WO2017221355A1 - Shape estimating device - Google Patents

Shape estimating device Download PDF

Info

Publication number
WO2017221355A1
WO2017221355A1 PCT/JP2016/068552 JP2016068552W WO2017221355A1 WO 2017221355 A1 WO2017221355 A1 WO 2017221355A1 JP 2016068552 W JP2016068552 W JP 2016068552W WO 2017221355 A1 WO2017221355 A1 WO 2017221355A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape
unit
light
temperature
estimation
Prior art date
Application number
PCT/JP2016/068552
Other languages
French (fr)
Japanese (ja)
Inventor
高山 晃一
藤田 浩正
憲 佐藤
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2018523215A priority Critical patent/JPWO2017221355A1/en
Priority to PCT/JP2016/068552 priority patent/WO2017221355A1/en
Publication of WO2017221355A1 publication Critical patent/WO2017221355A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes

Definitions

  • the present invention relates to a shape estimation apparatus that estimates the bending shape of a flexible object.
  • Japanese Unexamined Patent Application Publication No. 2016-007505 discloses such a shape estimation apparatus.
  • this shape estimation device for a wavelength corresponding to each of the detection units of the plurality of light absorbers, using a sensor configured so that the detected light amount information differs according to the shape of each of the plurality of detection units, Based on the light amount estimation value that is the relationship between the wavelength and the light amount calculated based on the light amount information and the light amount estimation relationship, the shape of each of the plurality of detection units is calculated. Further, based on the shape and position information of each of the plurality of detection units, the bending shape of the flexible object incorporating the shape estimation device is estimated.
  • the present inventors have found that the light quantity information detected by the shape estimation apparatus changes depending on the temperature. That is, the present inventors have found that the shape estimated by the shape estimation device includes an error due to temperature.
  • the present invention has been made in consideration of such a situation, and an object thereof is to provide a shape estimation apparatus that estimates an accurate shape that does not include an error caused by temperature.
  • the shape estimation apparatus includes a shape estimation sensor unit configured such that the amount of light detected for a wavelength corresponding to each of a plurality of shape detection units differs according to the shape of each of the plurality of shape detection units.
  • a light quantity information that is a relationship between the wavelength and the light quantity acquired using the information
  • an input unit configured to receive temperature-related information around the shape estimation sensor unit, and the plurality of shape detections
  • a storage unit that stores a light amount estimation relationship including shape characteristic information representing a relationship between the shape, the wavelength, and the light amount of each of the units; the light amount information; and the wavelength that is calculated based on the light amount estimation relationship
  • a calculation unit that calculates the shape of each of the plurality of shape detection units based on the light amount estimation value that is a relationship between the light amount and the temperature related information.
  • a shape estimation device that estimates an accurate shape that does not include an error due to temperature.
  • FIG. 1 is a configuration diagram of a shape estimation apparatus according to the first embodiment.
  • FIG. 2 shows a cross-sectional view of the shape detector along a plane perpendicular to the axis of the photoconductive member.
  • FIG. 3 shows an example of the relationship between the light wavelength and the absorptance in the first light absorber, the second light absorber, and the nth light absorber.
  • FIG. 4A schematically shows the transmission of light when the light conducting member is bent so that the shape detecting unit comes inside the bending of the light conducting member.
  • FIG. 4B schematically shows the transmission of light when the photoconductive member is not bent.
  • FIG. 4C schematically shows the transmission of light when the light conducting member is bent so that the shape detection unit comes outside the bending of the light conducting member.
  • FIG. 4A schematically shows the transmission of light when the light conducting member is bent so that the shape detecting unit comes inside the bending of the light conducting member.
  • FIG. 4B schematically shows the transmission of light when the photoconductive member
  • FIG. 5 shows the processor unit and its peripherals in the first embodiment.
  • FIG. 6 is a flowchart of shape estimation in the first embodiment.
  • FIG. 7 is a configuration diagram of a shape estimation apparatus according to the second embodiment.
  • FIG. 8 shows a change in the light amount change rate of each temperature detection unit due to temperature fluctuation.
  • FIG. 9 shows a processor unit and its peripheral units in the second embodiment.
  • FIG. 10 is a flowchart of shape estimation in the second embodiment.
  • FIG. 11 is a configuration diagram of a shape estimation apparatus according to the third embodiment.
  • FIG. 12 shows a light absorption spectrum of the light absorber of each shape detection unit and temperature detection unit.
  • FIG. 13 shows a processor unit and its peripheral units in the third embodiment.
  • FIG. 14 is a flowchart of shape estimation in the third embodiment.
  • FIG. 14 is a flowchart of shape estimation in the third embodiment.
  • FIG. 15 is a configuration diagram of a shape estimation apparatus according to the fourth embodiment.
  • FIG. 16 shows a processor unit and its peripheral units in the fourth embodiment.
  • FIG. 17 is a flowchart of shape estimation in the fourth embodiment.
  • FIG. 18 is a configuration diagram of a shape estimation apparatus according to the fifth embodiment.
  • FIG. 19 schematically shows an endoscope in which the shape estimation apparatus of the fifth embodiment is incorporated.
  • FIG. 20 shows a processor unit and its peripheral unit in the fifth embodiment.
  • FIG. 21 shows an insertion portion of an endoscope that is inserted into a lumen and has an S shape.
  • FIG. 22 is a flowchart of shape estimation in the fifth embodiment.
  • FIG. 23 is a configuration diagram of a shape estimation apparatus according to the sixth embodiment.
  • FIG. 24 schematically shows an endoscope system in which the shape estimation apparatus according to the sixth embodiment is incorporated.
  • FIG. 25 shows a processor unit and its peripheral units in the sixth embodiment.
  • FIG. 26 is a flowchart
  • FIG. 1 is a configuration diagram of a shape estimation apparatus according to the first embodiment.
  • the shape estimation apparatus includes a shape estimation sensor unit 20, a light source unit 10 that supplies light to the shape estimation sensor unit 20, a light detector 30 that detects light that has passed through the shape estimation sensor unit 20, and a light source unit.
  • a light branching unit 50 that guides light from the shape estimation sensor unit 20 to the light detector 30 and guides the light from the shape estimation sensor unit 20 to the photodetector 30, and an antireflection member 60 connected to the light branching unit 50.
  • a temperature measurement unit 70 that detects temperature-related information around the shape estimation sensor unit 20 and a processor unit 100 that estimates the shape of the shape estimation sensor unit 20 are provided.
  • Shape estimating sensor unit 20 includes an optical conductive member LG 2 which is connected to the optical branching unit 50, a plurality of shape detecting unit provided on the light conducting member LG 2 (first shape detecting unit DP 1, the second shape detection unit DP 2, ..., a shape detection unit DP n) of the n, and a reflecting member 40 provided at the end of the light conducting member LG 2.
  • Each shape detection unit DP i is composed of a material that reduces the intensity of light guided by the light conducting member LG 2.
  • Each of the plurality of shape detectors DP i reduces light of different wavelengths.
  • Each shape detection unit DP i is composed of, for example, a light absorber whose light absorptance changes according to the curvature.
  • Light conducting member LG 2 is constituted by an optical fiber, it has flexibility.
  • the shape estimation sensor unit 20 includes a fiber sensor having an optical fiber provided with a plurality of shape detection units DP i .
  • the reflecting member 40 reflects the light guided from the light branching unit 50 by the light conducting member LG ⁇ b > 2 so as to return to the direction of the light branching unit 50.
  • the light source unit 10 is optically connected to the optical branching section 50 through the light conducting member LG 1.
  • Photodetector 30 is optically connected to the optical branching section 50 through the light conducting member LG 4.
  • Antireflection member 60 is optically connected to the optical branching section 50 through the light conducting member LG 3.
  • the light conducting members LG 1 , LG 3 , LG 4 are made of, for example, optical fibers and have flexibility.
  • the light source unit 10 supplies light to the shape estimation sensor unit 20.
  • the light source unit 10 includes a generally known light emitting element such as a lamp, LED, or laser diode.
  • the light source unit 10 may further include a phosphor for converting the wavelength.
  • the light branching unit 50 guides light from the light source unit 10 to the shape estimation sensor unit 20 and guides light from the shape estimation sensor unit 20 to the photodetector 30.
  • the optical branching unit 50 includes an optical coupler, a half mirror, and the like.
  • the light branching unit 50 divides the light emitted from the light source unit 10 input through the light conducting member LG 1 and guides it to the two light conducting members LG 2 and LG 3 .
  • Optical branching unit 50 also reflected light from the reflecting member 40 to be input through the optical conduction member LG 2, guided to a photodetector 30 through the optical conduction member LG 4.
  • the light detector 30 detects light that has passed through the shape estimation sensor unit 20.
  • the photodetector 30 has a function of detecting the intensity of received light for each wavelength, that is, a function of detecting by spectroscopy.
  • the photodetector 30 includes, for example, a spectroscopic element such as a spectroscope or a color filter, and a light receiving element such as a photodiode.
  • the photodetector 30 detects the intensity of light in a predetermined wavelength region and outputs detected light amount information.
  • the detected light amount information is information representing a relationship between a specific wavelength in a predetermined wavelength region and light intensity at the wavelength.
  • the antireflection member 60 prevents light that has not entered the light conducting member LG ⁇ b > 2 from the light emitted from the light source unit 10 from returning to the photodetector 30.
  • the temperature measurement unit 70 detects temperature-related information around the shape estimation sensor unit 20.
  • the temperature measuring unit 70 includes at least one temperature measuring device provided around at least one of the shape detecting units DP i of the shape estimating sensor unit 20.
  • the temperature measuring unit 70 includes a plurality of temperature measuring devices (first temperature measuring device TD 1 , second temperature measuring device TD 2 ,..., M-th temperature measuring device TD m ).
  • the number of the temperature measuring device TD j is equal to the number of shape detection unit DP i, the temperature measuring device TD j, respectively, are arranged around the shape detection unit DP i.
  • the temperature measuring device TD j may be composed of, for example, a thermocouple, a resistance thermometer, or the like.
  • Figure 2 shows a cross-sectional view of taken along a plane perpendicular to the light conducting member LG 2 shaft shape detection unit DP i.
  • the light conducting member LG 2 includes a core 512, a clad 514 that surrounds the core 512, and a jacket 516 that surrounds the clad 514.
  • the shape detection unit DP i is formed by removing a part of the jacket 516 and the clad 514 to expose the core 512 and providing the light absorber 518 on the exposed core 512.
  • the light absorbers 518 of the plurality of shape detectors DP i have different light absorptance for each wavelength. In other words, the light absorbers 518 of the plurality of shape detection units DP i have different light modulation characteristics.
  • the member used for the shape detection unit DP i is not limited to the light absorber.
  • An optical member that affects the spectrum of the guided light can be used. Such an optical member may be, for example, a wavelength conversion member (phosphor).
  • FIG. 3 shows an example of the relationship between the light wavelength and the absorptance in the first light absorber, the second light absorber, and the nth light absorber.
  • the solid line indicates the light absorption characteristic of the first light absorber
  • the broken line indicates the light absorption characteristic of the second light absorber
  • the two-dot chain line indicates the light absorption characteristic of the nth light absorber.
  • the light absorbers provided in the different shape detectors DP i have different light absorption characteristics.
  • Detecting light guided by the light conducting member LG 2 is lost in the shape detection unit DP i.
  • Its light loss amount changes depending on the direction and amount of bending of the light conducting member LG 2.
  • the light conducting member LG 2 is bent so as to come shape detection unit DP i inside the bending of the light conducting member LG 2 as shown in FIG. 4A
  • the light conducting member LG as shown in FIG. 4B Compared with the case where 2 is not bent, the light guide loss amount is small.
  • the light loss is reduced in proportion to the curve amount of the light conducting member LG 2.
  • the light conducting member LG 2 should come shape detection unit DP i outside the bending of the light conducting member LG 2 is bent as shown in FIG. 4C, as shown in Figure 4B light loss as compared to the case where the light conducting member LG 2 unflexed increases.
  • the light loss is increased in proportion to the curve amount of the light conducting member LG 2.
  • This change in the light guide loss amount is reflected in the amount of detection light received by the photodetector 30. That is, it is reflected in the output signal of the photodetector 30. Therefore, by monitoring the output signal of the photodetector 30, it is possible to grasp the direction and amount of bending of the light conducting member LG 2.
  • the shape estimation sensor unit 20 the amount of light detected for each wavelength corresponding to a plurality of shape detecting unit DP i is configured differently depending on the respective shapes of a plurality of shape detecting unit DP i ing.
  • the light emitted from the light source unit 10 is guided by the light conducting member LG 1 and enters the light branching unit 50.
  • the light branching unit 50 divides the input light and outputs the divided light to the two light conducting members LG 2 and LG 3 , respectively.
  • Light guided by the light conducting member LG 3 is for example absorbed by the reflection preventing member 60 provided at the end of the light conducting member LG 3.
  • Light guided by the light conducting member LG 2 is reflected by the light conducting member LG reflecting member 40 provided at the end of 2, is guided again by the light conducting member LG 2 in the optical branching section 50 Return.
  • Light guided by the light conducting member LG 2 during guided, by the shape detection unit DP i wavelength components corresponding to the shape detecting unit DP i is lost.
  • Optical branching section 50 divides the light came back, and outputs the part to the light conducting member LG 4.
  • Light output to the light conducting member LG 4 is guided from entering the photodetector 30 by a light conducting member LG 4.
  • Light photodetector 30 receives light is a light that has passed through the shape detection unit DP i, changes depending on the curvature and the temperature of the shape detecting unit DP i.
  • Temperature measurement unit 70 obtains temperature-related information around the light conducting member LG 2, and outputs the acquired temperature-related information to the processor unit 100. More specifically, the temperature measurement unit 70 measures the temperature around the shape detection unit DP i by the temperature measuring device TD j and outputs information on the measured temperature to the processor unit 100.
  • the processor unit 100 estimates the shape of the shape estimation sensor unit 20.
  • FIG. 5 shows the processor unit 100 and its peripheral parts.
  • the processor unit 100 is configured by an electronic computer that is a personal computer, for example.
  • a display unit 160 and an input device 170 are connected to the processor unit 100.
  • the processor unit 100 includes an input unit 130, a control unit 200, a storage unit 120, a temperature calculation unit 210, a curvature calculation unit 110, a shape calculation unit 150, a photodetector driving unit 180, and a light source driving unit 190. And an output unit 140.
  • the input unit 130 is configured to receive light amount information that is a relationship between the wavelength and the light amount acquired using the shape estimation sensor unit 20.
  • the light amount information that is the relationship between the wavelength and the light amount is, for example, a spectrum having different light absorption rates.
  • the input unit 130 is also configured to input temperature-related information around the shape estimation sensor unit 20.
  • the input unit 130 is configured to receive temperature-related information acquired by the temperature measurement unit 70.
  • the input unit 130 further receives a shape estimation start signal, a shape estimation end signal, a light amount reading start signal, a light amount reading end signal, a curvature calculation start signal, a curvature calculation end signal, and a signal related to the setting of the curvature calculation unit 110 from the input device 170.
  • a shape calculation start signal, a shape calculation end signal, a signal related to the setting of the shape calculation unit 150, and the like are input.
  • the control unit 200 controls the setting of the light intensity of each light source of the light source unit 10 through the light source driving unit 190 in accordance with a signal from the input device 170.
  • the storage unit 120 stores a light amount estimation relationship including shape characteristic information representing a relationship between a shape, a wavelength, and a light amount for each of the plurality of shape detection units DP i .
  • the storage unit 120 also stores various types of information necessary for calculations performed by the shape calculation unit 150.
  • the storage unit 120 further stores, for example, a program including a calculation algorithm, a light quantity estimation relationship including shape characteristic information of the shape detection unit DP i , and the like.
  • the temperature calculation unit 210 estimates temperature-related information based on information from the temperature measurement unit 70, that is, detection information of the plurality of temperature measuring devices TD j , and transmits the temperature-related information to the curvature calculation unit 110 and the storage unit 120.
  • the curvature calculation unit 110 reads the light amount estimation relationship from the storage unit 120 and calculates a light amount estimation value that is a relationship between the wavelength and the light amount corresponding to each shape detection unit DP i based on the light amount estimation relationship.
  • the curvature calculation unit 110 further includes light amount information supplied from the input unit 130, a light amount estimation value calculated based on the light amount estimation relationship read from the storage unit 120, and temperature related information supplied from the temperature calculation unit 210. Based on this, the curvature of each of the plurality of shape detectors DP i is calculated.
  • the curvature calculation unit 110 outputs the calculated curvature of each shape detection unit DP i to the shape calculation unit 150.
  • the shape calculation unit 150 calculates the shape information of the light conducting member LG 2 provided with the plurality of shape detection units DP i based on the curvature and position information of each shape detection unit DP i supplied, that is, the shape information. To do. Shape operation unit 150 outputs the calculated shape information of the light conducting member LG 2 to the output portion 140.
  • the photodetector driving unit 180 generates a driving signal for the photodetector 30 based on the information acquired from the input unit 130 and the shape calculating unit 150, and transmits the generated driving signal to the output unit 140.
  • the drive signal of the photodetector 30 is a signal for performing on / off switching of the photodetector 30 and gain adjustment of the photodetector 30.
  • the light source driving unit 190 generates a driving signal for the light source unit 10 and transmits the generated driving signal to the output unit 140.
  • the output unit 140 outputs the acquired shape information of the light conducting member LG 2 from the shape calculation portion 150 to the display unit 160. Further, the output unit 140 transmits a drive signal from the light source driving unit 190 to the light source unit 10. The output unit 140 transmits a drive signal from the photodetector driving unit 180 to the photodetector 30.
  • the curvature calculation unit 110 acquires curvature characteristic information (light amount estimation relationship) for each wavelength of the light amount information according to the temperature related information from the temperature calculation unit 210 stored in the storage unit 120.
  • the curvature characteristic information is a parameter used for the light amount change rate and the shape derivation of the shape estimation sensor unit 20.
  • the curvature calculation unit 110 calculates a light amount change rate (light amount estimation value) based on the curvature characteristic information.
  • the light quantity change rate is given by equation (1).
  • the reference light amount is light amount information when the shape estimation sensor unit 20 is in a straight line.
  • the light quantity (CR 0 ) serving as the reference of the equation (1) changes.
  • the reference amount of light is expressed as information with respect to temperature as a variable, and is expressed as in equation (2).
  • Expression (2) is expressed as a function of information about temperature, but the reference light quantity may be acquired using a map.
  • the shape information of each shape detection unit DP i calculated by the curvature calculation unit 110 is transmitted to the shape calculation unit 150.
  • Shape operation unit 150 based on the shape information of the shape detection unit DP i, to calculate the shape of the light conducting member LG 2.
  • Shape information of the light conducting member LG 2 is transmitted to the display unit 160 via the output unit 140.
  • the display unit 160 displays shape information.
  • the display unit 160 may display not only the shape information but also the curvature and shape calculation results.
  • the mathematical expression is an expression for changing the reference light amount information CR 0 according to the temperature as an example, but the temperature related information (Te) is calculated as a variable in the shape information calculation (CR n ) of each shape detection unit DP i. May be.
  • FIG. 6 is a flowchart of shape estimation in this embodiment.
  • step 1S1 the initial setting is transmitted from the control unit 200 to the photodetector driving unit 180 and the light source driving unit 190, and driving is started.
  • step 1S2 reading of the light amount from the light detector 30 is started.
  • step 1S3 a light quantity reading end signal is received.
  • step 1S4 the detection signal (light quantity information) from the photodetector 30 and the temperature related information from the temperature measurement unit 70 are acquired.
  • Step 1S5 temperature related information is transmitted to the storage unit 120, and curvature characteristic information corresponding to the temperature related information is acquired from the storage unit 120.
  • step 1S6 the curvature of each shape detection unit DP i is calculated based on the acquired detection signal of the photodetector 30, the temperature related information acquired from the temperature measurement unit 70, and the curvature characteristic information acquired from the storage unit 120. To do.
  • step 1S7 it estimates the shape of the light conducting member LG 2 on the basis of the curvature and position information of each shape detecting unit DP i of the shape detecting unit DP i.
  • step 1S8 it displays the estimated shape of the light conducting member LG 2 to the display unit 160.
  • step 1S9 it is determined whether an end signal has been received. If the determination result is No, the process returns to step 1S2. If the determination result is Yes, the shape estimation ends.
  • the shape estimation apparatus performs shape estimation using temperature related information in addition to the light amount information and the light amount estimated value, the error in the shape detection result due to the temperature change is removed. It is possible to calculate the curvature of the shape detector DP i and estimate the shape of the light conducting member LG 2 with high accuracy.
  • FIG. 7 is a configuration diagram of a shape estimation apparatus according to the second embodiment. 7, members denoted by the same reference numerals as those shown in FIG. 1 are the same members, and detailed description thereof is omitted.
  • the second embodiment will be described focusing on differences from the first embodiment.
  • the temperature measurement unit 70A includes a temperature estimation sensor unit 20A, a light source unit 10A that supplies light to the temperature estimation sensor unit 20A, and light detection that detects light that has passed through the temperature estimation sensor unit 20A.
  • the optical branching unit 50A Connected to the optical branching unit 50A, the light branching unit 50A for guiding the light from the light source unit 10A to the temperature estimation sensor unit 20A and the light from the temperature estimation sensor unit 20A to the photodetector 30A.
  • An antireflection member 60A is provided.
  • Light source unit 10A is the optical branching section 50A optically connected via an optical conduction member LGA 1.
  • Photodetector 30A is an optical branching section 50A optically connected via an optical conductive member LGA 4.
  • Antireflection member 60A is an optical branching section 50A optically connected via an optical conduction member LGA 3.
  • the configuration of the light source unit 10A, the photodetector 30A, the light branching unit 50A, the antireflection member 60A, and the light conducting members LGA 1 , LGA 3 , and LGA 4 are respectively the light source unit 10, the photodetector 30, the light branching unit 50, This is the same as the antireflection member 60 and the light conducting members LG 1 , LG 3 , LG 4 .
  • the temperature estimation sensor unit 20A is composed of a fiber sensor, and includes a light conducting member LGA 2 connected to the light branching unit 50A and a plurality of temperature detection units (first temperature) provided in the light conducting member LGA 2.
  • Each temperature detection unit TDA j is composed of a light absorber whose light absorption rate varies depending on the temperature. Further, each of the temperature detection units TDA j absorbs light having different wavelengths. Each temperature detection unit TDA j changes in the light amount change rate as shown in FIG.
  • the temperature estimation sensor unit 20 ⁇ / b> A is disposed around the shape estimation sensor unit 20. Each temperature detection unit TDA j is arranged, for example, at a location around the shape detection unit DP i of the shape estimation sensor unit 20 where no shape change is given. Thereby, it becomes possible to measure temperature stably.
  • the temperature estimation sensor unit 20A is illustrated as being configured as a reflection type in FIG. 7, but may be configured as a transmission type.
  • FIG. 9 shows the processor unit 100 and its peripheral parts in the present embodiment.
  • the configuration of the processor unit 100 in the present embodiment is basically the same as that of the processor unit 100 in the first embodiment. Hereinafter, differences will be described.
  • the input unit 130 is configured to receive a detection signal from a photodetector 30A that detects light that has passed through the temperature estimation sensor unit 20A.
  • the light source driving unit 190 is configured to drive the light source unit 10A that supplies light to the temperature estimation sensor unit 20A.
  • the photodetector driver 180 is configured to drive the photodetector 30 ⁇ / b> A that detects light that has passed through the temperature estimation sensor unit 20 ⁇ / b> A, in addition to the photodetector 30.
  • the output unit 140 is configured to transmit a driving signal from the light source driving unit 190 to the light source unit 10A and a driving signal from the photodetector driving unit 180 to the photodetector 30A.
  • the temperature calculation unit 210 converts the detection signal of the photodetector 30A into temperature related information. Since the temperature detection unit TDA j of the temperature estimation sensor unit 20A has a linear shape without changing its shape, the light amount change detected by the photodetector 30A depends only on the temperature change. Therefore, by formulating or mapping the relationship between the light quantity change and the temperature change, the temperature related information can be acquired from the light quantity change detected by the photodetector 30A.
  • Expression (4) shows the relationship between the light amount change rate and the temperature related information of the temperature detector TDA j .
  • the temperature detecting unit TDA j because they are disposed at locations where the shape does not change, change of light intensity CR Te of each temperature detecting unit TDA j is dependent only on the temperature change It becomes.
  • the temperature related information of each temperature detection unit TDA j of the equation (4) calculated in the temperature calculation unit 210 is transmitted to the storage unit 120.
  • the storage unit 120 transmits curvature characteristic information corresponding to the stored temperature-related information to the curvature calculation unit 110.
  • the curvature calculation unit 110 is based on the temperature-related information from the temperature calculation unit 210, the detection signal from the photodetector 30, and the curvature characteristic information from the storage unit 120.
  • the light amount change amount of each shape detection unit DP i is calculated by a numerical analysis method using information or the like. Based on the relationship between the calculated amount of change in light quantity and the curvature, the curvature of each shape detection unit DP i in FIG. 7 is calculated.
  • the shape operation unit 150 based on the position information of the curvature and the shape detection unit DP i of the shape detecting unit DP i, a plurality of shape detecting unit DP i is provided to calculate the shape information of the light conducting member LG 2. Shape information of the calculated light conducting member LG 2 is displayed on the display unit 160.
  • FIG. 10 is a flowchart of shape estimation in this embodiment.
  • step 2S1 the setting is transmitted from the control unit 200 to the photodetector driving unit 180 and the light source driving unit 190, and driving is started.
  • Step 2S2 reading of the light amount from the photodetector 30 for the shape estimation sensor unit 20 and reading of the light amount from the photodetector 30A for the temperature estimation sensor unit 20A are started.
  • step 2S3 a light quantity reading end signal is received.
  • step 2S4 a detection signal from the photodetector 30 for the shape estimation sensor unit 20 and a detection signal from the photodetector 30A for the temperature estimation sensor unit 20A are acquired.
  • step 2S5 temperature related information is calculated from the light quantity change rate of the temperature detector TDA j .
  • ⁇ n is a light quantity change rate.
  • step 2S6 the acquired temperature related information is transmitted to the storage unit 120, and curvature characteristic information corresponding to the temperature related information is acquired.
  • step 2S7 the curvature of each shape detection unit DP i is calculated based on the acquired detection signal of the photodetector 30, the temperature-related information calculated in step 2S5, and the curvature characteristic information acquired from the storage unit 120.
  • step 2S8 the shape of the light conducting member LG 2 shape estimation sensor unit 20 is estimated based on the position information of the curvature and the shape detection unit DP i of the shape detecting unit DP i.
  • step 2S9 it displays the estimated shape of the light conducting member LG 2 shape estimation sensor unit 20 to the display unit 160.
  • step 2S10 it is determined whether an end signal has been received. If the determination result is No, the process returns to step 2S2. If the determination result is Yes, the shape estimation ends.
  • the shape estimation apparatus removes errors in the shape detection results due to temperature changes, and thus calculates the curvature of each shape detection unit DP i and the light conducting member LG 2 .
  • the shape can be estimated with high accuracy.
  • the temperature estimation sensor unit 20A of the temperature measurement unit 70A is composed of a fiber sensor, it can be configured to have a small diameter.
  • FIG. 11 is a configuration diagram of a shape estimation apparatus according to the third embodiment. 11, members denoted by the same reference numerals as those shown in FIG. 1 are the same members, and detailed description thereof is omitted.
  • the third embodiment will be described focusing on differences from the first embodiment.
  • the light conducting member LG 2 shape estimation sensor unit 20 in addition to the shape detecting unit DP i, the temperature detector TD is provided.
  • the temperature detector TD is disposed at a location where no change in shape is given.
  • the temperature detection unit TD includes a light absorber whose light absorption rate varies depending on the temperature. As shown in FIG. 12, the light absorption spectrum C TD of the light absorber temperature detector TD has a peak at a wavelength lambda k, wavelength lambda 1, lambda 2, ..., each having a peak at lambda n light absorption spectrum C 1 of the light absorber shape detecting unit DP i, C 2, ..., are present in a wavelength band different from the C n.
  • the light absorption spectrums C 1, C 2 ,..., C n of the light absorber of the shape detection unit DP i exist in the temperature detection region where the light absorption spectrum C TD of the light absorber of the temperature detection unit TD exists. It is in a different wavelength band from the shape detection region. For example, light of wavelength lambda k, since only respond with light absorber temperature detector TD, easily performs a separation of temperature detection and shape detection.
  • Temperature detector TD is provided in the light-conducting member LG 2 shape estimation sensor unit 20, it may alternatively be provided in the optical conduction member LG 4 antireflection member 60 is connected . Further, in FIG. 11, although the light conducting member LG 2 is only one temperature detection section TD is depicted as provided, or a plurality of the temperature detecting portion to the light conducting member LG 2 is provided.
  • FIG. 13 shows the processor unit 100 and its peripheral parts in the present embodiment.
  • the configuration of the processor unit 100 in the present embodiment is basically the same as that of the processor unit 100 in the first embodiment. Hereinafter, differences will be described.
  • the light detector 30 is configured to detect light that has passed through the temperature detector TD in addition to light that has passed through the shape detector DP i .
  • Temperature calculating unit 210 has a detection signal of the light of wavelength lambda k detected by the optical detector 30 is configured to convert the temperature-related information.
  • the temperature calculating unit 210 from the light amount change of the wavelength lambda k of the temperature detecting region of FIG. 12, calculates information regarding the temperature related information such as temperature changes.
  • Information about the temperature change can be calculated by equation approximating the relationship of Equation temperature changes as shown in (5) (Te) and light intensity change in wavelength ⁇ k (CR ⁇ k).
  • the information about the temperature change can be obtained from a map representing the light amount change rate versus temperature of a wavelength lambda k.
  • the temperature related information (Te) acquired from the temperature calculation unit 210 is transmitted to the storage unit 120.
  • the storage unit 120 transmits curvature characteristic information corresponding to the stored temperature-related information to the curvature calculation unit 110.
  • the curvature calculation unit 110 is based on the temperature-related information from the temperature calculation unit 210, the detection signal from the photodetector 30, and the curvature characteristic information from the storage unit 120.
  • the amount of light amount change of each shape detection unit DP i is calculated using a numerical analysis method using the above. Based on the calculated relationship between the amount of change in light quantity and the curvature, the curvature of each shape detection unit DP i in FIG. 11 is calculated.
  • the shape operation unit 150 based on the position information of the curvature and the shape detection unit DP i of the shape detecting unit DP i, a plurality of shape detecting unit DP i is provided to calculate the shape information of the light conducting member LG 2. Shape information of the calculated light conducting member LG 2 is displayed on the display unit 160.
  • FIG. 14 is a flowchart of shape estimation in this embodiment.
  • step 3S1 the setting is transmitted from the control unit 200 to the photodetector driving unit 180 and the light source driving unit 190, and driving is started.
  • step 3S2 reading of the light amount from the photodetector 30 is started.
  • step 3S3 a light quantity reading end signal is received.
  • step 3S4 a detection signal from the photodetector 30 is acquired.
  • step 3S5 the absorbance of each shape detection unit DP i is obtained from the storage unit 120, and the light amount change of each shape detection unit DP i is calculated by a technique such as multivariate analysis.
  • step 3S6 temperature related information is calculated from the light quantity change of the temperature detector TD.
  • step 3S7 the curvature of each shape detection unit DP i is calculated based on the acquired detection signal of the photodetector 30, the temperature-related information calculated in step 3S6, and the curvature characteristic information acquired from the storage unit 120.
  • step 3S8 it estimates the shape of the light conducting member LG 2 on the basis of the curvature and position information of each shape detecting unit DP i of the shape detecting unit DP i.
  • step 3S9 it displays the estimated shape of the light conducting member LG 2 to the display unit 160.
  • step 3S10 it is determined whether an end signal has been received. If the determination result is No, the process returns to step 3S2. If the determination result is Yes, the shape estimation ends.
  • the shape estimation apparatus removes errors in the shape detection results due to temperature changes, and thus calculates the curvature of each shape detection unit DP i and the light conducting member LG 2 .
  • the shape can be estimated with high accuracy.
  • Temperature detector TD for obtaining temperature-related information, since the provided optical conduction member LG 2 shape estimation sensor unit 20, thickening the diameter of the object to be installed shape estimation apparatus of the present embodiment It is possible to acquire temperature-related information without this.
  • FIG. 15 is a configuration diagram of a shape estimation apparatus according to the fourth embodiment.
  • the shape estimation apparatus according to the present embodiment is similar to the shape estimation apparatus according to the third embodiment. 15, members denoted by the same reference numerals as those shown in FIG. 11 are similar members, and detailed description thereof is omitted.
  • the fourth embodiment will be described focusing on differences from the third embodiment.
  • the temperature detection unit TD is provided in addition to the shape detection unit DP i in the photoconductive member LG 2 of the shape estimation sensor unit 20 as in the shape estimation device according to the third embodiment. It has been.
  • the configuration of the temperature detection unit TD is the same as that of the third embodiment.
  • the temperature detection unit TD is arranged at a location where the shape change is not given, but in this embodiment, the temperature detection unit TD is arranged at a location where the shape change is given.
  • the temperature detection unit TD is disposed adjacent to one of the shape detection units DP i .
  • the temperature detection unit TD is disposed adjacent to the first shape detection unit DP1. For this reason, the curvature of the temperature detection unit TD is equal to the curvature of the first shape detection unit DP1.
  • the light conducting member LG 2 is depicted as having only one temperature detecting unit TD, but the plurality of temperature detecting units are adjacent to the plurality of shape detecting units, and the light conducting member LG. 2 may be provided.
  • FIG. 16 shows the processor unit 100 and its peripheral parts in the present embodiment.
  • the configuration of the processor unit 100 in the present embodiment is basically the same as that of the processor unit 100 in the third embodiment. Hereinafter, differences will be described.
  • a light amount change amount of each shape detection unit DP i is calculated using a mathematical method using the light absorbance of each shape detection unit DP i or a method such as numerical analysis. Light amount change of the light amount change rate and the shape detection unit DP i of each wavelength relationship of Equation (6) holds.
  • the light quantity change information CR i of each shape detection unit DP i is expressed by Expression (7).
  • the light amount change information CR i for each shape detecting unit DP i includes light amount change information CR i of the light amount change information CR Te and shape detection unit DP i of the temperature detecting portion TD.
  • Information (T) about temperature and information (kappa) about curvature are acquired from Formula (8).
  • Information T regarding the acquired temperature is transmitted to the storage unit 120.
  • the curvature calculation unit 110 acquires curvature characteristic information according to the acquired temperature-related information T from the storage unit 120, and calculates the light amount change of each shape detection unit DP i again based on the acquired curvature characteristic information.
  • the calculated light amount change of each shape detection unit DP i is corrected by temperature, and thus becomes shape change information. Calculated from the light amount information of each shape detecting unit DP i, to calculate the curvature of the shape detecting unit DP i of FIG.
  • the shape operation unit 150 based on the position information of the curvature and the shape detection unit DP i of the shape detecting unit DP i, a plurality of shape detecting unit DP i is provided to calculate the shape information of the light conducting member LG 2. Shape information of the calculated light conducting member LG 2 is displayed on the display unit 160.
  • FIG. 17 is a flowchart of shape estimation in this embodiment.
  • step 4S1 the setting is transmitted from the control unit 200 to the photodetector driving unit 180 and the light source driving unit 190, and driving is started.
  • step 4S2 reading of the light amount from the light detector 30 is started.
  • step 4S3 a light quantity reading end signal is received.
  • step 4S4 a detection signal from the photodetector 30 is acquired.
  • step 4S5 the absorbances of the temperature detection unit TD and each shape detection unit DP i are obtained from the storage unit 120, and the light quantity changes of the temperature detection unit TD and each shape detection unit DP i are calculated by a technique such as multivariate analysis.
  • step 4S6 calculates the amount change of the temperature detecting portion TD, and a first light quantity change of shape detecting unit DP 1 adjacent to the temperature detector TD, a quantity of light caused by shape change, an amount of light caused by temperature.
  • step 4S7 temperature related information is calculated from the light quantity change rate of the temperature detection unit TD.
  • step 4S8 the curvature of each shape detection unit DP i is calculated based on the acquired detection signal of the photodetector 30, the temperature-related information calculated in step 4S7, and the curvature characteristic information acquired from the storage unit 120.
  • step 4S9 it estimates the shape of the light conducting member LG 2 on the basis of the curvature and position information of each shape detecting unit DP i of the shape detecting unit DP i.
  • step 4S10 and it displays the estimated shape of the light conducting member LG 2 to the display unit 160.
  • step 4S11 it is determined whether an end signal has been received. If the determination result is No, the process returns to step 4S2. If the determination result is Yes, the shape estimation ends.
  • the shape estimation apparatus removes errors in the shape detection results due to temperature changes, and thus calculates the curvature of each shape detection unit DP i and the light conducting member LG 2 .
  • the shape can be estimated with high accuracy.
  • Temperature detector TD for obtaining temperature-related information, since the provided optical conduction member LG 2 shape estimation sensor unit 20, thickening the diameter of the object to be installed shape estimation apparatus of the present embodiment It is possible to acquire temperature-related information without this.
  • FIG. 18 is a configuration diagram of a shape estimation apparatus according to the fifth embodiment.
  • members denoted by the same reference numerals as those shown in FIG. 1 are similar members, and detailed description thereof is omitted.
  • the fifth embodiment will be described focusing on differences from the first embodiment.
  • the shape estimation device of this embodiment has a configuration in which the temperature measurement unit 70 is omitted from the shape estimation device of the first embodiment.
  • FIG. 19 schematically shows an endoscope 300 in which the shape estimation apparatus of this embodiment is incorporated.
  • the endoscope 300 includes a holding unit 310 for an operator to hold the endoscope 300 and an insertion unit 320 extending from the holding unit 310.
  • the insertion part 320 is a hollow elongate flexible member that is inserted into a lumen in a human body, for example.
  • the shape estimation sensor unit 20 is provided in the internal space of the insertion unit 320.
  • the shape estimation sensor unit 20 extends along the insertion unit 320.
  • Other configurations of the shape estimation device for example, the light source unit 10, the photodetector 30, the light branching unit 50, and the like are arranged in the holding unit 310.
  • FIG. 20 shows the processor unit 100 and its peripheral parts in the present embodiment. 20, members denoted by the same reference numerals as those shown in FIG. 5 are similar members, and detailed description thereof is omitted. Hereinafter, differences will be described.
  • the processor unit 100 of the shape estimation apparatus determines whether or not the insertion unit 320 of the endoscope 300 is currently inserted into the lumen of the human body instead of the temperature calculation unit 210.
  • a body determination unit 220 is provided.
  • the curvature calculation unit 110 calculates a light amount change rate of each shape detection unit DP i based on a detection signal from the photodetector 30 using a predetermined temperature, for example, room temperature as provisional temperature-related information.
  • the curvature calculation unit 110 acquires the absorbance of each shape detection unit DP i from the storage unit 120, and calculates the change in light amount of each shape detection unit DP i by a technique such as multivariate analysis.
  • the shape calculation unit 150 calculates the shape of the light conducting member LG 2 from the calculated light amount change of each shape detection unit DP i and the curvature characteristic information set in the storage unit 130. Shape information of the light conducting member LG 2 is transmitted into the body judging section 220.
  • the in-vivo determination unit 220 determines whether or not the insertion unit 320 of the endoscope 300 is currently inserted into the lumen. This determination is made based on whether or not the insertion portion 320 has a characteristic shape.
  • the insertion part 320 may be S-shaped as shown in FIG. 21 when inserted into a lumen.
  • the shape information of the light conducting member LG 2 determines whether it is the S-shape.
  • the curvature calculation unit 110 and the storage unit 120 use temperature-related information as information about a human body temperature (35 degrees to 37 degrees). Output to.
  • the temperature related information may be manually input via the input device 170 instead of being output by the in-vivo determination unit 220.
  • the storage unit 120 outputs curvature characteristic information corresponding to the temperature-related information supplied from the in-vivo determination unit 220 to the curvature calculation unit 110.
  • Curvature calculation unit 110 a detection signal of the photodetector 30, the acquired curvature characteristic information from the storage unit 120, on the basis of the temperature-related information supplied from the body determining unit 220, a plurality of shape detecting unit DP i Calculate the curvature of each.
  • the curvature calculation unit 110 outputs the calculated curvature of each shape detection unit DP i to the shape calculation unit 150.
  • Shape operation unit 150 based on the curvature and position information of each shape detecting unit DP i of the shape detecting unit DP i, to calculate the shape information of the light conducting member LG 2 as the shape information of the insertion portion 320. Shape information of the calculated light conducting member LG 2 i.e. the insertion portion 320 is displayed on the display unit 160.
  • FIG. 22 is a flowchart of shape estimation in the present embodiment.
  • step 5S1 the setting is transmitted from the control unit 200 to the photodetector driving unit 180 and the light source driving unit 190, and driving is started.
  • step 5S2 the absorbance and preset curvature characteristic information are read from the storage unit 120.
  • step 5S3 the light quantity reading from the photodetector 30 is started.
  • step 5S4 a light quantity reading end signal is received.
  • step 5S5 a detection signal from the photodetector 30 is acquired.
  • step 5S6 it obtains the absorbance of each shape detecting unit DP i in curvature calculating unit 110 calculates the light amount change rate of each shape detecting unit DP i.
  • step 5S7 light amount change and the curvature characteristic information of each shape detecting unit DP i, estimates the shape of the light conducting member LG 2 based on the position information of the shape detection unit DP i.
  • step 5S8 it is determined whether or not the insertion section 320 is inserted into a body lumen. Specifically, the light conducting member LG 2 determines whether become S-shaped.
  • step 5S9 the curvature characteristic information is changed to curvature characteristic information corresponding to the temperature corresponding to the body temperature.
  • step 5S10 the curvature of each shape detection unit DP i is calculated based on the acquired detection signal of the photodetector 30, the temperature information corresponding to the body temperature, and the curvature characteristic information acquired from the storage unit 120. .
  • step 5S11 we estimate the shape of the light conducting member LG 2 on the basis of the curvature and position information of each shape detecting unit DP i of the shape detecting unit DP i.
  • step 5S12 the display unit 160 the shape of the light conducting member LG 2 estimated in step 5S11 as the shape of the insertion portion 320 of the endoscope 300.
  • step 5S8 determines whether the determination result in step 5S8 is No. If the determination result in step 5S8 is No, the process proceeds to step 5S12 skip step 5S9 to step 5S11, the shape of the insertion portion 320 of the endoscope 300 to the shape of the light conducting member LG 2 estimated in step 5S7 Is displayed on the display unit 160.
  • step 5S13 it is determined whether an end signal has been received. If the determination result is No, the process returns to step 5S3. If the determination result is Yes, the shape estimation ends.
  • the shape estimation apparatus removes errors in the shape detection results due to temperature changes, and thus calculates the curvature of each shape detection unit DP i and the light conducting member LG 2 .
  • the shape can be estimated with high accuracy.
  • an endoscope is provided in which the shape of the insertion portion 320 of the endoscope 300 can be estimated with high accuracy.
  • FIG. 23 is a configuration diagram of a shape estimation apparatus according to the sixth embodiment. 23, members denoted by the same reference numerals as those shown in FIG. 1 are the same members, and detailed description thereof is omitted.
  • the sixth embodiment will be described focusing on differences from the first embodiment.
  • the shape estimation device of this embodiment has a configuration including an insertion amount sensor 80 instead of the temperature measurement unit 70 of the shape estimation device of the first embodiment.
  • the insertion amount sensor 80 provides information for determining whether the shape estimation sensor unit 20 or the insertion unit 320 of the endoscope 300 in which the shape estimation sensor unit 20 is incorporated is inserted into a lumen in a human body, for example. have.
  • FIG. 24 schematically shows an endoscope system in which the shape estimation apparatus of this embodiment is incorporated.
  • the endoscope system includes an endoscope 300 and an endoscope control unit 820 that controls various operations of the endoscope 300.
  • the endoscope 300 includes a holding unit 310 for an operator to hold the endoscope 300 and an insertion unit 320 extending from the holding unit 310.
  • the insertion part 320 is a hollow elongate flexible member that is inserted into a lumen in a human body, for example.
  • the shape estimation sensor unit 20 is provided in the internal space of the insertion unit 320. The shape estimation sensor unit 20 extends along the insertion unit 320.
  • the endoscope control unit 820 has an image processing unit 822 for processing an image acquired by an image sensor provided at the distal end of the insertion unit 320 of the endoscope 300.
  • the insertion amount sensor 80 is provided in the insertion part 320 of the endoscope 300.
  • the insertion unit 320 is movable with respect to the insertion amount sensor 80, and the insertion amount sensor 80 outputs a signal corresponding to the length of the portion of the insertion unit 320 positioned in front of the insertion amount sensor 80. To do.
  • FIG. 25 shows the processor unit 100 and its peripheral parts in the present embodiment. 25, members denoted by the same reference numerals as those shown in FIG. 5 are the same members, and detailed description thereof is omitted. Hereinafter, differences will be described.
  • the input unit 130 is configured to receive a detection signal from the insertion amount sensor 80.
  • the processor unit 100 of the shape estimation apparatus includes an in-vivo determination unit 220 that determines whether or not the insertion unit 320 of the endoscope 300 is currently inserted into a human body, instead of the temperature calculation unit 210. Yes.
  • the in-vivo determination unit 220 determines whether or not the insertion unit 320 of the endoscope 300 is currently inserted into the human body. For example, the insertion amount sensor 80 outputs a detection signal corresponding to the length of the portion of the insertion unit 320 positioned in front of the insertion amount sensor 80, and the in-vivo determination unit 220 determines the detection signal from the insertion amount sensor 80 as a predetermined value. Compare with the threshold value. The in-vivo determination unit 220 determines that the insertion unit 320 is inserted into the body when the detection signal from the insertion amount sensor 80 is greater than a predetermined threshold value. In that case, the in-vivo determination unit 220 outputs information on the temperature corresponding to the human body temperature (35 degrees to 37 degrees) to the curvature calculation unit 110 and the storage unit 120 as temperature related information.
  • the storage unit 120 outputs curvature characteristic information corresponding to the temperature-related information supplied from the in-vivo determination unit 220 to the curvature calculation unit 110.
  • Curvature calculation unit 110 a detection signal of the photodetector 30, the acquired curvature characteristic information from the storage unit 120, on the basis of the temperature-related information supplied from the body determining unit 220, a plurality of shape detecting unit DP i Calculate the curvature of each.
  • the curvature calculation unit 110 outputs the calculated curvature of each shape detection unit DP i to the shape calculation unit 150.
  • Shape operation unit 150 based on the curvature and position information of each shape detecting unit DP i of the shape detecting unit DP i, to calculate the shape information of the light conducting member LG 2 as the shape information of the insertion portion 320. Shape information of the calculated light conducting member LG 2 i.e. the insertion portion 320 is displayed on the display unit 160.
  • FIG. 26 is a flowchart of shape estimation in this embodiment.
  • step 6S1 the setting is transmitted from the control unit 200 to the photodetector driving unit 180 and the light source driving unit 190, and driving is started.
  • step 6S2 reading of the light amount from the photodetector 30 is started.
  • step 6S3 a light quantity reading end signal is received.
  • step 6S4 a detection signal from the insertion amount sensor 80 is acquired.
  • step 6S5 it is determined whether the insertion part 320 of the endoscope 300 is inserted into the body. Specifically, it is determined whether the insertion amount, that is, the detection signal from the insertion amount sensor 80 is larger than the threshold value A.
  • Step 6S5 If the determination result in Step 6S5 is Yes, curvature characteristic information corresponding to the temperature corresponding to the body temperature is acquired from the storage unit 120 in Step 6S6.
  • step 6S7 the curvature of each shape detection unit DP i is calculated based on the acquired detection signal of the photodetector 30, the temperature information corresponding to the body temperature, and the curvature characteristic information acquired from the storage unit 120. .
  • step 6S5 the determination in step 6S5 is No, in step 6S8, to calculate the curvature of the shape detecting unit DP i based on the curvature characteristic information corresponding to the temperature that has been set in advance.
  • step 6S9 it estimates the shape of the light conducting member LG 2 on the basis of the curvature and position information of each shape detecting unit DP i of the shape detecting unit DP i.
  • step 6S10 and it displays the estimated shape of the light conducting member LG 2 to the display unit 160.
  • step 6S11 it is determined whether an end signal has been received. If the determination result is No, the process returns to step 6S2. If the determination result is Yes, the shape estimation ends.
  • the shape estimation apparatus removes errors in the shape detection results due to temperature changes, and thus calculates the curvature of each shape detection unit DP i and the light conducting member LG 2 .
  • the shape can be estimated with high accuracy.
  • an endoscope system in which the shape of the insertion portion 320 of the endoscope 300 can be estimated with high accuracy.
  • the insertion amount sensor 80 is used to determine whether the insertion portion 320 of the endoscope 300 is inserted into the body, but instead of using the insertion amount sensor 80, a camera or an endoscope is used. It may be determined whether or not the insertion unit 320 of the endoscope 300 is inserted into the body using image information or the like from the mirror system.

Abstract

This shape estimating device is provided with: an input unit (130) that is configured such that light quantity information, i.e., the relationships between wavelengths and light quantities, said light quantity information having been acquired using a shape estimating sensor unit that is configured such that the light quantities detected with respect to wavelengths corresponding to a plurality of shape detection units vary in accordance with the shapes of the shape detection units, and temperature-related information of the periphery of the shape estimating sensor unit are inputted; a storage unit (120) that stores therein light quantity estimation relationships, including shape characteristic information that indicates the relationships among the shapes, the wavelengths, and the light quantities of respective shape detection units; and a calculation unit (110) that calculates the shapes of respective shape detection units on the basis of the light quantity information, the temperature-related information, and light quantity estimation values, i.e., the relationships between the wavelengths and the light quantities, said light quantity estimation values having been calculated on the basis of the light quantity estimation relationships.

Description

形状推定装置Shape estimation device
 本発明は、可撓性を有する物体の曲げ形状を推定する形状推定装置に関する。 The present invention relates to a shape estimation apparatus that estimates the bending shape of a flexible object.
 特開2016-007505公報は、このような形状推定装置を開示している。この形状推定装置では、複数の光吸収体の検出部の各々に応じた波長について、検出される光量情報が複数の検出部の各々の形状に応じて異なるように構成されたセンサを用いて、光量情報と光量推定関係に基づいて算出される波長と光量との関係である光量推定値に基づいて、複数の検出部の各々の形状が演算される。さらに、複数の検出部の各々の形状と位置情報に基づいて、形状推定装置が組み込まれた可撓性を有する物体の曲げ形状が推定される。 Japanese Unexamined Patent Application Publication No. 2016-007505 discloses such a shape estimation apparatus. In this shape estimation device, for a wavelength corresponding to each of the detection units of the plurality of light absorbers, using a sensor configured so that the detected light amount information differs according to the shape of each of the plurality of detection units, Based on the light amount estimation value that is the relationship between the wavelength and the light amount calculated based on the light amount information and the light amount estimation relationship, the shape of each of the plurality of detection units is calculated. Further, based on the shape and position information of each of the plurality of detection units, the bending shape of the flexible object incorporating the shape estimation device is estimated.
 本発明者らは、形状推定装置において検出される光量情報が、温度に依存して変化することを見いだした。つまり、形状推定装置によって推定される形状には、温度に起因する誤差が含まれていることを本発明者らは発見した。 The present inventors have found that the light quantity information detected by the shape estimation apparatus changes depending on the temperature. That is, the present inventors have found that the shape estimated by the shape estimation device includes an error due to temperature.
 本発明は、このような実状を考慮してなされたものであり、その目的は、温度に起因する誤差を含まない正確な形状を推定する形状推定装置を提供することである。 The present invention has been made in consideration of such a situation, and an object thereof is to provide a shape estimation apparatus that estimates an accurate shape that does not include an error caused by temperature.
 本発明による形状推定装置は、複数の形状検出部の各々に応じた波長についての検出される光量が前記複数の形状検出部の各々の形状に応じて異なるように構成された形状推定用センサ部を用いて取得された前記波長と前記光量との関係である光量情報と、前記形状推定用センサ部の周辺の温度関連情報が入力されるように構成された入力部と、前記複数の形状検出部の各々についての前記形状と前記波長と前記光量との関係を表す形状特性情報を含む光量推定関係を記憶する記憶部と、前記光量情報と、前記光量推定関係に基づいて算出される前記波長と前記光量との関係である光量推定値と、前記温度関連情報とに基づいて、前記複数の形状検出部の各々の形状を演算する演算部とを備えている。 The shape estimation apparatus according to the present invention includes a shape estimation sensor unit configured such that the amount of light detected for a wavelength corresponding to each of a plurality of shape detection units differs according to the shape of each of the plurality of shape detection units. A light quantity information that is a relationship between the wavelength and the light quantity acquired using the information, an input unit configured to receive temperature-related information around the shape estimation sensor unit, and the plurality of shape detections A storage unit that stores a light amount estimation relationship including shape characteristic information representing a relationship between the shape, the wavelength, and the light amount of each of the units; the light amount information; and the wavelength that is calculated based on the light amount estimation relationship And a calculation unit that calculates the shape of each of the plurality of shape detection units based on the light amount estimation value that is a relationship between the light amount and the temperature related information.
 本発明によれば、温度に起因する誤差を含まない正確な形状を推定する形状推定装置が提供される。 According to the present invention, there is provided a shape estimation device that estimates an accurate shape that does not include an error due to temperature.
図1は、第1実施形態による形状推定装置の構成図である。FIG. 1 is a configuration diagram of a shape estimation apparatus according to the first embodiment. 図2は、光導通部材の軸に垂直な平面に沿った形状検出部の断面図を示している。FIG. 2 shows a cross-sectional view of the shape detector along a plane perpendicular to the axis of the photoconductive member. 図3は、第1の光吸収体と第2の光吸収体と第nの光吸収体における光の波長と吸収率との関係の一例を示している。FIG. 3 shows an example of the relationship between the light wavelength and the absorptance in the first light absorber, the second light absorber, and the nth light absorber. 図4Aは、光導通部材の曲がりの内側に形状検出部がくるように光導通部材が曲げられたときの光の伝達を概略的に示している。FIG. 4A schematically shows the transmission of light when the light conducting member is bent so that the shape detecting unit comes inside the bending of the light conducting member. 図4Bは、光導通部材が曲げられていないときの光の伝達を概略的に示している。FIG. 4B schematically shows the transmission of light when the photoconductive member is not bent. 図4Cは、光導通部材の曲がりの外側に形状検出部がくるように光導通部材が曲げられたときの光の伝達を概略的に示している。FIG. 4C schematically shows the transmission of light when the light conducting member is bent so that the shape detection unit comes outside the bending of the light conducting member. 図5は、第1実施形態におけるプロセッサ部およびその周辺部を示している。FIG. 5 shows the processor unit and its peripherals in the first embodiment. 図6は、第1実施形態における形状推定のフローチャートである。FIG. 6 is a flowchart of shape estimation in the first embodiment. 図7は、第2実施形態による形状推定装置の構成図である。FIG. 7 is a configuration diagram of a shape estimation apparatus according to the second embodiment. 図8は、温度変動に伴う各温度検出部の光量変化率の変化を示している。FIG. 8 shows a change in the light amount change rate of each temperature detection unit due to temperature fluctuation. 図9は、第2実施形態におけるプロセッサ部およびその周辺部を示している。FIG. 9 shows a processor unit and its peripheral units in the second embodiment. 図10は、第2実施形態における形状推定のフローチャートである。FIG. 10 is a flowchart of shape estimation in the second embodiment. 図11は、第3実施形態による形状推定装置の構成図である。FIG. 11 is a configuration diagram of a shape estimation apparatus according to the third embodiment. 図12は、各形状検出部と温度検出部の光吸収体の光吸収スペクトルを示している。FIG. 12 shows a light absorption spectrum of the light absorber of each shape detection unit and temperature detection unit. 図13は、第3実施形態におけるプロセッサ部およびその周辺部を示している。FIG. 13 shows a processor unit and its peripheral units in the third embodiment. 図14は、第3実施形態における形状推定のフローチャートである。FIG. 14 is a flowchart of shape estimation in the third embodiment. 図15は、第4実施形態による形状推定装置の構成図である。FIG. 15 is a configuration diagram of a shape estimation apparatus according to the fourth embodiment. 図16は、第4実施形態におけるプロセッサ部およびその周辺部を示している。FIG. 16 shows a processor unit and its peripheral units in the fourth embodiment. 図17は、第4実施形態における形状推定のフローチャートである。FIG. 17 is a flowchart of shape estimation in the fourth embodiment. 図18は、第5実施形態による形状推定装置の構成図である。FIG. 18 is a configuration diagram of a shape estimation apparatus according to the fifth embodiment. 図19は、第5実施形態の形状推定装置が組み込まれた内視鏡を模式的に示している。FIG. 19 schematically shows an endoscope in which the shape estimation apparatus of the fifth embodiment is incorporated. 図20は、第5実施形態におけるプロセッサ部およびその周辺部を示している。FIG. 20 shows a processor unit and its peripheral unit in the fifth embodiment. 図21は、管腔内に挿入されてS字形状になった内視鏡の挿入部を示している。FIG. 21 shows an insertion portion of an endoscope that is inserted into a lumen and has an S shape. 図22は、第5実施形態における形状推定のフローチャートである。FIG. 22 is a flowchart of shape estimation in the fifth embodiment. 図23は、第6実施形態による形状推定装置の構成図である。FIG. 23 is a configuration diagram of a shape estimation apparatus according to the sixth embodiment. 図24は、第6実施形態の形状推定装置が組み込まれた内視鏡システムを模式的に示している。FIG. 24 schematically shows an endoscope system in which the shape estimation apparatus according to the sixth embodiment is incorporated. 図25は、第6実施形態におけるプロセッサ部およびその周辺部を示している。FIG. 25 shows a processor unit and its peripheral units in the sixth embodiment. 図26は、第6実施形態における形状推定のフローチャートである。FIG. 26 is a flowchart of shape estimation in the sixth embodiment.
 <第1実施形態>
 図1は、第1実施形態による形状推定装置の構成図である。形状推定装置は、形状推定用センサ部20と、形状推定用センサ部20に光を供給する光源部10と、形状推定用センサ部20を通過した光を検出する光検出器30と、光源部10からの光を形状推定用センサ部20に導くとともに形状推定用センサ部20からの光を光検出器30に導く光分岐部50と、光分岐部50に接続された反射防止部材60と、形状推定用センサ部20の周辺の温度関連情報を検出する温度測定部70と、形状推定用センサ部20の形状を推定するプロセッサ部100を有している。
<First Embodiment>
FIG. 1 is a configuration diagram of a shape estimation apparatus according to the first embodiment. The shape estimation apparatus includes a shape estimation sensor unit 20, a light source unit 10 that supplies light to the shape estimation sensor unit 20, a light detector 30 that detects light that has passed through the shape estimation sensor unit 20, and a light source unit. A light branching unit 50 that guides light from the shape estimation sensor unit 20 to the light detector 30 and guides the light from the shape estimation sensor unit 20 to the photodetector 30, and an antireflection member 60 connected to the light branching unit 50. A temperature measurement unit 70 that detects temperature-related information around the shape estimation sensor unit 20 and a processor unit 100 that estimates the shape of the shape estimation sensor unit 20 are provided.
 形状推定用センサ部20は、光分岐部50に接続された光導通部材LGと、光導通部材LGに設けられた複数の形状検出部(第1の形状検出部DP、第2の形状検出部DP、…、第nの形状検出部DP)と、光導通部材LGの端部に設けられた反射部材40とを有している。以下では、第1の形状検出部DP、第2の形状検出部DP、…、第nの形状検出部DPを単に形状検出部DP(i=1,2,…,n)と表記する。 Shape estimating sensor unit 20 includes an optical conductive member LG 2 which is connected to the optical branching unit 50, a plurality of shape detecting unit provided on the light conducting member LG 2 (first shape detecting unit DP 1, the second shape detection unit DP 2, ..., a shape detection unit DP n) of the n, and a reflecting member 40 provided at the end of the light conducting member LG 2. In the following, the first shape detection unit DP 1 , the second shape detection unit DP 2 ,..., The nth shape detection unit DP n are simply referred to as the shape detection unit DP i (i = 1, 2,..., N). write.
 各形状検出部DPは、光導通部材LGによって導光される光の強度を低減する物質で構成されている。複数の形状検出部DPは、それぞれ、異なる波長の光を低減する。各形状検出部DPは、例えば、曲率に応じて光吸収率が変化する光吸収体で構成されている。光導通部材LGは、光ファイバで構成されており、可撓性を有している。形状推定用センサ部20は、複数の形状検出部DPが設けられた光ファイバを有するファイバセンサで構成されている。 Each shape detection unit DP i is composed of a material that reduces the intensity of light guided by the light conducting member LG 2. Each of the plurality of shape detectors DP i reduces light of different wavelengths. Each shape detection unit DP i is composed of, for example, a light absorber whose light absorptance changes according to the curvature. Light conducting member LG 2 is constituted by an optical fiber, it has flexibility. The shape estimation sensor unit 20 includes a fiber sensor having an optical fiber provided with a plurality of shape detection units DP i .
 反射部材40は、光分岐部50から光導通部材LGによって導かれた光を、光分岐部50の方向に戻すように反射する。 The reflecting member 40 reflects the light guided from the light branching unit 50 by the light conducting member LG < b > 2 so as to return to the direction of the light branching unit 50.
 光源部10は、光導通部材LGを介して光分岐部50と光学的に接続されている。光検出器30は、光導通部材LGを介して光分岐部50と光学的に接続されている。反射防止部材60は、光導通部材LGを介して光分岐部50と光学的に接続されている。光導通部材LG,LG,LGは、例えば、光ファイバで構成されており、可撓性を有している。 The light source unit 10 is optically connected to the optical branching section 50 through the light conducting member LG 1. Photodetector 30 is optically connected to the optical branching section 50 through the light conducting member LG 4. Antireflection member 60 is optically connected to the optical branching section 50 through the light conducting member LG 3. The light conducting members LG 1 , LG 3 , LG 4 are made of, for example, optical fibers and have flexibility.
 光源部10は、形状推定用センサ部20に光を供給する。光源部10は、例えば、ランプ、LED、レーザダイオードなどの一般的に知られた発光素子を有している。光源部10はさらに、波長を変換するための蛍光体などを有していてもよい。 The light source unit 10 supplies light to the shape estimation sensor unit 20. The light source unit 10 includes a generally known light emitting element such as a lamp, LED, or laser diode. The light source unit 10 may further include a phosphor for converting the wavelength.
 光分岐部50は、光源部10からの光を形状推定用センサ部20に導くとともに形状推定用センサ部20からの光を光検出器30に導く。光分岐部50は、光カプラやハーフミラー等を有している。例えば、光分岐部50は、光導通部材LGを通して入力される光源部10から射出された光を分割して、2本の光導通部材LG,LGに導く。光分岐部50はまた、光導通部材LGを通して入力される反射部材40からの反射光を、光導通部材LGを通して光検出器30に導く。 The light branching unit 50 guides light from the light source unit 10 to the shape estimation sensor unit 20 and guides light from the shape estimation sensor unit 20 to the photodetector 30. The optical branching unit 50 includes an optical coupler, a half mirror, and the like. For example, the light branching unit 50 divides the light emitted from the light source unit 10 input through the light conducting member LG 1 and guides it to the two light conducting members LG 2 and LG 3 . Optical branching unit 50 also reflected light from the reflecting member 40 to be input through the optical conduction member LG 2, guided to a photodetector 30 through the optical conduction member LG 4.
 光検出器30は、形状推定用センサ部20を通過した光を検出する。光検出器30は、受光した光の強度を波長ごとに検出する機能、すなわち分光して検出する機能を有している。光検出器30は、例えば、分光器やカラーフィルタのような分光のための素子と、フォトダイオードのような受光素子を有している。光検出器30は、所定の波長領域の光の強度を検出し、検出光量情報を出力する。ここで、検出光量情報とは、所定の波長領域における特定の波長とその波長における光強度との関係を表す情報である。 The light detector 30 detects light that has passed through the shape estimation sensor unit 20. The photodetector 30 has a function of detecting the intensity of received light for each wavelength, that is, a function of detecting by spectroscopy. The photodetector 30 includes, for example, a spectroscopic element such as a spectroscope or a color filter, and a light receiving element such as a photodiode. The photodetector 30 detects the intensity of light in a predetermined wavelength region and outputs detected light amount information. Here, the detected light amount information is information representing a relationship between a specific wavelength in a predetermined wavelength region and light intensity at the wavelength.
 反射防止部材60は、光源部10から射出された光のうち光導通部材LGに入射しなかった光が光検出器30に戻るのを防ぐ。 The antireflection member 60 prevents light that has not entered the light conducting member LG < b > 2 from the light emitted from the light source unit 10 from returning to the photodetector 30.
 温度測定部70は、形状推定用センサ部20の周辺の温度関連情報を検出する。温度測定部70は、形状推定用センサ部20の形状検出部DPの少なくとも1つの周辺に設けられた少なくとも1つの温度測定器を有している。例えば、温度測定部70は、複数の温度測定器(第1の温度測定器TD、第2の温度測定器TD、…、第mの温度測定器TD)を有している。以下では、第1の温度測定器TD、第2の温度測定器TD、…、第mの温度測定器TDを単に温度測定器TD(j=1,2,…,m)と表記する。例えば、温度測定器TDの個数は、形状検出部DPの個数と同数であり、温度測定器TDは、それぞれ、形状検出部DPの周辺に配置されている。温度測定器TDは、たとえば、熱伝対、抵抗温度計等で構成されてよい。 The temperature measurement unit 70 detects temperature-related information around the shape estimation sensor unit 20. The temperature measuring unit 70 includes at least one temperature measuring device provided around at least one of the shape detecting units DP i of the shape estimating sensor unit 20. For example, the temperature measuring unit 70 includes a plurality of temperature measuring devices (first temperature measuring device TD 1 , second temperature measuring device TD 2 ,..., M-th temperature measuring device TD m ). In the following, the first temperature measuring device TD 1 , the second temperature measuring device TD 2 ,..., The m-th temperature measuring device TD m is simply referred to as a temperature measuring device TD j (j = 1, 2,..., M). write. For example, the number of the temperature measuring device TD j is equal to the number of shape detection unit DP i, the temperature measuring device TD j, respectively, are arranged around the shape detection unit DP i. The temperature measuring device TD j may be composed of, for example, a thermocouple, a resistance thermometer, or the like.
 図2は、光導通部材LGの軸に垂直な平面に沿った形状検出部DPの断面図を示している。光導通部材LGは、コア512と、コア512を囲んでいるクラッド514と、クラッド514を囲んでいるジャケット516とを有している。 Figure 2 shows a cross-sectional view of taken along a plane perpendicular to the light conducting member LG 2 shaft shape detection unit DP i. The light conducting member LG 2 includes a core 512, a clad 514 that surrounds the core 512, and a jacket 516 that surrounds the clad 514.
 形状検出部DPは、ジャケット516とクラッド514の一部を除去しコア512を露出させて、露出したコア512上に光吸収体518を設けることにより形成されている。複数の形状検出部DPの光吸収体518は、それぞれ、波長毎の光吸収率が異なっている。言い換えれば、複数の形状検出部DPの光吸収体518は、異なる光変調特性を有している。形状検出部DPに利用される部材は、光吸収体に限定されない。導光される光のスペクトルに対して影響を与える光学部材が用いられることができる。そのような光学部材は、例えば波長変換部材(蛍光体)であってもよい。 The shape detection unit DP i is formed by removing a part of the jacket 516 and the clad 514 to expose the core 512 and providing the light absorber 518 on the exposed core 512. The light absorbers 518 of the plurality of shape detectors DP i have different light absorptance for each wavelength. In other words, the light absorbers 518 of the plurality of shape detection units DP i have different light modulation characteristics. The member used for the shape detection unit DP i is not limited to the light absorber. An optical member that affects the spectrum of the guided light can be used. Such an optical member may be, for example, a wavelength conversion member (phosphor).
 図3は、第1の光吸収体と第2の光吸収体と第nの光吸収体における光の波長と吸収率との関係の一例を示している。図3において、実線は第1の光吸収体の吸光特性を示し、破線は第2の光吸収体の吸光特性を示し、二点鎖線は第nの光吸収体の吸光特性を示している。図3に示されるように、異なる形状検出部DPに設けられた光吸収体は、互いに異なる吸光特性を有している。 FIG. 3 shows an example of the relationship between the light wavelength and the absorptance in the first light absorber, the second light absorber, and the nth light absorber. In FIG. 3, the solid line indicates the light absorption characteristic of the first light absorber, the broken line indicates the light absorption characteristic of the second light absorber, and the two-dot chain line indicates the light absorption characteristic of the nth light absorber. As shown in FIG. 3, the light absorbers provided in the different shape detectors DP i have different light absorption characteristics.
 光導通部材LGによって導光される検出光は形状検出部DPにおいて損失される。その導光損失量は、図4Aないし図4Cに示されるように、光導通部材LGの曲がりの方向と量に応じて変化する。たとえば、図4Aに示されるように光導通部材LGの曲がりの内側に形状検出部DPがくるように光導通部材LGが曲げられた場合、図4Bに示されるように光導通部材LGが曲げられていない場合と比較して導光損失量は小さくなる。また導光損失量は、光導通部材LGの曲がり量に比例して小さくなる。これとは逆に、図4Cに示されるように光導通部材LGの曲がりの外側に形状検出部DPがくるように光導通部材LGが曲げられた場合、図4Bに示されるように光導通部材LGが曲げられていない場合と比較して導光損失量は大きくなる。また導光損失量は、光導通部材LGの曲がり量に比例して大きくなる。 Detecting light guided by the light conducting member LG 2 is lost in the shape detection unit DP i. Its light loss amount, as shown in FIGS. 4A-4C, changes depending on the direction and amount of bending of the light conducting member LG 2. For example, when the light conducting member LG 2 is bent so as to come shape detection unit DP i inside the bending of the light conducting member LG 2 as shown in FIG. 4A, the light conducting member LG as shown in FIG. 4B Compared with the case where 2 is not bent, the light guide loss amount is small. The light loss is reduced in proportion to the curve amount of the light conducting member LG 2. On the contrary, when the light conducting member LG 2 should come shape detection unit DP i outside the bending of the light conducting member LG 2 is bent as shown in FIG. 4C, as shown in Figure 4B light loss as compared to the case where the light conducting member LG 2 unflexed increases. The light loss is increased in proportion to the curve amount of the light conducting member LG 2.
 この導光損失量の変化は、光検出器30によって受光される検出光の量に反映される。すなわち、光検出器30の出力信号に反映される。したがって、光検出器30の出力信号を監視することによって、光導通部材LGの曲がりの方向と量を把握することができる。 This change in the light guide loss amount is reflected in the amount of detection light received by the photodetector 30. That is, it is reflected in the output signal of the photodetector 30. Therefore, by monitoring the output signal of the photodetector 30, it is possible to grasp the direction and amount of bending of the light conducting member LG 2.
 すなわち、形状推定用センサ部20は、複数の形状検出部DPの各々に応じた波長についての検出される光量が、複数の形状検出部DPの各々の形状に応じて異なるように構成されている。 That is, the shape estimation sensor unit 20, the amount of light detected for each wavelength corresponding to a plurality of shape detecting unit DP i is configured differently depending on the respective shapes of a plurality of shape detecting unit DP i ing.
 光源部10から射出された光は、光導通部材LGによって導光され、光分岐部50に入射する。光分岐部50は、入力した光を分割して、2本の光導通部材LG,LGにそれぞれ出力する。光導通部材LGによって導光された光は、光導通部材LGの端部に設けられた反射防止部材60によって例えば吸収される。光導通部材LGによって導光された光は、光導通部材LGの端部に設けられた反射部材40によって反射された後、再び光導通部材LGによって導光されて光分岐部50に戻る。光導通部材LGによって導光される光は、導光される間、形状検出部DPによって、形状検出部DPに対応する波長成分が損失される。光分岐部50は、戻って来た光を分割して、一部を光導通部材LGに出力する。光導通部材LGに出力された光は、光導通部材LGによって導光されて光検出器30に入射する。光検出器30が受光する光は、形状検出部DPを通過した光であり、形状検出部DPの曲率および温度に依存して変化する。 The light emitted from the light source unit 10 is guided by the light conducting member LG 1 and enters the light branching unit 50. The light branching unit 50 divides the input light and outputs the divided light to the two light conducting members LG 2 and LG 3 , respectively. Light guided by the light conducting member LG 3 is for example absorbed by the reflection preventing member 60 provided at the end of the light conducting member LG 3. Light guided by the light conducting member LG 2 is reflected by the light conducting member LG reflecting member 40 provided at the end of 2, is guided again by the light conducting member LG 2 in the optical branching section 50 Return. Light guided by the light conducting member LG 2 during guided, by the shape detection unit DP i, wavelength components corresponding to the shape detecting unit DP i is lost. Optical branching section 50 divides the light came back, and outputs the part to the light conducting member LG 4. Light output to the light conducting member LG 4 is guided from entering the photodetector 30 by a light conducting member LG 4. Light photodetector 30 receives light is a light that has passed through the shape detection unit DP i, changes depending on the curvature and the temperature of the shape detecting unit DP i.
 温度測定部70は、光導通部材LGの周辺の温度関連情報を取得し、取得した温度関連情報をプロセッサ部100に出力する。より詳しくは、温度測定部70は、温度測定器TDによって、形状検出部DPの周辺の温度を測定し、測定した温度の情報をプロセッサ部100に出力する。 Temperature measurement unit 70 obtains temperature-related information around the light conducting member LG 2, and outputs the acquired temperature-related information to the processor unit 100. More specifically, the temperature measurement unit 70 measures the temperature around the shape detection unit DP i by the temperature measuring device TD j and outputs information on the measured temperature to the processor unit 100.
 プロセッサ部100は、形状推定用センサ部20の形状を推定する。 The processor unit 100 estimates the shape of the shape estimation sensor unit 20.
 [演算処理部(プロセッサ部およびその周辺部)]
 続いて、形状推定用センサ部20の形状を推定する演算処理部について説明する。図5は、プロセッサ部100およびその周辺部を示している。プロセッサ部100は、例えばパーソナルコンピュータである電子計算機によって構成されている。プロセッサ部100には、表示部160と入力機器170が接続されている。
[Operation processing unit (processor unit and its peripheral parts)]
Next, an arithmetic processing unit that estimates the shape of the shape estimation sensor unit 20 will be described. FIG. 5 shows the processor unit 100 and its peripheral parts. The processor unit 100 is configured by an electronic computer that is a personal computer, for example. A display unit 160 and an input device 170 are connected to the processor unit 100.
 プロセッサ部100は、入力部130と、制御部200と、記憶部120と、温度演算部210と、曲率演算部110と、形状演算部150と、光検出器駆動部180と、光源駆動部190と、出力部140を有している。 The processor unit 100 includes an input unit 130, a control unit 200, a storage unit 120, a temperature calculation unit 210, a curvature calculation unit 110, a shape calculation unit 150, a photodetector driving unit 180, and a light source driving unit 190. And an output unit 140.
 入力部130は、形状推定用センサ部20を用いて取得された波長と光量との関係である光量情報が入力されるように構成されている。ここで、波長と光量との関係である光量情報とは、例えば、光吸収率が異なるスペクトルである。 The input unit 130 is configured to receive light amount information that is a relationship between the wavelength and the light amount acquired using the shape estimation sensor unit 20. Here, the light amount information that is the relationship between the wavelength and the light amount is, for example, a spectrum having different light absorption rates.
 入力部130はまた、形状推定用センサ部20の周辺の温度関連情報が入力されるように構成されている。例えば、入力部130は、温度測定部70によって取得された温度関連情報が入力されるように構成されている。 The input unit 130 is also configured to input temperature-related information around the shape estimation sensor unit 20. For example, the input unit 130 is configured to receive temperature-related information acquired by the temperature measurement unit 70.
 入力部130にはさらに、入力機器170から、形状推定開始信号、形状推定終了信号、光量読み取り開始信号、光量読み取り終了信号、曲率演算開始信号、曲率演算終了信号、曲率演算部110の設定に関する信号、形状演算開始信号、形状演算終了信号、形状演算部150の設定に関する信号等が入力されるように構成されている。 Further, the input unit 130 further receives a shape estimation start signal, a shape estimation end signal, a light amount reading start signal, a light amount reading end signal, a curvature calculation start signal, a curvature calculation end signal, and a signal related to the setting of the curvature calculation unit 110 from the input device 170. , A shape calculation start signal, a shape calculation end signal, a signal related to the setting of the shape calculation unit 150, and the like are input.
 制御部200は、入力機器170からの信号に応じて光源駆動部190を通じて光源部10の各光源の光量強度の設定を制御する。 The control unit 200 controls the setting of the light intensity of each light source of the light source unit 10 through the light source driving unit 190 in accordance with a signal from the input device 170.
 記憶部120は、複数の形状検出部DPの各々についての形状と波長と光量との関係を表す形状特性情報を含む光量推定関係を記憶している。記憶部120はまた、形状演算部150が行う演算に必要な各種情報を記憶している。記憶部120はさらに、例えば、計算アルゴリズムを含むプログラム、形状検出部DPの形状特性情報を含む光量推定関係等を記憶している。 The storage unit 120 stores a light amount estimation relationship including shape characteristic information representing a relationship between a shape, a wavelength, and a light amount for each of the plurality of shape detection units DP i . The storage unit 120 also stores various types of information necessary for calculations performed by the shape calculation unit 150. The storage unit 120 further stores, for example, a program including a calculation algorithm, a light quantity estimation relationship including shape characteristic information of the shape detection unit DP i , and the like.
 温度演算部210は、温度測定部70からの情報すなわち複数の温度測定器TDの検出情報に基づいて温度関連情報を推定し、温度関連情報を曲率演算部110と記憶部120へ送信する。 The temperature calculation unit 210 estimates temperature-related information based on information from the temperature measurement unit 70, that is, detection information of the plurality of temperature measuring devices TD j , and transmits the temperature-related information to the curvature calculation unit 110 and the storage unit 120.
 曲率演算部110は、記憶部120から光量推定関係を読み出し、光量推定関係に基づいて各形状検出部DPに対応する波長と光量との関係である光量推定値を算出する。曲率演算部110はさらに、入力部130から供給される光量情報と、記憶部120から読み出した光量推定関係に基づいて算出した光量推定値と、温度演算部210から供給される温度関連情報とに基づいて、複数の形状検出部DPの各々の曲率を算出する。曲率演算部110は、算出した各形状検出部DPの曲率を形状演算部150に出力する。 The curvature calculation unit 110 reads the light amount estimation relationship from the storage unit 120 and calculates a light amount estimation value that is a relationship between the wavelength and the light amount corresponding to each shape detection unit DP i based on the light amount estimation relationship. The curvature calculation unit 110 further includes light amount information supplied from the input unit 130, a light amount estimation value calculated based on the light amount estimation relationship read from the storage unit 120, and temperature related information supplied from the temperature calculation unit 210. Based on this, the curvature of each of the plurality of shape detectors DP i is calculated. The curvature calculation unit 110 outputs the calculated curvature of each shape detection unit DP i to the shape calculation unit 150.
 形状演算部150は、供給される各形状検出部DPの曲率と位置の情報すなわち形状情報に基づいて、複数の形状検出部DPが設けられている光導通部材LGの形状情報を算出する。形状演算部150は、算出した光導通部材LGの形状情報を出力部140に出力する。 The shape calculation unit 150 calculates the shape information of the light conducting member LG 2 provided with the plurality of shape detection units DP i based on the curvature and position information of each shape detection unit DP i supplied, that is, the shape information. To do. Shape operation unit 150 outputs the calculated shape information of the light conducting member LG 2 to the output portion 140.
 光検出器駆動部180は、入力部130や形状演算部150から取得した情報に基づいて光検出器30の駆動信号を生成し、生成した駆動信号を出力部140へ送信する。光検出器30の駆動信号は、光検出器30のオンオフの切り替えや光検出器30のゲイン調整をおこなうための信号である。 The photodetector driving unit 180 generates a driving signal for the photodetector 30 based on the information acquired from the input unit 130 and the shape calculating unit 150, and transmits the generated driving signal to the output unit 140. The drive signal of the photodetector 30 is a signal for performing on / off switching of the photodetector 30 and gain adjustment of the photodetector 30.
 光源駆動部190は、光源部10の駆動信号を生成し、生成した駆動信号を出力部140へ送信する。 The light source driving unit 190 generates a driving signal for the light source unit 10 and transmits the generated driving signal to the output unit 140.
 出力部140は、形状演算部150から取得した光導通部材LGの形状情報を表示部160に出力する。また、出力部140は、光源駆動部190からの駆動信号を光源部10へ送信する。出力部140は、光検出器駆動部180からの駆動信号を光検出器30へ送信する。 The output unit 140 outputs the acquired shape information of the light conducting member LG 2 from the shape calculation portion 150 to the display unit 160. Further, the output unit 140 transmits a drive signal from the light source driving unit 190 to the light source unit 10. The output unit 140 transmits a drive signal from the photodetector driving unit 180 to the photodetector 30.
 [曲率演算および形状演算]
 曲率演算部110は、記憶部120に格納されている温度演算部210からの温度関連情報に応じた光量情報の波長毎の曲率特性情報(光量推定関係)を取得する。なお、曲率特性情報とは、形状推定用センサ部20の光量変化率および形状導出に使用されるパラメータである。曲率演算部110は、曲率特性情報に基づいて光量変化率(光量推定値)を算出する。光量変化率は、式(1)により与えられる。なお、基準となる光量は、形状推定用センサ部20が直線時の光量情報である。
[Curvature calculation and shape calculation]
The curvature calculation unit 110 acquires curvature characteristic information (light amount estimation relationship) for each wavelength of the light amount information according to the temperature related information from the temperature calculation unit 210 stored in the storage unit 120. The curvature characteristic information is a parameter used for the light amount change rate and the shape derivation of the shape estimation sensor unit 20. The curvature calculation unit 110 calculates a light amount change rate (light amount estimation value) based on the curvature characteristic information. The light quantity change rate is given by equation (1). The reference light amount is light amount information when the shape estimation sensor unit 20 is in a straight line.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 温度変化に応じて、式(1)の基準となる光量(CR)が変化する。基準となる光量は、温度に関する情報を変数として表現され、式(2)のように表現される。式(2)は、温度に関する情報の関数として表現されているが、基準となる光量は、マップを用いて取得されてもよい。 In accordance with the temperature change, the light quantity (CR 0 ) serving as the reference of the equation (1) changes. The reference amount of light is expressed as information with respect to temperature as a variable, and is expressed as in equation (2). Expression (2) is expressed as a function of information about temperature, but the reference light quantity may be acquired using a map.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(1)の光量変化率と各形状検出部DPの形状情報(曲率情報)との間には式(3)の関係がある。 There is a relationship of Expression (3) between the light amount change rate of Expression (1) and the shape information (curvature information) of each shape detection unit DP i .
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 曲率演算部110により算出された各形状検出部DPの形状情報は、形状演算部150に送信される。形状演算部150は、各形状検出部DPの形状情報に基づいて、光導通部材LGの形状を算出する。光導通部材LGの形状情報は、出力部140を通じて表示部160へ送信される。表示部160は、形状情報を表示する。表示部160は、形状情報だけでなく、曲率や形状の演算結果等を表示してもよい。数式は、例として温度に応じて基準となる光量情報CRを変化させる式であるが、各形状検出部DPの形状情報算出(CR)に温度関連情報(Te)を変数として算出してもよい。 The shape information of each shape detection unit DP i calculated by the curvature calculation unit 110 is transmitted to the shape calculation unit 150. Shape operation unit 150, based on the shape information of the shape detection unit DP i, to calculate the shape of the light conducting member LG 2. Shape information of the light conducting member LG 2 is transmitted to the display unit 160 via the output unit 140. The display unit 160 displays shape information. The display unit 160 may display not only the shape information but also the curvature and shape calculation results. The mathematical expression is an expression for changing the reference light amount information CR 0 according to the temperature as an example, but the temperature related information (Te) is calculated as a variable in the shape information calculation (CR n ) of each shape detection unit DP i. May be.
 [形状推定のフローチャート]
 図6は、本実施形態における形状推定のフローチャートである。
[Flowchart of shape estimation]
FIG. 6 is a flowchart of shape estimation in this embodiment.
 ステップ1S1において、制御部200から光検出器駆動部180と光源駆動部190へ初期設定を送信し駆動を開始する。 In step 1S1, the initial setting is transmitted from the control unit 200 to the photodetector driving unit 180 and the light source driving unit 190, and driving is started.
 ステップ1S2において、光検出器30からの光量読み取りを開始する。 In step 1S2, reading of the light amount from the light detector 30 is started.
 ステップ1S3において、光量読み取り終了信号を受信する。 In step 1S3, a light quantity reading end signal is received.
 ステップ1S4において、光検出器30からの検出信号(光量情報)と温度測定部70からの温度関連情報を取得する。 In step 1S4, the detection signal (light quantity information) from the photodetector 30 and the temperature related information from the temperature measurement unit 70 are acquired.
 ステップ1S5において、温度関連情報を記憶部120へ送信し、記憶部120から温度関連情報に応じた曲率特性情報を取得する。 In Step 1S5, temperature related information is transmitted to the storage unit 120, and curvature characteristic information corresponding to the temperature related information is acquired from the storage unit 120.
 ステップ1S6において、取得した光検出器30の検出信号と、温度測定部70から取得した温度関連情報と、記憶部120から取得した曲率特性情報とに基づいて各形状検出部DPの曲率を算出する。 In step 1S6, the curvature of each shape detection unit DP i is calculated based on the acquired detection signal of the photodetector 30, the temperature related information acquired from the temperature measurement unit 70, and the curvature characteristic information acquired from the storage unit 120. To do.
 ステップ1S7において、各形状検出部DPの曲率と各形状検出部DPの位置情報とに基づいて光導通部材LGの形状を推定する。 In step 1S7, it estimates the shape of the light conducting member LG 2 on the basis of the curvature and position information of each shape detecting unit DP i of the shape detecting unit DP i.
 ステップ1S8において、推定した光導通部材LGの形状を表示部160に表示する。 In step 1S8, it displays the estimated shape of the light conducting member LG 2 to the display unit 160.
 ステップ1S9において、終了信号を受信したか判断する。判断結果がNoの場合にはステップ1S2に戻る。判断結果がYesの場合には形状推定を終了する。 In step 1S9, it is determined whether an end signal has been received. If the determination result is No, the process returns to step 1S2. If the determination result is Yes, the shape estimation ends.
 本実施形態による形状推定装置は、光量情報と光量推定値に加えて温度関連情報をも使用して形状推定をおこなうことにより、温度変化に伴う形状検出結果の誤差を除去しているため、各形状検出部DPの曲率の算出と光導通部材LGの形状の推定を高い精度でおこなうことができる。 Since the shape estimation apparatus according to the present embodiment performs shape estimation using temperature related information in addition to the light amount information and the light amount estimated value, the error in the shape detection result due to the temperature change is removed. It is possible to calculate the curvature of the shape detector DP i and estimate the shape of the light conducting member LG 2 with high accuracy.
 <第2実施形態>
 図7は、第2実施形態による形状推定装置の構成図である。図7において、図1に示された部材と同一の参照符号が付された部材は同様の部材であり、その詳しい説明は省略する。以下、第2実施形態について、第1の実施形態との相違点を中心に説明する。
Second Embodiment
FIG. 7 is a configuration diagram of a shape estimation apparatus according to the second embodiment. 7, members denoted by the same reference numerals as those shown in FIG. 1 are the same members, and detailed description thereof is omitted. Hereinafter, the second embodiment will be described focusing on differences from the first embodiment.
 相違点は、温度測定部の構成である。本実施形態では、温度測定部70Aは、温度推定用センサ部20Aと、温度推定用センサ部20Aに光を供給する光源部10Aと、温度推定用センサ部20Aを通過した光を検出する光検出器30Aと、光源部10Aからの光を温度推定用センサ部20Aに導くとともに温度推定用センサ部20Aからの光を光検出器30Aに導く光分岐部50Aと、光分岐部50Aに接続された反射防止部材60Aを有している。 The difference is the configuration of the temperature measurement unit. In the present embodiment, the temperature measurement unit 70A includes a temperature estimation sensor unit 20A, a light source unit 10A that supplies light to the temperature estimation sensor unit 20A, and light detection that detects light that has passed through the temperature estimation sensor unit 20A. Connected to the optical branching unit 50A, the light branching unit 50A for guiding the light from the light source unit 10A to the temperature estimation sensor unit 20A and the light from the temperature estimation sensor unit 20A to the photodetector 30A. An antireflection member 60A is provided.
 光源部10Aは、光導通部材LGAを介して光分岐部50Aと光学的に接続されている。光検出器30Aは、光導通部材LGAを介して光分岐部50Aと光学的に接続されている。反射防止部材60Aは、光導通部材LGAを介して光分岐部50Aと光学的に接続されている。 Light source unit 10A is the optical branching section 50A optically connected via an optical conduction member LGA 1. Photodetector 30A is an optical branching section 50A optically connected via an optical conductive member LGA 4. Antireflection member 60A is an optical branching section 50A optically connected via an optical conduction member LGA 3.
 光源部10A、光検出器30A、光分岐部50A、反射防止部材60A、光導通部材LGA,LGA,LGAの構成は、それぞれ、光源部10、光検出器30、光分岐部50、反射防止部材60、光導通部材LG,LG,LGと同様である。 The configuration of the light source unit 10A, the photodetector 30A, the light branching unit 50A, the antireflection member 60A, and the light conducting members LGA 1 , LGA 3 , and LGA 4 are respectively the light source unit 10, the photodetector 30, the light branching unit 50, This is the same as the antireflection member 60 and the light conducting members LG 1 , LG 3 , LG 4 .
 温度推定用センサ部20Aは、ファイバセンサで構成されており、光分岐部50Aに接続された光導通部材LGAと、光導通部材LGAに設けられた複数の温度検出部(第1の温度検出部TDA、第2の温度検出部TDA、…、第mの温度検出部TDA)と、光導通部材LGAの端部に設けられた反射部材40Aとを有している。以下では、第1の温度検出部TDA、第2の温度検出部TDA、…、第mの温度検出部TDAを単に温度検出部TDA(j=1,2,…,m)と表記する。 The temperature estimation sensor unit 20A is composed of a fiber sensor, and includes a light conducting member LGA 2 connected to the light branching unit 50A and a plurality of temperature detection units (first temperature) provided in the light conducting member LGA 2. Detection unit TDA 1 , second temperature detection unit TDA 2 ,..., M-th temperature detection unit TDA m ), and reflection member 40A provided at the end of photoconductive member LGA 2 . Hereinafter, the first temperature detection unit TDA 1 , the second temperature detection unit TDA 2 ,..., The mth temperature detection unit TDA m are simply referred to as temperature detection unit TDA j (j = 1, 2,..., M). write.
 各温度検出部TDAは、温度に依存して光吸収率が変化する光吸収体で構成されている。また、温度検出部TDAは、それぞれ、異なる波長の光を吸収する。各温度検出部TDAは、温度変動に伴い図8に示されるように光量変化率が変わる。温度推定用センサ部20Aは、形状推定用センサ部20の周辺に配置されている。各温度検出部TDAは、例えば、形状推定用センサ部20の各形状検出部DPの周辺であって形状変化が与えられない箇所に配置されている。これにより、温度を安定して計測することが可能となる。 Each temperature detection unit TDA j is composed of a light absorber whose light absorption rate varies depending on the temperature. Further, each of the temperature detection units TDA j absorbs light having different wavelengths. Each temperature detection unit TDA j changes in the light amount change rate as shown in FIG. The temperature estimation sensor unit 20 </ b> A is disposed around the shape estimation sensor unit 20. Each temperature detection unit TDA j is arranged, for example, at a location around the shape detection unit DP i of the shape estimation sensor unit 20 where no shape change is given. Thereby, it becomes possible to measure temperature stably.
 本実施形態では、温度推定用センサ部20Aは、図7には反射型で構成されているように図示されているが、透過型で構成されてもよい。 In the present embodiment, the temperature estimation sensor unit 20A is illustrated as being configured as a reflection type in FIG. 7, but may be configured as a transmission type.
 [演算処理部(プロセッサ部およびその周辺部)]
 続いて、本実施形態の形状推定装置の演算処理部について説明する。図9は、本実施形態におけるプロセッサ部100およびその周辺部を示している。本実施形態におけるプロセッサ部100の構成は、第1実施形態におけるプロセッサ部100と基本的には同様である。以下、相違点について説明する。
[Operation processing unit (processor unit and its peripheral parts)]
Then, the arithmetic processing part of the shape estimation apparatus of this embodiment is demonstrated. FIG. 9 shows the processor unit 100 and its peripheral parts in the present embodiment. The configuration of the processor unit 100 in the present embodiment is basically the same as that of the processor unit 100 in the first embodiment. Hereinafter, differences will be described.
 入力部130は、温度推定用センサ部20Aを通過した光を検出する光検出器30Aからの検出信号が入力されるように構成されている。光源駆動部190は、光源部10に加えて、温度推定用センサ部20Aに光を供給する光源部10Aを駆動するように構成されている。光検出器駆動部180は、光検出器30に加えて、温度推定用センサ部20Aを通過した光を検出する光検出器30Aを駆動するように構成されている。出力部140は、光源駆動部190からの駆動信号を光源部10Aへ、光検出器駆動部180からの駆動信号を光検出器30Aへ送信するように構成されている。 The input unit 130 is configured to receive a detection signal from a photodetector 30A that detects light that has passed through the temperature estimation sensor unit 20A. In addition to the light source unit 10, the light source driving unit 190 is configured to drive the light source unit 10A that supplies light to the temperature estimation sensor unit 20A. The photodetector driver 180 is configured to drive the photodetector 30 </ b> A that detects light that has passed through the temperature estimation sensor unit 20 </ b> A, in addition to the photodetector 30. The output unit 140 is configured to transmit a driving signal from the light source driving unit 190 to the light source unit 10A and a driving signal from the photodetector driving unit 180 to the photodetector 30A.
 温度演算部210は、光検出器30Aの検出信号を温度関連情報に変換する。温度推定用センサ部20Aの温度検出部TDAは、形状が変化せずに常に直線の形状であるため、光検出器30Aによって検出される光量変化は温度変化だけに依存したものとなる。従って、光量変化と温度変化の関係を数式化またはマップ化することによって、光検出器30Aによって検出される光量変化から温度関連情報を取得することができる。式(4)に光量変化率と温度検出部TDAの温度関連情報の関係を示す。 The temperature calculation unit 210 converts the detection signal of the photodetector 30A into temperature related information. Since the temperature detection unit TDA j of the temperature estimation sensor unit 20A has a linear shape without changing its shape, the light amount change detected by the photodetector 30A depends only on the temperature change. Therefore, by formulating or mapping the relationship between the light quantity change and the temperature change, the temperature related information can be acquired from the light quantity change detected by the photodetector 30A. Expression (4) shows the relationship between the light amount change rate and the temperature related information of the temperature detector TDA j .
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(3)と同式であるが、温度検出部TDAは、形状が変化しない箇所に配置されているため、各温度検出部TDAの光量変化CRTeは、温度変化だけに依存したものとなる。 What is a same formula as formula (3), the temperature detecting unit TDA j, because they are disposed at locations where the shape does not change, change of light intensity CR Te of each temperature detecting unit TDA j is dependent only on the temperature change It becomes.
 温度演算部210において算出された式(4)の各温度検出部TDAの温度関連情報は記憶部120へ送信される。記憶部120は、格納している温度関連情報に応じた曲率特性情報を曲率演算部110へ送信する。曲率演算部110は、温度演算部210からの温度関連情報と、光検出器30からの検出信号と、記憶部120からの曲率特性情報とに基づいて、吸光度を使用した数学的手法や温度関連情報を用いた数値解析手法等より各形状検出部DPの光量変化量を算出する。算出された光量変化量と曲率の関係に基づいて、図7の各形状検出部DPの曲率を算出する。 The temperature related information of each temperature detection unit TDA j of the equation (4) calculated in the temperature calculation unit 210 is transmitted to the storage unit 120. The storage unit 120 transmits curvature characteristic information corresponding to the stored temperature-related information to the curvature calculation unit 110. The curvature calculation unit 110 is based on the temperature-related information from the temperature calculation unit 210, the detection signal from the photodetector 30, and the curvature characteristic information from the storage unit 120. The light amount change amount of each shape detection unit DP i is calculated by a numerical analysis method using information or the like. Based on the relationship between the calculated amount of change in light quantity and the curvature, the curvature of each shape detection unit DP i in FIG. 7 is calculated.
 以下、第1実施形態と同様、形状演算部150において、各形状検出部DPの曲率と各形状検出部DPの位置情報とに基づいて、複数の形状検出部DPが設けられている光導通部材LGの形状情報を算出する。算出された光導通部材LGの形状情報は表示部160に表示される。 Hereinafter, similarly to the first embodiment, the shape operation unit 150, based on the position information of the curvature and the shape detection unit DP i of the shape detecting unit DP i, a plurality of shape detecting unit DP i is provided to calculate the shape information of the light conducting member LG 2. Shape information of the calculated light conducting member LG 2 is displayed on the display unit 160.
 [形状推定のフローチャート]
 図10は、本実施形態における形状推定のフローチャートである。
[Flowchart of shape estimation]
FIG. 10 is a flowchart of shape estimation in this embodiment.
 ステップ2S1において、制御部200から光検出器駆動部180と光源駆動部190へ設定を送信し駆動を開始する。 In step 2S1, the setting is transmitted from the control unit 200 to the photodetector driving unit 180 and the light source driving unit 190, and driving is started.
 ステップ2S2において、形状推定用センサ部20用の光検出器30からの光量読み取りと温度推定用センサ部20A用の光検出器30Aからの光量読み取りを開始する。 In Step 2S2, reading of the light amount from the photodetector 30 for the shape estimation sensor unit 20 and reading of the light amount from the photodetector 30A for the temperature estimation sensor unit 20A are started.
 ステップ2S3において、光量読み取り終了信号を受信する。 In step 2S3, a light quantity reading end signal is received.
 ステップ2S4において、形状推定用センサ部20用の光検出器30からの検出信号と温度推定用センサ部20A用の光検出器30Aからの検出信号とを取得する。 In step 2S4, a detection signal from the photodetector 30 for the shape estimation sensor unit 20 and a detection signal from the photodetector 30A for the temperature estimation sensor unit 20A are acquired.
 ステップ2S5において、温度検出部TDAの光量変化率から温度関連情報を算出する。温度関連情報Teは、Te=F(λn)に従って算出される。ここで、λnは光量変化率である。 In step 2S5, temperature related information is calculated from the light quantity change rate of the temperature detector TDA j . The temperature related information Te is calculated according to Te = F (λn). Here, λn is a light quantity change rate.
 ステップ2S6において、取得した温度関連情報を記憶部120に送信し、温度関連情報に応じた曲率特性情報を取得する。 In step 2S6, the acquired temperature related information is transmitted to the storage unit 120, and curvature characteristic information corresponding to the temperature related information is acquired.
 ステップ2S7において、取得した光検出器30の検出信号と、ステップ2S5において算出した温度関連情報と、記憶部120から取得した曲率特性情報とに基づいて各形状検出部DPの曲率を算出する。 In step 2S7, the curvature of each shape detection unit DP i is calculated based on the acquired detection signal of the photodetector 30, the temperature-related information calculated in step 2S5, and the curvature characteristic information acquired from the storage unit 120.
 ステップ2S8において、各形状検出部DPの曲率と各形状検出部DPの位置情報とに基づいて形状推定用センサ部20の光導通部材LGの形状を推定する。 In step 2S8, the shape of the light conducting member LG 2 shape estimation sensor unit 20 is estimated based on the position information of the curvature and the shape detection unit DP i of the shape detecting unit DP i.
 ステップ2S9において、推定した形状推定用センサ部20の光導通部材LGの形状を表示部160に表示する。 In step 2S9, it displays the estimated shape of the light conducting member LG 2 shape estimation sensor unit 20 to the display unit 160.
 ステップ2S10において、終了信号を受信したか判断する。判断結果がNoの場合にはステップ2S2に戻る。判断結果がYesの場合には形状推定を終了する。 In step 2S10, it is determined whether an end signal has been received. If the determination result is No, the process returns to step 2S2. If the determination result is Yes, the shape estimation ends.
 本実施形態による形状推定装置は、第1実施形態と同様に、温度変化に伴う形状検出結果の誤差を除去しているため、各形状検出部DPの曲率の算出と光導通部材LGの形状の推定を高い精度でおこなうことができる。 As in the first embodiment, the shape estimation apparatus according to the present embodiment removes errors in the shape detection results due to temperature changes, and thus calculates the curvature of each shape detection unit DP i and the light conducting member LG 2 . The shape can be estimated with high accuracy.
 また、温度測定部70Aの温度推定用センサ部20Aは、ファイバセンサで構成されているため、細径に構成されることが可能である。 Moreover, since the temperature estimation sensor unit 20A of the temperature measurement unit 70A is composed of a fiber sensor, it can be configured to have a small diameter.
 <第3実施形態>
 図11は、第3実施形態による形状推定装置の構成図である。図11において、図1に示された部材と同一の参照符号が付された部材は同様の部材であり、その詳しい説明は省略する。以下、第3実施形態について、第1の実施形態との相違点を中心に説明する。
<Third Embodiment>
FIG. 11 is a configuration diagram of a shape estimation apparatus according to the third embodiment. 11, members denoted by the same reference numerals as those shown in FIG. 1 are the same members, and detailed description thereof is omitted. Hereinafter, the third embodiment will be described focusing on differences from the first embodiment.
 本実施形態による形状推定装置では、形状推定用センサ部20の光導通部材LGに、形状検出部DPに加えて、温度検出部TDが設けられている。温度検出部TDは、形状変化が与えられない箇所に配置されている。温度検出部TDは、温度に依存して光吸収率が変化する光吸収体を有している。図12に示すように、温度検出部TDの光吸収体の光吸収スペクトルCTDは、波長λにピークを有しており、波長λ1,λ,…,λにそれぞれピークを有する形状検出部DPの光吸収体の光吸収スペクトルC1,,…,Cと異なる波長帯に存在している。すなわち、温度検出部TDの光吸収体の光吸収スペクトルCTDが存在する温度検出領域は、形状検出部DPの光吸収体の光吸収スペクトルC1,,…,Cが存在する形状検出領域とは異なる波長帯にある。例えば、波長λの光は、温度検出部TDの光吸収体としか反応しないため、温度検出と形状検出の分離をおこないやすい。 In shape estimating device according to the present embodiment, the light conducting member LG 2 shape estimation sensor unit 20, in addition to the shape detecting unit DP i, the temperature detector TD is provided. The temperature detector TD is disposed at a location where no change in shape is given. The temperature detection unit TD includes a light absorber whose light absorption rate varies depending on the temperature. As shown in FIG. 12, the light absorption spectrum C TD of the light absorber temperature detector TD has a peak at a wavelength lambda k, wavelength lambda 1, lambda 2, ..., each having a peak at lambda n light absorption spectrum C 1 of the light absorber shape detecting unit DP i, C 2, ..., are present in a wavelength band different from the C n. That is, in the temperature detection region where the light absorption spectrum C TD of the light absorber of the temperature detection unit TD exists, the light absorption spectrums C 1, C 2 ,..., C n of the light absorber of the shape detection unit DP i exist. It is in a different wavelength band from the shape detection region. For example, light of wavelength lambda k, since only respond with light absorber temperature detector TD, easily performs a separation of temperature detection and shape detection.
 温度検出部TDは、形状推定用センサ部20の光導通部材LGに設けられているが、これに代えて、反射防止部材60が接続されている光導通部材LGに設けられてもよい。また、図11には、光導通部材LGにただ1つの温度検出部TDが設けられているように描かれているが、光導通部材LGに複数の温度検出部が設けられもよい。 Temperature detector TD is provided in the light-conducting member LG 2 shape estimation sensor unit 20, it may alternatively be provided in the optical conduction member LG 4 antireflection member 60 is connected . Further, in FIG. 11, although the light conducting member LG 2 is only one temperature detection section TD is depicted as provided, or a plurality of the temperature detecting portion to the light conducting member LG 2 is provided.
 [演算処理部(プロセッサ部およびその周辺部)]
 続いて、本実施形態の形状推定装置の演算処理部について説明する。図13は、本実施形態におけるプロセッサ部100およびその周辺部を示している。本実施形態におけるプロセッサ部100の構成は、第1実施形態におけるプロセッサ部100と基本的には同様である。以下、相違点について説明する。
[Operation processing unit (processor unit and its peripheral parts)]
Then, the arithmetic processing part of the shape estimation apparatus of this embodiment is demonstrated. FIG. 13 shows the processor unit 100 and its peripheral parts in the present embodiment. The configuration of the processor unit 100 in the present embodiment is basically the same as that of the processor unit 100 in the first embodiment. Hereinafter, differences will be described.
 光検出器30は、形状検出部DPを通過した光に加えて、温度検出部TDを通過した光を検出するように構成されている。温度演算部210は、光検出器30によって検出される波長λの光の検出信号を温度関連情報に変換するように構成されている。 The light detector 30 is configured to detect light that has passed through the temperature detector TD in addition to light that has passed through the shape detector DP i . Temperature calculating unit 210 has a detection signal of the light of wavelength lambda k detected by the optical detector 30 is configured to convert the temperature-related information.
 温度演算部210において、図12の温度検出領域の波長λの光量変化より、温度関連情報たとえば温度変化に関する情報を算出する。温度変化に関する情報は、式(5)のように温度変化(Te)と波長λの光量変化(CRλk)の関係を近似した数式により算出することができる。または、温度変化に関する情報は、波長λの光量変化率と温度の関係を表現したマップより取得することができる。 In the temperature calculating unit 210, from the light amount change of the wavelength lambda k of the temperature detecting region of FIG. 12, calculates information regarding the temperature related information such as temperature changes. Information about the temperature change can be calculated by equation approximating the relationship of Equation temperature changes as shown in (5) (Te) and light intensity change in wavelength λ k (CR λk). Or, the information about the temperature change can be obtained from a map representing the light amount change rate versus temperature of a wavelength lambda k.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 温度演算部210より取得された温度関連情報(Te)は記憶部120へ送信される。記憶部120は、格納している温度関連情報に応じた曲率特性情報を曲率演算部110へ送信する。曲率演算部110は、温度演算部210からの温度関連情報と、光検出器30からの検出信号と、記憶部120からの曲率特性情報とに基づいて、吸光度を使用した数学的手法や近似式等を使用した数値解析手法等を用いて各形状検出部DPの光量変化量を算出する。算出された光量変化量と曲率の関係に基づいて、図11の各形状検出部DPの曲率を算出する。 The temperature related information (Te) acquired from the temperature calculation unit 210 is transmitted to the storage unit 120. The storage unit 120 transmits curvature characteristic information corresponding to the stored temperature-related information to the curvature calculation unit 110. The curvature calculation unit 110 is based on the temperature-related information from the temperature calculation unit 210, the detection signal from the photodetector 30, and the curvature characteristic information from the storage unit 120. The amount of light amount change of each shape detection unit DP i is calculated using a numerical analysis method using the above. Based on the calculated relationship between the amount of change in light quantity and the curvature, the curvature of each shape detection unit DP i in FIG. 11 is calculated.
 以下、第1実施形態と同様、形状演算部150において、各形状検出部DPの曲率と各形状検出部DPの位置情報とに基づいて、複数の形状検出部DPが設けられている光導通部材LGの形状情報を算出する。算出された光導通部材LGの形状情報は表示部160に表示される。 Hereinafter, similarly to the first embodiment, the shape operation unit 150, based on the position information of the curvature and the shape detection unit DP i of the shape detecting unit DP i, a plurality of shape detecting unit DP i is provided to calculate the shape information of the light conducting member LG 2. Shape information of the calculated light conducting member LG 2 is displayed on the display unit 160.
 [形状推定のフローチャート]
 図14は、本実施形態における形状推定のフローチャートである。
[Flowchart of shape estimation]
FIG. 14 is a flowchart of shape estimation in this embodiment.
 ステップ3S1において、制御部200から光検出器駆動部180と光源駆動部190へ設定を送信し駆動を開始する。 In step 3S1, the setting is transmitted from the control unit 200 to the photodetector driving unit 180 and the light source driving unit 190, and driving is started.
 ステップ3S2において、光検出器30からの光量読み取りを開始する。 In step 3S2, reading of the light amount from the photodetector 30 is started.
 ステップ3S3において、光量読み取り終了信号を受信する。 In step 3S3, a light quantity reading end signal is received.
 ステップ3S4において、光検出器30からの検出信号を取得する。 In step 3S4, a detection signal from the photodetector 30 is acquired.
 ステップ3S5において、記憶部120から各形状検出部DPの吸光度を取得し、多変量解析等の手法より各形状検出部DPの光量変化を算出する。 In step 3S5, the absorbance of each shape detection unit DP i is obtained from the storage unit 120, and the light amount change of each shape detection unit DP i is calculated by a technique such as multivariate analysis.
 ステップ3S6において、温度検出部TDの光量変化から温度関連情報を算出する。 In step 3S6, temperature related information is calculated from the light quantity change of the temperature detector TD.
 ステップ3S7において、取得した光検出器30の検出信号と、ステップ3S6において算出した温度関連情報と、記憶部120から取得した曲率特性情報とに基づいて各形状検出部DPの曲率を算出する。 In step 3S7, the curvature of each shape detection unit DP i is calculated based on the acquired detection signal of the photodetector 30, the temperature-related information calculated in step 3S6, and the curvature characteristic information acquired from the storage unit 120.
 ステップ3S8において、各形状検出部DPの曲率と各形状検出部DPの位置情報とに基づいて光導通部材LGの形状を推定する。 In step 3S8, it estimates the shape of the light conducting member LG 2 on the basis of the curvature and position information of each shape detecting unit DP i of the shape detecting unit DP i.
 ステップ3S9において、推定した光導通部材LGの形状を表示部160に表示する。 In step 3S9, it displays the estimated shape of the light conducting member LG 2 to the display unit 160.
 ステップ3S10において、終了信号を受信したか判断する。判断結果がNoの場合にはステップ3S2に戻る。判断結果がYesの場合には形状推定を終了する。 In step 3S10, it is determined whether an end signal has been received. If the determination result is No, the process returns to step 3S2. If the determination result is Yes, the shape estimation ends.
 本実施形態による形状推定装置は、第1実施形態と同様に、温度変化に伴う形状検出結果の誤差を除去しているため、各形状検出部DPの曲率の算出と光導通部材LGの形状の推定を高い精度でおこなうことができる。 As in the first embodiment, the shape estimation apparatus according to the present embodiment removes errors in the shape detection results due to temperature changes, and thus calculates the curvature of each shape detection unit DP i and the light conducting member LG 2 . The shape can be estimated with high accuracy.
 温度関連情報を取得するための温度検出部TDが、形状推定用センサ部20の光導通部材LGに設けられているので、本実施形態の形状推定装置を設置する対象物の径を太くすることなく、温度関連情報を取得することが可能である。 Temperature detector TD for obtaining temperature-related information, since the provided optical conduction member LG 2 shape estimation sensor unit 20, thickening the diameter of the object to be installed shape estimation apparatus of the present embodiment It is possible to acquire temperature-related information without this.
 <第4実施形態>
 図15は、第4実施形態による形状推定装置の構成図である。本実施形態による形状推定装置は、第3実施形態による形状推定装置に類似している。図15において、図11に示された部材と同一の参照符号が付された部材は同様の部材であり、その詳しい説明は省略する。以下、第4実施形態について、第3実施形態との相違点を中心に説明する。
<Fourth embodiment>
FIG. 15 is a configuration diagram of a shape estimation apparatus according to the fourth embodiment. The shape estimation apparatus according to the present embodiment is similar to the shape estimation apparatus according to the third embodiment. 15, members denoted by the same reference numerals as those shown in FIG. 11 are similar members, and detailed description thereof is omitted. Hereinafter, the fourth embodiment will be described focusing on differences from the third embodiment.
 本実施形態による形状推定装置では、第3実施形態による形状推定装置と同様に、形状推定用センサ部20の光導通部材LGに、形状検出部DPに加えて、温度検出部TDが設けられている。温度検出部TDの構成等は、第3実施形態と同様である。第3実施形態では、温度検出部TDは、形状変化が与えられない箇所に配置されているが、本実施形態では、温度検出部TDは、形状変化が与えられる箇所に配置されている。さらに、本実施形態では、温度検出部TDは、形状検出部DPの1つに隣接して配置されている。例えば、温度検出部TDは、第1の形状検出部DPに隣接して配置されている。このため、温度検出部TDの曲率は、第1の形状検出部DPの曲率と等しくなる。 In the shape estimation device according to the present embodiment, the temperature detection unit TD is provided in addition to the shape detection unit DP i in the photoconductive member LG 2 of the shape estimation sensor unit 20 as in the shape estimation device according to the third embodiment. It has been. The configuration of the temperature detection unit TD is the same as that of the third embodiment. In the third embodiment, the temperature detection unit TD is arranged at a location where the shape change is not given, but in this embodiment, the temperature detection unit TD is arranged at a location where the shape change is given. Furthermore, in the present embodiment, the temperature detection unit TD is disposed adjacent to one of the shape detection units DP i . For example, the temperature detection unit TD is disposed adjacent to the first shape detection unit DP1. For this reason, the curvature of the temperature detection unit TD is equal to the curvature of the first shape detection unit DP1.
 図15には、光導通部材LGにただ1つの温度検出部TDが設けられているように描かれているが、複数の温度検出部が複数の形状検出部に隣接して光導通部材LGに設けられもよい。 In FIG. 15, the light conducting member LG 2 is depicted as having only one temperature detecting unit TD, but the plurality of temperature detecting units are adjacent to the plurality of shape detecting units, and the light conducting member LG. 2 may be provided.
 [演算処理部(プロセッサ部およびその周辺部)]
 続いて、本実施形態の形状推定装置の演算処理部について説明する。図16は、本実施形態におけるプロセッサ部100およびその周辺部を示している。本実施形態におけるプロセッサ部100の構成は、第3実施形態におけるプロセッサ部100と基本的には同様である。以下、相違点について説明する。
[Operation processing unit (processor unit and its peripheral parts)]
Then, the arithmetic processing part of the shape estimation apparatus of this embodiment is demonstrated. FIG. 16 shows the processor unit 100 and its peripheral parts in the present embodiment. The configuration of the processor unit 100 in the present embodiment is basically the same as that of the processor unit 100 in the third embodiment. Hereinafter, differences will be described.
 温度演算部210において、各形状検出部DPの光の吸光度を用いた数学的手法や数値解析等の手法を用いて各形状検出部DPの光量変化量を算出する。各波長の光量変化率と各形状検出部DPの光量変化は、式(6)の関係式が成り立つ。 In the temperature calculation unit 210, a light amount change amount of each shape detection unit DP i is calculated using a mathematical method using the light absorbance of each shape detection unit DP i or a method such as numerical analysis. Light amount change of the light amount change rate and the shape detection unit DP i of each wavelength relationship of Equation (6) holds.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 各形状検出部DPの光量変化情報CRは、式(7)によって表される。式(7)から分かるように、各形状検出部DPの光量変化情報CRには、温度検出部TDの光量変化情報CRTeと形状検出部DPの光量変化情報CRが含まれる。 The light quantity change information CR i of each shape detection unit DP i is expressed by Expression (7). As can be seen from equation (7), the light amount change information CR i for each shape detecting unit DP i, includes light amount change information CR i of the light amount change information CR Te and shape detection unit DP i of the temperature detecting portion TD.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 式(7)より、同じ曲率となる隣接した温度検出部TDの光量変化情報CRTeと第1の形状検出部DPの光量変化情報CRの間には、次の式(8)の関係式が成立する。 From the equation (7), between the light amount change information CR 1 of the light amount change information CR Te and first shape detecting portion DP 1 of the temperature detecting portion TD that adjacent to the same curvature, the relationship of the following equation (8) The formula holds.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 式(8)より、温度に関する情報Tおよび曲率に関する情報κを取得する。取得した温度に関する情報Tを記憶部120へ送信する。曲率演算部110は、取得した温度に関する情報Tに応じた曲率特性情報を記憶部120から取得し、取得した曲率特性情報に基づいて再度、各形状検出部DPの光量変化を算出する。算出された各形状検出部DPの光量変化は、温度による補正がされているため、形状変化情報となる。算出された各形状検出部DPの光量情報から、図15の各形状検出部DPの曲率を算出する。 Information (T) about temperature and information (kappa) about curvature are acquired from Formula (8). Information T regarding the acquired temperature is transmitted to the storage unit 120. The curvature calculation unit 110 acquires curvature characteristic information according to the acquired temperature-related information T from the storage unit 120, and calculates the light amount change of each shape detection unit DP i again based on the acquired curvature characteristic information. The calculated light amount change of each shape detection unit DP i is corrected by temperature, and thus becomes shape change information. Calculated from the light amount information of each shape detecting unit DP i, to calculate the curvature of the shape detecting unit DP i of FIG.
 以下、第3実施形態と同様、形状演算部150において、各形状検出部DPの曲率と各形状検出部DPの位置情報とに基づいて、複数の形状検出部DPが設けられている光導通部材LGの形状情報を算出する。算出された光導通部材LGの形状情報は表示部160に表示される。 Hereinafter, similarly to the third embodiment, the shape operation unit 150, based on the position information of the curvature and the shape detection unit DP i of the shape detecting unit DP i, a plurality of shape detecting unit DP i is provided to calculate the shape information of the light conducting member LG 2. Shape information of the calculated light conducting member LG 2 is displayed on the display unit 160.
 [形状推定のフローチャート]
 図17は、本実施形態における形状推定のフローチャートである。
[Flowchart of shape estimation]
FIG. 17 is a flowchart of shape estimation in this embodiment.
 ステップ4S1において、制御部200から光検出器駆動部180と光源駆動部190へ設定を送信し駆動を開始する。 In step 4S1, the setting is transmitted from the control unit 200 to the photodetector driving unit 180 and the light source driving unit 190, and driving is started.
 ステップ4S2において、光検出器30からの光量読み取りを開始する。 In step 4S2, reading of the light amount from the light detector 30 is started.
 ステップ4S3において、光量読み取り終了信号を受信する。 In step 4S3, a light quantity reading end signal is received.
 ステップ4S4において、光検出器30からの検出信号を取得する。 In step 4S4, a detection signal from the photodetector 30 is acquired.
 ステップ4S5において、記憶部120から温度検出部TDと各形状検出部DPの吸光度を取得し、多変量解析等の手法より温度検出部TDと各形状検出部DPの光量変化を算出する。 In step 4S5, the absorbances of the temperature detection unit TD and each shape detection unit DP i are obtained from the storage unit 120, and the light quantity changes of the temperature detection unit TD and each shape detection unit DP i are calculated by a technique such as multivariate analysis.
 ステップ4S6において、温度検出部TDの光量変化と、温度検出部TDに隣接した第1の形状検出部DPの光量変化とから、形状変化による光量変化と、温度による光量変化を算出する。 In step 4S6, calculates the amount change of the temperature detecting portion TD, and a first light quantity change of shape detecting unit DP 1 adjacent to the temperature detector TD, a quantity of light caused by shape change, an amount of light caused by temperature.
 ステップ4S7において、温度検出部TDの光量変化率から温度関連情報を算出する。 In step 4S7, temperature related information is calculated from the light quantity change rate of the temperature detection unit TD.
 ステップ4S8において、取得した光検出器30の検出信号と、ステップ4S7において算出した温度関連情報と、記憶部120から取得した曲率特性情報とに基づいて各形状検出部DPの曲率を算出する。 In step 4S8, the curvature of each shape detection unit DP i is calculated based on the acquired detection signal of the photodetector 30, the temperature-related information calculated in step 4S7, and the curvature characteristic information acquired from the storage unit 120.
 ステップ4S9において、各形状検出部DPの曲率と各形状検出部DPの位置情報とに基づいて光導通部材LGの形状を推定する。
ステップ4S10において、推定した光導通部材LGの形状を表示部160に表示する。
In step 4S9, it estimates the shape of the light conducting member LG 2 on the basis of the curvature and position information of each shape detecting unit DP i of the shape detecting unit DP i.
In step 4S10, and it displays the estimated shape of the light conducting member LG 2 to the display unit 160.
 ステップ4S11において、終了信号を受信したか判断する。判断結果がNoの場合にはステップ4S2に戻る。判断結果がYesの場合には形状推定を終了する。 In step 4S11, it is determined whether an end signal has been received. If the determination result is No, the process returns to step 4S2. If the determination result is Yes, the shape estimation ends.
 本実施形態による形状推定装置は、第1実施形態と同様に、温度変化に伴う形状検出結果の誤差を除去しているため、各形状検出部DPの曲率の算出と光導通部材LGの形状の推定を高い精度でおこなうことができる。 As in the first embodiment, the shape estimation apparatus according to the present embodiment removes errors in the shape detection results due to temperature changes, and thus calculates the curvature of each shape detection unit DP i and the light conducting member LG 2 . The shape can be estimated with high accuracy.
 温度関連情報を取得するための温度検出部TDが、形状推定用センサ部20の光導通部材LGに設けられているので、本実施形態の形状推定装置を設置する対象物の径を太くすることなく、温度関連情報を取得することが可能である。 Temperature detector TD for obtaining temperature-related information, since the provided optical conduction member LG 2 shape estimation sensor unit 20, thickening the diameter of the object to be installed shape estimation apparatus of the present embodiment It is possible to acquire temperature-related information without this.
 <第5実施形態>
 図18は、第5実施形態による形状推定装置の構成図である。図18において、図1に示された部材と同一の参照符号が付された部材は同様の部材であり、その詳しい説明は省略する。以下、第5実施形態について、第1実施形態との相違点を中心に説明する。
<Fifth Embodiment>
FIG. 18 is a configuration diagram of a shape estimation apparatus according to the fifth embodiment. In FIG. 18, members denoted by the same reference numerals as those shown in FIG. 1 are similar members, and detailed description thereof is omitted. Hereinafter, the fifth embodiment will be described focusing on differences from the first embodiment.
 本実施形態の形状推定装置は、第1実施形態の形状推定装置から、温度測定部70は省かれた構成となっている。 The shape estimation device of this embodiment has a configuration in which the temperature measurement unit 70 is omitted from the shape estimation device of the first embodiment.
 図19は、本実施形態の形状推定装置が組み込まれた内視鏡300を模式的に示している。内視鏡300は、操作者が内視鏡300を保持するための保持部310と、保持部310から延びている挿入部320を有している。挿入部320は、例えば人間の体内の管腔内に挿入される中空の細長い可撓性部材である。挿入部320の内部空間内に形状推定用センサ部20が設けられている。形状推定用センサ部20は、挿入部320に沿って延びている。形状推定装置の他の構成、例えば光源部10や光検出器30や光分岐部50等は、保持部310内に配置されている。 FIG. 19 schematically shows an endoscope 300 in which the shape estimation apparatus of this embodiment is incorporated. The endoscope 300 includes a holding unit 310 for an operator to hold the endoscope 300 and an insertion unit 320 extending from the holding unit 310. The insertion part 320 is a hollow elongate flexible member that is inserted into a lumen in a human body, for example. The shape estimation sensor unit 20 is provided in the internal space of the insertion unit 320. The shape estimation sensor unit 20 extends along the insertion unit 320. Other configurations of the shape estimation device, for example, the light source unit 10, the photodetector 30, the light branching unit 50, and the like are arranged in the holding unit 310.
 [演算処理部(プロセッサ部およびその周辺部)]
 続いて、本実施形態の形状推定装置の演算処理部について説明する。図20は、本実施形態におけるプロセッサ部100およびその周辺部を示している。図20において、図5に示された部材と同一の参照符号が付された部材は同様の部材であり、その詳しい説明は省略する。以下、相違点について説明する。
[Operation processing unit (processor unit and its peripheral parts)]
Then, the arithmetic processing part of the shape estimation apparatus of this embodiment is demonstrated. FIG. 20 shows the processor unit 100 and its peripheral parts in the present embodiment. 20, members denoted by the same reference numerals as those shown in FIG. 5 are similar members, and detailed description thereof is omitted. Hereinafter, differences will be described.
 本実施形態の形状推定装置のプロセッサ部100は、温度演算部210に代えて、今現在、内視鏡300の挿入部320が人間の体内の管腔内に挿入されている状態かどうかを判断する体内判断部220を備えている。 The processor unit 100 of the shape estimation apparatus according to the present embodiment determines whether or not the insertion unit 320 of the endoscope 300 is currently inserted into the lumen of the human body instead of the temperature calculation unit 210. A body determination unit 220 is provided.
 曲率演算部110は、所定の温度たとえば室温を暫定的な温度関連情報として、光検出器30からの検出信号に基づいて各形状検出部DPの光量変化率を算出する。曲率演算部110は、記憶部120から各形状検出部DPの吸光度を取得し、多変量解析等の手法より各形状検出部DPの光量変化を算出する。形状演算部150は、算出された各形状検出部DPの光量変化、記憶部130に設定されている曲率特性情報から光導通部材LGの形状を算出する。光導通部材LGの形状情報は、体内判断部220に送信される。体内判断部220は、今現在、内視鏡300の挿入部320が管腔内に挿入されている状態かどうかを判断する。この判断は、挿入部320が特徴的な形状になっているかどうかによりおこなう。例えば、挿入部320は、管腔内に挿入されているときに、図21に示されるようなS字形状になることがある。 The curvature calculation unit 110 calculates a light amount change rate of each shape detection unit DP i based on a detection signal from the photodetector 30 using a predetermined temperature, for example, room temperature as provisional temperature-related information. The curvature calculation unit 110 acquires the absorbance of each shape detection unit DP i from the storage unit 120, and calculates the change in light amount of each shape detection unit DP i by a technique such as multivariate analysis. The shape calculation unit 150 calculates the shape of the light conducting member LG 2 from the calculated light amount change of each shape detection unit DP i and the curvature characteristic information set in the storage unit 130. Shape information of the light conducting member LG 2 is transmitted into the body judging section 220. The in-vivo determination unit 220 determines whether or not the insertion unit 320 of the endoscope 300 is currently inserted into the lumen. This determination is made based on whether or not the insertion portion 320 has a characteristic shape. For example, the insertion part 320 may be S-shaped as shown in FIG. 21 when inserted into a lumen.
 体内判断部220は、光導通部材LGの形状情報から、挿入部320がS字形状になっているかどうかを判断する。体内判断部220は、挿入部320がS字形状になっていると判断した場合、人間の体温相当の温度(35度~37度)の情報を温度関連情報として曲率演算部110と記憶部120に出力する。 Vivo determination unit 220, the shape information of the light conducting member LG 2, the insertion portion 320 determines whether it is the S-shape. When the in-vivo determination unit 220 determines that the insertion unit 320 has an S-shape, the curvature calculation unit 110 and the storage unit 120 use temperature-related information as information about a human body temperature (35 degrees to 37 degrees). Output to.
 温度関連情報は、体内判断部220が出力する代わりに、入力機器170を介して手入力されてもよい。 The temperature related information may be manually input via the input device 170 instead of being output by the in-vivo determination unit 220.
 以下、第1実施形態と同様に、記憶部120は、体内判断部220から供給される温度関連情報に応じた曲率特性情報を曲率演算部110に出力する。曲率演算部110は、光検出器30の検出信号と、記憶部120から取得した曲率特性情報と、体内判断部220から供給される温度関連情報とに基づいて、複数の形状検出部DPの各々の曲率を算出する。曲率演算部110は、算出した各形状検出部DPの曲率を形状演算部150に出力する。形状演算部150は、各形状検出部DPの曲率と各形状検出部DPの位置情報とに基づいて、光導通部材LGの形状情報を挿入部320の形状情報として算出する。算出された光導通部材LGすなわち挿入部320の形状情報は表示部160に表示される。 Hereinafter, similarly to the first embodiment, the storage unit 120 outputs curvature characteristic information corresponding to the temperature-related information supplied from the in-vivo determination unit 220 to the curvature calculation unit 110. Curvature calculation unit 110, a detection signal of the photodetector 30, the acquired curvature characteristic information from the storage unit 120, on the basis of the temperature-related information supplied from the body determining unit 220, a plurality of shape detecting unit DP i Calculate the curvature of each. The curvature calculation unit 110 outputs the calculated curvature of each shape detection unit DP i to the shape calculation unit 150. Shape operation unit 150, based on the curvature and position information of each shape detecting unit DP i of the shape detecting unit DP i, to calculate the shape information of the light conducting member LG 2 as the shape information of the insertion portion 320. Shape information of the calculated light conducting member LG 2 i.e. the insertion portion 320 is displayed on the display unit 160.
 [形状推定のフローチャート]
 図22は、本実施形態における形状推定のフローチャートである。
[Flowchart of shape estimation]
FIG. 22 is a flowchart of shape estimation in the present embodiment.
 ステップ5S1において、制御部200から光検出器駆動部180と光源駆動部190へ設定を送信し駆動を開始する。 In step 5S1, the setting is transmitted from the control unit 200 to the photodetector driving unit 180 and the light source driving unit 190, and driving is started.
 ステップ5S2において、吸光度および予め設定された曲率特性情報を記憶部120から読み取る。 In step 5S2, the absorbance and preset curvature characteristic information are read from the storage unit 120.
 ステップ5S3において、光検出器30からの光量読み取りを開始する。 In step 5S3, the light quantity reading from the photodetector 30 is started.
 ステップ5S4において、光量読み取り終了信号を受信する。 In step 5S4, a light quantity reading end signal is received.
 ステップ5S5において、光検出器30からの検出信号を取得する。 In step 5S5, a detection signal from the photodetector 30 is acquired.
 ステップ5S6において、曲率演算部110において各形状検出部DPの吸光度を取得し、各形状検出部DPの光量変化率を算出する。 In step 5S6, it obtains the absorbance of each shape detecting unit DP i in curvature calculating unit 110 calculates the light amount change rate of each shape detecting unit DP i.
 ステップ5S7において、各形状検出部DPの光量変化と曲率特性情報、各形状検出部DPの位置情報に基づいて光導通部材LGの形状を推定する。 In step 5S7, light amount change and the curvature characteristic information of each shape detecting unit DP i, estimates the shape of the light conducting member LG 2 based on the position information of the shape detection unit DP i.
 ステップ5S8において、挿入部320が体内の管腔内に挿入されているかを判断する。具体的には、光導通部材LGがS字形状になっているかを判断する。 In step 5S8, it is determined whether or not the insertion section 320 is inserted into a body lumen. Specifically, the light conducting member LG 2 determines whether become S-shaped.
 ステップ5S8の判断結果がYesの場合には、ステップ5S9において、曲率特性情報を、体温相当の温度に応じた曲率特性情報へ変更する。 If the determination result in step 5S8 is Yes, in step 5S9, the curvature characteristic information is changed to curvature characteristic information corresponding to the temperature corresponding to the body temperature.
 続いて、ステップ5S10において、取得した光検出器30の検出信号と、体温相当の温度の情報と、記憶部120から取得した曲率特性情報とに基づいて各形状検出部DPの曲率を算出する。 Subsequently, in step 5S10, the curvature of each shape detection unit DP i is calculated based on the acquired detection signal of the photodetector 30, the temperature information corresponding to the body temperature, and the curvature characteristic information acquired from the storage unit 120. .
 ステップ5S11において、各形状検出部DPの曲率と各形状検出部DPの位置情報とに基づいて光導通部材LGの形状を推定する。 In step 5S11, we estimate the shape of the light conducting member LG 2 on the basis of the curvature and position information of each shape detecting unit DP i of the shape detecting unit DP i.
 ステップ5S12において、ステップ5S11において推定した光導通部材LGの形状を内視鏡300の挿入部320の形状として表示部160に表示する。 In step 5S12, the display unit 160 the shape of the light conducting member LG 2 estimated in step 5S11 as the shape of the insertion portion 320 of the endoscope 300.
 一方、ステップ5S8の判断結果がNoの場合には、ステップ5S9ないしステップ5S11を飛ばしてステップ5S12に進み、ステップ5S7において推定した光導通部材LGの形状を内視鏡300の挿入部320の形状として表示部160に表示する。 On the other hand, if the determination result in step 5S8 is No, the process proceeds to step 5S12 skip step 5S9 to step 5S11, the shape of the insertion portion 320 of the endoscope 300 to the shape of the light conducting member LG 2 estimated in step 5S7 Is displayed on the display unit 160.
 ステップ5S13において、終了信号を受信したか判断する。判断結果がNoの場合にはステップ5S3に戻る。判断結果がYesの場合には形状推定を終了する。 In step 5S13, it is determined whether an end signal has been received. If the determination result is No, the process returns to step 5S3. If the determination result is Yes, the shape estimation ends.
 本実施形態による形状推定装置は、第1実施形態と同様に、温度変化に伴う形状検出結果の誤差を除去しているため、各形状検出部DPの曲率の算出と光導通部材LGの形状の推定を高い精度でおこなうことができる。 As in the first embodiment, the shape estimation apparatus according to the present embodiment removes errors in the shape detection results due to temperature changes, and thus calculates the curvature of each shape detection unit DP i and the light conducting member LG 2 . The shape can be estimated with high accuracy.
 また本実施形態によれば、内視鏡300の挿入部320の形状が精度良く推定可能である内視鏡が提供される。 Also, according to the present embodiment, an endoscope is provided in which the shape of the insertion portion 320 of the endoscope 300 can be estimated with high accuracy.
 <第6実施形態>
 図23は、第6実施形態による形状推定装置の構成図である。図23において、図1に示された部材と同一の参照符号が付された部材は同様の部材であり、その詳しい説明は省略する。以下、第6実施形態について、第1実施形態との相違点を中心に説明する。
<Sixth Embodiment>
FIG. 23 is a configuration diagram of a shape estimation apparatus according to the sixth embodiment. 23, members denoted by the same reference numerals as those shown in FIG. 1 are the same members, and detailed description thereof is omitted. Hereinafter, the sixth embodiment will be described focusing on differences from the first embodiment.
 本実施形態の形状推定装置は、第1実施形態の形状推定装置の温度測定部70に代えて、挿入量センサ80を備えている構成となっている。挿入量センサ80は、形状推定用センサ部20またはこれが組み込まれた内視鏡300の挿入部320が、例えば人間の体内の管腔内に挿入されているかを判断するための情報を提供する機能を有している。 The shape estimation device of this embodiment has a configuration including an insertion amount sensor 80 instead of the temperature measurement unit 70 of the shape estimation device of the first embodiment. The insertion amount sensor 80 provides information for determining whether the shape estimation sensor unit 20 or the insertion unit 320 of the endoscope 300 in which the shape estimation sensor unit 20 is incorporated is inserted into a lumen in a human body, for example. have.
 図24は、本実施形態の形状推定装置が組み込まれた内視鏡システムを模式的に示している。内視鏡システムは、内視鏡300と、内視鏡300の各種動作を制御する内視鏡制御部820を有している。 FIG. 24 schematically shows an endoscope system in which the shape estimation apparatus of this embodiment is incorporated. The endoscope system includes an endoscope 300 and an endoscope control unit 820 that controls various operations of the endoscope 300.
 内視鏡300は、第5実施形態において説明したように、操作者が内視鏡300を保持するための保持部310と、保持部310から延びている挿入部320を有している。挿入部320は、例えば人間の体内の管腔内に挿入される中空の細長い可撓性部材である。挿入部320の内部空間内に形状推定用センサ部20が設けられている。形状推定用センサ部20は、挿入部320に沿って延びている。 As described in the fifth embodiment, the endoscope 300 includes a holding unit 310 for an operator to hold the endoscope 300 and an insertion unit 320 extending from the holding unit 310. The insertion part 320 is a hollow elongate flexible member that is inserted into a lumen in a human body, for example. The shape estimation sensor unit 20 is provided in the internal space of the insertion unit 320. The shape estimation sensor unit 20 extends along the insertion unit 320.
 内視鏡制御部820は、内視鏡300の挿入部320の先端に設けられた撮像素子により取得された画像を処理するための画像処理部822を有している。 The endoscope control unit 820 has an image processing unit 822 for processing an image acquired by an image sensor provided at the distal end of the insertion unit 320 of the endoscope 300.
 内視鏡300の挿入部320には、挿入量センサ80が設けられている。例えば、挿入部320は挿入量センサ80に対して移動可能であり、挿入量センサ80は、挿入量センサ80よりも前方に位置している挿入部320の部分の長さに相当する信号を出力する。 The insertion amount sensor 80 is provided in the insertion part 320 of the endoscope 300. For example, the insertion unit 320 is movable with respect to the insertion amount sensor 80, and the insertion amount sensor 80 outputs a signal corresponding to the length of the portion of the insertion unit 320 positioned in front of the insertion amount sensor 80. To do.
 [演算処理部(プロセッサ部およびその周辺部)]
 続いて、本実施形態の形状推定装置の演算処理部について説明する。図25は、本実施形態におけるプロセッサ部100およびその周辺部を示している。図25において、図5に示された部材と同一の参照符号が付された部材は同様の部材であり、その詳しい説明は省略する。以下、相違点について説明する。
[Operation processing unit (processor unit and its peripheral parts)]
Then, the arithmetic processing part of the shape estimation apparatus of this embodiment is demonstrated. FIG. 25 shows the processor unit 100 and its peripheral parts in the present embodiment. 25, members denoted by the same reference numerals as those shown in FIG. 5 are the same members, and detailed description thereof is omitted. Hereinafter, differences will be described.
 入力部130は、挿入量センサ80からの検出信号が入力されるように構成されている。形状推定装置のプロセッサ部100は、温度演算部210に代えて、今現在、内視鏡300の挿入部320が人間の体内に挿入されている状態かどうかを判断する体内判断部220を備えている。 The input unit 130 is configured to receive a detection signal from the insertion amount sensor 80. The processor unit 100 of the shape estimation apparatus includes an in-vivo determination unit 220 that determines whether or not the insertion unit 320 of the endoscope 300 is currently inserted into a human body, instead of the temperature calculation unit 210. Yes.
 体内判断部220は、挿入量センサ80からの検出信号に基づいて、今現在、内視鏡300の挿入部320が人間の体内に挿入されている状態かどうかを判断する。例えば、挿入量センサ80は、それよりも前方に位置している挿入部320の部分の長さに相当する検出信号を出力し、体内判断部220は、挿入量センサ80からの検出信号を所定のしきい値と比較する。体内判断部220は、挿入量センサ80からの検出信号が所定のしきい値よりも大きい場合には、挿入部320が体内に挿入されていると判断する。その場合、体内判断部220は、人間の体温相当の温度(35度~37度)の情報を温度関連情報として曲率演算部110と記憶部120に出力する。 Based on the detection signal from the insertion amount sensor 80, the in-vivo determination unit 220 determines whether or not the insertion unit 320 of the endoscope 300 is currently inserted into the human body. For example, the insertion amount sensor 80 outputs a detection signal corresponding to the length of the portion of the insertion unit 320 positioned in front of the insertion amount sensor 80, and the in-vivo determination unit 220 determines the detection signal from the insertion amount sensor 80 as a predetermined value. Compare with the threshold value. The in-vivo determination unit 220 determines that the insertion unit 320 is inserted into the body when the detection signal from the insertion amount sensor 80 is greater than a predetermined threshold value. In that case, the in-vivo determination unit 220 outputs information on the temperature corresponding to the human body temperature (35 degrees to 37 degrees) to the curvature calculation unit 110 and the storage unit 120 as temperature related information.
 以下、第1実施形態と同様に、記憶部120は、体内判断部220から供給される温度関連情報に応じた曲率特性情報を曲率演算部110に出力する。曲率演算部110は、光検出器30の検出信号と、記憶部120から取得した曲率特性情報と、体内判断部220から供給される温度関連情報とに基づいて、複数の形状検出部DPの各々の曲率を算出する。曲率演算部110は、算出した各形状検出部DPの曲率を形状演算部150に出力する。形状演算部150は、各形状検出部DPの曲率と各形状検出部DPの位置情報とに基づいて、光導通部材LGの形状情報を挿入部320の形状情報として算出する。算出された光導通部材LGすなわち挿入部320の形状情報は表示部160に表示される。 Hereinafter, similarly to the first embodiment, the storage unit 120 outputs curvature characteristic information corresponding to the temperature-related information supplied from the in-vivo determination unit 220 to the curvature calculation unit 110. Curvature calculation unit 110, a detection signal of the photodetector 30, the acquired curvature characteristic information from the storage unit 120, on the basis of the temperature-related information supplied from the body determining unit 220, a plurality of shape detecting unit DP i Calculate the curvature of each. The curvature calculation unit 110 outputs the calculated curvature of each shape detection unit DP i to the shape calculation unit 150. Shape operation unit 150, based on the curvature and position information of each shape detecting unit DP i of the shape detecting unit DP i, to calculate the shape information of the light conducting member LG 2 as the shape information of the insertion portion 320. Shape information of the calculated light conducting member LG 2 i.e. the insertion portion 320 is displayed on the display unit 160.
 [形状推定のフローチャート]
 図26は、本実施形態における形状推定のフローチャートである。
[Flowchart of shape estimation]
FIG. 26 is a flowchart of shape estimation in this embodiment.
 ステップ6S1において、制御部200から光検出器駆動部180と光源駆動部190へ設定を送信し駆動を開始する。 In step 6S1, the setting is transmitted from the control unit 200 to the photodetector driving unit 180 and the light source driving unit 190, and driving is started.
 ステップ6S2において、光検出器30からの光量読み取りを開始する。 In step 6S2, reading of the light amount from the photodetector 30 is started.
 ステップ6S3において、光量読み取り終了信号を受信する。 In step 6S3, a light quantity reading end signal is received.
 ステップ6S4において、挿入量センサ80からの検出信号を取得する。 In step 6S4, a detection signal from the insertion amount sensor 80 is acquired.
 ステップ6S5において、内視鏡300の挿入部320が体内に挿入されているかを判断する。具体的には、挿入量すなわち挿入量センサ80からの検出信号がしきい値Aよりも大きいかを判断する。 In step 6S5, it is determined whether the insertion part 320 of the endoscope 300 is inserted into the body. Specifically, it is determined whether the insertion amount, that is, the detection signal from the insertion amount sensor 80 is larger than the threshold value A.
 ステップ6S5の判断結果がYesの場合には、ステップ6S6において、記憶部120から体温相当の温度に応じた曲率特性情報を取得する。 If the determination result in Step 6S5 is Yes, curvature characteristic information corresponding to the temperature corresponding to the body temperature is acquired from the storage unit 120 in Step 6S6.
 続いて、ステップ6S7において、取得した光検出器30の検出信号と、体温相当の温度の情報と、記憶部120から取得した曲率特性情報とに基づいて各形状検出部DPの曲率を算出する。 Subsequently, in step 6S7, the curvature of each shape detection unit DP i is calculated based on the acquired detection signal of the photodetector 30, the temperature information corresponding to the body temperature, and the curvature characteristic information acquired from the storage unit 120. .
 一方、ステップ6S5の判断結果がNoの場合には、ステップ6S8において、予め設定されている温度に応じた曲率特性情報に基づいて各形状検出部DPの曲率を算出する。 On the other hand, the determination in step 6S5 is No, in step 6S8, to calculate the curvature of the shape detecting unit DP i based on the curvature characteristic information corresponding to the temperature that has been set in advance.
 ステップ6S9において、各形状検出部DPの曲率と各形状検出部DPの位置情報とに基づいて光導通部材LGの形状を推定する。 In step 6S9, it estimates the shape of the light conducting member LG 2 on the basis of the curvature and position information of each shape detecting unit DP i of the shape detecting unit DP i.
 ステップ6S10において、推定した光導通部材LGの形状を表示部160に表示する。 In step 6S10, and it displays the estimated shape of the light conducting member LG 2 to the display unit 160.
 ステップ6S11において、終了信号を受信したか判断する。判断結果がNoの場合にはステップ6S2に戻る。判断結果がYesの場合には形状推定を終了する。 In step 6S11, it is determined whether an end signal has been received. If the determination result is No, the process returns to step 6S2. If the determination result is Yes, the shape estimation ends.
 本実施形態による形状推定装置は、第1実施形態と同様に、温度変化に伴う形状検出結果の誤差を除去しているため、各形状検出部DPの曲率の算出と光導通部材LGの形状の推定を高い精度でおこなうことができる。 As in the first embodiment, the shape estimation apparatus according to the present embodiment removes errors in the shape detection results due to temperature changes, and thus calculates the curvature of each shape detection unit DP i and the light conducting member LG 2 . The shape can be estimated with high accuracy.
 また本実施形態によれば、内視鏡300の挿入部320の形状が精度良く推定可能である内視鏡システムが提供される。 Also, according to the present embodiment, an endoscope system is provided in which the shape of the insertion portion 320 of the endoscope 300 can be estimated with high accuracy.
 本実施形態では、挿入量センサ80を使用して、内視鏡300の挿入部320が体内に挿入されているかを判断しているが、挿入量センサ80を使用する代わりに、カメラや内視鏡システムからの画像情報等を利用して、内視鏡300の挿入部320が体内に挿入されているかを判断してもよい。 In the present embodiment, the insertion amount sensor 80 is used to determine whether the insertion portion 320 of the endoscope 300 is inserted into the body, but instead of using the insertion amount sensor 80, a camera or an endoscope is used. It may be determined whether or not the insertion unit 320 of the endoscope 300 is inserted into the body using image information or the like from the mirror system.

Claims (14)

  1.  複数の形状検出部の各々に応じた波長についての検出される光量が前記複数の形状検出部の各々の形状に応じて異なるように構成された形状推定用センサ部を用いて取得された前記波長と前記光量との関係である光量情報と、前記形状推定用センサ部の周辺の温度関連情報が入力されるように構成された入力部と、
     前記複数の形状検出部の各々についての前記形状と前記波長と前記光量との関係を表す形状特性情報を含む光量推定関係を記憶する記憶部と、
     前記光量情報と、前記光量推定関係に基づいて算出される前記波長と前記光量との関係である光量推定値と、前記温度関連情報とに基づいて、前記複数の形状検出部の各々の形状を演算する演算部とを備えている形状推定装置。
    The wavelength acquired using a shape estimation sensor unit configured such that the amount of light detected for a wavelength corresponding to each of the plurality of shape detection units differs according to the shape of each of the plurality of shape detection units And an input unit configured to input light amount information which is a relationship between the light amount and the temperature estimation information around the shape estimation sensor unit;
    A storage unit for storing a light amount estimation relationship including shape characteristic information indicating a relationship between the shape, the wavelength, and the light amount for each of the plurality of shape detection units;
    Based on the light amount information, a light amount estimation value that is a relationship between the wavelength and the light amount calculated based on the light amount estimation relationship, and the temperature related information, each shape of the plurality of shape detection units is determined. A shape estimation apparatus including a calculation unit for calculating.
  2.  前記形状推定用センサ部は、前記形状検出部が設けられた光導通部材を有するファイバセンサであり、
     前記ファイバセンサに光を供給する光源と、
     前記ファイバセンサを通過した光を検出する光検出器を備えている請求項1に記載の形状推定装置。
    The shape estimation sensor unit is a fiber sensor having a light conducting member provided with the shape detection unit,
    A light source for supplying light to the fiber sensor;
    The shape estimation apparatus according to claim 1, further comprising a photodetector that detects light that has passed through the fiber sensor.
  3.  前記温度関連情報を検出する温度推定用センサ部を備えている請求項2に記載の形状推定装置。 The shape estimation device according to claim 2, further comprising a temperature estimation sensor unit for detecting the temperature related information.
  4.  前記温度推定用センサ部は、前記形状検出部の少なくとも1つの周辺に設けられた少なくとも1つの温度測定器を有している請求項3に記載の形状推定装置。 The shape estimation apparatus according to claim 3, wherein the temperature estimation sensor unit includes at least one temperature measuring device provided around at least one of the shape detection units.
  5.  前記温度推定用センサ部は、少なくとも1つの温度検出部が設けられた光導通部材を有する第2のファイバセンサであり、
     前記第2のファイバセンサに光を供給する光源と、
     前記第2のファイバセンサを通過した光を検出する光検出器を備えている請求項3に記載の形状推定装置。
    The temperature estimation sensor unit is a second fiber sensor having a photoconductive member provided with at least one temperature detection unit,
    A light source for supplying light to the second fiber sensor;
    The shape estimation apparatus according to claim 3, further comprising a photodetector that detects light that has passed through the second fiber sensor.
  6.  前記温度検出部は、温度に依存して光吸収率が変化する光吸収体を有している請求項5に記載の形状推定装置。 The shape estimation apparatus according to claim 5, wherein the temperature detection unit includes a light absorber whose light absorptance changes depending on temperature.
  7.  前記温度検出部は、形状変化が与えられない箇所に配置されている請求項6に記載の形状推定装置。 The shape estimation device according to claim 6, wherein the temperature detection unit is arranged at a location where no shape change is given.
  8.  前記温度推定用センサ部は、前記形状推定用センサ部の前記光導通部材に設けられた少なくとも1つの温度検出部を有している請求項3に記載の形状推定装置。 The shape estimation apparatus according to claim 3, wherein the temperature estimation sensor unit includes at least one temperature detection unit provided in the light conducting member of the shape estimation sensor unit.
  9.  前記少なくとも1つの温度検出部は、前記形状検出部の少なくとも1つに隣接して配置されている請求項8に記載の形状推定装置。 The shape estimation apparatus according to claim 8, wherein the at least one temperature detection unit is disposed adjacent to at least one of the shape detection units.
  10.  前記形状検出部は、曲率に応じて光吸収率が変化する光吸収体を有しており、
     前記温度検出部の前記光吸収体が光を吸収する波長帯は、前記形状検出部の前記光吸収体が光を吸収する波長帯とは異なっている請求項6に記載の形状推定装置。
    The shape detection unit has a light absorber whose light absorptance changes according to the curvature,
    The shape estimation apparatus according to claim 6, wherein a wavelength band in which the light absorber of the temperature detection unit absorbs light is different from a wavelength band in which the light absorber of the shape detection unit absorbs light.
  11.  前記ファイバセンサの形状に基づいて前記温度関連情報を推定する演算部を備えている請求項2に記載の形状推定装置。 The shape estimation apparatus according to claim 2, further comprising a calculation unit that estimates the temperature related information based on a shape of the fiber sensor.
  12.  前記ファイバセンサの挿入量を検出する挿入量センサと、
     前記挿入量センサによって検出される情報に基づいて前記温度関連情報を推定する演算部を備えている請求項2に記載の形状推定装置。
    An insertion amount sensor for detecting the insertion amount of the fiber sensor;
    The shape estimation apparatus according to claim 2, further comprising a calculation unit that estimates the temperature related information based on information detected by the insertion amount sensor.
  13.  前記温度関連情報を入力するための入力機器を備えている請求項1に記載の形状推定装置。 The shape estimation apparatus according to claim 1, further comprising an input device for inputting the temperature related information.
  14.  請求項1ないし13のいずれかひとつに記載の形状推定装置と、
     前記複数の形状検出部が挿入部内に設けられた内視鏡と、
     前記演算部によって得られた前記複数の形状検出部の各々の形状に基づいて前記挿入部の形状を算出する挿入部形状演算部を備える内視鏡システム。
    A shape estimation device according to any one of claims 1 to 13,
    An endoscope in which the plurality of shape detection units are provided in an insertion unit;
    An endoscope system comprising an insertion portion shape calculation unit that calculates the shape of the insertion unit based on the shape of each of the plurality of shape detection units obtained by the calculation unit.
PCT/JP2016/068552 2016-06-22 2016-06-22 Shape estimating device WO2017221355A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018523215A JPWO2017221355A1 (en) 2016-06-22 2016-06-22 Shape estimation device
PCT/JP2016/068552 WO2017221355A1 (en) 2016-06-22 2016-06-22 Shape estimating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/068552 WO2017221355A1 (en) 2016-06-22 2016-06-22 Shape estimating device

Publications (1)

Publication Number Publication Date
WO2017221355A1 true WO2017221355A1 (en) 2017-12-28

Family

ID=60783212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068552 WO2017221355A1 (en) 2016-06-22 2016-06-22 Shape estimating device

Country Status (2)

Country Link
JP (1) JPWO2017221355A1 (en)
WO (1) WO2017221355A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002253481A (en) * 2001-02-28 2002-09-10 Asahi Optical Co Ltd Flexible endoscope
JP2003052614A (en) * 2001-08-17 2003-02-25 Pentax Corp Flexible endoscope
JP2008173397A (en) * 2007-01-22 2008-07-31 Olympus Corp Endoscope system
JP2011104053A (en) * 2009-11-16 2011-06-02 Olympus Corp Three-dimensional shape detector and method of detecting three-dimensional shape of insertion member
JP2012239845A (en) * 2011-05-24 2012-12-10 Hoya Corp Endoscope device
JP2014508582A (en) * 2011-01-27 2014-04-10 コーニンクレッカ フィリップス エヌ ヴェ Storage and retrieval of information unique to shape detection devices
JP2016007505A (en) * 2014-06-26 2016-01-18 オリンパス株式会社 Shape estimation device, endoscope system with shape estimation device, shape estimation method, and program for shape estimation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002253481A (en) * 2001-02-28 2002-09-10 Asahi Optical Co Ltd Flexible endoscope
JP2003052614A (en) * 2001-08-17 2003-02-25 Pentax Corp Flexible endoscope
JP2008173397A (en) * 2007-01-22 2008-07-31 Olympus Corp Endoscope system
JP2011104053A (en) * 2009-11-16 2011-06-02 Olympus Corp Three-dimensional shape detector and method of detecting three-dimensional shape of insertion member
JP2014508582A (en) * 2011-01-27 2014-04-10 コーニンクレッカ フィリップス エヌ ヴェ Storage and retrieval of information unique to shape detection devices
JP2012239845A (en) * 2011-05-24 2012-12-10 Hoya Corp Endoscope device
JP2016007505A (en) * 2014-06-26 2016-01-18 オリンパス株式会社 Shape estimation device, endoscope system with shape estimation device, shape estimation method, and program for shape estimation

Also Published As

Publication number Publication date
JPWO2017221355A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
JP6322495B2 (en) Shape estimation apparatus, endoscope system provided with shape estimation apparatus, and program for shape estimation
JP6278848B2 (en) Shape estimation apparatus, endoscope system including the same, and program for shape estimation
JP2022044740A (en) Optical measuring device
US10842359B2 (en) Curvature sensor and endoscope apparatus equipped with the same
US10729313B2 (en) Bend information computation apparatus, endoscope system including bend information computation apparatus, bend information computation method, and program for bend information computation
JP2008249515A (en) Temperature distribution measuring system and temperature distribution measuring method
US10401140B2 (en) Bending detecting system, light guide body, tubular apparatus, light detecting apparatus, light detecting method, and optical bending measuring apparatus
JP7370908B2 (en) Light receiving/emitting device and deterioration diagnosis method
JP5786191B2 (en) Temperature sensitive body, optical temperature sensor, temperature measuring device and heat flux measuring device
WO2017221355A1 (en) Shape estimating device
WO2017085879A1 (en) Curvature sensor
EP2759246B1 (en) Calibration apparatus and calibration method
WO2017009984A1 (en) Shape calculation device
US10813701B2 (en) System, method and computer program product for bend information estimation
US10842384B2 (en) Thermochromic optical waveguide temperature sensors
JP2006023200A (en) Optical probe and spectrometric apparatus
US11467144B2 (en) Light emitting and receiving apparatus and method of diagnosing deterioration
WO2017060956A1 (en) Shape calculation device
JP2005291946A (en) Optical fiber sensor
WO2018116375A1 (en) Curvature information deriving device, endoscope system including same, and curvature information deriving method
US20190346671A1 (en) Shape estimation apparatus and shape estimation method
WO2017085878A1 (en) Curvature sensor
JP7070614B2 (en) Optical measuring device
Mishra et al. Comparative Analysis of Jacket Coated and Uncoated Arched SMF Based Health Monitoring System
WO2017175314A1 (en) Bending information deriving apparatus and endoscope system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018523215

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906272

Country of ref document: EP

Kind code of ref document: A1