., Ltd., New Elegan ASK), 3 parts by mass of hydrotalcite composite thermal stabilizer (manufactured by Nissan Chemical Industries, CP-410A), epoxidized soybean oil (Asahi Denka Kogyo Co., Ltd.) O-130P) and a vinyl chloride resin composition containing 0.5 parts by mass of an ester lubricant (EW-100 manufactured by Riken Vitamin Co., Ltd.) were mixed with a ribbon blender, and the cylinder temperature was 130 to 170 ° C. In the range, an extruder with a diameter of 40 mm was used and compounded to produce pellets. Using pellets of X-type nozzles having a weak secondary axial moment of 5.0 × 10 −4 mm 4 and 120 holes, the pellets were in the range of a cylinder temperature of 140 to 190 ° C. and a nozzle temperature of 180 ± 15 ° C. Then, melt spinning was performed with an extruder having a diameter of 30 mm at an extrusion rate of 10 kg / hour. Thereafter, it was heat-treated for about 0.5 to 1.5 seconds in a heated cylinder (under conditions with a good spinnability in an atmosphere of 200 to 300 ° C.) provided directly under the nozzle to obtain 150 dtex fiber. Next, a step of stretching the melt-spun fiber to 300% in an air atmosphere of 100 ° C., and the total length of the stretched fiber contracts to 75% before treatment in an air atmosphere of 120 ° C. Through the process of heat shrinking until the end, 67 dtex fiber for artificial hair was obtained.
 加工性および得られた人工毛髪用繊維について、後述する評価方法及び基準に従って、紡糸性、低光沢性、編み込み性、ギア加工性及び触感の評価を行った。表1に結果を示す。 The processability and the obtained fibers for artificial hair were evaluated in terms of spinnability, low gloss, knitting, gear workability and tactile feel according to the evaluation method and criteria described below. Table 1 shows the results.
<実施例2~17、比較例1~7>
 実施例2~17、比較例1~7の配合等、評価結果を表1~3にまとめる。
<Examples 2 to 17, Comparative Examples 1 to 7>
Tables 1 to 3 summarize the evaluation results of Examples 2 to 17 and Comparative Examples 1 to 7.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~3にある素材は、以下のものを採用した。
ポリ塩化ビニル系樹脂(A)
粘度平均重合度:500(大洋塩ビ株式会社製、TH-500)
粘度平均重合度:1100(大洋塩ビ株式会社製、TH-1000)
粘度平均重合度:1350(大洋塩ビ株式会社製、TH-1400)
粘度平均重合度:2000(大洋塩ビ株式会社製、TH-2800)
The materials shown in Tables 1 to 3 were as follows.
Polyvinyl chloride resin (A)
Viscosity average polymerization degree: 500 (manufactured by Taiyo PVC Co., Ltd., TH-500)
Viscosity average polymerization degree: 1100 (manufactured by Taiyo PVC Co., Ltd., TH-1000)
Viscosity average degree of polymerization: 1350 (manufactured by Taiyo PVC Co., Ltd., TH-1400)
Viscosity average polymerization degree: 2000 (manufactured by Taiyo PVC Co., Ltd., TH-2800)
架橋塩化ビニル系樹脂(B)
THF可溶分の粘度平均重合度:1600(信越化学株式会社製、GR-1300T)
THF可溶分の粘度平均重合度:2020(信越化学株式会社製、GR-2500S)
THF可溶分の粘度平均重合度:2280(カネカ株式会社製、K25S)
Cross-linked vinyl chloride resin (B)
Viscosity average polymerization degree of THF-soluble matter: 1600 (manufactured by Shin-Etsu Chemical Co., Ltd., GR-1300T)
Viscosity average polymerization degree of THF-soluble matter: 2020 (manufactured by Shin-Etsu Chemical Co., Ltd., GR-2500S)
