WO2017221651A1 - Coaxial cable and endoscope device - Google Patents

Coaxial cable and endoscope device Download PDF

Info

Publication number
WO2017221651A1
WO2017221651A1 PCT/JP2017/020226 JP2017020226W WO2017221651A1 WO 2017221651 A1 WO2017221651 A1 WO 2017221651A1 JP 2017020226 W JP2017020226 W JP 2017020226W WO 2017221651 A1 WO2017221651 A1 WO 2017221651A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
signal
coaxial line
line
coaxial
Prior art date
Application number
PCT/JP2017/020226
Other languages
French (fr)
Japanese (ja)
Inventor
健児 沼田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2017221651A1 publication Critical patent/WO2017221651A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/06Cables with twisted pairs or quads with means for reducing effects of electromagnetic or electrostatic disturbances, e.g. screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/20Cables having a multiplicity of coaxial lines

Definitions

  • the present invention relates to a coaxial cable and an endoscope apparatus.
  • the present application claims priority based on Japanese Patent Application No. 2016-121536 filed in Japan on June 20, 2016, the contents of which are incorporated herein by reference.
  • the endoscope apparatus includes an imaging unit at the distal end of the insertion unit.
  • a complementary metal oxide semiconductor (CMOS: Complementary Metal-Oxide Semiconductor) image sensor is a typical example of an image sensor that constitutes the imaging unit.
  • CMOS image sensor can read data at a higher speed than an image sensor charge-coupled device (CCD: Charge-Coupled Device). Therefore, it is necessary to convert the imaging signal from the CMOS imaging element into a high-frequency differential signal and transmit it through a composite coaxial line provided in the insertion portion.
  • Some endoscope apparatuses have a structure in which an insertion section including a CCD and an insertion section including a CMOS image sensor can be attached and detached.
  • a twisted pair wire may be used as a wire for transmitting a high-frequency differential signal.
  • a wire in a twisted pair state is also called a twinax wire.
  • the twinax line may be used for a wired local area network (LAN). This is to reduce the skew between the pairs by suppressing the change in the characteristic impedance of the high-frequency differential signal.
  • the pair-to-pair skew means a deviation in propagation delay between differential signals.
  • ISI Intersymbol Interference
  • the present invention has been made based on the above-described problems, and an object thereof is to provide a cable and an endoscope apparatus that can normally decode a transmitted high-frequency differential signal.
  • One aspect of the present invention includes a first coaxial line and a second coaxial line, and each of the first coaxial line and the second coaxial line serves as a conductor shield via an insulator. It is a cable provided with a covered signal line, the cross sections of which are arranged symmetrically.
  • the pair-to-pair skew between the coaxial lines is suppressed, so that the transmitted high-frequency differential signal can be normally decoded.
  • FIG. 1 is a schematic block diagram illustrating a configuration of an endoscope apparatus 1 according to the present embodiment.
  • the endoscope apparatus 1 includes a scope unit 11, a base unit 12, and an optical adapter 13.
  • the scope unit 11 includes an illumination unit 111 and an insertion unit 112.
  • the insertion portion 112 is a tubular soft portion having a long and thin shape.
  • the insertion unit 112 includes an imaging unit 112a at one end thereof.
  • the diameter and length of the insertion portion 112 are 4 to 6 mm and 1 to 100 m, respectively.
  • a first connector portion 118 is fixed to the other end of the scope unit 11.
  • the composite coaxial line 117 transmits a high-frequency differential signal converted from an imaging signal indicating an image captured by the imaging unit 112a.
  • the image captured by the imaging unit 112a is used for various inspections.
  • one end and the other end of the scope unit 11 may be referred to as a distal end and a proximal end, respectively.
  • the base unit 12 is a main body unit of the endoscope apparatus 1 having various functions such as acquisition of an imaging signal from the scope unit 11, display of a captured image, and illumination of a subject.
  • a second connector portion 127 is fixed to a part of the surface of the base unit 12.
  • the second connector portion 127 is detachable from the first connector portion 118 of one scope unit 11.
  • There are different types of the detachable scope unit 11 depending on the specifications of the illumination unit 111, the insertion unit 112, the imaging unit 112a, and the like.
  • the specifications include, for example, the length and diameter of the insertion unit 112, the light emission intensity of the illumination unit 111, the resolution of the imaging unit 112a, the luminance, and the like.
  • the optical adapter 13 can be attached to and detached from the distal end of the insertion portion 112 and includes an illumination lens portion 131 and an objective lens portion 132.
  • the illumination lens portion 131 transmits light incident on the rear surface thereof from the distal end of the light guide portion 113 to the front surface.
  • the back surface and the front surface correspond to a surface of the two main surfaces of the optical adapter 13 that faces the distal end of the insertion portion 112 and a surface that faces in the direction from the proximal end to the distal end of the insertion portion 112.
  • the light emitted by the transmission from the illumination lens unit 131 is irradiated to the subject.
  • the objective lens unit 132 transmits light incident on the front surface from the subject to the rear surface.
  • the light transmitted through the illumination lens unit 131 is applied to the surface of the subject, and the reflected light reflected on the surface of the subject enters the objective lens unit 132 as image light indicating an image of the subject surface.
  • the user can select one type of optical adapter 13 among a plurality of types by being detachable from the distal end of the insertion unit 112.
  • the specifications such as the optical characteristics and the observation direction of the objective lens unit 132 are different.
  • the optical characteristics include focal length and diameter.
  • the observation direction includes, for example, direct view and side view.
  • the scope unit 11 includes an illumination unit 111, an insertion unit 112, a first connector unit 118, and an equalizer unit 119.
  • the illumination unit 111, the first connector unit 118, and the equalizer unit 119 are provided at the proximal end portion of the scope unit 11.
  • the illumination unit 111 emits light corresponding to the electric power supplied from the illumination drive unit 122 and radiates the emitted light to the proximal end of the light guide unit 113.
  • the illumination unit 111 is, for example, a light emitting diode (Light Emitting Diode).
  • the insertion unit 112 includes an imaging unit 112a, a light guide unit 113, and a composite coaxial line 117.
  • the imaging unit 112a includes an oscillator 114, a scope lens unit 115, and an imaging element 116.
  • the light guide 113 receives the illumination light emitted from the illumination unit 111 at the base end and transmits the incident illumination light toward the distal end.
  • the transmitted illumination light is emitted to the illumination lens unit 131.
  • the oscillator 114 generates a clock signal having a predetermined frequency.
  • the oscillator 114 outputs the generated clock signal to the image sensor 116.
  • the frequency is, for example, 10 MHz to 1 GHz.
  • the scope lens unit 115 focuses the image light incident from the objective lens unit 132 on the imaging surface of the imaging element 116 and forms an image of the subject on the imaging surface.
  • the imaging element 116 includes a set of a plurality of light receiving elements (not shown) and an internal circuit (not shown), an imaging drive unit (not shown), and a signal processing unit (not shown).
  • a set of light receiving elements and internal circuits is provided for each pixel.
  • the light receiving elements are two-dimensionally arranged on the light receiving surface at a constant interval to form a pixel array. Each of the light receiving elements generates a potential according to the intensity of the incoming light.
  • the image sensor 116 is, for example, a CMOS image sensor using CMOS as a light receiving element.
  • the internal circuit outputs an electric signal having a potential generated in each light receiving element to the signal processing unit based on the drive control signal input from the imaging driving unit.
  • the imaging drive unit generates a drive control signal based on an imaging mode indicated by an imaging control signal input from an imaging signal processing unit 123 (described later) of the base unit 12 via a communication unit (described later), and the generated drive control.
  • the signal is output to an internal circuit for each pixel.
  • the internal circuit is driven and the imaging signal is output to the signal processing unit.
  • the elements of the imaging mode include, for example, an electronic shutter that controls light reception on the light receiving surface, an exposure time, a frame rate, and the like.
  • the imaging driver generates a drive control signal by dividing or multiplying the clock signal input from the oscillator 114.
  • the drive control signal includes, for example, a pixel clock and a synchronization signal.
  • the synchronization signal includes a horizontal synchronization signal and a vertical synchronization signal.
  • the pixel clock is a signal for instructing the timing of reading the potential for each pixel.
  • the horizontal synchronization signal is a signal that indicates the start or end timing of each line constituting the image frame.
  • the vertical synchronization signal is a signal for instructing the start or end timing of each image frame.
  • the imaging drive unit determines the frequency division rate according to the frame rate, the frequency division rate according to the number of lines per frame, and the frequency division rate according to the number of pixels per line, the vertical synchronization signal It is set as the frequency division ratio used for generating the synchronization signal and pixel clock.
  • the signal processing unit converts the potential for each pixel into a signal value, and generates a digital imaging signal indicating an image of the subject.
  • the imaging signal generated at this point is referred to as imaging raw data, and is distinguished from an imaging signal on which another signal or data is superimposed.
  • the signal processing unit superimposes the pixel clock and the synchronization signal on the imaging raw data, serializes the imaging signal on which these signals are superimposed, and converts the imaging signal into a pair of high-frequency differential signals.
  • the signal processing unit sends the high-frequency differential signal obtained by the conversion to the composite coaxial line 117.
  • the high-frequency differential signal is, for example, LVDS (Low Voltage Differential Signal).
  • the LVDS includes a pair of signals LVDS + and LVDS ⁇ each having a time series of one of two potential levels. Between the signals LVDS + and LVDS ⁇ , the time series of potentials are in opposite phases. In the example shown in FIG. 5, the signals LVDS + and LVDS ⁇ are time series in which the potential at each time is either V H or V L. One-bit information is expressed depending on whether the potential is V H or V L for each symbol.
  • the sampling frequency is, for example, 100 MHz to 10 GHz.
  • the potential of the signal LVDS + is V H and V L
  • the potential of the signal LVDS ⁇ is V L and V H.
  • the potentials V H and V L are potentials whose differences from the reference potential V 0 are ⁇ V and ⁇ V.
  • the imaging unit 112a further includes a communication unit (not shown) and a power supply unit (not shown).
  • the communication unit transmits / receives various control signals to / from the imaging signal processing unit 123 via the composite coaxial line 117 using a predetermined communication method.
  • the control signal includes the above-described imaging control signal.
  • communication methods for example, UART (Universal Asynchronous Receiver Transmitter, General Purpose Asynchronous Receiver / Transmitter) communication, SPI (Serial Peripheral Interface, Serial Peripheral Interface) communication, I2C (Inter-Integrated Circuit Communication, etc.) Is available.
  • serial communication is used as the communication method, a serial signal obtained by performing serialization processing on the control signal may be transmitted as a differential signal.
  • Power is supplied from the base unit 12 to the power supply unit.
  • Power may be supplied via the composite coaxial line 117.
  • the power supply unit converts the voltage of the supplied power into a voltage required for each component included in the imaging unit 112a.
  • the power supply unit supplies power obtained by converting the voltage to each component.
  • the reference potential point of the imaging unit 112 a may be grounded with a predetermined reference potential point of the base unit 12. The grounding between the reference potential points may be via the composite coaxial line 117.
  • the composite coaxial line 117 is a cable that includes a coaxial line pair including two coaxial lines and a separate conductor pair, and is configured by integrating them.
  • signal lines covered with a conductor shield via an insulator are arranged in parallel in the longitudinal direction, and one and the other of the coaxial lines are arranged symmetrically with each other. It becomes.
  • the composite coaxial line 117 is mainly used for LVDS transmission from the image sensor 116 to the equalizer unit 119.
  • the signals LVDS + and LVDS ⁇ are transmitted using one coaxial line and the other coaxial line, respectively.
  • each two conductors are arranged in parallel in the longitudinal direction, and one and the other of the conductors of each conductor pair are arranged symmetrically.
  • the point of symmetry between the coaxial lines constituting the coaxial line pair and the point of symmetry between the conductive lines constituting the conductor pair may be common.
  • the plurality of conductor pairs are selectively used according to their respective uses such as transmission of control signals, power supply, and grounding. The configuration of the composite coaxial line 117 will be described later.
  • the first connector portion 118 is installed at the proximal end portion of the scope unit 11 and includes a mounting tool that can be attached to and detached from the second connector portion 127 of the base unit 12.
  • the first connector portion 118 includes a plurality of contacts that are electrically connected between the components of the scope unit 11 and the base unit 12 while being attached to the second connector portion 127.
  • the plurality of contacts are a high-frequency differential signal transmission from the equalizer unit 119 to the imaging signal processing unit 123, a control signal transmission between the imaging unit 112a and the imaging signal processing unit 123, and a power supply unit of the base unit 12 (see FIG.
  • the equalizer unit 119 is an equalization unit that is connected to the base end of the composite coaxial line 117 and equalizes the frequency characteristics of a high-frequency differential signal that is input from the image sensor 116 via the composite coaxial line 117.
  • the equalizer unit 119 may be disposed on the first connector unit 118.
  • the frequency characteristics of the imaging device 116 and the composite coaxial line 117 are such that the gain attenuation becomes more significant as the frequency increases. Therefore, the frequency characteristics of the equalizer unit 119 are set to the inverse characteristics of the frequency characteristics obtained by multiplying the frequency characteristics of the image sensor 116 and the composite coaxial line 117. Thereby, the frequency characteristic of the amplitude of the input high frequency differential signal becomes flat. That is, the frequency characteristics are equalized.
  • the equalizer unit 119 is, for example, a passive equalizer such as a ⁇ -type equalizer or a T-type equalizer that includes a coil and a capacitor.
  • the equalizer unit 119 outputs a high-frequency differential signal whose frequency characteristics are equalized to the imaging signal processing unit 123.
  • the base unit 12 includes a CPU (Central Processing Unit) 121, an illumination driving unit 122, an imaging signal processing unit 123, an input unit 124, a memory unit 125, a display unit 126, and a second connector unit 127.
  • CPU Central Processing Unit
  • the CPU unit 121 generates display image data indicating a display image by superimposing a predetermined graphic image on the image indicated by the image data input from the imaging signal processing unit 123. Graphic images include menu displays.
  • the CPU unit 121 performs image processing requested according to the specifications of the display unit 126 on the generated display image data. Image processing is, for example, processing such as color space conversion, interlace / progressive conversion, and gamma conversion.
  • the CPU unit 121 outputs display image data obtained by image processing to the display unit 126.
  • the CPU unit 121 controls the function of the endoscope apparatus 1 based on the operation signal input from the input unit 124. For example, when the input operation signal instructs to turn on or off, the CPU unit 121 generates an illumination control signal that instructs to turn on or off, and outputs the generated illumination control signal to the illumination driving unit 122. When the input operation signal indicates the imaging mode, the CPU unit 121 generates an imaging control signal indicating the imaging mode, and outputs the generated imaging control signal to the imaging signal processing unit 123.
  • the CPU unit 121 includes a CPU, and implements its function by reading a predetermined operation program stored in advance from the memory unit 125 and executing processing instructed by the read operation program.
  • the illumination drive unit 122 controls the function of the illumination drive unit 122 based on the illumination control signal input from the CPU unit 121. For example, when the input illumination control signal indicates lighting, the illumination driving unit 122 starts supplying power supplied from a power supply unit (described later) of the base unit 12 to the illumination unit 111. When the input illumination control signal indicates turning off, the illumination drive unit 122 stops supplying power to the illumination unit 111.
  • the imaging signal processing unit 123 amplifies the high-frequency differential signal input from the equalizer unit 119 with an amplifier (not shown), performs deserialization processing on the amplified high-frequency differential signal, and converts it into a parallel format imaging signal. Thereafter, the imaging signal processing unit 123 extracts imaging Raw data, a pixel clock and a synchronization signal superimposed on the imaging Raw data from the imaging signal. The imaging signal processing unit 123 generates image data having a signal value for each pixel indicated by the imaging raw data using the extracted pixel clock and the synchronization signal. The generated image data indicates an image of each frame.
  • the imaging signal processing unit 123 specifies the timing for acquiring the signal value of each pixel using the pixel clock, and specifies the timing at the start or end of each line and each frame using the synchronization signal. Thereby, the imaging signal processing unit 123 can specify the signal value of each frame, each line, and the signal value of each pixel in the time series of the signal values indicated by the imaging raw data.
  • the imaging signal processing unit 123 outputs the image data generated from the imaging raw data to the display unit 126.
  • the imaging signal processing unit 123 controls the function of the imaging unit 112a based on the imaging control signal input from the CPU unit 121.
  • the imaging signal processing unit 123 outputs an imaging control signal to the imaging unit 112a via the composite coaxial line 117.
  • the imaging element 116 of the imaging unit 112a generates image data based on the imaging mode indicated by the imaging control signal input from the imaging signal processing unit 123 as described above. Therefore, the electronic shutter, exposure time, frame rate, etc. are controlled.
  • the input unit 124 detects a user input operation and generates an operation signal based on the detected input operation.
  • the input unit 124 outputs the generated operation signal to the CPU unit 121.
  • the input unit 124 may include a physical member such as a dedicated button, knob, or lever, or may include a general-purpose member such as a touch sensor or a mouse.
  • the input unit 124 may be configured as a user interface including a general-purpose member and a guidance screen displayed on the display unit 126.
  • the touch sensor may be integrated with the display unit 126 and configured as a touch panel.
  • the memory unit 125 stores various data used for processing of the CPU unit 121, various data acquired by the CPU unit 121, the above-described control program, and the like.
  • the memory unit 125 stores the above-described operation program.
  • the memory unit 125 includes a flash memory.
  • the display unit 126 displays an image based on display image data input from the CPU unit 121.
  • the display unit 126 is, for example, a liquid crystal display.
  • the second connector portion 127 is installed on the surface of the base unit 12.
  • the second connector part 127 includes an attachment that can be attached to and detached from the attachment of the first connector part 118 of the scope unit 11.
  • the mounting tool of the second connector part 127 may have a shape that fits with the mounting tool of the first connector part 118.
  • the base unit 12 includes a power supply unit (not shown).
  • the power supply unit converts the voltage of the power supplied from the outside into a voltage required in each component of the base unit 12.
  • the power supply unit supplies the power whose voltage has been converted to each component.
  • FIG. 2 is a cross-sectional view of the composite coaxial line 117 according to the present embodiment.
  • the composite coaxial line 117 is configured by one coaxial line pair I1 and three conductor pairs (pairs) arranged in parallel in the longitudinal direction and coupled to each other.
  • the coaxial line pair I1 is a pair of two coaxial lines I1P and I1N.
  • power supply lines VDD1, VDD2, ground lines GND1, GND2, and signal lines COM1, COM2 are illustrated.
  • the entire coaxial wire pair and conductive wire pair are bundled by being wound around a bind tape BT made of an insulator.
  • the outer surface of the bind tape BT is further covered with an overall shield OS made of a conductor.
  • the bind tape BT fixes the entire arrangement of the coaxial wire pair and the conductive wire pair and electrically insulates them from the overall shield OS.
  • the outer surface of the total shield OS is further covered with a total coating OC made of an insulator. Note that the outer surface of the comprehensive shield OS may not be coated with the comprehensive coating OC.
  • VDD1 and VDD2 may indicate a power supply voltage or a reference point of the power supply voltage
  • GND1 and GND2 may indicate a ground or potential reference point
  • COM1 and COM2 may indicate a control signal.
  • the shape of the cross section of the composite coaxial line 117 is a circle.
  • the lengths of the coaxial lines I1P and I1N, the power supply lines VDD1 and VDD2, the ground lines GND1 and GND2, and the signal lines COM1 and COM2 correspond to the length of the composite coaxial line 117, respectively.
  • the diameter of the composite coaxial line 117 is at least smaller than the diameter inside the insertion portion 112. Therefore, the lengths and diameters of the coaxial lines I1P and I1N, the power supply lines VDD1 and VDD2, the ground lines GND1 and GND2, and the signal lines COM1 and COM2 differ depending on the length and diameter of the insertion portion 112, respectively.
  • the diameters of the coaxial lines I1P and I1N, the power supply lines VDD1 and VDD2, the ground lines GND1 and GND2, and the signal lines COM1 and COM2 are constant regardless of the positions in the longitudinal direction.
  • these cross-sectional shapes are all circular.
  • the coaxial lines I1P and I1N are provided with conductors (core wires) IL1P and IL1N made of a conductor at the center of each. Conductive lines IL1P and IL1N are used as signal lines for transmitting signals LVDS + and LVDS ⁇ , respectively.
  • the surroundings of the conducting wires IL1P and IL1N are covered with coaxial line shields IS1P and IS1N made of a conductor via insulators IN1P and IN1N, respectively.
  • surroundings of coaxial line shield IS1P and IS1N are each covered with coaxial line film IC1P and IC1N which consist of an insulator.
  • the coaxial line shields IS1P and IS1N can reduce the change in the characteristic impedance of the signals LVDS + and LVDS ⁇ and suppress the signal attenuation.
  • the characteristic impedance between a pair of signals may be set to 100 ⁇ .
  • signal LVDS + to set the characteristic impedance of the transmission LVDS- to 100 ⁇ is coaxial lines I1P
  • the characteristic impedance R P of I1N may be set as 50 ⁇ to R N, respectively. Since the AC component electric field generated between the coaxial lines I1P and I1N is canceled at the center line B, the coaxial line shields IS1P and IS1N are substantially grounded as shown in FIG. Therefore, the sum of the characteristic impedance R P + R N are signal LVDS +, corresponding to the impedance between LVDS-.
  • Coaxial line I1P respectively impedance R P of I1N, R N is not necessarily limited to 50 [Omega, if common with each other therebetween, the imaging device 116, a coaxial line I1P, can be arbitrarily set according to the specifications of the I1N.
  • the coaxial lines I1P and I1N are adjacent to each other, and their cross sections are in contact with each other at the symmetry point A.
  • the symmetry point A corresponds to the midpoint of the center line B connecting the centers of the cross sections of the coaxial lines I1P and I1N. This corresponds to the fact that the respective cross sections of the coaxial lines I1P and I1N are arranged point-symmetrically with respect to the symmetry point A.
  • the cross sections of the coaxial lines I1P and I1N are arranged symmetrically with respect to a center line C passing through the symmetry point A and perpendicular to the center line B.
  • the center line C is a symmetrical line between the coaxial lines I1P and I1N.
  • an antisymmetric mode component with respect to the center line C is mainly induced as a mode of the electric field generated by the AC component between the coaxial lines I1P and I1N.
  • the relative permittivity of the signal line may differ depending on the mode of the electric field generated in the signal line.
  • the anti-symmetric mode component is mainly used, and the other mode components are relatively reduced.
  • Other mode components may be mainly caused by noise or individual differences in the configuration of the image sensor 116, the coaxial lines I1P and I1N. Therefore, since the skew between pairs is suppressed, erroneous decoding of LVDS input to the imaging signal processing unit 123 via the composite coaxial line 117 is suppressed. As a result, the image data based on the imaging signal obtained by the decoding is normally output.
  • the coaxial lines I1P and I1N are arranged adjacent to each other, the arrangement of the respective cross sections of the coaxial lines I1P and I1N is stably maintained even if the composite coaxial line 117 is bent.
  • the spread of the electric field distribution caused by the transmission of the signals LVDS + and LVDS ⁇ is suppressed, and the antisymmetric electric field distribution with respect to the center line C is stabilized.
  • the component of the antisymmetric mode with respect to the center line C is relatively strengthened. For this reason, the skew between pairs is suppressed, so that erroneous decoding of the imaging signal based on LVDS is suppressed.
  • the coaxial lines I1P and I1N are respectively surrounded by being in contact with the total shield OS via the bind tape BT, and the distances from the centers of the respective cross sections of the coaxial lines I1P and I1N to the total shield OS are equal.
  • the central point of the total shield OS is common to the symmetry point A that is the midpoint between the coaxial lines I1P and I1N. Therefore, the arrangement of the respective cross sections of the coaxial lines I1P and I1N with respect to the bending of the composite coaxial line 117 is stably maintained.
  • a conductor pair separate from the coaxial line pair I1 is integrally disposed in a region not occupied by the coaxial line pair I1. More specifically, the power supply line VDD1 is above the center line C and to the right of the center line B, the ground line GND2 is above the center line C and to the left of the center line B, and the center line C The power supply line VDD2 is disposed below the center line B and further to the left than the center line B, and the ground line GND1 is disposed below the center line C and to the right from the center line B.
  • Upper and lower indicate regions or directions in which the coaxial lines I1P and I1N are respectively arranged in two regions divided by the center line C. Left and right indicate one or the other of the two regions divided by the center line B, respectively.
  • the signal line COM1 and the signal line COM2 are arranged at positions where the centers of the respective cross sections are equidistant from the symmetry point A on the center line C.
  • the periphery of the power supply lines VDD1 and VDD2, the ground lines GND1 and GND2, and the signal lines COM1 and COM2 are each covered with an insulator.
  • the outer peripheries of the power supply lines VDD1 and VDD2 and the ground lines GND1 and GND2 are all in contact with the inner surface of the comprehensive shield OS via the bind tape BT.
  • the outer periphery of the power supply line VDD1 is in contact with the outer periphery of the coaxial line I1P, the signal line COM1, and the ground line GND1, and the outer periphery of the ground line GND2 is in contact with the outer periphery of the coaxial line I1P, the signal line COM2, and the power supply line VDD2, respectively.
  • the outer periphery of the power supply line VDD2 is in contact with the outer periphery of the coaxial line I1N, the signal line COM2, and the ground line GND2, and the outer periphery of the ground line GND1 is in contact with the outer periphery of the coaxial line I1N, the signal line COM1, and the power supply line VDD1, respectively. Yes.
  • the outer periphery of the signal line COM1 is in contact with the outer periphery of the power supply line VDD1, the coaxial lines I1P and I1N, and the ground line GND1, and the outer periphery of the signal line COM2 is the coaxial line I1P, the ground line GND2, the power supply line VDD2, and the coaxial line I1N.
  • the diameter of each signal line or conductor decreases in the order of the coaxial line I1P, the power supply line VDD1, and the signal line COM1, and the diameter of the coaxial line I1P is the largest.
  • the coaxial lines I1P and I1N have the same diameter.
  • the diameters of the power supply lines VDD1 and VDD2 and the ground lines GND1 and GND2 are equal to each other.
  • the signal lines COM1 and COM2 have the same diameter.
  • the cross-sectional shape of a conventional typical twinax line illustrated in FIG. 3 is an ellipse.
  • the major axis direction is a direction in which the pair of conducting wires IL1P and IL1N are separated from each other via the insulator IN1, and the direction perpendicular to that direction is the minor axis direction.
  • the composite coaxial line 117 since the conducting wire is filled in the cross section having an isotropic shape, the dependency of the bending resistance on the bending direction is alleviated. Therefore, the risk of breakage that may occur due to repeated bending is reduced.
  • the twinax wire may be formed by being twisted around a longitudinal axis in order to ensure bending resistance. In that case, since a dead space due to twisting occurs, the space inside the insertion portion 112 is not fully utilized.
  • alternating current in the high-frequency region generated in the coaxial line pair I1 is used for transmission of the same kind of signal between the conductors arranged symmetrically with respect to the symmetry point A.
  • the anti-symmetry of the electric field distribution due to the components is not disturbed. For this reason, even when a signal of another system is transmitted, the skew between pairs is suppressed, so that erroneous decoding of an imaging signal based on LVDS is suppressed.
  • the power supply lines VDD1 and VDD2 are used for supplying DC power for supplying the power supply voltages VDD1 and VDD2 from the base unit 12 to the imaging unit 112a, respectively.
  • the ground lines GND1 and GND2 are used for grounding each component of the imaging unit 112a and the potential reference points GND1 and GND2 of the base unit 12, respectively. Therefore, the electrical signals transmitted through the power supply lines VDD1 and VDD2 and the ground lines GND1 and GND2 have a direct current component as a main component.
  • the signal lines COM1 and COM2 are used for transmission and reception of control signals COM1 and COM2 between the imaging unit 112a and the imaging signal processing unit 123, respectively.
  • the control signal generally has a lower frequency than the LVDS based on the imaging signal, the electric field generated around the signal lines COM1 and COM2 does not interfere with the electric field generated around the coaxial lines I1P and I1N.
  • differential signals in which the phases of the AC components are opposite to each other may be used.
  • the electric field distribution of the AC component is antisymmetric between the signal lines COM1 and COM2 across the symmetry point A, so that the antisymmetry of the electric field distribution generated in the coaxial line pair I1 is maintained.
  • FIG. 6A shows a configuration example of the equalizer unit 119.
  • the equalizer unit 119 includes a capacitor 119-1, resistance elements 119-2 to 119-4, and a coil 119-5.
  • One end of each of the capacitor 119-1 and the resistance element 119-2 is connected to the input end.
  • the other ends of the capacitor 119-1 and the resistance element 119-3 are connected to the output end.
  • the other end of the resistance element 119-2 is connected to one end of the resistance element 119-3 and the resistance element 119-4.
  • One end and the other end of the coil 119-5 are connected to the other end and the base end of the resistance element 119-4, respectively.
  • C represents the capacitance of the capacitor 119-1.
  • R1 represents a resistance value common to the resistance elements 119-2 and 119-3.
  • R2 represents the resistance value of the resistance element 119-4.
  • L represents the inductance of the coil 119-5.
  • FIG. 6B shows another configuration example of the equalizer unit 119.
  • the equalizer unit 119 is a so-called ⁇ -type equalizer that includes a coil 119-6 and capacitors 119-7 and 119-8. One end of each of the coil 119-6 and the capacitor 119-7 is connected to the input end. The other end of the capacitor 119-7 is connected to one end and a base end of the capacitor 119-8. The other ends of the coil 119-6 and the capacitor 119-8 are connected to the output end.
  • C1 and C2 indicate the capacitances of the capacitors 119-7 and 119-8.
  • L represents the inductance of the coil 119-6.
  • FIG. 6C shows another configuration example of the equalizer unit 119.
  • the equalizer unit 119 is a so-called T-type equalizer including coils 119-9 and 119-10 and a capacitor 119-11.
  • One end of the coil 119-9 is connected to the input end.
  • the other end of the coil 119-9 is connected to one end of the coil 119-10 and one end of the capacitor 119-11.
  • the other end of the coil 119-10 is connected to the output end.
  • the other end of the capacitor 119-11 is connected to the base end.
  • C represents the capacitance of the capacitor 119-11.
  • L1 and L2 indicate the inductances of the coils 119-9 and 119-10.
  • coaxial lines I1P and I1N are connected to the input end and the base end, respectively, and the frequency characteristics of the voltage between the input end and the base end are equalized.
  • the voltage between the output unit and the base end is obtained as an equalized voltage. Therefore, the circuit constants according to the respective configuration examples are set in advance so that the frequency characteristics of the equalizer unit 119 approximate the inverse characteristics of the frequency characteristics obtained by multiplying the frequency characteristics of the imaging device 116 and the composite coaxial line 117. Keep it.
  • the circuit constant refers to the above-described capacitances C, C1, C2, resistance values R, R1, R2, inductance L, and the like. Therefore, since the equalizer unit 119 is installed at the base end of the composite coaxial line 117 in the scope unit 11, the frequency characteristics of the coaxial line pair I1 that varies depending on the diameter and length of the insertion unit 112 are flattened.
  • FIG. 7 is a diagram illustrating an example of frequency characteristics of the equalizer unit 119 according to the present embodiment.
  • the vertical axis and the horizontal axis indicate gain and frequency, respectively.
  • a solid line, a broken line, and an alternate long and short dash line indicate frequency characteristics of the coaxial line pair I1, the equalizer unit 119, and the equalized coaxial line pair I1, respectively.
  • the gain of the coaxial line pair I1 is substantially constant in a frequency band of 10 MHz or less, but when it exceeds 10 MHz, the higher frequency component attenuates and approximates to zero.
  • the gain of the equalizer unit 119 is substantially constant in a frequency band of 10 MHz or less, but when the frequency exceeds 10 MHz, higher frequency components are amplified.
  • This frequency characteristic is a frequency characteristic obtained using the configuration shown in FIG. 6A.
  • the gain of the coaxial line pair I1 after equalization is within 6 dB in the gain range up to the frequency band of 1 GHz or less, and the width of the frequency band in which the gain is substantially constant is expanded to 1 GHz.
  • the circuit constant of the equalizer unit 119 may be adjusted for each individual in order to eliminate individual differences in frequency characteristics such as the image sensor 116 and the composite coaxial line 117.
  • the width of the frequency band in which the gain of the equalized coaxial line pair I1 is within a predetermined range is made as wide as possible.
  • the equalizer unit 119 can suppress the attenuation of the high-frequency component that is the main component of the LVDS by flattening the frequency characteristics. Since intersymbol interference caused by interference with other components is suppressed, erroneous decoding of LVDS is suppressed.
  • the composite coaxial line 117 includes the coaxial lines I1P and I1N, and the coaxial lines I1P and I1N respectively include the conductor coaxial line shield IS1P and the conductor IN1P and IN1N, respectively.
  • Conductive wires IL1P and IL1N covered with IS1N are provided.
  • the respective cross sections of the coaxial line I1P and the coaxial line I1N are arranged symmetrically.
  • the composite coaxial line 117 includes an equalizer section 119 that equalizes the frequency characteristics of the high-frequency differential signal transmitted from one end of the conducting wires IL1P and IL1N at the proximal ends of the conducting wires IL1P and IL1N.
  • the imaging signal processing unit 123 acquires an imaging signal by decoding a signal obtained by amplifying the high-frequency differential signal input from the equalizer unit 119 with an amplifier. With this configuration, attenuation of a high-frequency differential signal whose main component is a high-frequency component is suppressed, so that the inter-pair skew between the coaxial lines I1P and I1N is suppressed.
  • the high-frequency differential signal transmitted to the imaging signal processing unit 123 is normally decoded. Further, by providing the base end of the composite coaxial line 117, at least frequency characteristics corresponding to the specifications of the composite coaxial line 117 are set in advance, and equalization based on the set frequency characteristics is performed. Therefore, by replacing the scope unit 11 integrated with the composite coaxial line 117, equalization suitable for the specifications of the composite coaxial line 117 having various specifications is performed.
  • the coaxial lines I1P and I1N are covered with insulating coaxial line coatings IC1P and IC1N, respectively, and between the center points of the respective cross sections of the coaxial lines I1P and I1N. They touch each other at a point of symmetry A that is a point.
  • IC1P and IC1N insulating coaxial line coatings
  • the symmetrical positional relationship between the coaxial lines I1P and I1N due to bending is stabilized. Since the anti-symmetric electric field distribution induced mainly is stabilized, skew between pairs is further suppressed, so that erroneous decoding of an imaging signal based on LVDS is further suppressed.
  • both the coaxial lines I1P and I1N are covered with the conductor total shield OS, and the cross-sectional shape of the total shield is symmetric with respect to the symmetry point A.
  • the spread of the electric field distribution induced by the transmitted high-frequency differential signal is suppressed.
  • the symmetrical positional relationship between the coaxial lines I1P and I1N due to bending is stabilized. Since the anti-symmetric electric field distribution induced mainly is stabilized, skew between pairs is further suppressed, so that erroneous decoding of an imaging signal based on LVDS is further suppressed.
  • the composite coaxial line 117 further includes a pair or a plurality of pairs of conducting wires.
  • the centers of the cross-sections of one of the pair of conductive wires and the other are arranged symmetrically with respect to the symmetry point A.
  • separate conductors are provided in regions of the composite coaxial line 117 that are not occupied by the coaxial lines I1P and I1N. Therefore, it is possible to effectively use the limited space inside the insertion portion 112 into which the composite coaxial line 117 is inserted, and to reduce the diameter of the insertion portion 112 inserted into the subject.
  • each of the pair or plural pairs of conductors is in contact with at least one of the other conductors among the coaxial lines I1P and I1N and the pair or plural pairs of conductors, and the pair or plural pairs.
  • Each of at least a pair of conducting wires is in contact with the general shield OS via a bind tape BT covering the coaxial wires I1P and I1N.
  • the endoscope apparatus 1 includes a composite coaxial line 117, an imaging unit 112a that outputs a high-frequency differential signal to the distal ends of the conducting wires IL1P and IL1N, and a high-frequency difference from the proximal ends of the conducting wires IL1P and IL1N.
  • An imaging signal processing unit 123 that decodes the motion signal.
  • the imaging signal processing unit 123 can normally decode the high-frequency differential signal from the base ends of the conductive lines IL1P and IL1N.
  • the case where the number of the pair of conductors separate from the coaxial line pair I1 included in the composite coaxial line 117 is three is an example, but it is one, two, four or more. May be. Any of these conducting wire pairs, or any combination thereof, may be a coaxial wire pair having a configuration similar to that of the coaxial wire pair I1. Further, the light guide portion 113 may be inserted through the composite coaxial line 117. Further, the space inside the bind tape BT of the composite coaxial line 117 may be further filled with an insulator other than air, for example, polyethylene.
  • the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed.
  • the “computer system” is a computer system built in the endoscope apparatus, and includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line,
  • a volatile memory inside a computer system that serves as a server or a client may be included that holds a program for a certain period of time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • a part or all of the endoscope apparatus 1 may be realized as an integrated circuit such as an LSI (Large Scale Integration).
  • LSI Large Scale Integration
  • Each functional block of the endoscope apparatus 1 may be individually made into a processor, or a part or all of them may be integrated into a processor.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology may be used.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Electromagnetism (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Endoscopes (AREA)

Abstract

The objective of the invention is to normally decode a transmitted high-frequency differential signal. This cable is provided with a first coaxial wire and a second coaxial wire, each of the first coaxial wire and the second coaxial wire having a signal wire covered, via an insulator, by a conductor shielding, and the cross-section of each of the first coaxial wire and second coaxial wire being disposed symmetrically to one another. The endoscope device comprises this cable, an imaging unit for sending a high-frequency differential signal at one end of the signal wire, and a signal processing unit for decoding the high-frequency differential signal from another end of the signal wire.

Description

同軸ケーブルおよび内視鏡装置Coaxial cable and endoscope device
 本発明は、同軸ケーブルおよび内視鏡装置に関する。
 本願は、2016年6月20日に、日本に出願された特願2016-121536号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a coaxial cable and an endoscope apparatus.
The present application claims priority based on Japanese Patent Application No. 2016-121536 filed in Japan on June 20, 2016, the contents of which are incorporated herein by reference.
 内視鏡装置は、挿入部の先端において撮像部を備える。撮像部を構成する撮像素子として、相補性金属酸化膜半導体(CMOS:Complementary Metal-Oxide Semiconductor)撮像素子が代表的である。CMOS撮像素子は、撮像素子電荷結合素子(CCD:Charge-Coupled Device)よりも高速の読み出しが可能である。そのため、CMOS撮像素子からの撮像信号を高周波差動信号に変換して挿入部内に備えられた複合同軸線を介して伝送させることが必要となる。また、内視鏡装置には、CCDを備える挿入部と、CMOS撮像素子を備える挿入部とが、それぞれ着脱可能な構造を備えるものがある。 The endoscope apparatus includes an imaging unit at the distal end of the insertion unit. A complementary metal oxide semiconductor (CMOS: Complementary Metal-Oxide Semiconductor) image sensor is a typical example of an image sensor that constitutes the imaging unit. A CMOS image sensor can read data at a higher speed than an image sensor charge-coupled device (CCD: Charge-Coupled Device). Therefore, it is necessary to convert the imaging signal from the CMOS imaging element into a high-frequency differential signal and transmit it through a composite coaxial line provided in the insertion portion. Some endoscope apparatuses have a structure in which an insertion section including a CCD and an insertion section including a CMOS image sensor can be attached and detached.
 特許文献1に記載の内視鏡装置に例示されるように、高周波差動信号を伝送する線材としてツイストペア状態の線材が用いられることがある。ツイストペア状態の線材は、ツイナックス線とも呼ばれる。ツイナックス線は、有線の構内通信網(LAN:Local Area Network)に用いられることがある。これは、高周波差動信号の特性インピーダンスの変化を抑制することで、ペア間スキューを小さくするためである。ペア間スキューとは、差動信号間の伝搬遅延のずれを意味する。 As exemplified in the endoscope apparatus described in Patent Document 1, a twisted pair wire may be used as a wire for transmitting a high-frequency differential signal. A wire in a twisted pair state is also called a twinax wire. The twinax line may be used for a wired local area network (LAN). This is to reduce the skew between the pairs by suppressing the change in the characteristic impedance of the high-frequency differential signal. The pair-to-pair skew means a deviation in propagation delay between differential signals.
日本国特開2005-160925号公報Japanese Unexamined Patent Publication No. 2005-160925
 しかしながら、伝送された高周波差動信号にデシリアライズ処理を行ってパラレル信号に復号する際、符号間干渉(ISI:Inter-Symbol Interference)が生じることがある。ISIは、高周波差動信号の復号が正常に行われない原因になる。特に、長さが20~30mと長い挿入部では、伝送される一対の信号間におけるペア間スキューが1シンボル以上に大きくなるために差動信号として扱えなくなることがある。つまり、伝送された一対の信号間で位相が相互に逆であることを前提に、受信された高周波差動信号についてデシリアライズ処理を行ってもパラレル信号である画像信号を再現できなくなる。 However, when the transmitted high-frequency differential signal is deserialized and decoded into a parallel signal, inter-symbol interference (ISI: Intersymbol Interference) may occur. ISI causes high-frequency differential signals to not be decoded correctly. In particular, in an insertion portion having a length of 20 to 30 m, the pair-to-pair skew between a pair of transmitted signals becomes larger than one symbol, so that it may not be handled as a differential signal. That is, even if the received high-frequency differential signal is deserialized on the premise that the phases of the pair of transmitted signals are opposite to each other, the image signal that is a parallel signal cannot be reproduced.
 本発明は、上記の課題に基づいてなされたものであり、伝送される高周波差動信号を正常に復号することができるケーブルおよび内視鏡装置を提供することを目的としている。 The present invention has been made based on the above-described problems, and an object thereof is to provide a cable and an endoscope apparatus that can normally decode a transmitted high-frequency differential signal.
 本発明の一態様は、第1の同軸線と、第2の同軸線と、を備え、前記第1の同軸線と前記第2の同軸線のそれぞれは、絶縁体を介して導体のシールドに覆われた信号線を備え、前記それぞれの断面が対称に配置されたケーブルである。 One aspect of the present invention includes a first coaxial line and a second coaxial line, and each of the first coaxial line and the second coaxial line serves as a conductor shield via an insulator. It is a cable provided with a covered signal line, the cross sections of which are arranged symmetrically.
 本発明によれば、同軸線間におけるペア間スキューが抑制されるので、伝送される高周波差動信号を正常に復号することができる。 According to the present invention, the pair-to-pair skew between the coaxial lines is suppressed, so that the transmitted high-frequency differential signal can be normally decoded.
本実施形態に係る内視鏡装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the endoscope apparatus which concerns on this embodiment. 本実施形態に係る複合同軸線の断面図である。It is sectional drawing of the composite coaxial line which concerns on this embodiment. 従来のツイナックス線の一例の断面図である。It is sectional drawing of an example of the conventional twinax line. 本実施形態に係る同軸線対の特性インピーダンスの説明図である。It is explanatory drawing of the characteristic impedance of the coaxial line pair which concerns on this embodiment. 本実施形態に係るLVDSの一例を示す図である。It is a figure which shows an example of LVDS which concerns on this embodiment. 本実施形態に係るイコライザ部の構成例を示す図である。It is a figure which shows the structural example of the equalizer part which concerns on this embodiment. 本実施形態に係るイコライザ部の構成例を示す図である。It is a figure which shows the structural example of the equalizer part which concerns on this embodiment. 本実施形態に係るイコライザ部の構成例を示す図である。It is a figure which shows the structural example of the equalizer part which concerns on this embodiment. 本実施形態に係るイコライザ部の周波数特性の例を示す図である。It is a figure which shows the example of the frequency characteristic of the equalizer part which concerns on this embodiment.
 次に、本発明の実施形態について、図面を参照して説明する。
 図1は、本実施形態に係る内視鏡装置1の構成を示す概略ブロック図である。内視鏡装置1は、スコープユニット11と、ベースユニット12と、光学アダプタ13と、を含んで構成される。
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic block diagram illustrating a configuration of an endoscope apparatus 1 according to the present embodiment. The endoscope apparatus 1 includes a scope unit 11, a base unit 12, and an optical adapter 13.
 スコープユニット11は、照明部111と挿入部112を含んで構成される。挿入部112は、長細い形状を有した管状の軟性部である。挿入部112は、その一端において撮像部112aを備える。例えば、挿入部112の直径、長さは、それぞれ4~6mm、1~100mである。挿入部112の長手方向には、複合同軸線117と、ライトガイド部113が挿通されている。スコープユニット11の他端には、第一コネクタ部118が固定される。複合同軸線117は、撮像部112aが撮像した画像を示す撮像信号から変換された高周波差動信号を伝送する。撮像部112aが撮像した画像は、各種の検査に用いられる。以下の説明では、スコープユニット11の一端、他端を、それぞれ先端、基端と呼ぶことがある。 The scope unit 11 includes an illumination unit 111 and an insertion unit 112. The insertion portion 112 is a tubular soft portion having a long and thin shape. The insertion unit 112 includes an imaging unit 112a at one end thereof. For example, the diameter and length of the insertion portion 112 are 4 to 6 mm and 1 to 100 m, respectively. In the longitudinal direction of the insertion portion 112, the composite coaxial line 117 and the light guide portion 113 are inserted. A first connector portion 118 is fixed to the other end of the scope unit 11. The composite coaxial line 117 transmits a high-frequency differential signal converted from an imaging signal indicating an image captured by the imaging unit 112a. The image captured by the imaging unit 112a is used for various inspections. In the following description, one end and the other end of the scope unit 11 may be referred to as a distal end and a proximal end, respectively.
 ベースユニット12は、スコープユニット11からの撮像信号の取得、撮像された画像の表示、被検体への照明など各種の機能を有する内視鏡装置1の本体部である。ベースユニット12には、その表面の一部に第二コネクタ部127が固定される。第二コネクタ部127は、1つのスコープユニット11の第一コネクタ部118と着脱可能である。着脱されるスコープユニット11には、照明部111、挿入部112、撮像部112aなどの仕様に応じて異なる種類がある。その仕様には、例えば、挿入部112の長さ、径、照明部111の発光強度、撮像部112aの解像度、輝度などがある。 The base unit 12 is a main body unit of the endoscope apparatus 1 having various functions such as acquisition of an imaging signal from the scope unit 11, display of a captured image, and illumination of a subject. A second connector portion 127 is fixed to a part of the surface of the base unit 12. The second connector portion 127 is detachable from the first connector portion 118 of one scope unit 11. There are different types of the detachable scope unit 11 depending on the specifications of the illumination unit 111, the insertion unit 112, the imaging unit 112a, and the like. The specifications include, for example, the length and diameter of the insertion unit 112, the light emission intensity of the illumination unit 111, the resolution of the imaging unit 112a, the luminance, and the like.
 光学アダプタ13は、挿入部112の先端に着脱でき、照明レンズ部131と対物レンズ部132とを含んで構成される。光学アダプタ13が挿入部112の先端に装着されている状態において、照明レンズ部131は、その裏面にライトガイド部113の先端から入射される光を表面に透過する。裏面、表面とは、光学アダプタ13の2つの主面のうち挿入部112の先端に対面している面、挿入部112の基端から先端への方向に面している面に相当する。照明レンズ部131からの透過により出射される光は、被検体に照射される。対物レンズ部132は、その表面に被検体から入射される光を裏面に透過する。照明レンズ部131が透過する光は被検体の表面に照射され、被検体の表面において反射した反射光が被検体表面の画像を示す画像光として対物レンズ部132に入射される。 The optical adapter 13 can be attached to and detached from the distal end of the insertion portion 112 and includes an illumination lens portion 131 and an objective lens portion 132. In a state where the optical adapter 13 is attached to the distal end of the insertion portion 112, the illumination lens portion 131 transmits light incident on the rear surface thereof from the distal end of the light guide portion 113 to the front surface. The back surface and the front surface correspond to a surface of the two main surfaces of the optical adapter 13 that faces the distal end of the insertion portion 112 and a surface that faces in the direction from the proximal end to the distal end of the insertion portion 112. The light emitted by the transmission from the illumination lens unit 131 is irradiated to the subject. The objective lens unit 132 transmits light incident on the front surface from the subject to the rear surface. The light transmitted through the illumination lens unit 131 is applied to the surface of the subject, and the reflected light reflected on the surface of the subject enters the objective lens unit 132 as image light indicating an image of the subject surface.
 なお、挿入部112の先端に着脱可能であることで、ユーザは複数種類のうち1種類の光学アダプタ13を選択することができる。光学アダプタ13の種類に応じて対物レンズ部132の光学特性、観察方向などの仕様が異なる。光学特性の要素には、例えば、焦点距離、直径などがある。観察方向には、例えば、直視、側視などがある。 In addition, the user can select one type of optical adapter 13 among a plurality of types by being detachable from the distal end of the insertion unit 112. Depending on the type of the optical adapter 13, the specifications such as the optical characteristics and the observation direction of the objective lens unit 132 are different. Examples of the optical characteristics include focal length and diameter. The observation direction includes, for example, direct view and side view.
(スコープユニットの構成)
 次に、本実施形態に係るスコープユニット11の構成について説明する。スコープユニット11は、照明部111、挿入部112、第一コネクタ部118およびイコライザ部119を含んで構成される。照明部111、第一コネクタ部118およびイコライザ部119は、スコープユニット11の基端部に備えられる。
 照明部111は、照明駆動部122から供給された電力に応じた光を発光し、発光した光をライトガイド部113の基端に放射する。照明部111は、例えば、発光ダイオード(Light Emitting Diode)である。
(Scope unit configuration)
Next, the configuration of the scope unit 11 according to the present embodiment will be described. The scope unit 11 includes an illumination unit 111, an insertion unit 112, a first connector unit 118, and an equalizer unit 119. The illumination unit 111, the first connector unit 118, and the equalizer unit 119 are provided at the proximal end portion of the scope unit 11.
The illumination unit 111 emits light corresponding to the electric power supplied from the illumination drive unit 122 and radiates the emitted light to the proximal end of the light guide unit 113. The illumination unit 111 is, for example, a light emitting diode (Light Emitting Diode).
 挿入部112は、撮像部112a、ライトガイド部113および複合同軸線117を含んで構成される。撮像部112aは、発振器114、スコープレンズ部115、および撮像素子116を含んで構成される。 The insertion unit 112 includes an imaging unit 112a, a light guide unit 113, and a composite coaxial line 117. The imaging unit 112a includes an oscillator 114, a scope lens unit 115, and an imaging element 116.
 ライトガイド部113には、基端に照明部111から放射された照明光が入射され、入射された照明光を先端に向けて透過する。透過した照明光は、照明レンズ部131に放射される。
 発振器114は、所定の周波数を有するクロック信号を生成する。発振器114は、生成したクロック信号を撮像素子116に出力する。周波数は、例えば、10MHz~1GHzである。
 スコープレンズ部115は、対物レンズ部132から入射された画像光を撮像素子116の撮像面に集束し、被写体の像を撮像面上に結像させる。
The light guide 113 receives the illumination light emitted from the illumination unit 111 at the base end and transmits the incident illumination light toward the distal end. The transmitted illumination light is emitted to the illumination lens unit 131.
The oscillator 114 generates a clock signal having a predetermined frequency. The oscillator 114 outputs the generated clock signal to the image sensor 116. The frequency is, for example, 10 MHz to 1 GHz.
The scope lens unit 115 focuses the image light incident from the objective lens unit 132 on the imaging surface of the imaging element 116 and forms an image of the subject on the imaging surface.
 撮像素子116は、複数の受光素子(図示せず)と内部回路(図示せず)のセット、撮像駆動部(図示せず)および信号処理部(図示せず)を含んで構成される。受光素子と内部回路のセットは、画素ごとに備えられる。受光素子は、受光面に2次元的に一定間隔に配列され画素アレイを形成する。受光素子のそれぞれは、到来した光の強度に応じた電位を生じる。撮像素子116は、例えば、受光素子としてCMOSを用いたCMOS撮像素子である。内部回路は、撮像駆動部から入力される駆動制御信号に基づいて各受光素子に生じた電位を有する電気信号を信号処理部に出力する。撮像駆動部は、ベースユニット12の撮像信号処理部123(後述)から通信部(後述)を介して入力される撮像制御信号が示す撮像モードに基づいて駆動制御信号を生成し、生成した駆動制御信号を画素ごとの内部回路に出力する。これにより、内部回路が駆動され撮像信号が信号処理部に出力される。撮像モードの要素として、例えば、受光面での受光を制御する電子シャッター、露光時間、フレームレートなどが含まれる。 The imaging element 116 includes a set of a plurality of light receiving elements (not shown) and an internal circuit (not shown), an imaging drive unit (not shown), and a signal processing unit (not shown). A set of light receiving elements and internal circuits is provided for each pixel. The light receiving elements are two-dimensionally arranged on the light receiving surface at a constant interval to form a pixel array. Each of the light receiving elements generates a potential according to the intensity of the incoming light. The image sensor 116 is, for example, a CMOS image sensor using CMOS as a light receiving element. The internal circuit outputs an electric signal having a potential generated in each light receiving element to the signal processing unit based on the drive control signal input from the imaging driving unit. The imaging drive unit generates a drive control signal based on an imaging mode indicated by an imaging control signal input from an imaging signal processing unit 123 (described later) of the base unit 12 via a communication unit (described later), and the generated drive control. The signal is output to an internal circuit for each pixel. As a result, the internal circuit is driven and the imaging signal is output to the signal processing unit. The elements of the imaging mode include, for example, an electronic shutter that controls light reception on the light receiving surface, an exposure time, a frame rate, and the like.
 撮像駆動部は、発振器114から入力されたクロック信号を分周または逓倍して駆動制御信号を生成する。駆動制御信号には、例えば、ピクセルクロックと同期信号がある。同期信号には、水平同期信号と垂直同期信号がある。ピクセルクロックは、画素ごとの電位の読み出しのタイミングを指示する信号である。水平同期信号は、画像フレームを構成する各ラインの開始または終了のタイミングを指示する信号である。垂直同期信号は、各画像フレームの開始または終了のタイミングを指示する信号である。これにより各フレームを構成する画素ごとの電位が所定の順序で読み出される。撮像駆動部は、撮像モードに基づいてフレームレートに応じた分周率、フレーム当たりのライン数に応じた分周率、ライン当たりの画素数に応じた分周率を、それぞれ垂直同期信号、水平同期信号、ピクセルクロックの生成に用いる分周率として設定する。信号処理部は、画素ごとの電位を信号値に変換し、被写体の画像を示すディジタルの撮像信号を生成する。なお、以下の説明では、この時点で生成される撮像信号を撮像Rawデータと呼び、他の信号またはデータが重畳された撮像信号と区別する。信号処理部は、撮像Rawデータにピクセルクロックと同期信号を重畳し、これらの信号が重畳された撮像信号をシリアル化(シリアライズ)して一対の高周波差動信号に変換する。信号処理部は、変換により得られた高周波差動信号を複合同軸線117に送出する。 The imaging driver generates a drive control signal by dividing or multiplying the clock signal input from the oscillator 114. The drive control signal includes, for example, a pixel clock and a synchronization signal. The synchronization signal includes a horizontal synchronization signal and a vertical synchronization signal. The pixel clock is a signal for instructing the timing of reading the potential for each pixel. The horizontal synchronization signal is a signal that indicates the start or end timing of each line constituting the image frame. The vertical synchronization signal is a signal for instructing the start or end timing of each image frame. As a result, the potential of each pixel constituting each frame is read out in a predetermined order. The imaging drive unit determines the frequency division rate according to the frame rate, the frequency division rate according to the number of lines per frame, and the frequency division rate according to the number of pixels per line, the vertical synchronization signal It is set as the frequency division ratio used for generating the synchronization signal and pixel clock. The signal processing unit converts the potential for each pixel into a signal value, and generates a digital imaging signal indicating an image of the subject. In the following description, the imaging signal generated at this point is referred to as imaging raw data, and is distinguished from an imaging signal on which another signal or data is superimposed. The signal processing unit superimposes the pixel clock and the synchronization signal on the imaging raw data, serializes the imaging signal on which these signals are superimposed, and converts the imaging signal into a pair of high-frequency differential signals. The signal processing unit sends the high-frequency differential signal obtained by the conversion to the composite coaxial line 117.
 高周波差動信号は、例えば、LVDS(Low Voltage Differential Signal)である。LVDSは、それぞれ2段階の電位のいずれかの電位の時系列を有する一対の信号LVDS+、LVDS-からなる。信号LVDS+、LVDS-の相互間で、電位の時系列が互いに逆位相である。図5に示す例では、信号LVDS+、LVDS-は、各時刻における電位がVとVのいずれかである時系列である。シンボルごとに電位がVとVのいずれかであるかにより1ビットの情報が表現される。サンプリング周波数は、例えば、100MHz~10GHzである。信号LVDS+の電位がV、Vであるとき、信号LVDS-の電位はV、Vである。電位V、Vは、基準電位Vとの差がΔV、-ΔVである電位である。 The high-frequency differential signal is, for example, LVDS (Low Voltage Differential Signal). The LVDS includes a pair of signals LVDS + and LVDS− each having a time series of one of two potential levels. Between the signals LVDS + and LVDS−, the time series of potentials are in opposite phases. In the example shown in FIG. 5, the signals LVDS + and LVDS− are time series in which the potential at each time is either V H or V L. One-bit information is expressed depending on whether the potential is V H or V L for each symbol. The sampling frequency is, for example, 100 MHz to 10 GHz. When the potential of the signal LVDS + is V H and V L , the potential of the signal LVDS− is V L and V H. The potentials V H and V L are potentials whose differences from the reference potential V 0 are ΔV and −ΔV.
 なお、撮像部112aは、さらに通信部(図示せず)と電力供給部(図示せず)を含んで構成される。通信部は、所定の通信方式を用いて撮像信号処理部123との間で複合同軸線117を介して各種の制御信号を送受信する。制御信号には、上述の撮像制御信号が含まれる。通信方式として、例えば、UART(Universal Asynchronous Receiver Transmitter、汎用非同期受信送信機)通信、SPI(Serial Peripheral interface、直列周辺インタフェース)通信、I2C(Inter-Integrated Circuit、集積回路間)通信などのシリアル通信が利用可能である。通信方式としてシリアル通信が用いられる場合には、制御信号についてシリアライズ処理を行って得られるシリアル信号が差動信号として伝送されてもよい。 Note that the imaging unit 112a further includes a communication unit (not shown) and a power supply unit (not shown). The communication unit transmits / receives various control signals to / from the imaging signal processing unit 123 via the composite coaxial line 117 using a predetermined communication method. The control signal includes the above-described imaging control signal. As communication methods, for example, UART (Universal Asynchronous Receiver Transmitter, General Purpose Asynchronous Receiver / Transmitter) communication, SPI (Serial Peripheral Interface, Serial Peripheral Interface) communication, I2C (Inter-Integrated Circuit Communication, etc.) Is available. When serial communication is used as the communication method, a serial signal obtained by performing serialization processing on the control signal may be transmitted as a differential signal.
 電力供給部には、ベースユニット12から電力が供給される。電力は、複合同軸線117を介して供給されてもよい。電力供給部は、供給された電力の電圧を、撮像部112aが備えるそれぞれの構成要素が必要とする電圧に変換する。電力供給部は、電圧を変換した電力をそれぞれの構成要素に供給する。
 また、撮像部112aの基準電位点は、ベースユニット12の所定の基準電位点との間で接地されていてもよい。基準電位点間の接地は、複合同軸線117を介してもよい。
Power is supplied from the base unit 12 to the power supply unit. Power may be supplied via the composite coaxial line 117. The power supply unit converts the voltage of the supplied power into a voltage required for each component included in the imaging unit 112a. The power supply unit supplies power obtained by converting the voltage to each component.
Further, the reference potential point of the imaging unit 112 a may be grounded with a predetermined reference potential point of the base unit 12. The grounding between the reference potential points may be via the composite coaxial line 117.
 複合同軸線117は、2つの同軸線からなる同軸線対と、さらに別個の導線対を備え、これらを統合して構成されるケーブルである。複合同軸線117が備える2つの同軸線のそれぞれは、絶縁体を介して導体のシールドに覆われた信号線が長手方向に並行して配置され、同軸線の一方と他方が互いに対称に配置されてなる。複合同軸線117は、主に撮像素子116からイコライザ部119へのLVDSの伝送に用いられる。信号LVDS+、LVDS-は、一方の同軸線、他方の同軸線をそれぞれ用いて伝送される。
 同軸線対とは別個の導線対において、各2つの導線が長手方向に並行して配置され、各導線対の導線の一方と他方の断面が互いに対称に配置されてなる。同軸線対を構成する同軸線間の対称点と、導線対を構成する導線間の対称点とは、共通であってもよい。複数の導線対は、制御信号の伝送、電力の供給、接地など、それぞれの用途に応じて使い分けられる。複合同軸線117の構成については、後述する。
The composite coaxial line 117 is a cable that includes a coaxial line pair including two coaxial lines and a separate conductor pair, and is configured by integrating them. In each of the two coaxial lines included in the composite coaxial line 117, signal lines covered with a conductor shield via an insulator are arranged in parallel in the longitudinal direction, and one and the other of the coaxial lines are arranged symmetrically with each other. It becomes. The composite coaxial line 117 is mainly used for LVDS transmission from the image sensor 116 to the equalizer unit 119. The signals LVDS + and LVDS− are transmitted using one coaxial line and the other coaxial line, respectively.
In a pair of conductors separate from the coaxial line pair, each two conductors are arranged in parallel in the longitudinal direction, and one and the other of the conductors of each conductor pair are arranged symmetrically. The point of symmetry between the coaxial lines constituting the coaxial line pair and the point of symmetry between the conductive lines constituting the conductor pair may be common. The plurality of conductor pairs are selectively used according to their respective uses such as transmission of control signals, power supply, and grounding. The configuration of the composite coaxial line 117 will be described later.
 第一コネクタ部118は、スコープユニット11の基端部に設置され、ベースユニット12の第二コネクタ部127と着脱可能な装着具を備える。第一コネクタ部118は、第二コネクタ部127に装着されている状態でスコープユニット11とベースユニット12の構成要素間で電気的に接続する接点を複数個備える。複数の接点は、イコライザ部119から撮像信号処理部123への高周波差動信号の伝送、撮像部112aと撮像信号処理部123との間における制御信号の伝送、ベースユニット12の電力供給部(図示せず)から撮像部112aへの電力の供給、照明駆動部122から照明部111への電力の供給、スコープユニット11とベースユニット12の基準電位点間の接地に、それぞれ用いられる。
 なお、スコープユニット11をベースユニット12に着脱可能とすることで、ユーザは複数種類のうち1種類のスコープユニット11を選択することができる。
The first connector portion 118 is installed at the proximal end portion of the scope unit 11 and includes a mounting tool that can be attached to and detached from the second connector portion 127 of the base unit 12. The first connector portion 118 includes a plurality of contacts that are electrically connected between the components of the scope unit 11 and the base unit 12 while being attached to the second connector portion 127. The plurality of contacts are a high-frequency differential signal transmission from the equalizer unit 119 to the imaging signal processing unit 123, a control signal transmission between the imaging unit 112a and the imaging signal processing unit 123, and a power supply unit of the base unit 12 (see FIG. (Not shown) for power supply to the imaging unit 112a, power supply from the illumination drive unit 122 to the illumination unit 111, and grounding between the reference potential points of the scope unit 11 and the base unit 12.
By making the scope unit 11 detachable from the base unit 12, the user can select one type of scope unit 11 from among a plurality of types.
 イコライザ部119は、複合同軸線117の基端に接続され、撮像素子116から複合同軸線117を介して入力される高周波差動信号の周波数特性を等化する等化部である。
 イコライザ部119は、第一コネクタ部118に配置されてもよい。一般に、撮像素子116、複合同軸線117が有する周波数特性は、それぞれ周波数が高いほど利得の減衰が著しい。そこで、イコライザ部119の周波数特性を、撮像素子116と複合同軸線117のそれぞれの周波数特性を乗じて得られる周波数特性の逆特性に設定しておく。これにより、入力される高周波差動信号の振幅の周波数特性が平坦になる。つまり、周波数特性が等化される。なお、イコライザ部119の周波数特性として、撮像素子の種類、複合同軸線117の径、長さなどの仕様と対応したスコープユニットの種類に応じた周波数特性を設定してもよい。イコライザ部119は、例えば、コイルとコンデンサを含んで構成されるπ型イコライザ、T型イコライザなどの受動イコライザである。イコライザ部119は、周波数特性が等化された高周波差動信号を撮像信号処理部123に出力する。
The equalizer unit 119 is an equalization unit that is connected to the base end of the composite coaxial line 117 and equalizes the frequency characteristics of a high-frequency differential signal that is input from the image sensor 116 via the composite coaxial line 117.
The equalizer unit 119 may be disposed on the first connector unit 118. In general, the frequency characteristics of the imaging device 116 and the composite coaxial line 117 are such that the gain attenuation becomes more significant as the frequency increases. Therefore, the frequency characteristics of the equalizer unit 119 are set to the inverse characteristics of the frequency characteristics obtained by multiplying the frequency characteristics of the image sensor 116 and the composite coaxial line 117. Thereby, the frequency characteristic of the amplitude of the input high frequency differential signal becomes flat. That is, the frequency characteristics are equalized. In addition, as the frequency characteristics of the equalizer unit 119, frequency characteristics corresponding to the type of the scope unit corresponding to the specifications such as the type of the imaging element, the diameter and the length of the composite coaxial line 117 may be set. The equalizer unit 119 is, for example, a passive equalizer such as a π-type equalizer or a T-type equalizer that includes a coil and a capacitor. The equalizer unit 119 outputs a high-frequency differential signal whose frequency characteristics are equalized to the imaging signal processing unit 123.
(ベースユニットの構成)
 次に、本実施形態に係るベースユニット12の構成について説明する。
 ベースユニット12は、CPU(Central Processing Unit)部121、照明駆動部122、撮像信号処理部123、入力部124、メモリ部125、表示部126および第二コネクタ部127を含んで構成される。
(Base unit configuration)
Next, the configuration of the base unit 12 according to the present embodiment will be described.
The base unit 12 includes a CPU (Central Processing Unit) 121, an illumination driving unit 122, an imaging signal processing unit 123, an input unit 124, a memory unit 125, a display unit 126, and a second connector unit 127.
 CPU部121は、撮像信号処理部123から入力された画像データが示す画像に、所定のグラフィック画像を重畳して表示画像を示す表示画像データを生成する。グラフィック画像には、メニュー表示などがある。CPU部121は、表示部126の仕様に応じて要求される画像処理を、生成した表示画像データに対して行う。画像処理は、例えば、色空間変換、インターレース/プログレッシブ変換、ガンマ変換のなどの処理である。CPU部121は、画像処理により得られた表示画像データを表示部126に出力する。 The CPU unit 121 generates display image data indicating a display image by superimposing a predetermined graphic image on the image indicated by the image data input from the imaging signal processing unit 123. Graphic images include menu displays. The CPU unit 121 performs image processing requested according to the specifications of the display unit 126 on the generated display image data. Image processing is, for example, processing such as color space conversion, interlace / progressive conversion, and gamma conversion. The CPU unit 121 outputs display image data obtained by image processing to the display unit 126.
 また、CPU部121は、入力部124から入力される操作信号に基づき内視鏡装置1の機能を制御する。例えば、入力される操作信号が点灯または消灯を指示する場合には、CPU部121は、点灯または消灯を指示する照明制御信号を生成し、生成した照明制御信号を照明駆動部122に出力する。入力される操作信号が撮像モードを指示する場合には、CPU部121は、その撮像モードを示す撮像制御信号を生成し、生成した撮像制御信号を撮像信号処理部123に出力する。なお、CPU部121は、CPUを含んで構成され、メモリ部125から予め記憶された所定の動作プログラムを読み取り、読み取った動作プログラムにより指示される処理を実行することで、その機能を実現する。 Further, the CPU unit 121 controls the function of the endoscope apparatus 1 based on the operation signal input from the input unit 124. For example, when the input operation signal instructs to turn on or off, the CPU unit 121 generates an illumination control signal that instructs to turn on or off, and outputs the generated illumination control signal to the illumination driving unit 122. When the input operation signal indicates the imaging mode, the CPU unit 121 generates an imaging control signal indicating the imaging mode, and outputs the generated imaging control signal to the imaging signal processing unit 123. The CPU unit 121 includes a CPU, and implements its function by reading a predetermined operation program stored in advance from the memory unit 125 and executing processing instructed by the read operation program.
 照明駆動部122は、CPU部121から入力された照明制御信号に基づいて照明駆動部122の機能を制御する。例えば、入力された照明制御信号が点灯を示す場合、照明駆動部122は、ベースユニット12の電力供給部(後述)から供給される電力の照明部111への供給を開始する。入力された照明制御信号が消灯を示す場合、照明駆動部122は、照明部111への電力の供給を停止する。 The illumination drive unit 122 controls the function of the illumination drive unit 122 based on the illumination control signal input from the CPU unit 121. For example, when the input illumination control signal indicates lighting, the illumination driving unit 122 starts supplying power supplied from a power supply unit (described later) of the base unit 12 to the illumination unit 111. When the input illumination control signal indicates turning off, the illumination drive unit 122 stops supplying power to the illumination unit 111.
 撮像信号処理部123は、イコライザ部119から入力される高周波差動信号を図示しないアンプで増幅し、増幅した高周波差動信号に対してデシリアライズ処理を行いパラレル形式の撮像信号に変換する。その後、撮像信号処理部123は、撮像信号から撮像Rawデータと、撮像Rawデータに重畳されたピクセルクロックと同期信号を抽出する。撮像信号処理部123は、抽出したピクセルクロックと同期信号を用いて撮像Rawデータが示す画素ごとの信号値を有する画像データを生成する。生成される画像データは、各フレームの画像を示す。ここで、撮像信号処理部123は、ピクセルクロックを用いて各画素の信号値を取得するタイミングを特定し、同期信号を用いて各ラインならび各フレームの開始または終了時のタイミングを特定する。これにより、撮像信号処理部123は、撮像Rawデータが示す信号値の時系列のうち、各フレーム、各ラインの信号区間ならびに各画素の信号値を特定することができる。撮像信号処理部123は、撮像Rawデータから生成した画像データを表示部126に出力する。 The imaging signal processing unit 123 amplifies the high-frequency differential signal input from the equalizer unit 119 with an amplifier (not shown), performs deserialization processing on the amplified high-frequency differential signal, and converts it into a parallel format imaging signal. Thereafter, the imaging signal processing unit 123 extracts imaging Raw data, a pixel clock and a synchronization signal superimposed on the imaging Raw data from the imaging signal. The imaging signal processing unit 123 generates image data having a signal value for each pixel indicated by the imaging raw data using the extracted pixel clock and the synchronization signal. The generated image data indicates an image of each frame. Here, the imaging signal processing unit 123 specifies the timing for acquiring the signal value of each pixel using the pixel clock, and specifies the timing at the start or end of each line and each frame using the synchronization signal. Thereby, the imaging signal processing unit 123 can specify the signal value of each frame, each line, and the signal value of each pixel in the time series of the signal values indicated by the imaging raw data. The imaging signal processing unit 123 outputs the image data generated from the imaging raw data to the display unit 126.
 撮像信号処理部123は、CPU部121から入力された撮像制御信号に基づいて撮像部112aの機能を制御する。撮像信号処理部123は、撮像制御信号を撮像部112aに複合同軸線117を介して出力する。撮像部112aの撮像素子116は、上述したように撮像信号処理部123から入力された撮像制御信号が示す撮像モードに基づいて画像データを生成する。従って、電子シャッター、露光時間、フレームレートなどが制御される。 The imaging signal processing unit 123 controls the function of the imaging unit 112a based on the imaging control signal input from the CPU unit 121. The imaging signal processing unit 123 outputs an imaging control signal to the imaging unit 112a via the composite coaxial line 117. The imaging element 116 of the imaging unit 112a generates image data based on the imaging mode indicated by the imaging control signal input from the imaging signal processing unit 123 as described above. Therefore, the electronic shutter, exposure time, frame rate, etc. are controlled.
 入力部124は、ユーザの入力操作を検出し、検出した入力操作に基づく操作信号を生成する。入力部124は、生成した操作信号をCPU部121に出力する。入力部124は、専用のボタン、つまみ、レバーなどの物理的な部材を含んで構成されてもよいし、タッチセンサ、マウスなどの汎用の部材を含んで構成されてもよい。入力部124は、汎用の部材と表示部126に表示する案内画面からなるユーザインタフェースとして構成されてもよい。タッチセンサは、表示部126と一体化してタッチパネルとして構成されてもよい。 The input unit 124 detects a user input operation and generates an operation signal based on the detected input operation. The input unit 124 outputs the generated operation signal to the CPU unit 121. The input unit 124 may include a physical member such as a dedicated button, knob, or lever, or may include a general-purpose member such as a touch sensor or a mouse. The input unit 124 may be configured as a user interface including a general-purpose member and a guidance screen displayed on the display unit 126. The touch sensor may be integrated with the display unit 126 and configured as a touch panel.
 メモリ部125には、CPU部121の処理に用いられる各種のデータ、CPU部121が取得した各種のデータ、上述した制御プログラムなどが記憶される。メモリ部125には、上述の動作プログラムが記憶される。メモリ部125は、例えば、フラッシュメモリを含んで構成される。
 表示部126は、CPU部121から入力される表示画像データに基づく画像を表示する。表示部126は、例えば、液晶ディスプレイである。
 第二コネクタ部127は、ベースユニット12の表面に設置される。第二コネクタ部127は、スコープユニット11の第一コネクタ部118の装着具と着脱できる装着具を備える。第二コネクタ部127の装着具は、第一コネクタ部118の装着具と相互に嵌合する形状を有していてもよい。
The memory unit 125 stores various data used for processing of the CPU unit 121, various data acquired by the CPU unit 121, the above-described control program, and the like. The memory unit 125 stores the above-described operation program. For example, the memory unit 125 includes a flash memory.
The display unit 126 displays an image based on display image data input from the CPU unit 121. The display unit 126 is, for example, a liquid crystal display.
The second connector portion 127 is installed on the surface of the base unit 12. The second connector part 127 includes an attachment that can be attached to and detached from the attachment of the first connector part 118 of the scope unit 11. The mounting tool of the second connector part 127 may have a shape that fits with the mounting tool of the first connector part 118.
 その他、ベースユニット12は、電力供給部(図示せず)を備える。電力供給部は、外部から供給される電力の電圧を、ベースユニット12の構成要素のそれぞれにおいて必要とされる電圧に変換する。電力供給部は、電圧が変換された電力をそれぞれの構成要素に供給する。 In addition, the base unit 12 includes a power supply unit (not shown). The power supply unit converts the voltage of the power supplied from the outside into a voltage required in each component of the base unit 12. The power supply unit supplies the power whose voltage has been converted to each component.
(複合同軸線の構成例)
 次に、本実施形態に係る複合同軸線117の構成例について説明する。
 図2は、本実施形態に係る複合同軸線117の断面図である。
 複合同軸線117は、1つの同軸線対I1と3つの導線対(ペア)が長手方向に並行に配置され、互いに結合して構成される。同軸線対I1は、2つの同軸線I1P、I1Nのペアである。3つの導線対として、電力供給線VDD1、VDD2、グランド線GND1、GND2および信号線COM1、COM2が例示されている。同軸線対と導線対の全体は、その周囲を絶縁体からなるバインドテープBTに巻かれることにより束ねられる。バインドテープBTの外部表面は、さらに導体からなる総合シールドOSで被覆される。バインドテープBTは、同軸線対と導線対の全体の配置を固定するとともに、それらと総合シールドOSとを電気的に絶縁する。総合シールドOSの外部表面は、さらに絶縁体からなる総合被膜OCで被覆される。なお、総合シールドOSの外部表面は、総合被膜OCで被膜されていなくてもよい。なお、以下の説明では、VDD1、VDD2は、電源電圧または電源電圧の基準点を、GND1、GND2は、接地または電位基準点、COM1、COM2は、制御信号を示すこともある。図2に示す例では、複合同軸線117の断面の形状は円形である。
(Configuration example of composite coaxial cable)
Next, a configuration example of the composite coaxial line 117 according to the present embodiment will be described.
FIG. 2 is a cross-sectional view of the composite coaxial line 117 according to the present embodiment.
The composite coaxial line 117 is configured by one coaxial line pair I1 and three conductor pairs (pairs) arranged in parallel in the longitudinal direction and coupled to each other. The coaxial line pair I1 is a pair of two coaxial lines I1P and I1N. As the three conductive wire pairs, power supply lines VDD1, VDD2, ground lines GND1, GND2, and signal lines COM1, COM2 are illustrated. The entire coaxial wire pair and conductive wire pair are bundled by being wound around a bind tape BT made of an insulator. The outer surface of the bind tape BT is further covered with an overall shield OS made of a conductor. The bind tape BT fixes the entire arrangement of the coaxial wire pair and the conductive wire pair and electrically insulates them from the overall shield OS. The outer surface of the total shield OS is further covered with a total coating OC made of an insulator. Note that the outer surface of the comprehensive shield OS may not be coated with the comprehensive coating OC. In the following description, VDD1 and VDD2 may indicate a power supply voltage or a reference point of the power supply voltage, GND1 and GND2 may indicate a ground or potential reference point, and COM1 and COM2 may indicate a control signal. In the example shown in FIG. 2, the shape of the cross section of the composite coaxial line 117 is a circle.
 同軸線I1P、I1N、電力供給線VDD1、VDD2、グランド線GND1、GND2および信号線COM1、COM2の長さは、それぞれ複合同軸線117の長さに相当する。複合同軸線117の直径は、少なくとも挿入部112の内部の直径よりも小さい。そのため、同軸線I1P、I1N、電力供給線VDD1、VDD2、グランド線GND1、GND2および信号線COM1、COM2の長さと直径は、それぞれ挿入部112の長さと直径に応じて異なる。なお、同軸線I1P、I1N、電力供給線VDD1、VDD2、グランド線GND1、GND2および信号線COM1、COM2のそれぞれの直径は、長手方向の位置によらず一定である。また、これらの断面の形状は、いずれも円形である。 The lengths of the coaxial lines I1P and I1N, the power supply lines VDD1 and VDD2, the ground lines GND1 and GND2, and the signal lines COM1 and COM2 correspond to the length of the composite coaxial line 117, respectively. The diameter of the composite coaxial line 117 is at least smaller than the diameter inside the insertion portion 112. Therefore, the lengths and diameters of the coaxial lines I1P and I1N, the power supply lines VDD1 and VDD2, the ground lines GND1 and GND2, and the signal lines COM1 and COM2 differ depending on the length and diameter of the insertion portion 112, respectively. The diameters of the coaxial lines I1P and I1N, the power supply lines VDD1 and VDD2, the ground lines GND1 and GND2, and the signal lines COM1 and COM2 are constant regardless of the positions in the longitudinal direction. In addition, these cross-sectional shapes are all circular.
