WO2017217834A1 - Device, mechanism and machine for compressing gaseous fluids - Google Patents

Device, mechanism and machine for compressing gaseous fluids Download PDF

Info

Publication number
WO2017217834A1
WO2017217834A1 PCT/MX2016/000060 MX2016000060W WO2017217834A1 WO 2017217834 A1 WO2017217834 A1 WO 2017217834A1 MX 2016000060 W MX2016000060 W MX 2016000060W WO 2017217834 A1 WO2017217834 A1 WO 2017217834A1
Authority
WO
WIPO (PCT)
Prior art keywords
kinetic
arrow
central
support
rotating
Prior art date
Application number
PCT/MX2016/000060
Other languages
Spanish (es)
French (fr)
Inventor
José Guillermo CASTRO GONZÁLEZ
Original Assignee
BARRAZA SÁMANO, María Delia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BARRAZA SÁMANO, María Delia filed Critical BARRAZA SÁMANO, María Delia
Priority to PCT/MX2016/000060 priority Critical patent/WO2017217834A1/en
Priority to MX2018013908A priority patent/MX2018013908A/en
Publication of WO2017217834A1 publication Critical patent/WO2017217834A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/02Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having two cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms

Definitions

  • the present invention belongs to the technical field of mechanics, because it provides us with an apparatus, mechanism and machine for compressing fluids in the gaseous state, such as air.
  • piston compressors or pneumatic actuators these can compress air at high pressures, but the operating costs to achieve a lot of compressed air volume are very large;
  • the cause of the high costs in the piston compressors is that a rotational actuator, either an electric or internal combustion engine, normally handles two heads with pneumatic actuators and, it is the rotational actuator itself that provides directly and by means of bands, arrows and gears the labor force required by pneumatic actuators.
  • Figure 1 is a conventional perspective view of a kinetic part, which is part of the apparatus for converting in-situ rotational inertial energy, into a linear movement capable of performing work, of the present invention; where its cavities are observed to lodge rolling elements.
  • Figure 2 is a conventional perspective view of the kinetic part of the previous figure, where another of its cavities is illustrated, suitable to accommodate a fastening and suspension means.
  • Figure 3 is an explosive view of the two halves that make up the kinetic piece and its characteristic details are clearly observed.
  • Figure 4 is an explosive view of the kinetic piece, where its other components are observed.
  • Figure 5 is an explosive view of the kinetic piece, where the arrangement of its components is observed.
  • Figure 6 is a conventional perspective view of the kinetic part, in an assembled condition.
  • Figure 7 is an explosive view of the apparatus for converting in-situ rotational inertial energy into a linear movement capable of performing work, according to the present invention.
  • Figure 8 is an explosive view of a mechanism for compressing gaseous fluids, comprising two apparatus for converting in-situ inertial rotational energy, in linear motion with the ability to perform work, in accordance with the present invention.
  • Figure 9 is a conventional perspective view of a fixed support that has the ability to support two devices to convert insitu rotational inertial energy into a linear movement capable of developing work.
  • Figure 10 is an explosive view of a rotating support that forms part of the mechanism for compressing gaseous fluids, provided in the present invention.
  • Figure 11 is a conventional perspective view of the rotating support illustrated in the previous figure, in an assembled condition.
  • Figure 12 is a top view of the mechanism for compressing gaseous fluids, where the arrangement of the two devices can be observed to convert inertial rotational energy, into a linear movement capable of performing work.
  • Figure 13 is a conventional perspective view of the mechanism for compressing gaseous fluids, of the present invention, in an assembled and closed condition.
  • Figure 14 is a longitudinal section of said mechanism for compressing gaseous fluids, in an assembled condition.
  • Figure 15 is a longitudinal section of a gaseous fluid compressor comprising two mechanisms for compressing gaseous fluids.
  • Figure 16 is a conventional perspective view of an exterior structure that supports two mechanisms for compressing gaseous fluids, to form a compressor for gaseous fluids.
  • Figure 17 is a conventional perspective view of a gaseous fluid compressor machine, with two mechanisms for compressing gaseous fluids, in accordance with the present invention.
  • the present invention relates to an apparatus for converting in-situ rotational inertial energy, to linear movement with the capacity to perform work, where said apparatus is formed of a kinetic piece (1), whose shape and assembly allows it to rotate in a centrifugal manner with at least one other kinetic part (1) equal, located and suspended equidistant from each other, in a mechanism that provides centrifugal movement.
  • the kinetic piece (1) is substantially oval, shaped by two halves equal to each other (see figures 3, 4 and 5) and joined together as a sandwich (see figures 1 and 2); wherein said kinetic part (1) has a first cavity (2) on one of its lateral sides, where a first rolling element (3) placed in an orthogonal plane is partially housed with respect to the central rotational axis of the mechanism that provides the centrifugal movement , and parallel to the plane of rotation of the kinetic piece itself (1); a second cavity (4) at one of its ends, where at least a second rolling element (5) is also partially housed in an orthogonal plane in relation to the central rotational axis of the mechanism that provides centrifugal movement, and parallel to the rotation plane of the kinetic piece itself (1); and a third cavity (6) on its other lateral side, where part of a suspension element (7) is housed and held, which joins said kinetic piece (1) suspended with the mechanism that gives the centrifugal movement.
  • the shapes and dimensions of the third cavity (6) and the suspension element (7) will be those that provide stability to the kinetic part (1); that is, they prevent the kinetic part (1) from having a rotational movement on its own longitudinal axis; therefore, the portion of the suspension medium (7) that is housed in the third cavity (6), must remain completely fixed. In this case, it was decided by a "T" shaped configuration, for the third cavity (6) and the clamping and suspension element (7).
  • suspension means (7) must be constructed with a solid rectangular or square profile, since this shape allows sliding only in the radial direction, without tolerance of angular variation of the kinetic part (1) when they are in rotational motion .
  • the rolling elements (3 and 5) must be attached to the kinetic part (1) in such a way that said rolling elements (3 and 5) rotate freely on their rotation axes. Therefore, the means that hold the rolling elements (3 and 5) can be conventional fastening bolts (9 and 10), which are fixed to the walls of the kinetic part (1) in a conventional manner.
  • the representation of this kinetic piece (1) is merely illustrative, which is not a limitation for the design and construction of said piece (1), because for a person skilled in the art, there may be many other forms of design and construction , so that such designs are included in the scope of the spirit of the present invention.
  • the bearing elements (3 and 5) can be selected from the following group: wheels, solid tires, pneumatic tires, roller bearings, pellets, needles, balls or spheres, among others that may be useful for the purposes of the present invention.
  • the apparatus in question also comprises a device that transmits a linear movement (11), the configuration of which is suitable for being driven by the kinetic part (1), by direct contact with its first rolling means (3);
  • a device that transmits linear motion can be a cam (11) like the one illustrated in Figure 7.
  • the kinetic part (1) may have a perimeter groove (33) in those parts of its edges that make contact with the device that transmits linear motion (11); for example at the edge of the end where not there are rolling elements; in such a way that the cam part (11), in this case, that comes to make contact with the edge of the piece (1) is introduced slightly in said perimeter groove (33), thus avoiding contact between them.
  • said apparatus must have a device (12) that receives the linear movement from the device (11), whereby said device that receives the linear movement (12) is in contact with said device that produces it (11), more specifically at one end of said device (11).
  • a device (12) that receives linear movement (12) can be a compression unit (12) or similar, whose function is to compress fluids, preferably fluids in a gaseous state, such as air.
  • said compression unit (12) is conventionally formed by a piston (16) with its respective arm (13) and its sleeve (14), where the cooling system not illustrated is integrated into the container (30).
  • the mechanism requires a mechanism that provides centrifugal movement to the kinetic parts (1); where said mechanism that gives the movement, can be formed of: a rotating central arrow (28), the which is attached to the arrow (39) of a conventional rotary actuator rotor (22) or other means that provide rotational movement to the central arrow (28); the union is by means of a toothed copy (37); and a rotating support (8) with a central perforation (17) that projects in a slight tubular extension (47), is inserted by means of the central perforation (17) in the central arrow (28) and is fixed by means of any suitable clamp (38) that is inserted transversely in the tubular extension (47) (like a bolt), to said arrow (28), so that by turning the central arrow (28) it also rotates the rotating support (8 ).
  • said rotating support (8) also comprises at least two transverse cavities (31) into which the free ends of the clamping and suspension means (7) of the kinetic parts (1) are introduced, in such a way that the rotating support (8) in turn causes the kinetic parts (1) with their respective rolling means (3 and 5) to rotate in a centrifugal manner around it; whereby said kinetic pieces (1) must be suspended to the rotating support (8) in an equidistant manner between them, and perfectly compensated, so that there is no imbalance at the time they are in their centrifugal movement.
  • the rotating support (8) also has limbs that push the second rolling elements (5) to give greater stability to the kinetic parts (1) and reduce efforts on the sliding cover (15).
  • the sliding cover (15) suspends the free end of the suspension means (7) that is inside the transverse cavity (31) of the rotating support (8), whereby said sliding cover (15) is previously placed inside the cavity (31) with radial direction with respect to the rotating support (8), whereby said suspension means (7) have radial sliding inside the transverse cavities (31) of the center of the rotating support (8) but without reaching the central perforation (17), that is to say without making contact with the rotating arrow (28); b) that the kinetic pieces (1) are independent of each other. & therefore, said centrifugal parts (1) are suspended to the rotating support (8).
  • the transverse cavity (31) and the sliding cover (15) have the quadrangular shape, to coincide with the shape of the free end of the clamping and suspension means (7) and thus give proper balance to the kinetic parts (1) when they are rotating.
  • An example of construction of the rotating support (8) in question can be a rotor (8) in the form of a blade, consisting of two equal pieces, obvious in the form of symmetrical blades; however, said rotating support (8) can have at least two blade-shaped ends, which make contact with the second rolling element (5) of the kinetic parts (1), this to give greater stability to said parts (1) when they are in centrifugal movement, another function of the rotating support (8) is to minimize the internal stresses that the sliding cover (15) will assume.
  • the way of joining the two rotor parts (8) is conventionally as a sandwich; But this suggestion is to facilitate its manufacture, so there may be other ways to build it, which are also included in the protection of the present invention.
  • the mechanism in question also requires a fixed support (18) that supports, at least, two devices to convert in-sltu rotational inertial energy, into a linear movement capable of performing work, and allowing the kinetic pieces to be rotated ( 1), in addition to holding the cams (11) in a position that make contact with the first rolling element (3) and in turn are in contact with the conventional compression unit (12), same which receives the linear movement, and therefore takes advantage of the centrifugal force provided by the kinetic part (1) to perform the utilitarian work.
  • this fixed support (18) is like the one illustrated in Figures 8 and 9, which is circular in shape and is configured of: a first platform (19); a second platform (20) of smaller diameter rises concentrically on one of the faces of said first platform (19); the second platform (20) has at least two peripheral hangers (21) located equidistant from each other; A ring (23) is provided on the second platform (20) and is smaller in diameter with respect to said second platform (20). The ring (23) delimits an area (24) and in the center of the area there is a perforation (27). Within the area (24) the rotating support (8) is housed, locating its perforation (17) that coincides with the perforation (27) of the fixed support (18) to be crossed by the rotating central arrow (28).
  • the kinetic pieces (1) are suspended in the rotating support (8) equidistant from each other, within the area (24) delimited by the ring (23). Therefore, said ring (23) has at least two longitudinal grooves (25) in its lower part and located where the hangers (21) are, to place a cam (11) in each groove (25); wherein said cam (11) is suspended on the second platform (20) by means of one of its ends with a conventional pivot bolt (26) whose function is to hold the cam (11) allowing it to have angular movement; but said angular movement is controlled by a stop (40), which is placed externally of the ring (23), in the hangover (21), of the second platform (20). With the hangovers (21) on the second platform (20) it is avoided that there is friction of the cam (11) with the surface of the second platform itself (20).
  • the mechanism for compressing a gaseous fluid comprises a container (30) where the device receiving the linear movement is housed, in this case the compression unit (12); whereby said container (30) is fixed on the free surface of the face of the first platform (19), and in a position that facilitates the sliding of the plunger (16) with its respective arm (13), of the compression unit (12); where the jacket (14) of the compression unit is inside the container (30) and this in a conventional manner will have the appropriate cooling system included (not shown).
  • the mechanism of the present invention additionally comprises a compression unit of gaseous fluids (not shown) of lower compression capacity, in each of the compression units (12), which is connected to the filling or air supply valves of said compression unit (12), this in order to fill with new air and with the speed required to return the cam (11) in its initial position.
  • a compression unit of gaseous fluids (not shown) of lower compression capacity, in each of the compression units (12), which is connected to the filling or air supply valves of said compression unit (12), this in order to fill with new air and with the speed required to return the cam (11) in its initial position.
  • the other valve of the compression unit (12) is the pressurized air outlet valve, and this is connected to a tank (not shown) that stores the air at high pressure.
  • the mechanism in question comprises a cover (29) to cover the area (24) where the kinetic parts (1) suspended from the rotating support (8) are housed, whereby said cover (29) is fixed on the upper edge of the ring (23).
  • Said cover (29) comprises a central perforation (43) so that the rotating central arrow (28) passes to interconnect to other elements, such as several apparatus for compressing gaseous fluids.
  • the rotational actuator (22) is not the one who applies more force to the compression units (12), with this advantage it allows us to operate with ease 10 Compressor mechanisms or more, placed along the same central rotor arrow (28) and operated with the same rotary actuator (22), while the competition can only drive 2 or 3 pneumatic actuators; the other advantage lies in the amount of force that will be applied in the pistons (16), this can be greatly overcome, which currently drives the conventional compressors. With this device, forces of up to 15,000 N or greater can be applied easily.
  • a first radial bearing (41) is placed between the edge of the bore (27), of the fixed support (18), and the central arrow (28) to give the free rotating movement to said central arrow (28).
  • Another example of bearing elements is to place in the lower part of the first platform (19), of the fixed support (18), next to the central arrow (28), and a first bearing container (42) that contains in its inside an axial and radial bearing (not illustrated) to prevent said arrow (28) from sliding linearly on its own longitudinal axis.
  • a second axial and radial bearing container (44) is held, which, like the first container (42), has axial and radial bearings that suspend the central arrow (28) at the opposite end of the toothed copy (37), thus preventing the central rotor arrow (28) from sliding in the direction of its central axis.
  • the mechanism of the present invention requires an electric power source (not shown) to feed the rotary actuator (22) and that it provides the rotary movement to the rotating central arrow (28), which in turn, it rotates the rotating support (8), and this in turn provides centrifugal movement to the kinetic pieces (1), which, each, give a linear (angular) movement to the device that provides the linear movement (11 ) and this in turn gives linear movement to the compression unit (12) which in turn will compress a high pressure gaseous fluid.
  • This rotational actuator (22) may be a conventional electric motor itself that provides the appropriate rpm for each mechanism design.
  • the compressed air inside a large tank has the capacity to provide useful mechanical energy, it does so by moving pistons of larger diameters, which provide greater utilitarian forces to the outside, and these can be used in the propulsion of vehicles, mobiles, industrial machines and hydropneumatic, etc.
  • Another object of the present invention is the construction of a more complex mechanism for compressing a gaseous fluid, which we will call a gaseous fluid compressor, where said machine comprises at least two mechanisms for compressing gaseous fluids, as described in the present invention
  • a gas fluid compressor an external stator support structure (34) is required, and at least two mechanisms for compressing gaseous fluids, such as the detailed description of this invention, so that the size and number of compartments of said external stator structure (34) will depend on the number of mechanisms to include.
  • the construction of a compressor machine with two mechanisms for compressing gaseous fluids is exemplified, figures 15, 16 and 17.
  • the machine comprises a structure (34) as shown in Figure 16, which has 8 vertical supports (35) distributed equidistant from each other, delimiting an interior area where 4 horizontal transverse supports (32, 36, 45 and 46) separated from each other, enough to form three compartments where a mechanism for compressing fluids is placed, in each of the upper compartments, since in the lower compartment the rotational actuator (22) is placed with its arrow (39) and the toothed copy (37) that joins them with the central rotating arrow (28). In the center of the horizontal transverse supports (32) there is a perforation (not illustrated) so that the central arrow (28) passes and reaches the upper horizontal support (46).
  • the first bearing container (42) is placed at the point where it crosses the central arrow (28) of the horizontal support (36), which is where a first fluid compressor mechanism is to be placed on said support (36);
  • the second bearing container (44) is placed at the point where the arrow (28) of the horizontal support (46) arrives.
  • a second mechanism for compressing gaseous fluids is placed on the horizontal support (45); whereby the central arrow (28) crosses both devices through their respective perforations (17 and 43); and at the point where the central arrow (28) passes, a third bearing container (not shown) is placed which contains only a radial bearing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Machine Tool Units (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

The invention relates to a device for converting inertial rotational energy in situ into linear movement with the ability to perform work, which is formed by: a kinetic part (1) having a shape and assembly that allow the centrifugal rotation thereof with at least one other identical kinetic part (1), in a centrifugal movement mechanism; a device that transmits linear movement (11) and is actuated by the kinetic part (1); and a device (12) that receives the linear movement. The invention also relates to a mechanism for compressing gaseous fluids, which comprises: at least two devices for converting inertial rotational energy in situ into linear movement with the ability to perform work, according to the present invention. The mechanism comprises: a mechanism that provides centrifugal movement to said devices; a fixed support (18) which support the devices; a tank that stores highly-pressurised air that comes from an outlet valve for pressurised air of a compression unit (12); and a power source that provides power to the mechanism providing the centrifugal movement. The invention further relates to a machine for compressing gaseous fluids, characterised in that it comprises: at least two mechanisms for compressing gaseous fluids according to the present invention; and a structure (34) that supports the devices for compressing gaseous fluids.

Description

APARATO, MECANISMO Y MÁQUINA PARA COMPRIMIR FLUIDOS  APPARATUS, MECHANISM AND MACHINE TO COMPRESS FLUIDS
GASEOSOS  GASEOUS
CAMPO TÉCNICO DE LA INVENCIÓN TECHNICAL FIELD OF THE INVENTION
La presente invención pertenece al campo técnico de la mecánica, debido a que nos proporciona un aparato, mecanismo y máquina para comprimir fluidos en estado gaseoso, tales como el aire. The present invention belongs to the technical field of mechanics, because it provides us with an apparatus, mechanism and machine for compressing fluids in the gaseous state, such as air.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
En el mercado actualmente existen los compresores de tornillo que succionan aire mediante dos tomillos helicoidales, donde éstos logran manipular gran volumen de aire pero a bajas presiones. In the market there are currently screw compressors that suck air through two helical screws, where they manage to handle large volumes of air but at low pressures.
También en el mercado encontramos compresores de pistón o actuadores neumáticos, éstos pueden comprimir aire a altas presiones, pero son muy grandes los costos de operación para lograr mucho volumen de aire comprimido; la causa de los altos costos en los compresores de pistón, radica en que un actuador rotacional, ya sea motor eléctrico o de combustión interna, normalmente se encarga de accionar dos cabezales con actuadores neumáticos y, es el propio actuador rotacional quien aporta directamente y por medio de bandas, flechas y engranes la fuerza de trabajo que requieren los actuadores neumáticos. Also in the market we find piston compressors or pneumatic actuators, these can compress air at high pressures, but the operating costs to achieve a lot of compressed air volume are very large; The cause of the high costs in the piston compressors, is that a rotational actuator, either an electric or internal combustion engine, normally handles two heads with pneumatic actuators and, it is the rotational actuator itself that provides directly and by means of bands, arrows and gears the labor force required by pneumatic actuators.
Hoy en día ios actuadores neumáticos más comerciales requieren entre 4,000 ó 5,000 N de fuerza para realizar su trabajo, los que mayor fuerza requieren andan alrededor de los 7,500 Newton de fuerza y son caros los costos de operación y bajos los volúmenes de aire comprimido que manejan. Es por ello, que para superar los inconvenientes antes mencionados, se desarrolló un aparato para convertir ¡n-situ energía inercial rotacional, en movimiento lineal con capacidad de realizar trabajo, que supera en mucho la eficiencia de los compresores de pistón actuales. Tamabién se desarrolló un mecanismo para comprimir fluidos gaseosos utilizando dicho aparato; asf como también una máquina compresora que asu vez se conforma de, al menos, dos mecanismos para comprimir fluidos gaseosos según la presente invención. Nowadays, the most commercial pneumatic actuators require between 4,000 or 5,000 N of force to carry out their work, the ones that require the most strength are around 7,500 Newton of force and the operating costs are expensive and the volumes of compressed air they handle are low. . That is why, in order to overcome the aforementioned drawbacks, an apparatus was developed to convert in-situ rotational inertial energy into a linear movement with the ability to perform work, which greatly exceeds the efficiency of current piston compressors. A mechanism was also developed to compress gaseous fluids using said apparatus; as well as a compressor machine that also consists of at least two mechanisms for compressing gaseous fluids according to the present invention.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
La figura 1 es una vista en perspectiva convencional de una pieza cinética, que forma parte del aparato para convertir in-situ energía inercial rotacional, en movimiento lineal con capacidad de realizar un trabajo, de la presente invención; donde se observan sus cavidades para alojar elementos rodantes. Figure 1 is a conventional perspective view of a kinetic part, which is part of the apparatus for converting in-situ rotational inertial energy, into a linear movement capable of performing work, of the present invention; where its cavities are observed to lodge rolling elements.
La figura 2 es una vista en perspectiva convencional, de la pieza cinética de la figura anterior, donde se ilustra otra de sus cavidades, apta para alojar a un medio de sujeción y suspensión. Figure 2 is a conventional perspective view of the kinetic part of the previous figure, where another of its cavities is illustrated, suitable to accommodate a fastening and suspension means.
La figura 3 es una vista explosiva de las dos mitades que conforma a la pieza cinética y se observa con toda claridad sus detalles característicos. La figura 4 es una vista explosiva de la pieza cinética, donde se observan sus demás componentes. Figure 3 is an explosive view of the two halves that make up the kinetic piece and its characteristic details are clearly observed. Figure 4 is an explosive view of the kinetic piece, where its other components are observed.
La figura 5 es una vista explosiva de la pieza cinética, donde se observa el acomodo de sus componentes. Figure 5 is an explosive view of the kinetic piece, where the arrangement of its components is observed.
La figura 6 es una vista en perspectiva convencional de la pieza cinética, en una condición ensamblada. Figure 6 is a conventional perspective view of the kinetic part, in an assembled condition.
La figura 7 es una vista explosiva del aparato para convertir in-situ energía inercial rotacional, en movimiento lineal con capacidad de realizar trabajo, según la presente invención. Figure 7 is an explosive view of the apparatus for converting in-situ rotational inertial energy into a linear movement capable of performing work, according to the present invention.
La figura 8 es una vista explosiva de un mecanismo para comprimir fluidos gaseosos, que comprende, dos aparatos para convertir in-situ energía inercial rotacional, en movimiento lineal con capacidad de realizar un trabajo, de acuerdo con la presente invención. La figura 9 es una vista en perspectiva convencional de un soporte fijo que tiene la capacidad de sustentar a dos aparatos para convertir insitu energía inercial rotacional, en movimiento lineal con capacidad de desarrollar trabajo. Figure 8 is an explosive view of a mechanism for compressing gaseous fluids, comprising two apparatus for converting in-situ inertial rotational energy, in linear motion with the ability to perform work, in accordance with the present invention. Figure 9 is a conventional perspective view of a fixed support that has the ability to support two devices to convert insitu rotational inertial energy into a linear movement capable of developing work.
La figura 10 es una vista explosiva de un soporte giratorio que forma parte del mecanismo para comprimir fluidos gaseosos, aportado en la presente invención.  Figure 10 is an explosive view of a rotating support that forms part of the mechanism for compressing gaseous fluids, provided in the present invention.
La figura 11 es una vista en perspectiva convencional del soporte giratorio ilustrado en la figura anterior, en una condición ensamblada. La figura 12 es una vista superior del mecanismo para comprimir fluidos gaseosos, donde se puede observar al acomodo de los dos aparatos para convertir insitu energía inercial rotacional, en movimiento lineal con capacidad de realizar trabajo.  Figure 11 is a conventional perspective view of the rotating support illustrated in the previous figure, in an assembled condition. Figure 12 is a top view of the mechanism for compressing gaseous fluids, where the arrangement of the two devices can be observed to convert inertial rotational energy, into a linear movement capable of performing work.
La figura 13 es una vista en perspectiva convencional del mecanismo para comprimir fluidos gaseosos, de la presente invención, en una condición ensamblada y cerrada. Figure 13 is a conventional perspective view of the mechanism for compressing gaseous fluids, of the present invention, in an assembled and closed condition.
La figura 14 es un corte longitudinal de dicho mecanismo para comprimir fluidos gaseosos, en una condición ensamblada. Figure 14 is a longitudinal section of said mechanism for compressing gaseous fluids, in an assembled condition.
La figura 15 es un corte longitudinal de una máquina compresora de fluidos gaseosos que comprende dos mecanismos para comprimir fluidos gaseosos. Figure 15 is a longitudinal section of a gaseous fluid compressor comprising two mechanisms for compressing gaseous fluids.
La figura 16 es una vista en perspectiva convencional de una estructura exterior que soporta a dos mecanismos para comprimir fluidos gaseosos, para conformar una máquina compresora de fluidos gaseosos.  Figure 16 is a conventional perspective view of an exterior structure that supports two mechanisms for compressing gaseous fluids, to form a compressor for gaseous fluids.
La figura 17 es una vista en perspectiva convencional de una máquina compresora de fluidos gaseosos, con dos mecanismos para comprimir fluidos gaseosos, de acuerdo con la presente invención. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN Figure 17 is a conventional perspective view of a gaseous fluid compressor machine, with two mechanisms for compressing gaseous fluids, in accordance with the present invention. DETAILED DESCRIPTION OF THE INVENTION
Los detalles característicos de la presente invención se muestran claramente en la siguiente descripción, figuras y ejemplos que se acompañan, los cuales ilustran algunas de las realizaciones preferentes de dicha invención, por lo que no deben ser considerados como limitantes para la invención en cuestión. The characteristic details of the present invention are clearly shown in the following description, accompanying figures and examples, which illustrate some of the preferred embodiments of said invention, and therefore should not be considered as limiting for the invention in question.
Para un mejor entendimiento en la descripción de la presente invención, se incluye un listado (Cuadro 1) de los componentes que conforman a la invención en cuestión, los cuales se encuentran referenciados en las figuras incluidas. For a better understanding in the description of the present invention, a list (Table 1) of the components that conform to the invention in question are included, which are referenced in the included figures.
Cuadro 1. Relación de los componentes y sus referencias, que forman parte de la presente invención. Table 1. List of the components and their references, which are part of the present invention.
Figure imgf000006_0001
Cuadro 1. Continuación...
Figure imgf000006_0001
Table 1. Continued ...
Figure imgf000007_0001
A. Aparato para convertir In-situ energía Inerclal rotacional, a movimiento lineal con capacidad para realizar trabajo.
Figure imgf000007_0001
A. Apparatus for converting in-situ rotational Ineclal energy to linear movement with the ability to perform work.
En primera instancia, la presente invención se refiere a un aparato para convertir in-situ energía inercial rotacional, a movimiento lineal con capacidad para realizar trabajo, donde dicho aparato se conforma de una pieza cinética (1), cuya forma y ensamble le permite girar de manera centrífuga con, al menos, otra pieza cinética (1) igual, ubicadas y suspendidas de manera equidistantes entre sí, en un mecanismo que les proporcione el movimiento centrífugo. In the first instance, the present invention relates to an apparatus for converting in-situ rotational inertial energy, to linear movement with the capacity to perform work, where said apparatus is formed of a kinetic piece (1), whose shape and assembly allows it to rotate in a centrifugal manner with at least one other kinetic part (1) equal, located and suspended equidistant from each other, in a mechanism that provides centrifugal movement.
En este ejemplo, la pieza cinética (1) es sustancialmente ovalada, configurada por dos mitades iguales entre sí (ver figuras 3, 4 y 5) y se unen a manera de un emparedado (ver figuras 1 y 2); donde dicha pieza cinética (1) tiene una primera cavidad (2) en uno de sus costados laterales, donde se aloja parcialmente un primer elemento rodante (3) colocado en un plano ortogonal con respecto al eje rotacional central del mecanismo que proporciona el movimiento centrífugo, y paralelo al plano de rotación de la propia pieza cinética (1); una segunda cavidad (4) en uno de sus extremos, donde se aloja parcialmente, al menos, un segundo elemento rodante (5) también colocado en un plano ortogonal en relación al eje rotacional central del mecanismo que proporciona el movimiento centrífugo, y paralelo al plano de rotación de la propia pieza cinética (1); y una tercera cavidad (6) en su otro costado lateral, donde se aloja y sujeta parte de un elemento de suspensión (7), el cual une de manera suspendida a dicha pieza cinética (1) con el mecanismo que da el movimiento centrífugo. In this example, the kinetic piece (1) is substantially oval, shaped by two halves equal to each other (see figures 3, 4 and 5) and joined together as a sandwich (see figures 1 and 2); wherein said kinetic part (1) has a first cavity (2) on one of its lateral sides, where a first rolling element (3) placed in an orthogonal plane is partially housed with respect to the central rotational axis of the mechanism that provides the centrifugal movement , and parallel to the plane of rotation of the kinetic piece itself (1); a second cavity (4) at one of its ends, where at least a second rolling element (5) is also partially housed in an orthogonal plane in relation to the central rotational axis of the mechanism that provides centrifugal movement, and parallel to the rotation plane of the kinetic piece itself (1); and a third cavity (6) on its other lateral side, where part of a suspension element (7) is housed and held, which joins said kinetic piece (1) suspended with the mechanism that gives the centrifugal movement.
Las formas y dimensiones, de la tercera cavidad (6) y el elemento de suspensión (7), serán aquellas que proporcionen estabilidad a la pieza cinética (1); o sea que evitan que la pieza cinética (1) tienda a tener movimiento giratorio sobre su propio eje longitudinal; por lo qué, la porción del medio de suspensión (7) que queda alojada en la tercera cavidad (6), debe quedar completamente fija. En este caso, se decidió por una configuración en forma de "T", para la tercera cavidad (6) y el elemento de sujeción y suspensión (7). The shapes and dimensions of the third cavity (6) and the suspension element (7) will be those that provide stability to the kinetic part (1); that is, they prevent the kinetic part (1) from having a rotational movement on its own longitudinal axis; therefore, the portion of the suspension medium (7) that is housed in the third cavity (6), must remain completely fixed. In this case, it was decided by a "T" shaped configuration, for the third cavity (6) and the clamping and suspension element (7).
Cabe señalar que el medio de suspensión (7) debe ser construido con un perfil sólido rectangular o cuadrado, ya que esta forma permite el deslizamiento sólo en dirección radial, sin tolerancia de variación angular de la pieza cinética (1) cuando estén en movimiento rotacional. It should be noted that the suspension means (7) must be constructed with a solid rectangular or square profile, since this shape allows sliding only in the radial direction, without tolerance of angular variation of the kinetic part (1) when they are in rotational motion .
Es importante mencionar que los elementos rodantes (3 y 5) deben estar unidos a la pieza cinética (1) de tal manera que dichos elementos rodantes (3 y 5) giren libremente sobre sus ejes de giro. Por lo tanto, los medios que sujetan a los elementos rodantes (3 y 5) pueden ser pernos de sujeción (9 y 10) convencionales, los cuales se fijan a las paredes de la pieza cinética (1) de manera convencional. La representación de esta pieza cinética (1) es meramente ilustrativa, la cual no es una limitante para el diseño y construcción de dicha pieza (1), debido a que para un experto en la materia, pueden existir muchas otras formas de diseño y construcción, por lo que tales diseños quedan incluidos en el alcance del espíritu de la presente invención. Así también los elementos de rodamiento (3 y 5) pueden ser seleccionados del siguiente grupo: ruedas, llantas sólidas, llantas neumáticas, rodamientos de rodillos, balines, agujas, bolas o esferas, entre otros que puedan ser útiles para los fines de la presente invención. It is important to mention that the rolling elements (3 and 5) must be attached to the kinetic part (1) in such a way that said rolling elements (3 and 5) rotate freely on their rotation axes. Therefore, the means that hold the rolling elements (3 and 5) can be conventional fastening bolts (9 and 10), which are fixed to the walls of the kinetic part (1) in a conventional manner. The representation of this kinetic piece (1) is merely illustrative, which is not a limitation for the design and construction of said piece (1), because for a person skilled in the art, there may be many other forms of design and construction , so that such designs are included in the scope of the spirit of the present invention. Likewise, the bearing elements (3 and 5) can be selected from the following group: wheels, solid tires, pneumatic tires, roller bearings, pellets, needles, balls or spheres, among others that may be useful for the purposes of the present invention.
El aparato en cuestión, también comprende un dispositivo que transmita un movimiento lineal (11), cuya configuración sea apta para ser accionado por la pieza cinética (1), mediante el contacto directo con su primer medio rodante (3); un ejemplo de ese dispositivo que transmite movimiento lineal, puede ser una leva (11) como la que se ilustra en la figura 7. The apparatus in question also comprises a device that transmits a linear movement (11), the configuration of which is suitable for being driven by the kinetic part (1), by direct contact with its first rolling means (3); An example of that device that transmits linear motion can be a cam (11) like the one illustrated in Figure 7.
Si es neceserío, la pieza cinética (1), puede tener una ranura perimetral (33) en aquellas parte de sus bordes que hagan contacto con el dispositivo que transmite movimiento lineal (11); por ejemplo en el borde del extremo donde no hay elementos rodantes; de tal manera que la parte la leva (11), en este caso, que llegare a hacer contacto con el borde de la pieza (1) se introduzca ligeramente en dicha ranura perimetral (33), evitando asf el contacto entre ellas. If necessary, the kinetic part (1) may have a perimeter groove (33) in those parts of its edges that make contact with the device that transmits linear motion (11); for example at the edge of the end where not there are rolling elements; in such a way that the cam part (11), in this case, that comes to make contact with the edge of the piece (1) is introduced slightly in said perimeter groove (33), thus avoiding contact between them.
Por último, dicho aparato debe tener un dispositivo (12) que recibe el movimiento lineal proveniente del dispositivo (11), por lo que dicho dispositivo que recibe el movimiento lineal (12) está en contacto con dicho dispositivo que lo produce (11), más específicamente en uno de los extremos de dicho dispositivo (11). Un ejemplo de este tipo de dispositivo que recibe el movimiento lineal (12), puede ser una unidad de compresión (12) u otro similar, cuya función es la de comprimir fluidos, preferentemente fluidos en estado gaseoso, como lo es el aire. Donde dicha unidad de compresión (12) es de las convencionalmente conformadas por un émbolo (16) con su respectivo brazo (13) y su camisa (14), donde el sistema de enfriamiento no ilustrado se integra en el contenedor (30). Finally, said apparatus must have a device (12) that receives the linear movement from the device (11), whereby said device that receives the linear movement (12) is in contact with said device that produces it (11), more specifically at one end of said device (11). An example of this type of device that receives linear movement (12), can be a compression unit (12) or similar, whose function is to compress fluids, preferably fluids in a gaseous state, such as air. Where said compression unit (12) is conventionally formed by a piston (16) with its respective arm (13) and its sleeve (14), where the cooling system not illustrated is integrated into the container (30).
B. Mecanismo para comprimir fluidos gaseosos. B. Mechanism for compressing gaseous fluids.
Por lo tanto, una de las tantas aplicaciones que pudiera tener este aparato para convertir insitu energía inercia! rotacional, en movimiento lineal con capacidad de realizar un trabajo, de conformidad con la presente invención, es la contrucción de un mecanismo para comprimir fluidos gaseosos, donde dicho mecanismo comprende, al menos, dos aparatos para convertir in-situ energía inercial, en movimiento lineal con capacidad de realizar trabajo, descritos en esta invención; donde dichos aparatos se colocan equidistantes entre sí y de manera compensatoria, ver figura 12. Por lo que este mecanismo para comprimir fluidos gaseosos es parte del objeto de la presente invención. Therefore, one of the many applications that this device could have to convert energy inertia! Rotational, in linear motion with the ability to perform work, in accordance with the present invention, is the construction of a mechanism for compressing gaseous fluids, where said mechanism comprises at least two apparatus for converting inertial energy in motion, in motion. linear with ability to perform work, described in this invention; where said apparatus are placed equidistant from each other and in a compensatory manner, see figure 12. Therefore, this mechanism for compressing gaseous fluids is part of the object of the present invention.
Para ello, el mecanismo requiere de un mecanismo que proporcione el movimiento centrífugo a las piezas cinéticas (1); donde dicho mecanismo que da el movimiento, puede ser conformado de: una flecha central giratoria (28), la cual se une a la flecha (39) de un rotor actuador rotacional (22) convencional u otro medio que proporcione movimiento giratorio a la flecha central (28); la unión es por medio de un copie dentado (37); y un soporte giratorio (8) con una perforación central (17) que se proyecta en una ligera prolongación tubular (47), se inserta por medio de la perforación central (17) en la flecha central (28) y se fija por medio de cualquier medro de sujeción adecuado (38) que se inserta transversalmente en la prolongación tubular (47) (como un perno), a dicha flecha (28), para que al girar la flecha central (28) también haga girar al soporte giratorio (8). Por lo tanto, dicho soporte giratorio (8) comprende también, al menos, dos cavidades transversales (31) en las cuales introducen los extremos libres de los medios de sujeción y suspensión (7) de las piezas cinéticas (1), de tal manera que el soporte giratorio (8) a su vez hace que las piezas cinéticas (1) con sus respectivos medios rodantes (3 y 5), giren de manera centrífuga alrededor de él; por lo que dichas piezas cinéticas (1) deben quedar suspendidas al soporte giratorio (8) de manera equidistantes entre ellas, y perfectamente compensadas, para que no haya desbalance al momento de que éstas están en su movimiento centrífugo. El soporte giratorio (8) también tiene extremidades que empujan a los segundos elementos rodantes (5) para dar mayor estabilidad a las piezas cinética (1) y reducir esfuerzos sobre la funda deslizante (15). For this, the mechanism requires a mechanism that provides centrifugal movement to the kinetic parts (1); where said mechanism that gives the movement, can be formed of: a rotating central arrow (28), the which is attached to the arrow (39) of a conventional rotary actuator rotor (22) or other means that provide rotational movement to the central arrow (28); the union is by means of a toothed copy (37); and a rotating support (8) with a central perforation (17) that projects in a slight tubular extension (47), is inserted by means of the central perforation (17) in the central arrow (28) and is fixed by means of any suitable clamp (38) that is inserted transversely in the tubular extension (47) (like a bolt), to said arrow (28), so that by turning the central arrow (28) it also rotates the rotating support (8 ). Therefore, said rotating support (8) also comprises at least two transverse cavities (31) into which the free ends of the clamping and suspension means (7) of the kinetic parts (1) are introduced, in such a way that the rotating support (8) in turn causes the kinetic parts (1) with their respective rolling means (3 and 5) to rotate in a centrifugal manner around it; whereby said kinetic pieces (1) must be suspended to the rotating support (8) in an equidistant manner between them, and perfectly compensated, so that there is no imbalance at the time they are in their centrifugal movement. The rotating support (8) also has limbs that push the second rolling elements (5) to give greater stability to the kinetic parts (1) and reduce efforts on the sliding cover (15).
La funda deslizante (15) suspende el extremo libre del medio de suspensión (7) que queda dentro de la cavidad transversal (31) del soporte giratorio (8), por lo que dicha funda deslizante (15) se coloca previamente en el interior de la cavidad (31) con dirección radial con respecto al soporte giratorio (8), por lo que dichos medios de suspensión (7) tienen deslizamiento radial dentro de las cavidades transversales (31) del centro del soporte giratorio (8) pero sin llegar a la perforación central (17), o sea sin hacer contacto con la flecha giratoria (28); por b que las piezas cinéticas (1) están independientes entre sí. & por ello que dichas piezas centrífugas (1) están suspendidas al soporte giratorio (8). Cabe señalar que se prefiere que la cavidad transversal (31) y la funda deslizante (15), tengan la forma cuadrangular, para coincidir con la forma del extremo libre del medio de sujeción y suspensión (7) y así dar equilibrio apropiado a las piezas cinéticas (1) cuando están girando. The sliding cover (15) suspends the free end of the suspension means (7) that is inside the transverse cavity (31) of the rotating support (8), whereby said sliding cover (15) is previously placed inside the cavity (31) with radial direction with respect to the rotating support (8), whereby said suspension means (7) have radial sliding inside the transverse cavities (31) of the center of the rotating support (8) but without reaching the central perforation (17), that is to say without making contact with the rotating arrow (28); b) that the kinetic pieces (1) are independent of each other. & therefore, said centrifugal parts (1) are suspended to the rotating support (8). It should be noted that it is preferred that the transverse cavity (31) and the sliding cover (15) have the quadrangular shape, to coincide with the shape of the free end of the clamping and suspension means (7) and thus give proper balance to the kinetic parts (1) when they are rotating.
Un ejemplo de construcción del soporte giratorio (8) en cuestión, puede ser un rotor (8) con la forma de una aspa, conformado por dos piezas iguales, obvio con la forma de aspas simétricas; sin embargo, dicho soporte giratorio (8) puede tener, al menos, dos extremidades en forma de aspas, las cuales hacen contacto con el segundo elemento rodante (5) de las piezas cinéticas (1), esto para dar mayor estabilidad a dichas piezas (1) cuando están en movimiento centrífugo, otra función del soporte giratorio (8) es minimizar los esfuerzo internos que asumirá la funda deslizante (15). La forma de unir las dos piezas del rotor (8) es de manera convencional como un emparedado; pero esta sugerencia es para facilitar su fabricación, por lo que pueden haber otras manera de construirlo, las cuales también quedan incluidas en la protección de la presente invención. An example of construction of the rotating support (8) in question can be a rotor (8) in the form of a blade, consisting of two equal pieces, obvious in the form of symmetrical blades; however, said rotating support (8) can have at least two blade-shaped ends, which make contact with the second rolling element (5) of the kinetic parts (1), this to give greater stability to said parts (1) when they are in centrifugal movement, another function of the rotating support (8) is to minimize the internal stresses that the sliding cover (15) will assume. The way of joining the two rotor parts (8) is conventionally as a sandwich; But this suggestion is to facilitate its manufacture, so there may be other ways to build it, which are also included in the protection of the present invention.
El colocar de esta manera las piezas cinéticas (1) y que sus medios de suspensión deslizares (7) no tengan contacto entre sí, ni estén fijos al soporte giratorio (8), como sucede con los compresores convencionales; logramos que en esta invención se aproveche mejor la fuerza de torque aportada por el actuador rotacional (22), ya que debido a ello, las piezas cinéticas (1) aprovechan más su propia fuerza centrífuga útil, y por ello tienen mayor capacidad de trabajo para realizar el desplazamiento lineal de la leva (11) y lo hacen con muy poca energía consumida por el actuador rotacional (22). Placing in this way the kinetic parts (1) and that their sliding suspension means (7) have no contact with each other, nor are fixed to the rotating support (8), as with conventional compressors; we achieve that in this invention the torque force provided by the rotational actuator (22) is better used, since due to this, the kinetic parts (1) take advantage of their own useful centrifugal force, and therefore have greater working capacity to perform the linear displacement of the cam (11) and do so with very little energy consumed by the rotary actuator (22).
El mecanismo en cuestión, también requiere de un soporte fijo (18) que sustente, al menos, dos aparatos para convertir in-sltu energía inercial rotacional, en movimiento lineal con capacidad de realizar un trabajo, y permita mantener en rotación las piezas cinéticas (1), además sostener a las levas (11) en una posición que hagan contacto con el primer elemento rodante (3) y a su vez estén en contacto con la unidad de compresión convencional (12), misma que recibe el movimiento lineal, y por ello aprovecha la fuerza centrífuga aportada por la pieza cinética (1) para realizar el trabajo utilitario. The mechanism in question also requires a fixed support (18) that supports, at least, two devices to convert in-sltu rotational inertial energy, into a linear movement capable of performing work, and allowing the kinetic pieces to be rotated ( 1), in addition to holding the cams (11) in a position that make contact with the first rolling element (3) and in turn are in contact with the conventional compression unit (12), same which receives the linear movement, and therefore takes advantage of the centrifugal force provided by the kinetic part (1) to perform the utilitarian work.
Un ejemplo de este soporte fijo (18) es como el que se ilustra en las figuras 8 y 9, el cual es de forma circular y está configurado de: una primera plataforma (19); una segunda plataforma (20) de menor diámetro se eleva de manera concéntrica sobre una de las caras de dicha primera plataforma (19); la segunda plataforma (20) tiene, al menos, dos resaques periféricos (21) ubicados equidistantes entre sí; un anillo (23) se provee sobre la segunda plataforma (20) y es de menor diámetro con respecto a dicha segunda plataforma (20). El anillo (23) delimita un área (24) y en el centro del área hay una perforación (27). Dentro del área (24) se aloja el soporte giratorio (8), ubicando su perforación (17) que coincida con la perforación (27) del soporte fijo (18) para ser atravesadas por la flecha central giratoria (28). Las piezas cinéticas (1) quedan suspendidas en el soporte giratorio (8) equidistantes entre sí, dentro del área (24) delimitada por el anillo (23). Por lo tanto, dicho anillo (23) tiene, al menos, dos ranuras longitudinales (25) en su parte inferior y ubicadas donde están los resaques (21), para colocar una leva (11) en cada ranura (25); donde dicha leva (11) se suspende en la segunda plataforma (20) por medio de uno de sus extremos con un perno pivote convencional (26) cuya función es sujetar a la leva (11) permitiéndole que tenga movimiento angular; pero dicho movimiento angular es controlado por un tope (40), el cual es colocado externamente del anillo (23), en el resaque (21), de la segunda plataforma (20). Con los resaques (21) en la segunda plataforma (20) se evita que haya fricción de la leva (11) con la superficie de la propia segunda plataforma (20). An example of this fixed support (18) is like the one illustrated in Figures 8 and 9, which is circular in shape and is configured of: a first platform (19); a second platform (20) of smaller diameter rises concentrically on one of the faces of said first platform (19); the second platform (20) has at least two peripheral hangers (21) located equidistant from each other; A ring (23) is provided on the second platform (20) and is smaller in diameter with respect to said second platform (20). The ring (23) delimits an area (24) and in the center of the area there is a perforation (27). Within the area (24) the rotating support (8) is housed, locating its perforation (17) that coincides with the perforation (27) of the fixed support (18) to be crossed by the rotating central arrow (28). The kinetic pieces (1) are suspended in the rotating support (8) equidistant from each other, within the area (24) delimited by the ring (23). Therefore, said ring (23) has at least two longitudinal grooves (25) in its lower part and located where the hangers (21) are, to place a cam (11) in each groove (25); wherein said cam (11) is suspended on the second platform (20) by means of one of its ends with a conventional pivot bolt (26) whose function is to hold the cam (11) allowing it to have angular movement; but said angular movement is controlled by a stop (40), which is placed externally of the ring (23), in the hangover (21), of the second platform (20). With the hangovers (21) on the second platform (20) it is avoided that there is friction of the cam (11) with the surface of the second platform itself (20).
El mecanismo para comprimir un fluido gaseoso comprende un contenedor (30) donde se aloja el dispositivo que recibe el movimento lineal, en este caso la unidad de compresión (12); por lo que dicho contenedor (30) se fija en la superficie libre de la cara de la primera plataforma (19), y en una posición que facilite el deslizamiento del émbolo (16) con su respectivo brazo (13), de la unídad de compresión (12); donde la camisa (14) de la unidad de compresión queda dentro del contenedor (30) y éste de manera convencional tendrá incluido el sistema de enfriamiento apropiado (no ilustrado). The mechanism for compressing a gaseous fluid comprises a container (30) where the device receiving the linear movement is housed, in this case the compression unit (12); whereby said container (30) is fixed on the free surface of the face of the first platform (19), and in a position that facilitates the sliding of the plunger (16) with its respective arm (13), of the compression unit (12); where the jacket (14) of the compression unit is inside the container (30) and this in a conventional manner will have the appropriate cooling system included (not shown).
Con la disposición de las piezas cinética (1) se genera una especie de volante cinético, que cuando está en movimiento centrífugo, normalmente se presentan fuerzas centrifugas y centrípetas que se nulifican solas; pero debido a que las piezas centrífugas (1) no están fijas (sino suspendidas) al soporte giratorio (8), se aprovecha la fuerza centrífuga que éstas accionan antes de que se nulifiquen, este aprovechamiento es debido a que las piezas cinéticas (1) mueven las levas (11) que tienen la capacidad de accionar las unidades de compresión (12), mismos que comprimen aire dentro de un compresor convencional y de esta manera se realiza el trabajo utilitario. With the arrangement of the kinetic pieces (1) a kind of kinetic flywheel is generated, which, when in centrifugal motion, normally centrifugal and centripetal forces occur that cancel themselves; but because the centrifugal parts (1) are not fixed (but suspended) to the rotating support (8), the centrifugal force that they act before they are nullified is used, this use is due to the kinetic parts (1) they move the cams (11) that have the ability to drive the compression units (12), which compress air inside a conventional compressor and in this way the utilitarian work is carried out.
El mecanismo de la presente invención comprende adicionalmente una unidad de compresión de fluidos gaseosos (no mostrada) de menor capacidad de compresión, en cada una de las unidades de compresión (12), la cual se conecta a las válvulas de llenado o suministro de aire de dicha unidad de compresión (12), esto con la finalidad de llenar de aire nuevo y con la rapidez requerida para regresar la leva (11) en su posición inicial. Cabe señalar también que la otra válvula de la unidad de compresión (12) es la válvula de salida de aire a presión, y ésta se conecta a un tanque (no ilustrado) que almacena el aire a alta presión. The mechanism of the present invention additionally comprises a compression unit of gaseous fluids (not shown) of lower compression capacity, in each of the compression units (12), which is connected to the filling or air supply valves of said compression unit (12), this in order to fill with new air and with the speed required to return the cam (11) in its initial position. It should also be noted that the other valve of the compression unit (12) is the pressurized air outlet valve, and this is connected to a tank (not shown) that stores the air at high pressure.
Finalmente, el mecanismo en cuestión comprende una tapa (29) para cubrir el área (24) donde se alojan las piezas cinéticas (1) suspendidas del soporte giratorio (8), por lo que dicha tapa (29) se fija en el borde superior del anillo (23). Dicha tapa (29) comprende una perforación central (43) para que la flecha central giratoria (28) pase para interconectar a otros elementos, como por ejemplo varios aparatos para comprimir fluidos gaseosos. Con este mecanismo compresor de fluidos gaseosos, en cuestión, se tiene una de las ventaja de que el actuador rotacional (22) no es quien aplica más fuerza a las unidades de compresión (12), con esta ventaja nos permite accionar con toda facilidad 10 mecanismos compresores o más, colocados a lo largo de la misma flecha rotor central (28) y accionados con el mismo actuador rotacional (22), mientras que la competencia puede accionar solamente 2 ó 3 actuadores neumáticos; la otra ventaja radica en la cantidad de fuerza que se aplicará en los émbolos (16), ésta se podrá supera con mucho, lo que actualmente accionan los compresores convencionales. Con este aparato se lograrán aplicar -con toda facilidad- fuerzas de hasta 15000 N o mayores. Finally, the mechanism in question comprises a cover (29) to cover the area (24) where the kinetic parts (1) suspended from the rotating support (8) are housed, whereby said cover (29) is fixed on the upper edge of the ring (23). Said cover (29) comprises a central perforation (43) so that the rotating central arrow (28) passes to interconnect to other elements, such as several apparatus for compressing gaseous fluids. With this gaseous fluid compressor mechanism, in question, one of the advantages is that the rotational actuator (22) is not the one who applies more force to the compression units (12), with this advantage it allows us to operate with ease 10 Compressor mechanisms or more, placed along the same central rotor arrow (28) and operated with the same rotary actuator (22), while the competition can only drive 2 or 3 pneumatic actuators; the other advantage lies in the amount of force that will be applied in the pistons (16), this can be greatly overcome, which currently drives the conventional compressors. With this device, forces of up to 15,000 N or greater can be applied easily.
Es obvio señalar que el mecanismo que proporciona el movimiento giratorio debe tener elementos convencionales para permitir que la flecha central giratoria (28) gire libremente sobre su propio eje longitudinal. Por ejemplo, un primer rodamiento radial (41) se coloca entre el borde de la perforación (27), del soporte fijo (18), y la flecha central (28) para darle el libre movimiento giratorio a dicha flecha central (28). Otro ejemplo de elementos de rodamientos, es colocar en la parte inferior de la primera plataforma (19), del soporte fijo (18), junto a la flecha central (28), y un primer contenedor de rodamientos (42) que contiene en su interior a un rodamiento axial y otro radial (no ilustrados) para evitar que dicha flecha (28) se deslice linealmente sobre su propio eje longitudinal. En la parte superior o externa de la tapa (29) del soporte fijo (18), junto al extremo libre de la flecha central (28) se sujeta un segundo contenedor de rodamientos axial y radial (44) que al igual que el primer contenedor (42), tiene rodamientos axiales y radiales que suspenden a la flecha central (28) en el extremo opuesto al copie dentado (37), evitando de esta manera se deslice la flecha rotor central (28) en dirección de su eje central. It is obvious to note that the mechanism that provides the rotating movement must have conventional elements to allow the central rotating arrow (28) to freely rotate on its own longitudinal axis. For example, a first radial bearing (41) is placed between the edge of the bore (27), of the fixed support (18), and the central arrow (28) to give the free rotating movement to said central arrow (28). Another example of bearing elements, is to place in the lower part of the first platform (19), of the fixed support (18), next to the central arrow (28), and a first bearing container (42) that contains in its inside an axial and radial bearing (not illustrated) to prevent said arrow (28) from sliding linearly on its own longitudinal axis. In the upper or outer part of the cover (29) of the fixed support (18), next to the free end of the central arrow (28) a second axial and radial bearing container (44) is held, which, like the first container (42), has axial and radial bearings that suspend the central arrow (28) at the opposite end of the toothed copy (37), thus preventing the central rotor arrow (28) from sliding in the direction of its central axis.
Por lo tanto, el mecanismo de la presente invención requiere de una fuente de energía eléctrica (no ilustrada) para alimentar al actuador rotacional (22) y que éste proporcione el movimiento giratorio a la flecha central giratoria (28), la cual a su vez hace girar al soporte giratorio (8), y éste a su vez proporciona movimiento centrífugo a las piezas cinéticas (1), las cuales, cada una, dan un movimiento lineal (angular) al dispositivo que proporciona el movimiento lineal (11) y éste a su vez da movimiento lineal a la unidad de compresión (12) que a su vez comprimirá un fluido gaseoso a alta presión. Therefore, the mechanism of the present invention requires an electric power source (not shown) to feed the rotary actuator (22) and that it provides the rotary movement to the rotating central arrow (28), which in turn, it rotates the rotating support (8), and this in turn provides centrifugal movement to the kinetic pieces (1), which, each, give a linear (angular) movement to the device that provides the linear movement (11 ) and this in turn gives linear movement to the compression unit (12) which in turn will compress a high pressure gaseous fluid.
Un ejemplo de este actuador rotacional (22), puede ser un motor eléctrico convencional mismo que proporcione las rpm apropiadas para cada diseño de mecanismo. An example of this rotational actuator (22) may be a conventional electric motor itself that provides the appropriate rpm for each mechanism design.
Con la realización de este aparato para convertir in situ energía inercial rotacional, en movimiento lineal con capacidad de realizar un trabajo; y de este mecanismo para comprimir fluidos gaseosos, de acuerdo con la presente solicitud de patente, se ha logrado la manera de aumentar considerablemente la eficiencia de los compresores actuales y bajar el costo en la producción de grandes volúmenes aire comprimido a alta presión. With the realization of this apparatus to convert in situ rotational inertial energy, into linear motion with the ability to perform a job; and of this mechanism for compressing gaseous fluids, in accordance with the present patent application, the way has been achieved to considerably increase the efficiency of current compressors and lower the cost in the production of large volumes compressed air at high pressure.
El aire comprimido dentro de un gran tanque tiene capacidad para aportar energía mecánica útil, lo hace al desplazar émbolos de diámetros mayores, mismos que aportan fuerzas utilitarias mayores al exterior, y éstas pueden ser empleadas en la propulsión de vehículos, móviles, maquinas industriales e hidroneumáticas, etc. The compressed air inside a large tank has the capacity to provide useful mechanical energy, it does so by moving pistons of larger diameters, which provide greater utilitarian forces to the outside, and these can be used in the propulsion of vehicles, mobiles, industrial machines and hydropneumatic, etc.
C. Máquina compresora de fluidos gaseosos. C. Compressing machine for gaseous fluids.
Otro objeto más de la presente invención es la contrucción de un mecanismo más complejo para comprimir un fluido gaseoso, el cual denominaremos máquina compresora de fluidos gaseosos, donde dicha máquina comprende, al menos, dos mecanismos para comprimir fluidos gaseosos, como el descrito en la presente invención. Para construir una máquina compresora de fluidos gaseosos, se requiere de una estructura de soporte exterior estator (34), y al menos, dos mecanismos para comprimir fluidos gaseosos, como el detallado la descripción de esta invención, por lo que el tamaño y el número de compartimentos de dicha estructura exterior estator (34) dependerá del número de mecanismos a incluir. En este caso se ejemplifica la construcción de una máquina compresora con dos mecanismos para comprimir fluidos gaseosos, figuras 15, 16 y 17. Another object of the present invention is the construction of a more complex mechanism for compressing a gaseous fluid, which we will call a gaseous fluid compressor, where said machine comprises at least two mechanisms for compressing gaseous fluids, as described in the present invention To build a gas fluid compressor, an external stator support structure (34) is required, and at least two mechanisms for compressing gaseous fluids, such as the detailed description of this invention, so that the size and number of compartments of said external stator structure (34) will depend on the number of mechanisms to include. In this case, the construction of a compressor machine with two mechanisms for compressing gaseous fluids is exemplified, figures 15, 16 and 17.
En este caso la máquina comprende una estructura (34) como la mostrada en la figura 16, la cual tiene 8 soportes verticales (35) distribuidos equidistantemente entre sí, delimitando un área interior donde se fijan 4 soportes transversales horizontales (32, 36, 45 y 46) separados entre si, lo suficiente para formar tres compartimentos donde se coloca un mecanismo para comprimir fluidos, en cada uno de los compartimentos superiores, ya que en el compartimento inferior se coloca el actuador rotacional (22) con su flecha (39) y el copie dentado (37) que los une con la flecha central giratoria (28). En el centro de los soportes transversales horizontales (32) hay una perforación (no ilustrada) para que la flecha central (28) pase y llegue hasta el soporte horizontal superior (46). El primer contenedor de rodamientos (42) se coloca en el punto donde cruza la flecha central (28) del soporte horizontal (36), que es donde se va a colocar un primer mecanismo compresor de fluidos sobre dicho soporte (36); el segundo contenedor de rodamiento (44) se coloca en el punto donde llega la flecha (28) del soporte horizontal (46). In this case, the machine comprises a structure (34) as shown in Figure 16, which has 8 vertical supports (35) distributed equidistant from each other, delimiting an interior area where 4 horizontal transverse supports (32, 36, 45 and 46) separated from each other, enough to form three compartments where a mechanism for compressing fluids is placed, in each of the upper compartments, since in the lower compartment the rotational actuator (22) is placed with its arrow (39) and the toothed copy (37) that joins them with the central rotating arrow (28). In the center of the horizontal transverse supports (32) there is a perforation (not illustrated) so that the central arrow (28) passes and reaches the upper horizontal support (46). The first bearing container (42) is placed at the point where it crosses the central arrow (28) of the horizontal support (36), which is where a first fluid compressor mechanism is to be placed on said support (36); The second bearing container (44) is placed at the point where the arrow (28) of the horizontal support (46) arrives.
Un segundo mecanismo para comprimir fluidos gaseosos se coloca sobre el soporte horizontal (45); por lo que la flecha central (28) atraviesa a ambos aparatos por sus respectivas perforaciones (17 y 43); y en el punto donde pasa la flecha central (28) se coloca un tercer contenedor de rodamientos (no ilustrado) el cual contiene solamente un rodamiento radial. Esto es un ejemplo ilustrativo de cómo contruir la máquina con varios mecanismos para comprimir fluidos gaseosos, cuyas formas, dimensiones, disposiciones de los aparatos, materiales, etc., pueden ser de cualquier otra manera como se desee. A second mechanism for compressing gaseous fluids is placed on the horizontal support (45); whereby the central arrow (28) crosses both devices through their respective perforations (17 and 43); and at the point where the central arrow (28) passes, a third bearing container (not shown) is placed which contains only a radial bearing. This is an illustrative example of how to build the machine with various mechanisms to compress gaseous fluids, whose shapes, dimensions, arrangements of the apparatus, materials, etc., can be in any other way as desired.

Claims

REIVINDICACIONES
1. Un aparato para convertir in-situ energía inercia! rotacional, a movimiento lineal con capacidad para realizar un trabajo, dicho aparato se caracteriza porque comprende: una pieza cinética (1), cuya forma y ensamble le permita girar de manera centrífuga con, al menos, otra pieza cinética (1) igual, ubicadas y suspendidas equidistantemente entre sí, en un mecanismo que les proporcione el movimiento centrífugo; la pieza cinética (1) a su vez comprende: 1. A device to convert inertia energy in situ! rotational, with linear movement with the capacity to perform work, said device is characterized in that it comprises: a kinetic piece (1), whose shape and assembly allows it to rotate centrifugally with, at least, another identical kinetic piece (1), located and suspended equidistantly from each other, in a mechanism that provides them with centrifugal movement; The kinetic piece (1) in turn comprises:
a) una primera cavidad (2) en uno de sus costados laterales; a) a first cavity (2) in one of its lateral sides;
b) un primer elemento rodante (3) se aloja parcialmente en la primera cavidad (2), colocado en un plano ortogonal con respecto al eje de rotación central del mecanismo que proporciona el movimiento centrífugo, y paralelo al plano de rotación de la propia pieza cinética (1); b) a first rolling element (3) is partially housed in the first cavity (2), placed in an orthogonal plane with respect to the central axis of rotation of the mechanism that provides the centrifugal movement, and parallel to the plane of rotation of the piece itself kinetics (1);
c) una segunda cavidad (4) en uno de sus extremos; d) al menos, un segundo elemento rodante (5) se aloja parcialmente en la segunda cavidad (4), colocado en un plano ortogonal en relación al eje de rotación central del mecanismo que proporciona el movimiento centrífugo, y paralelo al plano de rotación de la propia pieza cinética (1); c) a second cavity (4) at one of its ends; d) at least one second rolling element (5) is partially housed in the second cavity (4), placed in an orthogonal plane in relation to the central axis of rotation of the mechanism that provides the centrifugal movement, and parallel to the plane of rotation of the kinetic piece itself (1);
e) una tercera cavidad (6) en su otro costado lateral; y f) parte de un elemento de sujeción y suspensión (7) se aloja y sujeta en la tercera cavidad (6), mientras que la otra parte se inserta en el mecanismo que da el movimiento giratorio, para unir de manera suspendida a dicha pieza cinética (1) con tal mecanismo; e) a third cavity (6) on its other lateral side; and f) part of a fastening and suspension element (7) is housed and held in the third cavity (6), while the other part is inserted into the mechanism that gives the rotary movement, to attach in a suspended manner to said kinetic part. (1) with such mechanism;
un dispositivo que transmite movimiento lineal (11), cuya configuración es apta para ser accionado por la pieza cinética (1), mediante el contacto directo con el primer medio rodante (3); y iii) un dispositivo (12) que recibe el movimiento lineal proveniente del dispositivo que transmite movimiento lineal (11), por lo que el dispositivo que recibe el movimiento lineal (12) está en contacto con el dispositivo (11), más específicamente en uno de los extremos del dispositivo (11). a device that transmits linear movement (11), whose configuration is suitable to be activated by the kinetic part (1), through direct contact with the first rolling means (3); and iii) a device (12) that receives the linear movement coming from the device that transmits linear movement (11), whereby the device that receives the linear movement (12) is in contact with the device (11), more specifically in one of the ends of the device (11).
2. El aparato de la reivindicación anterior, donde la pieza cinética (1) es sustancialmente ovalada, configurada por dos mitades iguales entre sí y se unen a manera de un emparedado. 2. The apparatus of the preceding claim, wherein the kinetic piece (1) is substantially oval, configured by two halves equal to each other and joined together like a sandwich.
3. El aparato según la reivindicación 1, donde la forma y dimensiones, de la tercera cavidad (6) y el elemento de sujeción y suspensión (7), serán aquellas que proporcionen estabilidad a la pieza cinética (1), para evitar que la pieza cinética (1) tienda a tener movimiento giratorio sobre su propio eje longitudinal, por lo qué, la porción del medio de suspensión (7) queda fija en la tercera cavidad (6). 3. The apparatus according to claim 1, where the shape and dimensions of the third cavity (6) and the fastening and suspension element (7) will be those that provide stability to the kinetic part (1), to prevent the kinetic piece (1) tends to have rotary movement about its own longitudinal axis, therefore, the portion of the suspension means (7) remains fixed in the third cavity (6).
4. El aparato de la reivindicación precedente, donde la tercera cavidad (6) y el elemento de suspensión (7), tienen una configuración en forma de "T". 4. The apparatus of the preceding claim, wherein the third cavity (6) and the suspension element (7) have a "T"-shaped configuration.
5. El aparato de acuerdo con la reivindicación anterior, donde el medio de sujeción y suspensión (7) es construido con un perfil sólido rectangular o cuadrado, ya que esta forma permite el deslizamiento sólo en dirección radial, sin tolerancia de variación angular de la pieza cinética (1) cuando está en movimiento centrífugo. 5. The apparatus according to the previous claim, where the fastening and suspension means (7) is constructed with a solid rectangular or square profile, since this shape allows sliding only in the radial direction, without tolerance for angular variation of the kinetic piece (1) when it is in centrifugal motion.
6. El aparato tal y como se reclama en la reivindicación 1, donde ios elementos rodantes (3 y 5) deben estar unidos a la pieza cinética (1) de tal manera que dichos elementos rodantes (3 y 5) giren libremente sobre sus ejes de giro; donde los medios que sujetan a los elementos rodantes (3 y 5) son pernos de sujeción (9 y 10), los cuales se fijan a las paredes de la pieza cinética (1). 6. The apparatus as claimed in claim 1, wherein the rolling elements (3 and 5) must be attached to the kinetic part (1) in such a way that said rolling elements (3 and 5) rotate freely on their axes. rotation; where the means that hold the rolling elements (3 and 5) are holding bolts (9 and 10), which are fixed to the walls of the kinetic part (1).
7. El aparato de conformidad con la reivindicación precedente, donde los elementos rodantes (3 y 5) son seleccionados del siguiente grupo: ruedas, llantas sólidas, llantas neumáticas, rodamientos de rodillos, balines, agujas, bolas y esferas. 7. The apparatus according to the preceding claim, wherein the rolling elements (3 and 5) are selected from the following group: wheels, solid tires, pneumatic tires, roller bearings, pellets, needles, balls and spheres.
8. El aparato de acuerdo con la reivindicación 1, caracterizado porque la pieza cinética (1) comprende además, una ranura perimetral (33) en aquellas parte de sus bordes que pudieran hacer contacto con el dispositivo que transmite movimiento lineal (11), para evitar el contacto entre ellos. 8. The apparatus according to claim 1, characterized in that the kinetic part (1) further comprises a perimeter groove (33) in those parts of its edges that could make contact with the device that transmits linear movement (11), to avoid contact between them.
9. El aparato según la reivindicación 1 y 8, donde el dispositivo que transmite movimiento lineal (11), es una leva. 9. The apparatus according to claims 1 and 8, wherein the device that transmits linear movement (11) is a cam.
10. El aparato de conformidad con la reivindicación 1, donde el dispositivo que recibe el movimiento lineal, es una unidad de compresión de fluidos gaseosos (12). 10. The apparatus according to claim 1, wherein the device that receives the linear movement is a gaseous fluid compression unit (12).
11. El aparato de la reivindicación precedente, donde la unidad de compresión (12) está conformada por un émbolo (16) con su respectivo brazo (13) y su camisa (14). 11. The apparatus of the preceding claim, where the compression unit (12) is made up of a piston (16) with its respective arm (13) and its sleeve (14).
12. Un mecanismo para comprimir fluidos gaseosos, caracterizado porque comprende: i) al menos, dos aparatos para convertir insitu energía inercial rotacional, en movimiento lineal con capacidad de realizar un trabajo, de conformidad con cualquiera de las reivindicaciones anteriores; donde dichos aparatos se colocan equkJistantemente entre si; 12. A mechanism for compressing gaseous fluids, characterized in that it comprises: i) at least two devices to convert in situ rotational inertial energy into linear motion with the capacity to perform work, in accordance with any of the preceding claims; where said devices are placed equitably from each other;
ii) un mecanismo que proporciona movimiento centrífugo a las piezas cinéticas (1), de los aparatos para convertir insitu energía inercial rotacional, en movimiento lineal con capacidad de realizar un trabajo; ii) a mechanism that provides centrifugal movement to the kinetic parts (1) of the devices to convert inertial energy in situ rotational, in linear motion with the capacity to do work;
iii) un soporte fijo (18) que sustenta a los aparatos para convertir in-situ energía inercial rotacional, en movimiento lineal con capacidad de realizar un trabajo; iii) a fixed support (18) that supports the devices to convert in-situ rotational inertial energy into linear movement with the capacity to perform work;
iv) una unidad de compresión de fluidos gaseosos de menor capacidad, en cada una de las unidades de compresión de gases (12), la cual se conecta a las válvulas de llenado o suministro de aire de dichas unidades de compresión (12), para llenar de aire con la rapidez requerida y regresar el dispositivo que transmite movimiento lineal (11) en su posición inicial; iv) a lower capacity gas fluid compression unit, in each of the gas compression units (12), which is connected to the filling or air supply valves of said compression units (12), to fill with air with the required speed and return the device that transmits linear movement (11) to its initial position;
v) un tanque que almacena el aire a alta presión que proviene la válvula de salida de aire a presión de la unidad de compresión (12); y v) a tank that stores the high-pressure air that comes from the pressurized air outlet valve of the compression unit (12); and
vi) una fuente de energía aporta la energía al mecanismo que proporciona el movimiento centrífugo. vi) an energy source provides energy to the mechanism that provides centrifugal motion.
13. El mecanismo de la reivindicación anterior, donde el mecanismo que proporciona el movimiento centrífugo a las piezas cinéticas (1), comprende: i) una flecha central giratoria (28); 13. The mechanism of the preceding claim, wherein the mechanism that provides centrifugal movement to the kinetic parts (1), comprises: i) a rotating central arrow (28);
ii) un soporte giratorio (8) accionado por la flecha central (28); donde dicho soporte (8) tiene una perforación central (17) que se proyecta en una ligera prolongación tubular (47), para insertarse y fijarse en la flecha central giratoria (28) mediante un medio de sujeción (38) que se inserta transversalmente en la prolongación tubular (47); dicho soporte giratorio (8) comprende también, al menos, dos cavidades transversales (31) equidistantes entre ellas, en las cuales se introducen los extremos libres de los medios de suspensión (7) de las piezas cinéticas (1); y también tiene, al menos, dos extremidades para empujar al segundo elemento rodante (5); iii) una funda deslizante (15) se inserta dentro de cada cavidad transversal (31) para suspender al extremo libre del medio de suspensión (7) que queda dentro de la cavidad transversal (31), del soporte giratorio (8), con lo cual, dichos medios de suspensión (7) tienen deslizamiento radial dentro de las cavidades transversales (31) del centro del soporte giratorio (8), pero sin hacer contacto con la flecha central giratoria (28); ii) a rotating support (8) activated by the central arrow (28); where said support (8) has a central perforation (17) that projects into a slight tubular extension (47), to be inserted and fixed in the rotating central arrow (28) by means of a fastening means (38) that is inserted transversely in the tubular extension (47); said rotating support (8) also comprises at least two transverse cavities (31) equidistant from each other, into which the free ends of the suspension means (7) of the kinetic parts (1) are introduced; and also has at least two ends to push the second rolling element (5); iii) a sliding sleeve (15) is inserted into each transverse cavity (31) to suspend the free end of the suspension means (7) that remains inside the transverse cavity (31), from the rotating support (8), thereby which, said suspension means (7) have radial sliding within the transverse cavities (31) of the center of the rotating support (8), but without making contact with the central rotating arrow (28);
iv) un rotor actuador rotacional (22) proporciona movimiento giratorio a la flecha central (28); y iv) a rotational actuator rotor (22) provides rotary movement to the central shaft (28); and
v) un copie dentado (37) conecta a la flecha central giratoria (28) con la flecha (39) del rotor actuador (22). v) a toothed copy (37) connects the central rotating arrow (28) with the arrow (39) of the actuator rotor (22).
14. El mecanismo de la reivindicación precedente, donde el soporte giratorio (8) es un rotor con la forma de un aspa, conformado por dos piezas iguales unidas a manera de un emparedado. 14. The mechanism of the preceding claim, where the rotating support (8) is a rotor in the shape of a blade, made up of two equal pieces joined together like a sandwich.
15. El mecanismo de la reivindicación 13 y 14, donde la cavidad transversal (31) y la funda (15), tienen la forma cuadrangular, para coincidir con la forma del extremo libre del medio de sujeción y suspensión (7) y así dar equilibrio apropiado a las piezas cinéticas (1) cuando están girando centrífugamente. 15. The mechanism of claim 13 and 14, where the transverse cavity (31) and the sleeve (15) have a quadrangular shape, to coincide with the shape of the free end of the fastening and suspension means (7) and thus give proper balance to the kinetic parts (1) when they are rotating centrifugally.
16. El mecanismo de la reivindicación 12, donde el soporte fijo (18) comprende: i) una primera plataforma (19); 16. The mechanism of claim 12, wherein the fixed support (18) comprises: i) a first platform (19);
ii) una segunda plataforma (20) de menor diámetro se eleva de manera concéntrica sobre una de las caras de la primera plataforma (19); la segunda plataforma (20) tiene, al menos, dos resaques periféricos (21) ubicados equidistamntes entre ellos; ii) a second platform (20) of smaller diameter rises concentrically on one of the faces of the first platform (19); the second platform (20) has at least two peripheral recesses (21) located equidistant between them;
iii) un anillo (23) se provee sobre la segunda plataforma (20) y es de menor diámetro que la segunda plataforma (20), para delimitar una área (24) en cuyo centro hay una perforación (27); dentro del área (24) se alojan, el soporte giratorio (8), ubicando su perforación (17) que coincida con la perforación (27) del soporte fijo (18), para ser atravesadas por la flecha central giratoria (28); y las piezas cinéticas (1) que quedan suspendidas en el soporte giratorio (8) ubicada equidistantes entre si; dicho anillo (23) tiene, al menos, dos ranuras longitudinales (25) en su parte inferior y ubicadas donde están los resaques (21), para colocar una leva (11) en cada ranura (25); iii) a ring (23) is provided on the second platform (20) and is of smaller diameter than the second platform (20), to delimit a area (24) in the center of which there is a perforation (27); The rotating support (8) is housed within the area (24), locating its perforation (17) that coincides with the perforation (27) of the fixed support (18), to be crossed by the rotating central arrow (28); and the kinetic pieces (1) that are suspended in the rotating support (8) located equidistant from each other; said ring (23) has at least two longitudinal slots (25) in its lower part and located where the undercuts (21) are, to place a cam (11) in each slot (25);
iv) un perno pivote (26) une de manera suspendida a la leva (11) en la segunda plataforma (20), por medio de uno de los extremos de dicha leva (11), con lo cual, la leva tiene movimiento angular; iv) a pivot bolt (26) suspends the cam (11) on the second platform (20), through one of the ends of said cam (11), whereby the cam has angular movement;
v) un tope (40) controla el movimiento angular de la leva (11), por lo que es colocado externamente del anillo (23) en el resaque (21) de la segunda plataforma (20); v) a stop (40) controls the angular movement of the cam (11), so it is placed externally of the ring (23) in the recess (21) of the second platform (20);
vi) un contenedor (30) donde se aloja el dispositivo que recibe el movimento lineal, en este caso la unidad de compresión (12); por lo que dicho contenedor (30) se fija en la superficie libre de la cara de la primera plataforma (19), y en una posición que facilite el deslizamiento del émbolo (16) con su respectivo brazo (13), de la unidad de compresión (12); y vi) a container (30) where the device that receives the linear movement is housed, in this case the compression unit (12); therefore said container (30) is fixed on the free surface of the face of the first platform (19), and in a position that facilitates the sliding of the plunger (16) with its respective arm (13), of the unit. compression (12); and
vii) una tapa (29) con una perforación central (43), para cubrir el área (24) donde se alojan las piezas cinéticas (1) suspendidas del soporte giratorio (8), por lo que dicha tapa (29) se fija en el borde superior del anillo (23). vii) a cover (29) with a central perforation (43), to cover the area (24) where the kinetic parts (1) suspended from the rotating support (8) are housed, so said cover (29) is fixed in the upper edge of the ring (23).
17. El mecanismo de acuerdo con las reivindicaciones 12, 13 y 16, donde el mecanismo que proporciona el movimiento giratorio, comprende medios de rodamientos para permitir que la flecha central giratoria (28) gire libremente sobre su propio eje. 17. The mechanism according to claims 12, 13 and 16, wherein the mechanism providing the rotary movement comprises bearing means to allow the rotating central shaft (28) to rotate freely about its own axis.
18. El mecanismo de la reivindicación anterior, donde los medios de rodamiento son: un primer rodamiento radial (41) colocado entre el borde de la perforación (27), del soporte fijo (18), y la flecha central giratoria (28); un primer contenedor de rodamientos (42) que contiene un rodamiento radial y un rodamiento axial, se coloca en la parte inferior de la primera plataforma (19), del soporte fijo (18), junto a la flecha central giratoria (28); y un segundo contenedor de rodamientos (44) al igual que el primer contenedor (42), se coloca en la parte superior de la tapa (29) del soporte fijo (18), junto a la flecha central (28), para ayudar al giro de tal flecha central (28) y mantenerla suspendida por su extremo opuesto al copie dentado (37). 18. The mechanism of the previous claim, where the bearing means are: a first radial bearing (41) placed between the edge of the perforation (27), of the fixed support (18), and the central rotating arrow (28); a first bearing container (42) containing a radial bearing and an axial bearing, is placed at the bottom of the first platform (19), of the fixed support (18), next to the central rotating shaft (28); and a second bearing container (44), like the first container (42), is placed on the top of the cover (29) of the fixed support (18), next to the central arrow (28), to help the rotation of such central arrow (28) and keeping it suspended by its opposite end to the toothed copy (37).
19. Una máquina compresora de fluidos gaseosos, caracterizada porque comprende: i) al menos, dos mecanismos para comprimir fluidos gaseosos, de conformidad con cualquiera de las reivindicaciones 12 a la 18; y ii) una estructura de soporte exterior estator (34), configurada para sustentar a, al menos, dos mecanismos para comprimir fluidos gaseosos. 19. A gaseous fluid compression machine, characterized in that it comprises: i) at least two mechanisms for compressing gaseous fluids, in accordance with any of claims 12 to 18; and ii) an external stator support structure (34), configured to support at least two mechanisms for compressing gaseous fluids.
20. La máquina de la reivindicación anterior, donde la estructura de soporte estator (34), comprende: i) soportes verticales (35) distribuidos radial y equidistantemente entre sí, delimitando un área interior donde se fijan; 20. The machine of the preceding claim, wherein the stator support structure (34) comprises: i) vertical supports (35) distributed radially and equidistantly from each other, delimiting an interior area where they are fixed;
ii) al menos, tres soportes transversales horizontales separados entre sí, lo suficiente para formar compartimentos donde se coloca un mecanismo para comprimir fluidos, en cada uno de los compartimentos superiores, ya que en el compartimento inferior se coloca el actuador rotacional (22) con su flecha (39) y el copie dentado (37) que une a la flecha (39) del actuador (22) con la flecha central giratoria (28); iii) una perforación se provee en el centro de los soportes transversales horizontales para que la flecha central giratoria (28) pase y llegue hasta el soporte horizontal superior (46); ii) at least three horizontal transverse supports separated from each other, enough to form compartments where a mechanism to compress fluids is placed, in each of the upper compartments, since the rotational actuator (22) is placed in the lower compartment with its arrow (39) and the toothed copy (37) that joins the arrow (39) of the actuator (22) with the central rotating arrow (28); iii) a perforation is provided in the center of the horizontal transverse supports so that the central rotating arrow (28) passes through and reaches the upper horizontal support (46);
iv) un primer contenedor de rodamientos (42) se coloca en el punto donde cruza la flecha central (28) del soporte horizontal (36), que es donde se va a colocar un primer mecanismo compresor de fluidos sobre dicho soporte (36); y iv) a first bearing container (42) is placed at the point where the central arrow (28) of the horizontal support (36) crosses, which is where a first fluid compression mechanism is going to be placed on said support (36); and
v) un segundo contenedor de rodamientos (44) se coloca en el punto donde llega la flecha (28) del soporte horizontal (46). v) a second bearing container (44) is placed at the point where the arrow (28) of the horizontal support (46) reaches.
21. La máquina de la reivindicación anterior, caracterizada porque comprende, un tercer contenedor de rodamientos, el cual contiene solamente un rodamiento radial, y se coloca en la parte inferior de la plataforma (19) del segundo mecanismo para comprimir fluidos gaseosos, junto a la flecha central (28). 21. The machine of the preceding claim, characterized in that it comprises a third bearing container, which contains only a radial bearing, and is placed in the lower part of the platform (19) of the second mechanism for compressing gaseous fluids, together with the central arrow (28).
PCT/MX2016/000060 2016-06-14 2016-06-14 Device, mechanism and machine for compressing gaseous fluids WO2017217834A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/MX2016/000060 WO2017217834A1 (en) 2016-06-14 2016-06-14 Device, mechanism and machine for compressing gaseous fluids
MX2018013908A MX2018013908A (en) 2016-06-14 2016-06-14 Device, mechanism and machine for compressing gaseous fluids.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2016/000060 WO2017217834A1 (en) 2016-06-14 2016-06-14 Device, mechanism and machine for compressing gaseous fluids

Publications (1)

Publication Number Publication Date
WO2017217834A1 true WO2017217834A1 (en) 2017-12-21

Family

ID=60663678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2016/000060 WO2017217834A1 (en) 2016-06-14 2016-06-14 Device, mechanism and machine for compressing gaseous fluids

Country Status (2)

Country Link
MX (1) MX2018013908A (en)
WO (1) WO2017217834A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019164386A1 (en) * 2018-02-22 2019-08-29 BARRAZA SÁMANO, María Delia Flywheel, mechanical-kinetic unit and system that use the centrifugal force of the flywheel
WO2021162539A1 (en) * 2020-02-11 2021-08-19 Castro Gonzalez Jose Guillermo Inertial masses and flywheel that release centrifugal force, for kinetic-mechanical systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000019096A1 (en) * 1998-09-29 2000-04-06 Pressel Hans Georg G Pneumatic compressor system
US20030072654A1 (en) * 2001-10-12 2003-04-17 Pressel Hans-Georg G. Shuttle piston assembly with dynamic valve
US20070251379A1 (en) * 2004-05-21 2007-11-01 Lund Morten A Air Compression Apparatus and Method of Use
WO2009086051A2 (en) * 2007-12-21 2009-07-09 Carleton Life Support Systems Inc. Radial cam-driven compressor and cam-driven compressor assemblies
US20150198185A1 (en) * 2011-10-18 2015-07-16 Lightsail Energy, Inc. Compressed gas energy storage system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000019096A1 (en) * 1998-09-29 2000-04-06 Pressel Hans Georg G Pneumatic compressor system
US20030072654A1 (en) * 2001-10-12 2003-04-17 Pressel Hans-Georg G. Shuttle piston assembly with dynamic valve
US20070251379A1 (en) * 2004-05-21 2007-11-01 Lund Morten A Air Compression Apparatus and Method of Use
WO2009086051A2 (en) * 2007-12-21 2009-07-09 Carleton Life Support Systems Inc. Radial cam-driven compressor and cam-driven compressor assemblies
US20150198185A1 (en) * 2011-10-18 2015-07-16 Lightsail Energy, Inc. Compressed gas energy storage system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019164386A1 (en) * 2018-02-22 2019-08-29 BARRAZA SÁMANO, María Delia Flywheel, mechanical-kinetic unit and system that use the centrifugal force of the flywheel
WO2021162539A1 (en) * 2020-02-11 2021-08-19 Castro Gonzalez Jose Guillermo Inertial masses and flywheel that release centrifugal force, for kinetic-mechanical systems

Also Published As

Publication number Publication date
MX2018013908A (en) 2019-04-04

Similar Documents

Publication Publication Date Title
ES2700698T3 (en) Compressor or reciprocating pump
ES2755514T3 (en) Particle feeder
ES2224218T3 (en) AEROGENERATOR WITH MAGNUS EFFECT.
ES2349057T3 (en) SWING FINGER ACTUATOR AND METHOD FOR ACTIVE FLOW CONTROL.
US20100092317A1 (en) Uniaxial Eccentric Screw Pump
CA1038836A (en) Floating chamber machine
ES2726026T3 (en) Bihelicoidal sprocket with variable propeller angle and non-encapsulated toothed profile for hydraulic gear units
ES2763403T3 (en) Turbine machine blade
CN205154563U (en) Improved air compressor structure
CN106837725B (en) two-dimensional axial plunger pump
WO2017217834A1 (en) Device, mechanism and machine for compressing gaseous fluids
CN103814214A (en) Reciprocating pump and oxygen concentrating device
ES2318048T3 (en) VARIABLE CYLINDER PALLET PUMP.
WO2013153245A1 (en) Pump or rotary compressor
ES2895933T3 (en) Swash plate compressor and oxygen concentrator using the same
ES2728740T3 (en) Rotating displacement device
WO2015027729A1 (en) A fluid cylinder
ES2343139T3 (en) ROTOR FOR A TURBO MACHINE AND A TURBO MACHINE.
ES2897686T3 (en) Automatic locking mechanism for valve actuator
ES2384077T3 (en) Rotating piston machine
ES2293989T3 (en) SPHERICAL FLUID MACHINE WITH FLOW CONTROL MECHANISM.
ES2559068B1 (en) Inertial piston gas compressor
ES2929623T3 (en) Heat engine with a dynamically controllable hydraulic output
ES2856192T3 (en) Compressor with two spherical elements that support the shaft
ES2703702T3 (en) Hydraulic starter with a variable turbine stator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16905612

Country of ref document: EP

Kind code of ref document: A1