Viscosity average polymerization degree of THF-soluble matter: 2280 (manufactured by Kaneka Corporation, K25S)
 表1~3中の各評価項目についての評価方法とその基準は、以下の通りである。 The evaluation methods and criteria for each evaluation item in Tables 1 to 3 are as follows.
(1)紡糸性
 溶融紡糸し、未延伸糸ができる間で、糸切れの発生状況を目視観察し、次のように4段階評価した。
1:糸切れが7~15回/1時間。
2:糸切れが4~6回/1時間。
3:糸切れが2~3回/1時間。
4:糸切れが1回以下/1時間。
(1) Spinnability While melt spinning, undrawn yarn was produced, the occurrence of yarn breakage was visually observed and evaluated in four stages as follows.
1: 7-15 yarn breaks per hour.
2: Thread breakage 4-6 times / hour.
3: The thread breakage is 2 to 3 times / 1 hour.
4: Yarn breakage is 1 time or less / 1 hour.
(2)低光沢性
 繊維の毛束を観察し、次のように4段階評価した。低光沢性の判定の際、デンカ社製の塩化ビニル系繊維M-TYPEをランク1(光沢がある)とした。
1:光沢がある。
2:やや光沢がある。
3:艶が消えている。
4:非常に艶が消えている。
(2) Low gloss The fiber hair bundle was observed and evaluated in four stages as follows. In the determination of low gloss, Denka's vinyl chloride fiber M-TYPE was ranked 1 (glossy).
1: Shiny.
2: Slightly glossy.
3: The luster has disappeared.
4: The luster has disappeared very much.
(3)編み込み性
 30cm×0.5gの繊維の毛束を3セット作製し、それら上部2cmを固定し、三つ網加工後の長さが20~25cmの範囲になるように編み込み、4段階評価を行なった。この際、デンカ社製の塩化ビニル系繊維M-TYPEをランク2(やや滑る)とした。
1:滑る。
2:やや滑る。
3:滑らない。
4:非常に滑らない。
(3) Weaving properties Three sets of 30cm x 0.5g fiber bundles are made, the upper part 2cm is fixed, and the three braids are knitted so that the length is in the range of 20-25cm. Evaluation was performed. At this time, the vinyl chloride fiber M-TYPE made by Denka was ranked 2 (slightly slipped).
1: slip.
2: Slightly slip.
3: Does not slip.
4: Not very slippery.
(4)ギア加工性
 繊維にギア加工を行い、次のように4段階評価した。この際、ギア波形の溝の深さは2.5mm、ギアの表面温度は70~80℃、加工速度は2m/分でギア加工を行なった。ギア加工には触感の判定の際、デンカ社製の塩化ビニル系繊維M-TYPEをランク3(捲縮が良く付く)とした。
1:捲縮がほとんど付かない。
2:捲縮が付き難い。
3:捲縮が良く付く
4:捲縮が非常に良く付く。
(4) Gear processability Gear processing was performed on the fiber and evaluated in four stages as follows. At this time, gear machining was performed at a groove depth of 2.5 mm, a gear surface temperature of 70 to 80 ° C., and a machining speed of 2 m / min. For the gear processing, the vinyl chloride fiber M-TYPE manufactured by Denka Co., Ltd. was ranked 3 (with good crimp).
1: Almost no crimp.
2: It is hard to be crimped.
3: Crimped well 4: Crimped very well.
(5)触感
 溶融紡糸後の繊維の毛束を触覚で判断し、次のように4段階評価した。触感の判定の際、デンカ社製の塩化ビニル系繊維M-TYPEをランク4(非常に柔らかく、しなやかである)とした。
1:非常に硬い。
2:やや硬い。
3:柔らかく、しなやかである。
4:非常に柔らかく、しなやかである。
(5) Tactile sensation The fiber bundle after melt spinning was judged by tactile sensation, and was evaluated in four stages as follows. When judging the tactile sensation, the vinyl chloride fiber M-TYPE manufactured by Denka was ranked 4 (very soft and supple).
1: Very hard.
2: Slightly hard.
3: Soft and supple.
4: Very soft and supple.
 全ての実施例では、全ての評価項目について良好な結果が得られた。 In all examples, good results were obtained for all evaluation items.
 比較例1は、ポリ塩化ビニル系樹脂(A)が99質量部より多く、架橋塩化ビニル系樹脂(B)が1質量部より少ないため、糸の表面の凹凸形状が小さくなり、低光沢性、編み込み性が大きく悪化した。
 比較例2は、ポリ塩化ビニル系樹脂(A)が90質量部より少なく、架橋塩化ビニル系樹脂(B)が10質量部より多いため、非相溶成分が大きくなり、紡糸性が大きく悪化した。
 比較例3は、架橋塩化ビニル系樹脂(B)のテトラヒドロフランに溶解する成分の粘度平均重合度が1800以下の場合であり、糸の表面の凹凸が少なくなるため、編み込み性が悪化した。
 比較例4は、ポリ塩化ビニル系樹脂(A)と架橋塩化ビニル系樹脂(B)のテトラヒドロフランに溶解する成分の粘度平均重合度の差が20となり、600より小さいため低光沢性が悪化した。
 比較例5は、断面2次モーメントの最小値(Imin)が1×10-4mmより小さいノズルを使用したことにより、糸が柔らかくなり過ぎてしまい、ギアの形状が付き難くなるため、ギア加工性が悪化した。
 比較例6は、断面2次モーメントの最小値(Imin)が15×10-4mmより大きいノズルを使用したことにより、糸が硬くなり過ぎてしまい、ギアの形状が付き難くなるため、ギア加工性が悪化した。
 比較例7は、架橋塩化ビニル系樹脂(B)のテトラヒドロフランに溶解する成分の粘度平均重合度が1800以下であるため、糸の表面の凹凸が少なくなるため、編み込み性が悪化した。また、帯電防止剤が少ないため静電気により糸が絡まりやすくなり、糸切れが発生しやすかった。
In Comparative Example 1, the polyvinyl chloride resin (A) is more than 99 parts by mass and the cross-linked vinyl chloride resin (B) is less than 1 part by mass. The knitting property was greatly deteriorated.
In Comparative Example 2, the amount of the polyvinyl chloride resin (A) is less than 90 parts by mass and the amount of the crosslinked vinyl chloride resin (B) is more than 10 parts by mass, so that the incompatible component is increased and the spinnability is greatly deteriorated. .
The comparative example 3 is a case where the viscosity average polymerization degree of the component dissolved in tetrahydrofuran of the crosslinked vinyl chloride resin (B) is 1800 or less, and the unevenness on the surface of the yarn is reduced, so that the knitting property is deteriorated.
In Comparative Example 4, the difference in viscosity average degree of polymerization between the components of the polyvinyl chloride resin (A) and the crosslinked vinyl chloride resin (B) dissolved in tetrahydrofuran was 20, which was smaller than 600, so that the low gloss was deteriorated.
In Comparative Example 5, since the minimum value (Imin) of the moment of inertia of the cross section is smaller than 1 × 10 −4 mm 4 , the yarn becomes too soft and the shape of the gear is difficult to be attached. Workability deteriorated.
In Comparative Example 6, since the minimum value (Imin) of the moment of inertia of the cross section is larger than 15 × 10 −4 mm 4 , the yarn becomes too hard and the shape of the gear is difficult to be attached. Workability deteriorated.
In Comparative Example 7, since the viscosity average polymerization degree of the component dissolved in tetrahydrofuran of the crosslinked vinyl chloride resin (B) is 1800 or less, the unevenness on the surface of the yarn is reduced, so that the knitting property is deteriorated. Further, since the antistatic agent is small, the yarn is easily entangled by static electricity, and yarn breakage is likely to occur.
 本発明の製造方法で作られた人工毛髪繊維は、従来の塩化ビニル系繊維の特徴である触感や紡糸性を損なうことなく、低光沢性を向上させ、さらに編み込み性を付与することが可能である。また、本発明の繊維は安定的に溶融紡糸によって製造することが可能であることから、工業的にも有利である。 The artificial hair fiber made by the production method of the present invention can improve the low glossiness and impart the knitting property without impairing the touch and spinnability which are the characteristics of the conventional vinyl chloride fiber. is there. Moreover, since the fiber of the present invention can be stably produced by melt spinning, it is industrially advantageous.

Claims (3)

  1.  ポリ塩化ビニル系樹脂を含む樹脂組成物をノズル孔から紡糸する工程を備え、
     前記樹脂組成物は、ポリ塩化ビニル系樹脂を含み、
     前記ポリ塩化ビニル系樹脂は、粘度平均重合度が450~1700であるポリ塩化ビニル系樹脂(A)90~99質量部と、テトラヒドロフランに溶解する成分の粘度平均重合度が1800~2300である架橋塩化ビニル系樹脂(B)10~1質量部を含有し、
     前記ポリ塩化ビニル系樹脂(A)の粘度平均重合度と、前記架橋塩化ビニル系樹脂(B)のテトラヒドロフランに溶解する成分の粘度平均重合度の差が600~1850であり、
     前記ノズル孔は、前記ノズル孔の断面の図心を通る軸に関する断面二次モーメントの最小値(Imin)が1×10-4mm~15×10-4mmである、ポリ塩化ビニル系人工毛髪繊維の製造方法。
    Comprising a step of spinning a resin composition containing a polyvinyl chloride resin from a nozzle hole,
    The resin composition includes a polyvinyl chloride resin,
    The polyvinyl chloride resin includes 90 to 99 parts by mass of a polyvinyl chloride resin (A) having a viscosity average degree of polymerization of 450 to 1700, and a crosslink having a viscosity average degree of polymerization of 1800 to 2300 of a component dissolved in tetrahydrofuran. Contains 10 to 1 part by weight of vinyl chloride resin (B),
    The difference between the viscosity average polymerization degree of the polyvinyl chloride resin (A) and the viscosity average polymerization degree of the component dissolved in tetrahydrofuran of the crosslinked vinyl chloride resin (B) is 600 to 1850,
    The nozzle hole is a polyvinyl chloride system in which the minimum value (Imin) of the second moment of section about the axis passing through the centroid of the section of the nozzle hole is 1 × 10 −4 mm 4 to 15 × 10 −4 mm 4 A method for producing artificial hair fibers.
  2.  前記樹脂組成物が帯電防止剤を0.01質量部~1質量部含有することを特徴とする、請求項1に記載のポリ塩化ビニル系人工毛髪繊維の製造方法。 The method for producing a polyvinyl chloride artificial hair fiber according to claim 1, wherein the resin composition contains 0.01 to 1 part by mass of an antistatic agent.
  3.  前記樹脂組成物が錫系熱安定剤、Ca-Zn系熱安定剤、ハイドロタルサイト系熱安定剤、エポキシ系熱安定剤及びβ-ジケトン系熱安定剤から選択される少なくとも一種以上の熱安定剤を0.1~5質量部含有することを特徴とする、請求項1又は請求項2に記載のポリ塩化ビニル系人工毛髪繊維の製造方法。 The resin composition is at least one or more selected from a tin-based heat stabilizer, a Ca—Zn-based heat stabilizer, a hydrotalcite-based heat stabilizer, an epoxy-based heat stabilizer, and a β-diketone-based heat stabilizer. The method for producing a polyvinyl chloride artificial hair fiber according to claim 1 or 2, comprising 0.1 to 5 parts by mass of an agent.
PCT/JP2017/021872 2016-06-21 2017-06-13 Method for manufacturing polyvinyl chloride-based artificial hair fiber WO2017221773A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11201811233QA SG11201811233QA (en) 2016-06-21 2017-06-13 Method for manufacturing polyvinyl chloride-based artificial hair fiber
CN201780038080.1A CN109328247B (en) 2016-06-21 2017-06-13 Method for manufacturing polyvinyl chloride artificial hair fiber
JP2018523945A JP6823654B2 (en) 2016-06-21 2017-06-13 Manufacturing method of polyvinyl chloride artificial hair fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-122573 2016-06-21
JP2016122573 2016-06-21

Publications (1)

Publication Number Publication Date
WO2017221773A1 true WO2017221773A1 (en) 2017-12-28

Family

ID=60783430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021872 WO2017221773A1 (en) 2016-06-21 2017-06-13 Method for manufacturing polyvinyl chloride-based artificial hair fiber

Country Status (4)

Country Link
JP (1) JP6823654B2 (en)
CN (1) CN109328247B (en)
SG (2) SG10202012581SA (en)
WO (1) WO2017221773A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221348A1 (en) * 2017-05-30 2018-12-06 デンカ株式会社 Artificial hair fiber
WO2020110782A1 (en) * 2018-11-29 2020-06-04 デンカ株式会社 Fiber for artificial hair and head accessory product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150330A (en) * 1997-07-31 1999-02-23 Kanegafuchi Chem Ind Co Ltd Vinyl chloride-based fiber and its production
WO2004090208A1 (en) * 2003-04-04 2004-10-21 Denki Kagaku Kogyo Kabushiki Kaisha Polyvinyl chloride fiber, process for producing the same, and use thereof
WO2006093009A1 (en) * 2005-03-04 2006-09-08 Kaneka Corporation Polyvinyl chloride fiber with excellent style changeability

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100336950C (en) * 2003-04-04 2007-09-12 电气化学工业株式会社 Polyvinyl chloride fiber, process for producing the same, and use thereof
CN1634999A (en) * 2003-12-29 2005-07-06 天津渤海化工有限责任公司天津化工厂 Method for synthesizing delustring polyvinyl chloride special-purpose resin
JP2007284810A (en) * 2006-04-14 2007-11-01 Denki Kagaku Kogyo Kk Artificial hair fiber and method for producing the same
JP4845802B2 (en) * 2007-04-27 2011-12-28 株式会社オハラ Melt outflow nozzle
JP5491213B2 (en) * 2010-01-25 2014-05-14 電気化学工業株式会社 Artificial hair fiber and headdress

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150330A (en) * 1997-07-31 1999-02-23 Kanegafuchi Chem Ind Co Ltd Vinyl chloride-based fiber and its production
WO2004090208A1 (en) * 2003-04-04 2004-10-21 Denki Kagaku Kogyo Kabushiki Kaisha Polyvinyl chloride fiber, process for producing the same, and use thereof
WO2006093009A1 (en) * 2005-03-04 2006-09-08 Kaneka Corporation Polyvinyl chloride fiber with excellent style changeability

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221348A1 (en) * 2017-05-30 2018-12-06 デンカ株式会社 Artificial hair fiber
JPWO2018221348A1 (en) * 2017-05-30 2020-04-02 デンカ株式会社 Artificial hair fiber
JP7072567B2 (en) 2017-05-30 2022-05-20 デンカ株式会社 Fiber for artificial hair
US11432607B2 (en) 2017-05-30 2022-09-06 Denka Company Limited Artificial hair fiber
WO2020110782A1 (en) * 2018-11-29 2020-06-04 デンカ株式会社 Fiber for artificial hair and head accessory product
CN113166976A (en) * 2018-11-29 2021-07-23 电化株式会社 Fiber for artificial hair and head ornament
JPWO2020110782A1 (en) * 2018-11-29 2021-10-14 デンカ株式会社 Textiles and headdresses for artificial hair

Also Published As

Publication number Publication date
JPWO2017221773A1 (en) 2019-04-18
CN109328247A (en) 2019-02-12
SG11201811233QA (en) 2019-01-30
JP6823654B2 (en) 2021-02-03
CN109328247B (en) 2021-06-22
SG10202012581SA (en) 2021-01-28

Similar Documents

Publication Publication Date Title
JP4098826B2 (en) Polyvinyl chloride fiber with excellent style changeability
EP2626452A1 (en) Fiber for artificial hair, and hair accessory formed from same
JP6823654B2 (en) Manufacturing method of polyvinyl chloride artificial hair fiber
JP7198278B2 (en) Artificial hair fibers and hair decoration products
JP2010047846A (en) Fiber bundle for artificial hair, and method for producing the same
JP2021088777A (en) Artificial hair fiber and hair decorative product
JP7072567B2 (en) Fiber for artificial hair
WO2020110782A1 (en) Fiber for artificial hair and head accessory product
WO2022030147A1 (en) Artificial hair fibers
JP5019813B2 (en) Artificial hair fiber and method for producing the same
JP2010121219A (en) Fiber bundle, and method for producing fiber bundle
WO2022137766A1 (en) Artificial hair fibers
WO2024127715A1 (en) Fiber for artificial hair, and hair accessory
JP2002266160A (en) Vinyl chloride-based resin fiber
CN117580981A (en) Fiber for artificial hair, fiber bundle for artificial hair, and hair decorative article

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018523945

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815242

Country of ref document: EP

Kind code of ref document: A1