 同軸線I1P、I1Nは、それぞれの中心部に導体からなる導線(芯線)IL1P、IL1Nを備える。導線IL1P、IL1Nは、信号LVDS+、LVDS-をそれぞれ伝送する信号線として用いられる。導線IL1P、IL1Nの周囲は、それぞれ絶縁体IN1P、IN1Nを介して導体からなる同軸線シールドIS1P、IS1Nで覆われる。そして、同軸線シールドIS1P、IS1Nの周囲は、それぞれ絶縁体からなる同軸線被膜IC1P、IC1Nで覆われる。同軸線シールドIS1P、IS1Nにより、信号LVDS+、LVDS-の特性インピーダンスの変化を少なくすることができ信号の減衰が抑制される。 The coaxial lines I1P and I1N are provided with conductors (core wires) IL1P and IL1N made of a conductor at the center of each. Conductive lines IL1P and IL1N are used as signal lines for transmitting signals LVDS + and LVDS−, respectively. The surroundings of the conducting wires IL1P and IL1N are covered with coaxial line shields IS1P and IS1N made of a conductor via insulators IN1P and IN1N, respectively. And the circumference | surroundings of coaxial line shield IS1P and IS1N are each covered with coaxial line film IC1P and IC1N which consist of an insulator. The coaxial line shields IS1P and IS1N can reduce the change in the characteristic impedance of the signals LVDS + and LVDS− and suppress the signal attenuation.
 なお、差動信号の伝送において一対の信号間の特性インピーダンスが100Ωに設定されることがある。これに倣い、信号LVDS+、LVDS-の伝送に係る特性インピーダンスを100Ωに設定する場合には、同軸線I1P、I1Nの特性インピーダンスR、Rをそれぞれ50Ωと設定すればよい。同軸線I1P、I1N間で生じる交流成分の電界が中心線Bにおいて相殺されるので、図4に示すように同軸線シールドIS1P、IS1Nが実質的に互いに接地される。そのため、特性インピーダンスの和R+Rが、信号LVDS+、LVDS-間のインピーダンスに相当する。同軸線I1P、I1NのそれぞれインピーダンスR、Rは、必ずしも50Ωに限られず、両者間で互いに共通であれば、撮像素子116、同軸線I1P、I1Nの仕様に応じて任意に設定されうる。 In the transmission of differential signals, the characteristic impedance between a pair of signals may be set to 100Ω. Copying thereto, signal LVDS +, to set the characteristic impedance of the transmission LVDS- to 100Ω is coaxial lines I1P, the characteristic impedance R P of I1N, may be set as 50Ω to R N, respectively. Since the AC component electric field generated between the coaxial lines I1P and I1N is canceled at the center line B, the coaxial line shields IS1P and IS1N are substantially grounded as shown in FIG. Therefore, the sum of the characteristic impedance R P + R N are signal LVDS +, corresponding to the impedance between LVDS-. Coaxial line I1P, respectively impedance R P of I1N, R N is not necessarily limited to 50 [Omega, if common with each other therebetween, the imaging device 116, a coaxial line I1P, can be arbitrarily set according to the specifications of the I1N.
 複合同軸線117において、同軸線I1P、I1Nは互いに隣接し、それぞれの断面が対称点Aで接している。対称点Aは、同軸線I1P、I1Nのそれぞれの断面の中心間を結ぶ中心線Bの中点に相当する。このことは、同軸線I1P、I1Nのそれぞれの断面は、対称点Aに対して点対称に配置されていることに相当する。また、同軸線I1P、I1Nそれぞれの断面は、対称点Aを通り中心線Bに垂直な中心線Cに対して線対称に配置されている。中心線Cは、同軸線I1P、I1N間の対称線である。ここで、同軸線I1P、I1Nのそれぞれに信号LVDS+、LVDS-が伝送される状況を考える。信号LVDS+、LVDS-の交流成分が互いに逆位相であるので、同軸線I1P、I1Nのそれぞれの周囲に生じる電場の位相が逆位相であって、分布が中心線Bに対して線対称となる。そのため、同軸線I1P、I1N間で交流成分によって生じる電界のモードとして中心線Cに対して反対称のモードの成分が主に誘起される。一般に信号線に生じる電界のモードによって信号線の比誘電率が異なりうるが、本実施形態によれば反対称のモードの成分が主となり、それ以外のモードの成分が相対的に低減する。それ以外のモードの成分は、主にノイズや撮像素子116、同軸線I1P、I1Nの構成の個体差によって生じ得る。
 従って、ペア間スキューが抑制されるので複合同軸線117を介して撮像信号処理部123に入力されるLVDSの誤復号が抑制される。ひいては、複号により得られる撮像信号に基づく画像データが正常に出力される。
In the composite coaxial line 117, the coaxial lines I1P and I1N are adjacent to each other, and their cross sections are in contact with each other at the symmetry point A. The symmetry point A corresponds to the midpoint of the center line B connecting the centers of the cross sections of the coaxial lines I1P and I1N. This corresponds to the fact that the respective cross sections of the coaxial lines I1P and I1N are arranged point-symmetrically with respect to the symmetry point A. The cross sections of the coaxial lines I1P and I1N are arranged symmetrically with respect to a center line C passing through the symmetry point A and perpendicular to the center line B. The center line C is a symmetrical line between the coaxial lines I1P and I1N. Here, consider a situation where the signals LVDS + and LVDS− are transmitted to the coaxial lines I1P and I1N, respectively. Since the AC components of the signals LVDS + and LVDS− are in opposite phases, the electric fields generated around the coaxial lines I1P and I1N are in opposite phases and the distribution is axisymmetric with respect to the center line B. Therefore, an antisymmetric mode component with respect to the center line C is mainly induced as a mode of the electric field generated by the AC component between the coaxial lines I1P and I1N. In general, the relative permittivity of the signal line may differ depending on the mode of the electric field generated in the signal line. However, according to the present embodiment, the anti-symmetric mode component is mainly used, and the other mode components are relatively reduced. Other mode components may be mainly caused by noise or individual differences in the configuration of the image sensor 116, the coaxial lines I1P and I1N.
Therefore, since the skew between pairs is suppressed, erroneous decoding of LVDS input to the imaging signal processing unit 123 via the composite coaxial line 117 is suppressed. As a result, the image data based on the imaging signal obtained by the decoding is normally output.
 また、同軸線I1P、I1Nが互いに隣接して配置されることで、複合同軸線117が屈曲されても同軸線I1P、I1Nのそれぞれの断面の配置が安定して維持される。そして、この配置により、信号LVDS+、LVDS-の伝送によって生じる電界分布の広がりが抑制され、中心線Cに対する反対称な電界分布が安定する。これにより、中心線Cに対する反対称のモードの成分が相対的に強化される。そのため、ペア間スキューが抑制されるので、LVDSに基づく撮像信号の誤復号が抑制される。 In addition, since the coaxial lines I1P and I1N are arranged adjacent to each other, the arrangement of the respective cross sections of the coaxial lines I1P and I1N is stably maintained even if the composite coaxial line 117 is bent. With this arrangement, the spread of the electric field distribution caused by the transmission of the signals LVDS + and LVDS− is suppressed, and the antisymmetric electric field distribution with respect to the center line C is stabilized. Thereby, the component of the antisymmetric mode with respect to the center line C is relatively strengthened. For this reason, the skew between pairs is suppressed, so that erroneous decoding of the imaging signal based on LVDS is suppressed.
 さらに、同軸線I1P、I1Nは、それぞれバインドテープBTを介して総合シールドOSに接して囲まれ、同軸線I1P、I1Nのそれぞれの断面の中心から総合シールドOSとの間の距離が同等である。総合シールドOSの中心点は、同軸線I1P、I1N間の中点である対称点Aと共通である。従って、複合同軸線117の屈曲に対する同軸線I1P、I1Nのそれぞれの断面の配置が安定的に維持される。そして、信号LVDS+、LVDS-の伝送によって生じる電界分布の広がりが抑制され、中心線Cに対する電界分布の反対称性が安定する。
 このことによっても、中心線Cに対する反対称のモードの成分が相対的に強調される。そのため、ペア間スキューが抑制されるので、複合同軸線117を介して受信したLVDSに基づく撮像信号の誤復号が抑制される。
Further, the coaxial lines I1P and I1N are respectively surrounded by being in contact with the total shield OS via the bind tape BT, and the distances from the centers of the respective cross sections of the coaxial lines I1P and I1N to the total shield OS are equal. The central point of the total shield OS is common to the symmetry point A that is the midpoint between the coaxial lines I1P and I1N. Therefore, the arrangement of the respective cross sections of the coaxial lines I1P and I1N with respect to the bending of the composite coaxial line 117 is stably maintained. Then, the spread of the electric field distribution caused by the transmission of the signals LVDS + and LVDS− is suppressed, and the antisymmetric property of the electric field distribution with respect to the center line C is stabilized.
This also emphasizes the anti-symmetric mode component relative to the center line C. For this reason, the skew between pairs is suppressed, so that erroneous decoding of the imaging signal based on the LVDS received via the composite coaxial line 117 is suppressed.
 なお、図2に示すように、断面の形状が円である複合同軸線117のうち、同軸線対I1によって占有されない領域に、同軸線対I1とは別個の導線対が一体に配置される。より具体的には、中心線Cよりも上方かつ中心線Bよりも右方に電力供給線VDD1が、中心線Cよりも上方かつ中心線Bよりも左方にグランド線GND2が、中心線Cよりも下方かつ中心線Bより左方に電力供給線VDD2が、中心線Cよりも下方かつ中心線Bより右方にグランド線GND1が、それぞれ配置されている。上方、下方とは、中心線Cで区分される2つの領域のうち同軸線I1P、I1Nがそれぞれ配置される領域または方向を示す。
 左方、右方とは、中心線Bで区分される2つの領域のうち、それぞれ一方、他方の領域または方向を示す。そして、信号線COM1、信号線COM2は、それぞれの断面の中心が中心線C上の対称点Aから互いに等距離となる位置に配置される。
As shown in FIG. 2, in the composite coaxial line 117 whose cross-sectional shape is a circle, a conductor pair separate from the coaxial line pair I1 is integrally disposed in a region not occupied by the coaxial line pair I1. More specifically, the power supply line VDD1 is above the center line C and to the right of the center line B, the ground line GND2 is above the center line C and to the left of the center line B, and the center line C The power supply line VDD2 is disposed below the center line B and further to the left than the center line B, and the ground line GND1 is disposed below the center line C and to the right from the center line B. Upper and lower indicate regions or directions in which the coaxial lines I1P and I1N are respectively arranged in two regions divided by the center line C.
Left and right indicate one or the other of the two regions divided by the center line B, respectively. The signal line COM1 and the signal line COM2 are arranged at positions where the centers of the respective cross sections are equidistant from the symmetry point A on the center line C.
 電力供給線VDD1、VDD2、グランド線GND1、GND2および信号線COM1、COM2の周囲は、それぞれ絶縁体で被覆される。電力供給線VDD1、VDD2およびグランド線GND1、GND2の外周は、いずれもバインドテープBTを介して総合シールドOSの内面に接している。電力供給線VDD1の外周は、同軸線I1P、信号線COM1、グランド線GND1の外周にそれぞれ接し、グランド線GND2の外周は、同軸線I1P、信号線COM2、電力供給線VDD2の外周にそれぞれ接している。電力供給線VDD2の外周は、同軸線I1N、信号線COM2、グランド線GND2の外周にそれぞれ接し、グランド線GND1の外周は、同軸線I1N、信号線COM1、電力供給線VDD1の外周にそれぞれ接している。信号線COM1の外周は、電力供給線VDD1、同軸線I1P、I1N、グランド線GND1の外周にそれぞれ接し、信号線COM2の外周は、同軸線I1P、グランド線GND2、電力供給線VDD2、同軸線I1Nの外周にそれぞれ接している。各信号線または導線の直径は、同軸線I1P、電力供給線VDD1、信号線COM1の順に小さくなり、同軸線I1Pの直径が最も大きい。そして、同軸線I1P、I1Nの直径は互いに等しい。電力供給線VDD1、VDD2、グランド線GND1、GND2の直径は互いに等しい。また、信号線COM1、COM2の直径は互いに等しい。 The periphery of the power supply lines VDD1 and VDD2, the ground lines GND1 and GND2, and the signal lines COM1 and COM2 are each covered with an insulator. The outer peripheries of the power supply lines VDD1 and VDD2 and the ground lines GND1 and GND2 are all in contact with the inner surface of the comprehensive shield OS via the bind tape BT. The outer periphery of the power supply line VDD1 is in contact with the outer periphery of the coaxial line I1P, the signal line COM1, and the ground line GND1, and the outer periphery of the ground line GND2 is in contact with the outer periphery of the coaxial line I1P, the signal line COM2, and the power supply line VDD2, respectively. Yes. The outer periphery of the power supply line VDD2 is in contact with the outer periphery of the coaxial line I1N, the signal line COM2, and the ground line GND2, and the outer periphery of the ground line GND1 is in contact with the outer periphery of the coaxial line I1N, the signal line COM1, and the power supply line VDD1, respectively. Yes. The outer periphery of the signal line COM1 is in contact with the outer periphery of the power supply line VDD1, the coaxial lines I1P and I1N, and the ground line GND1, and the outer periphery of the signal line COM2 is the coaxial line I1P, the ground line GND2, the power supply line VDD2, and the coaxial line I1N. Are in contact with the outer periphery of each. The diameter of each signal line or conductor decreases in the order of the coaxial line I1P, the power supply line VDD1, and the signal line COM1, and the diameter of the coaxial line I1P is the largest. The coaxial lines I1P and I1N have the same diameter. The diameters of the power supply lines VDD1 and VDD2 and the ground lines GND1 and GND2 are equal to each other. The signal lines COM1 and COM2 have the same diameter.
 この配置および信号線の径により、1つの同軸線対I1と3つの導線対が密に充填されデッドスペースが少なくなる。複合同軸線117が挿通される挿入部112の内部の限られた空間が有効に活用されるので、挿入部112の径を小さくすることができる。これに対して、図3に例示される、従来の典型的なツイナックス線の断面の形状は楕円形である。長軸方向が一対の導線IL1P、IL1Nが互いに絶縁体IN1を介して離間している方向であり、その方向に直交する方向が短軸方向である。一般に、短軸方向の屈曲耐性よりも長軸方向の耐性の方が弱いので、屈曲が繰り返されることによる破損のリスクが高くなる。従って、本実施形態に係る複合同軸線117によれば、形状が等方的な断面内に導線が充填されるので屈曲方向による屈曲耐性の依存性が緩和される。そのため、屈曲が繰り返されることで生じうる破損のリスクが低減する。なお、ツイナックス線は、屈曲耐性を確保するため、長手方向の軸まわりに捻じられて形成されることがある。その場合には、捻じれによるデッドスペースが生じるので、挿入部112の内部の空間が十分に活用されない。また、本実施形態に係る複合同軸線117において、対称点Aに対して点対称に配置された導線間で互いに同種の信号の伝送に用いられることで、同軸線対I1に生じる高周波領域における交流成分による電界分布の反対称性が妨げられない。そのため、他の系統の信号が伝送される場合でも、ペア間スキューが抑制されるので、LVDSに基づく撮像信号の誤復号が抑制される。 This arrangement and the diameter of the signal line make one coaxial line pair I1 and three conductor pairs densely packed and reduce the dead space. Since the limited space inside the insertion portion 112 through which the composite coaxial line 117 is inserted is effectively utilized, the diameter of the insertion portion 112 can be reduced. On the other hand, the cross-sectional shape of a conventional typical twinax line illustrated in FIG. 3 is an ellipse. The major axis direction is a direction in which the pair of conducting wires IL1P and IL1N are separated from each other via the insulator IN1, and the direction perpendicular to that direction is the minor axis direction. In general, since the resistance in the major axis direction is weaker than the resistance to bending in the minor axis direction, the risk of breakage due to repeated bending increases. Therefore, according to the composite coaxial line 117 according to the present embodiment, since the conducting wire is filled in the cross section having an isotropic shape, the dependency of the bending resistance on the bending direction is alleviated. Therefore, the risk of breakage that may occur due to repeated bending is reduced. The twinax wire may be formed by being twisted around a longitudinal axis in order to ensure bending resistance. In that case, since a dead space due to twisting occurs, the space inside the insertion portion 112 is not fully utilized. Further, in the composite coaxial line 117 according to the present embodiment, alternating current in the high-frequency region generated in the coaxial line pair I1 is used for transmission of the same kind of signal between the conductors arranged symmetrically with respect to the symmetry point A. The anti-symmetry of the electric field distribution due to the components is not disturbed. For this reason, even when a signal of another system is transmitted, the skew between pairs is suppressed, so that erroneous decoding of an imaging signal based on LVDS is suppressed.
 例えば、電力供給線VDD1、VDD2は、それぞれ電源電圧VDD1、VDD2をベースユニット12から撮像部112aに供給するための直流電力の供給に用いられる。グランド線GND1、GND2は、それぞれ撮像部112aの各構成要素とベースユニット12の電位基準点GND1、GND2との接地に用いられる。そのため、電力供給線VDD1、VDD2およびグランド線GND1、GND2において伝送される電気信号は、直流成分を主成分とする。信号線COM1、COM2は、それぞれ撮像部112aと撮像信号処理部123との間の制御信号COM1、COM2の送受信に用いられる。制御信号は、一般には、撮像信号に基づくLVDSよりも周波数が低いので、信号線COM1、COM2の周囲に生ずる電界は、同軸線I1P、I1Nの周囲に生ずる電界とは干渉しない。
 但し、制御信号COM1、COM2として、相互に交流成分の位相が逆位相である差動信号が用いられてもよい。このとき、対称点Aを挟んで信号線COM1、COM2間において交流成分の電界分布が反対称となるので、同軸線対I1に生じた電界分布の反対称性が維持される。
For example, the power supply lines VDD1 and VDD2 are used for supplying DC power for supplying the power supply voltages VDD1 and VDD2 from the base unit 12 to the imaging unit 112a, respectively. The ground lines GND1 and GND2 are used for grounding each component of the imaging unit 112a and the potential reference points GND1 and GND2 of the base unit 12, respectively. Therefore, the electrical signals transmitted through the power supply lines VDD1 and VDD2 and the ground lines GND1 and GND2 have a direct current component as a main component. The signal lines COM1 and COM2 are used for transmission and reception of control signals COM1 and COM2 between the imaging unit 112a and the imaging signal processing unit 123, respectively. Since the control signal generally has a lower frequency than the LVDS based on the imaging signal, the electric field generated around the signal lines COM1 and COM2 does not interfere with the electric field generated around the coaxial lines I1P and I1N.
However, as the control signals COM1 and COM2, differential signals in which the phases of the AC components are opposite to each other may be used. At this time, the electric field distribution of the AC component is antisymmetric between the signal lines COM1 and COM2 across the symmetry point A, so that the antisymmetry of the electric field distribution generated in the coaxial line pair I1 is maintained.
(イコライザ部の構成例)
 次に、本実施形態に係るイコライザ部119の構成例について説明する。図6A~図6Cは、本実施形態に係るイコライザ部119の構成例を示す図である。
 図6Aは、イコライザ部119の一構成例を示す。図6Aに示す例では、イコライザ部119は、コンデンサ119-1、抵抗素子119-2~119-4およびコイル119-5を含んで構成される。コンデンサ119-1、抵抗素子119-2のそれぞれの一端は、入力端に接続される。コンデンサ119-1、抵抗素子119-3のそれぞれの他端は、出力端に接続される。抵抗素子119-2の他端は、抵抗素子119-3、抵抗素子119-4の一端に接続される。コイル119-5の一端、他端は、それぞれ抵抗素子119-4の他端、基端に接続される。Cは、コンデンサ119-1の静電容量を示す。R1は、抵抗素子119-2、119-3に共通の抵抗値を示す。R2は、抵抗素子119-4の抵抗値を示す。Lは、コイル119-5のインダクタンスを示す。
(Configuration example of equalizer section)
Next, a configuration example of the equalizer unit 119 according to the present embodiment will be described. 6A to 6C are diagrams illustrating a configuration example of the equalizer unit 119 according to the present embodiment.
FIG. 6A shows a configuration example of the equalizer unit 119. In the example shown in FIG. 6A, the equalizer unit 119 includes a capacitor 119-1, resistance elements 119-2 to 119-4, and a coil 119-5. One end of each of the capacitor 119-1 and the resistance element 119-2 is connected to the input end. The other ends of the capacitor 119-1 and the resistance element 119-3 are connected to the output end. The other end of the resistance element 119-2 is connected to one end of the resistance element 119-3 and the resistance element 119-4. One end and the other end of the coil 119-5 are connected to the other end and the base end of the resistance element 119-4, respectively. C represents the capacitance of the capacitor 119-1. R1 represents a resistance value common to the resistance elements 119-2 and 119-3. R2 represents the resistance value of the resistance element 119-4. L represents the inductance of the coil 119-5.
 図6Bは、イコライザ部119の他の構成例を示す。図6Bに示す例では、イコライザ部119は、コイル119-6およびコンデンサ119-7、119-8を含んで構成される、いわゆるπ型イコライザである。コイル119-6、コンデンサ119-7のそれぞれの一端は、入力端に接続される。コンデンサ119-7の他端は、コンデンサ119-8の一端、基端に接続される。コイル119-6、コンデンサ119-8それぞれの他端は、出力端に接続される。C1、C2は、コンデンサ119-7、119-8の静電容量を示す。Lは、コイル119-6のインダクタンスを示す。 FIG. 6B shows another configuration example of the equalizer unit 119. In the example shown in FIG. 6B, the equalizer unit 119 is a so-called π-type equalizer that includes a coil 119-6 and capacitors 119-7 and 119-8. One end of each of the coil 119-6 and the capacitor 119-7 is connected to the input end. The other end of the capacitor 119-7 is connected to one end and a base end of the capacitor 119-8. The other ends of the coil 119-6 and the capacitor 119-8 are connected to the output end. C1 and C2 indicate the capacitances of the capacitors 119-7 and 119-8. L represents the inductance of the coil 119-6.
 図6Cは、イコライザ部119の他の構成例を示す。図6Cに示す例では、イコライザ部119は、コイル119-9、119-10およびコンデンサ119-11を含んで構成される、いわゆるT型イコライザである。コイル119-9の一端は、入力端に接続される。コイル119-9の他端は、コイル119-10の一端、コンデンサ119-11の一端に接続される。コイル119-10の他端は、出力端に接続される。コンデンサ119-11の他端は、基端に接続される。Cは、コンデンサ119-11の静電容量を示す。L1、L2は、コイル119-9、119-10のインダクタンスを示す。 FIG. 6C shows another configuration example of the equalizer unit 119. In the example shown in FIG. 6C, the equalizer unit 119 is a so-called T-type equalizer including coils 119-9 and 119-10 and a capacitor 119-11. One end of the coil 119-9 is connected to the input end. The other end of the coil 119-9 is connected to one end of the coil 119-10 and one end of the capacitor 119-11. The other end of the coil 119-10 is connected to the output end. The other end of the capacitor 119-11 is connected to the base end. C represents the capacitance of the capacitor 119-11. L1 and L2 indicate the inductances of the coils 119-9 and 119-10.
 図6A~図6Cのいずれの例においても、入力端、基端には、それぞれ同軸線I1P、I1Nが接続され、入力端と基端との間の電圧の周波数特性が等化される。出力部と基端との電圧が、等化された電圧として得られる。そこで、イコライザ部119の周波数特性が、撮像素子116と複合同軸線117のそれぞれの周波数特性を乗じて得られる周波数特性の逆特性に近似するように、各構成例に係る回路定数を予め設定しておく。回路定数とは、上述した静電容量C、C1、C2、抵抗値R、R1、R2、インダクタンスLなどを指す。従って、イコライザ部119がスコープユニット11において複合同軸線117の基端に設置されるため、挿入部112の径や長さに応じて異なる同軸線対I1の周波数特性が平坦化される。 6A to 6C, coaxial lines I1P and I1N are connected to the input end and the base end, respectively, and the frequency characteristics of the voltage between the input end and the base end are equalized. The voltage between the output unit and the base end is obtained as an equalized voltage. Therefore, the circuit constants according to the respective configuration examples are set in advance so that the frequency characteristics of the equalizer unit 119 approximate the inverse characteristics of the frequency characteristics obtained by multiplying the frequency characteristics of the imaging device 116 and the composite coaxial line 117. Keep it. The circuit constant refers to the above-described capacitances C, C1, C2, resistance values R, R1, R2, inductance L, and the like. Therefore, since the equalizer unit 119 is installed at the base end of the composite coaxial line 117 in the scope unit 11, the frequency characteristics of the coaxial line pair I1 that varies depending on the diameter and length of the insertion unit 112 are flattened.
 次に、本実施形態に係るイコライザ部119の周波数特性の例について説明する。図7は、本実施形態に係るイコライザ部119の周波数特性の例を示す図である。縦軸、横軸は、それぞれ利得、周波数を示す。実線、破線、一点鎖線は、それぞれ同軸線対I1、イコライザ部119、等化後の同軸線対I1の周波数特性を示す。図7に示す例では、同軸線対I1の利得は、10MHz以下の周波数帯域ではほぼ一定であるが、10MHzを超えると周波数が高い高周波成分ほど減衰し、0に近似する。他方、イコライザ部119の利得は、10MHz以下の周波数帯域ではほぼ一定であるが、10MHzを超えると周波数が高い高周波成分ほど増幅する。この周波数特性は、図6Aに示す構成を用いて得られた周波数特性である。等化後の同軸線対I1の利得は、1GHz以下の周波数帯域までの利得の範囲が6dB以内となり、利得がほぼ一定となる周波数帯域の幅が1GHzまで拡張される。なお、撮像素子116、複合同軸線117などの周波数特性の個体差を解消するために、イコライザ部119の回路定数が個体ごとに調整されてもよい。調整において、等化後の同軸線対I1の利得が所定範囲内(例えば、6dB以内)になる周波数帯域の幅が極力広くなるようにする。このように、イコライザ部119は、周波数特性の平坦化によりLVDSの主成分である高周波成分の減衰を抑制することができる。他の成分との干渉に起因する符号間干渉が抑制されるのでLVDSの誤復号が抑制される。 Next, an example of frequency characteristics of the equalizer unit 119 according to the present embodiment will be described. FIG. 7 is a diagram illustrating an example of frequency characteristics of the equalizer unit 119 according to the present embodiment. The vertical axis and the horizontal axis indicate gain and frequency, respectively. A solid line, a broken line, and an alternate long and short dash line indicate frequency characteristics of the coaxial line pair I1, the equalizer unit 119, and the equalized coaxial line pair I1, respectively. In the example shown in FIG. 7, the gain of the coaxial line pair I1 is substantially constant in a frequency band of 10 MHz or less, but when it exceeds 10 MHz, the higher frequency component attenuates and approximates to zero. On the other hand, the gain of the equalizer unit 119 is substantially constant in a frequency band of 10 MHz or less, but when the frequency exceeds 10 MHz, higher frequency components are amplified. This frequency characteristic is a frequency characteristic obtained using the configuration shown in FIG. 6A. The gain of the coaxial line pair I1 after equalization is within 6 dB in the gain range up to the frequency band of 1 GHz or less, and the width of the frequency band in which the gain is substantially constant is expanded to 1 GHz. Note that the circuit constant of the equalizer unit 119 may be adjusted for each individual in order to eliminate individual differences in frequency characteristics such as the image sensor 116 and the composite coaxial line 117. In the adjustment, the width of the frequency band in which the gain of the equalized coaxial line pair I1 is within a predetermined range (for example, within 6 dB) is made as wide as possible. As described above, the equalizer unit 119 can suppress the attenuation of the high-frequency component that is the main component of the LVDS by flattening the frequency characteristics. Since intersymbol interference caused by interference with other components is suppressed, erroneous decoding of LVDS is suppressed.
 以上に説明したように、本実施形態に係る複合同軸線117は、同軸線I1P、I1Nを備え、同軸線I1P、I1Nのそれぞれは、絶縁体IN1P、IN1Nを介して導体の同軸線シールドIS1P、IS1Nに覆われた導線IL1P、IL1Nを備える。また、同軸線I1Pと同軸線I1Nのそれぞれの断面が対称に配置されている。
 この構成により、導線IL1P、IL1Nのそれぞれに互いに位相が逆位相である高周波差動信号が伝送されると、それぞれの断面に対して反対称な交流成分の電界が主に誘起される。同軸線I1P、I1Nの間におけるペア間スキューが抑制されるので、撮像信号処理部123に伝送される高周波差動信号の復号が正常になされる。
As described above, the composite coaxial line 117 according to the present embodiment includes the coaxial lines I1P and I1N, and the coaxial lines I1P and I1N respectively include the conductor coaxial line shield IS1P and the conductor IN1P and IN1N, respectively. Conductive wires IL1P and IL1N covered with IS1N are provided. Further, the respective cross sections of the coaxial line I1P and the coaxial line I1N are arranged symmetrically.
With this configuration, when a high-frequency differential signal having phases opposite to each other is transmitted to each of the conductive wires IL1P and IL1N, an electric field of an AC component that is antisymmetric with respect to each cross section is mainly induced. Since the pair-to-pair skew between the coaxial lines I1P and I1N is suppressed, the high-frequency differential signal transmitted to the imaging signal processing unit 123 is normally decoded.
 また、本実施形態に係る複合同軸線117は、導線IL1P、IL1Nの一端から伝送された高周波差動信号の周波数特性を等化するイコライザ部119を導線IL1P、IL1Nの基端において備える。撮像信号処理部123は、イコライザ部119から入力される高周波差動信号をアンプで増幅して得られた信号を復号して撮像信号を取得する。
 この構成により、高周波成分を主成分とする高周波差動信号の減衰が抑制されるので、同軸線I1P、I1Nの間のペア間スキューが抑制される。そのため、撮像信号処理部123に伝送される高周波差動信号の復号が正常になされる。また、複合同軸線117の基端に備えられることで、少なくとも複合同軸線117の仕様に応じた周波数特性を予め設定しておき、設定した周波数特性に基づく等化がなされる。そのため、複合同軸線117と一体化してなるスコープユニット11の交換により、種々の仕様の複合同軸線117の仕様に適した等化がなされる。
In addition, the composite coaxial line 117 according to the present embodiment includes an equalizer section 119 that equalizes the frequency characteristics of the high-frequency differential signal transmitted from one end of the conducting wires IL1P and IL1N at the proximal ends of the conducting wires IL1P and IL1N. The imaging signal processing unit 123 acquires an imaging signal by decoding a signal obtained by amplifying the high-frequency differential signal input from the equalizer unit 119 with an amplifier.
With this configuration, attenuation of a high-frequency differential signal whose main component is a high-frequency component is suppressed, so that the inter-pair skew between the coaxial lines I1P and I1N is suppressed. For this reason, the high-frequency differential signal transmitted to the imaging signal processing unit 123 is normally decoded. Further, by providing the base end of the composite coaxial line 117, at least frequency characteristics corresponding to the specifications of the composite coaxial line 117 are set in advance, and equalization based on the set frequency characteristics is performed. Therefore, by replacing the scope unit 11 integrated with the composite coaxial line 117, equalization suitable for the specifications of the composite coaxial line 117 having various specifications is performed.
 また、本実施形態に係る複合同軸線117において、同軸線I1P、I1Nのそれぞれは、絶縁体の同軸線被膜IC1P、IC1Nで覆われ、同軸線I1P、I1Nのそれぞれの断面の中心点間の中点である対称点Aにおいて互いに接する。
 この構成により、伝送される高周波差動信号によって誘起される電界分布の広がりが抑制される。また、屈曲による同軸線I1P、I1N間の対称な位置関係が安定する。主に誘起される反対称な電界分布が安定するため、ペア間スキューがさらに抑制されるので、LVDSに基づく撮像信号の誤復号がさらに抑制される。
Further, in the composite coaxial line 117 according to the present embodiment, the coaxial lines I1P and I1N are covered with insulating coaxial line coatings IC1P and IC1N, respectively, and between the center points of the respective cross sections of the coaxial lines I1P and I1N. They touch each other at a point of symmetry A that is a point.
With this configuration, the spread of the electric field distribution induced by the transmitted high-frequency differential signal is suppressed. Further, the symmetrical positional relationship between the coaxial lines I1P and I1N due to bending is stabilized. Since the anti-symmetric electric field distribution induced mainly is stabilized, skew between pairs is further suppressed, so that erroneous decoding of an imaging signal based on LVDS is further suppressed.
 また、本実施形態に係る複合同軸線117において、同軸線I1P、I1Nのいずれも導体の総合シールドOSで覆われ、総合シールドの断面の形状が対称点Aに対して対称である。
 この構成により、伝送される高周波差動信号によって誘起される電界分布の広がりが抑制される。また、屈曲による同軸線I1P、I1N間の対称な位置関係が安定する。主に誘起される反対称な電界分布が安定するため、ペア間スキューがさらに抑制されるので、LVDSに基づく撮像信号の誤復号がさらに抑制される。
Further, in the composite coaxial line 117 according to the present embodiment, both the coaxial lines I1P and I1N are covered with the conductor total shield OS, and the cross-sectional shape of the total shield is symmetric with respect to the symmetry point A.
With this configuration, the spread of the electric field distribution induced by the transmitted high-frequency differential signal is suppressed. Further, the symmetrical positional relationship between the coaxial lines I1P and I1N due to bending is stabilized. Since the anti-symmetric electric field distribution induced mainly is stabilized, skew between pairs is further suppressed, so that erroneous decoding of an imaging signal based on LVDS is further suppressed.
 本実施形態に係る複合同軸線117は、一対または複数対の導線をさらに備える。
 各対の導線の一方と他方のそれぞれの断面の中心が対称点Aに対して対称に配置されている。
 この構成により、複合同軸線117のうち同軸線I1P、I1Nに占有されない領域に別個の導線が備えられる。そのため、複合同軸線117が挿入される挿入部112の内部における限られた空間を有効に活用し、被検体に挿入される挿入部112の径を小さくすることができる。また、各対の導線の一方と他方にそれぞれ伝送される別個の差動信号によって誘起される電界分布が対称点Aに対して反対称になるため、同軸線I1P、I1Nの周囲に主に誘起される反対称な電界分布が維持される。別個の差動信号の伝送によってペア間スキューが促進されないので、LVDSに基づく撮像信号の誤復号が抑制される。
The composite coaxial line 117 according to the present embodiment further includes a pair or a plurality of pairs of conducting wires.
The centers of the cross-sections of one of the pair of conductive wires and the other are arranged symmetrically with respect to the symmetry point A.
With this configuration, separate conductors are provided in regions of the composite coaxial line 117 that are not occupied by the coaxial lines I1P and I1N. Therefore, it is possible to effectively use the limited space inside the insertion portion 112 into which the composite coaxial line 117 is inserted, and to reduce the diameter of the insertion portion 112 inserted into the subject. In addition, since the electric field distribution induced by separate differential signals transmitted to one and the other of each pair of conductors is antisymmetric with respect to the symmetry point A, the induction is mainly induced around the coaxial lines I1P and I1N. The antisymmetric electric field distribution is maintained. Since the pair-to-pair skew is not promoted by transmission of a separate differential signal, erroneous decoding of the imaging signal based on LVDS is suppressed.
 本実施形態に係る複合同軸線117において、一対もしくは複数対の導線のそれぞれは、同軸線I1P、I1Nおよび一対もしくは複数対の導線のうち、他の導線の少なくとも一つに接し、一対もしくは複数対の導線のうち少なくとも一対の導線のそれぞれは、同軸線I1P、I1Nを覆うバインドテープBTを介して総合シールドOSに接する。
 この構成により、複合同軸線117において同軸線I1P、I1Nとは別個備えられる導線が総合シールドOSで覆われる等方的な空間内で密に配置される。そのため、限られた空間をさらに有効に活用して挿入部の径をさらに小さくするとともに、屈曲耐性を高めることができる。
In the composite coaxial line 117 according to the present embodiment, each of the pair or plural pairs of conductors is in contact with at least one of the other conductors among the coaxial lines I1P and I1N and the pair or plural pairs of conductors, and the pair or plural pairs. Each of at least a pair of conducting wires is in contact with the general shield OS via a bind tape BT covering the coaxial wires I1P and I1N.
With this configuration, in the composite coaxial line 117, the conducting wires provided separately from the coaxial lines I1P and I1N are densely arranged in an isotropic space covered with the comprehensive shield OS. Therefore, it is possible to further effectively utilize the limited space to further reduce the diameter of the insertion portion, and to increase the bending resistance.
 また、本実施形態に係る内視鏡装置1は、複合同軸線117と、導線IL1P、IL1Nの先端に高周波差動信号を出力する撮像部112aと、導線IL1P、IL1Nの基端からの高周波差動信号を復号する撮像信号処理部123と、を備える。
 この構成により、導線IL1P、IL1Nのそれぞれに、互いに位相が逆位相である撮像された画像を搬送する高周波差動信号が伝送され、それぞれの断面に対して反対称な交流成分の電界が主に誘起される。同軸線I1P、I1Nの間におけるペア間スキューが抑制されるので、撮像信号処理部123は、導線IL1P、IL1Nの基端からの高周波差動信号の復号を正常に行うことができる。
In addition, the endoscope apparatus 1 according to the present embodiment includes a composite coaxial line 117, an imaging unit 112a that outputs a high-frequency differential signal to the distal ends of the conducting wires IL1P and IL1N, and a high-frequency difference from the proximal ends of the conducting wires IL1P and IL1N. An imaging signal processing unit 123 that decodes the motion signal.
With this configuration, high-frequency differential signals that carry captured images whose phases are opposite to each other are transmitted to the conductors IL1P and IL1N, respectively, and an electric field of an AC component that is antisymmetric with respect to each cross section is mainly used. Induced. Since the pair-to-pair skew between the coaxial lines I1P and I1N is suppressed, the imaging signal processing unit 123 can normally decode the high-frequency differential signal from the base ends of the conductive lines IL1P and IL1N.
 なお、上述した実施形態では、複合同軸線117に含まれる同軸線対I1とは別個の導線対の数が3個である場合を例にしたが、1個、2個または4個以上であってもよい。これらの導線対のいずれか、またはそれらの任意の組み合わせは、同軸線対I1と同様な構成を備えた同軸線対であってもよい。また、複合同軸線117にライトガイド部113が挿通されてもよい。また、複合同軸線117のバインドテープBTの内部の空間には、さらに空気以外の絶縁体、例えば、ポリエチレンが充填されてもよい。 In the above-described embodiment, the case where the number of the pair of conductors separate from the coaxial line pair I1 included in the composite coaxial line 117 is three is an example, but it is one, two, four or more. May be. Any of these conducting wire pairs, or any combination thereof, may be a coaxial wire pair having a configuration similar to that of the coaxial wire pair I1. Further, the light guide portion 113 may be inserted through the composite coaxial line 117. Further, the space inside the bind tape BT of the composite coaxial line 117 may be further filled with an insulator other than air, for example, polyethylene.
 なお、上述した実施形態に係る内視鏡装置1の一部、例えば、CPU部121、撮像信号処理部123、をコンピュータで実現するようにしてもよい。その場合、この制御機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、内視鏡装置に内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。 In addition, you may make it implement | achieve a part of endoscope apparatus 1 which concerns on embodiment mentioned above, for example, the CPU part 121, and the imaging signal process part 123 with a computer. In that case, the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed. Here, the “computer system” is a computer system built in the endoscope apparatus, and includes an OS and hardware such as peripheral devices. The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line, In this case, a volatile memory inside a computer system that serves as a server or a client may be included that holds a program for a certain period of time. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
 また、上述した実施形態に係る内視鏡装置1の一部、または全部は、LSI(Large Scale Integration)等の集積回路として実現してもよい。内視鏡装置1の各機能ブロックは個別にプロセッサ化してもよいし、一部、または全部を集積してプロセッサ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現してもよい。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いてもよい。 Also, a part or all of the endoscope apparatus 1 according to the above-described embodiment may be realized as an integrated circuit such as an LSI (Large Scale Integration). Each functional block of the endoscope apparatus 1 may be individually made into a processor, or a part or all of them may be integrated into a processor. Further, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. In addition, when an integrated circuit technology that replaces LSI appears due to the advancement of semiconductor technology, an integrated circuit based on the technology may be used.
 以上、本発明の好ましい実施形態を説明したが、本発明はこれら実施形態及びその変形例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。
 また、本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment and its modification. Additions, omissions, substitutions, and other modifications can be made without departing from the spirit of the present invention.
Further, the present invention is not limited by the above description, and is limited only by the scope of the appended claims.
1  内視鏡装置
11  スコープユニット
12  ベースユニット
13  光学アダプタ
111  照明部
112  挿入部
112a  撮像部
113  ライトガイド部
114  発振器
115  スコープレンズ部
116  撮像素子
117  複合同軸線
118  第一コネクタ部
119  イコライザ部
119-1、119-7、119-8、119-11  コンデンサ
119-2、119-3、119-4  抵抗素子
119-5、119-6、119-9、119-10  コイル
121  CPU部
122  照明駆動部
123  撮像信号処理部
124  入力部
125  メモリ部
126  表示部
127  第二コネクタ部
131  照明レンズ部
132  対物レンズ部
BT  バインドテープ
COM1、COM2  信号線
GND1、GND2  グランド線
I1  同軸線対
I1P、I1N  同軸線
IC1P、IC1N  同軸線被膜
IL1P、IL1N  導線
IN1、IN1P、IN1N  絶縁体
IS1P、IS1N  同軸線シールド
OC  総合被膜
OS  総合シールド
VDD1、VDD2  電力供給線
DESCRIPTION OF SYMBOLS 1 Endoscope apparatus 11 Scope unit 12 Base unit 13 Optical adapter 111 Illumination part 112 Insertion part 112a Imaging part 113 Light guide part 114 Oscillator 115 Scope lens part 116 Imaging element 117 Compound coaxial line 118 First connector part 119 Equalizer part 119- 1, 119-7, 119-8, 119-11 Capacitor 119-2, 119-3, 119-4 Resistance element 119-5, 119-6, 119-9, 119-10 Coil 121 CPU part 122 Illumination drive part 123 Image pickup signal processing unit 124 Input unit 125 Memory unit 126 Display unit 127 Second connector unit 131 Illumination lens unit 132 Objective lens unit BT Bind tape COM1, COM2 Signal line GND1, GND2 Ground line I1 Coaxial line pair I1P, I1N Coaxial IC1P, IC1N coaxial line coating IL1P, IL1N wire IN1, IN1P, IN1N insulator IS1P, IS1N coaxial line shield OC Overall coating OS overall shield VDD 1, VDD2 power supply line

Claims (7)

  1.  第1の同軸線と、第2の同軸線と、を備え、
     前記第1の同軸線と前記第2の同軸線のそれぞれは、
     絶縁体を介して導体のシールドに覆われた信号線を備え、
     前記それぞれの断面が対称に配置された
     ケーブル。
    A first coaxial line and a second coaxial line;
    Each of the first coaxial line and the second coaxial line is:
    It has a signal line covered with a conductor shield through an insulator,
    A cable in which the respective cross sections are arranged symmetrically.
  2.  前記信号線の一端から伝送された信号の周波数特性を等化する等化部を
     前記信号線の他端において備える
     請求項1に記載のケーブル。
    The cable according to claim 1, further comprising an equalization unit that equalizes frequency characteristics of a signal transmitted from one end of the signal line at the other end of the signal line.
  3.  前記第1の同軸線と前記第2の同軸線のそれぞれは、
     絶縁体の被覆部材で覆われ、
     前記それぞれの断面の中心点間の中点において互いに接する
     請求項1または請求項2に記載のケーブル。
    Each of the first coaxial line and the second coaxial line is:
    Covered with an insulating covering,
    The cable according to claim 1, wherein the cables are in contact with each other at a midpoint between center points of the respective cross sections.
  4.  前記第1の同軸線と前記第2の同軸線のいずれも
     導体の被覆部材で覆われ、
     前記導体の被覆部材の断面の形状が前記中点に対して対称である
     請求項3に記載のケーブル。
    Both the first coaxial line and the second coaxial line are covered with a conductor covering member,
    The cable according to claim 3, wherein a shape of a cross section of the covering member of the conductor is symmetric with respect to the midpoint.
  5.  一対または複数対の導線をさらに備え、
     各対の導線の一方と他方のそれぞれの断面の中心が前記中点に対して対称に配置された
     請求項3または請求項4のいずれか一項に記載のケーブル。
    Further comprising one or more pairs of conductors;
    The cable according to any one of claims 3 and 4, wherein the center of each cross section of one of the pair of conductive wires is arranged symmetrically with respect to the midpoint.
  6.  前記一対もしくは複数対の導線のそれぞれは、
     前記第1の同軸線、前記第2の同軸線および前記導線のうち他の導線の少なくとも一つに接し、
     前記一対もしくは複数対の導線のうち少なくとも一対の導線のそれぞれは、前記第1の同軸線と前記第2の同軸線を覆う被覆部材に接する
     請求項5に記載のケーブル。
    Each of the one or more pairs of conducting wires is
    In contact with at least one of the first coaxial line, the second coaxial line, and the conducting wire among other conducting wires;
    6. The cable according to claim 5, wherein each of at least a pair of the conductors out of the pair or the plurality of pairs of conductors is in contact with a covering member that covers the first coaxial line and the second coaxial line.
  7.  請求項1から請求項6のいずれか一項のケーブルと、
     前記信号線の一端に高周波差動信号を出力する撮像部と、
     前記信号線の他端からの高周波差動信号を復号する信号処理部と、
     を備える内視鏡装置。
    A cable according to any one of claims 1 to 6,
    An imaging unit that outputs a high-frequency differential signal to one end of the signal line;
    A signal processing unit for decoding a high-frequency differential signal from the other end of the signal line;
    An endoscope apparatus comprising:
PCT/JP2017/020226 2016-06-20 2017-05-31 Coaxial cable and endoscope device WO2017221651A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-121536 2016-06-20
JP2016121536 2016-06-20

Publications (1)

Publication Number Publication Date
WO2017221651A1 true WO2017221651A1 (en) 2017-12-28

Family

ID=60783259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020226 WO2017221651A1 (en) 2016-06-20 2017-05-31 Coaxial cable and endoscope device

Country Status (1)

Country Link
WO (1) WO2017221651A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020064714A1 (en) * 2018-09-27 2020-04-02 3Shape A/S A power-adaptable device for scanning a human intra-cavity
CN114822932A (en) * 2021-01-21 2022-07-29 华为技术有限公司 Cable, cable assembly and communication system
WO2023102387A1 (en) * 2021-11-30 2023-06-08 Stryker Corporation Systems and methods for connecting a medical imaging device to a medical imaging controller

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005160925A (en) * 2003-12-05 2005-06-23 Media Technology:Kk Electronic endoscope apparatus
JP2010262787A (en) * 2009-04-30 2010-11-18 Hitachi Cable Ltd Frequency non-depended cable module
JP2015138751A (en) * 2014-01-24 2015-07-30 日立金属株式会社 signal transmission cable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005160925A (en) * 2003-12-05 2005-06-23 Media Technology:Kk Electronic endoscope apparatus
JP2010262787A (en) * 2009-04-30 2010-11-18 Hitachi Cable Ltd Frequency non-depended cable module
JP2015138751A (en) * 2014-01-24 2015-07-30 日立金属株式会社 signal transmission cable

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020064714A1 (en) * 2018-09-27 2020-04-02 3Shape A/S A power-adaptable device for scanning a human intra-cavity
CN114822932A (en) * 2021-01-21 2022-07-29 华为技术有限公司 Cable, cable assembly and communication system
CN114822932B (en) * 2021-01-21 2023-11-17 华为技术有限公司 Cable, cable assembly and communication system
WO2023102387A1 (en) * 2021-11-30 2023-06-08 Stryker Corporation Systems and methods for connecting a medical imaging device to a medical imaging controller

Similar Documents

Publication Publication Date Title
JP5038059B2 (en) Electronic endoscope and endoscope apparatus
WO2017221651A1 (en) Coaxial cable and endoscope device
US9443646B2 (en) Data cable
US7449639B2 (en) Shielded flat pair cable architecture
US8546688B2 (en) High speed data cable with shield connection
US20110048764A1 (en) High frequency extrafine pair cable and method for manufacturing the same
KR101774358B1 (en) Active high speed data cable
US20180296065A1 (en) Endoscope device
TW201424177A (en) Method for connecting differential transmission cable, differential transmission cable and electric device
CN106601365A (en) Cable
JP2011244418A (en) Common mode noise filter, signal transmission cable and cable relay connector
KR20140125936A (en) Passive equalizer and system for transmission of high speed digital signal using the same
CN210073382U (en) Cable for electronic endoscope
US20160374538A1 (en) Electronic endoscope
CN103069729B (en) For transmitting the device of electrical signal between the one or three shaft cable and the two or three shaft cable
US20140266536A1 (en) Ferrite core winding structure with high frequency response
EP4053577A1 (en) Transmission line with twisted coaxial cables
JP3210501U (en) USB cable
JP2016131709A (en) Electronic endoscope apparatus
US9697944B2 (en) Device for delivering galvanic isolated digital video at high frequencies
JP2015023076A (en) Shield structure of signal line and signal transmission method
WO2016208380A1 (en) Cable device and communication system
TWI548279B (en) Multimedia transceiver system, multimedia transmission apparatus, and multimedia receiving apparatus
RU145257U1 (en) SIGNAL TRANSMISSION LINE
JP2020031367A (en) camera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP