WO2017221677A1 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
WO2017221677A1
WO2017221677A1 PCT/JP2017/020787 JP2017020787W WO2017221677A1 WO 2017221677 A1 WO2017221677 A1 WO 2017221677A1 JP 2017020787 W JP2017020787 W JP 2017020787W WO 2017221677 A1 WO2017221677 A1 WO 2017221677A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
particles
ceramic
battery
Prior art date
Application number
PCT/JP2017/020787
Other languages
French (fr)
Japanese (ja)
Inventor
西村 悦子
和明 直江
新平 尼崎
野家 明彦
鈴木 修一
千恵子 荒木
繁貴 坪内
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2018523665A priority Critical patent/JPWO2017221677A1/en
Priority to KR1020187032829A priority patent/KR20180132138A/en
Priority to CN201780032421.4A priority patent/CN109155384A/en
Publication of WO2017221677A1 publication Critical patent/WO2017221677A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a lithium secondary battery having excellent output characteristics.
  • Lithium secondary batteries have high energy density and are attracting attention as batteries for electric vehicles and power storage.
  • electric vehicles include zero-emission electric vehicles that are not equipped with an engine, hybrid electric vehicles that are equipped with both an engine and a secondary battery, and plug-in electric vehicles that are charged from a system power source.
  • output characteristics at a large current are required for a lithium secondary battery.
  • there are various means as conventional techniques for improving the output characteristics of the lithium secondary battery and in particular, there are the following prior arts as means for promoting the reaction of insertion / extraction of lithium ions.
  • Patent Document 1 in an all-solid lithium secondary battery, a modifier having a relative dielectric constant higher than that of the solid electrolyte material is arranged at the interface between the positive electrode active material and the solid electrolyte material, and the positive electrode and the solid electrolyte A technique for reducing the interfacial resistance is disclosed.
  • Patent Document 2 discloses a technique in which a ferroelectric substance is added to a positive electrode to improve ion conductivity and reduce resistance.
  • Patent Document 3 a modifier having a relative dielectric constant higher than that of the electrolyte material is disposed at an interface between at least one of the positive electrode active material and the negative electrode active material and the electrolyte material. A technique for reducing the interface resistance is disclosed.
  • Patent Document 4 an inorganic particle layer containing a binder and inorganic particles exists between a positive electrode plate and a separator and / or a negative electrode plate and a separator, and LiPF 2 O 2 is used as the nonaqueous electrolyte.
  • a technique for adding (lithium difluorophosphate) is disclosed.
  • Patent Documents 1, 2, and 3 relate to all-solid lithium secondary batteries, and attempt to reduce the interface resistance between an active material and an electrolyte. In a lithium ion battery using an electrolytic solution, this interfacial resistance is remarkably small, and technical problems are different. Therefore, these techniques cannot be applied.
  • Patent Document 4 is an invention related to an increase in the output of a lithium ion battery using an electrolytic solution.
  • inorganic particles are as small as 300 nm, the pores of the inorganic particle layer become too small, and lithium ion permeability (that is, electrolysis). (Liquid resistance) may deteriorate.
  • An object of the present invention is to reduce resistance between a positive electrode and a negative electrode in a lithium ion secondary battery in which an inorganic particle layer (for example, a ceramic layer) is provided between the positive electrode and the negative electrode and an electrolytic solution is used. .
  • an inorganic particle layer for example, a ceramic layer
  • the means for solving the above problems are, for example, as follows.
  • the relationship between the average particle diameter (Da) of the ceramic particles and the average particle diameter (Db) of the dielectric particles is 30 ⁇ m or less, and Db / Da is in the range of Db / Da ⁇ 0.2.
  • a volume ratio of the dielectric to the sum of the volumes of the dielectric is in the range of 1 to 40 vol%.
  • the resistance between the positive electrode and the negative electrode can be reduced.
  • FIG. 1 is a diagram schematically showing the internal structure of the lithium secondary battery 101.
  • the lithium secondary battery 101 is an electrochemical device that can store or use electric energy by occlusion / release of lithium ions to and from an electrode in a non-aqueous electrolyte.
  • the lithium secondary battery 101 has a configuration in which an electrode group composed of a positive electrode 107, a negative electrode 108, and a ceramic layer 109 is housed in a battery container 102 in a sealed state.
  • the ceramic layer 109 is formed at least on the surface of the positive electrode 107 or the negative electrode 108.
  • the ceramic layer 109 has a function of a layer that allows lithium ions to permeate by electrically insulating the positive electrode 107 and the negative electrode 108 and holding an electrolyte solution described later.
  • the electrode group can employ various configurations such as a configuration in which strip-shaped electrodes are stacked, a configuration in which strip-shaped electrodes are wound and formed into a cylindrical shape or a flat shape.
  • the battery container 102 can be selected from an arbitrary shape such as a cylindrical shape, a flat oval shape, and a square shape in accordance with the shape of the electrode group.
  • the battery case 102 accommodates the electrode group from the opening provided in the upper part, and then the opening is closed and sealed by the lid 103.
  • the lid 103 is joined to the opening of the battery case 102 by, for example, welding, caulking, adhesion, or the like, and the outer edge of the lid 103 is hermetically sealed.
  • the lid 103 has a liquid injection port for injecting the electrolyte L into the battery container 102 after sealing the opening of the battery container 102.
  • the liquid injection port is sealed with a liquid injection stopper 106 after the electrolyte L is injected into the battery container 102.
  • a safety mechanism to the liquid filling plug 106.
  • a pressure valve for releasing the pressure inside the battery container 102 may be provided.
  • the positive electrode external terminal 104 and the negative electrode external terminal 105 are fixed to the lid 103 via an insulating seal member 112, and a short circuit between both terminals 104 and 105 is prevented by the insulating seal member 112.
  • the positive external terminal 104 is connected to the positive electrode 107 via the positive lead 110 and the negative external terminal 105 is connected to the negative 108 via the negative lead 111.
  • the material of the lead wire insulating seal member 112 can be selected from fluorine resin, thermosetting resin, glass hermetic seal, etc., and any insulating material that does not react with the electrolyte L and has excellent airtightness is used. can do.
  • the insulating sheet 113 is also inserted between the electrode group and the battery container 102 so that the positive electrode 107 and the negative electrode 108 are not short-circuited through the battery container 102.
  • the positive electrode 107 a positive electrode current collector in which a positive electrode mixture layer is formed can be used.
  • the positive electrode mixture includes, for example, a positive electrode active material, a conductive agent, a binder, and a current collector.
  • Typical examples of the positive electrode active material include LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 .
  • Fe (MoO 4) 3, FeF 3, LiFePO 4, LiMnPO 4 , etc. can be used.
  • LiNi 1/3 Mn 1/3 Co 1/3 O 2 was selected as the positive electrode active material.
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as the active material, but a higher capacity Li 2 MnO 3 —LiMnO 2 solid solution positive electrode can also be used.
  • a high power 5V positive electrode (such as LiNi 0.5 Mn 1.5 O 4 ) may be used.
  • these high-capacity materials or high-power materials are used, the above-mentioned mixture thickness can be reduced, and the electrode area that can be stored in the battery can be increased. As a result, the resistance of the battery can be reduced to enable high output, and at the same time, the capacity of the battery can be increased as compared with the case of using a LiNi 1/3 Co 1/3 Mn 1/3 O 2 positive electrode.
  • a powder of secondary particles (granulated primary particles) of the positive electrode active material is collected.
  • some lithium primary phosphates can be used without granulating the primary particle powder.
  • the presence or absence of granulation varies depending on the type of the positive electrode active material, but any can be used as long as an inorganic particle layer can be provided on the surface of the positive electrode mixture.
  • the particle size of the positive electrode active material is specified to be equal to or less than the thickness of the mixture layer.
  • the coarse particles are removed in advance by sieving classification, wind classification or the like to produce particles having a thickness of the mixture layer or less.
  • the positive electrode active material may be used as primary particles that are not granulated, or may be granulated to use secondary particles.
  • a method for producing a positive electrode will be described assuming that secondary particles are used.
  • the average particle diameter (D 50 ) of the positive electrode active material was measured by a laser scattering method.
  • the average particle diameter D 50 is a sample of the positive electrode active material was suspended in water, a laser scattering type particle size measuring apparatus (for example, Microtrac) are measured using a.
  • D 50 is defined as the particle size when the ratio (volume fraction) to the volume of the entire sample is 50%. If the range is 3 to 20 ⁇ m, it is applicable to the present invention. When D 50 is set to a small range of 3 to 8 ⁇ m, the output characteristics are improved, which is more preferable.
  • the positive electrode active material of this example is LiNi 1/3 Co 1/3 Mn 1/3 O 2 having a D 50 of 3 to 8 ⁇ m.
  • the positive electrode slurry is applied to the positive electrode current collector and then becomes a positive electrode mixture layer by drying or the like.
  • the positive electrode active material was 88 parts by weight
  • the conductive agent was 5 parts by weight
  • the PVDF (polyvinylidene fluoride) binder was 7 parts by weight.
  • the conductive agent was a mixture of acetylene black and carbon nanotubes (CNT), and the weight composition of each was 4.7: 0.3. In addition, it changes according to the kind of material, a specific surface area, a particle size distribution, etc., and is not limited to the illustrated composition.
  • the solvent used to prepare the positive electrode slurry may be any solvent that can dissolve the binder, and 1-methyl-2-pyrrolidone was used for PVDF. Depending on the type of binder, the solvent is selected. A known kneader or disperser was used for the dispersion treatment of the positive electrode material.
  • a positive electrode slurry in which a positive electrode active material, a conductive agent, a binder, and an organic solvent are mixed is attached to a current collector by a doctor blade method, a dipping method, a spray method, etc., and then the organic solvent is dried and the positive electrode is removed by a roll press.
  • a positive electrode can be produced by pressure molding. It is also possible to stack a plurality of mixture layers on a current collector by repeating a plurality of times from application to drying.
  • the mixture density of the positive electrode mixture layer is preferably 3 g / cm 3 or more, and the conductive agent and the positive electrode active material are preferably adhered to each other. By adjusting the density, the electronic resistance of the mixture layer can be reduced.
  • an aluminum foil having a thickness of 10 to 100 ⁇ m, or an aluminum perforated foil having a thickness of 10 to 100 ⁇ m and a hole diameter of 0.1 to 10 mm, an expanded metal, a foam metal plate, or the like is used.
  • aluminum, stainless steel, titanium, and the like are also applicable.
  • any material can be used for the current collector without being limited by the material, shape, manufacturing method, or the like as long as it does not change during the use of the battery, such as dissolution and oxidation.
  • the thickness of the positive electrode mixture layer is desirably equal to or greater than the average particle diameter.
  • the average particle diameter (D 50 ) of the positive electrode active material of the present invention is measured by a laser scattering method, and the range thereof is preferably 3 to 20 ⁇ m, particularly preferably 3 to 8 ⁇ m.
  • the resistance can be reduced by setting the mixture thickness to 10 ⁇ m or more.
  • the upper limit of the thickness of the positive electrode mixture is 40 ⁇ m or less, and particularly preferably 30 ⁇ m or less.
  • the positive electrode mixture layer has a thickness of 50 ⁇ m or more, unless the conductive agent is added in a large amount to the positive electrode mixture, the charge level of the positive electrode active material near the surface of the mixture and the current collector surface is uneven and uneven. This is because charging / discharging occurs.
  • the amount of the conductive agent is increased, the positive electrode volume becomes bulky, and the energy density of the battery may decrease.
  • a negative electrode current collector in which a negative electrode mixture layer is formed can be used.
  • the negative electrode mixture has a negative electrode active material, a binder, and a current collector.
  • the negative electrode active material for example, natural graphite coated with amorphous carbon can be used. In this example, natural graphite coated with amorphous carbon was used.
  • a method of forming amorphous carbon on the surface of natural graphite there is a method of depositing pyrolytic carbon on the negative electrode active material powder.
  • low molecular hydrocarbons such as ethane, propane and butane
  • an inert gas such as argon
  • hydrogen is desorbed from the hydrocarbons on the surface of the negative electrode active material particles, and the negative electrode active Carbon is deposited on the surface of the material particles.
  • Carbon is an amorphous form.
  • heat treatment is performed at 300 to 1000 ° C. in an inert gas atmosphere, so that hydrogen and oxygen are desorbed in the form of hydrogen, carbon monoxide, and carbon dioxide. Only carbon can be deposited on the surface of the negative electrode active material.
  • a gas in which 1% propane and 99% argon were mixed was brought into contact with the negative electrode active material at 1000 ° C. to deposit carbon.
  • the amount of carbon deposited is desirably in the range of 1 to 30% by weight. In this example, 2% by weight of carbon was deposited on the surface of the negative electrode active material. Carbon coating not only increases the discharge capacity at the first cycle, but is also effective for increasing cycle life characteristics and rate characteristics.
  • the negative electrode 112 In order to produce the negative electrode 112, it is necessary to prepare a negative electrode slurry. After the negative electrode slurry is applied to the negative electrode current collector, it becomes a negative electrode mixture layer by drying or the like.
  • the addition amount of the conductive agent was x
  • the negative electrode active material was 96-x parts by weight
  • the conductive agent was x parts by weight
  • the PVDF (polyvinylidene fluoride) binder was 4 parts by weight.
  • x is the amount of the fibrous conductive agent added.
  • carbon nanotubes (CNT) were used as the fibrous carbon, and the addition amount x was 0.1.
  • conductive agents such as acetylene black may be mixed in the same manner as the positive electrode.
  • a styrene butadiene rubber and carboxymethyl cellulose binder may be used instead of PVDF.
  • fluorine rubber, ethylene / propylene rubber, polyacrylic acid, polyimide, polyamide and the like can be used, and there is no restriction in the present invention. Any binder that does not decompose on the surface of the negative electrode and does not dissolve in the electrolyte can be used in the present invention.
  • the solvent used for preparing the negative electrode slurry may be any solvent that can dissolve the binder, and 1-methyl-2-pyrrolidone was used for PVDF. Depending on the type of binder, the solvent is selected. For example, when using a styrene butadiene rubber and carboxymethyl cellulose binder, water is used as a solvent. A known kneader and disperser were used for the dispersion treatment of the negative electrode material.
  • a known technique such as a doctor blade method, a dipping method, or a spray method can be applied to apply the negative electrode slurry to the negative electrode current collector. It is also possible to form a multilayer mixture layer on the current collector by performing a plurality of times from application to drying. In this example, the coating was performed once on the copper foil by the doctor blade method.
  • the thickness of the negative electrode mixture layer is desirably equal to or greater than the average particle diameter. When the thickness is equal to or less than the average particle size, the electron conductivity between adjacent particles may be deteriorated.
  • the mixture thickness is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more. Further, the upper limit of the negative electrode mixture thickness is desirably 50 ⁇ m or less. If the thickness is more than that, unless the conductive agent is added in a large amount to the negative electrode mixture, the charge level of the negative electrode active material near the surface of the mixture and the current collector surface varies, and uneven charge and discharge occur. When the amount of the conductive agent is increased, the negative electrode volume becomes bulky, and the energy density of the battery decreases.
  • graphite is used as the negative electrode active material, but silicon, tin, or a compound thereof (oxide, nitride, and alloy with other metals) may be used as the negative electrode active material.
  • These active materials are larger than the theoretical capacity of graphite (372 Ah / kg), and a capacity of 500 to 3600 Ah / kg is obtained.
  • the above-mentioned mixture thickness can be reduced, and the electrode area that can be accommodated in the battery can be increased.
  • the resistance of the battery can be reduced to enable high output, and at the same time, the capacity of the battery can be increased as compared with the case where a graphite negative electrode is used.
  • Examples of the negative electrode current collector that can be used in the present invention include a copper foil having a thickness of 10 to 100 ⁇ m, a copper perforated foil having a thickness of 10 to 100 ⁇ m and a pore diameter of 0.1 to 10 mm, an expanded metal, and a foam metal plate.
  • a copper foil having a thickness of 10 to 100 ⁇ m a copper perforated foil having a thickness of 10 to 100 ⁇ m and a pore diameter of 0.1 to 10 mm
  • an expanded metal and a foam metal plate.
  • An arbitrary current collector can be used without being limited by the material, shape, manufacturing method, and the like. In this example and comparative example, a rolled copper foil having a thickness of 10 ⁇ m was used.
  • a ceramic layer 109 is provided as an inorganic particle layer. Thereby, it will be in the state by which the ceramic layer was provided between the positive mix layer and the negative mix layer.
  • a method for producing a ceramic layer on both electrodes will be described. In Example 1, the ceramic layer is formed only on the positive electrode mixture layer.
  • the ceramic layer 109 has ceramic particles and dielectric particles. Ceramic particles and dielectric particles are oxides containing a metal element, and both must be insoluble in the electrolytic solution.
  • the ceramic particles and the dielectric particles are selected to have an optimal average particle size (D 50 ) ratio.
  • D 50 represents a D 50 of the ceramic particles and Da, denoted the D 50 of the dielectric particles and Db.
  • Da is preferably 1 ⁇ m or more and 30 ⁇ m or less. This is because the thickness of the ceramic layer is 30 ⁇ m or less. If the ceramic layer becomes too thick, the movement distance of lithium ions that permeate through the pores inside the ceramic layer becomes too long, and the electrolyte resistance may increase. Further, when considering the case where the same battery container is filled with the electrode and the ceramic layer, the increase in the thickness of the ceramic layer relatively decreases the amount of the battery active material and decreases the battery capacity. Therefore, if the insulation between the positive electrode and the negative electrode can be ensured, it can serve as a ceramic layer. Therefore, the thickness of the ceramic layer is preferably 30 ⁇ m or less.
  • the thickness of the ceramic layer may be further reduced to 2 ⁇ m. Since Da is 1 ⁇ m, the insulation between the positive electrode and the negative electrode can be ensured if at least a thickness equivalent to two ceramic particles can be ensured. When the thickness is equivalent to one ceramic particle (1 ⁇ m), a part of the electrode surface is exposed due to dropping of the ceramic particles, and there is a risk of short circuit between the positive electrode and the negative electrode. Moreover, in order to prevent the positive electrode and the negative electrode from being short-circuited due to the mixing of metal foreign matters during production, the thickness of the ceramic layer is desirably 5 ⁇ m or more. Considering that the thickness unevenness (unevenness on the surface) between the positive electrode and the negative electrode is 1 to 2 ⁇ m, it is more preferable that the thickness of the ceramic layer is 10 ⁇ m or more.
  • the pores of the ceramic layer are determined by the size of the ceramic particles. As D 50 is large, the pore size is increased, the pore size becomes smaller as D 50 is reduced.
  • the lower limit value 1 ⁇ m of Da is a limit value at which the pore diameter becomes too small to deteriorate the lithium ion permeability.
  • the ceramic particles not only function as an insulator for the positive electrode and the negative electrode, but also function as a medium for forming pores that allow lithium ions to pass therethrough.
  • the dielectric particles have a function of promoting the dissociation of the electrolyte in the ceramic layer and reducing the electrolyte resistance of the ceramic layer.
  • Db of the dielectric particles is preferably controlled so as to satisfy Db / Da ⁇ 0.2. That is, small Db dielectric particles that are 1/5 or less of the average particle diameter Da of the ceramic particles are used.
  • the dielectric particles are added so as to be incorporated into the ceramic particles. It is undesirable for this to block the pores formed in the gaps between the ceramic particles. In order to avoid clogging of the pores, it is preferable to use dielectric particles having a smaller particle size than ceramic particles.
  • the volume ratio of the dielectric to the volume of the ceramic layer is preferably in the range of 1 to 40 vol%.
  • the volume ratio of the dielectric particles is less than 1 vol%, it is difficult to obtain the effect of dissociating the electrolyte.
  • it exceeds 40 vol% the ratio of the ceramic particles becomes too small, and the insulating properties of the ceramic layer may be deteriorated. This is because the dielectric has a lower electronic resistance than the ceramic particles, so that the excessively added dielectric particles come into contact with each other, and the electric resistance of the ceramic layer is reduced.
  • the ceramic layer is formed on the positive electrode or the negative electrode.
  • ceramic particles and dielectric particles are stirred and mixed thoroughly.
  • NMP 1-methyl-2-pyrrolidone
  • This processing method is the same as the method for producing the positive electrode slurry.
  • the prepared ceramic layer slurry is applied to the surface of the positive electrode or the negative electrode, and the NMP is removed by drying to obtain a ceramic layer. After forming the ceramic layer, it may be compressed by a roll press or may be omitted.
  • an electrolyte solution that can be used in the present invention, a solvent obtained by mixing dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and the like with ethylene carbonate, lithium hexafluorophosphate (LiPF 6 ), or lithium borofluoride (Li There is a solution in which LiBF 4 ) is dissolved.
  • the present invention is not limited to the type of solvent and electrolyte, and the mixing ratio of solvents, and other electrolytes can be used.
  • the electrolyte can also be used in a state of being contained in an ion conductive polymer such as polyvinylidene fluoride and polyethylene oxide. Since the ceramic layer 109 of the present invention prevents the positive electrode 107 and the negative electrode 108 from being short-circuited, a conventional resin separator can be dispensed with.
  • Solvents that can be used for the electrolyte are propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, ⁇ -butyrolactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1, 2-dimethoxyethane, 2-methyltetrahydrofuran, dimethyl Sulfoxide, 1, 3-dioxolane, formamide, dimethylformamide, methyl propionate, ethyl propionate, phosphate triester, trimethoxymethane, dioxolane, diethyl ether, sulfolane, 3-methyl-2-oxazolidinone, tetrahydrofuran, 1 ,
  • Non-aqueous solvents such as 2-diethoxyethane, chloroethylene carbonate, and chloropropylene carbonate. Other solvents may be used as long as they do not decompose on the positive electrode or negative electrode incorporated in the battery of the present invention.
  • the electrolyte the chemical formula LiPF 6, LiBF 4, LiClO 4 , LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, or multi such imide lithium salts represented by lithium trifluoromethane sulfonimide
  • LiPF 6, LiBF 4, LiClO 4 , LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, or multi such imide lithium salts represented by lithium trifluoromethane sulfonimide There are different types of lithium salts.
  • a non-aqueous electrolytic solution obtained by dissolving these salts in the above-described solvent can be used as a battery electrolytic solution.
  • An electrolyte other than this may be used as long as it does not decompose on the positive electrode or the negative electrode incorporated in the battery of the present invention.
  • an electrolytic solution and a solid polymer electrolyte (polymer electrolyte)
  • an ion conductive polymer such as ethylene oxide, acrylonitrile, polyvinylidene fluoride, methyl methacrylate, or hexafluoropropylene polyethylene oxide may be used as the polymer electrolyte. it can.
  • These solid polymer electrolytes can be used by impregnating the ceramic layer 109.
  • an ionic liquid can be used.
  • EMI-BF 4 1-ethyl-3-methylimidazole tetrafluoroborate
  • LiTFSI lithium salt LiN
  • triglyme and tetraglyme a mixed complex of lithium salt LiN (SO 2 CF 3 ) 2 (LiTFSI), triglyme and tetraglyme, a cyclic quaternary ammonium cation (N—
  • the combination of methyl-N-propylpyrrolidinium and imide anion (exemplified by bis (fluorosulfonyl) imide) that does not decompose at the positive electrode and the negative electrode is selected to provide the lithium secondary battery of the present invention.
  • a solid polymer electrolyte (polymer electrolyte) or a gel electrolyte can be used.
  • a known polymer electrolyte such as polyethylene oxide or a mixture (gel electrolyte) of polyvinylidene fluoride and a nonaqueous electrolytic solution can be used.
  • An ionic liquid may be used.
  • an electrolytic solution in which 1 mol concentration (1M 1 mol / dm 3 ) of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (denoted as EC) and ethyl methyl carbonate (denoted as EMC) was used. .
  • the mixing ratio of EC and EMC was 1: 2.
  • the electrolyte concentration was 1 molar as a reference value.
  • 1% vinylene carbonate was added to the electrolytic solution.
  • Electrolytic solution L is held on the surface of ceramic layer 109 and electrodes 107 and 108 and in the pores.
  • the positive electrode 107 and the negative electrode 108 on which the ceramic layer 109 is formed are stacked.
  • the ceramic layer 109 may be formed on either surface of the positive electrode 107 and the negative electrode 108, or may be formed on both surfaces. The ceramic layer 109 prevents a short circuit between the positive electrode 107 and the negative electrode 108.
  • the ceramic layer 109 needs to allow lithium ions to permeate during charging and discharging of the battery, it can be used if the pore diameter is generally 0.01 to 10 ⁇ m and the porosity is 20 to 90%.
  • the thickness is 2 ⁇ m to 30 ⁇ m, desirably 5 ⁇ m to 30 ⁇ m, and more preferably 10 ⁇ m to 30 ⁇ m.
  • the porosity of the ceramic layer is 30% or more and 90% or less.
  • An insulating sheet 113 is inserted between the electrode disposed at the end of the electrode group and the battery container 102 so that the positive electrode 107 and the negative electrode 108 are not short-circuited through the battery container 102.
  • the upper part of the laminate is electrically connected to an external terminal via a lead wire.
  • the positive electrode 107 is connected to the positive electrode external terminal 104 of the lid 103 via the positive electrode lead wire 110.
  • the negative electrode 108 is connected to the negative electrode external terminal 105 of the lid 103 via the negative electrode lead wire 111.
  • the lead wires 110 and 111 can take any shape such as a wire shape or a plate shape.
  • the lead wires 110 and 111 may have any shape and material depending on the structure of the battery can 113 as long as the structure can reduce the ohmic loss when an electric current is applied and does not react with the electrolyte. You can choose.
  • the material of the battery container 102 is selected from materials that are corrosion resistant to non-aqueous electrolytes, such as aluminum, stainless steel, steel, and nickel-plated steel.
  • the lid 103 is brought into close contact with the battery container 102 and the whole battery is sealed.
  • the lid 103 is attached to the battery container 102 by caulking.
  • a known technique such as welding or adhesion may be applied to the method for sealing the battery.
  • the rated capacity (calculated value) of the battery manufactured as an example is 3 Ah.
  • each numerical value, compound and the like in each example are shown in Table 1. From the left side of the table, the type and composition of ceramic particles used in the ceramic layer and the average particle size Da, the type and composition of dielectric particles and the average particle size Db, the ratio of Db / Da, the volume of the ceramic particles and the dielectric particles. The volume ratio of dielectric particles to the sum, the type and composition of the binder, the type of electrode on which the ceramic layer was formed and the thickness of the ceramic layer, and finally the initial value of the DC resistance (DCR) of the lithium secondary battery and 1 at 50 ° C. The DCR measured after standing for a week is shown.
  • DCR DC resistance
  • the reference value of DCR is the initial DCR value of Comparative Example 1 (Table 2), and this is taken as 100%, and the ratios of all other measured values are expressed as percentages.
  • Example 2 In Example 1, the volume ratio of the dielectric particles was changed from 1.1 to 40%, and the influence of the addition amount of the dielectric particles on the DCR was evaluated. From these examples, the volume ratio of the dielectric particles to the sum of the volume of the ceramic particles and the dielectric particles is in the range of 1 to 40%, and the initial DCR is smaller than 100% (reference value of Comparative Example 1). became. That is, in these examples, it can be seen that the electrolyte resistance in the ceramic layer was reduced. Even when left at 50 ° C. for one week, the increase rate of DCR was as small as 8% or less. Compared with the results of Comparative Examples 1 to 3 (Table 2), which will be described later, these Examples were superior in durability at the initial stage and after standing at high temperature.
  • Example 6 Example 10
  • Example 6 DCR when the ceramic particles were changed to SiO 2 , ZrO 2 , TiO 2 , MgO, AlO (OH) was evaluated.
  • the initial DCR was smaller than 100%, and the DCR increase rate after being left at 50 ° C. was as small as 1%.
  • a single dielectric was used, but similar results were obtained even when two or more kinds of mixtures were used, and the DCR substantially coincided with the average value when added alone.
  • Example 11 In Example 1, the DCR when the Ba element of the dielectric particle BaTiO 3 was replaced with La and Sr was evaluated. Compared with Example 1, it was found that the initial DCR was further reduced, and the electrolyte resistance of the ceramic layer was reduced. Also, the DCR increase rate after leaving at 50 ° C. was small.
  • Example 13 In Example 1, the average particle diameter Db of the dielectric was changed to 0.3 ⁇ m and 0.1 ⁇ m, and Db / Da was examined up to a small value of 0.03. There was a tendency for the initial DCR to decrease as Db / Da decreased. It is presumed that the DCR decreased because the void volume between the ceramic particles increased due to the decrease in the dielectric particle size.
  • Example 15 In Example 15, the ceramic layer formed on the positive electrode in Example 2 was provided on the negative electrode. In Example 16, the ceramic layer formed on the positive electrode in Example 3 was provided on the negative electrode. The same results as in Example 2 and Example 3 were obtained, and it was shown that even when a ceramic layer was formed on the negative electrode, the electrolyte resistance of the ceramic layer was reduced and the DCR was reduced.
  • Example 17 In Example 3, ceramic layers were formed on both the positive electrode and the negative electrode. 1/2 of the thickness of the ceramic layer described in the table was prepared on each surface of the positive electrode and the negative electrode. In Example 17, a 10 ⁇ m ceramic layer was formed on the positive electrode and the negative electrode. In Example 18, a 15 ⁇ m ceramic layer was formed on the positive electrode and the negative electrode.
  • the initial DCR was as low as 84 to 87%, and the DCR increase rate after being left at 50 ° C. was as small as 1%.
  • electrolyte solution resistance increases with the increase in the thickness of a ceramic layer, since electrode resistance occupies most of DCR rather than electrolyte solution resistance, the increase in DCR by increase in electrolyte solution resistance was only 1%.
  • Example 19 The average particle diameter of Al 2 O 3 used in Example 18 was 30 ⁇ m, and a ceramic layer having a thickness of 30 ⁇ m was formed only on the negative electrode.
  • Other manufacturing conditions were the same as those in Example 18.
  • the initial DCR was 80%, which was slightly larger than Example 17, but the DCR increase after being left at 50 ° C. could be suppressed to 1%.
  • FIG. 2 are the batteries of Example 14, and FIG. 2 is the battery system of the present invention in which these are connected in series.
  • Each of the lithium ion batteries 201a and 201b has an electrode group having the same specifications including a positive electrode 207, a negative electrode 208, and a ceramic layer 209, and a positive external terminal 204 and a negative external terminal 205 are provided on the upper part.
  • An insulating seal member 212 is inserted between each external terminal and the battery container so that the external terminals are not short-circuited.
  • components corresponding to the positive electrode lead wire 110 and the negative electrode lead wire 111 in FIG. 1 are omitted, but the internal structure of the lithium ion batteries 201a and 201b is the same as that in FIG.
  • the negative external terminal 205 of the lithium ion battery 201a is connected to the negative input terminal of the charge controller 216 by the power cable 213.
  • the positive external terminal 204 of the lithium ion battery 201a is connected to the negative external terminal 205 of the lithium ion battery 201b via the power cable 214.
  • a positive external terminal 204 of the lithium ion battery 201 b is connected to a positive input terminal of the charge controller 216 by a power cable 215.
  • the charge / discharge controller 216 exchanges power with an externally installed device (hereinafter referred to as an external device) 219 via the power cables 217 and 218.
  • the external device 219 includes various electric devices such as an external power source and a regenerative motor for supplying power to the charge / discharge controller 216, and an inverter, a converter, and a load that supply power from the system.
  • An inverter or the like may be provided depending on the type of AC and DC that the external device supports. As these devices, known devices can be arbitrarily applied.
  • a power generation device 222 that simulates the operating conditions of a wind power generator was installed as a device that generates renewable energy, and was connected to the charge / discharge controller 216 via the power cables 220 and 221.
  • the charge / discharge controller 216 shifts to the charging mode, supplies power to the external device 219, and charges surplus power to the lithium ion batteries 201a and 212b.
  • the charge / discharge controller 216 operates to discharge the lithium ion batteries 201a and 212b.
  • the power generation device 222 can be replaced with another power generation device, that is, any device such as a solar cell, a geothermal power generation device, a fuel cell, or a gas turbine generator.
  • the charge / discharge controller 216 stores a program that can be automatically operated so as to perform the above-described operation.
  • the lithium ion batteries 201a and 201b are normally charged so that a rated capacity can be obtained. For example, 2.8V constant voltage charging can be performed for 0.5 hour at a charging current of 1 hour rate. Since the charging conditions are determined by the design of the material and amount of use of the lithium ion battery, the conditions are optimal for each battery specification.
  • the charge / discharge controller 216 After charging the lithium ion batteries 201a and 201b, the charge / discharge controller 216 is switched to the discharge mode to discharge each battery. Normally, the discharge is stopped when a certain lower limit voltage is reached.
  • the external device 219 supplies power during charging and consumes power during discharging.
  • charging is performed at a 2-hour rate, and discharging is performed at a 1-hour rate (1C).
  • the initial discharge capacity was determined.
  • a capacity of 99.5 to 100% of the design capacity 3Ah of each battery 201a, 201b was obtained.
  • a charge / discharge cycle test described below was conducted under the condition of an environmental temperature of 20 to 30 ° C.
  • Comparative Example 1 is a result obtained when no dielectric particles were used in Example 1.
  • the initial DCR was set to 100%, which was the reference value for all examples and comparative examples. Based on this, the DCR after standing at 50 ° C. increased to 130%.
  • Comparative Example 2 is a DCR measurement result when the volume ratio of the dielectric to the sum of the ceramic particles and the dielectric is 0.1%. Compared with Example 1, it can be seen that the DCR is large.
  • Comparative Example 3 shows the battery specifications and DCR measurement results when the amount of dielectric added is increased and the volume ratio (composition) is 40% in Example 1.
  • the initial DCR is low, the dielectric particles are connected to each other, and the battery voltage after being left at 50 ° C. is 1 V or less due to a minute leakage current. That is, overdischarge occurred and the electrode deteriorated. As a result, the DCR significantly increased after standing at 50 ° C.
  • Comparative Example 4 is a DCR measurement result when Db / Da is increased to 0.33 in Example 1.
  • Db approaches Da
  • the dielectric particles close the pores formed by the ceramic particles, and the diffusion of lithium ions is easily inhibited.

Abstract

The objective of the present invention is to reduce the resistance between a positive electrode and a negative electrode. A lithium ion secondary battery which comprises a positive electrode having a positive electrode mixture layer, a negative electrode having a negative electrode mixture layer, and a ceramic layer arranged between the positive electrode mixture layer and the negative electrode mixture layer, and wherein: the ceramic layer contains ceramic particles and dielectric particles represented by Ba1-xMxTiO3 (wherein M is La or Sr, and x is within the range of 0-0.1); the ceramic particles have an average particle diameter (Da) of from 1 μm to 30 μm (inclusive); the relationship between the average particle diameter (Da) of the ceramic particles and the average particle diameter (Db) of the dielectric particles, namely Db/Da satisfies Db/Da ≤ 0.2; and the volume ratio of the dielectric particles relative to the sum of the volume of the ceramic particles and the volume of the dielectric particles is within the range of 1-40 vol%.

Description

リチウム二次電池Lithium secondary battery
 本発明は、出力特性に優れたリチウム二次電池に関する。 The present invention relates to a lithium secondary battery having excellent output characteristics.
 リチウム二次電池は高いエネルギー密度を有し、電気自動車用や電力貯蔵用の電池として注目されている。特に、電気自動車では、エンジンを搭載しないゼロエミッション電気自動車、エンジンと二次電池の両方を搭載したハイブリッド電気自動車、さらには系統電源から充電させるプラグイン電気自動車がある。特に、ハイブリッド電気自動車では、大電流での出力特性がリチウム二次電池に要求されている。
このように、リチウム二次電池の出力特性を向上させる従来技術として種々の手段があるが、とりわけ、リチウムイオンの挿入・脱離の反応を促進させる手段として、以下のような先行技術がある。
Lithium secondary batteries have high energy density and are attracting attention as batteries for electric vehicles and power storage. In particular, electric vehicles include zero-emission electric vehicles that are not equipped with an engine, hybrid electric vehicles that are equipped with both an engine and a secondary battery, and plug-in electric vehicles that are charged from a system power source. In particular, in a hybrid electric vehicle, output characteristics at a large current are required for a lithium secondary battery.
As described above, there are various means as conventional techniques for improving the output characteristics of the lithium secondary battery, and in particular, there are the following prior arts as means for promoting the reaction of insertion / extraction of lithium ions.
 特許文献1は、全固体リチウム二次電池において、正極活物質および固体電解質材料の界面に、固体電解質材料の比誘電率よりも高い比誘電率を有する修飾材を配置して、正極と固体電解質の界面抵抗を低減する技術が開示されている。 In Patent Document 1, in an all-solid lithium secondary battery, a modifier having a relative dielectric constant higher than that of the solid electrolyte material is arranged at the interface between the positive electrode active material and the solid electrolyte material, and the positive electrode and the solid electrolyte A technique for reducing the interfacial resistance is disclosed.
 特許文献2は、正極中に強誘電体を添加し、イオン伝導性を高め、抵抗を低減させる技術が開示されている。 Patent Document 2 discloses a technique in which a ferroelectric substance is added to a positive electrode to improve ion conductivity and reduce resistance.
 特許文献3は、正極活物質および前記負極活物質の少なくとも一方の電極活物質と、電解質材料との界面に、前記電解質材料の比誘電率よりも高い比誘電率を有する修飾材が配置されて、界面抵抗を低減する技術が開示されている。 In Patent Document 3, a modifier having a relative dielectric constant higher than that of the electrolyte material is disposed at an interface between at least one of the positive electrode active material and the negative electrode active material and the electrolyte material. A technique for reducing the interface resistance is disclosed.
 特許文献4には、正極板とセパレータ、及び/又は、負極板とセパレータとの間に、バインダと無機粒子とを含む無機粒子層が存在しており、上記非水電解質にはLiPF(ジフルオロリン酸リチウム)を添加する技術が開示されている。 In Patent Document 4, an inorganic particle layer containing a binder and inorganic particles exists between a positive electrode plate and a separator and / or a negative electrode plate and a separator, and LiPF 2 O 2 is used as the nonaqueous electrolyte. A technique for adding (lithium difluorophosphate) is disclosed.
特開2013-062133号公報JP 2013-062133 A 特開2014-116129号公報JP 2014-116129 A 特開2012-142268号公報JP 2012-142268 A 特開2014-35995号公報JP 2014-35995 A
 特許文献1、2および3の先行技術は、全固体リチウム二次電池に関するものであり、活物質と電解質の界面抵抗を低減しようとするものである。電解液を用いたリチウムイオン電池では、この界面抵抗は著しく小さく、技術課題が異なるので、これらの技術を適用することはできない。 Prior arts of Patent Documents 1, 2, and 3 relate to all-solid lithium secondary batteries, and attempt to reduce the interface resistance between an active material and an electrolyte. In a lithium ion battery using an electrolytic solution, this interfacial resistance is remarkably small, and technical problems are different. Therefore, these techniques cannot be applied.
 特許文献4は、電解液を用いるリチウムイオン電池の高出力化に関する発明であるが、無機粒子が300nmと小さいので、無機粒子層の細孔が小さくなりすぎて、リチウムイオンの透過性(すなわち電解液抵抗)が悪化する可能性がある。 Patent Document 4 is an invention related to an increase in the output of a lithium ion battery using an electrolytic solution. However, since inorganic particles are as small as 300 nm, the pores of the inorganic particle layer become too small, and lithium ion permeability (that is, electrolysis). (Liquid resistance) may deteriorate.
 本発明では、正極と負極との間に無機粒子層(例えばセラミック層)が設けられ、電解液が用いられたリチウムイオン二次電池において、正極、負極間の抵抗を低減することを課題とした。 An object of the present invention is to reduce resistance between a positive electrode and a negative electrode in a lithium ion secondary battery in which an inorganic particle layer (for example, a ceramic layer) is provided between the positive electrode and the negative electrode and an electrolytic solution is used. .
 上記課題を解決する手段は例えば以下である。 The means for solving the above problems are, for example, as follows.
 正極合剤層を有する正極と、負極合剤層を有する負極と、前記正極合剤層と前記負極合剤層との間に設けられたセラミック層を有し、前記セラミック層は、セラミック粒子と、Ba1-xTiO (M=LaまたはSr, x=0~0.1の範囲)で表わされる誘電体粒子を有し、前記セラミック粒子の平均粒径(Da)は、1μm以上30μm以下であり、前記セラミック粒子の平均粒径(Da)と前記誘電体粒子の平均粒径(Db)との関係Db/Daは、Db/Da≦0.2の範囲であり、前記セラミック粒子と前記誘電体の体積の和に対する前記誘電体の体積比が1~40vol%の範囲であるリチウムイオン二次電池。 A positive electrode having a positive electrode mixture layer; a negative electrode having a negative electrode mixture layer; and a ceramic layer provided between the positive electrode mixture layer and the negative electrode mixture layer. The ceramic layer includes ceramic particles, , Ba 1-x M x TiO 3 (M = La or Sr, x = 0 to 0.1), and the ceramic particles have an average particle diameter (Da) of 1 μm or more. The relationship between the average particle diameter (Da) of the ceramic particles and the average particle diameter (Db) of the dielectric particles is 30 μm or less, and Db / Da is in the range of Db / Da ≦ 0.2. And a volume ratio of the dielectric to the sum of the volumes of the dielectric is in the range of 1 to 40 vol%.
 本発明により、正極と負極との間に無機粒子層が設けられ、電解液が用いられたリチウムイオン二次電池において、正極、負極間の抵抗を低減することができた。 According to the present invention, in the lithium ion secondary battery in which the inorganic particle layer is provided between the positive electrode and the negative electrode and the electrolytic solution is used, the resistance between the positive electrode and the negative electrode can be reduced.
リチウムイオン二次電池を示す図Diagram showing lithium ion secondary battery リチウムイオン二次電池を用いた電池システムを示す図The figure which shows the battery system which uses the lithium ion secondary battery
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible.
 (実施例1)
(本発明の電池の構成)
 図1は、リチウム二次電池101の内部構造を模式的に示した図である。
Example 1
(Configuration of the battery of the present invention)
FIG. 1 is a diagram schematically showing the internal structure of the lithium secondary battery 101.
 リチウム二次電池101は、非水電解質中における電極へのリチウムイオンの吸蔵・放出により、電気エネルギーを貯蔵または利用可能とする電気化学デバイスである。 The lithium secondary battery 101 is an electrochemical device that can store or use electric energy by occlusion / release of lithium ions to and from an electrode in a non-aqueous electrolyte.
 リチウム二次電池101は、正極107、負極108およびセラミック層109からなる電極群を電池容器102に密閉状態で収納した構成を有している。セラミック層109は、少なくとも正極107または負極108の表面に形成されている。セラミック層109は、正極107と負極108を電気的に絶縁するとともに、後述の電解液を保持することによって、リチウムイオンを透過させる層の機能を有している。電極群は、短冊状の電極を積層させた構成、帯状の電極を捲回して円筒状、扁平状に成形した構成など、種々の構成を採用することができる。 The lithium secondary battery 101 has a configuration in which an electrode group composed of a positive electrode 107, a negative electrode 108, and a ceramic layer 109 is housed in a battery container 102 in a sealed state. The ceramic layer 109 is formed at least on the surface of the positive electrode 107 or the negative electrode 108. The ceramic layer 109 has a function of a layer that allows lithium ions to permeate by electrically insulating the positive electrode 107 and the negative electrode 108 and holding an electrolyte solution described later. The electrode group can employ various configurations such as a configuration in which strip-shaped electrodes are stacked, a configuration in which strip-shaped electrodes are wound and formed into a cylindrical shape or a flat shape.
 電池容器102は、電極群の形状に対応して、円筒型、偏平長円形状、角型など、任意の形状を選択することができる。電池容器102は、上部に設けられた開口から電極群を収容した後、開口部が蓋103によって塞がれて密閉されている。 The battery container 102 can be selected from an arbitrary shape such as a cylindrical shape, a flat oval shape, and a square shape in accordance with the shape of the electrode group. The battery case 102 accommodates the electrode group from the opening provided in the upper part, and then the opening is closed and sealed by the lid 103.
 蓋103は、外縁が全周に亘って、例えば、溶接、かしめ、接着などによって電池容器102の開口に接合され、電池容器102を密閉状態で封止している。蓋103は、電池容器102の開口を封止した後に、電池容器102内に電解液Lを注入する注液口を有している。注液口は、電池容器102内に電解液Lを注入した後に、注液栓106によって密閉されている。注液栓106に安全機構を付与することも可能である。その安全機構として、電池容器102内部の圧力を解放するための圧力弁を設けても良い。 The lid 103 is joined to the opening of the battery case 102 by, for example, welding, caulking, adhesion, or the like, and the outer edge of the lid 103 is hermetically sealed. The lid 103 has a liquid injection port for injecting the electrolyte L into the battery container 102 after sealing the opening of the battery container 102. The liquid injection port is sealed with a liquid injection stopper 106 after the electrolyte L is injected into the battery container 102. It is also possible to add a safety mechanism to the liquid filling plug 106. As a safety mechanism, a pressure valve for releasing the pressure inside the battery container 102 may be provided.
 蓋103には、絶縁シール部材112を介して正極外部端子104および負極外部端子105が固定され、両端子104、105の短絡が絶縁シール部材112によって防止されている。正極外部端子104は正極リード線110を介して正極107へ、負極外部端子105は負極リード線111を介して負極108へ、それぞれ連結されている。リード線絶縁性シール部材112の材料は、フッ素樹脂、熱硬化性樹脂、ガラスハーメチックシールなどから選択することができ、電解液Lと反応せず、かつ気密性に優れた任意の絶縁材料を使用することができる。 The positive electrode external terminal 104 and the negative electrode external terminal 105 are fixed to the lid 103 via an insulating seal member 112, and a short circuit between both terminals 104 and 105 is prevented by the insulating seal member 112. The positive external terminal 104 is connected to the positive electrode 107 via the positive lead 110 and the negative external terminal 105 is connected to the negative 108 via the negative lead 111. The material of the lead wire insulating seal member 112 can be selected from fluorine resin, thermosetting resin, glass hermetic seal, etc., and any insulating material that does not react with the electrolyte L and has excellent airtightness is used. can do.
 絶縁シート113は、電極群と電池容器102の間にも挿入され、正極107と負極108が電池容器102を通じて短絡しないようにしている。 The insulating sheet 113 is also inserted between the electrode group and the battery container 102 so that the positive electrode 107 and the negative electrode 108 are not short-circuited through the battery container 102.
 (正極および正極の製造)
 正極107は、正極集電体に正極合剤層が形成されたものを用いることができる。正極合剤は、例えば正極活物質、導電剤、バインダ、集電体から構成される。正極活物質としては例えば、LiCoO、LiNiO、LiMnが代表例である。他に、LiMnO、LiMn、LiMnO、LiMn12、LiMn2-x(ただし、M=Co、 Ni、 Fe、 Cr、 Zn、 Ta、x=0.01~0.2)、LiMnMO(ただし、M=Fe、 Co、 Ni、 Cu、 Zn)、Li1-xAxMn(ただし、A=Mg、 B、 Al、 Fe、 Co、 Ni、 Cr、 Zn、 Ca、x=0.01~0.1)、LiNi1-xMxO(ただし、M=Co、 Fe、 Ga、x=0.01~0.2)、LiFeO、Fe(SO、LiCo1-x(ただし、M=Ni、 Fe、 Mn、x=0.01~0.2)、LiNi1-x(ただし、M=Mn、 Fe、 Co、 Al、 Ga、 Ca、 Mg、x=0.01~0.2)、Fe(MoO、FeF、LiFePO、LiMnPOなどを用いることができる。本実施例では、正極活物質にLiNi1/3Mn1/3Co1/3を選択した。
(Production of positive electrode and positive electrode)
As the positive electrode 107, a positive electrode current collector in which a positive electrode mixture layer is formed can be used. The positive electrode mixture includes, for example, a positive electrode active material, a conductive agent, a binder, and a current collector. Typical examples of the positive electrode active material include LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 . In addition, LiMnO 3 , LiMn 2 O 3 , LiMnO 2 , Li 4 Mn 5 O 12 , LiMn 2−x M x O 2 (M = Co, Ni, Fe, Cr, Zn, Ta, x = 0. 01 ~ 0.2), Li 2 Mn 3 MO 8 ( although, M = Fe, Co, Ni , Cu, Zn), Li 1-x AxMn 2 O 4 ( provided that, A = Mg, B, Al , Fe, Co, Ni, Cr, Zn, Ca, x = 0.01 to 0.1), LiNi 1-x MxO 2 (where M = Co, Fe, Ga, x = 0.01 to 0.2), LiFeO 2 , Fe 2 (SO 4 ) 3 , LiCo 1-x M x O 2 (where M = Ni, Fe, Mn, x = 0.01 to 0.2), LiNi 1-x M x O 2 (where , M = Mn, Fe, Co, Al, Ga, Ca, Mg x = 0.01 ~ 0.2), Fe (MoO 4) 3, FeF 3, LiFePO 4, LiMnPO 4 , etc. can be used. In this example, LiNi 1/3 Mn 1/3 Co 1/3 O 2 was selected as the positive electrode active material.
 本実施例では、LiNi1/3Co1/3Mn1/3を活物質に用いたが、それよりも高容量なLiMnO-LiMnO系固溶体正極を用いることも可能で、高電力量の5V系正極(LiNi0.5Mn1.5など)を用いても良い。これらの高容量材料または高電力量材料を用いると、上述の合剤厚さを薄くすることができ、電池の中に収納可能な電極面積を増大させることができる。その結果、電池の抵抗を低下させて高出力が可能になると同時に、LiNi1/3Co1/3Mn1/3正極を用いたときよりも電池の容量を高めることができる。 In this example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as the active material, but a higher capacity Li 2 MnO 3 —LiMnO 2 solid solution positive electrode can also be used. A high power 5V positive electrode (such as LiNi 0.5 Mn 1.5 O 4 ) may be used. When these high-capacity materials or high-power materials are used, the above-mentioned mixture thickness can be reduced, and the electrode area that can be stored in the battery can be increased. As a result, the resistance of the battery can be reduced to enable high output, and at the same time, the capacity of the battery can be increased as compared with the case of using a LiNi 1/3 Co 1/3 Mn 1/3 O 2 positive electrode.
 まず、正極活物質の二次粒子(一次粒子を造粒したもの)の粉末を採取する。ただし、リン酸鉄リチウムのように、一次粒子の粉末を造粒せずに用いることができるものもある。造粒の有無、は正極活物質の種類によって異なるが、正極合剤の表面に無機粒子層を設けることができるものであればいずれも用いることができる。 First, a powder of secondary particles (granulated primary particles) of the positive electrode active material is collected. However, some lithium primary phosphates can be used without granulating the primary particle powder. The presence or absence of granulation varies depending on the type of the positive electrode active material, but any can be used as long as an inorganic particle layer can be provided on the surface of the positive electrode mixture.
 正極活物質の粒径は、合剤層の厚さ以下になるように規定される。正極活物質粉末中に合剤層厚さ以上のサイズを有する粗粒がある場合、予めふるい分級、風流分級などにより粗粒を除去し、合剤層厚さ以下の粒子を作製する。 The particle size of the positive electrode active material is specified to be equal to or less than the thickness of the mixture layer. When there are coarse particles having a size larger than the thickness of the mixture layer in the positive electrode active material powder, the coarse particles are removed in advance by sieving classification, wind classification or the like to produce particles having a thickness of the mixture layer or less.
 まず、正極活物質は、造粒されていない一次粒子のまま用いても良いし、造粒して二次粒子を用いても良い。本実施例では、二次粒子を用いたとして、正極の製法を説明する。 First, the positive electrode active material may be used as primary particles that are not granulated, or may be granulated to use secondary particles. In this example, a method for producing a positive electrode will be described assuming that secondary particles are used.
 正極活物質の平均粒径(D50)は、レーザー散乱法により測定した。平均粒径D50は、正極活物質のサンプルを水に懸濁し、レーザー散乱型粒径測定装置(例えば、マイクロトラック)を用いて測定される。D50とは、サンプル全体の体積に対する比率(体積分率)が50%のときの粒径と定義される。その範囲は3~20μmであれば、本発明に適用可能である。D50を3~8μmの小さい範囲にすると、出力特性が向上し、さらに好適である。本実施例の正極活物質は、D50が3~8μmのLiNi1/3Co1/3Mn1/3である。 The average particle diameter (D 50 ) of the positive electrode active material was measured by a laser scattering method. The average particle diameter D 50 is a sample of the positive electrode active material was suspended in water, a laser scattering type particle size measuring apparatus (for example, Microtrac) are measured using a. D 50 is defined as the particle size when the ratio (volume fraction) to the volume of the entire sample is 50%. If the range is 3 to 20 μm, it is applicable to the present invention. When D 50 is set to a small range of 3 to 8 μm, the output characteristics are improved, which is more preferable. The positive electrode active material of this example is LiNi 1/3 Co 1/3 Mn 1/3 O 2 having a D 50 of 3 to 8 μm.
 正極107を作製するために、正極スラリを調製する必要がある。正極スラリは、正極集電体に塗布された後、乾燥等により正極合剤層となる。正極活物質を88重量部、導電剤を5重量部、PVDF(ポリフッ化ビニリデン)バインダを7重量部とした。導電剤は、アセチレンブラックとカーボンナノチューブ(CNT)との混合物であり、それぞれの重量組成は4.7:0.3とした。なお、材料の種類、比表面積、粒径分布などに応じて変更され、例示した組成に限定されない。 In order to produce the positive electrode 107, it is necessary to prepare a positive electrode slurry. The positive electrode slurry is applied to the positive electrode current collector and then becomes a positive electrode mixture layer by drying or the like. The positive electrode active material was 88 parts by weight, the conductive agent was 5 parts by weight, and the PVDF (polyvinylidene fluoride) binder was 7 parts by weight. The conductive agent was a mixture of acetylene black and carbon nanotubes (CNT), and the weight composition of each was 4.7: 0.3. In addition, it changes according to the kind of material, a specific surface area, a particle size distribution, etc., and is not limited to the illustrated composition.
 正極スラリを調製するために用いる溶媒には、バインダを溶解させるものであれば良く、PVDFには1-メチル-2-ピロリドンを用いた。バインダの種類に応じて、溶媒は選択される。正極材料の分散処理には、公知の混練機、分散機を用いた。 The solvent used to prepare the positive electrode slurry may be any solvent that can dissolve the binder, and 1-methyl-2-pyrrolidone was used for PVDF. Depending on the type of binder, the solvent is selected. A known kneader or disperser was used for the dispersion treatment of the positive electrode material.
 正極活物質、導電剤、バインダ、および有機溶媒を混合した正極スラリを、ドクターブレード法、ディッピング法、スプレー法などによって集電体へ付着させた後、有機溶媒を乾燥し、ロールプレスによって正極を加圧成形することにより、正極を作製することができる。また、塗布から乾燥までを複数回、繰り返すことにより、複数の合剤層を集電体に積層化させることも可能である。 A positive electrode slurry in which a positive electrode active material, a conductive agent, a binder, and an organic solvent are mixed is attached to a current collector by a doctor blade method, a dipping method, a spray method, etc., and then the organic solvent is dried and the positive electrode is removed by a roll press. A positive electrode can be produced by pressure molding. It is also possible to stack a plurality of mixture layers on a current collector by repeating a plurality of times from application to drying.
 また、正極合剤層の合剤密度は、3g/cm以上とし、導電剤と正極活物質を密着させることが好ましい。密度を調節することで合剤層の電子抵抗を低減することができる。 Moreover, the mixture density of the positive electrode mixture layer is preferably 3 g / cm 3 or more, and the conductive agent and the positive electrode active material are preferably adhered to each other. By adjusting the density, the electronic resistance of the mixture layer can be reduced.
 正極集電体には、例えば厚さが10~100μmのアルミニウム箔、あるいは厚さが10~100μm、孔径0.1~10mmの孔を有するアルミニウム製穿孔箔、エキスパンドメタル、発泡金属板などが用いられ、材質もアルミニウムの他に、ステンレス鋼、チタンなども適用可能である。本発明では、電池の使用中に溶解、酸化などの変化をしないものであれば、材質、形状、製造方法などに制限されることなく、任意の材料を集電体に使用することができる。 For the positive electrode current collector, for example, an aluminum foil having a thickness of 10 to 100 μm, or an aluminum perforated foil having a thickness of 10 to 100 μm and a hole diameter of 0.1 to 10 mm, an expanded metal, a foam metal plate, or the like is used. In addition to aluminum, stainless steel, titanium, and the like are also applicable. In the present invention, any material can be used for the current collector without being limited by the material, shape, manufacturing method, or the like as long as it does not change during the use of the battery, such as dissolution and oxidation.
 正極合剤層の厚さは、平均粒径以上とすることが望ましい。平均粒径の厚さまたは平均粒径以下とすることで、隣接する粒子間の電子伝導性が悪化する可能性がある。本発明の正極活物質の平均粒径(D50)は、レーザー散乱法により測定され、その範囲は3~20μmが好ましく、特に3~8μmの範囲が好適である。 The thickness of the positive electrode mixture layer is desirably equal to or greater than the average particle diameter. By setting the thickness to the average particle size or less than the average particle size, there is a possibility that the electron conductivity between adjacent particles is deteriorated. The average particle diameter (D 50 ) of the positive electrode active material of the present invention is measured by a laser scattering method, and the range thereof is preferably 3 to 20 μm, particularly preferably 3 to 8 μm.
 この正極活物質を用い、合剤厚さを10μm以上にすることで抵抗を低減することができる。また、正極合剤厚さの上限は、40μm以下とし、特に30μm以下にすることが望ましい。正極合剤層が50μm以上の厚さになると、正極合剤へ導電剤を多量に添加しない限り、合剤の表面と集電体表面近傍の正極活物質の充電レベルにばらつきが生じ、偏った充放電が起こるからである。導電剤の量を増加させると、正極体積が嵩高になり、電池のエネルギー密度が低下する可能性がある。 Using this positive electrode active material, the resistance can be reduced by setting the mixture thickness to 10 μm or more. Further, the upper limit of the thickness of the positive electrode mixture is 40 μm or less, and particularly preferably 30 μm or less. When the positive electrode mixture layer has a thickness of 50 μm or more, unless the conductive agent is added in a large amount to the positive electrode mixture, the charge level of the positive electrode active material near the surface of the mixture and the current collector surface is uneven and uneven. This is because charging / discharging occurs. When the amount of the conductive agent is increased, the positive electrode volume becomes bulky, and the energy density of the battery may decrease.
 (負極および負極の製造)
 負極108は、負極集電体に負極合剤層が形成されたものを用いることができる。負極合剤は、負極活物質、バインダ、集電体を有する。負極活物質は、例えば非晶質炭素で被覆した天然黒鉛を用いることができ、本実施例では非晶質炭素で被覆した天然黒鉛を用いた。
(Manufacture of negative electrode and negative electrode)
As the negative electrode 108, a negative electrode current collector in which a negative electrode mixture layer is formed can be used. The negative electrode mixture has a negative electrode active material, a binder, and a current collector. As the negative electrode active material, for example, natural graphite coated with amorphous carbon can be used. In this example, natural graphite coated with amorphous carbon was used.
 天然黒鉛表面に非晶質炭素を形成させる方法には、負極活物質粉末に熱分解炭素を析出させる方法がある。エタン、プロパン、ブタン等の低分子炭化水素をアルゴン等の不活性ガスで希釈し、800~1200℃に加熱することにより、負極活物質粒子の表面で、炭化水素から水素が脱離し、負極活物質粒子の表面に炭素が析出する。炭素は非晶質の形態である。その他に、ポリビニルアルコール、ショ糖などの有機物を添加した後に、不活性ガス雰囲気中で300~1000℃で熱処理を行うことにより、水素と酸素は水素、一酸化炭素、二酸化炭素の形で脱離し、炭素のみを負極活物質表面に析出させることができる。 As a method of forming amorphous carbon on the surface of natural graphite, there is a method of depositing pyrolytic carbon on the negative electrode active material powder. By diluting low molecular hydrocarbons such as ethane, propane and butane with an inert gas such as argon and heating to 800 to 1200 ° C., hydrogen is desorbed from the hydrocarbons on the surface of the negative electrode active material particles, and the negative electrode active Carbon is deposited on the surface of the material particles. Carbon is an amorphous form. In addition, after adding organic substances such as polyvinyl alcohol and sucrose, heat treatment is performed at 300 to 1000 ° C. in an inert gas atmosphere, so that hydrogen and oxygen are desorbed in the form of hydrogen, carbon monoxide, and carbon dioxide. Only carbon can be deposited on the surface of the negative electrode active material.
 本実施例では、1%のプロパンと99%のアルゴンを混合したガスを、1000℃にて負極活物質に接触させ、炭素を析出させた。炭素の析出量は、1~30重量%の範囲が望ましい。本実施例では2重量%の炭素を負極活物質表面に析出させた。炭素被覆により、1サイクル目放電容量が増加するだけでなく、サイクル寿命特性とレート特性の増加に有効である。 In this example, a gas in which 1% propane and 99% argon were mixed was brought into contact with the negative electrode active material at 1000 ° C. to deposit carbon. The amount of carbon deposited is desirably in the range of 1 to 30% by weight. In this example, 2% by weight of carbon was deposited on the surface of the negative electrode active material. Carbon coating not only increases the discharge capacity at the first cycle, but is also effective for increasing cycle life characteristics and rate characteristics.
 負極112を作製するために、負極スラリを調製する必要がある。負極スラリは負極集電体に塗布されたあと、乾燥等により負極合剤層となる。導電剤の添加量をxとし、負極活物質を96-x重量部、導電剤をx重量部、PVDF(ポリフッ化ビニリデン)バインダを4重量部とした。本実施例では、負極に繊維状導電剤以外の導電剤を用いていないので、xは繊維状導電剤の添加量となる。本実施例では、繊維状炭素としてカーボンナノチューブ(CNT)を用い、その添加量xは0.1とした。なお、正極と同様に、アセチレンブラック等の他の導電剤を混合しても良い。また、水系のスラリを調製するために、PVDFの代わりに、スチレンブタジエンゴムとカルボキシメチルセルロースのバインダに置き換えても良い。他に、フッ素ゴム、エチレン・プロピレンゴム、ポリアクリル酸、ポリイミド、ポリアミドなどを用いることができ、本発明において制約はない。負極表面上でバインダが分解せず、電解液に溶解しないものであれば、本発明に使用することができる。 In order to produce the negative electrode 112, it is necessary to prepare a negative electrode slurry. After the negative electrode slurry is applied to the negative electrode current collector, it becomes a negative electrode mixture layer by drying or the like. The addition amount of the conductive agent was x, the negative electrode active material was 96-x parts by weight, the conductive agent was x parts by weight, and the PVDF (polyvinylidene fluoride) binder was 4 parts by weight. In this embodiment, since no conductive agent other than the fibrous conductive agent is used for the negative electrode, x is the amount of the fibrous conductive agent added. In this example, carbon nanotubes (CNT) were used as the fibrous carbon, and the addition amount x was 0.1. Note that other conductive agents such as acetylene black may be mixed in the same manner as the positive electrode. In order to prepare an aqueous slurry, a styrene butadiene rubber and carboxymethyl cellulose binder may be used instead of PVDF. In addition, fluorine rubber, ethylene / propylene rubber, polyacrylic acid, polyimide, polyamide and the like can be used, and there is no restriction in the present invention. Any binder that does not decompose on the surface of the negative electrode and does not dissolve in the electrolyte can be used in the present invention.
 負極スラリを調製するために用いる溶媒には、バインダを溶解させるものであれば良く、PVDFには1-メチル-2-ピロリドンを用いた。バインダの種類に応じて、溶媒は選択される。例えば、スチレンブタジエンゴムとカルボキシメチルセルロースのバインダを用いるときに、水を溶媒に用いる。なお、負極材料の分散処理には、公知の混練機、分散機を用いた。 The solvent used for preparing the negative electrode slurry may be any solvent that can dissolve the binder, and 1-methyl-2-pyrrolidone was used for PVDF. Depending on the type of binder, the solvent is selected. For example, when using a styrene butadiene rubber and carboxymethyl cellulose binder, water is used as a solvent. A known kneader and disperser were used for the dispersion treatment of the negative electrode material.
 また、負極集電体への負極スラリの塗布には、ドクターブレード法、ディッピング法、スプレー法などの公知の技術を適用可能である。塗布から乾燥までを複数回おこなうことにより、多層合剤層を集電体に形成させることも可能である。本実施例では、ドクターブレード法により、銅箔上に一回の塗布をした。 Also, a known technique such as a doctor blade method, a dipping method, or a spray method can be applied to apply the negative electrode slurry to the negative electrode current collector. It is also possible to form a multilayer mixture layer on the current collector by performing a plurality of times from application to drying. In this example, the coating was performed once on the copper foil by the doctor blade method.
 負極合剤層の厚さは、平均粒径以上とすることが望ましい。平均粒径の厚さまたは平均粒径以下にすると、隣接する粒子間の電子伝導性が悪化する可能性がある。合剤厚さは10μm以上、より好適には15μm以上にすることが好ましい。また、負極合剤厚さの上限は、50μm以下にすることが望ましい。それ以上厚くなると、負極合剤へ導電剤を多量に添加しない限り、合剤の表面と集電体表面近傍の負極活物質の充電レベルにばらつきが生じ、偏った充放電が起こるからである。導電剤の量を増加させると、負極体積が嵩高になり、電池のエネルギー密度が低下する。 The thickness of the negative electrode mixture layer is desirably equal to or greater than the average particle diameter. When the thickness is equal to or less than the average particle size, the electron conductivity between adjacent particles may be deteriorated. The mixture thickness is preferably 10 μm or more, more preferably 15 μm or more. Further, the upper limit of the negative electrode mixture thickness is desirably 50 μm or less. If the thickness is more than that, unless the conductive agent is added in a large amount to the negative electrode mixture, the charge level of the negative electrode active material near the surface of the mixture and the current collector surface varies, and uneven charge and discharge occur. When the amount of the conductive agent is increased, the negative electrode volume becomes bulky, and the energy density of the battery decreases.
 本実施例では、黒鉛を負極活物質に用いたが、シリコンやスズまたはそれらの化合物(酸化物、窒化物、および他の金属との合金)を負極活物質に用いてもよい。これらの活物質は、黒鉛の理論容量(372Ah/kg)よりも大きく、500~3600Ah/kgの容量が得られる。これらの高容量材料を用いると、上述の合剤厚さを薄くすることができ、電池の中に収納可能な電極面積を増大させることができる。その結果、電池の抵抗を低下させて高出力が可能になると同時に、黒鉛負極を用いたときよりも電池の容量を高めることができる。 In this embodiment, graphite is used as the negative electrode active material, but silicon, tin, or a compound thereof (oxide, nitride, and alloy with other metals) may be used as the negative electrode active material. These active materials are larger than the theoretical capacity of graphite (372 Ah / kg), and a capacity of 500 to 3600 Ah / kg is obtained. When these high-capacity materials are used, the above-mentioned mixture thickness can be reduced, and the electrode area that can be accommodated in the battery can be increased. As a result, the resistance of the battery can be reduced to enable high output, and at the same time, the capacity of the battery can be increased as compared with the case where a graphite negative electrode is used.
 本発明に利用可能な負極集電体としては、例えば厚さが10~100μmの銅箔、厚さが10~100μm、孔径0.1~10mmの銅製穿孔箔、エキスパンドメタル、発泡金属板などであり、材質も銅の他に、ステンレス鋼、チタン、ニッケルなども適用可能である。材質、形状、製造方法などに制限されることなく、任意集電体を使用することができる。本実施例および比較例では、厚さ10μmの圧延銅箔を用いた。 Examples of the negative electrode current collector that can be used in the present invention include a copper foil having a thickness of 10 to 100 μm, a copper perforated foil having a thickness of 10 to 100 μm and a pore diameter of 0.1 to 10 mm, an expanded metal, and a foam metal plate. In addition to copper, stainless steel, titanium, nickel, etc. are also applicable. An arbitrary current collector can be used without being limited by the material, shape, manufacturing method, and the like. In this example and comparative example, a rolled copper foil having a thickness of 10 μm was used.
 (セラミック層の作製)
 正極107(正極合剤層上)または負極108(負極合剤層上)のいずれか一方または、両方の表面には、無機粒子層としてセラミック層109が設けられている。これにより正極合剤層と負極合剤層の間にセラミック層が設けられた状態となる。以下の説明では、両方の電極にセラミック層を作製する方法を説明するが、実施例1では正極合剤層上のみに形成させたものである。
(Production of ceramic layer)
On one or both surfaces of the positive electrode 107 (on the positive electrode mixture layer) and the negative electrode 108 (on the negative electrode mixture layer), a ceramic layer 109 is provided as an inorganic particle layer. Thereby, it will be in the state by which the ceramic layer was provided between the positive mix layer and the negative mix layer. In the following description, a method for producing a ceramic layer on both electrodes will be described. In Example 1, the ceramic layer is formed only on the positive electrode mixture layer.
 セラミック層109は、セラミック粒子と誘電体粒子を有する。セラミック粒子と誘電体粒子は金属元素を含む酸化物であり、ともに電解液に不溶であることが必要である。 The ceramic layer 109 has ceramic particles and dielectric particles. Ceramic particles and dielectric particles are oxides containing a metal element, and both must be insoluble in the electrolytic solution.
 セラミック粒子と誘電体粒子は、最適な平均粒径(D50)の比になるように選択される。ここで、セラミック粒子のD50をDaと表し、誘電体粒子のD50をDbと表記する。 The ceramic particles and the dielectric particles are selected to have an optimal average particle size (D 50 ) ratio. Here, represents a D 50 of the ceramic particles and Da, denoted the D 50 of the dielectric particles and Db.
 Daは1μm以上30μm以下であることが好ましい。セラミック層の厚さを30μm以下とするためである。セラミック層が厚くなりすぎると、セラミック層内部の細孔を透過するリチウムイオンの移動距離が長くなりすぎて、電解液抵抗が増大する可能性がある。また、同一の電池容器に電極とセラミック層を充填する場合を考えたとき、セラミック層の厚さの増加は、電池活物質の量を相対的に減少させ、電池容量を減少させる。したがって、正極と負極との間の絶縁性を確保できれば、セラミック層の役割を果たすことができるので、セラミック層の厚さは30μm以下にすることが望ましい。 Da is preferably 1 μm or more and 30 μm or less. This is because the thickness of the ceramic layer is 30 μm or less. If the ceramic layer becomes too thick, the movement distance of lithium ions that permeate through the pores inside the ceramic layer becomes too long, and the electrolyte resistance may increase. Further, when considering the case where the same battery container is filled with the electrode and the ceramic layer, the increase in the thickness of the ceramic layer relatively decreases the amount of the battery active material and decreases the battery capacity. Therefore, if the insulation between the positive electrode and the negative electrode can be ensured, it can serve as a ceramic layer. Therefore, the thickness of the ceramic layer is preferably 30 μm or less.
 上記観点から、セラミック層の厚さは、さらに2μmまで薄くしてもよい。Daが1μmであるので、少なくともセラミック粒子2個相当の厚さを確保することができれば、正極と負極の絶縁性を確保することができる。セラミック粒子1個相当の厚さ(1μm)になると、セラミック粒子の脱落により、電極表面の一部が露出し、正極と負極との短絡の恐れがある。また、製造時の金属異物の混入による正極と負極の短絡を防止するためには、セラミック層の厚さは5μm以上にすることが望ましい。正極と負極の厚さむら(表面の凹凸)が1から2μmであることを考慮すると、セラミック層の厚さは10μm以上にすると、さらに好適である。 From the above viewpoint, the thickness of the ceramic layer may be further reduced to 2 μm. Since Da is 1 μm, the insulation between the positive electrode and the negative electrode can be ensured if at least a thickness equivalent to two ceramic particles can be ensured. When the thickness is equivalent to one ceramic particle (1 μm), a part of the electrode surface is exposed due to dropping of the ceramic particles, and there is a risk of short circuit between the positive electrode and the negative electrode. Moreover, in order to prevent the positive electrode and the negative electrode from being short-circuited due to the mixing of metal foreign matters during production, the thickness of the ceramic layer is desirably 5 μm or more. Considering that the thickness unevenness (unevenness on the surface) between the positive electrode and the negative electrode is 1 to 2 μm, it is more preferable that the thickness of the ceramic layer is 10 μm or more.
 セラミック層の細孔は、セラミック粒子のサイズで決まる。D50が大きいほど、細孔径は増大し、D50が小さくなるほど細孔径が小さくなる。Daの下限値1μmは、細孔径が小さくなりすぎて、リチウムイオンの透過性を悪化させない限界値である。セラミック粒子は、正極と負極の絶縁体として機能するだけでなく、リチウムイオンを透過させる細孔を形成する媒体として働く。 The pores of the ceramic layer are determined by the size of the ceramic particles. As D 50 is large, the pore size is increased, the pore size becomes smaller as D 50 is reduced. The lower limit value 1 μm of Da is a limit value at which the pore diameter becomes too small to deteriorate the lithium ion permeability. The ceramic particles not only function as an insulator for the positive electrode and the negative electrode, but also function as a medium for forming pores that allow lithium ions to pass therethrough.
 誘電体粒子は、セラミック層中の電解質の解離を促進し、セラミック層の電解液抵抗を低減する機能を有する。この誘電体粒子のDbは、Db/Da≦0.2を満たすように、制御されることが好ましい。すなわち、セラミック粒子の平均粒径Daの1/5以下となる小さなDbの誘電体粒子が用いられる。誘電体粒子は、セラミック粒子に取り込まれるように添加される。これが、セラミック粒子同士の隙間に形成される細孔を閉塞することは、望ましくない。細孔の閉塞を回避するために、セラミック粒子に比べて小粒径の誘電体粒子を用いることが好ましい。 The dielectric particles have a function of promoting the dissociation of the electrolyte in the ceramic layer and reducing the electrolyte resistance of the ceramic layer. Db of the dielectric particles is preferably controlled so as to satisfy Db / Da ≦ 0.2. That is, small Db dielectric particles that are 1/5 or less of the average particle diameter Da of the ceramic particles are used. The dielectric particles are added so as to be incorporated into the ceramic particles. It is undesirable for this to block the pores formed in the gaps between the ceramic particles. In order to avoid clogging of the pores, it is preferable to use dielectric particles having a smaller particle size than ceramic particles.
 さらに、セラミックス層の体積に対する誘電体の体積比が1~40vol%の範囲にすることが好ましい。誘電体粒子の体積比が1vol%未満になると、電解質を解離させる効果が得られにくくなる。40vol%を超えると、セラミック粒子の比率が少なくなりすぎて、セラミック層の絶縁性が悪化する可能性がある。誘電体はセラミック粒子よりも電子抵抗が低いので、過剰に添加した誘電体粒子同士が連絡し合うようになって、セラミック層の電気抵抗が減少するからである。 Furthermore, the volume ratio of the dielectric to the volume of the ceramic layer is preferably in the range of 1 to 40 vol%. When the volume ratio of the dielectric particles is less than 1 vol%, it is difficult to obtain the effect of dissociating the electrolyte. When it exceeds 40 vol%, the ratio of the ceramic particles becomes too small, and the insulating properties of the ceramic layer may be deteriorated. This is because the dielectric has a lower electronic resistance than the ceramic particles, so that the excessively added dielectric particles come into contact with each other, and the electric resistance of the ceramic layer is reduced.
 本実施例で用いることのできる誘電体としては、例えばBa1-xTiO (M=LaまたはSr, x=0~0.1の範囲)で表わされるものを用いることができる。 As a dielectric that can be used in this embodiment, for example, a material represented by Ba 1-x M x TiO 3 (M = La or Sr, x = 0 to 0.1) can be used.
 セラミック層は、正極の上または負極の上に形成される。まず、セラミック粒子と誘電体粒子を攪拌し、十分に混合する。これにPVDFバインダを添加した後、1-メチル-2-ピロリドン(NMP)を添加し、分散させ、混練することによって、セラミック層のスラリが得られる。この処理方法は、正極スラリを作製する方法と同様である。 The ceramic layer is formed on the positive electrode or the negative electrode. First, ceramic particles and dielectric particles are stirred and mixed thoroughly. After adding a PVDF binder to this, 1-methyl-2-pyrrolidone (NMP) is added, dispersed and kneaded to obtain a slurry of the ceramic layer. This processing method is the same as the method for producing the positive electrode slurry.
 作製したセラミック層のスラリは、正極または負極の表面に塗布し、乾燥によりNMPを除去することにより、セラミック層が得られる。セラミック層を形成した後に、ロールプレスにより圧縮しても良いし、省略しても良い。 The prepared ceramic layer slurry is applied to the surface of the positive electrode or the negative electrode, and the NMP is removed by drying to obtain a ceramic layer. After forming the ceramic layer, it may be compressed by a roll press or may be omitted.
 (電解液の製造)
 本発明で使用可能な電解液の代表例として、エチレンカーボネートにジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどを混合した溶媒に、電解質として六フッ化リン酸リチウム(LiPF)、あるいはホウフッ化リチウム(LiBF)を溶解させた溶液がある。本発明は、溶媒や電解質の種類、溶媒の混合比に制限されることなく、他の電解液も利用可能である。電解質は、ポリフッ化ビニリデン、ポリエチレンオキサイドなどのイオン伝導性高分子に含有させた状態で使用することも可能である。本発明のセラミック層109は、正極107と負極108の短絡を防止するので、従来の樹脂セパレータを不要とすることができる。
(Manufacture of electrolyte)
As a typical example of an electrolyte solution that can be used in the present invention, a solvent obtained by mixing dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and the like with ethylene carbonate, lithium hexafluorophosphate (LiPF 6 ), or lithium borofluoride (Li There is a solution in which LiBF 4 ) is dissolved. The present invention is not limited to the type of solvent and electrolyte, and the mixing ratio of solvents, and other electrolytes can be used. The electrolyte can also be used in a state of being contained in an ion conductive polymer such as polyvinylidene fluoride and polyethylene oxide. Since the ceramic layer 109 of the present invention prevents the positive electrode 107 and the negative electrode 108 from being short-circuited, a conventional resin separator can be dispensed with.
 なお、電解液に使用可能な溶媒は、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1、 2-ジメトキシエタン、2-メチルテトラヒドロフラン、ジメチルスルフォキシド、1、 3-ジオキソラン、ホルムアミド、ジメチルホルムアミド、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン、ジエチルエーテル、スルホラン、3-メチル-2-オキサゾリジノン、テトラヒドロフラン、1、 2-ジエトキシエタン、クロルエチレンカーボネート、クロルプロピレンカーボネートなどの非水溶媒がある。本発明の電池に内蔵される正極あるいは負極上で分解しなければ、これ以外の溶媒を用いても良い。 Solvents that can be used for the electrolyte are propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1, 2-dimethoxyethane, 2-methyltetrahydrofuran, dimethyl Sulfoxide, 1, 3-dioxolane, formamide, dimethylformamide, methyl propionate, ethyl propionate, phosphate triester, trimethoxymethane, dioxolane, diethyl ether, sulfolane, 3-methyl-2-oxazolidinone, tetrahydrofuran, 1 , Non-aqueous solvents such as 2-diethoxyethane, chloroethylene carbonate, and chloropropylene carbonate. Other solvents may be used as long as they do not decompose on the positive electrode or negative electrode incorporated in the battery of the present invention.
 また、電解質には、化学式でLiPF、LiBF、LiClO、LiCFSO、LiCFCO、LiAsF、LiSbF、あるいはリチウムトリフルオロメタンスルホンイミドで代表されるリチウムのイミド塩などの多種類のリチウム塩がある。これらの塩を、上述の溶媒に溶解してできた非水電解液を電池用電解液として使用することができる。本発明の電池に内蔵される正極あるいは負極上で分解しなければ、これ以外の電解質を用いても良い。 Further, the electrolyte, the chemical formula LiPF 6, LiBF 4, LiClO 4 , LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, or multi such imide lithium salts represented by lithium trifluoromethane sulfonimide There are different types of lithium salts. A non-aqueous electrolytic solution obtained by dissolving these salts in the above-described solvent can be used as a battery electrolytic solution. An electrolyte other than this may be used as long as it does not decompose on the positive electrode or the negative electrode incorporated in the battery of the present invention.
 電解液と固体高分子電解質(ポリマー電解質)を用いる場合には、ポリマー電解質としてエチレンオキシド、アクリロニトリル、ポリフッ化ビニリデン、メタクリル酸メチル、ヘキサフルオロプロピレンのポリエチレンオキサイドなどのイオン導電性ポリマを電解質に用いることができる。これらの固体高分子電解質をセラミック層109に含浸させて使用することができる。 When an electrolytic solution and a solid polymer electrolyte (polymer electrolyte) are used, an ion conductive polymer such as ethylene oxide, acrylonitrile, polyvinylidene fluoride, methyl methacrylate, or hexafluoropropylene polyethylene oxide may be used as the polymer electrolyte. it can. These solid polymer electrolytes can be used by impregnating the ceramic layer 109.
 さらに、イオン性液体を用いることができる。例えば、1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF)、リチウム塩LiN(SOCF(LiTFSI)とトリグライムとテトラグライム)の混合錯体、環状四級アンモニウム系陽イオン(N-methyl-N-propylpyrrolidiniumが例示される。)とイミド系陰イオン(bis(fluorosulfonyl)imideが例示される。)より正極と負極にて分解しない組み合わせを選択して、本発明のリチウム二次電池に用いることができる。 Furthermore, an ionic liquid can be used. For example, 1-ethyl-3-methylimidazole tetrafluoroborate (EMI-BF 4 ), a mixed complex of lithium salt LiN (SO 2 CF 3 ) 2 (LiTFSI), triglyme and tetraglyme, a cyclic quaternary ammonium cation (N— The combination of methyl-N-propylpyrrolidinium and imide anion (exemplified by bis (fluorosulfonyl) imide) that does not decompose at the positive electrode and the negative electrode is selected to provide the lithium secondary battery of the present invention. Can be used.
 非水電解液の代わりに、固体高分子電解質(ポリマ電解質)あるいはゲル電解質を用いることもできる。固体高分子電解質は、ポリエチレンオキサイドなどの公知のポリマ電解質あるいはポリフッ化ビニリデンと非水電解液の混合物(ゲル電解質)を用いることも可能である。また、イオン液体を用いても良い。これらのセラミック層109へ含浸させて、使用することが可能になる。 Instead of the non-aqueous electrolyte, a solid polymer electrolyte (polymer electrolyte) or a gel electrolyte can be used. As the solid polymer electrolyte, a known polymer electrolyte such as polyethylene oxide or a mixture (gel electrolyte) of polyvinylidene fluoride and a nonaqueous electrolytic solution can be used. An ionic liquid may be used. These ceramic layers 109 can be impregnated and used.
 本実施例では、1モル濃度(1M=1mol/dm)のLiPFをエチレンカーボネート(ECと記す。)とエチルメチルカーボネート(EMCと記す。)の混合溶媒に溶解させた電解液を用いた。ECとEMCの混合割合は体積比率で1:2とした。電解質濃度は1モル濃度を基準値とした。また、電解液には1%のビニレンカーボネートを添加した。セラミック層109と各電極107、108の表面および細孔内部に、電解液Lが保持されている。 In this example, an electrolytic solution in which 1 mol concentration (1M = 1 mol / dm 3 ) of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (denoted as EC) and ethyl methyl carbonate (denoted as EMC) was used. . The mixing ratio of EC and EMC was 1: 2. The electrolyte concentration was 1 molar as a reference value. Further, 1% vinylene carbonate was added to the electrolytic solution. Electrolytic solution L is held on the surface of ceramic layer 109 and electrodes 107 and 108 and in the pores.
 (電池の組み立て)
 本実施例では、セラミック層109を形成した正極107と負極108を積層する。図1では、セラミック層109は正極107と負極108のいずれの表面に形成されていてもよく、両方の面に形成してもよい。セラミック層109は、正極107と負極108の短絡を防止する。
(Battery assembly)
In this embodiment, the positive electrode 107 and the negative electrode 108 on which the ceramic layer 109 is formed are stacked. In FIG. 1, the ceramic layer 109 may be formed on either surface of the positive electrode 107 and the negative electrode 108, or may be formed on both surfaces. The ceramic layer 109 prevents a short circuit between the positive electrode 107 and the negative electrode 108.
 セラミック層109は、電池の充放電時にリチウムイオンを透過させる必要があるため、一般に細孔径が0.01~10μm、空隙率が20~90%であれば使用可能である。本実施例では、厚さ2μm以上30μm以下、望ましくは5μm以上30μm以下、さらに好適には10μm以上30μm以下とする。また、セラミック層の空隙率は30%以上90%以下にする。 Since the ceramic layer 109 needs to allow lithium ions to permeate during charging and discharging of the battery, it can be used if the pore diameter is generally 0.01 to 10 μm and the porosity is 20 to 90%. In this embodiment, the thickness is 2 μm to 30 μm, desirably 5 μm to 30 μm, and more preferably 10 μm to 30 μm. The porosity of the ceramic layer is 30% or more and 90% or less.
 電極群の末端に配置されている電極と電池容器102の間に、絶縁シート113を挿入し、正極107と負極108が電池容器102を通じて短絡しないようにしている。 An insulating sheet 113 is inserted between the electrode disposed at the end of the electrode group and the battery container 102 so that the positive electrode 107 and the negative electrode 108 are not short-circuited through the battery container 102.
 積層体の上部には、リード線を介して外部端子に電気的に接続されている。正極107は正極リード線110を介して蓋103の正極外部端子104に接続されている。負極108は負極リード線111を介して蓋103の負極外部端子105に接続されている。なお、リード線110、111は、ワイヤ状、板状などの任意の形状を採ることができる。電流を流したときにオーム損失を小さくすることのできる構造であり、かつ電解液と反応しない材質であれば、リード線110、111の形状、材質は、電池缶113の構造に応じて任意に選択することができる。 The upper part of the laminate is electrically connected to an external terminal via a lead wire. The positive electrode 107 is connected to the positive electrode external terminal 104 of the lid 103 via the positive electrode lead wire 110. The negative electrode 108 is connected to the negative electrode external terminal 105 of the lid 103 via the negative electrode lead wire 111. Note that the lead wires 110 and 111 can take any shape such as a wire shape or a plate shape. The lead wires 110 and 111 may have any shape and material depending on the structure of the battery can 113 as long as the structure can reduce the ohmic loss when an electric current is applied and does not react with the electrolyte. You can choose.
 電池容器102の材質は、アルミニウム、ステンレス鋼、鋼、ニッケルメッキ鋼製など、非水電解質に対し耐食性のある材料から選択される。 The material of the battery container 102 is selected from materials that are corrosion resistant to non-aqueous electrolytes, such as aluminum, stainless steel, steel, and nickel-plated steel.
 その後、蓋103を電池容器102に密着させ、電池全体を密閉する。本実施例ではかしめによって、蓋103を電池容器102に取り付けた。電池を密閉する方法には、溶接、接着など公知の技術を適用しても良い。 Thereafter, the lid 103 is brought into close contact with the battery container 102 and the whole battery is sealed. In this embodiment, the lid 103 is attached to the battery container 102 by caulking. A known technique such as welding or adhesion may be applied to the method for sealing the battery.
 電解液の注入方法は、蓋103を電池容器102から取り外して電極群に直接、添加する方法、あるいは蓋103に設置した注液口106から添加する方法がある。実施例として製造した電池の定格容量(計算値)は3Ahである。 There are two methods for injecting the electrolytic solution: a method in which the lid 103 is removed from the battery container 102 and added directly to the electrode group, or a method in which the lid 103 is added from the liquid inlet 106. The rated capacity (calculated value) of the battery manufactured as an example is 3 Ah.
 以下、他の実施例について説明する。各実施例における各数値、化合物等は表1に示す。表の左側より、セラミック層に用いたセラミック粒子の種類と組成と平均粒径Da、誘電体粒子の種類と組成と平均粒径Db、Db/Daの比、セラミック粒子と誘電体粒子の体積の和に対する誘電体粒子の体積比、バインダの種類と組成、セラミック層を形成した電極の種類とセラミック層の厚さ、最後にリチウム二次電池の直流抵抗(DCR)の初期値と50℃で1週間放置した後に測定したDCRを示した。 Hereinafter, other embodiments will be described. Each numerical value, compound and the like in each example are shown in Table 1. From the left side of the table, the type and composition of ceramic particles used in the ceramic layer and the average particle size Da, the type and composition of dielectric particles and the average particle size Db, the ratio of Db / Da, the volume of the ceramic particles and the dielectric particles. The volume ratio of dielectric particles to the sum, the type and composition of the binder, the type of electrode on which the ceramic layer was formed and the thickness of the ceramic layer, and finally the initial value of the DC resistance (DCR) of the lithium secondary battery and 1 at 50 ° C. The DCR measured after standing for a week is shown.
 DCRの基準値は、比較例1の初期のDCR値であり(表2)、これを100%として、他の全ての測定値の比率を百分率で表記した。 The reference value of DCR is the initial DCR value of Comparative Example 1 (Table 2), and this is taken as 100%, and the ratios of all other measured values are expressed as percentages.
 (実施例2~5)
 実施例1において、誘電体粒子の体積比を1.1から40%まで変化させ、DCRに対する誘電体粒子の添加量の影響を評価した。これらの実施例より、セラミック粒子と誘電体粒子の体積の和に対する誘電体粒子の体積比が、1から40%の範囲で、初期のDCRが100%(比較例1の基準値)よりも小さくなった。すなわち、これらの実施例では、セラミック層での電解液抵抗が低減されたことがわかる。50℃で一週間放置してもDCRの増加率は8%以下と小さかった。後述の比較例1から比較例3の結果(表2)と比較して、これらの実施例の方が初期および高温放置後の耐久性に優れていた。
(Examples 2 to 5)
In Example 1, the volume ratio of the dielectric particles was changed from 1.1 to 40%, and the influence of the addition amount of the dielectric particles on the DCR was evaluated. From these examples, the volume ratio of the dielectric particles to the sum of the volume of the ceramic particles and the dielectric particles is in the range of 1 to 40%, and the initial DCR is smaller than 100% (reference value of Comparative Example 1). became. That is, in these examples, it can be seen that the electrolyte resistance in the ceramic layer was reduced. Even when left at 50 ° C. for one week, the increase rate of DCR was as small as 8% or less. Compared with the results of Comparative Examples 1 to 3 (Table 2), which will be described later, these Examples were superior in durability at the initial stage and after standing at high temperature.
 (実施例6~10)
 実施例1において、セラミック粒子をSiO, ZrO, TiO, MgO, AlO(OH)に変更した場合のDCRを評価した。
(Examples 6 to 10)
In Example 1, DCR when the ceramic particles were changed to SiO 2 , ZrO 2 , TiO 2 , MgO, AlO (OH) was evaluated.
 セラミック粒子を変更しても、初期のDCRが100%よりも小さく、50℃放置後のDCR増加率も1%と小さかった。なお、これらの実施例では単独の誘電体を用いていたが、2種類以上の混合物にしても同様の結果が得られ、DCRは単独で添加したときの平均値にほぼ一致した。 Even when the ceramic particles were changed, the initial DCR was smaller than 100%, and the DCR increase rate after being left at 50 ° C. was as small as 1%. In these examples, a single dielectric was used, but similar results were obtained even when two or more kinds of mixtures were used, and the DCR substantially coincided with the average value when added alone.
 (実施例11~12)
 実施例1において、誘電体粒子BaTiOのBa元素をLaとSrに置換した場合のDCRを評価した。実施例1と比較し、初期のDCRはさらに小さくなり、セラミック層の電解液抵抗が小さくなったことがわかった。また、50℃放置後のDCR増加率も小さかった。
(Examples 11 to 12)
In Example 1, the DCR when the Ba element of the dielectric particle BaTiO 3 was replaced with La and Sr was evaluated. Compared with Example 1, it was found that the initial DCR was further reduced, and the electrolyte resistance of the ceramic layer was reduced. Also, the DCR increase rate after leaving at 50 ° C. was small.
 (実施例13~14)
 実施例1において、誘電体の平均粒径Dbを、0.3μm、0.1μmに変化させ、Db/Daを0.03までの小さな値まで検討した結果である。Db/Daが小さくなるほど、初期のDCRが減少する傾向があった。誘電体粒子サイズの減少により、セラミック粒子同士の空隙の体積が増加したために、DCRが減少したと推定される。
(Examples 13 to 14)
In Example 1, the average particle diameter Db of the dielectric was changed to 0.3 μm and 0.1 μm, and Db / Da was examined up to a small value of 0.03. There was a tendency for the initial DCR to decrease as Db / Da decreased. It is presumed that the DCR decreased because the void volume between the ceramic particles increased due to the decrease in the dielectric particle size.
 (実施例15~16)
 実施例15では、実施例2において、正極に形成させたセラミック層を負極に設けた。実施例16では実施例3において、正極に形成させたセラミック層を負極に設けた。実施例2と実施例3と同じ結果が得られ、負極にセラミック層を形成しても、セラミック層の電解液抵抗を減少させ、DCRが小さくなることが示された。
(Examples 15 to 16)
In Example 15, the ceramic layer formed on the positive electrode in Example 2 was provided on the negative electrode. In Example 16, the ceramic layer formed on the positive electrode in Example 3 was provided on the negative electrode. The same results as in Example 2 and Example 3 were obtained, and it was shown that even when a ceramic layer was formed on the negative electrode, the electrolyte resistance of the ceramic layer was reduced and the DCR was reduced.
 (実施例17~18)
 実施例3において、正極と負極両方にセラミック層を形成した。表中に記載したセラミック層の厚さの1/2を正極と負極のそれぞれの面に作製した。実施例17では、10μmのセラミック層を正極、負極に形成させた。実施例18では15μmのセラミック層を正極、負極に形成させた。
(Examples 17 to 18)
In Example 3, ceramic layers were formed on both the positive electrode and the negative electrode. 1/2 of the thickness of the ceramic layer described in the table was prepared on each surface of the positive electrode and the negative electrode. In Example 17, a 10 μm ceramic layer was formed on the positive electrode and the negative electrode. In Example 18, a 15 μm ceramic layer was formed on the positive electrode and the negative electrode.
 セラミック層の合計厚さが30μmまで増加させても、初期のDCRは84~87%の低い値が得られ、50℃放置後のDCR増加率も1%と小さかった。なお、セラミック層の厚さの増加とともに電解液抵抗は増大するが、電解液抵抗よりも電極抵抗がDCRの大半を占めるので、電解液抵抗の増大によるDCR増加分は1%に留まった。 Even when the total thickness of the ceramic layer was increased to 30 μm, the initial DCR was as low as 84 to 87%, and the DCR increase rate after being left at 50 ° C. was as small as 1%. In addition, although electrolyte solution resistance increases with the increase in the thickness of a ceramic layer, since electrode resistance occupies most of DCR rather than electrolyte solution resistance, the increase in DCR by increase in electrolyte solution resistance was only 1%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (実施例19)
 実施例18にて用いたAlの平均粒径を30μmとし、負極のみに厚さ30μmのセラミック層を形成した。セラミック層に添加するBaTiOの平均粒径Dbは6μmとし、Db/Da=0.2とした。正極にはセラミック層を作製しなかった。その他の作製条件は、実施例18と同じとした。
(Example 19)
The average particle diameter of Al 2 O 3 used in Example 18 was 30 μm, and a ceramic layer having a thickness of 30 μm was formed only on the negative electrode. The average particle diameter Db of BaTiO 3 added to the ceramic layer was 6 μm, and Db / Da = 0.2. No ceramic layer was produced on the positive electrode. Other manufacturing conditions were the same as those in Example 18.
 初期のDCRは、80%となり、実施例17よりもやや大きくなったが、50℃放置後のDCR増加を1%に抑えることができた。 The initial DCR was 80%, which was slightly larger than Example 17, but the DCR increase after being left at 50 ° C. could be suppressed to 1%.
 図2のリチウムイオン電池201a、201bは、実施例14の電池であり、図2はこれらを直列に接続した本発明の電池システムである。 2 are the batteries of Example 14, and FIG. 2 is the battery system of the present invention in which these are connected in series.
 各リチウムイオン電池201a、201bは、正極207、負極208、セラミック層209からなる同一仕様の電極群を有し、上部に正極外部端子204、負極外部端子205を設けている。各外部端子と電池容器の間には絶縁シール部材212を挿入し、外部端子同士が短絡しないようにしている。なお、図2では図1の正極リード線110と負極リード線111に相当する部品が省略されているが、リチウムイオン電池201a、201bの内部の構造は図1と同様である。 Each of the lithium ion batteries 201a and 201b has an electrode group having the same specifications including a positive electrode 207, a negative electrode 208, and a ceramic layer 209, and a positive external terminal 204 and a negative external terminal 205 are provided on the upper part. An insulating seal member 212 is inserted between each external terminal and the battery container so that the external terminals are not short-circuited. In FIG. 2, components corresponding to the positive electrode lead wire 110 and the negative electrode lead wire 111 in FIG. 1 are omitted, but the internal structure of the lithium ion batteries 201a and 201b is the same as that in FIG.
 リチウムイオン電池201aの負極外部端子205は、電力ケーブル213により充電制御器216の負極入力ターミナルに接続されている。リチウムイオン電池201aの正極外部端子204は、電力ケーブル214を介して、リチウムイオン電池201bの負極外部端子205に連結されている。リチウムイオン電池201bの正極外部端子204は、電力ケーブル215により充電制御器216の正極入力ターミナルに接続されている。このような配線構成によって、2個のリチウムイオン電池201a、201bを充電または放電させることができる。 The negative external terminal 205 of the lithium ion battery 201a is connected to the negative input terminal of the charge controller 216 by the power cable 213. The positive external terminal 204 of the lithium ion battery 201a is connected to the negative external terminal 205 of the lithium ion battery 201b via the power cable 214. A positive external terminal 204 of the lithium ion battery 201 b is connected to a positive input terminal of the charge controller 216 by a power cable 215. With such a wiring configuration, the two lithium ion batteries 201a and 201b can be charged or discharged.
 充放電制御器216は、電力ケーブル217、218を介して、外部に設置した機器(以下では外部機器と称する。)219との間で電力の授受を行う。外部機器219は、充放電制御器216に給電するための外部電源や回生モータ等の各種電気機器、ならびに本システムが電力を供給するインバータ、コンバータおよび負荷が含まれている。外部機器が対応する交流、直流の種類に応じて、インバータ等を設ければ良い。これらの機器類は
、公知のものを任意に適用することができる。
The charge / discharge controller 216 exchanges power with an externally installed device (hereinafter referred to as an external device) 219 via the power cables 217 and 218. The external device 219 includes various electric devices such as an external power source and a regenerative motor for supplying power to the charge / discharge controller 216, and an inverter, a converter, and a load that supply power from the system. An inverter or the like may be provided depending on the type of AC and DC that the external device supports. As these devices, known devices can be arbitrarily applied.
 また、再生可能エネルギーを生み出す機器として風力発電機の動作条件を模擬した発電装置222を設置し、電力ケーブル220、221を介して充放電制御器216に接続した。発電装置222が発電するときには、充放電制御器216が充電モードに移行し、外部機器219に給電するとともに、余剰電力をリチウムイオン電池201aと212bに充電する。また、風力発電機を模擬した発電量が外部機器219の要求電力よりも少ないときには、リチウムイオン電池201aと212bを放電させるように充放電制御器216が動作する。なお、発電装置222は他の発電装置、すなわち太陽電池、地熱発電装置、燃料電池、ガスタービン発電機などの任意の装置に置換することができる。充放電制御器216は上述の動作をするように自動運転可能なプログラムを記憶させておく。 In addition, a power generation device 222 that simulates the operating conditions of a wind power generator was installed as a device that generates renewable energy, and was connected to the charge / discharge controller 216 via the power cables 220 and 221. When the power generation device 222 generates power, the charge / discharge controller 216 shifts to the charging mode, supplies power to the external device 219, and charges surplus power to the lithium ion batteries 201a and 212b. Further, when the power generation amount simulating the wind power generator is smaller than the required power of the external device 219, the charge / discharge controller 216 operates to discharge the lithium ion batteries 201a and 212b. The power generation device 222 can be replaced with another power generation device, that is, any device such as a solar cell, a geothermal power generation device, a fuel cell, or a gas turbine generator. The charge / discharge controller 216 stores a program that can be automatically operated so as to perform the above-described operation.
 リチウムイオン電池201a、201bを定格容量が得られる通常の充電を行う。例えば、1時間率の充電電流にて、2.8Vの定電圧充電を0.5時間、実行することができる。充電条件は、リチウムイオン電池の材料の種類、使用量などの設計で決まるので、電池の仕様ごとに最適な条件とする。 The lithium ion batteries 201a and 201b are normally charged so that a rated capacity can be obtained. For example, 2.8V constant voltage charging can be performed for 0.5 hour at a charging current of 1 hour rate. Since the charging conditions are determined by the design of the material and amount of use of the lithium ion battery, the conditions are optimal for each battery specification.
 リチウムイオン電池201a、201bを充電した後には、充放電制御器216を放電モードに切り替えて、各電池を放電させる。通常は、一定の下限電圧に到達したときに放電を停止させる。 After charging the lithium ion batteries 201a and 201b, the charge / discharge controller 216 is switched to the discharge mode to discharge each battery. Normally, the discharge is stopped when a certain lower limit voltage is reached.
 以上で説明したシステムの構成にて、外部機器219は充電時に電力を供給し、放電時に電力を消費させた。本実施例では、2時間率の充電を行い、1時間率(1C)の放電を行い。初期の放電容量を求めた。その結果、各電池201a、201bの設計容量3Ahの99.5~100%の容量を得た。
その後、環境温度20~30℃の条件で、以下で述べる充放電サイクル試験を行った。まず、2時間率(2C)の電流(1.5A)にて充電を行い、充電深度50%(1.5Ah充電した状態)になった時点で、充電方向に5秒のパルスを、放電方向に5秒のパルスを電池201a、201bに与え、発電装置222からの電力の受け入れと外部機器219への電力供給を模擬するパルス試験を行った。なお、電流パルスの大きさは、ともに15Aとした。この電流は0.2時間率の大きな電流である。続けて、残りの容量1.5Ahを2時間率の電流(1.5A)で各電池の電圧が4.2Vに達するまで充電し、その電圧で1時間の定電圧充電を継続した後に、充電を終了させた。その後、1時間率の電流(3A)にて各電池の電圧が3Vまで放電した。このような一連の充放電サイクル試験を500回繰り返したところ、初期の放電容量に対し、97~98%の容量を得た。電力受け入れと電力供給の電流パルスを電池に与えても、システムの性能はほとんど低下しないことがわかった。
With the system configuration described above, the external device 219 supplies power during charging and consumes power during discharging. In this embodiment, charging is performed at a 2-hour rate, and discharging is performed at a 1-hour rate (1C). The initial discharge capacity was determined. As a result, a capacity of 99.5 to 100% of the design capacity 3Ah of each battery 201a, 201b was obtained.
Thereafter, a charge / discharge cycle test described below was conducted under the condition of an environmental temperature of 20 to 30 ° C. First, charging is performed at a current (1.5 A) of 2 hours rate (2C), and when the charging depth reaches 50% (1.5 Ah charged state), a pulse of 5 seconds is applied in the charging direction, A pulse test for simulating the acceptance of power from the power generation device 222 and the power supply to the external device 219 was performed by applying a 5 second pulse to the batteries 201a and 201b. The magnitude of the current pulse was 15A for both. This current is a large current with a 0.2 hour rate. Subsequently, the remaining capacity of 1.5 Ah is charged at a current of 2 hours (1.5 A) until the voltage of each battery reaches 4.2 V, and after constant voltage charging for 1 hour at that voltage, charging is performed. Was terminated. Thereafter, the voltage of each battery was discharged to 3 V at a current of 1 hour rate (3 A). When a series of such charge / discharge cycle tests were repeated 500 times, a capacity of 97 to 98% of the initial discharge capacity was obtained. It was found that the performance of the system was hardly degraded when the battery was given a current pulse of power acceptance and power supply.
 以下、比較例について説明する。各実施例における各数値、化合物等は表2に示す。 Hereinafter, a comparative example will be described. Each numerical value, compound, etc. in each example are shown in Table 2.
 (比較例1)
 比較例1は、実施例1において、誘電体粒子を用いなかった場合の結果である。初期のDCRを100%とし、全ての実施例と比較例の基準値とした。これを基準として、50℃放置後のDCRは130%に増大した。
(Comparative Example 1)
Comparative Example 1 is a result obtained when no dielectric particles were used in Example 1. The initial DCR was set to 100%, which was the reference value for all examples and comparative examples. Based on this, the DCR after standing at 50 ° C. increased to 130%.
 (比較例2)
 比較例2は、セラミック粒子と誘電体の体積の和に対する誘電体の体積比を0.1%にしたときのDCR測定結果である。実施例1と比較すると、DCRが大きいことが分かる。
(Comparative Example 2)
Comparative Example 2 is a DCR measurement result when the volume ratio of the dielectric to the sum of the ceramic particles and the dielectric is 0.1%. Compared with Example 1, it can be seen that the DCR is large.
 (比較例3)
 比較例3は、実施例1において、誘電体の添加量を増加させ、体積比(組成)を40%にしたときの電池仕様とDCR測定結果である。初期のDCRは低いが、誘電体粒子同士が連結するようになり、微少なリーク電流により、50℃放置後の電池電圧が1V以下になった。すなわち、過放電が起こり、電極の劣化が起こった。その結果、50℃放置後にDCRが顕著に増加した。
(Comparative Example 3)
Comparative Example 3 shows the battery specifications and DCR measurement results when the amount of dielectric added is increased and the volume ratio (composition) is 40% in Example 1. Although the initial DCR is low, the dielectric particles are connected to each other, and the battery voltage after being left at 50 ° C. is 1 V or less due to a minute leakage current. That is, overdischarge occurred and the electrode deteriorated. As a result, the DCR significantly increased after standing at 50 ° C.
 (比較例4)
 比較例4は、実施例1において、Db/Daを0.33と大きくしたときのDCR測定結果である。DbがDaに接近することにより、セラミック粒子同士が形成する細孔を誘電体粒子が閉塞し、リチウムイオンの拡散を阻害しやすくなる。その結果、初期のDCRが増大し、50℃放置後のDCRも悪化したと推定される。
(Comparative Example 4)
Comparative Example 4 is a DCR measurement result when Db / Da is increased to 0.33 in Example 1. When Db approaches Da, the dielectric particles close the pores formed by the ceramic particles, and the diffusion of lithium ions is easily inhibited. As a result, it is estimated that the initial DCR increased and the DCR after standing at 50 ° C. also deteriorated.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
101 リチウムイオン電池、102 電池容器、103 蓋、104 正極外部端子、105 負極外部端子、106 注液口、107 正極、108 負極、109 セラミック層、110 正極リード線、111 負極リード線、112 絶縁性シール材料、113 絶縁シート、201a リチウムイオン電池、201b リチウムイオン電池、202 電池容器、204 正極外部端子、205 負極外部端子、206 注液口、207 正極、208 負極、209 セラミック層、212 絶縁性シール材料、213 電力ケーブル、214 電力ケーブル、215 電力ケーブル、216 充放電制御器、217 電力ケーブル、218 電力ケーブル、219 外部機器、220 電力ケーブル、221 電力ケーブル、222 再生可能なエネルギーの発電装置 101 lithium ion battery, 102 battery container, 103 lid, 104 positive external terminal, 105 negative external terminal, 106 liquid inlet, 107 positive electrode, 108 negative electrode, 109 ceramic layer, 110 positive electrode lead wire, 111 negative electrode lead wire, 112 insulation Seal material, 113 insulating sheet, 201a lithium ion battery, 201b lithium ion battery, 202 battery container, 204 positive external terminal, 205 negative external terminal, 206 liquid inlet, 207 positive electrode, 208 negative electrode, 209 ceramic layer, 212 insulating seal Materials, 213 power cable, 214 power cable, 215 power cable, 216 charge / discharge controller, 217 power cable, 218 power cable, 219 external device, 220 power cable, 221 power cable, 22 renewable energy power generation device

Claims (4)

  1.  正極合剤層を有する正極と、
     負極合剤層を有する負極と、
     前記正極合剤層と前記負極合剤層との間に設けられたセラミック層を有し、
     前記セラミック層は、セラミック粒子と、Ba1-xTiO (M=LaまたはSr, x=0~0.1の範囲)で表わされる誘電体粒子を有し、
     前記セラミック粒子の平均粒径(Da)は、1μm以上30μm以下であり、
     前記セラミック粒子の平均粒径(Da)と前記誘電体粒子の平均粒径(Db)との関係Db/Daは、Db/Da≦0.2の範囲であり、
     前記セラミック粒子と前記誘電体の体積の和に対する前記誘電体の体積比が1~40vol%の範囲であるリチウムイオン二次電池。
    A positive electrode having a positive electrode mixture layer;
    A negative electrode having a negative electrode mixture layer;
    A ceramic layer provided between the positive electrode mixture layer and the negative electrode mixture layer;
    The ceramic layer has ceramic particles and dielectric particles represented by Ba 1-x M x TiO 3 (M = La or Sr, x = 0 to 0.1 range),
    The average particle diameter (Da) of the ceramic particles is 1 μm or more and 30 μm or less,
    The relationship Db / Da between the average particle size (Da) of the ceramic particles and the average particle size (Db) of the dielectric particles is in the range of Db / Da ≦ 0.2,
    A lithium ion secondary battery in which a volume ratio of the dielectric to a sum of volumes of the ceramic particles and the dielectric is in a range of 1 to 40 vol%.
  2.  請求項1において、
     前記セラミック粒子は、SiO, Al, AlO(OH), ZrO, MgO, TiOの少なくともいずれかを有するリチウムイオン二次電池。
    In claim 1,
    The ceramic particle is a lithium ion secondary battery having at least one of SiO 2 , Al 2 O 3 , AlO (OH), ZrO 2 , MgO, and TiO 2 .
  3.  請求項2において、
     前記セラミック層は、2μm以上30μm以下であるリチウムイオン二次電池。
    In claim 2,
    The ceramic layer is a lithium ion secondary battery having a size of 2 μm or more and 30 μm or less.
  4.  請求項3に記載のリチウムイオン二次電池を有する電池システム。 A battery system having the lithium ion secondary battery according to claim 3.
PCT/JP2017/020787 2016-06-23 2017-06-05 Lithium secondary battery WO2017221677A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018523665A JPWO2017221677A1 (en) 2016-06-23 2017-06-05 Lithium secondary battery
KR1020187032829A KR20180132138A (en) 2016-06-23 2017-06-05 Lithium secondary battery
CN201780032421.4A CN109155384A (en) 2016-06-23 2017-06-05 Lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-124074 2016-06-23
JP2016124074 2016-06-23

Publications (1)

Publication Number Publication Date
WO2017221677A1 true WO2017221677A1 (en) 2017-12-28

Family

ID=60784459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020787 WO2017221677A1 (en) 2016-06-23 2017-06-05 Lithium secondary battery

Country Status (4)

Country Link
JP (1) JPWO2017221677A1 (en)
KR (1) KR20180132138A (en)
CN (1) CN109155384A (en)
WO (1) WO2017221677A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011043A1 (en) * 2003-07-29 2005-02-03 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
JP2008508391A (en) * 2004-09-02 2008-03-21 エルジー・ケム・リミテッド Presence / absence composite porous film and electrochemical device using the same
JP2009529762A (en) * 2006-03-10 2009-08-20 エルジー・ケム・リミテッド Electrode coated with porous active layer, method for producing the same, and electrochemical device including the same
WO2013073011A1 (en) * 2011-11-15 2013-05-23 トヨタ自動車株式会社 Non-aqueous electrolyte type secondary battery
JP2014510388A (en) * 2011-05-03 2014-04-24 エルジー・ケム・リミテッド Separator provided with porous coating layer and electrochemical device provided with the same
JP2014180821A (en) * 2013-03-19 2014-09-29 Sekisui Chem Co Ltd Laminate film and separator for battery and battery each using the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222033B (en) * 2003-07-29 2010-12-29 松下电器产业株式会社 Lithium ion secondary battery
KR100895196B1 (en) * 2004-09-02 2009-04-24 주식회사 엘지화학 Organic/inorganic composite porous film and electrochemical device prepared thereby
CN101160677A (en) * 2004-10-21 2008-04-09 德古萨有限责任公司 Inorganic separator-electrode-unit for lithium-ion batteries, method for the production thereof and use thereof in lithium batteries
JP2007273123A (en) * 2006-03-30 2007-10-18 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and method of manufacturing same
CN101911368B (en) * 2007-12-26 2014-07-02 松下电器产业株式会社 Nonaqueous electrolyte rechargeable battery
KR20120112422A (en) * 2009-11-30 2012-10-11 산요덴키가부시키가이샤 Non-aqueous electrolyte rechargeable battery
WO2013042235A1 (en) * 2011-09-22 2013-03-28 株式会社日立製作所 Electrochemical device separator, manufacturing method therefor and electrochemical device
CN103875119B (en) * 2011-10-12 2016-04-20 丰田自动车株式会社 Rechargeable nonaqueous electrolytic battery
CN104641490B (en) * 2012-09-19 2017-12-01 旭化成株式会社 Separator and its manufacture method and lithium rechargeable battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011043A1 (en) * 2003-07-29 2005-02-03 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
JP2008508391A (en) * 2004-09-02 2008-03-21 エルジー・ケム・リミテッド Presence / absence composite porous film and electrochemical device using the same
JP2009529762A (en) * 2006-03-10 2009-08-20 エルジー・ケム・リミテッド Electrode coated with porous active layer, method for producing the same, and electrochemical device including the same
JP2014510388A (en) * 2011-05-03 2014-04-24 エルジー・ケム・リミテッド Separator provided with porous coating layer and electrochemical device provided with the same
WO2013073011A1 (en) * 2011-11-15 2013-05-23 トヨタ自動車株式会社 Non-aqueous electrolyte type secondary battery
JP2014180821A (en) * 2013-03-19 2014-09-29 Sekisui Chem Co Ltd Laminate film and separator for battery and battery each using the same

Also Published As

Publication number Publication date
CN109155384A (en) 2019-01-04
KR20180132138A (en) 2018-12-11
JPWO2017221677A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
JP7232353B2 (en) rechargeable battery cell
WO2017169126A1 (en) Lithium secondary battery
CN108808098B (en) Method for manufacturing lithium ion secondary battery
JP2010080105A (en) Method of manufacturing nonaqueous electrolyte secondary battery
WO2016129527A1 (en) Nonaqueous-electrolyte secondary cell, and positive electrode of nonaqueous-electrolyte secondary cell
WO2014155992A1 (en) Nonaqueous electrolyte secondary battery
US20140011083A1 (en) Electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery including the same
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
WO2017098682A1 (en) Nonaqueous electrolyte secondary battery
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
WO2017056734A1 (en) Lithium secondary battery
US11688882B2 (en) Electrolytes and separators for lithium metal batteries
CN110521049B (en) Semi-solid electrolyte, electrode with semi-solid electrolyte layer, and secondary battery
JP2013197052A (en) Lithium ion power storage device
CN112689916A (en) Electric storage element
JP5426809B2 (en) Secondary battery, electronic equipment using secondary battery and transportation equipment
JP5418828B2 (en) Lithium secondary battery and manufacturing method thereof
JP6258180B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY, ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY USING THE SAME, LITHIUM SECONDARY BATTERY
JP2021132020A (en) Negative electrode for lithium secondary battery, and lithium secondary battery
WO2017221677A1 (en) Lithium secondary battery
CN113228367A (en) Nonaqueous electrolyte electricity storage element and method for manufacturing nonaqueous electrolyte electricity storage element
CN111527628A (en) Electrochemical pretreatment method for vanadium positive electrode for lithium secondary battery and vanadium positive electrode for lithium secondary battery pretreated by said method
EP4358220A1 (en) Non-aqueous electrolyte power storage element
JP5383530B2 (en) Nonaqueous electrolyte secondary battery
WO2020213268A1 (en) Nonaqueous electrolytic solution, nonvolatile electrolyte, and secondary battery

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018523665

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187032829

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815146

Country of ref document: EP

Kind code of ref document: A1