WO2017221678A1 - Positive electrode active material for lithium ion batteries and lithium ion battery using same - Google Patents

Positive electrode active material for lithium ion batteries and lithium ion battery using same Download PDF

Info

Publication number
WO2017221678A1
WO2017221678A1 PCT/JP2017/020788 JP2017020788W WO2017221678A1 WO 2017221678 A1 WO2017221678 A1 WO 2017221678A1 JP 2017020788 W JP2017020788 W JP 2017020788W WO 2017221678 A1 WO2017221678 A1 WO 2017221678A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
battery
lithium ion
Prior art date
Application number
PCT/JP2017/020788
Other languages
French (fr)
Japanese (ja)
Inventor
千恵子 荒木
鈴木 修一
西村 悦子
野家 明彦
繁貴 坪内
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2017221678A1 publication Critical patent/WO2017221678A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium ion battery and a lithium ion battery using the same.
  • hybrid vehicles using an engine and a motor as a power source have been developed and commercialized.
  • fuel cell hybrid vehicles that use fuel cells instead of engines are also actively developed.
  • a secondary battery capable of repeatedly charging and discharging electricity as an energy source of this hybrid vehicle is an essential technology.
  • the lithium ion battery is a battery having a high operating voltage and a high energy density that easily obtains a high output, and is becoming increasingly important as a power source for a hybrid vehicle in the future.
  • batteries with high capacity and high output are regarded as important. Battery design that realizes this item is important.
  • Patent Document 1 a coating layer containing at least nickel (Ni) and / or manganese (Mn) is provided on the surface of a composite oxide particle containing lithium (Li) and cobalt (Co), and the surface of the coating layer A technology that achieves both a high discharge capacity and a capacity maintenance rate by adjusting the state to a specific state is disclosed.
  • An object of the present invention is to provide a high capacity positive electrode active material and a lithium ion battery using the same.
  • LiCo x Ni y Mn z M 1-xyz O 2 (x is 0.3 to 1, y is 0 to 1, z is 0 to 0.4, M is boron (B), magnesium (Mg) , Aluminum (Al), silicon (Si), phosphorus (P), sulfur (S), titanium (Ti), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), molybdenum (Mo) , Silver (Ag), barium (Ba), tungsten (W), iridium (Ir), tin (Sn), lead (Pb) and antimony (Sb).
  • a positive electrode active material having a peak of Ni2p3 / 2 analyzed by XPS of 852.8 eV or more and less than 854 eV.
  • a high-capacity positive electrode active material and a lithium ion battery using the same can be provided.
  • FIG. 1 It is a figure which shows the structure of the cylindrical battery which concerns on embodiment of this invention. It is the figure of the active material in which the surface modification layer was formed by the surface modification process It is a figure which shows the structural example of the electrode body which comprises a battery. It is a figure which shows a mode that an electrode body is inserted
  • FIG. 1 is a diagram schematically showing the internal structure of a battery according to an embodiment of the present invention.
  • a battery 1 according to an embodiment of the present invention shown in FIG. 1 includes a positive electrode 10, a separator 11, a negative electrode 12, a battery container (that is, a battery can) 13, a positive electrode current collecting tab 14, a negative electrode current collecting tab 15, an inner lid 16, It comprises an internal pressure release valve 17, a gasket 18, a positive temperature coefficient (PTC) resistance element 19, a battery lid 20, and an axis 21.
  • the battery lid 20 is an integrated part composed of the inner lid 16, the internal pressure release valve 17, the gasket 18, and the PTC resistance element 19.
  • a positive electrode 10, a separator 11, and a negative electrode 12 are wound around the shaft center 21.
  • the separator 11 is inserted between the positive electrode 10 and the negative electrode 12 to produce an electrode group wound around the axis 21.
  • the electrode group has various shapes such as a laminate of strip electrodes, or a positive electrode 10 and a negative electrode 12 wound in an arbitrary shape such as a flat shape. Can do.
  • the shape of the battery case 13 may be selected from shapes such as a cylindrical shape, a flat oval shape, a flat oval shape, and a square shape according to the shape of the electrode group.
  • the material of the battery container 13 is selected from materials that are corrosion resistant to non-aqueous electrolytes, such as aluminum, stainless steel, and nickel-plated steel. Further, when the battery container 13 is electrically connected to the positive electrode 10 or the negative electrode 12, the material is not deteriorated due to corrosion of the battery container 13 or alloying with lithium ions in the portion in contact with the nonaqueous electrolyte. Thus, the material of the battery container 13 is selected.
  • the electrode group is housed in the battery container 13, the negative electrode current collecting tab 15 is connected to the inner wall of the battery container 13, and the positive electrode current collecting tab 14 is connected to the bottom surface of the battery lid 20.
  • the electrolyte is injected into the battery container interior 13 before the battery is sealed.
  • a method for injecting the electrolyte there are a method of adding directly to the electrode group in a state where the battery cover 20 is released, or a method of adding from an injection port installed in the battery cover 20.
  • the battery lid 20 is brought into close contact with the battery container 13 to seal the entire battery. If there is an electrolyte inlet, seal it as well.
  • a method for sealing the battery there are known techniques such as welding and caulking.
  • the positive electrode 10 includes a positive electrode mixture and a positive electrode current collector, and a positive electrode mixture containing a positive electrode active material, a conductive material, and a binder is applied to a positive electrode current collector such as an aluminum foil. What is formed can be used.
  • a composition formula positive electrode active material LiCo x Ni y Mn z M 1-xyz O 2 (x is 0.3 to 1, y is 0 to 1, z is 0 to 0.4, M is boron (B), magnesium (Mg), aluminum (Al), silicon (Si), phosphorus (P), sulfur (S), titanium (Ti), chromium (Cr), iron (Fe), copper (Cu ), Zinc (Zn), molybdenum (Mo), silver (Ag), barium (Ba), tungsten (W), iridium (Ir), tin (Sn), lead (Pb) and antimony (Sb) Lithium composite oxide represented by (a kind of element or more) can be used.
  • the capacity can be increased by increasing the Ni ratio, the output at low temperature can be improved by increasing Co, and the material cost can be suppressed by increasing Mn.
  • the additive element as M is effective in stabilizing the cycle characteristics.
  • the valence of a part of Ni existing on the surface of the positive electrode active material is usually divalent, but it is preferable to modify the surface so as to be less than divalent. That is, it is preferable to use an active material having a peak of Ni2p3 / 2 by analysis of 852.8 eV or more and less than 854 eV in XPS.
  • the intensity at 853 eV in XPS analysis is greater than the intensity at 855 eV. When the intensity at 853 eV is greater than the intensity at 855 eV, less than 2 valences It shows that there is more Ni than divalent Ni.
  • the layer in which Ni of less than 2 valence is generated has a depth of less than 100 to 150 nm from the surface of the positive electrode active material.
  • a surface modification method for example, a method in which the positive electrode active material is baked at 900 to 1000 ° C. for 30 to 60 minutes in a reducing gas atmosphere such as carbon oxide gas or hydrogen gas can be used.
  • a reducing gas atmosphere such as carbon oxide gas or hydrogen gas
  • the hydrogen gas it is sufficient that a small amount of hydrogen gas is contained in the argon gas, and the hydrogen gas concentration is preferably in the range of 3-5 wt% of the whole.
  • a method in which a positive electrode active material is put into a solution obtained by dissolving a reducing agent in a solvent and stirred can be used.
  • the reducing agent has an electrochemically lower redox potential than Ni divalent ions.
  • the reducing agent is hypophosphite H 2 PO 2 ⁇ , phosphite HPO 3 , hydrogenated by dissociation.
  • Boron compounds BH 4 ⁇ , hydrazine N 2 H 5 + , dithionate S 2 O 6 2 ⁇ , sulfite SO 3 2 ⁇ , etc., such as NaH 2 PO 2 , Na 2 HPO 3 , NaBH 4 , LiBH 4 , BH 3 , NaHSO 3 , N 2 H 4 , Na 2 SO 3 , Na 2 O 4 S 2 can be used.
  • the cathode active material having the surface modified layer 101 as shown in FIG. 2 can be obtained by modifying the surface of the cathode active material by these methods.
  • the surface modified layer 101 is a layer in which Ni having a valence less than 2 is present.
  • Examples of the conductive agent to be added to the positive electrode mixture include carbon materials such as carbon black, graphite, carbon fiber, and metal carbide, which may be used alone or in combination.
  • the binder may be any material as long as the material constituting the positive electrode and the current collector for the positive electrode are brought into close contact with each other.
  • a homopolymer or copolymer such as vinylidene fluoride, tetrafluoroethylene, acrylonitrile, ethylene oxide, Examples thereof include styrene-butadiene rubber.
  • a negative electrode mixture in which a negative electrode current collector is applied can be used.
  • the positive electrode mixture one having a negative electrode active material and a conductive material can be used.
  • the negative electrode active material particles a carbon material such as graphite or a material that occludes lithium by forming an alloy with lithium, or a mixture of a carbon material and an alloy thereof may be used.
  • Si silicon
  • Sn titanium
  • Al aluminum
  • Mg magnesium
  • P phosphorus
  • Sb lead
  • a material that forms a compound with lithium such as Fe 2 O 3 (iron oxide (III)) and NiO (nickel oxide (II)).
  • These active materials have a large volume change accompanying lithium occlusion as compared with graphite, but have a large lithium occlusion amount and can increase the capacity of the lithium ion secondary battery.
  • Si has a theoretical capacity density of about 4200 mAh / g, which is the largest among these. Therefore, it is preferable to use Si or a Si compound as the negative electrode active material.
  • the Si compound is not particularly limited as long as it can occlude and release lithium ions.
  • oxides such as SiO x (silicon oxide) and SiN x (silicon nitride), nitrides, SiNi Transition metal compounds such as x can be used.
  • Examples of the conductive agent include carbon materials such as carbon black, graphite, carbon fiber, and metal carbide, which may be used alone or in combination.
  • the binder resin is not particularly limited.
  • polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, styrene butadiene rubber, polyalginic acid, polyacrylic acid, carboxymethylcellulose, and the like are used.
  • An active material that forms an alloy with lithium such as a Si-based active material, expands and contracts when Li is inserted into and desorbed from the active material. At that time, the binding between the active materials or the binding between the active material and the current collector is lost, and the capacity is deteriorated.
  • a non-aqueous solvent containing a compound containing lithium ions as the electrolyte can be used as the electrolyte.
  • the non-aqueous solvent used in the electrolytic solution include ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) from the viewpoint of low temperature characteristics and film formation on the negative electrode, and vinylene carbonate.
  • Additives such as (VC) may be added.
  • the lithium salt used in the electrolytic solution is not particularly limited, but for inorganic lithium salts, LiPF 6 , LiBF 4 , LiClO 4 , LiI, LiCl, LiBr, etc., and for organic lithium salts, LiB [OCOCF 3 ] 4 , LiB [OCOCF 2 CF 3 ] 4 , LiPF 4 (CF 3 ) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2, or the like can be used.
  • LiPF 6 is a suitable material in terms of quality stability, and is often used in consumer batteries.
  • LiB [OCOCF 3 ] 4 is effective because it has good dissociation and solubility and exhibits high conductivity at a low concentration.
  • ⁇ Positive electrode> LiCo 0.2 Ni 0.5 Mn 0.3 O 2 as a positive electrode active material, acetylene black as a conductive material, and polyvinylidene fluoride (PVdF) as a binder are 93: 4: 3 in weight ratio.
  • N-methylpyrrolidone (NMP) was mixed as a solvent. Then, this mixture was mixed with N-methylpyrrolidone (NMP; solvent) to prepare a positive electrode mixture slurry. And this positive mix slurry was apply
  • ⁇ Negative electrode> Water was mixed as a solvent so that graphite and a conductive material, and CMC and SBR as a binder were in a weight ratio of 98: 1: 1. Then, this mixture was mixed with water (a negative electrode mixture slurry was prepared. Then, this negative electrode mixture slurry was applied to a copper foil having a thickness of 10 ⁇ m and dried in a vacuum. The negative electrode obtained by drying was applied. The negative electrode was produced by molding with a roll press.
  • ⁇ Separator> As the separator, a separator having a total thickness of 20 ⁇ m in which polypropylene, polyethylene, and polypropylene were laminated in three layers was used. The positive electrode was sandwiched between two separators, and three sides were thermally welded to form a bag. This separator was used.
  • Electrode> As an electrolytic solution, lithium hexafluoroethylene was added to an organic solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) were mixed at a volume ratio of 1: 2: 2 so as to be 1.0 mol / L. What dissolved the phosphate (LiPF6) was used.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • a rocking chair type lithium ion secondary battery was manufactured using the positive electrode, the negative electrode, the electrolytic solution, and the separator.
  • a positive electrode 201 and a negative electrode 202 housed in a bag-like separator 203 were inserted and laminated to obtain a laminate.
  • the positive electrode terminal 5 and the negative electrode terminal 206 were connected to the portions of the positive electrode 201 and the negative electrode 202 exposed to the outside (current collector foil exposed portions) by ultrasonic welding, respectively, and FIG.
  • the electrode body 204 shown was obtained.
  • the electrode body 204 is disposed between the two heat-weldable sheets 207, and parts other than the electrolyte injection portion of the sheet 207 are heat-welded, so that FIG.
  • the electrode placement container 209 shown was obtained.
  • the battery 211 shown in FIG. 6 was produced by thermally welding the opening after injecting the electrolytic solution. Then, an electrolyte impregnation time of 8 hours was provided after sealing, and then a battery 211 subjected to the following test was charged and discharged in a voltage range of 4.2 V to 2.5 V for 3 cycles at a current value of 0.2 A. Completed.
  • ⁇ Battery capacity evaluation method> The battery was charged at a constant current of 0.5 A to 4.2 V, and after 30 minutes of operation stop, it was discharged to 0.5 V at 0.5 A.
  • the capacity ratio was calculated by setting Comparative Example 2 to 100. The measurement results are shown in Table 1.
  • Example 1 In Comparative Example 1, the surface modification layer 101 was provided on the positive electrode active material. Otherwise, the battery was produced and evaluated in the same manner as in Comparative Example 1.
  • LiCo 0.2 Ni 0.5 Mn 0.3 O 2 was used as the positive electrode active material.
  • This positive electrode active material was put into an electric furnace, and this active material was fired at 1000 ° C. for 60 minutes in a reducing gas atmosphere.
  • As the reducing gas an Ar gas containing 3 wt% hydrogen was used.
  • the electric furnace was returned to room temperature, and the positive electrode active material was taken out of the electric furnace.
  • ⁇ Positive electrode production process N-methylpyrrolidone so that the weight ratio of the positive electrode active material surface-modified in the surface modification step, acetylene black as the conductive material, and polyvinylidene fluoride (PVdF) as the binder is 93: 4: 3 (NMP) was mixed as a solvent. Then, this mixture was mixed with N-methylpyrrolidone (NMP; solvent) to prepare a positive electrode mixture slurry. And this positive mix slurry was apply
  • NMP N-methylpyrrolidone
  • Example 2 In Example 1, a battery was produced and evaluated in the same manner except that a surface modification step different from that in Example 1 was used.
  • N-methylpyrrolidone so that the weight ratio of the positive electrode active material surface-modified in the surface modification step, acetylene black as the conductive material, and polyvinylidene fluoride (PVdF) as the binder is 93: 4: 3 (NMP) was mixed as a solvent. Then, this mixture was mixed with N-methylpyrrolidone (NMP; solvent) to prepare a positive electrode mixture slurry. And this positive mix slurry was apply
  • NMP N-methylpyrrolidone
  • Table 1 shows the results of the comparative example and Examples 1 and 2.
  • the capacity and the internal resistance are shown as values when the result of Comparative Example 1 is 100 (%).
  • the capacity of Example 1 increased by 5% compared to the comparative example, and the capacity of Example 2 increased by 4%.
  • the internal resistance was the same in Examples 1 and 2 and the comparative example.
  • FIG. 7 shows the Ni2p3 / 2 peak in the XPS measurement of the positive electrode.
  • the comparative example has a peak near 855 eV, but Examples 1 and 2 have a peak around 853 eV and have a peak less than divalent.
  • the intensity at 853 eV is smaller than the intensity at 855 eV, while in Examples 1 and 2, the intensity at 853 eV is larger than the intensity at 855 eV.
  • FIG. 1 Battery 1, positive electrode 10, separator 11, negative electrode 12, battery container (battery can) 13, positive electrode current collector tab 14, negative electrode current collector tab 15, inner lid 16, internal pressure release valve 17, gasket 18, positive temperature Coefficient resistance element 19, battery cover 20, axis 21
  • FIG. 2 Active material 100 having a surface modified layer, surface modified layer 101, and active material 102 3 to FIG. 6: battery 211, positive electrode 201, negative electrode 202, separator 203, electrode body 204, positive electrode terminal 205, negative electrode terminal 206, sheet 207, heat welded portion 208

