WO2017221360A1 - Particle therapy apparatus - Google Patents

Particle therapy apparatus Download PDF

Info

Publication number
WO2017221360A1
WO2017221360A1 PCT/JP2016/068592 JP2016068592W WO2017221360A1 WO 2017221360 A1 WO2017221360 A1 WO 2017221360A1 JP 2016068592 W JP2016068592 W JP 2016068592W WO 2017221360 A1 WO2017221360 A1 WO 2017221360A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
irradiation
particle beam
value
scanning electromagnet
Prior art date
Application number
PCT/JP2016/068592
Other languages
French (fr)
Japanese (ja)
Inventor
泰三 本田
功 ▲高▼橋
和之 花川
昌広 池田
武一郎 横井
裕介 坂本
亮平 神谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/068592 priority Critical patent/WO2017221360A1/en
Priority to JP2016566843A priority patent/JP6091730B1/en
Priority to TW105138235A priority patent/TWI628670B/en
Publication of WO2017221360A1 publication Critical patent/WO2017221360A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • the present invention relates to a particle beam therapy apparatus used for medical use and research, and more particularly to a scanning particle beam therapy apparatus such as spot scanning or raster scanning.
  • a set current of a scanning electromagnet serving as a scanning unit is temporally changed.
  • the set current value of the scanning electromagnet can be obtained by a theoretical formula from the specifications of the scanning electromagnet, the specifications of the scanning electromagnet power source, and the specifications of the irradiation beam (irradiation energy, incident beam position, etc.).
  • the setting current value of the scanning magnet calculated by this theoretical formula is a theoretical value on the assumption that the specification of the scanning electromagnet, the specification of the scanning power supply, and the irradiation beam specification are not changed at all. Since it fluctuates due to various factors, there is a possibility that the irradiation position shifts and erroneous irradiation occurs.
  • a scanning electromagnet is generally a bipolar electromagnet
  • the beam irradiation position may deviate from the assumed position due to the residual magnetic field due to the hysteresis of the electromagnet, despite the opening of the electromagnet.
  • the beam irradiation position may be shifted despite irradiation under the same conditions.
  • Patent Document 1 the set current value of the scanning electromagnet and the beam position data detected by the beam position monitor are stored, and a conversion table is used based on the stored set current value and the beam position data.
  • a method for calculating a set current value of a scanning electromagnet is disclosed.
  • Patent Document 2 discloses a method of calculating a command value to a scanning electromagnet using a polynomial model based on the passing position coordinates of a charged particle beam actually measured at the time of calibration.
  • Patent Document 1 and Patent Document 2 it is necessary to store the irradiation position before adjustment of the charged particle beam in the patient QA (Quality Assurance) before treatment, and the patient QA takes time. there were. Further, in the conventional method using one function, there is a problem that an error becomes large when irradiating a more complicated target region.
  • the present invention has been made to solve the above-described problems, and has an object to provide a particle beam therapy system that can shorten the time required for preliminary preparation and can realize high-precision beam irradiation. Yes.
  • a scanning electromagnet that scans a charged particle beam, a set magnetic field value corresponding to a target irradiation position coordinate scanned by the scanning electromagnet, and the set magnetic field value and the scanning electromagnet
  • an irradiation management device that calculates a set current value of the scanning electromagnet based on a value of a predetermined magnetic field change amount from a folded magnetic field in which the magnetic moment changes in the reverse direction.
  • high-precision beam irradiation can be realized by calculating the set current value of the scanning electromagnet based on the value of the predetermined magnetic field change amount from the folded magnetic field.
  • FIG. 1 is a block diagram of the main configuration of a particle beam therapy system 100 according to Embodiment 1 of the present invention
  • FIG. 2 is a bird's-eye view of the schematic configuration of the entire particle beam therapy system.
  • the particle beam therapy system 100 according to the first embodiment includes a beam generation device 52, a beam transport system 59, two particle beam irradiation devices 41a and 41b, and the like.
  • the former stage accelerator 53, the accelerator 54, the beam transport system 59, the beam accelerated transport control apparatus 50, the particle beam irradiation apparatus 41, and the treatment plan apparatus 61 are provided.
  • the front accelerator 53 accelerates the charged particles generated by the ion source to generate the charged particle beam 1.
  • the accelerator 54 is connected to the pre-stage accelerator 53 and accelerates the generated charged particle beam 1 to a predetermined energy.
  • the beam transport system 59 transports the charged particle beam 1 emitted after being accelerated to the energy set by the accelerator 54.
  • the beam accelerated transport control device 50 controls each of the former stage accelerator 53, the accelerator 54, and the beam transport system 59.
  • the particle beam irradiation apparatus 41 is installed downstream of the beam transport system 59 and irradiates the irradiation target 15 with the charged particle beam 1.
  • the treatment planning device 61 determines the irradiation target 15 of the patient from image information obtained by X-ray CT or the like, and sets target irradiation position coordinates, target dose, target beam size, target accelerator setting, which are treatment plan data for the irradiation target 15, Generates a range shifter insertion amount and the like.
  • the target accelerator setting includes set values of the beam energy and beam current of the accelerator 54.
  • the particle beam irradiation apparatus 41 includes a beam transport duct 2 that transports the incident charged particle beam 1a incident from the beam transport system 59, and incident charged particle beams in the X direction and the Y direction that are perpendicular to the incident charged particle beam 1a.
  • Scanning electromagnets 3x and 3y that scan 1a, a position monitor 7, a position monitor unit 8, a dose monitor 11, a dose monitor unit 12, an irradiation management device 32, a scanning electromagnet power source 4, and a beam expanding device 16 ,
  • the traveling direction of the incident charged particle beam 1a is the Z direction.
  • the scanning electromagnet 3x is an X-direction scanning electromagnet that scans the incident charged particle beam 1a in the X direction
  • the scanning electromagnet 3y is a Y-direction scanning electromagnet that scans the incident charged particle beam 1a in the Y direction.
  • the position monitor 7 detects a passing position (center of gravity position) and a beam size through which the outgoing charged particle beam 1b deflected by the scanning electromagnets 3x and 3y passes.
  • the beam size is an area passing through the XY plane perpendicular to the Z direction of the outgoing charged particle beam 1b.
  • the position monitor unit 8 receives the passage position and beam size detected by the position monitor 7, converts the passage position and beam size into digital data, and generates measurement position coordinates and a measurement beam size.
  • the dose monitor 11 detects the dose of the outgoing charged particle beam 1b.
  • the dose monitor unit 12 receives the dose detected by the dose monitor 11, converts the dose into digital data, and generates a measured dose.
  • the beam expanding device 16 expands the beam size of the outgoing charged particle beam 1b.
  • the vacuum duct 19 secures a vacuum region through which the outgoing charged particle beam 1b passes.
  • the bellows 18 connects the beam transport duct 2 and the vacuum duct 19 so as to extend and contract, and extends the vacuum region to the irradiation target 15.
  • the ripple filter 20 is also called a ridge filter and has a convex shape.
  • the ripple filter 20 causes the charged particle beam 1, which is a monochromatic beam having almost a single energy transmitted from the accelerator 54, to have a wide energy range.
  • Control of the position coordinate in the depth direction (Z direction) in the irradiation object 15 is performed by changing the acceleration energy of the accelerator 54 to change the energy of the incident charged particle beam 1a and the energy of the outgoing charged particle beam 1b by the range shifter 21. It is done by changing.
  • the range shifter 21 adjusts the range of the charged particle beam 1 in small increments. A significant range change of the charged particle beam 1 is performed by changing the acceleration energy of the accelerator 54, and a range change of the small charged particle beam 1 is performed by changing the setting of the range shifter 21.
  • the irradiation management device 32 includes an irradiation control device 5 and an irradiation control computer 22.
  • the irradiation control computer 22 reads out the treatment plan data from the server of the treatment planning device 61, and generates setting data rearranged in the irradiation order of a certain irradiation spot in the irradiation units divided to control the irradiation dose. That is, the setting data is sequenced treatment plan data. Based on the setting data, it is output to certain setting data by a command to each device.
  • the elements of the setting data are the target irradiation position coordinates, target dose, target beam size, target accelerator setting, range shifter insertion amount, and each element of the setting data is the target irradiation position coordinates, target dose, target This is data in which beam size, target accelerator setting, and range shifter insertion amount are sequenced.
  • the setting data includes an accelerator setting command, a range shifter command, a command current, a command current, a beam size command, and a target dose.
  • the irradiation control computer 22 receives irradiation records such as measurement position coordinates, measurement dose, measurement beam size, etc. in pre-irradiation performed in the absence of a patient, and evaluates irradiation records.
  • the irradiation control computer 22 generates a command current obtained by correcting the command current based on the measurement position coordinates, and transmits the command current or the command current to the scanning electromagnet power source 4.
  • the irradiation control computer 22 receives irradiation records such as measurement position coordinates, measurement doses, and measurement beam sizes in the main irradiation actually irradiated to the patient, and stores the irradiation records in the main irradiation in the server of the treatment planning device 61. .
  • the irradiation control device 5 outputs a trigger signal, a force und start signal, a beam supply command, and a beam stop command, and controls the irradiation spot and irradiation dose in the irradiation target 15.
  • the irradiation control device 5 changes the setting of each device for each irradiation spot by the trigger signal, starts measuring the irradiation dose of the irradiation spot by the count start signal, and controls the next irradiation spot when the measured dose reaches the target dose.
  • a beam stop command is output to the beam accelerated transport control device 50 to stop the charged particle beam.
  • the scanning electromagnet power source 4 changes the set current of the scanning electromagnets 3x and 3y based on a command current that is a control input to the scanning electromagnet 3 output from the irradiation controller 5.
  • the beam expansion control device 17 outputs a beam size command for setting the beam size in the position monitor 7 to the beam expansion device 16.
  • the range shifter unit 23 outputs a range shifter command for changing the energy of the outgoing charged particle beam 1b to the range shifter 21.
  • FIG. 3 is a diagram for explaining a control method using the set current of the scanning electromagnet 3 in the particle beam therapy system 100 according to Embodiment 1 of the present invention.
  • FIG. 3A shows a hysteresis curve showing the relationship between the set magnetic field and the set current in the particle beam therapy system 100
  • FIG. 3B shows the spot position 60 irradiated to the irradiation target 15 corresponding to the set current. Show.
  • the relationship between the set magnetic field and the set current of the scanning electromagnet 3 is that the magnetic field change amount with respect to the current change amount changes from the folded current (corresponding to 60-5 and 60-11 in FIG. 3) to a constant current.
  • the change in the magnetic field is proportional to the amount of current change.
  • the magnetic field BL that is, the BL product
  • the current value I is obtained from the target irradiation position coordinate Ps that is the irradiation planned position, the kinetic energy T and mass energy m 0 c 2 of the emitted charged particle beam, and the vertical distance L from the installation position of the scanning electromagnet to the irradiation position Ps.
  • the value of the BL product can be obtained from the position coordinates of the charged particle beam as shown in Equation (1).
  • the set current I is obtained from the set magnetic field BL corresponding to the target irradiation position coordinates obtained by the above equation (2).
  • the value of the current flowing through the scanning electromagnet is calculated using the amount of change from the set magnetic field turning point.
  • the magnetic field BL and the current value I vary between the state in which the magnetic moment has not changed completely and the state in which the magnetic moment has changed, with the amount of change in the magnetic field at which the magnetic moment of the iron core of the scanning magnet changes almost completely in the opposite direction. Because the relationship changes, different formulas are used.
  • the set current value I is Calculation is performed according to the equation (3) corresponding to the curve A of 3.
  • the set current value I is calculated by the equation (4) corresponding to the straight line B in FIG.
  • the magnetic field change amount from BLr (corresponding to 60-11) is set as the turning point when the magnetic field is turned back in the negative direction after raising the magnetic field, that is, when the absolute value of the magnetic field change amount is less than the predetermined magnetic field change amount ⁇ BLm,
  • the set current value I is calculated by the equation (5) corresponding to the curve C in FIG.
  • a, d, and e are coefficients
  • b is a constant, which are obtained by fitting from the magnetic field measurement results.
  • high-accuracy beam irradiation can be realized by obtaining the set current value using the corresponding BL-I conversion formula based on the change amount of the magnetic field whose proportional relationship changes.
  • FIG. 4 shows the flow of the overall operation of the scanning electromagnet 3
  • FIG. 5 shows the flow of calculation of the set current value of the scanning electromagnet 3.
  • the particle beam therapy system 100 sets the charged particle energy based on the treatment plan data of the treatment planning device 61 after the scanning electromagnet is demagnetized by the irradiation control device 5 of the irradiation management device 32 (step S401). (Step S402), the target position coordinates are set (Step S403).
  • the irradiation control computer 22 of the irradiation management device 32 calculates the set magnetic field BL corresponding to the target irradiation position coordinate by the above formula (2) (step S404), and based on the calculated set magnetic field BL, the corresponding BL
  • the set current value I is calculated by using the conversion formulas (3) to (6) of ⁇ I (step S405). Steps S404 and S405 are features of the present invention, and a detailed flow of step S405 will be described later.
  • the calculated set current value I is set as the current value of the scanning electromagnet by the irradiation control device 5 of the irradiation management device 32 (step S406), and particle beam irradiation is performed (step S407). Irradiation continues until the irradiation at the spot reaches the target dose value (step S408: No). When the irradiation at the spot reaches the target dose value (step S408: Yes), the next spot is irradiated (step S409: No). This is repeated (step S403 to step S409: No).
  • the irradiation spot is a layer divided in the Z direction, and is a layer corresponding to the kinetic energy of the charged particle beam 1, and is divided into a certain slice and the XY direction in each slice.
  • the spot is irradiated in the next slice (step S410: No), and this is repeated (step S403 to step S410: No).
  • the final spot of the final slice is irradiated (step S410: Yes), and the particle beam irradiation ends.
  • the set current value I is calculated by the equation (7) (step S503).
  • step S501 In spot irradiation after the second point (step S501: No), first, it is determined whether or not the spot irradiation is immediately after the folding magnetic field (step S504). That is, BL (i) > BL (i-1) and BL (i-1) ⁇ BL (i-2) , or BL (i) ⁇ BL (i-1) and BL (i-1) ⁇ BL ( i-2) .
  • step S504 Yes
  • the folding magnetic field BLr is set to the magnetic field BL of the immediately preceding spot
  • step S506 it is determined whether the spot irradiation is in the direction of increasing the magnetic field. That is, it is determined whether BL (i) > folding magnetic field BLr.
  • step S506 Yes
  • step S507 the set current I Is calculated by equation (3) (step S508).
  • step S506 When spot irradiation is in the direction of increasing the magnetic field (step S506: Yes) and the magnetic field is separated from the folded magnetic field by a predetermined magnetic field change amount ⁇ BLh or more, that is, when BL (i) ⁇ BLr + ⁇ BLh (step S507: Yes), the set current I Is calculated by equation (4) (step S509).
  • step S506 When the spot irradiation is in the direction of decreasing the magnetic field (step S506: No) and the magnetic field is not separated from the folded magnetic field by a predetermined magnetic field change amount ⁇ BLh or more, that is, BL (i) ⁇ BLr + ⁇ BLh (step S510: No), the set current I Is calculated by equation (5) (step S508).
  • step S506 When the spot irradiation is in the direction of decreasing the magnetic field (step S506: No) and the magnetic field is separated from the folded magnetic field by a predetermined magnetic field variation ⁇ BLh or more, that is, when BL (i) ⁇ BLr + ⁇ BLh (step S510: Yes), the set current I Is calculated by equation (6) (step S512).
  • high-accuracy beam irradiation can be realized by obtaining the set current value using the corresponding BL-I conversion formula based on the change amount of the magnetic field whose proportional relationship changes.
  • the particle beam therapy system 100 calculates the value of the set magnetic field corresponding to the target irradiation position coordinates by the irradiation management device, and calculates the magnetic field value and the iron core of the scanning electromagnet. Since the set current value is calculated based on the value of the predetermined magnetic field change from the turning point at which the magnetic moment changes in the opposite direction, the preparation time can be shortened and high-precision beam irradiation is possible. Can be realized.
  • Embodiment 2 FIG. In the first embodiment, the folding magnetic field is used as it is at the folding point, but in the second embodiment, a case where a folding history is used will be described.
  • the configuration of the particle beam therapy system according to the second embodiment is the same as that of the particle beam therapy system 100 according to the first embodiment, and a description thereof will be omitted.
  • Embodiment 2 of the present invention The operation of the particle beam therapy system 100 according to Embodiment 2 of the present invention will be described. Basically, the flow is the same as that shown in FIGS. 4 and 5, but the flow shown in FIG. 6 is used instead of step S505 shown in FIG.
  • step S504 in FIG. 5 that is, in the case where the spot irradiation is immediately after the folded magnetic field and the predetermined condition for history erasure is met (step S601: Yes)
  • step S601: Yes the corresponding history is erased and the set magnetic field
  • the folding magnetic field that is the base point of the calculation is reset to the folding history, that is, the information about the setting magnetic field and the setting current value in the past folding (step S602).
  • the magnetic moment is not completely reversed in the reverse direction. It will be folded.
  • the set magnetic field BLr (n) and the set current value Ir (n) at the time of folding are recorded as a history.
  • the direction of folding may be recorded, the direction of increase / decrease of the magnetic field is reversed in each folding, so that it is determined what number the history corresponds to the current setting magnetic field increase / decrease direction and the previous folding. For example, it is not always necessary to record the direction of folding at each folding.
  • the history deletion conditions are as follows. When the absolute value of the magnetic field change amount between the return setting magnetic fields becomes equal to or greater than the predetermined magnetic field change amount ⁇ BLm, the magnetic moment is completely reversed in the reverse direction. At this time, the history of the magnetic field BL in the past has no influence on the state of the magnetic moment, so that the history information so far can be deleted.
  • the magnetic field BL changes in a direction opposite to the direction of change in the folding, and the absolute value of the difference between the magnetic field BL and the setting magnetic field in the folding is larger than a predetermined magnetic field change amount ⁇ BLm.
  • the magnetic moment completely turns forward. Also in this case, the history information so far can be deleted.
  • the maximum value of the past magnetic field BL smaller than the current magnetic field BL (i) Since the influence on the state of the magnetic moment due to the maximum value of BL is erased by a larger maximum value or the current magnetic field, it can be deleted from the history. In this case, the local minimum value before the deleted local maximum value is set as a new folded magnetic field. Similarly, when the magnetic field BL changes in the negative direction, the influence of the past minimum value of the magnetic field BL is erased by a smaller minimum value or a current magnetic field. In this case, the maximum value before the deleted minimum value is set as a new folded magnetic field.
  • the particle beam therapy system 100 uses the irradiation management apparatus when the spot irradiation is immediately after the turn-back magnetic field and the predetermined condition for history erasure is met. Since the history is deleted and the folding magnetic field is reset to the previous folding magnetic field and current value, the conversion from the magnetic field to the current value can be performed more precisely.

Abstract

The present invention is capable of shortening the time for preparations in advance and achieving highly accurate beam irradiation by including: a scanning electromagnet that scans with a charged-particle beam; and an irradiation management device that calculates the value of a set magnetic field that corresponds to target irradiation position coordinates on a subject to be irradiated on which the scanning electromagnet scans with the charged-particle beam, and calculates a set current value of the scanning electromagnet on the basis of the value of the set magnetic field and the value of a predetermined amount of variation of the magnetic field from a return magnetic field in which the magnetic moment of the scanning electromagnet reverses into the opposite direction.

Description

粒子線治療装置Particle beam therapy system
 この発明は、医療用や研究用に用いられる粒子線治療装置に関し、特にスポツトスキャニングやラスタースキャニングといった走査型の粒子線治療装置に関するものである。 The present invention relates to a particle beam therapy apparatus used for medical use and research, and more particularly to a scanning particle beam therapy apparatus such as spot scanning or raster scanning.
 従来の走査式照射を行う粒子線照射装置においては、荷電粒子ビームを走査するため、走査手段である走査電磁石の設定電流を時間的に変化させている。この走査電磁石の設定電流値は、走査電磁石の仕様、走査電磁石電源の仕様、及び照射ビームの仕様(照射エネルギ一、入射ビーム位置など)から理論式により求めることができる。しかし、この理論式により算出された走査電磁石の設定電流値は、走査電磁石の仕様、走査電源の仕様、及び照射ビーム仕様がまったく変動しないことを前提条件とした理論上の値であり、現実にはさまざまな要因で変動するため、照射位置がずれて誤照射を生じる可能性がある。 In a conventional particle beam irradiation apparatus that performs scanning irradiation, in order to scan a charged particle beam, a set current of a scanning electromagnet serving as a scanning unit is temporally changed. The set current value of the scanning electromagnet can be obtained by a theoretical formula from the specifications of the scanning electromagnet, the specifications of the scanning electromagnet power source, and the specifications of the irradiation beam (irradiation energy, incident beam position, etc.). However, the setting current value of the scanning magnet calculated by this theoretical formula is a theoretical value on the assumption that the specification of the scanning electromagnet, the specification of the scanning power supply, and the irradiation beam specification are not changed at all. Since it fluctuates due to various factors, there is a possibility that the irradiation position shifts and erroneous irradiation occurs.
 例えば、走査電磁石は一般に両極性電磁石であることから、電磁石のヒステリシスにより電磁石への供給電流がゼ口にもかかわらず磁場の残留により、ビーム照射位置が想定した位置よりずれる可能性がある。また、その他何らかの機器の経年変化により、同一の条件で照射したにもかかわらず、ビーム照射位置がずれる可能性もある。 For example, since a scanning electromagnet is generally a bipolar electromagnet, there is a possibility that the beam irradiation position may deviate from the assumed position due to the residual magnetic field due to the hysteresis of the electromagnet, despite the opening of the electromagnet. In addition, due to aging of some other equipment, the beam irradiation position may be shifted despite irradiation under the same conditions.
 そこで、特許文献1では、走査電磁石の設定電流値とビーム位置モニタで検出したビーム位置データとを記憶しておき、この記憶された設定電流値とビーム位置データとに基づき、変換テーブルを用いて走査電磁石の設定電流値を演算する方法が開示されている。また、特許文献2では、キャリブレーション時に実測する荷電粒子ビームの通過位置座標に基づき、多項式モデルを用いてスキャニング電磁石への指令値を計算する方法が開示されている。 Therefore, in Patent Document 1, the set current value of the scanning electromagnet and the beam position data detected by the beam position monitor are stored, and a conversion table is used based on the stored set current value and the beam position data. A method for calculating a set current value of a scanning electromagnet is disclosed. Patent Document 2 discloses a method of calculating a command value to a scanning electromagnet using a polynomial model based on the passing position coordinates of a charged particle beam actually measured at the time of calibration.
特開2005-296162号公報(段落0039、図2)Japanese Patent Laying-Open No. 2005-296162 (paragraph 0039, FIG. 2) 国際特許公開WO2010/143267号公報(段落0043、図6)International Patent Publication No. WO2010 / 143267 (paragraph 0043, FIG. 6)
 しかしながら、特許文献1および特許文献2の方法では、治療前の患者QA(Quality Assurance)において荷電粒子ビームの調整前の照射位置を記憶しておく必要があり、患者QAに時間がかかるという問題があった。また、従来の1つの関数を用いる方法では、より複雑な対象領域に照射する場合には誤差が大きくなるという問題があった。 However, in the methods of Patent Document 1 and Patent Document 2, it is necessary to store the irradiation position before adjustment of the charged particle beam in the patient QA (Quality Assurance) before treatment, and the patient QA takes time. there were. Further, in the conventional method using one function, there is a problem that an error becomes large when irradiating a more complicated target region.
 この発明は、上記のような課題を解決するためになされたものであり、事前の準備の時間を短縮化できるとともに、高精度なビーム照射を実現できる粒子線治療装置を提供することを目的としている。 The present invention has been made to solve the above-described problems, and has an object to provide a particle beam therapy system that can shorten the time required for preliminary preparation and can realize high-precision beam irradiation. Yes.
 この発明の粒子線治療装置は、荷電粒子ビームを走査する走査電磁石と、前記走査電磁石により走査する目標照射位置座標に対応する設定磁場の値を算出し、前記設定磁場の値と前記走査電磁石の磁気モーメントが逆方向に転換する折返し磁場からの所定の磁場変化量の値に基づいて、前記走査電磁石の設定電流値を算出する照射管理装置とを備えたことを特徴とするものである。 In the particle beam therapy system according to the present invention, a scanning electromagnet that scans a charged particle beam, a set magnetic field value corresponding to a target irradiation position coordinate scanned by the scanning electromagnet, and the set magnetic field value and the scanning electromagnet And an irradiation management device that calculates a set current value of the scanning electromagnet based on a value of a predetermined magnetic field change amount from a folded magnetic field in which the magnetic moment changes in the reverse direction.
 この発明によれば、折返し磁場からの所定の磁場変化量の値に基づいて、走査電磁石の設定電流値を算出することで、高精度なビーム照射を実現できる。 According to the present invention, high-precision beam irradiation can be realized by calculating the set current value of the scanning electromagnet based on the value of the predetermined magnetic field change amount from the folded magnetic field.
この発明の実施の形態1における粒子線治療装置の主要な構成を示すブロック図であるIt is a block diagram which shows the main structures of the particle beam therapy apparatus in Embodiment 1 of this invention. この発明の実施の形態1における粒子線治療装置の全体の構成を示す図である。It is a figure which shows the structure of the whole particle beam therapy apparatus in Embodiment 1 of this invention. この発明の実施の形態1における粒子線治療装置での走査電磁石の設定電流による制御方法について説明する図である。It is a figure explaining the control method by the setting current of the scanning electromagnet in the particle beam therapy system in Embodiment 1 of this invention. この発明の実施の形態1における粒子線治療装置における走査電磁石の全体的な動作の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of the whole operation | movement of the scanning electromagnet in the particle beam therapy system in Embodiment 1 of this invention. この発明の実施の形態1における粒子線治療装置における走査電磁石の設定電流値の算出の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of calculation of the setting electric current value of the scanning electromagnet in the particle beam therapy system in Embodiment 1 of this invention. この発明の実施の形態2における粒子線治療装置における走査電磁石の設定電流値の算出の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of calculation of the setting electric current value of the scanning electromagnet in the particle beam therapy system in Embodiment 2 of this invention.
実施の形態1.
 図1は、この発明の実施の形態1による粒子線治療装置100の主要な構成のブロック図であり、図2は粒子線治療装置全体の概略構成の鳥瞰図である。実施の形態1による粒子線治療装置100は、図1および図2に示すように、ビーム発生装置52と、ビーム輸送系59と、2つの粒子線照射装置41a、41bなどを備えている。前段加速器53と、加速器54と、ビーム輸送系59と、ビーム加速輸送制御装置50と、粒子線照射装置41と、治療計画装置61とを備える。前段加速器53は、イオン源で発生させた荷電粒子を加速して荷電粒子ビーム1を発生させる。加速器54は、前段加速器53に接続され、発生した荷電粒子ビーム1を所定のエネルギーまで加速する。ビーム輸送系59は、加速器54で設定されたエネルギーまで、加速された後に出射される荷電粒子ビーム1を輸送する。ビーム加速輸送制御装置50は、前段加速器53、加速器54、ビーム輸送系59のそれぞれを制御する。粒子線照射装置41は、ビーム輸送系59の下流に設置され、荷電粒子ビーム1を照射対象15に照射する。治療計画装置61は、X線CT等で撮影した画像情報から患者の照射対象15を決定し、照射対象15に対する治療計画データである目標照射位置座標、目標線量、目標ビームサイズ、目標加速器設定、レンジシフタ挿入量等を生成する。目標加速器設定には、加速器54のビームエネルギー及びビーム電流の設定値を含んでいる。
Embodiment 1 FIG.
FIG. 1 is a block diagram of the main configuration of a particle beam therapy system 100 according to Embodiment 1 of the present invention, and FIG. 2 is a bird's-eye view of the schematic configuration of the entire particle beam therapy system. As shown in FIGS. 1 and 2, the particle beam therapy system 100 according to the first embodiment includes a beam generation device 52, a beam transport system 59, two particle beam irradiation devices 41a and 41b, and the like. The former stage accelerator 53, the accelerator 54, the beam transport system 59, the beam accelerated transport control apparatus 50, the particle beam irradiation apparatus 41, and the treatment plan apparatus 61 are provided. The front accelerator 53 accelerates the charged particles generated by the ion source to generate the charged particle beam 1. The accelerator 54 is connected to the pre-stage accelerator 53 and accelerates the generated charged particle beam 1 to a predetermined energy. The beam transport system 59 transports the charged particle beam 1 emitted after being accelerated to the energy set by the accelerator 54. The beam accelerated transport control device 50 controls each of the former stage accelerator 53, the accelerator 54, and the beam transport system 59. The particle beam irradiation apparatus 41 is installed downstream of the beam transport system 59 and irradiates the irradiation target 15 with the charged particle beam 1. The treatment planning device 61 determines the irradiation target 15 of the patient from image information obtained by X-ray CT or the like, and sets target irradiation position coordinates, target dose, target beam size, target accelerator setting, which are treatment plan data for the irradiation target 15, Generates a range shifter insertion amount and the like. The target accelerator setting includes set values of the beam energy and beam current of the accelerator 54.
 粒子線照射装置41は、ビーム輸送系59から入射された入射荷電粒子ビーム1aを輸送するビーム輸送ダクト2と、入射荷電粒子ビーム1aに垂直な方向であるX方向及びY方向に入射荷電粒子ビーム1aを走査する走査電磁石3x、3yと、位置モニタ7と、位置モニタユニット8と、線量モニタ11と、線量モニタユニット12と、照射管理装置32と、走査電磁石電源4と、ビーム拡大装置16と、ビーム拡大制御装置17と、ベローズ18と、真空ダクト19と、リップルフィルタ20とレンジシフタ21と、レンジシフタユニット23とを備える。なお、図1に示したように入射荷電粒子ビーム1aの進行方向はZ方向である。 The particle beam irradiation apparatus 41 includes a beam transport duct 2 that transports the incident charged particle beam 1a incident from the beam transport system 59, and incident charged particle beams in the X direction and the Y direction that are perpendicular to the incident charged particle beam 1a. Scanning electromagnets 3x and 3y that scan 1a, a position monitor 7, a position monitor unit 8, a dose monitor 11, a dose monitor unit 12, an irradiation management device 32, a scanning electromagnet power source 4, and a beam expanding device 16 , A beam expansion control device 17, a bellows 18, a vacuum duct 19, a ripple filter 20, a range shifter 21, and a range shifter unit 23. As shown in FIG. 1, the traveling direction of the incident charged particle beam 1a is the Z direction.
 走査電磁石3xは、入射荷電粒子ビーム1aをX方向に走査するX方向走査電磁石であり、走査電磁石3yは、入射荷電粒子ビーム1aをY方向に走査するY方向走査電磁石である。位置モニタ7は、走査電磁石3x、3yで偏向された出射荷電粒子ビーム1bが通過する通過位置(重心位置)及びビームサイズを検出する。ここで、ビームサイズは出射荷電粒子ビーム1bのZ方向に垂直なXY面を通過する面積である。位置モニタユニット8は、位置モニタ7で検出した通過位置及び、ビームサイズを受け取り、その通過位置及びビームサイズをデジタルデータに変換し、測定位置座標及び測定ビームサイズを生成する。 The scanning electromagnet 3x is an X-direction scanning electromagnet that scans the incident charged particle beam 1a in the X direction, and the scanning electromagnet 3y is a Y-direction scanning electromagnet that scans the incident charged particle beam 1a in the Y direction. The position monitor 7 detects a passing position (center of gravity position) and a beam size through which the outgoing charged particle beam 1b deflected by the scanning electromagnets 3x and 3y passes. Here, the beam size is an area passing through the XY plane perpendicular to the Z direction of the outgoing charged particle beam 1b. The position monitor unit 8 receives the passage position and beam size detected by the position monitor 7, converts the passage position and beam size into digital data, and generates measurement position coordinates and a measurement beam size.
 線量モニタ11は、出射荷電粒子ビーム1bの線量を検出する。線量モニタユニット12は、線量モニタ11で検出した線量を受け取り、その線量をデジタルデータに変換し、測定線量を生成する。 The dose monitor 11 detects the dose of the outgoing charged particle beam 1b. The dose monitor unit 12 receives the dose detected by the dose monitor 11, converts the dose into digital data, and generates a measured dose.
 ビーム拡大装置16は、出射荷電粒子ビーム1bのビームサイズを拡大する。真空ダクト19は出射荷電粒子ビーム1bを通過する真空領域を確保する。ベローズ18はビーム輸送ダクト2と真空ダクト19を伸縮自在に接続し、真空領域を照射対象15へ延長する。リップルフィルタ20は、リッジフィルタとも呼ばれ、凸形の形状をしている。リップルフィルタ20は、加速器54から送られてくるほぼ単一のエネルギーを有する単色ビームである荷電粒子ビーム1にエネルギー口スをさせ、エネルギーに幅を持たせる。 The beam expanding device 16 expands the beam size of the outgoing charged particle beam 1b. The vacuum duct 19 secures a vacuum region through which the outgoing charged particle beam 1b passes. The bellows 18 connects the beam transport duct 2 and the vacuum duct 19 so as to extend and contract, and extends the vacuum region to the irradiation target 15. The ripple filter 20 is also called a ridge filter and has a convex shape. The ripple filter 20 causes the charged particle beam 1, which is a monochromatic beam having almost a single energy transmitted from the accelerator 54, to have a wide energy range.
 照射対象15における深さ方向(Z方向)の位置座標の制御は、加速器54の加速エネルギーを変更して入射荷電粒子ビーム1aのエネルギーを変更すること及びレンジシフタ21により出射荷電粒子ビーム1bのエネルギーを変更することにより行う。レンジシフタ21は、荷電粒子ビーム1の飛程を小刻みに調整する。大幅な荷電粒子ビーム1の飛程変更は加速器54の加速エネルギーの変更で行い、小幅な荷電粒子ビーム1の飛程変更はレンジシフタ21の設定変更で行う。 Control of the position coordinate in the depth direction (Z direction) in the irradiation object 15 is performed by changing the acceleration energy of the accelerator 54 to change the energy of the incident charged particle beam 1a and the energy of the outgoing charged particle beam 1b by the range shifter 21. It is done by changing. The range shifter 21 adjusts the range of the charged particle beam 1 in small increments. A significant range change of the charged particle beam 1 is performed by changing the acceleration energy of the accelerator 54, and a range change of the small charged particle beam 1 is performed by changing the setting of the range shifter 21.
 照射管理装置32は、照射制御装置5と照射制御計算機22を備える。照射制御計算機22は、治療計画装置61のサーバから治療計画データを読み出し、照射線量を制御するために分割された照射単位で、ある照射スポットの照射順番に並べ変えた設定データを生成する。すなわち設定データはシーケンス化された治療計画データである。設定データに基づいて各機器への指令で、ある設定データに出力する。 The irradiation management device 32 includes an irradiation control device 5 and an irradiation control computer 22. The irradiation control computer 22 reads out the treatment plan data from the server of the treatment planning device 61, and generates setting data rearranged in the irradiation order of a certain irradiation spot in the irradiation units divided to control the irradiation dose. That is, the setting data is sequenced treatment plan data. Based on the setting data, it is output to certain setting data by a command to each device.
 設定データの要素は目標照射位置座標、目標線量、目標ビームサイズ、標加速器設定、レンジシフタ挿入量であり、設定データの各要素はそれぞれ治療計画データの要素である目標照射位置座標、目標線量、目標ビームサイズ、目標加速器設定、レンジシフタ挿入量がシーケンス化されたデータである。設定データは、加速器設定指令、レンジシフタ指令、指令電流、指令電流、ビームサイズ指令、目標線量である。 The elements of the setting data are the target irradiation position coordinates, target dose, target beam size, target accelerator setting, range shifter insertion amount, and each element of the setting data is the target irradiation position coordinates, target dose, target This is data in which beam size, target accelerator setting, and range shifter insertion amount are sequenced. The setting data includes an accelerator setting command, a range shifter command, a command current, a command current, a beam size command, and a target dose.
 照射制御計算機22は、患者がいない状態で行う事前照射における測定位置座標、測定線量、測定ビームサイズ等の照射記録を受信し、照射記録の評価を行う。照射制御計算機22は、測定位置座標に基づいて、指令電流を補正した指令電流を生成し、走査電磁石電源4に指令電流または指令電流を送信する。また、照射制御計算機22は、患者に実際に照射した本照射における測定位置座標、測定線量、測定ビームサイズ等の照射記録を受信し、本照射における照射記録を治療計画装置61のサーバに記憶する。 The irradiation control computer 22 receives irradiation records such as measurement position coordinates, measurement dose, measurement beam size, etc. in pre-irradiation performed in the absence of a patient, and evaluates irradiation records. The irradiation control computer 22 generates a command current obtained by correcting the command current based on the measurement position coordinates, and transmits the command current or the command current to the scanning electromagnet power source 4. The irradiation control computer 22 receives irradiation records such as measurement position coordinates, measurement doses, and measurement beam sizes in the main irradiation actually irradiated to the patient, and stores the irradiation records in the main irradiation in the server of the treatment planning device 61. .
 照射制御装置5は、トリガ信号、力ウント開始信号、ビーム供給指令、ビーム停止指令を出力し、照射対象15における照射スポット及び照射線量を制御する。照射制御装置5は、トリガ信号により各照射スポットに対する各機器の設定を変更し、カウント開始信号により照射スポットの照射線量の測定を開始し、測定線量が目標線量に達すると次の照射スポットに対する制御を行い、照射対象を複数に分割された照射区分(後述するスライス)のそれぞれに対する照射が終了すると、ビーム加速輸送制御装置50に対してビーム停止指令を出力し、荷電粒子ビームを停止させる。 The irradiation control device 5 outputs a trigger signal, a force und start signal, a beam supply command, and a beam stop command, and controls the irradiation spot and irradiation dose in the irradiation target 15. The irradiation control device 5 changes the setting of each device for each irradiation spot by the trigger signal, starts measuring the irradiation dose of the irradiation spot by the count start signal, and controls the next irradiation spot when the measured dose reaches the target dose. When the irradiation for each of the irradiation sections (slices to be described later) divided into a plurality of irradiation objects is completed, a beam stop command is output to the beam accelerated transport control device 50 to stop the charged particle beam.
 走査電磁石電源4は、照射制御装置5から出力された走査電磁石3への制御入力である指令電流に基づいて走査電磁石3x、3yの設定電流を変化させる。ビーム拡大制御装置17はビーム拡大装置16に位置モニタ7におけるビームサイズを設定するビームサイズ指令を出力する。レンジシフタユニット23は、レンジシフタ21に出射荷電粒子ビーム1bのエネルギーを変更するレンジシフタ指令を出力する。 The scanning electromagnet power source 4 changes the set current of the scanning electromagnets 3x and 3y based on a command current that is a control input to the scanning electromagnet 3 output from the irradiation controller 5. The beam expansion control device 17 outputs a beam size command for setting the beam size in the position monitor 7 to the beam expansion device 16. The range shifter unit 23 outputs a range shifter command for changing the energy of the outgoing charged particle beam 1b to the range shifter 21.
 図3は、この発明の実施の形態1による粒子線治療装置100での走査電磁石3の設定電流による制御方法について説明する図である。図3(a)は、粒子線治療装置100における設定磁場と設定電流の関係を表すヒステリシス曲線を示し、図3(b)は、設定電流に対応する照射対象15に照射されたスポット位置60を示す。 FIG. 3 is a diagram for explaining a control method using the set current of the scanning electromagnet 3 in the particle beam therapy system 100 according to Embodiment 1 of the present invention. FIG. 3A shows a hysteresis curve showing the relationship between the set magnetic field and the set current in the particle beam therapy system 100, and FIG. 3B shows the spot position 60 irradiated to the irradiation target 15 corresponding to the set current. Show.
 図3に示すように、走査電磁石3の設定磁場と設定電流の関係は、折返し電流(図3の60-5、60-11に対応)から一定電流まで電流変化量に対する磁場変化量が変化しているが、一定の電流変化量を超えると、電流変化量に対して磁場の変化が比例の関係になることがわかる。 As shown in FIG. 3, the relationship between the set magnetic field and the set current of the scanning electromagnet 3 is that the magnetic field change amount with respect to the current change amount changes from the folded current (corresponding to 60-5 and 60-11 in FIG. 3) to a constant current. However, when a certain amount of current change is exceeded, it can be seen that the change in the magnetic field is proportional to the amount of current change.
 この関係より、照射対象15におけるスポット位置60の目標照射位置座標に対応する磁場を設定磁場として求めることができれば、設定電流を求めることができる。磁場BL、つまりBL積は磁場の強さBと操作電磁石の磁極の有効長lとの積である。電流値Iは、照射予定位置である目標照射位置座標Ps、出射荷電粒子ビームの運動エネルギーTおよび質量エネルギーm、走査電磁石の設置位置から照射位置Psまでの垂直距離Lにより求まる。荷電粒子ビームに働くローレンツ力を考慮して、荷電粒子ビームの位置座標から式(1)のようにBL積の値を求めることができる。 From this relationship, if the magnetic field corresponding to the target irradiation position coordinates of the spot position 60 in the irradiation target 15 can be obtained as the setting magnetic field, the setting current can be obtained. The magnetic field BL, that is, the BL product, is a product of the magnetic field strength B and the effective length l of the magnetic pole of the operating electromagnet. The current value I is obtained from the target irradiation position coordinate Ps that is the irradiation planned position, the kinetic energy T and mass energy m 0 c 2 of the emitted charged particle beam, and the vertical distance L from the installation position of the scanning electromagnet to the irradiation position Ps. In consideration of the Lorentz force acting on the charged particle beam, the value of the BL product can be obtained from the position coordinates of the charged particle beam as shown in Equation (1).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、cは光速、qは6価の電荷量である。出射荷電粒子ビームの運動エネルギーTおよび走査電磁石の設置位置から照射位置Psまでの垂直距離Lが一定であるとすると、BL積は目標照射位置座標(偏向量)Psに比例することから、簡単に式(2)と表すことができる。 Where c is the speed of light and q is the amount of hexavalent charge. If the kinetic energy T of the emitted charged particle beam and the vertical distance L from the installation position of the scanning electromagnet to the irradiation position Ps are constant, the BL product is proportional to the target irradiation position coordinate (deflection amount) Ps. It can be expressed as equation (2).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 次に、上記式(2)で求めた目標照射位置座標に対応する設定磁場BLから、設定電流Iを求める。本計算方法では、設定磁場の折り返し点からの変化量を用いて、走査電磁石に流す電流値を計算する。走査電磁石の鉄心の磁気モーメントがほぼ完全に逆方向に転換する磁場変化量を境に、磁気モーメントが完全に転換していない状態と磁気モーメントが転換した状態とで、磁場BLと電流値Iの関係が変化するため、異なる計算式を用いる。 Next, the set current I is obtained from the set magnetic field BL corresponding to the target irradiation position coordinates obtained by the above equation (2). In this calculation method, the value of the current flowing through the scanning electromagnet is calculated using the amount of change from the set magnetic field turning point. The magnetic field BL and the current value I vary between the state in which the magnetic moment has not changed completely and the state in which the magnetic moment has changed, with the amount of change in the magnetic field at which the magnetic moment of the iron core of the scanning magnet changes almost completely in the opposite direction. Because the relationship changes, different formulas are used.
 例えば、折返し磁場BLr(60-5に対応)から、磁場を上げるときには、設定磁場BLの増加が、磁気モーメントの転換に相当する所定の磁場変化量ΔBLmより小さい場合、設定電流値Iは、図3のAの曲線に対応する式(3)により計算する。 For example, when increasing the magnetic field from the folded magnetic field BLr (corresponding to 60-5), if the increase in the set magnetic field BL is smaller than a predetermined magnetic field change amount ΔBLm corresponding to the change of the magnetic moment, the set current value I is Calculation is performed according to the equation (3) corresponding to the curve A of 3.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 設定磁場BLの増加が、所定の磁場変化量ΔBLm以上となった場合、設定電流値Iは、図3のBの直線に対応する式(4)により計算する。 When the increase in the set magnetic field BL is equal to or greater than the predetermined magnetic field change amount ΔBLm, the set current value I is calculated by the equation (4) corresponding to the straight line B in FIG.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 磁場を上げた後に磁場を負の方向に折返すときの折返し点の設定磁場をBLr(60-11に対応)からの磁場変化量の絶対値が、所定の磁場変化量ΔBLm未満の場合、すなわち|ΔBL|=|BL-BLr|<ΔBLmの場合、設定電流値Iは、図3のCの曲線に対応する式(5)により計算する。 The magnetic field change amount from BLr (corresponding to 60-11) is set as the turning point when the magnetic field is turned back in the negative direction after raising the magnetic field, that is, when the absolute value of the magnetic field change amount is less than the predetermined magnetic field change amount ΔBLm, When | ΔBL | = | BL−BLr | <ΔBLm, the set current value I is calculated by the equation (5) corresponding to the curve C in FIG.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 設定磁場BLの折返し磁場BLr(60-11に対応)からの変化量の絶対値が、所定の磁場変化量ΔBLm以上となった場合、すなわち|ΔBL|=|BL-BLr|≧ΔBLmの場合、設定電流値Iは、図3のDの直線に対応する式(6)により計算する。 When the absolute value of the change amount of the set magnetic field BL from the folded magnetic field BLr (corresponding to 60-11) is equal to or greater than a predetermined magnetic field change amount ΔBLm, that is, | ΔBL | = | BL−BLr | ≧ ΔBLm, The set current value I is calculated by the equation (6) corresponding to the straight line D in FIG.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 ここで、a、d、eは係数、bは定数であり、それぞれ磁場測定結果からフィッティングにより求める。 Here, a, d, and e are coefficients, and b is a constant, which are obtained by fitting from the magnetic field measurement results.
 このように、比例関係の変わる磁場の変化量に基づき、対応するBL-Iの変換式を用いて設定電流値を求めることで、高精度なビーム照射を実現できる。 Thus, high-accuracy beam irradiation can be realized by obtaining the set current value using the corresponding BL-I conversion formula based on the change amount of the magnetic field whose proportional relationship changes.
 次に、この発明の実施の形態1による粒子線治療装置100の動作について説明する。図4および図5は、粒子線治療装置100における走査電磁石3の設定電流による制御のフロー図である。図4は、走査電磁石3の全体的な動作の流れを示し、図5は、走査電磁石3の設定電流値の算出の流れを示す。 Next, the operation of the particle beam therapy system 100 according to Embodiment 1 of the present invention will be described. 4 and 5 are flowcharts of control by the set current of the scanning electromagnet 3 in the particle beam therapy system 100. FIG. FIG. 4 shows the flow of the overall operation of the scanning electromagnet 3, and FIG. 5 shows the flow of calculation of the set current value of the scanning electromagnet 3.
 まず、図4を用いて、全体的な動作の流れを説明する。最初に、粒子線治療装置100は、照射管理装置32の照射制御装置5により、走査電磁石の消磁を行なった後(ステップS401)、治療計画装置61の治療計画データに基づき、荷電粒子エネルギーを設定し(ステップS402)、目標位置座標の設定を行う(ステップS403)。 First, the overall operation flow will be described with reference to FIG. First, the particle beam therapy system 100 sets the charged particle energy based on the treatment plan data of the treatment planning device 61 after the scanning electromagnet is demagnetized by the irradiation control device 5 of the irradiation management device 32 (step S401). (Step S402), the target position coordinates are set (Step S403).
 続いて、照射管理装置32の照射制御計算機22により、上記式(2)で目標照射位置座標に対応する設定磁場BLを算出し(ステップS404)、算出された設定磁場BLに基づき、対応するBL-Iの変換式(3)から(6)を用いることで、設定電流値Iを算出する(ステップS405)。このステップS404とステップS405は、この発明の特徴であり、ステップS405については、後段で詳細な流れを説明する。 Subsequently, the irradiation control computer 22 of the irradiation management device 32 calculates the set magnetic field BL corresponding to the target irradiation position coordinate by the above formula (2) (step S404), and based on the calculated set magnetic field BL, the corresponding BL The set current value I is calculated by using the conversion formulas (3) to (6) of −I (step S405). Steps S404 and S405 are features of the present invention, and a detailed flow of step S405 will be described later.
 次いで、照射管理装置32の照射制御装置5により、算出された設定電流値Iを走査電磁石の電流値として設定し(ステップS406)、粒子線の照射を行う(ステップS407)。スポットにおける照射が目標線量値に達するまで照射を続け(ステップS408:No)、スポットにおける照射が目標線量値に達すると(ステップS408:Yes)、次のスポットの照射を行い(ステップS409:No)、これを繰り返す(ステップS403からステップS409:No)。 Next, the calculated set current value I is set as the current value of the scanning electromagnet by the irradiation control device 5 of the irradiation management device 32 (step S406), and particle beam irradiation is performed (step S407). Irradiation continues until the irradiation at the spot reaches the target dose value (step S408: No). When the irradiation at the spot reaches the target dose value (step S408: Yes), the next spot is irradiated (step S409: No). This is repeated (step S403 to step S409: No).
 照射スポットは、Z方向に分割した層であり、荷電粒子ビーム1の運動エネルギーに応じた層で、あるスライスと、各スライスにおけるXY方向に分割される。照射が一つのスライス内の最終スポットとなった場合(ステップS409:Yes)、次のスライスでのスポットの照射を行い(ステップS410:No)、これを繰り返す(ステップS403からステップS410:No)。そして最後に、最終のスライスの最終スポットを照射して(ステップS410:Yes)、粒子線の照射を終える。 The irradiation spot is a layer divided in the Z direction, and is a layer corresponding to the kinetic energy of the charged particle beam 1, and is divided into a certain slice and the XY direction in each slice. When the irradiation becomes the final spot in one slice (step S409: Yes), the spot is irradiated in the next slice (step S410: No), and this is repeated (step S403 to step S410: No). Finally, the final spot of the final slice is irradiated (step S410: Yes), and the particle beam irradiation ends.
 次に、図5を用いて、走査電磁石3の設定電流値の算出(図4のステップS405)の流れを詳細に説明する。最初に、消磁後の1点目のスポット照射の場合(ステップS501:Yes)、折返し磁場はゼロとする(スポットS502、BL(i=0)=O)。この場合、折返し磁場の影響がないため、設定電流値Iは、式(7)により計算する(ステップS503)。 Next, the flow of calculation of the set current value of the scanning electromagnet 3 (step S405 in FIG. 4) will be described in detail with reference to FIG. First, in the case of spot irradiation of the first point after demagnetization (step S501: Yes), the folding magnetic field is set to zero (spot S502, BL (i = 0) = O). In this case, since there is no influence of the folding magnetic field, the set current value I is calculated by the equation (7) (step S503).
 2点目以降のスポット照射においては(ステップS501:No)、まず、スポット照射が折返し磁場の直後か否かを判断する(ステップS504)。つまり、BL(i)>BL(i-1)かつBL(i-1)≦BL(i-2)、またはBL(i)<BL(i-1)かつBL(i-1)≧BL(i-2)であるかを判断する。スポット照射が折返し磁場の直後の場合は(ステップS504:Yes)、折返し磁場BLrを直前のスポットの磁場BLとし、折返し電流Irを直前のスポットの電流Iとする(ステップS505、折返し磁場=BL(i=0))。 In spot irradiation after the second point (step S501: No), first, it is determined whether or not the spot irradiation is immediately after the folding magnetic field (step S504). That is, BL (i) > BL (i-1) and BL (i-1) ≤BL (i-2) , or BL (i) <BL (i-1) and BL (i-1) ≥BL ( i-2) . When the spot irradiation is immediately after the folding magnetic field (step S504: Yes), the folding magnetic field BLr is set to the magnetic field BL of the immediately preceding spot, and the folding current Ir is set to the current I of the immediately preceding spot (step S505, the folding magnetic field = BL ( i = 0) ).
 続いて、スポット照射が磁場の上げ方向か否かを判断する(ステップS506)。つまり、BL(i)>折返し磁場BLrであるかを判断する。スポット照射が磁場の上げ方向で(ステップS506:Yes)、磁場が折返し磁場から所定磁場変化量ΔBLh以上離れていない場合、つまりBL(i)<BLr+ΔBLhの場合(ステップS507:No)、設定電流Iは、式(3)により計算する(ステップS508)。スポット照射が磁場の上げ方向で(ステップS506:Yes)、磁場が折返し磁場から所定磁場変化量ΔBLh以上離れている場合、つまりBL(i)≧BLr+ΔBLhの場合(ステップS507:Yes)、設定電流Iは、式(4)により計算する(ステップS509)。 Subsequently, it is determined whether the spot irradiation is in the direction of increasing the magnetic field (step S506). That is, it is determined whether BL (i) > folding magnetic field BLr. When spot irradiation is in the direction of increasing the magnetic field (step S506: Yes) and the magnetic field is not separated from the folded magnetic field by a predetermined magnetic field change amount ΔBLh or more, that is, when BL (i) <BLr + ΔBLh (step S507: No), the set current I Is calculated by equation (3) (step S508). When spot irradiation is in the direction of increasing the magnetic field (step S506: Yes) and the magnetic field is separated from the folded magnetic field by a predetermined magnetic field change amount ΔBLh or more, that is, when BL (i) ≧ BLr + ΔBLh (step S507: Yes), the set current I Is calculated by equation (4) (step S509).
 スポット照射が磁場の下げ方向で(ステップS506:No)、磁場が折返し磁場から所定磁場変化量ΔBLh以上離れていない場合、つまりBL(i)<BLr+ΔBLhの場合(ステップS510:No)、設定電流Iは、式(5)により計算する(ステップS508)。スポット照射が磁場の下げ方向で(ステップS506:No)、磁場が折返し磁場から所定磁場変化量ΔBLh以上離れている場合、つまりBL(i)≧BLr+ΔBLhの場合(ステップS510:Yes)、設定電流Iは、式(6)により計算する(ステップS512)。 When the spot irradiation is in the direction of decreasing the magnetic field (step S506: No) and the magnetic field is not separated from the folded magnetic field by a predetermined magnetic field change amount ΔBLh or more, that is, BL (i) <BLr + ΔBLh (step S510: No), the set current I Is calculated by equation (5) (step S508). When the spot irradiation is in the direction of decreasing the magnetic field (step S506: No) and the magnetic field is separated from the folded magnetic field by a predetermined magnetic field variation ΔBLh or more, that is, when BL (i) ≧ BLr + ΔBLh (step S510: Yes), the set current I Is calculated by equation (6) (step S512).
 このように、比例関係の変わる磁場の変化量に基づき、対応するBL-Iの変換式を用いて設定電流値を求めることで、高精度なビーム照射を実現できる。 Thus, high-accuracy beam irradiation can be realized by obtaining the set current value using the corresponding BL-I conversion formula based on the change amount of the magnetic field whose proportional relationship changes.
 以上のように、この発明の実施の形態1における粒子線治療装置100は、照射管理装置により、目標照射位置座標に対応する設定磁場の値を算出し、前記磁場の値と走査電磁石の鉄心の磁気モーメントが逆方向に転換する折り返し点からの所定の磁場変化量の値に基づいて、設定電流値を算出するようにしたので、事前の準備の時間を短縮化できるとともに、高精度なビーム照射を実現できる。 As described above, the particle beam therapy system 100 according to Embodiment 1 of the present invention calculates the value of the set magnetic field corresponding to the target irradiation position coordinates by the irradiation management device, and calculates the magnetic field value and the iron core of the scanning electromagnet. Since the set current value is calculated based on the value of the predetermined magnetic field change from the turning point at which the magnetic moment changes in the opposite direction, the preparation time can be shortened and high-precision beam irradiation is possible. Can be realized.
実施の形態2.
 実施の形態1では、折返し点において折返し磁場をそのまま用いたが、実施の形態2では、折返しの履歴を用いる場合について説明する。実施の形態2による粒子線治療装置の構成については、実施の形態1の粒子線治療装置100と同様であり、その説明を省略する。
Embodiment 2. FIG.
In the first embodiment, the folding magnetic field is used as it is at the folding point, but in the second embodiment, a case where a folding history is used will be described. The configuration of the particle beam therapy system according to the second embodiment is the same as that of the particle beam therapy system 100 according to the first embodiment, and a description thereof will be omitted.
 この発明の実施の形態2による粒子線治療装置100の動作について説明する。基本的には、図4および図5に示すフローと同様であるが、図5のステップS505の代わりに、図6のフローに置き換えられる。 The operation of the particle beam therapy system 100 according to Embodiment 2 of the present invention will be described. Basically, the flow is the same as that shown in FIGS. 4 and 5, but the flow shown in FIG. 6 is used instead of step S505 shown in FIG.
 図5のステップS504でYesの場合、つまりスポット照射が折返し磁場の直後の場合で、履歴消去の所定の条件に合致する場合には(ステップS601:Yes)、該当する履歴を消去して設定磁場計算の基点となる折返し磁場を折返しの履歴、すなわち過去の折返しにおける設定磁場、設定電流値についての情報に再設定する(ステップS602)。 In the case of Yes in step S504 in FIG. 5, that is, in the case where the spot irradiation is immediately after the folded magnetic field and the predetermined condition for history erasure is met (step S601: Yes), the corresponding history is erased and the set magnetic field The folding magnetic field that is the base point of the calculation is reset to the folding history, that is, the information about the setting magnetic field and the setting current value in the past folding (step S602).
 ある一つの折返しとその次の折返しの間の磁場変化量ΔBLの絶対値が、所定の磁場変化量ΔBLm未満の状態で折返した場合、磁気モーメントが完全に逆方向に転換していない状態での折返しとなる。このような場合に、磁場から電流値への変換をより精密に行うためには、現時点での磁気モーメントの転換状態を知る必要があるため、折返しの履歴、すなわち過去の折返しにおける設定磁場、設定電流値についての情報が必要となる。そのため、折返しにおける設定磁場BLr(n)、設定電流値Ir(n)を履歴として記録する。なお、折返しの方向を記録してもよいが、各折返しで磁場の増減の方向が反対となるため、現在の設定磁場の増減方向と直前の折返しが何番目の履歴に相当するかが判明すれば、各折返しにおける折返しの方向は必ずしも記録する必要はない。 When the absolute value of the magnetic field change amount ΔBL between a certain turn and the next turn is turned back in a state less than the predetermined magnetic field change amount ΔBLm, the magnetic moment is not completely reversed in the reverse direction. It will be folded. In such a case, in order to perform the conversion from the magnetic field to the current value more precisely, it is necessary to know the current magnetic moment conversion state. Information about the current value is required. Therefore, the set magnetic field BLr (n) and the set current value Ir (n) at the time of folding are recorded as a history. Although the direction of folding may be recorded, the direction of increase / decrease of the magnetic field is reversed in each folding, so that it is determined what number the history corresponds to the current setting magnetic field increase / decrease direction and the previous folding. For example, it is not always necessary to record the direction of folding at each folding.
 履歴消去の条件としては、以下の場合がある。折返し設定磁場間の磁場変化量の絶対値が、所定の磁場変化量ΔBLm以上となったとき、磁気モーメントが完全に逆方向に転換する。このとき、過去の磁場BLの折返しの履歴が磁気モーメントの状態に与える影響はなくなるため、これまでの履歴情報を消去することができる。 The history deletion conditions are as follows. When the absolute value of the magnetic field change amount between the return setting magnetic fields becomes equal to or greater than the predetermined magnetic field change amount ΔBLm, the magnetic moment is completely reversed in the reverse direction. At this time, the history of the magnetic field BL in the past has no influence on the state of the magnetic moment, so that the history information so far can be deleted.
 また、ある折り返しの設定磁場よりも、当該折り返しにおける変化方向と逆方向に磁場BLが変化して、磁場BLと当該折返しの設定磁場との差の絶対値が、所定の磁場変化量ΔBLmより大きくなったとき、磁気モーメントが完全に順方向に転換する。この場合も、これまでの履歴情報を消去することができる。 Further, the magnetic field BL changes in a direction opposite to the direction of change in the folding, and the absolute value of the difference between the magnetic field BL and the setting magnetic field in the folding is larger than a predetermined magnetic field change amount ΔBLm. The magnetic moment completely turns forward. Also in this case, the history information so far can be deleted.
 また、現在の磁場BL(i)が正方向に増加中で、過去の磁場BLの極大値より大きくなれば、現在の磁場BL(i)より小さい過去の磁場BLの極大値は、過去の磁場BLの極大値による磁気モーメントの状態に与える影響はそれより大きい極大値または現時点の磁場により消去されるから、履歴から削除することができる。この場合、消去された極大値の前の極小値を、新しい折返し磁場とする。また、磁場BLが負の方向に変化している場合も同様に、過去の磁場BLの極小値の影響はそれより小さい極小値または現時点の磁場により消去される。この場合、消去された極小値の前の極大値を、新しい折返し磁場とする。 If the current magnetic field BL (i) is increasing in the positive direction and becomes larger than the maximum value of the past magnetic field BL, the maximum value of the past magnetic field BL smaller than the current magnetic field BL (i) Since the influence on the state of the magnetic moment due to the maximum value of BL is erased by a larger maximum value or the current magnetic field, it can be deleted from the history. In this case, the local minimum value before the deleted local maximum value is set as a new folded magnetic field. Similarly, when the magnetic field BL changes in the negative direction, the influence of the past minimum value of the magnetic field BL is erased by a smaller minimum value or a current magnetic field. In this case, the maximum value before the deleted minimum value is set as a new folded magnetic field.
 以上のように、この発明の実施の形態2における粒子線治療装置100は、照射管理装置により、スポット照射が折返し磁場の直後の場合で、履歴消去の所定の条件に合致する場合には、現時点の履歴を消去して折返し磁場を過去の折返し磁場および電流値に再設定するようにしたので、磁場から電流値への変換をより精密に行うことができる。 As described above, the particle beam therapy system 100 according to the second embodiment of the present invention uses the irradiation management apparatus when the spot irradiation is immediately after the turn-back magnetic field and the predetermined condition for history erasure is met. Since the history is deleted and the folding magnetic field is reset to the previous folding magnetic field and current value, the conversion from the magnetic field to the current value can be performed more precisely.
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.
 3、3x、3y 走査電磁石、32 照射管理装置、100 粒子線治療装置。 3, 3x, 3y scanning electromagnet, 32 irradiation management device, 100 particle beam therapy device.

Claims (4)

  1.  照射対象に荷電粒子ビームを走査する走査電磁石と、
     前記走査電磁石により前記荷電粒子ビームを走査する前記照射対象での目標照射位置座標に対応する設定磁場の値を算出し、前記設定磁場の値と前記走査電磁石の磁気モーメントが逆方向に転換する折返し磁場からの所定の磁場変化量の値に基づいて、前記走査電磁石の設定電流値を算出する照射管理装置と
     を備えたことを特徴とする粒子線治療装置。
    A scanning electromagnet that scans the irradiation target with a charged particle beam;
    A value of a set magnetic field corresponding to a target irradiation position coordinate on the irradiation target that scans the charged particle beam with the scanning electromagnet is calculated, and the setting magnetic field value and the magnetic moment of the scanning electromagnet change in opposite directions. A particle beam therapy system comprising: an irradiation management device that calculates a set current value of the scanning magnet based on a value of a predetermined magnetic field change amount from a magnetic field.
  2.  前記照射管理装置は、荷電粒子ビームの運動エネルギーT、質量エネルギーm、走査電磁石の設置位置から照射位置Psまでの垂直距離L、光速c、および電荷qとすると、以下の式(1)により、前記目標照射位置座標に対応する前記設定磁場の値を算出することを特徴とする請求項1に記載の粒子線治療装置。
    Figure JPOXMLDOC01-appb-M000001
    Assuming that the irradiation management device has the kinetic energy T of the charged particle beam, the mass energy m 0 c 2 , the vertical distance L from the installation position of the scanning electromagnet to the irradiation position Ps, the speed of light c, and the charge q, the following equation (1) The particle beam therapy system according to claim 1, wherein a value of the set magnetic field corresponding to the target irradiation position coordinates is calculated by (1).
    Figure JPOXMLDOC01-appb-M000001
  3.  前記照射管理装置は、前記折返し磁場から磁場を上げるときには、前記設定磁場BLの増加が前記所定の磁場変化量ΔBL未満の場合には式(3)により、前記設定磁場BLの増加が、所定の磁場変化量ΔBL以上の場合には式(4)により、前記設定磁場を上げた後に前記設定磁場を負の方向に折返すときの前記折返し磁場の設定磁場からの前記設定磁場BLの減少が所定の磁場変化量ΔBL未満の場合には式(5)により、設定磁場BLの減少が、所定の磁場変化量ΔBL以上の場合には式(6)により、設定電流値を算出することを特徴とする請求項1または請求項2に記載の粒子線治療装置。
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
    Figure JPOXMLDOC01-appb-M000005
      a、d、e:係数
      b:定数
      Ir:折返し磁場での電流値
    When the irradiation management device increases the magnetic field from the folded magnetic field, if the increase in the set magnetic field BL is less than the predetermined magnetic field change amount ΔBL, the increase in the set magnetic field BL is determined by the formula (3) In the case where the change amount is greater than or equal to the magnetic field change amount ΔBL, a decrease in the set magnetic field BL from the set magnetic field of the folded magnetic field when the set magnetic field is turned back in a negative direction after raising the set magnetic field is predetermined according to Equation (4). When the decrease in the set magnetic field BL is less than a predetermined magnetic field change amount ΔBL, the set current value is calculated by the equation (6) when the change is less than the magnetic field change amount ΔBL. The particle beam therapy system according to claim 1 or 2.
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
    Figure JPOXMLDOC01-appb-M000005
    a, d, e: coefficient b: constant Ir: current value in the folded magnetic field
  4.  前記照射管理装置は、前記走査電磁石による走査が前記折返し磁場の直後の場合、現時点の履歴を消去して前記折返し磁場を過去の折返し磁場および電流値に再設定することを特徴とする請求項1から請求項3のいずれか1項に記載の粒子線治療装置。 2. The irradiation management device according to claim 1, wherein when the scanning by the scanning electromagnet is immediately after the folding magnetic field, the current history is erased and the folding magnetic field is reset to a past folding magnetic field and current value. The particle beam therapy system according to any one of claims 3 to 4.
PCT/JP2016/068592 2016-06-23 2016-06-23 Particle therapy apparatus WO2017221360A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/068592 WO2017221360A1 (en) 2016-06-23 2016-06-23 Particle therapy apparatus
JP2016566843A JP6091730B1 (en) 2016-06-23 2016-06-23 Particle beam therapy system
TW105138235A TWI628670B (en) 2016-06-23 2016-11-22 Corpuscular ray treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/068592 WO2017221360A1 (en) 2016-06-23 2016-06-23 Particle therapy apparatus

Publications (1)

Publication Number Publication Date
WO2017221360A1 true WO2017221360A1 (en) 2017-12-28

Family

ID=58261814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068592 WO2017221360A1 (en) 2016-06-23 2016-06-23 Particle therapy apparatus

Country Status (3)

Country Link
JP (1) JP6091730B1 (en)
TW (1) TWI628670B (en)
WO (1) WO2017221360A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7236894B2 (en) * 2019-03-20 2023-03-10 住友重機械工業株式会社 Charged particle beam therapy system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132902A (en) * 2005-11-14 2007-05-31 Hitachi Ltd Particle beam irradiation system
WO2011121762A1 (en) * 2010-03-31 2011-10-06 三菱電機株式会社 Particle beam irradiation apparatus and particle beam treatment apparatus
WO2012111125A1 (en) * 2011-02-17 2012-08-23 三菱電機株式会社 Particle beam therapy system
JP2015512314A (en) * 2012-04-03 2015-04-27 パウル・シェラー・インスティトゥート A system for applying proton beam therapy to a predefinable volume in a patient by pencil beam scanning

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4494848B2 (en) * 2004-04-08 2010-06-30 株式会社日立製作所 Particle beam therapy system
US8212223B2 (en) * 2009-06-09 2012-07-03 Mitsubishi Electric Corporation Particle beam irradiation apparatus
US8405042B2 (en) * 2010-01-28 2013-03-26 Mitsubishi Electric Corporation Particle beam therapy system
JP5758728B2 (en) * 2011-07-26 2015-08-05 株式会社日立ハイテクノロジーズ Charged particle beam equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132902A (en) * 2005-11-14 2007-05-31 Hitachi Ltd Particle beam irradiation system
WO2011121762A1 (en) * 2010-03-31 2011-10-06 三菱電機株式会社 Particle beam irradiation apparatus and particle beam treatment apparatus
WO2012111125A1 (en) * 2011-02-17 2012-08-23 三菱電機株式会社 Particle beam therapy system
JP2015512314A (en) * 2012-04-03 2015-04-27 パウル・シェラー・インスティトゥート A system for applying proton beam therapy to a predefinable volume in a patient by pencil beam scanning

Also Published As

Publication number Publication date
JP6091730B1 (en) 2017-03-08
TWI628670B (en) 2018-07-01
JPWO2017221360A1 (en) 2018-06-21
TW201801095A (en) 2018-01-01

Similar Documents

Publication Publication Date Title
EP2529791B1 (en) Particle beam therapy system
WO2012111125A1 (en) Particle beam therapy system
KR20120041109A (en) Irradiation apparatus of charged particle ray, irradiation method of charged particle ray, and program for irradiation of charged particle ray
WO2010143267A1 (en) Particle beam radiation device
US9889319B2 (en) Particle beam irradiation apparatus
CN107648749A (en) Radiotherapy system and its line control device and beam-based method
JP2002058750A (en) Charged beam irradiation method and apparatus, and computer readable storage medium
JP4499185B1 (en) Particle beam irradiation apparatus and particle beam therapy apparatus
WO2012008190A1 (en) Particle beam irradiation apparatus and particle beam therapy apparatus
JP6091730B1 (en) Particle beam therapy system
JP4478753B1 (en) Particle beam irradiation equipment
US20130274538A1 (en) Particle beam irradiation apparatus and particle beam therapy system
JP5393564B2 (en) Charged particle beam transport apparatus and particle beam therapy system
JP7313241B2 (en) Installation adjustment amount calculation method and installation adjustment amount calculation system
JP5693876B2 (en) Particle beam irradiation apparatus and particle beam irradiation program
US20240091560A1 (en) Particle therapy system, irradiation control apparatus, and irradiation control method
Peñas et al. A multi-shot target-wheel assembly for high-repetition-rate, laser-driven proton acceleration
JP3190923B2 (en) Method and apparatus for adjusting magnet alignment of accelerator
Tron Two dimensional beam current distribution monitors
JP5340483B2 (en) Particle beam irradiation apparatus and particle beam therapy apparatus
JP2689137B2 (en) Charged particle beam measuring device
Ha et al. Single-shot measurement of transverse second moments using the projection method
Cogan et al. Physics Model of an Allison Phase-Space Scanner, with Application to the FRIB Front End
Yang et al. High-resolution accelerator alignment using x-ray optics
WO2020188890A1 (en) Particle ray treatment system, measurement particle beam ct image generation method, and ct image generation program

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016566843

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906277

Country of ref document: EP

Kind code of ref document: A1