WO2017219240A1 - 用于检测生理组织运动的探测器及其探测方法 - Google Patents

用于检测生理组织运动的探测器及其探测方法 Download PDF

Info

Publication number
WO2017219240A1
WO2017219240A1 PCT/CN2016/086564 CN2016086564W WO2017219240A1 WO 2017219240 A1 WO2017219240 A1 WO 2017219240A1 CN 2016086564 W CN2016086564 W CN 2016086564W WO 2017219240 A1 WO2017219240 A1 WO 2017219240A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
transceiver circuit
electric field
physiological tissue
detector
Prior art date
Application number
PCT/CN2016/086564
Other languages
English (en)
French (fr)
Inventor
栾远涛
朱宇东
张毅
刘彤浩
Original Assignee
悦享趋势科技(北京)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 悦享趋势科技(北京)有限责任公司 filed Critical 悦享趋势科技(北京)有限责任公司
Priority to PCT/CN2016/086564 priority Critical patent/WO2017219240A1/zh
Publication of WO2017219240A1 publication Critical patent/WO2017219240A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof

Definitions

  • the present application relates to the field of detection, and in particular to a detector for detecting motion of a physiological tissue and a method of detecting the same.
  • Intravascular blood flow velocity and blood flow have certain value for the diagnosis of cardiovascular diseases, especially for oxygen supply during the circulation, atresia, turbulence, vascular atherosclerosis, etc. can provide valuable diagnosis.
  • the ultrasonic vibration source In order to check the movement state of the heart and blood vessels, and to understand the blood flow velocity, it can be achieved by transmitting ultrasound. Since the blood in the blood vessel is a flowing object, a Doppler effect is generated between the ultrasonic vibration source and the relatively moving blood. When the blood moves toward the ultrasonic source, the wavelength of the reflected wave is compressed, and thus the frequency is increased. When the blood leaves the super-source movement, the wavelength of the reflected wave becomes longer and the frequency becomes smaller. The amount by which the frequency of the reflected wave is increased or decreased is proportional to the flow velocity of the blood, so that the flow rate of the blood can be measured based on the amount of frequency shift of the ultrasonic wave.
  • the signal detected by the Doppler effect detection method is very weak and susceptible to interference.
  • the embodiment of the present application provides a detector for detecting physiological tissue motion and a detection method thereof, so as to at least solve the detection signal detected by the detection method of detecting the motion of the physiological tissue by using the Doppler effect in the prior art is very weak. And it is susceptible to interference, resulting in inaccurate detection results.
  • a probe for detecting movement of a physiological tissue comprising: a first electrode and a second electrode, wherein the first electrode and the second electrode constitute a capacitor structure; a transceiver circuit, a transmitting end of the transceiver circuit is connected to the first electrode, and a receiving end of the transceiver circuit is connected to the second electrode for being used in the first electrode and the second electrode
  • an electric field modulation signal between the first electrode and the second electrode is detected.
  • the shape of the first electrode and the second electrode are the same or different.
  • the first electrode and the second electrode are both linear electrodes.
  • the first electrode and the second electrode are both electrodes having a folded structure, and the folded structure is configured to change impedances of the first electrode and the second electrode, so that the first The impedance of the electrode and the second electrode match the impedance of the transceiver circuit.
  • the first electrode comprises a first straight portion and a first additional portion, wherein the first additional portion is a circular arc electrode having a first predetermined curvature, and the second electrode comprises a second a straight portion and a second additional portion, wherein the second additional portion is an arcuate electrode having a second predetermined curvature.
  • the first electrode is an electrode having a bent line shape
  • the second electrode is a linear electrode
  • a separate metal or non-metal structure is fixed between the first electrode and the second electrode for adjusting an electric field distribution between the first electrode and the second electrode.
  • a spacing between the first electrode and the second electrode is adjustable.
  • a method of detecting a detector comprising: detecting a modulated electric field comprising a physiological tissue motion signal, wherein an electric field between the first electrode and the second electrode is The modulated electric field is formed after the motion of the physiological tissue is disturbed; and the physiological tissue motion is output according to the modulated electric field.
  • the movement of the physiological tissue is a beating of an arterial blood vessel.
  • the transceiver circuit includes a first transceiver circuit and a second transceiver circuit
  • the detector further includes: a third electrode disposed on a side of the first electrode that is away from the second electrode
  • the second electrode is connected to the receiving end of the first transceiver circuit, the first electrode and the second electrode constitute a first capacitor structure, and the third electrode and the second transceiver circuit The receiving ends are connected, and the first electrode and the third electrode form a second capacitor structure.
  • the transceiver circuit includes a first transceiver circuit and a second transceiver circuit
  • the detector further includes: a third electrode disposed on a side of the first electrode that is away from the second electrode
  • the second electrode is connected to the receiving end of the first transceiver circuit, the first electrode and the second electrode constitute a first capacitor structure, and the third electrode and the second transceiver circuit
  • the receiving end is connected; the fourth electrode is disposed on a side of the third electrode that is away from the first electrode, wherein the fourth electrode is connected to the transmitting end of the second transceiver circuit
  • the fourth electrode and the third electrode form a second capacitor structure.
  • a method for detecting a detector comprising: detecting a modulated electric field including a physiological tissue motion signal, wherein the electric field of the first capacitive structure and the second capacitive structure After being disturbed by the movement of the physiological tissue, a modulated electric field is formed; and the physiological tissue motion is output according to the modulated electric field.
  • the movement of the physiological tissue is a beating of an arterial blood vessel.
  • the dielectric constant of the space in which the physiological tissue is to be detected changes, thereby causing a change in electric field parameters (for example, spatial distribution of electric field, electric field strength, and electric field phase).
  • electric field parameters for example, spatial distribution of electric field, electric field strength, and electric field phase.
  • a modulated electric field formed by the motion of the physiological tissue between the two electrodes is detected, and the motion of the physiological tissue to be detected is reversed according to the modulated electric field.
  • FIG. 1 is a schematic diagram of a detector for detecting movement of a physiological tissue in accordance with an embodiment of the present application
  • FIG. 2 is a schematic diagram of a transient electric field distribution of a detector under certain operating conditions according to an embodiment of the present application
  • FIG. 3 is a schematic illustration of a detector constructed from two identical linear electrodes in accordance with an embodiment of the present application
  • FIG. 4 is a schematic illustration of a detector constructed of two different electrodes in accordance with an embodiment of the present application
  • Figure 5 is a schematic illustration of a detector constructed from two electrodes having a folded configuration in accordance with an embodiment of the present application
  • FIG. 6 is a schematic view of a detector having a circular arc electrode in accordance with an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a detector provided with a structure for adjusting an electric field distribution between two electrodes according to an embodiment of the present application
  • FIG. 8 is a schematic diagram of a detector of a dual-issue double-receiving structure according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a single-multiple-receiving structure or a multiple-single-receiving structure according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a three-electrode single-shot multi-receiving structure or a multiple-single-receiving structure according to an embodiment of the present application;
  • FIG. 11 is a schematic illustration of a detector with adjustable spacing between two electrodes in accordance with an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a detector using a switch to adjust a spacing between two electrodes, in accordance with an embodiment of the present application
  • FIG. 13 is a flow chart of an alternative method of detecting a detector according to an embodiment of the present application.
  • FIG. 14 is a flow chart of another alternative method of detecting a detector in accordance with an embodiment of the present application.
  • Pulse wave The pulse wave is formed by the heart's pulsation (vibration) propagating along the arterial blood vessels and blood flow to the periphery. Therefore, the speed of propagation depends on the physical and geometric properties of the propagation medium, for example, the elasticity of the artery, the size of the lumen, The density and viscosity of the blood, etc., are particularly closely related to the elasticity, caliber and thickness of the arterial wall.
  • Embodiments of the present application provide a detector for detecting motion of a physiological tissue.
  • FIG. 1 is a schematic diagram of a detector for detecting motion of a physiological tissue according to an embodiment of the present application. As shown in FIG. 1, the detector includes a first electrode 10, a second electrode 12, and a transceiver circuit 14.
  • the first electrode 10 and the second electrode 12 constitute a capacitor structure.
  • the transmitting end of the transceiver circuit 14 is connected to the first electrode 10, and the receiving end of the transceiver circuit 14 is connected to the second electrode 12 for detecting when there is a physiological tissue to be detected between the first electrode 10 and the second electrode 12.
  • An electric field modulating signal is applied between the first electrode 10 and the second electrode 12.
  • the capacitor structure is composed of an insulating dielectric sandwiched between two metal electrodes.
  • the conductor electrode can be used as the first electrode and the second electrode, and the conductor electrode can be embedded in the dielectric plate.
  • the dielectric sheet is an insulating dielectric. It is also possible to place the conductor electrode in the empty In the air, at this time, the air is an insulating dielectric.
  • the transceiver circuit can be used to detect the distribution of the electric field, the electric field strength, the phase of the electric field, and the like.
  • the physiological tissue to be detected may be heart, blood, and the like.
  • the detector provided in the embodiment of the present application can detect the beat frequency of the heart, the flow speed of the blood, and the like.
  • an electric field is formed between the electrodes in the operating state.
  • the transient electric field distribution of a detector composed of two identical linear electrodes under certain operating conditions is as shown in FIG. 2, and the electric field distribution is similar to the electric field distribution of a typical capacitor.
  • the detector provided by the embodiment of the present application is a capacitive structure. Since the electric field distribution can be adjusted by changing the emission signal of the transmitting end of the receiving circuit, the electric field distribution of the detector is not limited to such an electric field distribution as shown in FIG.
  • the dielectric constant of the space in which the physiological tissue is to be detected changes, thereby causing a change in electric field parameters (for example, spatial distribution of electric field, electric field strength, and electric field phase).
  • electric field parameters for example, spatial distribution of electric field, electric field strength, and electric field phase.
  • a modulated electric field formed by the motion of the physiological tissue between the two electrodes is detected, and the motion of the physiological tissue to be detected is reversed according to the modulated electric field.
  • the two electrode electrodes of the first electrode and the second electrode can be designed in any shape as needed, as described in detail below.
  • the shape of the first electrode and the second electrode are the same or different.
  • the shapes of the two electrodes of the detector provided by the embodiment of the present application may be identical, for example, the two electrodes are flat or straight.
  • both the electrode 1 and the electrode 2 are identical linear electrodes.
  • the electrode 1 and the electrode 2 are respectively connected to the transmitting end and the receiving end of the transceiver circuit.
  • the shapes of the two electrodes of the detector provided by the embodiment of the present application may be different.
  • the first electrode is an electrode having a bent line shape
  • the second electrode is a linear electrode.
  • the electrode 1 is an electrode having a bent line shape
  • the electrode 2 is a linear electrode.
  • the electrode 1 and the electrode 2 are respectively connected to the transmitting end and the receiving end of the transceiver circuit.
  • the first electrode and the second electrode are both electrodes having a folded structure as shown in FIG. 5, and the folded structure is used to change impedances of the first electrode and the second electrode such that the first electrode and the second electrode The impedance matches the impedance of the transceiver circuit.
  • such an electrode having a folded structure forms a large electric field range, so that the detection range is increased, thereby facilitating the detection of physiological tissues.
  • the first electrode comprises a first straight portion and a first additional portion, wherein the first additional portion is an arcuate electrode having a first predetermined curvature
  • the second electrode comprises a second straight portion and a second additional a portion, wherein the second additional portion is an arcuate electrode having a second predetermined curvature.
  • the first preset curvature and the second preset curvature may or may not be equal.
  • the circular arc electrode enables a wider range of the electric field between the first electrode and the second electrode, so that the above detector has a larger detection range.
  • the electrode 1 is used to indicate the first electrode
  • the electrode 2 is used to represent the second electrode.
  • the electrode 1 includes a first straight portion 102 and a first additional portion 104
  • the electrode 2 includes a second straight portion 202 and a second additional Portion 204, first additional portion 104 and second additional portion 204 are arcuate electrodes.
  • a metal or non-metal structure is fixed between the first electrode and the second electrode for adjusting the electric field distribution between the first electrode and the second electrode.
  • a metal or non-metal structure can be added around the two electrodes to adjust the electric field distribution of the open capacitor.
  • the electrode 1 and the electrode 2 for adjusting the electric field distribution which may be metal or non-metal, and the structure may be grounded or ungrounded.
  • the electrode 1 and the electrode 2 can be embedded in the dielectric plate, and a metal or non-metal structure for adjusting the electric field distribution is also embedded in the dielectric plate.
  • the transceiver circuit includes a first transceiver circuit and a second transceiver circuit
  • the detector further includes a third electrode and a fourth electrode.
  • the third electrode is disposed on a side of the first electrode that is away from the second electrode, wherein the second electrode is connected to the receiving end of the first transceiver circuit, and the first electrode and the second electrode form a first capacitor structure
  • the three electrodes are connected to the receiving end of the second transceiver circuit.
  • the fourth electrode is disposed on a side of the third electrode that is away from the first electrode, wherein the fourth electrode is connected to the transmitting end of the second transceiver circuit, and the fourth electrode and the third electrode form a second capacitor structure.
  • the following is an example of how a detector with dual-shot and double-receiving structure detects the pulse wave velocity PWV.
  • the electrode 1 and the electrode 2 are respectively connected to the transmitting end and the receiving end of the first transceiver circuit, the electrode 1 and the electrode 2 constitute a first capacitor structure, and the electrode 3 and the electrode 4 are respectively connected to the transmitting end of the second transceiver circuit and At the receiving end, the electrode 3 and the electrode 4 constitute a second capacitive structure.
  • the first capacitive structure is placed on the elbow of the patient, and the second capacitive structure is placed on the wrist of the patient.
  • the first capacitive structure detects its own electric field and records At time t1, when the same beat of the heart causes blood to flow to the wrist of the patient, the second capacitive structure detects its own electric field and records time t2.
  • the detector of the dual-shot and double-receiving structure can be simplified to the detector shown in FIG.
  • the electrode 4 when the electrode 1 is connected to the receiving end of the first transceiver circuit, the electrode 4 is connected to the receiving end of the second transceiver circuit, and when the electrode 2 and the electrode 3 are connected to the common transmitting end, a single-shot and multi-receiving structure is formed.
  • the electrode 1 When the electrode 1 is connected to the transmitting end of the first transceiver circuit, the electrode 4 is connected to the transmitting end of the second transceiver circuit, and when the electrode 2 and the electrode 3 are connected to the common receiving end, a structure of multiple transmissions is formed.
  • the detector of the double-shot and double-receiving structure can be further simplified into a single-shot double-receiving structure including three electrodes or a detector with a double-shot and single-receiving structure.
  • the transceiver circuit includes a first transceiver circuit and a second transceiver circuit, and the detector further includes a third electrode.
  • the third electrode is disposed on a side of the first electrode that is away from the second electrode, wherein the second electrode is connected to the receiving end of the first transceiver circuit, and the first electrode and the second electrode form a first capacitor structure, The three electrodes are connected to the receiving end of the second transceiver circuit, and the first electrode and the third electrode form a second capacitor structure.
  • the detector includes an electrode 1, an electrode 2, and an electrode 3.
  • the electrode 1 When the electrode 1 is connected to the receiving end of the first transceiver circuit, the electrode 3 is connected to the receiving end of the second transceiver circuit, and when the electrode 2 is connected to the transmitting end of the first transceiver circuit and the second transceiver circuit, the single electrode is formed
  • the structure of the collection When the electrode 1 is connected to the transmitting end of the first transceiver circuit, the electrode 3 is connected to the transmitting end of the second transceiver circuit, and when the electrode 2 is connected to the receiving end of the first transceiver circuit and the second transceiver circuit, a multiple receipt is formed. Structure.
  • the relative position (i.e., the pitch) between the first electrode and the second electrode is adjustable.
  • the relative positions of the two electrodes By adjusting the relative positions of the two electrodes, the distribution of the electric field between the two electrodes can be changed, thereby obtaining more abundant detection information.
  • a switch can be used to adjust the spacing between the two electrodes. As shown in FIG. 12, when the switch is connected to the electrode 1 and the electrode 3, the electrode 1 and the electrode 3 serve as working electrodes, and the electrode 2 is in an idle state, and the distance between the two working electrodes is large. When the switching switch is connected to the electrode 2 and the electrode 3, the electrode 2 and the electrode 3 serve as working electrodes, the electrode 1 is in an idle state, and the spacing between the two working electrodes is small.
  • an embodiment of a method of detecting a detector is provided, it being noted that the steps illustrated in the flowchart of the figures may be performed in a computer system such as a set of computer executable instructions, and Although the logical order is shown in the flowcharts, in some cases the steps shown or described may be performed in a different order than the ones described herein.
  • a method for detecting a detector is also provided.
  • the detection method of the detector can be performed by the above detector.
  • FIG. 13 is a flow chart of an alternative method of detecting a detector in accordance with an embodiment of the present application.
  • the detection is performed using the method provided in FIG. As shown in FIG. 13, the method includes the following steps:
  • Step S130 detecting a modulated electric field including a physiological tissue motion signal, wherein an electric field between the first electrode and the second electrode is disturbed by the motion of the physiological tissue to form a modulated electric field.
  • Step S132 outputting physiological tissue motion according to the modulated electric field.
  • the dielectric constant of the space in which the physiological tissue is to be detected changes, thereby causing a change in electric field parameters (for example, spatial distribution of electric field, electric field strength, and electric field phase).
  • electric field parameters for example, spatial distribution of electric field, electric field strength, and electric field phase.
  • a modulated electric field formed by the motion of the physiological tissue between the two electrodes is detected, and the motion of the physiological tissue to be detected is reversed according to the modulated electric field.
  • FIG. 14 is a flow chart of another alternative method of detecting a detector in accordance with an embodiment of the present application.
  • the detection is performed using the method provided in FIG. As shown in FIG. 14, the method includes the following steps:
  • Step S140 detecting a modulated electric field including a physiological tissue motion signal, wherein the electric fields of the first capacitive structure and the second capacitive structure are disturbed by the motion of the physiological tissue to form a modulated electric field.
  • Step S142 outputting physiological tissue motion according to the modulated electric field.
  • the dielectric constant of the space in which the physiological tissue is to be detected changes, thereby causing electric field parameters (for example, spatial distribution of electric field, electric field strength, and electric field phase) to occur.
  • electric field parameters for example, spatial distribution of electric field, electric field strength, and electric field phase
  • Change when there is a physiological tissue to be detected between the two capacitor structures, the modulated electric field formed by the two capacitor structures being disturbed by the movement of the physiological tissue is detected, and the motion of the physiological tissue to be detected is reversed according to the modulated electric field, and the present situation is solved.
  • the Doppler effect is used to detect the motion of the physiological tissue, and the detected signal is very weak, and the signal is easily interfered, resulting in inaccurate detection results, and the accuracy of detecting the motion of the physiological tissue is improved.
  • Technical effect is used to detect the motion of the physiological tissue, and the detected signal is very weak, and the signal is easily interfered, resulting in inaccurate detection results, and the accuracy of detecting the motion of the physiological tissue is improved.
  • the disclosed technical contents may be implemented in other manners.
  • the device embodiments described above are only schematic.
  • the division of the unit may be a logical function division.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, unit or module, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种用于检测生理组织运动的探测器及其探测方法。探测器包括:第一电极(10)和第二电极(12),其中,第一电极(10)和第二电极(12)构成电容结构;收发电路(14),收发电路(14)的发射端与第一电极(10)连接,收发电路(14)的接收端与第二电极(12)连接,用于在第一电极(10)和第二电极(12)之间存在待检测生理组织时,检测第一电极(10)和第二电极(12)之间电场调制信号。该探测器解决了现有技术中利用多普勒效应检测生理组织运动时检测到的信号微弱,且容易受到干扰,从而导致检测结果不准确的技术问题。

Description

用于检测生理组织运动的探测器及其探测方法 技术领域
本申请涉及检测领域,具体而言,涉及一种用于检测生理组织运动的探测器及其探测方法。
背景技术
血管内血流速度和血液流量对心血管的疾病诊断具有一定的价值,特别是对循环过程中供氧情况、闭锁能力、有无紊流、血管粥样硬化等均能提供有价值的诊断。
为了检查心脏、血管的运动状态,了解血液流动速度,可以通过发射超声来实现。由于血管内的血液是流动的物体,所以超声波振源与相对运动的血液间就产生多普勒效应。血液向着超声源运动时,反射波的波长被压缩,因而频率增加。血液离开超生源运动时,反射波的波长变长,频率变小。反射波频率增加或减少的量,与血液流动速度成正比,从而就可以根据超声波的频移量,测定血液的流速。
这种利用多普勒效应的检测方式检测到的信号非常微弱,容易受到干扰。
针对上述的问题,目前尚未提出有效的解决方案。
发明内容
本申请实施例提供了一种用于检测生理组织运动的探测器及其探测方法,以至少解决现有技术中利用多普勒效应检测生理组织的运动情况的检测方式检测到的信号非常微弱,并且容易受到干扰从而导致检测结果不准确的技术问题。
根据本申请实施例的一个方面,提供了一种用于检测生理组织运动的探测器,包括:第一电极和第二电极,其中,所述第一电极和所述第二电极构成电容结构;收发电路,所述收发电路的发射端与所述第一电极相连接,所述收发电路的接收端与所述第二电极相连接,用于在所述第一电极和所述第二电极之间存在待检测生理组织时,检测所述第一电极和所述第二电极之间电场调制信号。
可选地,所述第一电极与所述第二电极的形状相同或者不同。
可选地,所述第一电极和所述第二电极均为直线型电极。
可选地,所述第一电极和所述第二电极均为具有折叠结构的电极,所述折叠结构用于改变所述第一电极和所述第二电极的阻抗,以使得所述第一电极和所述第二电极的阻抗与所述收发电路的阻抗相匹配。
可选地,所述第一电极包括第一直线部分和第一附加部分,其中,所述第一附加部分为具有第一预设曲率的圆弧形电极,所述第二电极包括第二直线部分和第二附加部分,其中,所述第二附加部分为具有第二预设曲率的圆弧形电极。
可选地,所述第一电极为具有折弯线形状的电极,所述第二电极为直线型电极。
可选地,在所述第一电极和所述第二电极之间固定有独立的金属或者非金属结构,用于调整所述第一电极和所述第二电极之间的电场分布。
可选地,所述第一电极与所述第二电极之间的间距可调。
根据本申请实施例的另一方面,还提供了一种探测器的探测方法,包括:检测包含生理组织运动信号的调制电场,其中,所述第一电极和所述第二电极之间电场被生理组织的运动所扰动后形成调制电场;根据所述调制电场输出生理组织运动情况。
可选地,所述生理组织的运动是动脉血管的搏动。
可选地,所述收发电路包括第一收发电路和第二收发电路,所述探测器还包括:第三电极,设置在所述第一电极的两侧中远离所述第二电极的一侧,其中,所述第二电极与所述第一收发电路的接收端相连接,所述第一电极与所述第二电极构成第一电容结构,所述第三电极与所述第二收发电路的接收端相连接,所述第一电极与所述第三电极构成第二电容结构。
可选地,所述收发电路包括第一收发电路和第二收发电路,所述探测器还包括:第三电极,设置在所述第一电极的两侧中远离所述第二电极的一侧,其中,所述第二电极与所述第一收发电路的接收端相连接,所述第一电极与所述第二电极构成第一电容结构,所述第三电极与所述第二收发电路的接收端相连接;第四电极,设置在所述第三电极的两侧中远离所述第一电极的一侧,其中,所述第四电极与所述第二收发电路的发射端相连接,所述第四电极与所述第三电极构成第二电容结构。
根据本申请实施例的另一方面,还提供了一种探测器的探测方法,包括:检测包含生理组织运动信号的调制电场,其中,所述第一电容结构和所述第二电容结构的电场被生理组织的运动所扰动后形成调制电场;根据所述调制电场输出生理组织运动情况。
可选地,所述生理组织的运动是动脉血管的搏动。
在两个电极之间存在待检测生理组织时,待检测生理组织所处于的空间的介电常数发生了变化,从而导致电场参数(例如,电场的空间分布、电场强度和电场相位)发生了变化,在第一电极和第二电极之间存在待检测生理组织时,检测两个电极之间被生理组织的运动所扰动后形成的调制电场,根据调制电场反推出待检测生理组织的运动情况,实现了提高检测生理组织的运动情况的准确性的技术效果,进而解决了现有技术中利用多普勒效应检测生理组织的运动情况的检测方式检测到的信号非常微弱,并且容易受到干扰从而导致检测结果不准确的技术问题。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本申请实施例的用于检测生理组织运动的探测器的示意图;
图2是根据本申请实施例的探测器在某种工作状态下的瞬态电场分布的示意图;
图3是根据本申请实施例的由两个完全相同的直线型电极构成的探测器的示意图;
图4是根据本申请实施例的由两个不同的电极构成的探测器的示意图;
图5是根据本申请实施例的由两个具有折叠结构的电极构成的探测器的示意图;
图6是根据本申请实施例的具有圆弧形电极的探测器的示意图;
图7是根据本申请实施例的两个电极之间设置有用于调整电场分布的结构的探测器的示意图;
图8是根据本申请实施例的双发双收结构的探测器的示意图;
图9是根据本申请实施例的单发多收的结构或者多发单收的结构的示意图;
图10是根据本申请实施例的三电极单发多收的结构或者多发单收的结构的示意图;
图11是根据本申请实施例的两个电极之间的间距可调的探测器的示意图;
图12是根据本申请实施例的使用开关来调节两个电极之间的间距的探测器的示意图;
图13是根据本申请实施例的一种可选的探测器的探测方法的流程图;
图14是根据本申请实施例的另一种可选的探测器的探测方法的流程图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
首先对本申请实施例所涉及的技术术语作如下解释:
脉搏波:脉搏波是心脏的搏动(振动)沿动脉血管和血流向外周传播而形成的,因此其传播速度取决于传播介质的物理和几何性质,例如,动脉的弹性、管腔的大小、血液的密度和粘性等,特别是与动脉管壁的弹性、口径和厚度密切相关。
实施例1
本申请实施例提供了一种用于检测生理组织运动的探测器。
图1是根据本申请实施例的用于检测生理组织运动的探测器的示意图,如图1所示,该探测器包括:第一电极10、第二电极12和收发电路14。
第一电极10和第二电极12构成电容结构。收发电路14的发射端与第一电极10相连接,收发电路14的接收端与第二电极12相连接,用于在第一电极10和第二电极12之间存在待检测生理组织时,检测第一电极10和第二电极12之间电场调制信号。
一般来说,电容结构是由两个金属电极之间夹一层绝缘电介质构成的,在本申请实施例中,可以将导体电极作为第一电极和第二电极,可以将导体电极嵌于介质板(例如,橡胶板、塑料板)中,此时,介质板即为绝缘电介质。也可以将导体电极置于空 气中,此时,空气即为绝缘电介质。
收发电路可以用于检测电场的分布、电场强度、电场相位等。待检测生理组织可以是心脏、血液,等。本申请实施例所提供的探测器能够检测心脏的搏动频率、血液的流动速度,等。
根据电容器原理,在工作状态下,电极之间会形成电场。根据本申请实施例,由两个完全相同的直线型电极构成的探测器在某种工作状态下的瞬态电场分布如图2所示,这种电场分布与一个典型的电容器的电场分布类似,这表明本申请实施例所提供的探测器是一种电容性结构。由于电场分布可以通过改变接收电路的发射端的发射信号进行调整,因此,该探测器的电场分布不仅仅限于图2所示的这种电场分布。
在两个电极之间存在待检测生理组织时,待检测生理组织所处于的空间的介电常数发生了变化,从而导致电场参数(例如,电场的空间分布、电场强度和电场相位)发生了变化,在第一电极和第二电极之间存在待检测生理组织时,检测两个电极之间被生理组织的运动所扰动后形成的调制电场,根据调制电场反推出待检测生理组织的运动情况,解决了现有技术中利用多普勒效应检测生理组织的运动情况的检测方式检测到的信号非常微弱,并且容易受到干扰从而导致检测结果不准确的技术问题,实现了提高检测生理组织的运动情况的准确性的技术效果。
为了在实际使用中获得指定的电场分布形式,并且为了与检测电路的阻抗相匹配,第一电极和第二电极这两个导体电极可以根据需要设计成任意形状,详细描述见下文。
可选地,第一电极与第二电极的形状相同或者不同。
本申请实施例所提供的探测器的两个电极的形状可以完全相同,例如,两个电极均为平板型或者直线型。例如,如图3所示,电极1与电极2均为完全相同的直线型电极。电极1与电极2分别与收发电路的发射端和接收端相连接。
本申请实施例提供的探测器的两个电极的形状可以不相同,可选地,第一电极为具有折弯线形状的电极,第二电极为直线型电极。
例如,如图4所示,电极1为具有折弯线形状的电极,电极2为直线型电极。电极1与电极2分别与收发电路的发射端和接收端相连接。
可选地,第一电极和第二电极均为如图5所示的具有折叠结构的电极,折叠结构用于改变第一电极和第二电极的阻抗,以使得第一电极和第二电极的阻抗与收发电路的阻抗相匹配。并且,这种具有折叠结构的电极形成的电场范围大,使得检测范围增大,从而对生理组织的检测更加便利。
可选地,第一电极包括第一直线部分和第一附加部分,其中,第一附加部分为具有第一预设曲率的圆弧形电极,第二电极包括第二直线部分和第二附加部分,其中,第二附加部分为具有第二预设曲率的圆弧形电极。第一预设曲率与第二预设曲率可以相等,也可以不相等。
圆弧形电极能够使得第一电极和第二电极之间电场的范围更广,从而使得上述探测器具有更大的检测范围。
如图6所示,使用电极1表示第一电极,使用电极2表示第二电极,电极1包括第一直线部分102和第一附加部分104,电极2包括第二直线部分202和第二附加部分204,第一附加部分104和第二附加部分204均为圆弧形电极。
可选地,在第一电极和第二电极之间固定有金属或者非金属结构,用于调整第一电极和第二电极之间的电场分布。为了实现对某些特定位置的探测,可以在两个电极周围增加金属或者非金属结构来调整开放式电容的电场分布。
如图7所示,电极1和电极2之间具有用于调整电场分布的结构,该结构可以是金属或者非金属,该结构可以接地或者不接地。作为一种可选的实施例,可以将电极1和电极2嵌于介质板中,将用于调整电场分布的金属或者非金属结构也嵌于介质板中。
根据本申请实施例,可以使用四个电极构成双发双收结构的探测器。可选地,收发电路包括第一收发电路和第二收发电路,探测器还包括第三电极和第四电极。第三电极设置在第一电极的两侧中远离第二电极的一侧,其中,第二电极与第一收发电路的接收端相连接,第一电极与第二电极构成第一电容结构,第三电极与第二收发电路的接收端相连接。第四电极设置在第三电极的两侧中远离第一电极的一侧,其中,第四电极与第二收发电路的发射端相连接,第四电极与第三电极构成第二电容结构。
下面举例说明双发双收结构的探测器怎样检测脉搏波运动速度PWV。
如图8所示,电极1和电极2分别连接第一收发电路的发射端和接收端,电极1和电极2构成第一电容结构,电极3和电极4分别连接第二收发电路的发射端和接收端,电极3和电极4构成第二电容结构。将第一电容结构置于患者的肘部,将第二电容结构置于患者的腕部,当心脏的某一次搏动导致血液流动到患者的肘部时,第一电容结构检测自身电场,并记录时刻t1,当心脏的同一次搏动导致血液流动到患者的腕部时,第二电容结构检测自身电场,并记录时刻t2。假设患者的肘部与腕部之间的距离为d,则根据d、t1、t2能够计算出患者血液流动的速度,患者血液流动的速度即为脉搏波运动速度PWV,PWV=d/(t2-t1)。
作为一种可选的实施例,可以将双发双收结构的探测器简化成如图9所示的探测器。如图9所示,当电极1连接第一收发电路的接收端,电极4连接第二收发电路的接收端,电极2和电极3连接共同的发射端时,形成单发多收的结构。当电极1连接第一收发电路的发射端,电极4连接第二收发电路的发射端,电极2和电极3连接共同的接收端时,形成多发单收的结构。
根据本申请实施例,可以将双发双收结构的探测器进一步简化成包括三个电极的单发双收结构或双发单收结构的探测器。可选地,收发电路包括第一收发电路和第二收发电路,探测器还包括第三电极。第三电极设置在第一电极的两侧中远离第二电极的一侧,其中,第二电极与第一收发电路的接收端相连接,第一电极与第二电极构成第一电容结构,第三电极与第二收发电路的接收端相连接,第一电极与第三电极构成第二电容结构。
如图10所示,探测器包括电极1、电极2和电极3。当电极1与第一收发电路的接收端相连接,电极3与第二收发电路的接收端相连接,电极2与第一收发电路和第二收发电路的发射端相连接时,形成单发多收的结构。当电极1与第一收发电路的发射端相连接,电极3与第二收发电路的发射端相连接,电极2与第一收发电路和第二收发电路的接收端相连接时,形成多发单收的结构。
可选地,如图11所示,第一电极与第二电极之间的相对位置(即间距)可调。通过调节两个电极的相对位置,能够改变两个电极之间的电场的分布,从而获得更加丰富的检测信息。
作为一种可选的实施例,可以使用开关来调节两个电极之间的间距。如图12所示,当切换开关与电极1和电极3相连接时,电极1和电极3作为工作电极,电极2处于闲置状态,两个工作电极之间的间距较大。当切换开关与电极2和电极3相连接时,电极2和电极3作为工作电极,电极1处于闲置状态,两个工作电极之间的间距较小。
实施例2
根据本申请实施例,提供了一种探测器的探测方法的实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
根据本申请实施例,还提供了一种探测器的探测方法。该探测器的探测方法可以由上述探测器来执行。
图13是根据本申请实施例的一种可选的探测器的探测方法的流程图。当探测器包 括两个电极(第一电极和第二电极)时,使用图13提供的方法进行探测。如图13所示,该方法包括如下步骤:
步骤S130,检测包含生理组织运动信号的调制电场,其中,第一电极和第二电极之间电场被生理组织的运动所扰动后形成调制电场。
步骤S132,根据调制电场输出生理组织运动情况。
在两个电极之间存在待检测生理组织时,待检测生理组织所处于的空间的介电常数发生了变化,从而导致电场参数(例如,电场的空间分布、电场强度和电场相位)发生了变化,在第一电极和第二电极之间存在待检测生理组织时,检测两个电极之间被生理组织的运动所扰动后形成的调制电场,根据调制电场反推出待检测生理组织的运动情况,解决了现有技术中利用多普勒效应检测生理组织的运动情况的检测方式检测到的信号非常微弱,并且容易受到干扰从而导致检测结果不准确的技术问题,实现了提高检测生理组织的运动情况的准确性的技术效果。
图14是根据本申请实施例的另一种可选的探测器的探测方法的流程图。当探测器包括三个或四个电极时,使用图14提供的方法进行探测。如图14所示,该方法包括如下步骤:
步骤S140,检测包含生理组织运动信号的调制电场,其中,第一电容结构和第二电容结构的电场被生理组织的运动所扰动后形成调制电场。
步骤S142,根据调制电场输出生理组织运动情况。
在两个电容结构之间存在待检测生理组织时,待检测生理组织所处于的空间的介电常数发生了变化,从而导致电场参数(例如,电场的空间分布、电场强度和电场相位)发生了变化,在两个电容结构之间存在待检测生理组织时,检测两个电容结构被生理组织的运动所扰动后形成的调制电场,根据调制电场反推出待检测生理组织的运动情况,解决了现有技术中利用多普勒效应检测生理组织的运动情况的检测方式检测到的信号非常微弱,并且容易受到干扰从而导致检测结果不准确的技术问题,实现了提高检测生理组织的运动情况的准确性的技术效果。
在本申请的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件 可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (14)

  1. 一种用于检测生理组织运动的探测器,包括:
    第一电极和第二电极,其中,所述第一电极和所述第二电极构成电容结构;
    收发电路,所述收发电路的发射端与所述第一电极相连接,所述收发电路的接收端与所述第二电极相连接,用于在所述第一电极和所述第二电极之间存在待检测生理组织时,检测所述第一电极和所述第二电极之间电场调制信号。
  2. 根据权利要求1所述的探测器,其中,所述第一电极与所述第二电极的形状相同或者不同。
  3. 根据权利要求1所述的探测器,其中,所述第一电极和所述第二电极均为直线型电极。
  4. 根据权利要求1所述的探测器,其中,所述第一电极和所述第二电极均为具有折叠结构的电极,所述折叠结构用于改变所述第一电极和所述第二电极的阻抗,以使得所述第一电极和所述第二电极的阻抗与所述收发电路的阻抗相匹配。
  5. 根据权利要求1所述的探测器,其中,所述第一电极包括第一直线部分和第一附加部分,其中,所述第一附加部分为具有第一预设曲率的圆弧形电极,所述第二电极包括第二直线部分和第二附加部分,其中,所述第二附加部分为具有第二预设曲率的圆弧形电极。
  6. 根据权利要求1所述的探测器,其中,所述第一电极为具有折弯线形状的电极,所述第二电极为直线型电极。
  7. 根据权利要求1所述的探测器,其中,在所述第一电极和所述第二电极之间固定有金属或者非金属结构,用于调整所述第一电极和所述第二电极之间的电场分布。
  8. 根据权利要求1所述的探测器,其中,所述第一电极与所述第二电极之间的间距可调。
  9. 一种基于权利要求1至8中任一项所述的探测器的探测方法,包括:
    检测包含生理组织运动信号的调制电场,其中,所述第一电极和所述第二电极之间电场被生理组织的运动所扰动后形成调制电场;
    根据所述调制电场输出生理组织运动情况。
  10. 根据权利要求9所述的探测方法,其中,所述生理组织的运动是动脉血管的搏动。
  11. 根据权利要求1所述的探测器,其中,所述收发电路包括第一收发电路和第二收发电路,所述探测器还包括:
    第三电极,设置在所述第一电极的两侧中远离所述第二电极的一侧,其中,所述第二电极与所述第一收发电路的接收端相连接,所述第一电极与所述第二电极构成第一电容结构,所述第三电极与所述第二收发电路的接收端相连接,所述第一电极与所述第三电极构成第二电容结构。
  12. 根据权利要求1所述的探测器,其中,所述收发电路包括第一收发电路和第二收发电路,所述探测器还包括:
    第三电极,设置在所述第一电极的两侧中远离所述第二电极的一侧,其中,所述第二电极与所述第一收发电路的接收端相连接,所述第一电极与所述第二电极构成第一电容结构,所述第三电极与所述第二收发电路的接收端相连接;
    第四电极,设置在所述第三电极的两侧中远离所述第一电极的一侧,其中,所述第四电极与所述第二收发电路的发射端相连接,所述第四电极与所述第三电极构成第二电容结构。
  13. 一种基于权利要求11至12中任一项所述的探测器的探测方法,包括:
    检测包含生理组织运动信号的调制电场,其中,所述第一电容结构和所述第二电容结构的电场被生理组织的运动所扰动后形成调制电场;
    根据所述调制电场输出生理组织运动情况。
  14. 根据权利要求13所述的探测方法,其中,所述生理组织的运动是动脉血管的搏动。
PCT/CN2016/086564 2016-06-21 2016-06-21 用于检测生理组织运动的探测器及其探测方法 WO2017219240A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/086564 WO2017219240A1 (zh) 2016-06-21 2016-06-21 用于检测生理组织运动的探测器及其探测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/086564 WO2017219240A1 (zh) 2016-06-21 2016-06-21 用于检测生理组织运动的探测器及其探测方法

Publications (1)

Publication Number Publication Date
WO2017219240A1 true WO2017219240A1 (zh) 2017-12-28

Family

ID=60783744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086564 WO2017219240A1 (zh) 2016-06-21 2016-06-21 用于检测生理组织运动的探测器及其探测方法

Country Status (1)

Country Link
WO (1) WO2017219240A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5603333A (en) * 1993-01-07 1997-02-18 Academisch Ziekenhuis Utrecht Impedance catheter and catheterization system in which it is used for measuring the electrical impedance in blood vessels
US20110224529A1 (en) * 2008-11-18 2011-09-15 Sense A/S Methods, apparatus and sensor for measurement of cardiovascular quantities
CN203074687U (zh) * 2013-01-31 2013-07-24 纳米新能源(唐山)有限责任公司 脉搏监测装置
CN204445884U (zh) * 2015-01-26 2015-07-08 广州市康普瑞生营养健康咨询有限公司 用于测量人体生物阻抗的一次性传感装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5603333A (en) * 1993-01-07 1997-02-18 Academisch Ziekenhuis Utrecht Impedance catheter and catheterization system in which it is used for measuring the electrical impedance in blood vessels
US20110224529A1 (en) * 2008-11-18 2011-09-15 Sense A/S Methods, apparatus and sensor for measurement of cardiovascular quantities
CN203074687U (zh) * 2013-01-31 2013-07-24 纳米新能源(唐山)有限责任公司 脉搏监测装置
CN204445884U (zh) * 2015-01-26 2015-07-08 广州市康普瑞生营养健康咨询有限公司 用于测量人体生物阻抗的一次性传感装置

Similar Documents

Publication Publication Date Title
CN102781358B (zh) 组合式消融和超声成像
TWI306023B (en) Monitoring apparatus for physical movements of a body organ and method for acouiring the same
JP6148620B2 (ja) 経胸郭肺ドップラー超音波を使用した肺血圧測定
Pagnamenta et al. Proximal pulmonary arterial obstruction decreases the time constant of the pulmonary circulation and increases right ventricular afterload
Mitchell et al. Comparison of techniques for measuring pulse-wave velocity in the rat
WO2008148040A1 (en) System and method for non-invasive instantaneous and continuous measurement of cardiac chamber volume
JP2015511843A (ja) 監視および診断システムおよび方法
JP2009545356A (ja) 患者の動脈系からパルス波の通過を検出するセンサー
JP2009505710A (ja) 脈波速度の測定
US20210085280A1 (en) Monitoring blood distribution in a subject
CN105286919A (zh) 基于心脏点波动传导特性的血管状态检测方法与装置
Phoon et al. Spatial velocity profile in mouse embryonic aorta and Doppler-derived volumetric flow: a preliminary model
Sahu et al. Study of RF signal attenuation of human heart
CN107106125A (zh) 用于测量动脉参数的系统和方法
Reesink et al. Carotid artery pulse wave time characteristics to quantify ventriculoarterial responses to orthostatic challenge
Hartley et al. Noninvasive ultrasonic measurement of arterial wall motion in mice
Cannata et al. Development of a flexible implantable sensor for postoperative monitoring of blood flow
WO2017219240A1 (zh) 用于检测生理组织运动的探测器及其探测方法
Solberg et al. Experimental investigation into radar‐based central blood pressure estimation
JP2019083877A (ja) 超音波診断装置、および、生体組織の物性評価方法
WO2018006259A1 (zh) 生理组织的检测方法和装置及探测器
CN109745020A (zh) 基于血流磁电效应的非侵入式血管弹性评估方法
Duck et al. An esophageal Doppler probe for aortic flow velocity monitoring
Gaddam et al. Towards Non-Invasive Mapping of Blood Flow Velocity using Microwaves
Hong et al. Using velocity-pressure loops in the operating room: a new approach of arterial mechanics for cardiac afterload monitoring under general anesthesia

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 29.03.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16905782

Country of ref document: EP

Kind code of ref document: A1