Abstract

The purpose of the present invention is to provide: a positive electrode active material having high capacity; and a lithium ion battery which uses this positive electrode active material. A positive electrode active material which is represented by LiCoxNiyMnzM1-x-y-zO2 (wherein x is 0.3-1; y is 0-1; z is 0-0.4; and M represents one or more elements selected from among boron (B), magnesium (Mg), aluminum (Al), silicon (Si), phosphorus (P), sulfur (S), titanium (Ti), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), molybdenum (Mo), silver (Ag), barium (Ba), tungsten (W), iridium (Ir), tin (Sn), lead (Pb) and antimony (Sb), and which has an Ni2p3/2 peak within the range of from 852.8 eV (inclusive) to 854 eV (exclusive) as determined by XPS analysis.

Description

リチウムイオン電池の正極活物質およびそれを用いたリチウムイオン電池Cathode active material for lithium ion battery and lithium ion battery using the same
本発明は、リチウムイオン電池の正極活物質およびそれを用いたリチウムイオン電池に関する。 The present invention relates to a positive electrode active material for a lithium ion battery and a lithium ion battery using the same.
 環境保護、省エネルギーの観点から、エンジンとモーターとを動カ源として併用したハイブリッド自動車が開発,製品化されている。また、将来的には、燃料電池をエンジンの替わりに用いる燃料電池ハイブリッド自動車の開発も盛んになっている。
このハイブリッド自動車のエネルギー源として電気を繰返し充電放電可能な二次電池は必須の技術である。なかでも、リチウムイオン電池は、その動作電圧が高く、高い出力を得やすい高エネルギー密度の特徴を有する電池であり、今後、ハイブリッド自動車の電源として益々重要性が増している。電気自動車へのハイブリッド自動車の用途では、高容量、高出力化である電池が重要視されている。この項目を実現する電池設計が重要となる。
From the viewpoints of environmental protection and energy saving, hybrid vehicles using an engine and a motor as a power source have been developed and commercialized. In the future, fuel cell hybrid vehicles that use fuel cells instead of engines are also actively developed.
A secondary battery capable of repeatedly charging and discharging electricity as an energy source of this hybrid vehicle is an essential technology. Among them, the lithium ion battery is a battery having a high operating voltage and a high energy density that easily obtains a high output, and is becoming increasingly important as a power source for a hybrid vehicle in the future. In applications of hybrid vehicles to electric vehicles, batteries with high capacity and high output are regarded as important. Battery design that realizes this item is important.
 特許文献1には、リチウム(Li)と、コバルト(Co)とを含む複合酸化物粒子の表面に、少なくともニッケル(Ni)および/またはマンガン(Mn)を含む被覆層を設け、被覆層の表面の状態を特定の状態に調節することで高い放電容量と容量維持率とを両立する技術が開示されている。 In Patent Document 1, a coating layer containing at least nickel (Ni) and / or manganese (Mn) is provided on the surface of a composite oxide particle containing lithium (Li) and cobalt (Co), and the surface of the coating layer A technology that achieves both a high discharge capacity and a capacity maintenance rate by adjusting the state to a specific state is disclosed.
特開2010-135207号公報JP 2010-135207 A
 電極の厚さを薄くすることにより、電極内のLiイオン拡散経路を短くすると、抵抗が減少し、結果、高出力化する。しかしながら、電極を薄くすると、容量が減少してしまう。このため、活物質の高容量化が必要になる。 When the Li ion diffusion path in the electrode is shortened by reducing the thickness of the electrode, the resistance decreases, resulting in higher output. However, when the electrode is thinned, the capacity is reduced. For this reason, it is necessary to increase the capacity of the active material.
 特許文献1のように正極活物質の表面状態を調節することで、この点を改善する可能性があるが、上記のような薄い電極を用いる場合、さらなる高容量化が必要となる。 There is a possibility that this point can be improved by adjusting the surface state of the positive electrode active material as in Patent Document 1. However, when a thin electrode as described above is used, a higher capacity is required.
 本発明の目的は、高容量の正極活物質、およびそれを用いたリチウムイオン電池を提供することである。 An object of the present invention is to provide a high capacity positive electrode active material and a lithium ion battery using the same.
本発明の特徴は、例えば、以下の通りである。 The features of the present invention are, for example, as follows.
 LiCoNiMn1-x-y-z(xは0.3~1、yは0~1、zは0~0.4、Mはホウ素(B)、マグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、リン(P)、硫黄(S)、チタン(Ti)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、銀(Ag)、バリウム(Ba)、タングステン(W)、イリジウム(Ir)、スズ(Sn)、鉛(Pb)およびアンチモン(Sb)から選ばれる1種類以上の元素である)で表され、XPSに分析によるNi2p3/2のピークが852.8eV以上854eV未満である正極活物質。 LiCo x Ni y Mn z M 1-xyz O 2 (x is 0.3 to 1, y is 0 to 1, z is 0 to 0.4, M is boron (B), magnesium (Mg) , Aluminum (Al), silicon (Si), phosphorus (P), sulfur (S), titanium (Ti), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), molybdenum (Mo) , Silver (Ag), barium (Ba), tungsten (W), iridium (Ir), tin (Sn), lead (Pb) and antimony (Sb). A positive electrode active material having a peak of Ni2p3 / 2 analyzed by XPS of 852.8 eV or more and less than 854 eV.
 本発明により、高容量の正極活物質、およびそれを用いたリチウムイオン電池を提供することができる。 According to the present invention, a high-capacity positive electrode active material and a lithium ion battery using the same can be provided.
本発明の実施の形態に係る円筒型電池の構成を示す図であるIt is a figure which shows the structure of the cylindrical battery which concerns on embodiment of this invention. 表面改質工程により表面改質層を形成された活物質の図であるIt is the figure of the active material in which the surface modification layer was formed by the surface modification process 電池を構成する電極体の構成例を示す図である。It is a figure which shows the structural example of the electrode body which comprises a battery. 電極体をシートの間に挟み込む様子を示す図である。It is a figure which shows a mode that an electrode body is inserted | pinched between sheets. シートを熱溶着した様子を示す図である。It is a figure which shows a mode that the sheet | seat was heat-welded. シートを熱溶着した様子を示す図である。It is a figure which shows a mode that the sheet | seat was heat-welded. XPS表面分析結果を示す図である。It is a figure which shows a XPS surface analysis result.
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible.
 図1は、本発明の一実施形態に係る電池の内部構造を模式的に表す図である。図1に示す本発明の一実施形態に係る電池1は、正極10、セパレータ11、負極12、電池容器(即ち電池缶)13、正極集電タブ14、負極集電タブ15、内蓋16、内圧開放弁17、ガスケット18、正温度係数(Positive temperature coefficient;PTC)抵抗素子19、及び電池蓋20、軸心21から構成される。電池蓋20は、内蓋16、内圧開放弁17、ガスケット18、及びPTC抵抗素子19からなる一体化部品である。また、軸心21には、正極10、セパレータ11及び負極12が捲回されている。 FIG. 1 is a diagram schematically showing the internal structure of a battery according to an embodiment of the present invention. A battery 1 according to an embodiment of the present invention shown in FIG. 1 includes a positive electrode 10, a separator 11, a negative electrode 12, a battery container (that is, a battery can) 13, a positive electrode current collecting tab 14, a negative electrode current collecting tab 15, an inner lid 16, It comprises an internal pressure release valve 17, a gasket 18, a positive temperature coefficient (PTC) resistance element 19, a battery lid 20, and an axis 21. The battery lid 20 is an integrated part composed of the inner lid 16, the internal pressure release valve 17, the gasket 18, and the PTC resistance element 19. A positive electrode 10, a separator 11, and a negative electrode 12 are wound around the shaft center 21.
 セパレータ11を正極10及び負極12の間に挿入し、軸心21に捲回した電極群を作製する。軸心21は、正極10、セパレータ11及び負極12を担持できるものであれば、公知の任意のものを用いることができる。電極群は、図1に示した円筒形状の他に、短冊状電極を積層したもの、又は正極10と負極12を扁平状等の任意の形状に捲回したもの等、種々の形状にすることができる。電池容器13の形状は、電極群の形状に合わせ、円筒形、偏平長円形状、扁平楕円形状、角形等の形状を選択してもよい。 The separator 11 is inserted between the positive electrode 10 and the negative electrode 12 to produce an electrode group wound around the axis 21. As the axis 21, any known one can be used as long as it can support the positive electrode 10, the separator 11, and the negative electrode 12. In addition to the cylindrical shape shown in FIG. 1, the electrode group has various shapes such as a laminate of strip electrodes, or a positive electrode 10 and a negative electrode 12 wound in an arbitrary shape such as a flat shape. Can do. The shape of the battery case 13 may be selected from shapes such as a cylindrical shape, a flat oval shape, a flat oval shape, and a square shape according to the shape of the electrode group.
 電池容器13の材質は、アルミニウム、ステンレス鋼、ニッケルメッキ鋼製等、非水電解質に対し耐食性のある材料から選択される。また、電池容器13を正極10又は負極12に電気的に接続する場合は、非水電解質と接触している部分において、電池容器13の腐食やリチウムイオンとの合金化による材料の変質が起こらないように、電池容器13の材料の選定を行う。 The material of the battery container 13 is selected from materials that are corrosion resistant to non-aqueous electrolytes, such as aluminum, stainless steel, and nickel-plated steel. Further, when the battery container 13 is electrically connected to the positive electrode 10 or the negative electrode 12, the material is not deteriorated due to corrosion of the battery container 13 or alloying with lithium ions in the portion in contact with the nonaqueous electrolyte. Thus, the material of the battery container 13 is selected.
 電池容器13に電極群を収納し、電池容器13の内壁に負極集電タブ15を接続し、電池蓋20の底面に正極集電タブ14を接続する。電解液は、電池の密閉の前に電池容器内部13に注入する。電解液の注入方法は、電池蓋20を解放した状態にて電極群に直接添加する方法、又は電池蓋20に設置した注入口から添加する方法がある。 The electrode group is housed in the battery container 13, the negative electrode current collecting tab 15 is connected to the inner wall of the battery container 13, and the positive electrode current collecting tab 14 is connected to the bottom surface of the battery lid 20. The electrolyte is injected into the battery container interior 13 before the battery is sealed. As a method for injecting the electrolyte, there are a method of adding directly to the electrode group in a state where the battery cover 20 is released, or a method of adding from an injection port installed in the battery cover 20.
 その後、電池蓋20を電池容器13に密着させ、電池全体を密閉する。電解液の注入口がある場合は、それも密封する。電池を密閉する方法には、溶接、かしめ等公知の技術がある。 Thereafter, the battery lid 20 is brought into close contact with the battery container 13 to seal the entire battery. If there is an electrolyte inlet, seal it as well. As a method for sealing the battery, there are known techniques such as welding and caulking.
 <正極>
 正極10としては、正極合剤と、正極集電体とを備え、正極活物質及び、導電材、結着材を含む正極合剤が、アルミニウム箔などの正極集電体に塗布されることにより形成されるものを用いることができる。
<Positive electrode>
The positive electrode 10 includes a positive electrode mixture and a positive electrode current collector, and a positive electrode mixture containing a positive electrode active material, a conductive material, and a binder is applied to a positive electrode current collector such as an aluminum foil. What is formed can be used.
 正極活物質としては、組成式正極活物質LiCoNiMn1-x-y-z(xは0.3~1、yは0~1、zは0~0.4、Mはホウ素(B)、マグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、リン(P)、硫黄(S)、チタン(Ti)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、銀(Ag)、バリウム(Ba)、タングステン(W)、イリジウム(Ir)、スズ(Sn)、鉛(Pb)およびアンチモン(Sb)から選ばれる1種類以上の元素である)で表されるリチウム複合酸化物を用いることができる。Niの比率を多くすることで容量を大きくすることができ、Coを多くすると低温での出力が向上でき、また、Mnを多くすることで材料コストを抑制することができる。また、Mである添加元素は、サイクル特性を安定させるのに効果がある。 As the positive electrode active material, a composition formula positive electrode active material LiCo x Ni y Mn z M 1-xyz O 2 (x is 0.3 to 1, y is 0 to 1, z is 0 to 0.4, M is boron (B), magnesium (Mg), aluminum (Al), silicon (Si), phosphorus (P), sulfur (S), titanium (Ti), chromium (Cr), iron (Fe), copper (Cu ), Zinc (Zn), molybdenum (Mo), silver (Ag), barium (Ba), tungsten (W), iridium (Ir), tin (Sn), lead (Pb) and antimony (Sb) Lithium composite oxide represented by (a kind of element or more) can be used. The capacity can be increased by increasing the Ni ratio, the output at low temperature can be improved by increasing Co, and the material cost can be suppressed by increasing Mn. Further, the additive element as M is effective in stabilizing the cycle characteristics.
 この正極活物質の表面に存在するNiの一部の価数は、通常2価であるが、2価未満になるように表面改質することが好ましい。つまり、XPSに分析によるNi2p3/2のピークが852.8eV以上854eV未満を有する活物質を用いることが好ましい。また、2価未満のNiが多いことを示す他の指標としては、XPS分析での853eVにおける強度が855eVにおける強度よりも大きいことが挙げられる853eVにおける強度が855eVにおける強度よりも大きい場合2価未満のNiが2価のNiよりも多いことを示す。 The valence of a part of Ni existing on the surface of the positive electrode active material is usually divalent, but it is preferable to modify the surface so as to be less than divalent. That is, it is preferable to use an active material having a peak of Ni2p3 / 2 by analysis of 852.8 eV or more and less than 854 eV in XPS. In addition, as another index indicating that there is a large amount of Ni less than 2 valences, the intensity at 853 eV in XPS analysis is greater than the intensity at 855 eV. When the intensity at 853 eV is greater than the intensity at 855 eV, less than 2 valences It shows that there is more Ni than divalent Ni.
 Niの価数が少ないことで、Liが行き来できるサイト数が増え結果的に容量が増えると考えられる。 It is considered that the number of sites where Li can come and go increases as a result of the low valence of Ni, resulting in an increase in capacity.
 リチウムイオンが行き来する箇所を考慮すると、2価未満のNiが発生する層は正極活物質の表面より100-150nm未満の深さであるのが望ましい。 Considering the places where lithium ions come and go, it is desirable that the layer in which Ni of less than 2 valence is generated has a depth of less than 100 to 150 nm from the surface of the positive electrode active material.
 <正極活物質の表面改質方法>
 表面の改質方法としては、例えば正極活物質を―酸化炭素ガスや水素ガスなどの還元性ガス雰囲気下、900-1000℃、30から60分ほど焼成する方法を用いることができる。水素ガスに関してはアルゴンガス中に少量の水素ガスが入っていれば良く、水素ガス濃度は全体の3-5wt%の範囲が好ましい。
<Surface modification method of positive electrode active material>
As a surface modification method, for example, a method in which the positive electrode active material is baked at 900 to 1000 ° C. for 30 to 60 minutes in a reducing gas atmosphere such as carbon oxide gas or hydrogen gas can be used. Regarding the hydrogen gas, it is sufficient that a small amount of hydrogen gas is contained in the argon gas, and the hydrogen gas concentration is preferably in the range of 3-5 wt% of the whole.
 他の方法としては、例えば還元剤を溶媒中に溶かした溶液中に正極活物質を投入し撹拌させる方法を用いることができる。還元剤はNiの2価イオンよりも電気化学的に卑の酸化還元電位をもっているものであり、例えば解離することで次亜リン酸塩 HPO  、亜リン酸塩 HPO 、水素化ホウ素化合物 BH  、ヒドラジン N  、ジチオン酸塩 S 2- 、亜硫酸塩 SO 2- などを生じるもの、例えばNaHPO、NaHPO、NaBH、LiBH、BH、NaHSO、N、NaSO、Naを用いることができる。 As another method, for example, a method in which a positive electrode active material is put into a solution obtained by dissolving a reducing agent in a solvent and stirred can be used. The reducing agent has an electrochemically lower redox potential than Ni divalent ions. For example, the reducing agent is hypophosphite H 2 PO 2 , phosphite HPO 3 , hydrogenated by dissociation. Boron compounds BH 4 , hydrazine N 2 H 5 + , dithionate S 2 O 6 2− , sulfite SO 3 2−, etc., such as NaH 2 PO 2 , Na 2 HPO 3 , NaBH 4 , LiBH 4 , BH 3 , NaHSO 3 , N 2 H 4 , Na 2 SO 3 , Na 2 O 4 S 2 can be used.
 これらの方法により正極活物質の表面を改質することで図2に示すような表面改質層101を有する正極活物質を得ることができる。表面改質層101は2価未満の価数のNiが存在する層である。 The cathode active material having the surface modified layer 101 as shown in FIG. 2 can be obtained by modifying the surface of the cathode active material by these methods. The surface modified layer 101 is a layer in which Ni having a valence less than 2 is present.
 正極合剤に添加する導電剤としては、例えば、カーボンブラック,グラファイト,カーボンファイバー及び金属炭化物などのカーボン材料であり、それぞれ単独でも混合して用いても良い。 Examples of the conductive agent to be added to the positive electrode mixture include carbon materials such as carbon black, graphite, carbon fiber, and metal carbide, which may be used alone or in combination.
 結着材としては、正極を構成する材料と正極用集電体を密着させるものであればよく、例えば、フッ化ビニリデン,四フッ化エチレン,アクリロニトリル,エチレンオキシドなどの単独重合体又は共重合体,スチレン-ブタジエンゴムなどを挙げることができる。 The binder may be any material as long as the material constituting the positive electrode and the current collector for the positive electrode are brought into close contact with each other. For example, a homopolymer or copolymer such as vinylidene fluoride, tetrafluoroethylene, acrylonitrile, ethylene oxide, Examples thereof include styrene-butadiene rubber.
 <負極>
 負極12としては、負極合剤が、負極集電体に塗布されたものを用いることができる。正極合剤は、負極活物質、導電材を有するものを用いることができる。負極活物質粒子としては、黒鉛などの炭素材料やリチウムと合金を形成することでリチウムを吸蔵するものまたは、炭素材料とこれらの合金を混合して用いるのもよい。リチウムと合金を形成することでリチウムを吸蔵する材料は、例えば、Si(シリコン)、Sn(スズ)、Al(アルミニウム)、Mg(マグネシウム)、P(リン)、Sb(鉛)などを用いることができる。また、Fe(酸化鉄(III))、NiO(酸化ニッケル(II))などのリチウムと化合物を形成する材料を用いることが好ましい。これらの活物質は、黒鉛と比較するとリチウム吸蔵に伴う体積変化は大きいが、リチウム吸蔵量が大きく、リチウムイオン二次電池の容量を増加させることができる。特にSiは理論容量密度が約4200mAh/gと、これらの中でも最大であるため、Si又はSi化合物を負極活物質に用いることが好ましい。
<Negative electrode>
As the negative electrode 12, a negative electrode mixture in which a negative electrode current collector is applied can be used. As the positive electrode mixture, one having a negative electrode active material and a conductive material can be used. As the negative electrode active material particles, a carbon material such as graphite or a material that occludes lithium by forming an alloy with lithium, or a mixture of a carbon material and an alloy thereof may be used. For example, Si (silicon), Sn (tin), Al (aluminum), Mg (magnesium), P (phosphorus), Sb (lead), or the like is used as a material that occludes lithium by forming an alloy with lithium. Can do. In addition, it is preferable to use a material that forms a compound with lithium, such as Fe 2 O 3 (iron oxide (III)) and NiO (nickel oxide (II)). These active materials have a large volume change accompanying lithium occlusion as compared with graphite, but have a large lithium occlusion amount and can increase the capacity of the lithium ion secondary battery. In particular, Si has a theoretical capacity density of about 4200 mAh / g, which is the largest among these. Therefore, it is preferable to use Si or a Si compound as the negative electrode active material.
 Si化合物としては、リチウムイオンを吸蔵、放出するものであれば特に限定されることはないが、例えば、SiO(酸化ケイ素)、SiN(窒化ケイ素)などの酸化物、窒化物や、SiNiなどの遷移金属化合物を用いることができる。 The Si compound is not particularly limited as long as it can occlude and release lithium ions. For example, oxides such as SiO x (silicon oxide) and SiN x (silicon nitride), nitrides, SiNi Transition metal compounds such as x can be used.
 導電剤としては、例えば、カーボンブラック,グラファイト,カーボンファイバー及び金属炭化物などのカーボン材料であり、それぞれ単独でも混合して用いても良い。 Examples of the conductive agent include carbon materials such as carbon black, graphite, carbon fiber, and metal carbide, which may be used alone or in combination.
 バインダ樹脂(結着剤)は、特に限定されるものではないが、例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、スチレンブタジエンゴム、ポリアルギン酸、ポリアクリル酸、カルボキシメチルセルロース等を用いることができる。Si系活物質などのリチウムと合金を形成するような活物質は、活物質にLiが挿入脱離する時、活物質が膨張収縮する。その際、活物質同士の結着、または活物質と集電体との結着が欠落してしまい、容量が劣化してしまう。容量劣化を防ぐためには、バインダの強度を大きいものを使用するのが望ましい。尚、ポリイミド、ポリアミドイミドは強度を向上させるために、真空中での熱処理を行う必要があり、この熱処理の温度によって、バインダの強度を変えることが可能である。 The binder resin (binder) is not particularly limited. For example, polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, styrene butadiene rubber, polyalginic acid, polyacrylic acid, carboxymethylcellulose, and the like are used. Can do. An active material that forms an alloy with lithium, such as a Si-based active material, expands and contracts when Li is inserted into and desorbed from the active material. At that time, the binding between the active materials or the binding between the active material and the current collector is lost, and the capacity is deteriorated. In order to prevent capacity deterioration, it is desirable to use a binder having a high strength. In order to improve the strength of polyimide and polyamideimide, it is necessary to perform heat treatment in a vacuum, and the strength of the binder can be changed depending on the temperature of the heat treatment.
 <電解液>
 リチウムイオンを含む化合物を電解質として含む非水溶媒を電解液として用いることができる。電解液に使用される非水溶媒としては、低温特性、負極電極上の被膜形成の観点から、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)等が例示され、ビニレンカーボネート(VC)等の添加物を加えてもよい。
<Electrolyte>
A non-aqueous solvent containing a compound containing lithium ions as the electrolyte can be used as the electrolyte. Examples of the non-aqueous solvent used in the electrolytic solution include ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) from the viewpoint of low temperature characteristics and film formation on the negative electrode, and vinylene carbonate. Additives such as (VC) may be added.
 電解液に用いるリチウム塩としては、特に限定はないが、無機リチウム塩では、LiPF,LiBF,LiClO,LiI,LiCl,LiBr等、また、有機リチウム塩では、LiB[OCOCF,LiB[OCOCFCF,LiPF(CF,LiN(SOCF,LiN(SOCFCF等を用いることができる。特に、LiPFは、品質の安定性から好適な材料であり、民生用電池で多く用いられている。また、LiB[OCOCFは、解離性,溶解性が良好で、低い濃度で高い導電率を示すので有効である。 The lithium salt used in the electrolytic solution is not particularly limited, but for inorganic lithium salts, LiPF 6 , LiBF 4 , LiClO 4 , LiI, LiCl, LiBr, etc., and for organic lithium salts, LiB [OCOCF 3 ] 4 , LiB [OCOCF 2 CF 3 ] 4 , LiPF 4 (CF 3 ) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2, or the like can be used. In particular, LiPF 6 is a suitable material in terms of quality stability, and is often used in consumer batteries. LiB [OCOCF 3 ] 4 is effective because it has good dissociation and solubility and exhibits high conductivity at a low concentration.
 (比較例1)
 次に、比較例、実施例を挙げて本実施形態をより具体的に説明する。
(Comparative Example 1)
Next, the present embodiment will be described more specifically with reference to comparative examples and examples.
 <正極>
 正極活物質としてのLiCo0.2Ni0.5Mn0.3と、導電材としてアセチレンブラックと、結着材としてのポリフッ化ビニリデン(PVdF)とが重量比で93:4:3となるようにN-メチルピロリドン(NMP)を溶媒として混合した。そして、N-メチルピロリドン(NMP;溶媒)にこの混合物を混合し、正極合剤スラリーを調製した。そして、この正極合剤スラリーを厚さ15μmのアルミニウム箔に塗布し、大気中で乾燥した。乾燥して得られた正極をロールプレスにより成型し、正極を作製した。
<Positive electrode>
LiCo 0.2 Ni 0.5 Mn 0.3 O 2 as a positive electrode active material, acetylene black as a conductive material, and polyvinylidene fluoride (PVdF) as a binder are 93: 4: 3 in weight ratio. N-methylpyrrolidone (NMP) was mixed as a solvent. Then, this mixture was mixed with N-methylpyrrolidone (NMP; solvent) to prepare a positive electrode mixture slurry. And this positive mix slurry was apply | coated to 15-micrometer-thick aluminum foil, and it dried in air | atmosphere. The positive electrode obtained by drying was molded by a roll press to produce a positive electrode.
 <負極>
 黒鉛と導電材、結着材としてのCMCとSBRが重量比で98:1:1となるように水を溶媒として混合した。そして、水にこの混合物を混合し(負極合剤スラリーを調製した。そして、この負極合剤スラリーを厚さ10μmの銅箔に塗布し、真空中で乾燥した。乾燥して得られた負極をロールプレスにより成型し、負極を作製した。
<Negative electrode>
Water was mixed as a solvent so that graphite and a conductive material, and CMC and SBR as a binder were in a weight ratio of 98: 1: 1. Then, this mixture was mixed with water (a negative electrode mixture slurry was prepared. Then, this negative electrode mixture slurry was applied to a copper foil having a thickness of 10 μm and dried in a vacuum. The negative electrode obtained by drying was applied. The negative electrode was produced by molding with a roll press.
 <セパレータ>
 セパレータとしては、ポリプロピレン、ポリエチレン、ポリプロピレンが3層に積層された総厚み20μmのセパレータを用いた。2枚のセパレータで正極を挟み込み、周辺3辺を熱溶着させて袋状にして用いた。のセパレータを用いた。
<Separator>
As the separator, a separator having a total thickness of 20 μm in which polypropylene, polyethylene, and polypropylene were laminated in three layers was used. The positive electrode was sandwiched between two separators, and three sides were thermally welded to form a bag. This separator was used.
 <電解液>
 電解液としては、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)を体積比1:2:2で混合した有機溶媒 に、1.0mol/Lになるようにリチウムヘキサフルオロホスフェート(LiPF6)を溶解させたものを用いた。
<Electrolyte>
As an electrolytic solution, lithium hexafluoroethylene was added to an organic solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) were mixed at a volume ratio of 1: 2: 2 so as to be 1.0 mol / L. What dissolved the phosphate (LiPF6) was used.
 <リチウムイオン二次電池の作製>
 上記正極、負極、電解液、セパレータを用いてロッキングチェア型のリチウムイオン二次電池を作製した。袋状セパレータ203に収納された正極201及び負極202を挿入し、これらを積層して積層体を得た。そして、この積層体において、外部に露出している正極201及び負極202の部分(集電箔露出部)に、それぞれ、正極端子5及び負極端子206を超音波溶接にて接続し、図3に示す電極体204を得た。次に、図4に示すように、2枚の熱溶着可能なシート207の間に電極体204を配設し、シート207の電解液注入箇所以外の部分を熱溶着させることで、図5に示す電極配設容器209を得た。
<Production of lithium ion secondary battery>
A rocking chair type lithium ion secondary battery was manufactured using the positive electrode, the negative electrode, the electrolytic solution, and the separator. A positive electrode 201 and a negative electrode 202 housed in a bag-like separator 203 were inserted and laminated to obtain a laminate. Then, in this laminate, the positive electrode terminal 5 and the negative electrode terminal 206 were connected to the portions of the positive electrode 201 and the negative electrode 202 exposed to the outside (current collector foil exposed portions) by ultrasonic welding, respectively, and FIG. The electrode body 204 shown was obtained. Next, as shown in FIG. 4, the electrode body 204 is disposed between the two heat-weldable sheets 207, and parts other than the electrolyte injection portion of the sheet 207 are heat-welded, so that FIG. The electrode placement container 209 shown was obtained.
 そして、この電極配設容器209内に前記の電解液を注入した。電解液注入後、開口部を熱溶着することで図6に示す電池211を作製した。そして、封止後8時間の電解液含浸時間を設け、その後、4.2V-2.5Vの電圧範囲を0.2Aの電流値で3サイクル充放電させて、以下の試験に供する電池211を完成させた。 Then, the electrolyte solution was injected into the electrode-arranged container 209. The battery 211 shown in FIG. 6 was produced by thermally welding the opening after injecting the electrolytic solution. Then, an electrolyte impregnation time of 8 hours was provided after sealing, and then a battery 211 subjected to the following test was charged and discharged in a voltage range of 4.2 V to 2.5 V for 3 cycles at a current value of 0.2 A. Completed.
 <電池容量評価方法>
 電池を定電流0.5Aで4.2Vまで充電し、30分の運転休止の後、0.5Aで2.5Vまで放電した。比較例2を100とし、容量比を算出した。測定結果を表1に示す。
<Battery capacity evaluation method>
The battery was charged at a constant current of 0.5 A to 4.2 V, and after 30 minutes of operation stop, it was discharged to 0.5 V at 0.5 A. The capacity ratio was calculated by setting Comparative Example 2 to 100. The measurement results are shown in Table 1.
 <内部抵抗評価>
 放電DCR評価は、電池を3.7 Vまで定電流0.5Aで充電し、1Aで10s放電し、再度3.7Vまで定電流で充電し、2Aで10s放電し、再度3.7Vまで充電し、3Aで10s放電した。 この際のI-V特性から、電池のDCRを評価した。測定結果を表1に示す。
<Internal resistance evaluation>
In the discharge DCR evaluation, the battery is charged to 3.7 V at a constant current of 0.5 A, discharged at 1 A for 10 s, charged again to 3.7 V at a constant current, discharged at 2 A for 10 s, and charged again to 3.7 V. The battery was discharged at 3 A for 10 s. The DCR of the battery was evaluated from the IV characteristics at this time. The measurement results are shown in Table 1.
 <XPS評価>
 電極作製前の正極活物質について、X線光電子分光法による表面解析を行った。Ni2p/3のスペクトルを図7に示す。
<XPS evaluation>
The positive electrode active material before electrode preparation was subjected to surface analysis by X-ray photoelectron spectroscopy. The spectrum of Ni2p / 3 is shown in FIG.
 (実施例1)
 比較例1において、正極活物質に表面改質層101を設けた。それ以外は比較例1と同様に電池の作製、評価を行った。
Example 1
In Comparative Example 1, the surface modification layer 101 was provided on the positive electrode active material. Otherwise, the battery was produced and evaluated in the same manner as in Comparative Example 1.
 <表面改質工程>
 正極活物質としてのLiCo0.2Ni0.5Mn0.3を用いた。この正極活物質を電気炉に入れ、この活物質を還元性ガス雰囲気下1000℃で60分焼成した。還元ガスとしては、Arガスに3wt%の水素を含むものを用いた。次に、電気炉を室温に戻し、正極活物質を電気炉から取り出した。
<Surface modification process>
LiCo 0.2 Ni 0.5 Mn 0.3 O 2 was used as the positive electrode active material. This positive electrode active material was put into an electric furnace, and this active material was fired at 1000 ° C. for 60 minutes in a reducing gas atmosphere. As the reducing gas, an Ar gas containing 3 wt% hydrogen was used. Next, the electric furnace was returned to room temperature, and the positive electrode active material was taken out of the electric furnace.
 <正極電極作成工程>
 表面改質工程で表面改質した正極活物質と、導電材としてアセチレンブラックと、結着材としてのポリフッ化ビニリデン(PVdF)とが重量比で93:4:3となるようにN-メチルピロリドン(NMP)を溶媒として混合した。そして、N-メチルピロリドン(NMP;溶媒)にこの混合物を混合し、正極合剤スラリーを調製した。そして、この正極合剤スラリーを厚さ15μmのアルミニウム箔に塗布し、大気中で乾燥した。乾燥して得られた正極をロールプレスにより成型し、正極を作製した。
<Positive electrode production process>
N-methylpyrrolidone so that the weight ratio of the positive electrode active material surface-modified in the surface modification step, acetylene black as the conductive material, and polyvinylidene fluoride (PVdF) as the binder is 93: 4: 3 (NMP) was mixed as a solvent. Then, this mixture was mixed with N-methylpyrrolidone (NMP; solvent) to prepare a positive electrode mixture slurry. And this positive mix slurry was apply | coated to 15-micrometer-thick aluminum foil, and it dried in air | atmosphere. The positive electrode obtained by drying was molded by a roll press to produce a positive electrode.
 (実施例2)
 実施例1において、実施例1とは異なる表面改質工程を用いたこと以外は同様に電池の作製・評価を行った。
(Example 2)
In Example 1, a battery was produced and evaluated in the same manner except that a surface modification step different from that in Example 1 was used.
  <表面改質工程>
 電気炉に正極活物質としてLiCo0.2Ni0.5Mn0.3を入れ焼成した後、この正極活物質を水素化ホウ素化合物(NaBH)0.1wt%水溶液に入れ、40℃に保ち、1時間ほど撹拌した。焼成は、例えば950℃で10-20時間することができる。
<Surface modification process>
After firing LiCo 0.2 Ni 0.5 Mn 0.3 O 2 as a positive electrode active material in an electric furnace, this positive electrode active material was placed in a 0.1 wt% aqueous solution of a borohydride compound (NaBH 4 ), and 40 ° C. And stirred for about 1 hour. Calcination can be carried out, for example, at 950 ° C. for 10-20 hours.
 <電極工程>
 表面改質工程で表面改質した正極活物質と、導電材としてアセチレンブラックと、結着材としてのポリフッ化ビニリデン(PVdF)とが重量比で93:4:3となるようにN-メチルピロリドン(NMP)を溶媒として混合した。そして、N-メチルピロリドン(NMP;溶媒)にこの混合物を混合し、正極合剤スラリーを調製した。そして、この正極合剤スラリーを厚さ15μmのアルミニウム箔に塗布し、大気中で乾燥した。乾燥して得られた正極をロールプレスにより成型し、正極を作製した。
<Electrode process>
N-methylpyrrolidone so that the weight ratio of the positive electrode active material surface-modified in the surface modification step, acetylene black as the conductive material, and polyvinylidene fluoride (PVdF) as the binder is 93: 4: 3 (NMP) was mixed as a solvent. Then, this mixture was mixed with N-methylpyrrolidone (NMP; solvent) to prepare a positive electrode mixture slurry. And this positive mix slurry was apply | coated to 15-micrometer-thick aluminum foil, and it dried in air | atmosphere. The positive electrode obtained by drying was molded by a roll press to produce a positive electrode.
 比較例、実施例1,2の結果を表1に示す。容量、内部抵抗は、比較例1の結果を100(%)とした時の値として示した。実施例1の容量は、比較例に対して5%増、実施例2の容量は4%増であった。内部抵抗は実施例1,2、比較例ともに同じであった。 Table 1 shows the results of the comparative example and Examples 1 and 2. The capacity and the internal resistance are shown as values when the result of Comparative Example 1 is 100 (%). The capacity of Example 1 increased by 5% compared to the comparative example, and the capacity of Example 2 increased by 4%. The internal resistance was the same in Examples 1 and 2 and the comparative example.
Figure JPOXMLDOC01-appb-T000001
 図7に、正極のXPS測定における、Ni2p3/2ピークを示す。比較例は855eV付近にピークをもつが、実施例1、2は853eVあたりにピークをもち、2価未満のピークをもつことがわかった。
Figure JPOXMLDOC01-appb-T000001
FIG. 7 shows the Ni2p3 / 2 peak in the XPS measurement of the positive electrode. The comparative example has a peak near 855 eV, but Examples 1 and 2 have a peak around 853 eV and have a peak less than divalent.
 また、比較例では853eVにおける強度が855eVにおける強度よりも小さいのに対して、実施例1,2では853eVにおける強度が855eVにおける強度よりも大きい。 In the comparative example, the intensity at 853 eV is smaller than the intensity at 855 eV, while in Examples 1 and 2, the intensity at 853 eV is larger than the intensity at 855 eV.
図1:電池1、正極10、セパレータ11、負極12、電池容器(電池缶)13、正極集電タブ、14、負極集電タブ15、内蓋16、内圧開放弁17、ガスケット18、正温度係数抵抗素子19、電池蓋20、軸心21
図2:表面改質層を有した活物質100、表面改質層101、活物質102
 図3~図6:電池211、正極201、負極202、セパレータ203、電極体204、正極端子205、負極端子206、シート207、熱溶着部208
FIG. 1: Battery 1, positive electrode 10, separator 11, negative electrode 12, battery container (battery can) 13, positive electrode current collector tab 14, negative electrode current collector tab 15, inner lid 16, internal pressure release valve 17, gasket 18, positive temperature Coefficient resistance element 19, battery cover 20, axis 21
FIG. 2: Active material 100 having a surface modified layer, surface modified layer 101, and active material 102
3 to FIG. 6: battery 211, positive electrode 201, negative electrode 202, separator 203, electrode body 204, positive electrode terminal 205, negative electrode terminal 206, sheet 207, heat welded portion 208

Claims (5)

  1.  LiCoNiMn1-x-y-z(xは0.3~1、yは0~1、zは0~0.4、Mはホウ素(B)、マグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、リン(P)、硫黄(S)、チタン(Ti)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、銀(Ag)、バリウム(Ba)、タングステン(W)、イリジウム(Ir)、スズ(Sn)、鉛(Pb)およびアンチモン(Sb)から選ばれる1種類以上の元素である)で表され、XPSに分析によるNi2p3/2のピークが852.8eV以上854eV未満である正極活物質。 LiCo x Ni y Mn z M 1-xyz O 2 (x is 0.3 to 1, y is 0 to 1, z is 0 to 0.4, M is boron (B), magnesium (Mg) , Aluminum (Al), silicon (Si), phosphorus (P), sulfur (S), titanium (Ti), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), molybdenum (Mo) , Silver (Ag), barium (Ba), tungsten (W), iridium (Ir), tin (Sn), lead (Pb) and antimony (Sb). A positive electrode active material having a peak of Ni2p3 / 2 analyzed by XPS of 852.8 eV or more and less than 854 eV.
  2.  LiCoNiMn1-x-y-z(xは0.3~1、yは0~1、zは0~0.4、Mはホウ素(B)、マグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、リン(P)、硫黄(S)、チタン(Ti)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、銀(Ag)、バリウム(Ba)、タングステン(W)、イリジウム(Ir)、スズ(Sn)、鉛(Pb)およびアンチモン(Sb)から選ばれる1種類以上の元素である)で表され、XPS分析での853eVにおける強度が855eVにおける強度よりも大きい正極活物質。 LiCo x Ni y Mn z M 1-xyz O 2 (x is 0.3 to 1, y is 0 to 1, z is 0 to 0.4, M is boron (B), magnesium (Mg) , Aluminum (Al), silicon (Si), phosphorus (P), sulfur (S), titanium (Ti), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), molybdenum (Mo) , Silver (Ag), barium (Ba), tungsten (W), iridium (Ir), tin (Sn), lead (Pb) and antimony (Sb). A positive electrode active material whose intensity at 853 eV in XPS analysis is larger than that at 855 eV.
  3.  請求項1または請求項2において、
     前記正極活物質は、表面から100-150nm未満の範囲に表面改質層を有する正極活物質。
    In claim 1 or claim 2,
    The positive electrode active material is a positive electrode active material having a surface modification layer in a range of less than 100 to 150 nm from the surface.
  4.  正極合剤と負極合剤を有し、
     前記正極合剤は正極活物質を有し、
     前記正極活物質は、請求項3に示す正極活物質であるリチウムイオン二次電池。
    It has a positive electrode mixture and a negative electrode mixture,
    The positive electrode mixture has a positive electrode active material,
    The said positive electrode active material is a lithium ion secondary battery which is a positive electrode active material shown in Claim 3.
  5.  正極活物質を還元雰囲気中で焼成工程もしくは還元溶液中で撹拌する工程を有し、
    前記還元雰囲気は、COまたは水素を主成分とする雰囲気であり、
    前記還元溶液は次亜リン酸塩(HPO )、亜リン酸塩(HPO)、水素化ホウ素化合物(BH )、ヒドラジン(N )、ジチオン酸塩(S 2-)、亜硫酸塩(SO 2-)のいずれかを含む正極活物質製造方法。
    A step of firing the positive electrode active material in a reducing atmosphere or stirring in a reducing solution;
    The reducing atmosphere is an atmosphere mainly composed of CO or hydrogen,
    The reducing solution includes hypophosphite (H 2 PO 2 ), phosphite (HPO 3 ), borohydride compound (BH 4 ), hydrazine (N 2 H 5 + ), dithionate (S 2 O 6 2− ) or a sulfite (SO 3 2− ) -containing positive electrode active material production method.
PCT/JP2017/020788 2016-06-23 2017-06-05 Positive electrode active material for lithium ion batteries and lithium ion battery using same WO2017221678A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016124075A JP2019164877A (en) 2016-06-23 2016-06-23 Positive electrode active material of lithium ion battery and lithium ion battery arranged by use thereof
JP2016-124075 2016-06-23

Publications (1)

Publication Number Publication Date
WO2017221678A1 true WO2017221678A1 (en) 2017-12-28

Family

ID=60784479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020788 WO2017221678A1 (en) 2016-06-23 2017-06-05 Positive electrode active material for lithium ion batteries and lithium ion battery using same

Country Status (2)

Country Link
JP (1) JP2019164877A (en)
WO (1) WO2017221678A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115465901A (en) * 2022-11-01 2022-12-13 贺州学院 Method for completely coating surface of lithium ion battery anode material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045424A (en) * 2001-07-27 2003-02-14 Mitsubishi Chemicals Corp Electrode active material containing composition, electrode using it, and lithium secondary battery
JP2009245929A (en) * 2008-03-13 2009-10-22 Toshiba Corp Active material for battery, non-aqueous electrolyte battery, and battery pack
WO2010116839A1 (en) * 2009-04-10 2010-10-14 日立マクセル株式会社 Electrode active material, method for producing same, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2014086203A (en) * 2012-10-22 2014-05-12 Sony Corp Battery, cathod active material, cathode, method for manufacturing cathode active material, battery pack, electronic apparatus, electric vehicle, power storage device, and electric power system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045424A (en) * 2001-07-27 2003-02-14 Mitsubishi Chemicals Corp Electrode active material containing composition, electrode using it, and lithium secondary battery
JP2009245929A (en) * 2008-03-13 2009-10-22 Toshiba Corp Active material for battery, non-aqueous electrolyte battery, and battery pack
WO2010116839A1 (en) * 2009-04-10 2010-10-14 日立マクセル株式会社 Electrode active material, method for producing same, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2014086203A (en) * 2012-10-22 2014-05-12 Sony Corp Battery, cathod active material, cathode, method for manufacturing cathode active material, battery pack, electronic apparatus, electric vehicle, power storage device, and electric power system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115465901A (en) * 2022-11-01 2022-12-13 贺州学院 Method for completely coating surface of lithium ion battery anode material
CN115465901B (en) * 2022-11-01 2023-08-11 贺州学院 Method for completely coating surface of positive electrode material of lithium ion battery

Also Published As

Publication number Publication date
JP2019164877A (en) 2019-09-26

Similar Documents

Publication Publication Date Title
JP5787196B2 (en) Lithium ion secondary battery
US8178238B2 (en) Positive-electrode active material for lithium-ion secondary battery, positive electrode, manufacturing method thereof, and lithium-ion secondary battery
WO2012153379A1 (en) Lithium ion secondary cell
CN111758176A (en) Method for predoping negative electrode active material, method for producing negative electrode, and method for producing power storage device
JP2011090876A (en) Lithium secondary battery and method of manufacturing the same
JP5831769B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP5835614B2 (en) Non-aqueous secondary battery
JP2015103306A (en) Positive electrode active material and nonaqueous electrolyte secondary battery including the same
CN106558725B (en) Lithium ion secondary battery
JP2012238461A (en) Secondary battery, and method for manufacturing the same
JP7235405B2 (en) Non-aqueous electrolyte secondary battery
CN112242508A (en) Nonaqueous electrolyte secondary battery
CN112689916A (en) Electric storage element
WO2017221678A1 (en) Positive electrode active material for lithium ion batteries and lithium ion battery using same
JP6044839B2 (en) Lithium ion secondary battery
WO2017169022A1 (en) Method for manufacturing lithium ion secondary cell, and lithium ion secondary cell
JP2012195239A (en) Lithium ion secondary battery
JP6493766B2 (en) Lithium ion secondary battery
KR20160120314A (en) Nonaqueous electrolyte secondary battery
CN114865063A (en) Lithium ion battery, evaluation method of lithium ion battery, battery module and vehicle
JP2017054660A (en) Lithium ion battery
JP6959028B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2016167394A (en) Lithium ion battery
JP2004164988A (en) Manufacturing method of lithium containing metal oxide and lithium secondary battery using same
CN112242509B (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP