WO2017219739A1 - 一种确定波束赋型向量的方法及装置 - Google Patents

一种确定波束赋型向量的方法及装置 Download PDF

Info

Publication number
WO2017219739A1
WO2017219739A1 PCT/CN2017/080605 CN2017080605W WO2017219739A1 WO 2017219739 A1 WO2017219739 A1 WO 2017219739A1 CN 2017080605 W CN2017080605 W CN 2017080605W WO 2017219739 A1 WO2017219739 A1 WO 2017219739A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
correlation matrix
vector
eigenvector
streams
Prior art date
Application number
PCT/CN2017/080605
Other languages
English (en)
French (fr)
Inventor
刘昊
李琼
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2017219739A1 publication Critical patent/WO2017219739A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a method and apparatus for determining a beamforming vector.
  • duplex modes In the 3GPP standard 4G standard, two duplex modes are defined: FDD (Frequency Division Duplex)-LTE (Long Term Evolution) and TDD (Time Division Duplex)-LTE.
  • the TDD-LTE uplink and downlink links adopt the same carrier frequency point, and the uplink and downlink channels can be considered to have reciprocity, which also provides the possibility that the beamforming theory is applied in LTE.
  • Massive MIMO Multiple Input Multiple Output
  • MU Multiple Users
  • Beamforming generally calculates the downlink beamforming vector of the current user based on the uplink channel information detected by the base station.
  • the shortcoming of the prior art is that although the vertical and horizontal dimensions of the beamforming scheme are widely used in the industry, and the eigenvector decomposition of the 128-order is directly performed, the complexity is significantly reduced, but compared with the conventional beam assignment. The performance of the type algorithm will be reduced.
  • the present application provides a method and apparatus for determining a beamforming vector to provide a high performance scheme for reducing the complexity of beamforming operations.
  • a method for determining a beamforming vector including:
  • Nr represents the number of receiving antennas of the base station
  • Nt represents the number of transmitting antennas of the terminal
  • Correlation matrix among them Is a reduced order correlation matrix, and the dimension is the number of terminal antennas;
  • the beamforming vector is determined from the average channel information and the output eigenvector matrix U.
  • the correlation matrix The averaging process is performed, and the average processed correlation matrix satisfies:
  • N is the number of subcarriers in the physical resource block PRB.
  • the eigenvector method EBB or the singular value decomposition method SVD pair is adopted.
  • Do feature vector decomposition where The shaping to give the number of streams U get, where U is a front GET U of M columns, M being the number of streams excipient.
  • the beamforming vector is determined according to the average channel information and the output feature vector matrix U, including:
  • the method further comprises:
  • the beamforming vector is normalized according to the stream power allocation such that the shaping vector W is normalized to each column.
  • An apparatus for determining a beamforming vector is provided in an embodiment of the present application, including
  • a listening module configured to detect a channel matrix on the kth subcarrier according to the SRS
  • Nr represents the number of receiving antennas of the base station
  • Nt represents the number of transmitting antennas of the terminal
  • Correlation matrix module for finding correlation matrix among them Is a reduced order correlation matrix, and the dimension is the number of terminal antennas;
  • Eigenvector decomposition module for pairing Correlation matrix obtained by averaging Perform eigenvector decomposition to obtain correlation matrix eigenvectors;
  • An output matrix module configured to determine an output feature vector matrix U according to the number of streams of the shaping, wherein the number of columns of U is a stream number;
  • a beamforming vector module is configured to determine a beamforming vector from the average channel information and the output feature vector matrix U.
  • the correlation matrix module is further used for the correlation matrix
  • the averaging process is performed, and the average processed correlation matrix satisfies:
  • N is the number of subcarriers in the physical resource block PRB.
  • the feature vector decomposition module is further used to adopt an EBB or SVD pair Do feature vector decomposition, where The shaping to give the number of streams U get, where U is a front GET U of M columns, M being the number of streams excipient.
  • the beamforming vector module is further configured to: when determining the beamforming vector from the average channel information and the output feature vector matrix U:
  • the method further comprises:
  • a normalization module is used to normalize the beamforming vector according to the flow power allocation such that the shaping vector W is normalized to each column.
  • the embodiment of the present application further provides a base station, where the base station includes a processor, a memory, a transceiver, a bus, and a bus interface, wherein the processor, the memory, and the transceiver are connected by a bus, and the bus interface is in a bus and Providing an interface between the transceivers;
  • a transceiver for transmitting data under the control of a processor performing the following processes:
  • Nr represents the number of receiving antennas of the base station
  • Nt represents the number of transmitting antennas of the terminal
  • a processor for reading a program in the memory performing the following process:
  • Correlation matrix among them Is a reduced order correlation matrix, and the dimension is the number of terminal antennas;
  • the beamforming vector is determined from the average channel information and the output eigenvector matrix U.
  • the correlation matrix The averaging process is performed, and the average processed correlation matrix satisfies:
  • N is the number of subcarriers in the physical resource block PRB.
  • the eigenvector method EBB or the singular value decomposition method SVD pair is adopted.
  • Do feature vector decomposition where
  • the processor determines the wave according to the average channel information and the output feature vector matrix U in the following manner Beam type vector:
  • the processor is further configured to:
  • the beamforming vector is normalized according to the stream power allocation such that the shaping vector W is normalized to each column.
  • the deterministic beamforming scheme proposed in the embodiment of the present application decomposes the traditional high-dimensional eigenvector by the matrix theory, and is equivalent to the low-dimensional eigenvector decomposition, which reduces the complexity of the beamforming operation.
  • the communication device can shape the traditional large-grain beam and refine it into a small-grained beamforming, which can reduce the complexity and significantly improve the performance compared with the traditional method.
  • 1 is a schematic diagram showing relationship between antenna numbers and actual channel matrices formed in the embodiment of the present application;
  • FIG. 2 is a schematic flowchart of a method for implementing a method for determining a beamforming vector in an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of an apparatus for determining a beamforming vector in an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a base station in an embodiment of the present application.
  • Beamforming generally calculates the downlink beamforming vector of the current user based on the uplink channel information detected by the base station.
  • the beamforming algorithms commonly used in the industry are as follows:
  • the terminal transmits SRS (Sounding Reference Signals) to listen to the pilot signals in different antennas at different times. After receiving by the base station, the SRS signal is used for channel estimation, and the channels of the different antennas of the terminal to the base station are combined. Since the TDD-LTE uplink and downlink channels are reciprocal, the uplink channel combination is also equivalent to the downlink channel combination. Assuming base station 128 antenna, terminal 4 antenna, the channel combination is expressed as:
  • H 4 ⁇ 128 is a 4 ⁇ 128-dimensional matrix
  • h 1,k represents the channel from the first antenna of the terminal to the k-th antenna of the base station
  • h 2,k represents the second antenna of the terminal to the k-th antenna of the base station. The channel on the other, and so on.
  • the base station obtains the correlation matrix of the channel.
  • the beamforming vector is represented by W. Then, the shaping vector satisfies (H 4 ⁇ 128 * W) '* (H 4 ⁇ 128 * W) maximum.
  • W is the eigenvector of R. Therefore, it is sufficient to perform eigenvector decomposition on R in the implementation.
  • R k the correlation matrix
  • the PRB (physical resource block) covered by consecutive N subcarriers is called The granularity of beamforming.
  • EKB Eigenvalue Based Beamforming
  • SVD Single Value Decompostion
  • the base station needs to do the eigenvalue decomposition of the 128 ⁇ 128 large matrix. From the engineering point of view, it is difficult to implement itself. In fact, current equipment manufacturers have been conducting extensive research on this issue. The current practice is to implement the above traditional methods step by step.
  • FIG. 1 is a schematic diagram of relationship between antenna numbers and actual channel matrices formed by them. For details, refer to FIG. 1 and related related materials.
  • the base station antenna is the transmit antenna
  • the terminal antenna is the receive antenna
  • N H N V N P is the number of base station antennas
  • N R is the number of terminal antennas
  • the massive MIMO system is N H N V N P ⁇ N R .
  • Method 1 Calculate the horizontal direction feature vector u H and the vertical direction feature vector u V respectively , and finally combine the two into a 3D massive MIMO channel vector.
  • Step 1 Calculate the vertical direction feature vector within each PU.
  • Step 1.1 Calculate the vertical average transmission correlation matrix of the base station antenna to the terminal antenna in the same polarization direction of each column in the PU on all sampled subcarriers:
  • Step 1.2 Calculate the vertical dimension average transmission correlation matrix of all base station antenna columns in the PU:
  • Step 1.3 Perform eigenvalue decomposition on the vertical dimension average correlation correlation matrix R V in the PU to obtain a plurality of vertical dimensional feature vectors u V,1 , u V,2 ,..., where u V,1 is the main eigenvector, u V , 2 is the secondary feature vector, and so on.
  • the corresponding eigenvalues are ⁇ V,1 , ⁇ V,2 ,...
  • Step 2 Calculate the horizontal direction feature vector within each PU.
  • Step 2.1 Calculate the horizontal average transmission correlation matrix of each row of base station antennas to terminal antennas in the PU on all sampled subcarriers:
  • Step 2.2 Calculate the horizontal dimension average transmission correlation matrix of all base station antenna rows in the PU:
  • Step 2.3 Perform eigenvalue decomposition on the horizontal dimension average transmission correlation matrix R H in the PU to obtain a plurality of horizontal dimensional feature vectors u H,1 , u H,2 ,..., where u H,1 is the main eigenvector, u H , 2 is the secondary feature vector, and so on.
  • the corresponding feature vectors are ⁇ H,1 , ⁇ H,2 ,...
  • Step 3 Synthesize a 3D precoding matrix or channel vector.
  • Each feature vector in the horizontal direction and the vertical direction constitutes a 3D feature vector, that is, a precoding vector.
  • Rank L can be determined by a 3D feature vector corresponding to a maximum of L 3D feature values, such as a 3D precoding matrix of rank 4:
  • the corresponding 3D channel matrix is:
  • Method 2 Calculate the vertical direction feature vector u V , form an equivalent horizontal channel, calculate the eigenvector u H of the equivalent horizontal channel, and finally combine the two into a 3D massive MIMO channel vector.
  • Step 1 Calculate the vertical direction feature vector within each PU.
  • Step 1.1 Calculate the vertical average transmission correlation matrix of the base station antenna to the terminal antenna in the same polarization direction of each column in the PU on all sampled subcarriers:
  • Step 1.2 Calculate the vertical dimension precoding matrix within the PU.
  • All antenna columns of the base station use the same vertical dimension precoding vector.
  • Step 1.2.1.1 Calculate the vertical dimension average transmission correlation matrix of all antenna columns of the base station in the PU.
  • Step 1.2.1.2 Perform eigenvalue decomposition on the vertical dimension average correlation correlation matrix R V in the PU to obtain a vertical dimension main eigenvector u V,1 , that is, a precoding vector used by the vertical dimension column antennas.
  • Step 1.2.1.3 Form an equivalent horizontal dimension channel for each sampled subcarrier of the PU, subcarrier n.
  • Step 3 Synthesize the 3D channel vector.
  • the feature vectors in the horizontal direction and the vertical direction constitute a 3D feature vector, which is a precoding vector.
  • Rank L may be determined by a 3D feature vector corresponding to a maximum of L 3D feature values, such as a 3D precoding matrix matrix of rank 2:
  • the inventors obtained the results of Table 1 by comparing the throughput simulation performance of 128 antenna and MU user beamforming:
  • Simulation conditions 3D-UMa, AMC on, 10 USER, fixed 2 streams per user, unit Gbps, terminal 2 antenna
  • the beamforming vector is a solution that satisfies the maximum solution of W H *R HH *W, that is, the eigenvector of R HH .
  • the base station 128 antenna and the terminal 4 antenna will be described as an example for convenience.
  • R HH (U ⁇ D H ) H *U ⁇ D H
  • is a diagonal matrix
  • D is a right ⁇ matrix
  • the derived vector W is the first few columns of vectors in the right-hand matrix:
  • the algorithm using the above idea only needs a 4-dimensional SVD decomposition to find the shape vector.
  • an 8th-order feature is needed.
  • FIG. 2 is a schematic flowchart of a method for determining a beamforming vector, as shown in the figure, which may include:
  • Step 201 Listening to a channel matrix on the kth subcarrier according to the SRS Wherein, Nr represents the number of receiving antennas of the base station, and Nt represents the number of transmitting antennas of the terminal;
  • Step 202 Find a correlation matrix among them, Is a reduced order correlation matrix, and the dimension is the number of terminal antennas;
  • Step 203 pair Correlation matrix obtained by averaging Perform eigenvector decomposition to obtain correlation matrix eigenvectors;
  • Step 204 Determine, according to the number of streams to be shaped, an output feature vector matrix U, where the number of columns of U is a stream number;
  • Step 205 Determine a beamforming vector according to the average channel information and the output feature vector matrix U.
  • Correlation matrix The correlation matrix after averaging can be expressed as:
  • EBB or SVD pairs can be used.
  • Do feature vector decomposition where The shaping to give the number of streams U get, where U is a front GET U of M columns, M being the number of streams excipient.
  • a type factor can be given to each resource in the shaped granularity, and the shaping factor is averaged in a shaped granularity to obtain average channel information, so as to achieve the effect of suppressing noise,
  • the beamforming vector is determined according to the average channel information and the output feature vector matrix U, including:
  • the average channel information is:
  • it may further include:
  • the beamforming vector is normalized according to the stream power allocation such that the shaping vector W is normalized to each column.
  • the base station detects the channel matrix on the kth subcarrier according to the SRS Nr represents the number of receiving antennas of the base station 128 or 64, or other possible antenna numbers, Nt represents the number of transmitting antennas of the terminal, 2, 4, 8 and other possible antenna numbers.
  • the average processed correlation matrix can be expressed as:
  • EBB or SVD can be used for decomposition, and of course, it is not limited to other matrix algorithms.
  • the feature vector decomposition does not need to be completely decomposed, but is related to the number of streams of the shaping. The smaller the number of streams, the lower the computational complexity at the time of decomposition, and the final result is the U matrix.
  • N is the number of estimated channels within the committed granularity.
  • averaging operation for the resulting channel is the averaging operation for the resulting channel.
  • the obtained vector can be:
  • the upper right corner of H represents the conjugate transpose transformation.
  • the deterministic beamforming scheme proposed in the embodiment of the present invention decomposes the traditional high-dimensional eigenvector by the matrix theory, and is equivalent to the low-dimensional eigenvector decomposition, which reduces the complexity of the beamforming operation. Due to the reduction of complexity, the communication device can shape the traditional large-grain beam and refine it into a small-grained beamforming, which can reduce the complexity and significantly improve the performance compared with the traditional method.
  • the inventors obtained the results of the simulation results of the throughput simulation of the 128-antenna and MU user beamforming.
  • the proposed scheme in the embodiment of the present application has the performance of the most traditional algorithm.
  • the performance loss is also small. See Table 2 for details.
  • Table 2 Comparison of throughput performance of beamforming for 128 antennas and MU users
  • Simulation conditions 3D-UMa, AMC on, 10 USER, fixed 2 streams per user, unit Gbps, terminal 2 antenna
  • the simplified EBB column is the result obtained by adopting the solution proposed in the embodiment of the present application.
  • an apparatus for determining a beamforming vector is also provided in the embodiment of the present application. Since the principle of solving the problem is similar to the method for determining a beamforming vector, the implementation of the device can be referred to the method. The implementation, repetitions will not be repeated.
  • FIG. 3 is a schematic structural diagram of an apparatus for determining a beamforming vector, as shown in the figure, which may include:
  • the intercepting module 301 is configured to detect a channel matrix on the kth subcarrier according to the SRS Wherein, Nr represents the number of receiving antennas of the base station, and Nt represents the number of transmitting antennas of the terminal;
  • Correlation matrix module 302 for finding correlation matrix among them Is a reduced order correlation matrix, and the dimension is the number of terminal antennas;
  • Feature vector decomposition module 303 for Correlation matrix after averaging Perform eigenvector decomposition to obtain correlation matrix eigenvectors;
  • An output matrix module 304 configured to determine an output feature vector matrix U according to the number of streams of the shaping, wherein the number of columns of U is a stream number;
  • the beamforming vector module 305 is configured to determine a beamforming vector according to the average channel information and the output feature vector matrix U.
  • the correlation matrix module is further used for the correlation matrix
  • the averaging process is performed, and the average processed correlation matrix satisfies:
  • N is the number of subcarriers in the physical resource block PRB.
  • the eigenvector decomposition module is further used to adopt an EBB or SVD pair Do feature vector decomposition, where The shaping to give the number of streams U get, where U is a front GET U of M columns, M being the number of streams excipient.
  • the beamforming vector module is further configured to determine a beamforming vector based on the average channel information and the output feature vector matrix U:
  • it further includes:
  • a normalization module is used to normalize the beamforming vector according to the flow power allocation such that the shaping vector W is normalized to each column.
  • the base station includes a processor 400, a transceiver 410, and a memory 420, where:
  • the processor 400 is configured to read a program in the memory 420 and perform the following process:
  • Correlation matrix among them Is a reduced order correlation matrix, and the dimension is the number of terminal antennas;
  • the beamforming vector is determined from the average channel information and the output eigenvector matrix U.
  • the transceiver 410 is configured to send data under the control of the processor 400, and performs the following processes:
  • Listening to the channel matrix on the kth subcarrier according to SRS Nr represents the number of receiving antennas of the base station, and Nt represents the number of transmitting antennas of the terminal.
  • Correlation matrix The averaging process is performed, and the average processed correlation matrix satisfies:
  • N is the number of subcarriers in the physical resource block PRB.
  • the eigenvector method EBB or the singular value decomposition method SVD pair is adopted.
  • Do feature vector decomposition where The shaping to give the number of streams U get, where U is a front GET U of M columns, M being the number of streams excipient.
  • the beamforming vector is determined according to the average channel information and the output feature vector matrix U, including:
  • it further includes:
  • the beamforming vector is normalized according to the stream power allocation such that the shaping vector W is normalized to each column.
  • the bus architecture may include any number of interconnected buses and bridges, specifically by the processor 400.
  • the various circuits of the memory represented by one or more processors and memory 420 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 410 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 400 is responsible for managing the bus architecture and general processing, and the memory 420 can store data used by the processor 400 when performing operations.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请公开了一种确定波束赋型向量的方法及装置,包括:根据信道探测参考信号侦听到第k个子载波上信道矩阵Η^χ*·,其中,Nr表示基站接收天线数,M表示终端的发送天线数;求相关矩阵Λ^ζ^^χ*"1^"^)77,其中,Λ««是降阶的相关矩阵,维度是终端天线数;对"冊平均的相关矩阵做特征向量分解得到相关矩阵特征向量;根据赋型的流数,确定输出特征向量矩阵^7,其中,^的列数是流数;根据平均信道信息以及输出特征向量矩阵确定波束赋型向量。釆用本申请,通信设备可以极大降低波束赋型的复杂度,同时比现有方法性能有较大优势。

Description

一种确定波束赋型向量的方法及装置
本申请要求在2016年6月24日提交中国专利局、申请号为201610471909.4、发明名称为“一种确定波束赋型向量的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,特别涉及一种确定波束赋型向量的方法及装置。
背景技术
3GPP规范4G标准时,定义了两种双工方式:FDD(Frequency Division Duplex,频分双工)-LTE(Long Term Evolution,长期演进)和TDD(Time Division Duplex,时分双工)-LTE。其中TDD-LTE上下行链路采用相同的载波频点,上下行信道可认为具备互易性,这也为波束赋型理论在LTE中应用提供了可能。随着4.5G以及5G的行业发展,大规模天线Massive MIMO(Multiple Input Multiple Output,大规模多入多出)应用得到业界的广泛关注,已有相关文献已经证明,大阵列天线波束赋型宽度窄,能增加更多MU(MultipleUsers,多用户)复用的机会,提升小区吞吐量。
波束赋型,一般是根据基站侦听到的上行信道信息去计算当前用户的下行波束赋型向量。但现有技术的不足在于:尽管业界广泛采用垂直维度和水平维度分别进行波束赋型的方案,并且相比直接做128阶的特征向量分解,复杂度有明显降低,但是相比传统的波束赋型算法性能会降低。
发明内容
本申请提供了一种确定波束赋型向量的方法及装置,用以提供一种高性能的能降低波束赋型运算复杂度的方案。
本申请实施例中提供了一种确定波束赋型向量的方法,包括:
根据SRS侦听到第k个子载波上信道矩阵
Figure PCTCN2017080605-appb-000001
其中,Nr表示基站接收天线数,Nt表示终端的发送天线数;
求相关矩阵
Figure PCTCN2017080605-appb-000002
其中,
Figure PCTCN2017080605-appb-000003
是降阶的相关矩阵,维度是终端天线数;
Figure PCTCN2017080605-appb-000004
进行平均处理得到的相关矩阵
Figure PCTCN2017080605-appb-000005
做特征向量分解,得到相关矩阵特征向量;
根据赋型的流数,确定输出特征向量矩阵U,其中,U的列数是流数;
根据平均信道信息以及输出特征向量矩阵U确定波束赋型向量。
较佳地,对相关矩阵
Figure PCTCN2017080605-appb-000006
进行平均处理,平均处理后的相关矩阵满足:
Figure PCTCN2017080605-appb-000007
其中,
Figure PCTCN2017080605-appb-000008
为平均处理后的相关矩阵,N为物理资源块PRB内的子载波数。
较佳地,采用特征向量法EBB或者奇异值分解法SVD对
Figure PCTCN2017080605-appb-000009
做特征向量分解,其中
Figure PCTCN2017080605-appb-000010
根据赋型流数得到Uget,其中Uget是U的前M列,M为赋型流数。
较佳地,根据平均信道信息以及输出特征向量矩阵U确定波束赋型向量,包括:
将赋型粒度内的
Figure PCTCN2017080605-appb-000011
取平均得到平均信道信息
Figure PCTCN2017080605-appb-000012
根据平均信道信息
Figure PCTCN2017080605-appb-000013
以及输出特征向量矩阵U,确定波束赋型向量W为:
Figure PCTCN2017080605-appb-000014
其中Uget是U的前M列,M为赋型流数。
较佳地,进一步包括:
根据流功率分配对波束赋型向量归一化,以使赋型向量W每列归一。
本申请实施例中提供了一种确定波束赋型向量的装置,包括
侦听模块,用于根据SRS侦听到第k个子载波上信道矩阵
Figure PCTCN2017080605-appb-000015
其中,Nr表示基站接收天线数,Nt表示终端的发送天线数;
相关矩阵模块,用于求相关矩阵
Figure PCTCN2017080605-appb-000016
其中,
Figure PCTCN2017080605-appb-000017
是降阶的相关矩阵,维度是终端天线数;
特征向量分解模块,用于对
Figure PCTCN2017080605-appb-000018
进行平均处理得到的相关矩阵
Figure PCTCN2017080605-appb-000019
做特征向量分解,得到相关矩阵特征向量;
输出矩阵模块,用于根据赋型的流数,确定输出特征向量矩阵U,其中,U的列数是流数;
波束赋型向量模块,用于根据平均信道信息以及输出特征向量矩阵U确定波束赋型向量。
较佳地,相关矩阵模块进一步用于对相关矩阵
Figure PCTCN2017080605-appb-000020
进行平均处理,平均处理后的相关矩阵满足:
Figure PCTCN2017080605-appb-000021
其中,
Figure PCTCN2017080605-appb-000022
为平均处理后的相关矩阵,N为物理资源块PRB内的子载波数。
较佳地,特征向量分解模块进一步用于采用EBB或者SVD对
Figure PCTCN2017080605-appb-000023
做特征向量分解,其中
Figure PCTCN2017080605-appb-000024
根据赋型流数得到Uget,其中Uget是U的前M列,M为赋型流数。
较佳地,波束赋型向量模块进一步用于在根据平均信道信息以及输出特征向量矩阵U确定波束赋型向量时:
将赋型粒度内的
Figure PCTCN2017080605-appb-000025
取平均得到平均信道信息
Figure PCTCN2017080605-appb-000026
根据平均信道信息
Figure PCTCN2017080605-appb-000027
以及输出特征向量矩阵U,确定波束赋型向量W为:
Figure PCTCN2017080605-appb-000028
其中Uget是U的前M列,M为赋型流数。
较佳地,进一步包括:
归一化模块,用于根据流功率分配对波束赋型向量归一化,以使赋型向量W每列归一。
本申请实施例还提供一种基站,该基站包括处理器、存储器、收发机、总线及总线接口,其中,所述处理器、所述存储器和所述收发机通过总线连接,总线接口在总线和收发机之间提供接口;
收发机,用于在处理器的控制下发送数据,执行下列过程:
根据SRS侦听到第k个子载波上信道矩阵
Figure PCTCN2017080605-appb-000029
其中,Nr表示基站接收天线数,Nt表示终端的发送天线数;
处理器,用于读取存储器中的程序,执行下列过程:
求相关矩阵
Figure PCTCN2017080605-appb-000030
其中,
Figure PCTCN2017080605-appb-000031
是降阶的相关矩阵,维度是终端天线数;
Figure PCTCN2017080605-appb-000032
进行平均处理得到的相关矩阵
Figure PCTCN2017080605-appb-000033
做特征向量分解,得到相关矩阵特征向量;
根据赋型的流数,确定输出特征向量矩阵U,其中,U的列数是流数;
根据平均信道信息以及输出特征向量矩阵U确定波束赋型向量。
较佳的,对相关矩阵
Figure PCTCN2017080605-appb-000034
进行平均处理,平均处理后的相关矩阵满足:
Figure PCTCN2017080605-appb-000035
其中,
Figure PCTCN2017080605-appb-000036
为平均处理后的相关矩阵,N为物理资源块PRB内的子载波数。
较佳的,采用特征向量法EBB或者奇异值分解法SVD对
Figure PCTCN2017080605-appb-000037
做特征向量分解,其中
Figure PCTCN2017080605-appb-000038
根据赋型流数得到Uget,其中Uget是U的前M列,M为赋型流数。
较佳的,所述处理器采用如下方式根据平均信道信息以及输出特征向量矩阵U确定波 束赋型向量:
将赋型粒度内的
Figure PCTCN2017080605-appb-000039
取平均得到平均信道信息
Figure PCTCN2017080605-appb-000040
根据平均信道信息
Figure PCTCN2017080605-appb-000041
以及输出特征向量矩阵U,确定波束赋型向量W为:
Figure PCTCN2017080605-appb-000042
其中Uget是U的前M列,M为赋型流数。
较佳的,所述处理器还用于:
根据流功率分配对波束赋型向量归一化,以使赋型向量W每列归一。
本申请有益效果如下:
本申请实施例中提出的确定波束赋型方案,通过矩阵理论,把传统高维度的特征向量分解,等效为低维度的特征向量分解,降低了波束赋型运算的复杂度。
由于复杂度的减少,通信设备可以把传统大粒度波束赋型,细化为小粒度的波束赋型,在减少复杂度的同时,还能相比传统方法明显提升性能。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例中天线序号以及它们构成的实际信道矩阵的关系示意图;
图2为本申请实施例中确定波束赋型向量的方法实施流程示意图;
图3为本申请实施例中确定波束赋型向量的装置结构示意图;
图4为本申请实施例中基站结构示意图。
具体实施方式
发明人在发明过程中注意到:
波束赋型一般是根据基站侦听到的上行信道信息去计算当前用户的下行波束赋型向量。业界常用的波束赋型算法如下:
1)终端在不同时刻,轮流在不同天线上发送SRS(Sounding Reference signals,信道探测参考信号)侦听导频信号。基站接收后,利用SRS信号进行信道估计,并把终端不同天线到达基站的信道组合。由于TDD-LTE上下行信道互易,因此该上行信道组合也等价于下行信道组合。假设基站128天线,终端4天线,则信道组合表示为:
Figure PCTCN2017080605-appb-000043
其中H4×128是一个4×128维的矩阵,h1,k表示终端第一根天线到基站第k根天线上的信道;h2,k表示终端第二根天线到基站第k根天线上的信道,以此类推。
2)基站求信道的相关矩阵。
第k个子载波上组合信道
Figure PCTCN2017080605-appb-000044
相关矩阵
Figure PCTCN2017080605-appb-000045
其中
Figure PCTCN2017080605-appb-000046
表示是
Figure PCTCN2017080605-appb-000047
的共轭转置矩阵。
假设波束赋型向量用W表示。则赋型矢量满足(H4×128*W)'*(H4×128*W)最大。
(H4×128*W)'*(H4×128*W)=W'*H'4×128*H4×128*W=W'*R*W。
根据矩阵Rayleigh熵理论,W即为R的特征向量。因此在实现中对R做特征向量分解即可。实现中,我们会假设连续N个子载波上的信道分布平坦,会对N个子载波上的相关矩阵Rk求平均,其中连续N个子载波覆盖的PRB(physical resource block,物理资源块),称为波束赋型的粒度。
Figure PCTCN2017080605-appb-000048
3)对相关矩阵做EBB(Eigenvalue Based Beamforming,特征向量法)或者SVD(Singular Value Decompostion,奇异值分解法)特征向量分解得到
Figure PCTCN2017080605-appb-000049
其中eig表示EBB分解,W表示所求的赋型粒度上共用的波束赋型向量。
从上面的公式推导看,基站需要做128×128这个大矩阵的特征值分解,从工程上讲,本身是很难是实现的。事实上,当前各设备厂商一直针对这个问题进行广泛研究,目前已有的做法是对上面的传统做法进行分步实现。
假设二维天线面阵垂直地面放置时,可分为水平方向H和垂直方向V。天线阵元的序号按照相同极化方向优先按垂直方向的方式排列,水平方向共有NH列相同极化方向的天线阵列,垂直方向共有NV根相同极化方向的天线阵元,极化方向数为NP=1,2。图1为天线序号以及它们构成的实际信道矩阵的关系示意图,具体关系请参见图1及相关现有资料。
对于下行MIMO信道,基站天线为发射天线,终端天线为接收天线,NHNVNP为基站天线数,NR为终端天线数,massive MIMO系统NHNVNP×NR。设
Figure PCTCN2017080605-appb-000050
为基站通过上行SRS信道估计得到的子载波n的下行MIMO信道矩阵,
Figure PCTCN2017080605-appb-000051
为第c列基站天线阵元到终端所有天线在子载波n上的信道矩阵,
Figure PCTCN2017080605-appb-000052
为第r行基站天线阵元到终端所有天线在子载波n上的信道矩阵。Sn为该PU(PerUser,每用户)上的抽样子载波集合,Sc={0,1,…,NHNP-1}为基站天线列的集合,Sr={0,1,…,NV}为基站天线行的集合,N(S) 表示集合S中元素的个数。
方法一:分别计算水平方向特征向量uH和垂直方向特征向量uV,最后将二者合成3D的massive MIMO信道向量。
步骤1:计算每个PU内的垂直方向特征向量。
步骤1.1:计算PU内每列同极化方向的基站天线到终端天线在所有抽样子载波上的垂直维平均发送相关矩阵:
Figure PCTCN2017080605-appb-000053
步骤1.2:计算PU内所有基站天线列的垂直维平均发送相关矩阵:
Figure PCTCN2017080605-appb-000054
步骤1.3:对PU内的垂直维平均发送相关矩阵RV进行特征值分解得到多个垂直维特征向量uV,1,uV,2,…,其中uV,1为主特征向量,uV,2为次特征向量,依次类推。对应的特征值为λV,1V,2,…。
步骤2:计算每个PU内的水平方向特征向量。
步骤2.1:计算PU内每行基站天线到终端天线在所有抽样子载波上的水平维平均发送相关矩阵:
Figure PCTCN2017080605-appb-000055
步骤2.2:计算PU内所有基站天线行的水平维平均发送相关矩阵:
Figure PCTCN2017080605-appb-000056
步骤2.3:对PU内的水平维平均发送相关矩阵RH进行特征值分解得到多个水平维特征向量uH,1,uH,2,…,其中uH,1为主特征向量,uH,2为次特征向量,依次类推。对应的特征向量为λH,1H,2,…。
步骤3:合成3D预编码矩阵或信道向量。
水平方向和垂直方向的各特征向量构成3D特征向量即为预编码向量。Rank L可由最大L个3D特征值对应的3D特征向量确定,例如rank 4的3D预编码矩阵:
Figure PCTCN2017080605-appb-000057
相应的3D信道矩阵为:
Figure PCTCN2017080605-appb-000058
方法二:计算垂直方向特征向量uV,形成等效水平信道,再计算等效水平信道的特征向量uH,最后将二者合成3D的massive MIMO信道向量。
步骤1:计算每个PU内的垂直方向特征向量。
步骤1.1:计算PU内每列同极化方向的基站天线到终端天线在所有抽样子载波上的垂直维平均发送相关矩阵:
Figure PCTCN2017080605-appb-000059
步骤1.2:计算PU内的垂直维预编码矩阵。
基站所有天线列采用相同垂直维预编码向量。
步骤1.2.1.1:计算PU内基站所有天线列的垂直维平均发送相关矩阵。
Figure PCTCN2017080605-appb-000060
步骤1.2.1.2:对PU内的垂直维平均发送相关矩阵RV进行特征值分解得到垂直维主特征向量uV,1,即垂直维各列天线使用的预编码向量。
步骤1.2.1.3:形成PU每个抽样子载波的等效水平维信道,子载波n。
Figure PCTCN2017080605-appb-000061
步骤3:合成3D信道向量。
水平方向和垂直方向的特征向量构成3D特征向量即为预编码向量。Rank L可由最大L个3D特征值对应的3D特征向量确定,例如rank 2的3D预编码矩阵矩阵:
Figure PCTCN2017080605-appb-000062
如果每个PRB上都做这样的赋型计算,则复杂度依然很大,因此工程上一般用4个PRB的粒度做一次赋型计算。由于粒度变粗,赋型的精确度下降,下行性能也会降低。
发明人通过对128天线、MU用户波束赋型的吞吐量仿真性能对比得到如表1的结果:
表1:128天线,MU用户波束赋型的吞吐量性能对比
仿真条件:3D-UMa,AMC on,10个USER,每个用户固定2流,单位Gbps,终端2天线
Figure PCTCN2017080605-appb-000063
由此可见,尽管业界广泛采用这种垂直维度和水平维度分别波束赋型的方案,并且相比直接做128阶的特征向量分解,复杂度有明显降低,但是正是因为垂直维度和水平维度没有联合起来考虑,相比传统的波束赋型算法性能会降低。
基于这种改进方案依然存在运算量复杂度大,性能下降等问题,本申请实施例中将提出一种更简单的波束赋型算法,不仅低于现有的优化方案复杂度,并且与最传统的算法相 比,性能损失也很小。
在提供具体的技术方案前,先对本申请实施例中提出的技术方案进行解释,以使本领域技术人员更容易理解本方案。
发明人注意到,波束赋型向量就是求满足WH*RHH*W最大的解,即RHH的特征向量。下面为了方便以基站128天线,终端4天线为例进行说明。
先对H4×128做SVD分解,H4×128=UΛDH,则
RHH=(UΛDH)H*UΛDH
   =D*ΛH*UH*UΛDH
   =D*Λ2*DH,其中U为左酉矩阵,
Λ为对角矩阵,D为右酉矩阵(酉矩阵特性:酉矩阵与自己的共轭转置矩阵相乘为单位阵)。
事实上,求的赋型向量W就是右酉矩阵里的前几列向量:
WH*RHH*W=DH*RHH*D=Λ2,其中,Λ2就是特征向量对应的特征值,物理意义表示对应的数据流上的功率。因此波束赋型关心的是如何求出D。
现在用另外一种方式求矩阵D。
1)首先定义新的相关矩阵
Figure PCTCN2017080605-appb-000064
这是一个4维度的矩阵。
Figure PCTCN2017080605-appb-000065
做4维的SVD分解:
Figure PCTCN2017080605-appb-000066
2)令
Figure PCTCN2017080605-appb-000067
与4维的酉矩阵U相乘:
Figure PCTCN2017080605-appb-000068
由于Λ为一实数对角矩阵(副对角元素为0),赋型向量乘上实数不改变空间特性,因此D*Λ就是所要的赋型向量W。
综上,采用上述思路的算法,只需求一次4维度的SVD分解就可以求出赋型向量,相比传统的128阶的特性向量分解,以及目前比较流行的简化算法,需要做一次8阶特征向量分解,再加一次8阶或者16阶的特性向量分解,实现复杂度都明显降低。
下面结合附图对本申请的具体实施方式进行说明。
图2为确定波束赋型向量的方法实施流程示意图,如图所示,可以包括:
步骤201、根据SRS侦听到第k个子载波上信道矩阵
Figure PCTCN2017080605-appb-000069
其中,Nr表示基站接收天线数,Nt表示终端的发送天线数;
步骤202、求相关矩阵
Figure PCTCN2017080605-appb-000070
其中,
Figure PCTCN2017080605-appb-000071
是降阶的相关矩阵,维度是终端天线数;
步骤203、对
Figure PCTCN2017080605-appb-000072
进行平均处理得到的相关矩阵
Figure PCTCN2017080605-appb-000073
做特征向量分解,得到相关矩阵 特征向量;
步骤204、根据赋型的流数,确定输出特征向量矩阵U,其中,U的列数是流数;
步骤205、根据平均信道信息以及输出特征向量矩阵U确定波束赋型向量。
实施中,对相关矩阵
Figure PCTCN2017080605-appb-000074
进行平均处理后的相关矩阵可表示为:
Figure PCTCN2017080605-appb-000075
实施中,可采用EBB或者SVD对
Figure PCTCN2017080605-appb-000076
做特征向量分解,其中
Figure PCTCN2017080605-appb-000077
根据赋型流数得到Uget,其中Uget是U的前M列,M为赋型流数。
实施中,可对每一个赋形颗粒度内的资源给出一个赋型因子,并在一个赋形颗粒度内对该赋型因子进行平均处理得到平均信道信息,以实现抑制噪声的作用,一种可能的实施方式中根据平均信道信息以及输出特征向量矩阵U,确定波束赋型向量,包括:
将赋型粒度内的
Figure PCTCN2017080605-appb-000078
取平均得到平均信道信息,其中,假设赋型粒度内服从慢衰落,则平均信道信息为:
Figure PCTCN2017080605-appb-000079
根据平均信道信息
Figure PCTCN2017080605-appb-000080
以及输出特征向量矩阵U,可确定波束赋型向量W为:
Figure PCTCN2017080605-appb-000081
可以理解的是,上述确定平均信道信息的过程并不是唯一的确定方式,也可以在赋型粒度内取其中一个
Figure PCTCN2017080605-appb-000082
作为平均信道信息。
实施中,还可以进一步包括:
根据流功率分配对波束赋型向量归一化,以使赋型向量W每列归一。
下面对具体的实施进行进一步说明。
1)基站根据SRS侦听到第k个子载波上信道矩阵
Figure PCTCN2017080605-appb-000083
其中Nr表示基站接收天线数128根或者64根,或者其他可能天线数,Nt表示终端的发送天线数,2根,4根,8根等其他可能天线数。
2)求相关矩阵:
Figure PCTCN2017080605-appb-000084
其中,
Figure PCTCN2017080605-appb-000085
就是降阶的相关矩阵,维度是终端天线数。假设赋型粒度内的信道服从慢衰落,则平均处理后的相关矩阵可表示为:
Figure PCTCN2017080605-appb-000086
3)对
Figure PCTCN2017080605-appb-000087
做特征向量分解得到相关矩阵特征向量,分解时可以采用EBB或者SVD, 当然也不限于其他矩阵算法。
4)根据赋型的流数,确定特征向量分解的计算量以及输出特征向量矩阵U。其中U的列数就是流数,例如赋型流数为2,则Uget=U(:,[1:2])。
具体实施中,特征向量分解不需要完全分解,而是与赋型的流数有关。流数越少,分解时计算复杂度就低,最终求出来的就是U矩阵。
5)计算波束赋型向量,由于一个赋型粒度内确定一组赋型向量,因此,首先把赋型粒度内的
Figure PCTCN2017080605-appb-000088
取平均,假设赋型粒度内服从慢衰落:
Figure PCTCN2017080605-appb-000089
其中,N为赋型粒度内估计信道的个数。这里是对得到的信道取平均操作。
则所求赋型向量可为:
Figure PCTCN2017080605-appb-000090
其中,右上角的H表示的是共轭转置变换。
6)最后还可以进一步的对W根据流功率分配归一化。
由上述可见,本申请实施例中提出的确定波束赋型方案,通过矩阵理论,把传统高维度的特征向量分解,等效为低维度的特征向量分解,降低了波束赋型运算的复杂度。由于复杂度的减少,通信设备可以把传统大粒度波束赋型,细化为小粒度的波束赋型,在减少复杂度的同时,还能相比传统方法明显提升性能。
进一步的,发明人通过对128天线、MU用户波束赋型的吞吐量仿真性能对比得到如表2的结果,通过仿真对比,可以看出本申请实施例中提出的方案与最传统的算法性能相比,性能损失也很小。具体请见表2
表2:128天线,MU用户波束赋型的吞吐量性能对比
仿真条件:3D-UMa,AMC on,10个USER,每个用户固定2流,单位Gbps,终端2天线
Figure PCTCN2017080605-appb-000091
Figure PCTCN2017080605-appb-000092
其中,简化EBB一栏即为采用本申请实施例中提出的方案得到的结果。
基于同一发明构思,本申请实施例中还提供了一种确定波束赋型向量的装置,由于该装置解决问题的原理与一种确定波束赋型向量的方法相似,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
图3为确定波束赋型向量的装置结构示意图,如图所示,可以包括:
侦听模块301,用于根据SRS侦听到第k个子载波上信道矩阵
Figure PCTCN2017080605-appb-000093
其中,Nr表示基站接收天线数,Nt表示终端的发送天线数;
相关矩阵模块302,用于求相关矩阵
Figure PCTCN2017080605-appb-000094
其中,
Figure PCTCN2017080605-appb-000095
是降阶的相关矩阵,维度是终端天线数;
特征向量分解模块303,用于对
Figure PCTCN2017080605-appb-000096
进行平均处理后的相关矩阵
Figure PCTCN2017080605-appb-000097
做特征向量分解得到相关矩阵特征向量;
输出矩阵模块304,用于根据赋型的流数,确定输出特征向量矩阵U,其中,U的列数是流数;
波束赋型向量模块305,用于根据平均信道信息以及输出特征向量矩阵U确定波束赋型向量。
实施中,相关矩阵模块进一步用于对相关矩阵
Figure PCTCN2017080605-appb-000098
进行平均处理,平均处理后的相关矩阵满足:
Figure PCTCN2017080605-appb-000099
其中,
Figure PCTCN2017080605-appb-000100
为平均处理后的相关矩阵,N为物理资源块PRB内的子载波数。
实施中,特征向量分解模块进一步用于采用EBB或者SVD对
Figure PCTCN2017080605-appb-000101
做特征向量分解,其中
Figure PCTCN2017080605-appb-000102
根据赋型流数得到Uget,其中Uget是U的前M列,M为赋型流数。
实施中,波束赋型向量模块进一步用于在根据平均信道信息以及输出特征向量矩阵U确定波束赋型向量时:
将赋型粒度内的
Figure PCTCN2017080605-appb-000103
取平均得到平均信道信息
Figure PCTCN2017080605-appb-000104
根据平均信道信息
Figure PCTCN2017080605-appb-000105
以及输出特征向量矩阵U,确定波束赋型向量W为:
Figure PCTCN2017080605-appb-000106
其中Uget是U的前M列,M为赋型流数。
实施中,进一步包括:
归一化模块,用于根据流功率分配对波束赋型向量归一化,以使赋型向量W每列归一。
为了描述的方便,以上所述装置的各部分以功能分为各种模块或单元分别描述。当然,在实施本申请时可以把各模块或单元的功能在同一个或多个软件或硬件中实现。
在实施本申请实施例提供的技术方案时,可以按如下方式实施。
图4为基站结构示意图,如图所示,基站中包括处理器400、收发机410和存储器420,其中:
处理器400,用于读取存储器420中的程序,执行下列过程:
求相关矩阵
Figure PCTCN2017080605-appb-000107
其中,
Figure PCTCN2017080605-appb-000108
是降阶的相关矩阵,维度是终端天线数;
Figure PCTCN2017080605-appb-000109
进行平均处理后得到的相关矩阵
Figure PCTCN2017080605-appb-000110
做特征向量分解得到相关矩阵特征向量;
根据赋型的流数,确定输出特征向量矩阵U,其中,U的列数是流数;
根据平均信道信息以及输出特征向量矩阵U确定波束赋型向量。
收发机410,用于在处理器400的控制下发送数据,执行下列过程:
根据SRS侦听到第k个子载波上信道矩阵
Figure PCTCN2017080605-appb-000111
其中,Nr表示基站接收天线数,Nt表示终端的发送天线数。
实施中,对相关矩阵
Figure PCTCN2017080605-appb-000112
进行平均处理,平均处理后的相关矩阵满足:
Figure PCTCN2017080605-appb-000113
其中,
Figure PCTCN2017080605-appb-000114
为平均处理后的相关矩阵,N为物理资源块PRB内的子载波数。
实施中,采用特征向量法EBB或者奇异值分解法SVD对
Figure PCTCN2017080605-appb-000115
做特征向量分解,其中
Figure PCTCN2017080605-appb-000116
根据赋型流数得到Uget,其中Uget是U的前M列,M为赋型流数。
实施中,根据平均信道信息以及输出特征向量矩阵U确定波束赋型向量,包括:
将赋型粒度内的
Figure PCTCN2017080605-appb-000117
取平均得到平均信道信息
Figure PCTCN2017080605-appb-000118
根据平均信道信息
Figure PCTCN2017080605-appb-000119
以及输出特征向量矩阵U,确定波束赋型向量W为:
Figure PCTCN2017080605-appb-000120
实施中,进一步包括:
根据流功率分配对波束赋型向量归一化,以使赋型向量W每列归一。
其中,在图4中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器400 代表的一个或多个处理器和存储器420代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机410可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器400负责管理总线架构和通常的处理,存储器420可以存储处理器400在执行操作时所使用的数据。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (15)

  1. 一种确定波束赋型向量的方法,其特征在于,包括:
    根据信道探测参考信号SRS侦听到第k个子载波上信道矩阵
    Figure PCTCN2017080605-appb-100001
    其中,Nr表示基站接收天线数,Nt表示终端的发送天线数;
    求相关矩阵
    Figure PCTCN2017080605-appb-100002
    其中,
    Figure PCTCN2017080605-appb-100003
    是降阶的相关矩阵,维度是终端天线数;
    Figure PCTCN2017080605-appb-100004
    进行平均处理得到的相关矩阵
    Figure PCTCN2017080605-appb-100005
    做特征向量分解,得到相关矩阵特征向量;
    根据赋型的流数,确定输出特征向量矩阵U,其中,U的列数是流数;
    根据平均信道信息以及输出特征向量矩阵U确定波束赋型向量。
  2. 如权利要求1所述的方法,其特征在于,对相关矩阵
    Figure PCTCN2017080605-appb-100006
    进行平均处理,平均处理后的相关矩阵满足:
    Figure PCTCN2017080605-appb-100007
    其中,
    Figure PCTCN2017080605-appb-100008
    为平均处理后的相关矩阵,N为物理资源块PRB内的子载波数。
  3. 如权利要求1所述的方法,其特征在于,采用特征向量法EBB或者奇异值分解法SVD对
    Figure PCTCN2017080605-appb-100009
    做特征向量分解,其中
    Figure PCTCN2017080605-appb-100010
    根据赋型流数得到Uget,其中Uget是U的前M列,M为赋型流数。
  4. 如权利要求1所述的方法,其特征在于,根据平均信道信息以及输出特征向量矩阵U确定波束赋型向量,包括:
    将赋型粒度内的
    Figure PCTCN2017080605-appb-100011
    取平均得到平均信道信息
    Figure PCTCN2017080605-appb-100012
    根据平均信道信息
    Figure PCTCN2017080605-appb-100013
    以及输出特征向量矩阵U,确定波束赋型向量W为:
    Figure PCTCN2017080605-appb-100014
    其中Uget是U的前M列,M为赋型流数。
  5. 如权利要求1至4任一所述的方法,其特征在于,进一步包括:
    根据流功率分配对波束赋型向量归一化,以使赋型向量W每列归一。
  6. 一种确定波束赋型向量的装置,其特征在于,包括:
    侦听模块,用于根据SRS侦听到第k个子载波上信道矩阵
    Figure PCTCN2017080605-appb-100015
    其中,Nr表示基站接收天线数,Nt表示终端的发送天线数;
    相关矩阵模块,用于求相关矩阵
    Figure PCTCN2017080605-appb-100016
    其中,
    Figure PCTCN2017080605-appb-100017
    是降阶的相关矩阵,维度是终端天线数;
    特征向量分解模块,用于对
    Figure PCTCN2017080605-appb-100018
    进行平均处理得到的相关矩阵
    Figure PCTCN2017080605-appb-100019
    做特征向量分解得 到相关矩阵特征向量;
    输出矩阵模块,用于根据赋型的流数,确定输出特征向量矩阵U,其中,U的列数是流数;
    波束赋型向量模块,用于根据平均信道信息以及输出特征向量矩阵U确定波束赋型向量。
  7. 如权利要求6所述的装置,其特征在于,相关矩阵模块进一步用于对相关矩阵
    Figure PCTCN2017080605-appb-100020
    进行平均处理,平均处理后的相关矩阵满足:
    Figure PCTCN2017080605-appb-100021
    其中,
    Figure PCTCN2017080605-appb-100022
    为平均处理后的相关矩阵,N为物理资源块PRB内的子载波数。
  8. 如权利要求6所述的装置,其特征在于,特征向量分解模块进一步用于采用特征向量法EBB或者奇异值分解法SVD对
    Figure PCTCN2017080605-appb-100023
    做特征向量分解,其中
    Figure PCTCN2017080605-appb-100024
    根据赋型流数得到Uget,其中Uget是U的前M列,M为赋型流数。
  9. 如权利要求6所述的装置,其特征在于,波束赋型向量模块用于采用如下方式根据平均信道信息以及输出特征向量矩阵U确定波束赋型向量:
    将赋型粒度内的
    Figure PCTCN2017080605-appb-100025
    取平均得到平均信道信息
    Figure PCTCN2017080605-appb-100026
    根据平均信道信息
    Figure PCTCN2017080605-appb-100027
    以及输出特征向量矩阵U,确定波束赋型向量W为:
    Figure PCTCN2017080605-appb-100028
    其中Uget是U的前M列,M为赋型流数。
  10. 如权利要求6至9任一所述的装置,其特征在于,进一步包括:
    归一化模块,用于根据流功率分配对波束赋型向量归一化,以使赋型向量W每列归一。
  11. 一种基站,其特征在于,包括处理器、存储器、收发机、总线及总线接口,其中,所述处理器、所述存储器和所述收发机通过总线连接,总线接口在总线和收发机之间提供接口;
    收发机,用于在处理器的控制下发送数据,执行下列过程:
    根据信道探测参考信号SRS侦听到第k个子载波上信道矩阵
    Figure PCTCN2017080605-appb-100029
    其中,Nr表示基站接收天线数,Nt表示终端的发送天线数;
    处理器,用于读取存储器中的程序,执行下列过程:
    求相关矩阵
    Figure PCTCN2017080605-appb-100030
    其中,
    Figure PCTCN2017080605-appb-100031
    是降阶的相关矩阵,维度是终端天线数;
    Figure PCTCN2017080605-appb-100032
    进行平均处理得到的相关矩阵
    Figure PCTCN2017080605-appb-100033
    做特征向量分解,得到相关矩阵特征向量;
    根据赋型的流数,确定输出特征向量矩阵U,其中,U的列数是流数;
    根据平均信道信息以及输出特征向量矩阵U确定波束赋型向量。
  12. 如权利要求11所述的基站,其特征在于,对相关矩阵
    Figure PCTCN2017080605-appb-100034
    进行平均处理,平均处理后的相关矩阵满足:
    Figure PCTCN2017080605-appb-100035
    其中,
    Figure PCTCN2017080605-appb-100036
    为平均处理后的相关矩阵,N为物理资源块PRB内的子载波数。
  13. 如权利要求11所述的基站,其特征在于,所述处理器进一步用于采用特征向量法EBB或者奇异值分解法SVD对
    Figure PCTCN2017080605-appb-100037
    做特征向量分解,其中
    Figure PCTCN2017080605-appb-100038
    根据赋型流数得到Uget,其中Uget是U的前M列,M为赋型流数。
  14. 如权利要求11所述的基站,其特征在于,所述处理器采用如下方式根据平均信道信息以及输出特征向量矩阵U确定波束赋型向量:
    将赋型粒度内的
    Figure PCTCN2017080605-appb-100039
    取平均得到平均信道信息
    Figure PCTCN2017080605-appb-100040
    根据平均信道信息
    Figure PCTCN2017080605-appb-100041
    以及输出特征向量矩阵U,确定波束赋型向量W为:
    Figure PCTCN2017080605-appb-100042
    其中Uget是U的前M列,M为赋型流数。
  15. 如权利要求11至14任一所述的基站,其特征在于,所述处理器还用于:
    根据流功率分配对波束赋型向量归一化,以使赋型向量W每列归一。
PCT/CN2017/080605 2016-06-24 2017-04-14 一种确定波束赋型向量的方法及装置 WO2017219739A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610471909.4 2016-06-24
CN201610471909.4A CN107547117A (zh) 2016-06-24 2016-06-24 一种确定波束赋型向量的方法及装置

Publications (1)

Publication Number Publication Date
WO2017219739A1 true WO2017219739A1 (zh) 2017-12-28

Family

ID=60784206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080605 WO2017219739A1 (zh) 2016-06-24 2017-04-14 一种确定波束赋型向量的方法及装置

Country Status (2)

Country Link
CN (1) CN107547117A (zh)
WO (1) WO2017219739A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110166092A (zh) * 2018-02-14 2019-08-23 上海华为技术有限公司 数据端口到天线的映射向量的生成方法及装置
WO2022222074A1 (en) * 2021-04-21 2022-10-27 Nokia Shanghai Bell Co., Ltd. Beamforming solution for fdd mimo communication
CN115987346A (zh) * 2022-12-15 2023-04-18 华工未来通信(江苏)有限公司 一种智能反射面被动波束赋型方法、系统及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111294104B (zh) * 2020-02-27 2022-10-21 杭州电子科技大学 一种基于特征值分解的波束赋形优化方法
EP4367800A1 (en) * 2021-07-09 2024-05-15 Telefonaktiebolaget LM Ericsson (publ) Port selection with low complexity

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800582A (zh) * 2009-02-09 2010-08-11 中兴通讯股份有限公司 一种多用户波束成形方法及装置
CN102404028A (zh) * 2010-09-07 2012-04-04 普天信息技术研究院有限公司 一种波束赋形方法
CN103281110A (zh) * 2013-04-26 2013-09-04 大唐移动通信设备有限公司 波束赋形方法和设备
CN103457647A (zh) * 2012-06-04 2013-12-18 普天信息技术研究院有限公司 一种双流波束赋形方法及装置
CN105207708A (zh) * 2015-09-06 2015-12-30 北京北方烽火科技有限公司 一种波束赋形权向量的生成方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104980206B (zh) * 2014-04-11 2018-06-15 普天信息技术有限公司 一种波束赋形方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800582A (zh) * 2009-02-09 2010-08-11 中兴通讯股份有限公司 一种多用户波束成形方法及装置
CN102404028A (zh) * 2010-09-07 2012-04-04 普天信息技术研究院有限公司 一种波束赋形方法
CN103457647A (zh) * 2012-06-04 2013-12-18 普天信息技术研究院有限公司 一种双流波束赋形方法及装置
CN103281110A (zh) * 2013-04-26 2013-09-04 大唐移动通信设备有限公司 波束赋形方法和设备
CN105207708A (zh) * 2015-09-06 2015-12-30 北京北方烽火科技有限公司 一种波束赋形权向量的生成方法及装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110166092A (zh) * 2018-02-14 2019-08-23 上海华为技术有限公司 数据端口到天线的映射向量的生成方法及装置
CN110166092B (zh) * 2018-02-14 2022-10-04 上海华为技术有限公司 数据端口到天线的映射向量的生成方法及装置
WO2022222074A1 (en) * 2021-04-21 2022-10-27 Nokia Shanghai Bell Co., Ltd. Beamforming solution for fdd mimo communication
CN115987346A (zh) * 2022-12-15 2023-04-18 华工未来通信(江苏)有限公司 一种智能反射面被动波束赋型方法、系统及存储介质
CN115987346B (zh) * 2022-12-15 2024-02-02 华工未来通信(江苏)有限公司 一种智能反射面被动波束赋型方法、系统及存储介质

Also Published As

Publication number Publication date
CN107547117A (zh) 2018-01-05

Similar Documents

Publication Publication Date Title
WO2017219739A1 (zh) 一种确定波束赋型向量的方法及装置
US10205499B2 (en) Systems and methods for adapting a codebook for use with multiple antenna configurations
KR102332980B1 (ko) 통신 방법, 통신 장치 및 시스템
WO2018059072A1 (zh) 一种信道状态信息的传输方法和设备
US20180262244A1 (en) Feedback apparatus and method in multi-antenna system
EP2950458A1 (en) Feedback method for channel state information, transmission method for channel state information reference signal, user equipment and base station
EP2469729A1 (en) Method and apparatus for keeping the precoding channel coherency in a communication network
US10326512B2 (en) Method and apparatus for short-term feedback in multi-input multi-output communications
CN101800582A (zh) 一种多用户波束成形方法及装置
EP3672095A1 (en) Method and device for indicating and determining precoding matrix
US10601559B2 (en) Methods and devices for transmitting and receiving pilot signal
CN106992805A (zh) 多天线传输方法、基站和用户终端
WO2021089046A1 (en) Method and apparatus for channel state information feedback for joint transmission
US11483035B2 (en) Method and device for performing precoding
CN111713054B (zh) 通信方法、通信装置和系统
US10038487B2 (en) CSI feedback method and apparatus in large scale antenna system
US8982973B2 (en) Correlation-matrix feedback method and system for antenna array
WO2021155610A1 (zh) 一种信息传输方法及装置
CN107094038B (zh) 一种天线系统功率调整的方法、装置及系统
WO2016183957A1 (zh) 一种天线通道的降阶方法及装置
Sadeghi et al. Multi-user massive MIMO channel estimation using joint sparsity and non-ideal feedback modeling
KR20170128452A (ko) 빔 정보를 취득하는 방법, 장치 및 통신 시스템
WO2016183803A1 (zh) 天线阵列的信道信息反馈方法与装置
WO2018127110A1 (zh) 指示、确定预编码矩阵的方法以及接收、发射端设备
WO2017118079A1 (zh) 一种双流波束赋形的方法、装置及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17814478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17814478

Country of ref document: EP

Kind code of ref document: A1