WO2017217534A1 - Test object visualizing device - Google Patents

Test object visualizing device Download PDF

Info

Publication number
WO2017217534A1
WO2017217534A1 PCT/JP2017/022295 JP2017022295W WO2017217534A1 WO 2017217534 A1 WO2017217534 A1 WO 2017217534A1 JP 2017022295 W JP2017022295 W JP 2017022295W WO 2017217534 A1 WO2017217534 A1 WO 2017217534A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
stokes
wavelength
stokes light
test subject
Prior art date
Application number
PCT/JP2017/022295
Other languages
French (fr)
Japanese (ja)
Inventor
昌宏 戸井田
Original Assignee
学校法人埼玉医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人埼玉医科大学 filed Critical 学校法人埼玉医科大学
Priority to JP2018524032A priority Critical patent/JP6804773B2/en
Priority to US16/309,732 priority patent/US10809200B2/en
Priority to EP17813428.4A priority patent/EP3474001B1/en
Publication of WO2017217534A1 publication Critical patent/WO2017217534A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/18Arrangement of plural eye-testing or -examining apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14507Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4869Determining body composition
    • A61B5/4881Determining interstitial fluid distribution or content within body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/653Coherent methods [CARS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity

Definitions

  • the present invention relates to a test subject visualization apparatus that visualizes a molecular distribution image and a cross section of a test subject.
  • a molecular distribution imaging technique capable of visualizing the distribution of a specific protein or the like in a cell or tissue while the tissue structure is alive (in vivo) is effective.
  • the molecular distribution imaging technique using light is roughly classified into a probe method using a fluorescent labeling agent and the like, and a non-probe method using the characteristics of the in-vivo substance.
  • the molecular distribution imaging technique using CARS Coherent Anti-Stokes Raman Scattering
  • CARS Coherent Anti-Stokes Raman Scattering
  • the spatial position information can be obtained, and OCT (Optical Coherence Tomography) has been developed as a noninvasive morphological imaging technique. Then, the compounding of the molecular distribution imaging technique using the CARS and the morphological imaging technique using the OCT has been studied, and the inventor has also proposed (for example, see Patent Document 1).
  • OCT Optical Coherence Tomography
  • an object of the present invention is to provide a test subject visualization apparatus that can simultaneously acquire a molecular distribution image image and a tomographic image of a test subject.
  • Means for solving the problems are as follows. That is, ⁇ 1> A light irradiation unit that varies at least one of the wavelengths of the pump light and the Stokes light generated in the same optical path for each test location of the test target, and irradiates the test target with the pump light and the Stokes light.
  • a molecular distribution image image generation unit that detects anti-Stokes light generated from the test object according to a wavelength difference between the pump light and the Stokes light, and generates a molecular distribution image image based on the anti-Stokes light; Detecting at least one of reflected light from the test subject when irradiated with the pump light, and reflected light from the test subject when irradiated with the Stokes light, and based on the detected reflected light
  • a tomographic image generator for generating a tomographic image of the test object;
  • a test object visualization apparatus comprising: an image display unit configured to display at least one of the generated molecular distribution image and the tomographic image.
  • the light irradiation unit varies the wavelength of at least one of the pump light and the Stokes light generated in the same optical path,
  • the test light is irradiated to the pump light and the Stokes light.
  • the molecular distribution image image generation unit detects the anti-Stokes light generated from the test object according to a wavelength difference between the pump light and the Stokes light, and generates a molecular distribution image image based on the anti-Stokes light.
  • the tomographic image generation unit detects and detects at least one of reflected light from the test subject when irradiated with the pump light and reflected light from the test subject when irradiated with the Stokes light.
  • a tomographic image of the test subject is generated based on the reflected light.
  • the image display unit displays a tomographic image generation unit that generates a tomographic image of the test subject based on the detected reflected light, and at least one of the generated molecular distribution image image and the tomographic image.
  • the test subject visualization apparatus irradiates the test subject by varying the wavelength of at least one of the pump light and the Stokes light generated in the same optical path for each test location of the test subject.
  • the molecular distribution image and the tomographic image can be acquired simultaneously.
  • the three-dimensional molecular distribution image image and the tomographic image can be acquired by XY scanning the pump light and the Stokes light.
  • ⁇ 2> The pump light and the Stokes light so that a wavelength difference between the pump light and the Stokes light becomes 0 in a range in which the light irradiation unit varies the wavelength of the pump light and the wavelength of the Stokes light.
  • Irradiating the subject with light Data based on the reflected light from the test subject when the tomographic image generation unit irradiates the pump light, and data based on the reflected light from the test subject when the Stokes light is irradiated,
  • the test object visualization apparatus according to ⁇ 1>, wherein the tomographic image is generated based on data combined at a wavelength at which the wavelength difference is 0.
  • the light irradiation unit has a wavelength difference between the pump light and the Stokes light of 0 in a range in which the wavelength of the pump light and the wavelength of the Stokes light are varied.
  • the test light is irradiated with the pump light and the Stokes light.
  • ⁇ 3> The ⁇ 1> to ⁇ 2>, wherein the molecular distribution image image generation unit uses the anti-Stokes light as interference light and performs an inverse Fourier transform calculation process on a spectral interference signal obtained by separating the interference light. It is a test subject visualization apparatus in any one.
  • the molecular distribution image image generation unit performs an inverse Fourier transform calculation process on a spectral interference signal obtained by separating the interference light using the anti-Stokes light as interference light. By doing so, the molecular distribution image can be generated from the Wiener Hinting theorem.
  • ⁇ 4> At least one of the reflected light from the test subject when the tomographic image generating unit irradiates the pump light and the reflected light from the test subject when irradiated with the Stokes light.
  • the test object visualization apparatus according to any one of ⁇ 1> to ⁇ 3>, wherein the interference interference light is used to perform inverse Fourier transform processing on a spectral interference signal obtained by separating the interference light.
  • the test subject visualization device wherein the tomographic image generation unit irradiates the reflected light from the test subject when irradiated with the pump light and the Stokes light. Generating the tomographic image from Wiener Hinchin's theorem by using at least one of the reflected light from the interference light as an interference light and performing an inverse Fourier transform operation on a spectral interference signal obtained by separating the interference light Can do.
  • the light irradiation unit is An optical parametric crystal that converts a wavelength of the light according to an incident angle of the light, and an optical confinement device that confines the light;
  • the optical confinement device includes an optical parametric crystal that converts a wavelength of the light according to an incident angle of light, and confines the light.
  • the optical resonator shares the optical parametric crystal with the optical confinement device, and amplifies light whose wavelength is converted by the optical parametric crystal.
  • the angle of the optical parametric crystal with respect to the optical axis direction of the light is changed, and the light converted into two types of wavelengths is amplified by the optical resonator and is used as the pump light and the Stokes light.
  • the wavelength of the pump light and the wavelength of the Stokes light can be varied by changing the angle of the optical parametric crystal.
  • ⁇ 6> The ⁇ 1> to ⁇ 5>, wherein the light irradiation unit varies the wavelength of the pump light and the wavelength of the Stokes light so that a vibration band in a molecule included in the test subject coincides with the wavelength difference.
  • the test subject visualization apparatus according to any one of the above.
  • the light irradiation unit may change the wavelength of the pump light and the wavelength of the Stokes light so that a vibration band in a molecule included in the test subject matches the wavelength difference.
  • the anti-Stokes light can be generated from the molecules of the test subject, and therefore the molecular distribution image can be generated based on the detected anti-Stokes light.
  • numerator which the said test subject has may be multiple.
  • test subject visualization device wherein the molecule of the test subject is at least one of glucose, rutinol, and lutein.
  • the molecule in the test subject has at least one of glucose, rutinol, and lutein, whereby the intraretinal distribution of molecules involved in the development of age-related macular degeneration
  • age-related macular degenerative disease can be diagnosed early.
  • the conventional problem can be solved, and a test subject visualization apparatus capable of simultaneously obtaining a molecular distribution image and a tomographic image of a test subject can be provided.
  • FIG. 1A is an explanatory diagram showing an energy level process until anti-Stokes light is generated in CARS.
  • FIG. 1B is an explanatory diagram illustrating a relationship between angular frequencies of pump light, Stokes light, and anti-Stokes light.
  • FIG. 1A is an explanatory diagram showing an energy level process until anti-Stokes light is generated in CARS.
  • FIG. 1B is an explanatory diagram illustrating a relationship between angular frequencies of pump light, Stokes light, and anti-Stokes light.
  • FIG. 2A is an explanatory diagram showing a resonance process that becomes resonance anti-Stokes light when
  • FIG. 3 is a graph showing the dependence of the signal strength of anti-Stokes light on the wavelength of Stokes light when the glucose solution is irradiated with pump light and Stokes light simultaneously.
  • FIG. 4 is an explanatory diagram illustrating a test subject visualization apparatus according to an embodiment.
  • FIG. 5 is an explanatory diagram showing an example of the relationship between the wavelength variable range of the pump light and the Stokes light, the vibration band in the molecule to be tested, and the wavelength of the anti-Stokes light.
  • test object visualization device includes a light irradiation unit, a molecular distribution image image generation unit, a tomographic image generation unit, and an image display unit, and further includes other units as necessary.
  • the light irradiation unit varies the wavelength of at least one of pump light and Stokes light generated in the same optical path for each examination location of the test subject, and irradiates the test subject with the pump light and the Stokes light.
  • inspection location means the location which wants to acquire the said molecular distribution image image and the said tomographic image of the said test object.
  • the pumping light and the Stokes light are simultaneously irradiated on the inspection location.
  • the pump light and the Stokes light are irradiated at the same time, anti-Stokes light is generated according to a wavelength difference between the pump light and the Stokes light, and the molecular distribution image image is generated based on the detected anti-Stokes light.
  • the wavelength difference means a difference between the wavelength of the pump light and the wavelength of the Stokes light.
  • the two-dimensional molecular distribution image image and the tomographic image are obtained.
  • a molecular distribution image and the tomographic image can be obtained.
  • the same optical path means that the light path is the same and passes through the same optical system.
  • Examples of a method for generating the pump light and the Stokes light in the same optical path include a method using optical parametric oscillation.
  • Examples of the method based on the optical parametric oscillation include a method of generating laser light having different wavelengths by irradiating a nonlinear medium such as an optical parametric crystal with laser light having a predetermined wavelength.
  • the pump light is light that is irradiated to the test subject so that the energy level of the molecule that the test subject has in order to generate anti-Stokes light from the molecule that the test subject has, and in optical parametric oscillation Is sometimes referred to as “signal light”.
  • the Stokes light induces the energy level of the molecules raised by irradiation with the pump light to a predetermined energy level. This is the light that is irradiated to the object, and is sometimes referred to as “idler light” in optical parametric oscillation.
  • the wavelength of at least one of the pump light and the Stokes light is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 980 nm to 1,150 nm. When the wavelength is within the preferable range, it is advantageous in that the molecular distribution image and the tomographic image can be easily obtained in a deep portion under the fundus retina.
  • the light irradiation unit transmits the pump light and the Stokes light so that a wavelength difference between the pump light and the Stokes light becomes 0 in a range in which the wavelength of the pump light and the wavelength of the Stokes light are varied. It is preferable to irradiate the test subject.
  • the light irradiation unit preferably varies the wavelength of the pump light and the wavelength of the Stokes light so that a vibration band in a molecule included in the test subject matches the wavelength difference.
  • the said anti-Stokes light can be produced from the molecule
  • the test subject may have a plurality of molecules.
  • the molecule of the test subject is not particularly limited, and a molecule involved in a disease can be appropriately selected according to the purpose.However, in terms of being known to be involved in age-related macular degeneration disease, glucose, It is preferably at least one of rutinol and lutein.
  • the light irradiator has an optical parametric crystal that converts the wavelength of the light according to the incident angle of light, and shares the optical parametric crystal with the optical confinement device, It is preferable to provide an optical resonator that amplifies the light whose wavelength is converted by the optical parametric crystal. Thereby, the angle of the optical parametric crystal with respect to the optical axis direction of the light is changed, and the light converted into two kinds of wavelengths in the same optical path is amplified by the optical resonator, and the pump light and the light It is emitted as Stokes light. Moreover, the wavelength of the pump light and the wavelength of the Stokes light can be varied by changing the angle of the optical parametric crystal.
  • the efficiency of the optical parametric oscillation, the stability over time, the stability of the emission position of the pump light and the Stokes light with respect to wavelength change are ensured, and the nanosecond pulse, picosecond pulse, and femtosecond pulse Any of the above-mentioned light can be dealt with.
  • the high efficiency of the optical parametric oscillation is achieved by confining the light by the optical confinement device, allowing the optical parametric crystal to pass through a plurality of times, and ensuring an action length of energy conversion from the light to the pump light and the Stokes light. This is realized.
  • the temporal stability of the optical parametric oscillation is realized by shortening the resonator length of the optical parametric oscillation. Further, by matching the optical path length in the optical confinement device with the optical path length in the optical resonator, an optical parametric oscillation capable of handling any of the light of nanosecond pulses, picosecond pulses, and femtosecond pulses. To realize.
  • the pump light and the Stokes light in the optical resonator reciprocate the optical parametric crystal, the angle of the optical parametric crystal with respect to the optical axis direction of the light is changed, and the light is transmitted in the forward path. Even if the position of the optical axis is shifted, the position of the optical axis returns on the return path, so that the emission positions of the pump light and the Stokes light can be made unchanged.
  • KTP potassium titanium phosphate
  • the molecular distribution image image generation unit detects the anti-Stokes light generated from the molecules of the test object according to a wavelength difference between the pump light and the Stokes light, and the molecular distribution image image based on the anti-Stokes light. Is generated. It is preferable that the molecular distribution image image generation unit performs an inverse Fourier transform calculation process on a spectral interference signal obtained by using the anti-Stokes light as interference light and separating the interference light.
  • the anti-Stokes light is preferably generated from a molecule of the test subject by, for example, CARS (Coherent Anti-Stokes Raman Scattering).
  • CARS Coherent Anti-Stokes Raman Scattering
  • FIG. 1A is an explanatory diagram showing an energy level process until anti-Stokes light is generated in CARS.
  • pulsed-oscillated pump light angular frequency ⁇ p
  • pulse-oscillated Stokes light angular frequency ⁇ s
  • the width of the pulse in the pump light and the width of the pulse in the Stokes light are not particularly limited and may be appropriately selected depending on the purpose, but are preferably in the order of picoseconds. This makes the test subject non-invasive and facilitates ensuring a ratio of the resonance signal to the non-resonance signal (hereinafter also referred to as “resonance signal / non-resonance signal ratio”).
  • FIG. 1B is an explanatory diagram illustrating a relationship between angular frequencies of pump light, Stokes light, and anti-Stokes light.
  • the angular frequency ⁇ s of the Stokes light and the angular frequency ⁇ as of the anti-Stokes light are separated from each other by ⁇ ⁇ centered on the angular frequency ⁇ p of the pump light from the relationship of energy levels.
  • the anti-Stokes light includes the resonance anti-Stokes light (hereinafter sometimes referred to as “resonance signal” or simply “anti-Stokes light”) and the non-resonance anti-Stokes light ( Hereinafter, there are two types of “non-resonant signals”.
  • the resonance anti-Stokes light generated through the resonance process is generated from molecules of the test object and is used when generating the molecular distribution image.
  • the non-resonant anti-Stokes light generated through the non-resonant process is a response that is almost independent of the wavelength difference and involves the electronic excitation of water.
  • the tomographic image generation unit detects and detects at least one of reflected light from the test subject when irradiated with the pump light and reflected light from the test subject when irradiated with the Stokes light.
  • a tomographic image of the test subject is generated based on the reflected light.
  • the tomographic image can be acquired by, for example, OCT (Optical Coherence Tomography) or the like, and SS-OCT (Swept Source Optical Coherence Tomography) is preferable.
  • the tomographic image generation unit uses interference light as at least one of the reflected light from the test subject when irradiated with the pump light and the reflected light from the test subject when irradiated with the Stokes light. It is preferable to perform an inverse Fourier transform calculation process on the spectral interference signal obtained by separating the interference light.
  • the image display unit displays at least one of the generated molecular distribution image and the tomographic image.
  • the image display part There is no restriction
  • the signal processing unit is not particularly limited and may be appropriately selected depending on the purpose. However, the signal processing unit irradiates data based on the reflected light from the test subject when the pump light is irradiated and the Stokes light. It is preferable to combine the data based on the reflected light from the subject under test at a wavelength where the wavelength difference is zero.
  • FIG. 3 is a graph showing the dependence of the signal intensity of the anti-Stokes light on the wavelength of the Stokes light when the glucose solution is simultaneously irradiated with the pump light and the Stokes light, and the vertical axis represents the anti-Stokes light.
  • the signal intensity (mV), and the horizontal axis represents the wavelength (nm) of the Stokes light.
  • the wavelength of the pump light is fixed to 1,064 nm, the wavelength of the Stokes light is changed, and the signal intensity of the anti-Stokes light from the glucose solution is plotted. As shown in FIG.
  • the signal strength of the anti-Stokes light does not decrease in the range of ⁇ 6 nm centered at 1,209 nm in the wavelength of the Stokes light. From this, the resolution in the optical axis direction of the anti-Stokes light can be ensured by detecting the anti-Stokes light as the spectral interference signal in a range of about 10 nm while sweeping the wavelength of the Stokes light. Further, by detecting the reflected light of the Stokes light as the spectral interference signal while sweeping the wavelength of the Stokes light, a spectral interference signal in the depth direction (hereinafter referred to as “A” in SS-OCT (Swept Source Optical Coherence Tomography)). In other words, the tomographic image can be generated.
  • A spectral interference signal in the depth direction
  • FIG. 4 is an explanatory diagram illustrating a test subject visualization apparatus according to an embodiment.
  • the test subject visualization apparatus 10 includes a light irradiation unit 100, a molecular distribution image image generation unit 200, a tomographic image generation unit 300, a signal processing unit 400, and an image display unit 500.
  • the fundamental laser 101 of the light irradiation unit 100 emits a laser beam having a wavelength of 1,064 nm to the dichroic mirror 102.
  • the laser beam is a mode-locked laser beam in which picosecond or femtosecond modes are synchronized.
  • the dichroic mirror 102 has non-reflective characteristics with respect to light having a wavelength of 1,064 nm on the S1 surface.
  • the dichroic mirror 102 has non-reflective characteristics with respect to light having a wavelength of 1,064 nm and total reflection characteristics with respect to light having a wavelength of 532 nm on the S2 surface.
  • the dichroic mirror 105 has non-reflective characteristics with respect to light having a wavelength of 532 nm on the S3 surface. Further, the dichroic mirror 105 has total reflection characteristics with respect to light having a wavelength of 900 nm to 1,200 nm and non-reflection characteristics with respect to light having a wavelength of 532 nm on the S4 surface.
  • the total reflection mirror 109 has total reflection characteristics with respect to light having a wavelength of 900 nm to 1,200 nm on the S5 surface.
  • the output mirror 111 has 70% PR (Partial Reflection) characteristics for light with a wavelength of 900 nm to 1,200 nm and total reflection characteristics for light with a wavelength of 532 nm on the S6 surface.
  • the output mirror 111 has non-reflective characteristics with respect to light having a wavelength of 900 nm to 1,200 nm on the S7 surface.
  • a space between the dichroic mirror 102 and the total reflection mirror 109 forms an optical confinement device (Cavity) that confines light having a wavelength of 532 nm.
  • the optical path length of the optical confinement device can be controlled by providing the dichroic mirror 102 on the moving stage 103.
  • An L-shaped space formed by the total reflection mirror 109, the dichroic mirror 105, and the output mirror 111 forms an optical resonator (Optical Parametric Oscillation Cavity).
  • optical resonator each time light having a wavelength of 532 nm passes through the optical parametric crystal 106 in the same optical path, the signal light and the idler light are amplified, and the signal light and the idler light exceeding the threshold of the output mirror 111 are amplified.
  • the output mirror 111 Are emitted from the output mirror 111 as the pump light (indicated by a dotted arrow in FIG. 4) and the Stokes light (indicated by a broken arrow in FIG. 4).
  • the optical confinement device and the optical resonator share the optical parametric crystal 106.
  • the optical path length of the optical resonator can be controlled. Further, the wavelength of the pump light and the wavelength of the Stokes light generated in the same optical path are changed by changing the angle of the optical parametric crystal 106 using the galvano motor 107 to which the galvano drive signal is input from the galvano power supply 108. , Each can be varied.
  • the time for light having a wavelength of 532 nm to reciprocate through the optical confinement device and the time to reciprocate through the optical resonator are matched, and a plurality of optical parametric crystals 106 are formed within one light pulse period. Excited through multiple passes.
  • the pump light and the Stokes light are emitted from the output mirror 111 in a state where they are overlapped spatially and temporally in orthogonal polarization directions.
  • the pump light and the Stokes light having two orthogonal polarization frequencies are passed through a polarizer 112 whose optical axis direction is inclined by 45 ° with respect to the orthogonal axis, whereby the pump light and the Stokes light whose polarization directions coincide with each other at 45 °. Become light.
  • the pump light and the Stokes light whose polarization directions coincide with the 45 ° direction are each split by the half mirror 113.
  • One of the pump light and the Stokes light bisected by the half mirror 113 is incident on the fundus of the eyeball unit 20 as the test object via the galvanometer mirrors 115 and 116, and at the refractive index boundary of the eyeball unit 20.
  • the light is reflected, and is incident on the half mirror 113 again as reflected light of the pump light and reflected light of the Stokes light.
  • the other pump light and the Stokes light divided into two by the half mirror 113 are reflected by the reflection mirror 301 and reflected on the half mirror 113 as reference light for obtaining interference light. It overlaps with light and reflected light of the Stokes light.
  • the overlapped reference light and reflected light are separated into the interference light of the pump light and the interference light of the Stokes light by a long pass dichroic mirror 302 that reflects light having a wavelength of 1,064 nm or more.
  • the light enters the detectors 303 and 304.
  • FIG. 5 is an explanatory diagram showing an example of the relationship between the wavelength variable range of the pump light and the Stokes light, the vibration band in the molecule to be tested, and the wavelength of the anti-Stokes light.
  • skeletal vibration band [delta] 1 of glucose 512cm -1, C-O vibrational bands [delta] 2 of Ruchinoru of 1,050Cm -1, and 1,159cm -1 lutein C- and C vibration bands ⁇ 3.
  • the range for varying the wavelength difference a 0cm -1 ⁇ ⁇ 1,400cm -1.
  • the wavelength of the pump light changes in the range of 990 nm ⁇ ⁇ pump ⁇ 1,064 nm
  • the wavelength of the Stokes light changes in the range of 1,150 nm ⁇ ⁇ stokes ⁇ 1,064 nm.
  • the photodetector 303 for detecting the Stokes light outputs a spectral interference signal of 1,064 nm ⁇ ⁇ stokes ⁇ 1,150 nm
  • the photodetector 304 for detecting the pump light is 1,064 nm ⁇ ⁇
  • a spectral interference signal with pump ⁇ 990 nm is output.
  • the spectral interference signals are combined by the signal processing unit 400 at a wavelength of 1064 nm where the wavelength difference is 0, and become a spectral interference signal of 990 nm ⁇ ⁇ ⁇ 1,150 nm.
  • the A line for generating the tomographic image Signal can be obtained by scanning the measurement of the A line signal in the X direction.
  • ln is a natural logarithm
  • ⁇ 0 is the wavelength of the anti-Stokes light
  • is the step when sweeping the wavelengths of the pump light and the Stokes light.
  • One of the pump light and the Stokes light split by the half mirror 113 is further split by the half mirror 201.
  • One of the pump light and the Stokes light separated by the half mirror 201 passes through water 202 and a reflection mirror 203 as an anti-Stokes light generation sample in order to generate reference light of the non-resonant anti-Stokes light. Focused by the lens 213.
  • the non-resonant anti-Stokes light induced at the focal point is reflected by the reflection mirror 203, collected by the lens 213, and again incident on the half mirror 201 as parallel light.
  • the other pump light and Stokes light bisected by the half mirror 201 are incident on the eyeball unit 20 as the test object via the galvanometer mirrors 115 and 116, and are focused on the crystalline lens of the eyeball unit 20 and are focused on the fundus retina. Reach.
  • the resonance anti-Stokes light is generated from the molecule to be tested that is present in the fundus retina irradiated with the pump light and the Stokes light.
  • the generated resonance anti-Stokes light is collected by the crystalline lens and overlaps with the non-resonance anti-Stokes light as reference light for obtaining interference light on the half mirror 201 as parallel light.
  • the long-pass dichroic mirror 204 that reflects light having a wavelength of 990 nm or more separates the overlapping resonance anti-Stokes light and non-resonance anti-Stokes light from the pump light and Stokes light that are in the same optical axis direction.
  • the separated resonance anti-Stokes light and non-resonance anti-Stokes light are separated by a long-pass dichroic mirror 205 that reflects light having a wavelength of 950 nm or more, and the anti-Stokes light (984 nm light) in the vibration mode of the glucose skeleton is glucose resonance. It enters the photodetector 206 as a signal.
  • the anti-Stokes light (911 nm light) in the rutinol CO vibration mode and the anti-Stokes light (898 nm light) in the lutein CC vibration mode reflected by the long-pass dichroic mirror 205 reflects the light having a wavelength of 905 nm or more. 208, and enters the photodetectors 209 and 211 as a rutinol resonance signal and a lutein resonance signal, respectively.
  • the resonance anti-Stokes light corresponding to 512cm -1 glucose skeleton vibration is the Ruchinoru
  • the resonance anti-Stokes light corresponding to 1,050Cm -1 of C-O vibrations is
  • the resonance anti-Stokes light corresponding to 1,525Cm -1 of C-C vibration of lutein is, It occurs in a range of about ⁇ 5 nm from each central wavelength.
  • the resonance anti-Stokes light is superimposed on the non-resonance anti-Stokes light as the reference light on the half mirror 201 and detected by photodetectors 206, 209, and 211.
  • the outputs from the photo detectors 206, 209, and 211 are subjected to the removal of DC components by the high-pass filters 207, 210, and 212 to become spectral interference signals.
  • the A line signal for generating the molecular distribution image is 35 ⁇ m.
  • the molecular distribution image can be obtained by scanning the measurement of the A line signal in the X direction.
  • the molecular distribution image image and the tomographic image in the test subject can be acquired simultaneously.
  • optical scanning not only in the X direction but also in the Y direction, a three-dimensional image of the molecular distribution image and a three-dimensional image of the form in the test subject can be acquired simultaneously.
  • Test Subject Visualization Device 20 Eyeball (Test Subject) DESCRIPTION OF SYMBOLS 100 Light irradiation part 200 Molecular distribution image image generation part 300 Tomographic image generation part 400 Signal processing part 500 Image display part

Abstract

This test object visualizing device includes: a light radiating unit which, for each inspection site on the test object, radiates pump light and Stokes light, generated on the same optical path, at a test object, with the wavelength of at least one of the pump light and the Stokes light variable; a molecular distribution image generating unit which detects anti-Stokes light arising from the test object in accordance with the difference in the wavelengths of the pump light and the Stokes light, and generates a molecular distribution image on the basis of the anti-Stokes light; a tomographic image generating unit which detects at least one of reflected light from the test object when irradiated with the pump light, and reflected light from the test object when irradiated with the Stokes light, and generates a tomographic image of the test object on the basis of the detected reflected light; and an image display unit which displays at least one of the generated molecular distribution image and the generated tomographic image.

Description

被験対象可視化装置Subject visualization device
 本発明は、被験対象の分子分布イメージ及び断面を可視化する被験対象可視化装置に関する。 The present invention relates to a test subject visualization apparatus that visualizes a molecular distribution image and a cross section of a test subject.
 近年では、遺伝子診断が長足の進歩を遂げ、遺伝的にどのような疾病リスクがあるか否かは個々に判る時代になってきた。ただし、疾病の発生の時期までは判らないため、疾病の発生をより侵襲の少ない方法で早期に発見し、より侵襲の少ない治療を実現していくことが重要となっている。 In recent years, genetic diagnosis has made great strides, and it has become an era when it is possible to determine individually what disease risk is genetically. However, since it is not known until the time of the occurrence of the disease, it is important to detect the occurrence of the disease at an early stage by a less invasive method and realize a treatment with less invasiveness.
 疾病の早期発見には、被験対象の形態変化に至る前段階の機能変化を捉えることが肝要である。機能変化を捉えるためには、組織構造を生きたままで(in vivo)細胞内あるいは組織内の特定タンパク質などの分子の分布を可視化できる分子分布イメージング技術が有効である。 For early detection of illness, it is important to capture functional changes in the previous stages leading to morphological changes in the test subject. In order to capture the functional change, a molecular distribution imaging technique capable of visualizing the distribution of a specific protein or the like in a cell or tissue while the tissue structure is alive (in vivo) is effective.
 光を用いた前記分子分布イメージング技術としては、蛍光標識薬などを用いるプローブ法と、生体内在物質の特質を活用したノンプローブ法とに大別される。前記ノンプローブ法の中でも、CARS(Coherent Anti-Stokes Raman Scattering)を用いた前記分子分布イメージング技術について研究されている。
 また、各種疾病の発症機構やその進展メカニズムの解明において、前記被験対象の形態変化を捉えるために、前記被験対象の分子の詳細な空間位置情報は必須である。このため、前記空間位置情報に応じた前記分子分布イメージング技術が求められている。
The molecular distribution imaging technique using light is roughly classified into a probe method using a fluorescent labeling agent and the like, and a non-probe method using the characteristics of the in-vivo substance. Among the non-probe methods, the molecular distribution imaging technique using CARS (Coherent Anti-Stokes Raman Scattering) has been studied.
Moreover, in elucidating the onset mechanism of various diseases and the mechanism of their development, in order to capture the morphological change of the test subject, detailed spatial position information of the molecule of the test subject is essential. For this reason, the molecular distribution imaging technique according to the spatial position information is required.
 前記空間位置情報を得られ、非侵襲な生体の形態イメージング技術としてOCT(Optical Coherence Tomography)が発展してきている。そこで、前記CARSを用いた前記分子分布イメージング技術と前記OCTによる形態イメージング技術の複合化について検討されており、本発明者も提案している(例えば、特許文献1参照)。 The spatial position information can be obtained, and OCT (Optical Coherence Tomography) has been developed as a noninvasive morphological imaging technique. Then, the compounding of the molecular distribution imaging technique using the CARS and the morphological imaging technique using the OCT has been studied, and the inventor has also proposed (for example, see Patent Document 1).
特開2015-141282号公報JP2015-141282A
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、被験対象の分子分布イメージ画像及び断層画像を同時に取得可能な被験対象可視化装置を提供することを目的とする。 This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, an object of the present invention is to provide a test subject visualization apparatus that can simultaneously acquire a molecular distribution image image and a tomographic image of a test subject.
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 被験対象の検査箇所毎に、同一光路で発生させたポンプ光及びストークス光の少なくともいずれかの波長を可変させ、前記ポンプ光及び前記ストークス光を前記被験対象に照射する光照射部と、
 前記ポンプ光及び前記ストークス光の波長差に応じて前記被験対象から生じるアンチストークス光を検出し、前記アンチストークス光に基づいて分子分布イメージ画像を生成する分子分布イメージ画像生成部と、
 前記ポンプ光を照射したときの前記被験対象からの反射光、及び、前記ストークス光を照射したときの前記被験対象からの反射光の少なくともいずれかを検出し、検出した前記反射光に基づいて前記被験対象の断層画像を生成する断層画像生成部と、
 生成された前記分子分布イメージ画像及び前記断層画像の少なくともいずれかを表示する画像表示部とを有することを特徴とする被験対象可視化装置である。
Means for solving the problems are as follows. That is,
<1> A light irradiation unit that varies at least one of the wavelengths of the pump light and the Stokes light generated in the same optical path for each test location of the test target, and irradiates the test target with the pump light and the Stokes light. ,
A molecular distribution image image generation unit that detects anti-Stokes light generated from the test object according to a wavelength difference between the pump light and the Stokes light, and generates a molecular distribution image image based on the anti-Stokes light;
Detecting at least one of reflected light from the test subject when irradiated with the pump light, and reflected light from the test subject when irradiated with the Stokes light, and based on the detected reflected light A tomographic image generator for generating a tomographic image of the test object;
A test object visualization apparatus comprising: an image display unit configured to display at least one of the generated molecular distribution image and the tomographic image.
 前記<1>に記載の被験対象可視化装置において、被験対象の検査箇所毎に、前記光照射部は、同一光路で発生させた前記ポンプ光及び前記ストークス光の少なくともいずれかの波長を可変させ、前記ポンプ光及び前記ストークス光を前記被験対象に照射する。前記分子分布イメージ画像生成部は、前記ポンプ光及び前記ストークス光の波長差に応じて前記被験対象から生じる前記アンチストークス光を検出し、前記アンチストークス光に基づいて分子分布イメージ画像を生成する。前記断層画像生成部は、前記ポンプ光を照射したときの前記被験対象からの反射光、及び、前記ストークス光を照射したときの前記被験対象からの反射光の少なくともいずれかを検出し、検出した前記反射光に基づいて前記被験対象の断層画像を生成する。前記画像表示部は、検出した前記反射光に基づいて前記被験対象の断層画像を生成する断層画像生成部と、生成された前記分子分布イメージ画像及び前記断層画像の少なくともいずれかを表示する。 In the test subject visualization device according to <1>, for each test location of the test subject, the light irradiation unit varies the wavelength of at least one of the pump light and the Stokes light generated in the same optical path, The test light is irradiated to the pump light and the Stokes light. The molecular distribution image image generation unit detects the anti-Stokes light generated from the test object according to a wavelength difference between the pump light and the Stokes light, and generates a molecular distribution image image based on the anti-Stokes light. The tomographic image generation unit detects and detects at least one of reflected light from the test subject when irradiated with the pump light and reflected light from the test subject when irradiated with the Stokes light. A tomographic image of the test subject is generated based on the reflected light. The image display unit displays a tomographic image generation unit that generates a tomographic image of the test subject based on the detected reflected light, and at least one of the generated molecular distribution image image and the tomographic image.
 前記光照射部が、前記ポンプ光及び前記ストークス光を同一光路で発生させることにより、前記ポンプ光及び前記ストークス光を別個の光路で発生させる場合と比較すると、出射口から前記被験対象までの光路長の調整のためのミラーや空間が不要となり、被験対象可視化装置を小型化することができる。
 また、前記被験対象可視化装置が、前記被験対象の検査箇所毎に、同一光路で発生させた前記ポンプ光及び前記ストークス光の少なくともいずれかの波長を可変させて照射させることにより、前記被験対象に前記ポンプ光を照射したときの前記被験対象からの反射光、及び、前記ストークス光を照射したときの前記被験対象からの反射光の少なくともいずれかに基づいて前記被験対象の断層画像を生成するとともに、前記アンチストークス光に基づいて分子分布イメージ画像を生成するため、前記分子分布イメージ画像及び前記断層画像を同時に取得することができる。なお、前記ポンプ光及び前記ストークス光をXY走査させることにより、3次元の前記分子分布イメージ画像及び前記断層画像を取得することができる。
Compared with the case where the light irradiation unit generates the pump light and the Stokes light in separate optical paths by generating the pump light and the Stokes light in the same optical path, the optical path from the exit port to the test subject. A mirror or space for adjusting the length becomes unnecessary, and the test object visualization apparatus can be miniaturized.
In addition, the test subject visualization apparatus irradiates the test subject by varying the wavelength of at least one of the pump light and the Stokes light generated in the same optical path for each test location of the test subject. Generating a tomographic image of the test subject based on at least one of reflected light from the test subject when irradiated with the pump light and reflected light from the test subject when irradiated with the Stokes light Since the molecular distribution image is generated based on the anti-Stokes light, the molecular distribution image and the tomographic image can be acquired simultaneously. In addition, the three-dimensional molecular distribution image image and the tomographic image can be acquired by XY scanning the pump light and the Stokes light.
 <2> 前記光照射部が、前記ポンプ光の波長及び前記ストークス光の波長を可変させた範囲において、前記ポンプ光及び前記ストークス光の波長差が0となるように、前記ポンプ光及び前記ストークス光を前記被験対象に照射し、
 前記断層画像生成部が、前記ポンプ光を照射したときの前記被験対象からの前記反射光に基づくデータと、前記ストークス光を照射したときの前記被験対象からの前記反射光に基づくデータとを、前記波長差が0となる波長において結合させたデータに基づいて前記断層画像を生成する前記<1>に記載の被験対象可視化装置である。
<2> The pump light and the Stokes light so that a wavelength difference between the pump light and the Stokes light becomes 0 in a range in which the light irradiation unit varies the wavelength of the pump light and the wavelength of the Stokes light. Irradiating the subject with light,
Data based on the reflected light from the test subject when the tomographic image generation unit irradiates the pump light, and data based on the reflected light from the test subject when the Stokes light is irradiated, The test object visualization apparatus according to <1>, wherein the tomographic image is generated based on data combined at a wavelength at which the wavelength difference is 0.
 前記<2>に記載の被験対象可視化装置において、前記光照射部は、前記ポンプ光の波長及び前記ストークス光の波長を可変させた範囲において、前記ポンプ光及び前記ストークス光の波長差が0となるように、前記ポンプ光及び前記ストークス光を前記被験対象に照射する。これにより、前記断層画像生成部が、前記ポンプ光を照射したときの前記被験対象からの前記反射光に基づくデータと、前記ストークス光を照射したときの前記被験対象からの前記反射光に基づくデータとを、前記波長差が0となる波長において結合させたデータに基づいて前記断層画像を生成することにより、前記断層画像の深度方向におけるデータを増加させることができ、前記断層画像の高分解能化することができる。 In the test subject visualization device according to <2>, the light irradiation unit has a wavelength difference between the pump light and the Stokes light of 0 in a range in which the wavelength of the pump light and the wavelength of the Stokes light are varied. In such a manner, the test light is irradiated with the pump light and the Stokes light. Thereby, the data based on the reflected light from the test subject when the tomographic image generation unit irradiates the pump light and the data based on the reflected light from the test subject when irradiated with the Stokes light Can be increased in the depth direction of the tomographic image, and the resolution of the tomographic image can be increased. can do.
 <3> 前記分子分布イメージ画像生成部が、前記アンチストークス光を干渉光とし、前記干渉光を分光したスペクトル干渉信号に対してフーリエ逆変換の演算処理を行う前記<1>から<2>のいずれかに記載の被験対象可視化装置である。 <3> The <1> to <2>, wherein the molecular distribution image image generation unit uses the anti-Stokes light as interference light and performs an inverse Fourier transform calculation process on a spectral interference signal obtained by separating the interference light. It is a test subject visualization apparatus in any one.
 前記<3>に記載の被験対象可視化装置において、前記分子分布イメージ画像生成部が、前記アンチストークス光を干渉光とし、前記干渉光を分光したスペクトル干渉信号に対してフーリエ逆変換の演算処理を行うことにより、ウィナー・ヒンチンの定理から前記分子分布イメージ画像を生成することができる。 In the test subject visualization device according to <3>, the molecular distribution image image generation unit performs an inverse Fourier transform calculation process on a spectral interference signal obtained by separating the interference light using the anti-Stokes light as interference light. By doing so, the molecular distribution image can be generated from the Wiener Hinting theorem.
 <4> 前記断層画像生成部が、前記ポンプ光を照射したときの前記被験対象からの前記反射光、及び、前記ストークス光を照射したときの前記被験対象からの前記反射光の少なくともいずれかを干渉光とし、前記干渉光を分光したスペクトル干渉信号に対してフーリエ逆変換の演算処理を行う前記<1>から<3>のいずれかに記載の被験対象可視化装置である。 <4> At least one of the reflected light from the test subject when the tomographic image generating unit irradiates the pump light and the reflected light from the test subject when irradiated with the Stokes light. The test object visualization apparatus according to any one of <1> to <3>, wherein the interference interference light is used to perform inverse Fourier transform processing on a spectral interference signal obtained by separating the interference light.
 前記<4>に記載の被験対象可視化装置において、前記断層画像生成部が、前記ポンプ光を照射したときの前記被験対象からの前記反射光、及び、前記ストークス光を照射したときの前記被験対象からの前記反射光の少なくともいずれかを干渉光とし、前記干渉光を分光したスペクトル干渉信号に対してフーリエ逆変換の演算処理を行うことにより、ウィナー・ヒンチンの定理から前記断層画像を生成することができる。 The test subject visualization device according to <4>, wherein the tomographic image generation unit irradiates the reflected light from the test subject when irradiated with the pump light and the Stokes light. Generating the tomographic image from Wiener Hinchin's theorem by using at least one of the reflected light from the interference light as an interference light and performing an inverse Fourier transform operation on a spectral interference signal obtained by separating the interference light Can do.
 <5> 前記光照射部が、
 光の入射角度に応じて前記光の波長を変換する光パラメトリック結晶を有し、前記光を閉じ込める光閉じ込め器と、
 前記光パラメトリック結晶を前記光閉じ込め器と共有し、前記光パラメトリック結晶により波長が変換された光を増幅させる光共振器とを備える前記<1>から<4>のいずれかに記載の被験対象可視化装置である。
<5> The light irradiation unit is
An optical parametric crystal that converts a wavelength of the light according to an incident angle of the light, and an optical confinement device that confines the light;
The subject visualization according to any one of <1> to <4>, further comprising: an optical resonator that shares the optical parametric crystal with the optical confinement device and amplifies light having a wavelength converted by the optical parametric crystal. Device.
 前記<5>に記載の被験対象可視化装置の前記光照射部において、前記光閉じ込め器は、光の入射角度に応じて前記光の波長を変換する光パラメトリック結晶を有し、前記光を閉じ込める。前記光共振器は、前記光パラメトリック結晶を前記光閉じ込め器と共有し、前記光パラメトリック結晶により波長が変換された光を増幅させる。これにより、前記光の光軸方向に対する前記光パラメトリック結晶の角度をそれぞれ変化させ、2種類の波長に変換された前記光は、前記光共振器により増幅されて、前記ポンプ光及び前記ストークス光として出射させることができる。また、前記ポンプ光の波長及び前記ストークス光の波長は、前記光パラメトリック結晶の角度を変化させることにより、それぞれ可変させることができる。 In the light irradiation unit of the test subject visualization device according to <5>, the optical confinement device includes an optical parametric crystal that converts a wavelength of the light according to an incident angle of light, and confines the light. The optical resonator shares the optical parametric crystal with the optical confinement device, and amplifies light whose wavelength is converted by the optical parametric crystal. As a result, the angle of the optical parametric crystal with respect to the optical axis direction of the light is changed, and the light converted into two types of wavelengths is amplified by the optical resonator and is used as the pump light and the Stokes light. Can be emitted. Further, the wavelength of the pump light and the wavelength of the Stokes light can be varied by changing the angle of the optical parametric crystal.
 <6> 前記光照射部が、前記被験対象が有する分子における振動バンドが前記波長差と一致するように、前記ポンプ光の波長及び前記ストークス光の波長を可変させる前記<1>から<5>のいずれかに記載の被験対象可視化装置である。 <6> The <1> to <5>, wherein the light irradiation unit varies the wavelength of the pump light and the wavelength of the Stokes light so that a vibration band in a molecule included in the test subject coincides with the wavelength difference. The test subject visualization apparatus according to any one of the above.
 前記<6>に記載の被験対象可視化装置において、前記光照射部が、前記被験対象が有する分子における振動バンドが前記波長差と一致するように、前記ポンプ光の波長及び前記ストークス光の波長を可変させることにより、前記被験対象が有する分子から前記アンチストークス光を生じさせることができるため、検出した前記アンチストークス光に基づいて前記分子分布イメージ画像を生成することができる。また、前記被験対象が有する分子は、複数であってもよい。 In the test subject visualization device according to <6>, the light irradiation unit may change the wavelength of the pump light and the wavelength of the Stokes light so that a vibration band in a molecule included in the test subject matches the wavelength difference. By making it variable, the anti-Stokes light can be generated from the molecules of the test subject, and therefore the molecular distribution image can be generated based on the detected anti-Stokes light. Moreover, the molecule | numerator which the said test subject has may be multiple.
 <7> 前記被験対象が有する分子が、グルコース、ルチノール、及びルテインの少なくともいずれかである前記<6>に記載の被験対象可視化装置である。 <7> The test subject visualization device according to <6>, wherein the molecule of the test subject is at least one of glucose, rutinol, and lutein.
 前記<7>に記載の被験対象可視化装置において、前記被験対象が有する分子が、グルコース、ルチノール、及びルテインの少なくともいずれかであることにより、加齢黄斑変性の発症に関わる分子の眼底網膜内分布が判り、加齢黄斑変性疾患を早期に診断することができる。 In the test subject visualization device according to <7>, the molecule in the test subject has at least one of glucose, rutinol, and lutein, whereby the intraretinal distribution of molecules involved in the development of age-related macular degeneration Thus, age-related macular degenerative disease can be diagnosed early.
 本発明によると、従来における問題を解決することができ、被験対象の分子分布イメージ画像及び断層画像を同時に取得可能な被験対象可視化装置を提供することができる。 According to the present invention, the conventional problem can be solved, and a test subject visualization apparatus capable of simultaneously obtaining a molecular distribution image and a tomographic image of a test subject can be provided.
図1Aは、CARSにおいてアンチストークス光が生じるまでのエネルギー準位過程を示す説明図である。FIG. 1A is an explanatory diagram showing an energy level process until anti-Stokes light is generated in CARS. 図1Bは、ポンプ光、ストークス光、及びアンチストークス光の角周波数の関係を示す説明図である。FIG. 1B is an explanatory diagram illustrating a relationship between angular frequencies of pump light, Stokes light, and anti-Stokes light. 図2Aは、分子振動の励起準位V=1を経たときに共鳴アンチストークス光となる共鳴過程を示す説明図である。FIG. 2A is an explanatory diagram showing a resonance process that becomes resonance anti-Stokes light when passing through an excitation level V = 1 of molecular vibration. 図2Bは、分子振動の励起準位V=1を経ないときに非共鳴アンチストークス光となる非共鳴過程を示す説明図である。FIG. 2B is an explanatory diagram showing a non-resonant process that becomes non-resonant anti-Stokes light when the excitation level V = 1 of molecular vibration is not passed. 図3は、グルコース溶液にポンプ光及びストークス光を同時に照射したときの、アンチストークス光の信号強度におけるストークス光の波長に対する依存性を示すグラフである。FIG. 3 is a graph showing the dependence of the signal strength of anti-Stokes light on the wavelength of Stokes light when the glucose solution is irradiated with pump light and Stokes light simultaneously. 図4は、実施例における被験対象可視化装置を示す説明図である。FIG. 4 is an explanatory diagram illustrating a test subject visualization apparatus according to an embodiment. 図5は、ポンプ光及びストークス光の波長可変範囲、被験対象の分子における振動バンド、及びアンチストークス光の波長との関係の一例を示す説明図である。FIG. 5 is an explanatory diagram showing an example of the relationship between the wavelength variable range of the pump light and the Stokes light, the vibration band in the molecule to be tested, and the wavelength of the anti-Stokes light.
(被験対象可視化装置)
 前記被験対象可視化装置は、光照射部と、分子分布イメージ画像生成部と、断層画像生成部と、画像表示部とを有し、更に必要に応じてその他の部を有する。
(Test object visualization device)
The test object visualization device includes a light irradiation unit, a molecular distribution image image generation unit, a tomographic image generation unit, and an image display unit, and further includes other units as necessary.
<光照射部>
 前記光照射部は、被験対象の検査箇所毎に、同一光路で発生させたポンプ光及びストークス光の少なくともいずれかの波長を可変させ、前記ポンプ光及び前記ストークス光を前記被験対象に照射する。
<Light irradiation part>
The light irradiation unit varies the wavelength of at least one of pump light and Stokes light generated in the same optical path for each examination location of the test subject, and irradiates the test subject with the pump light and the Stokes light.
 前記被験対象は、特に制限はなく、目的に応じて適宜選択することができ、例えば、眼底などが挙げられる。
 前記検査箇所とは、前記被験対象の前記分子分布イメージ画像及び前記断層画像を取得したい箇所を意味する。前記検査箇所には、前記ポンプ光及び前記ストークス光が同時に照射される。前記ポンプ光及び前記ストークス光が同時に照射され、前記ポンプ光及び前記ストークス光の波長差に応じてアンチストークス光が生じ、検出した前記アンチストークス光に基づいて前記分子分布イメージ画像を生成することができる。
 前記波長差とは、前記ポンプ光の波長と前記ストークス光の波長との差分を意味する。
 また、前記検査箇所を前記被験対象のX方向に複数設定すると2次元の前記分子分布イメージ画像及び前記断層画像が得られ、前記検査箇所を前記被験対象のXY方向に複数設定すると3次元の前記分子分布イメージ画像及び前記断層画像を得ることができる。
 前記同一光路とは、光の通る道が同一であり、同一の光学系を通過することを意味する。
 前記ポンプ光及び前記ストークス光を同一光路で発生させる方法としては、例えば、光パラメトリック発振による方法などが挙げられる。
 前記光パラメトリック発振による方法としては、例えば、所定の波長のレーザー光を光パラメトリック結晶などの非線形媒質に照射して異なる波長のレーザー光を発生させる方法などが挙げられる。
There is no restriction | limiting in particular in the said test subject, According to the objective, it can select suitably, For example, a fundus etc. are mentioned.
The said test | inspection location means the location which wants to acquire the said molecular distribution image image and the said tomographic image of the said test object. The pumping light and the Stokes light are simultaneously irradiated on the inspection location. The pump light and the Stokes light are irradiated at the same time, anti-Stokes light is generated according to a wavelength difference between the pump light and the Stokes light, and the molecular distribution image image is generated based on the detected anti-Stokes light. it can.
The wavelength difference means a difference between the wavelength of the pump light and the wavelength of the Stokes light.
Further, when a plurality of the examination locations are set in the X direction of the test subject, the two-dimensional molecular distribution image image and the tomographic image are obtained. A molecular distribution image and the tomographic image can be obtained.
The same optical path means that the light path is the same and passes through the same optical system.
Examples of a method for generating the pump light and the Stokes light in the same optical path include a method using optical parametric oscillation.
Examples of the method based on the optical parametric oscillation include a method of generating laser light having different wavelengths by irradiating a nonlinear medium such as an optical parametric crystal with laser light having a predetermined wavelength.
 前記ポンプ光は、前記被験対象が有する分子からアンチストークス光を生じさせるために、前記被験対象が有する分子のエネルギー準位が上がるように前記被験対象に照射される光であり、光パラメトリック発振においては「シグナル光」と称されることがある。
 前記ストークス光は、前記被験対象が有する分子から前記アンチストークス光を生じさせるために、前記ポンプ光を照射されて上がった前記分子のエネルギー準位を所定のエネルギー準位に誘導するように前記被験対象に照射される光であり、光パラメトリック発振においては「アイドラ光」と称されることがある。
 なお、前記被験対象の前記検査箇所に対して、前記ポンプ光と前記ストークス光を同時に照射することにより、前記被験対象が有する分子から前記アンチストークス光を生じさせる原理については後述する。
 前記ポンプ光及び前記ストークス光の少なくともいずれかの波長としては、特に制限はなく、目的に応じて適宜選択することができるが、980nm以上1,150nm以下が好ましい。前記波長が前記好ましい範囲内であると、眼底網膜下の深部における前記分子分布イメージ画像及び前記断層画像が得られやすい点で有利である。
The pump light is light that is irradiated to the test subject so that the energy level of the molecule that the test subject has in order to generate anti-Stokes light from the molecule that the test subject has, and in optical parametric oscillation Is sometimes referred to as “signal light”.
In order to generate the anti-Stokes light from the molecules of the test subject, the Stokes light induces the energy level of the molecules raised by irradiation with the pump light to a predetermined energy level. This is the light that is irradiated to the object, and is sometimes referred to as “idler light” in optical parametric oscillation.
In addition, the principle which produces the said anti-Stokes light from the molecule | numerator which the said test subject has by irradiating the said test | inspection location of the said test subject simultaneously with the said pump light and the said Stokes light is mentioned later.
The wavelength of at least one of the pump light and the Stokes light is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 980 nm to 1,150 nm. When the wavelength is within the preferable range, it is advantageous in that the molecular distribution image and the tomographic image can be easily obtained in a deep portion under the fundus retina.
 前記光照射部は、前記ポンプ光の波長及び前記ストークス光の波長を可変させた範囲において、前記ポンプ光及び前記ストークス光の波長差が0となるように、前記ポンプ光及び前記ストークス光を前記被験対象に照射することが好ましい。 The light irradiation unit transmits the pump light and the Stokes light so that a wavelength difference between the pump light and the Stokes light becomes 0 in a range in which the wavelength of the pump light and the wavelength of the Stokes light are varied. It is preferable to irradiate the test subject.
 前記光照射部は、前記被験対象が有する分子における振動バンドが前記波長差と一致するように、前記ポンプ光の波長及び前記ストークス光の波長を可変させることが好ましい。これにより、前記被験対象が有する分子から前記アンチストークス光を生じさせ、前記アンチストークス光を検出して、前記分子分布イメージ画像を生成することができる。
 なお、前記被験対象が有する分子は、複数であってもよい。
 前記被験対象が有する分子としては、特に制限はなく、目的に応じて適宜疾患にかかわる分子などを選択することができるが、加齢黄斑変性疾患に関与することが公知である点で、グルコース、ルチノール、及びルテインの少なくともいずれかであることが好ましい。
The light irradiation unit preferably varies the wavelength of the pump light and the wavelength of the Stokes light so that a vibration band in a molecule included in the test subject matches the wavelength difference. Thereby, the said anti-Stokes light can be produced from the molecule | numerator which the said test subject has, the said anti-Stokes light can be detected, and the said molecular distribution image image can be produced | generated.
The test subject may have a plurality of molecules.
The molecule of the test subject is not particularly limited, and a molecule involved in a disease can be appropriately selected according to the purpose.However, in terms of being known to be involved in age-related macular degeneration disease, glucose, It is preferably at least one of rutinol and lutein.
 前記光照射部としては、光の入射角度に応じて前記光の波長を変換する光パラメトリック結晶を有し、前記光を閉じ込める光閉じ込め器と、前記光パラメトリック結晶を前記光閉じ込め器と共有し、前記光パラメトリック結晶により波長が変換された光を増幅させる光共振器とを備えることが好ましい。
 これにより、前記光の光軸方向に対する前記光パラメトリック結晶の角度をそれぞれ変化させ、同一光路で2種類の波長に変換された前記光は、前記光共振器により増幅されて、前記ポンプ光及び前記ストークス光として出射される。
 また、前記光パラメトリック結晶の角度を変化させることにより、前記ポンプ光の波長及び前記ストークス光の波長をそれぞれ可変させることができる。また、このような光パラメトリック発振の高効率化、経時安定性、波長変化に対する前記ポンプ光及び前記ストークス光の出射位置の安定性を確保するとともに、ナノ秒パルス、ピコ秒パルス、及びフェムト秒パルスのいずれの前記光にも対応することができる。
The light irradiator has an optical parametric crystal that converts the wavelength of the light according to the incident angle of light, and shares the optical parametric crystal with the optical confinement device, It is preferable to provide an optical resonator that amplifies the light whose wavelength is converted by the optical parametric crystal.
Thereby, the angle of the optical parametric crystal with respect to the optical axis direction of the light is changed, and the light converted into two kinds of wavelengths in the same optical path is amplified by the optical resonator, and the pump light and the light It is emitted as Stokes light.
Moreover, the wavelength of the pump light and the wavelength of the Stokes light can be varied by changing the angle of the optical parametric crystal. In addition, the efficiency of the optical parametric oscillation, the stability over time, the stability of the emission position of the pump light and the Stokes light with respect to wavelength change are ensured, and the nanosecond pulse, picosecond pulse, and femtosecond pulse Any of the above-mentioned light can be dealt with.
 前記光パラメトリック発振の高効率化は、前記光閉じ込め器により前記光を閉じ込め、前記光パラメトリック結晶を複数回通過させ、前記光から前記ポンプ光及び前記ストークス光へのエネルギー変換の作用長を確保することにより実現する。
 前記光パラメトリック発振の経時安定性は、光パラメトリック発振の共振器長を短くすることにより実現する。また、前記光閉じ込め器における光路長と、前記光共振器における光路長とを一致させることにより、ナノ秒パルス、ピコ秒パルス、及びフェムト秒パルスのいずれの前記光にも対応可能な光パラメトリック発振を実現する。
 更に、前記光共振器内の前記ポンプ光及び前記ストークス光は、前記光パラメトリック結晶を往復させているため、前記光の光軸方向に対する前記光パラメトリック結晶の角度を変化させ、往路で前記光の光軸の位置がズレても復路で光軸の位置が戻るため、前記ポンプ光及び前記ストークス光の出射位置を不変とすることができる。
 前記光パラメトリック結晶としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カリウムチタンリン酸塩(KTP)などが挙げられる。
The high efficiency of the optical parametric oscillation is achieved by confining the light by the optical confinement device, allowing the optical parametric crystal to pass through a plurality of times, and ensuring an action length of energy conversion from the light to the pump light and the Stokes light. This is realized.
The temporal stability of the optical parametric oscillation is realized by shortening the resonator length of the optical parametric oscillation. Further, by matching the optical path length in the optical confinement device with the optical path length in the optical resonator, an optical parametric oscillation capable of handling any of the light of nanosecond pulses, picosecond pulses, and femtosecond pulses. To realize.
Further, since the pump light and the Stokes light in the optical resonator reciprocate the optical parametric crystal, the angle of the optical parametric crystal with respect to the optical axis direction of the light is changed, and the light is transmitted in the forward path. Even if the position of the optical axis is shifted, the position of the optical axis returns on the return path, so that the emission positions of the pump light and the Stokes light can be made unchanged.
There is no restriction | limiting in particular as said optical parametric crystal, According to the objective, it can select suitably, For example, potassium titanium phosphate (KTP) etc. are mentioned.
<分子分布イメージ画像生成部>
 前記分子分布イメージ画像生成部は、前記ポンプ光及び前記ストークス光の波長差に応じて前記被験対象が有する分子から生じる前記アンチストークス光を検出し、前記アンチストークス光に基づいて前記分子分布イメージ画像を生成する。
 前記分子分布イメージ画像生成部は、前記アンチストークス光を干渉光とし、前記干渉光を分光したスペクトル干渉信号に対してフーリエ逆変換の演算処理を行うことが好ましい。
<Molecular distribution image generator>
The molecular distribution image image generation unit detects the anti-Stokes light generated from the molecules of the test object according to a wavelength difference between the pump light and the Stokes light, and the molecular distribution image image based on the anti-Stokes light. Is generated.
It is preferable that the molecular distribution image image generation unit performs an inverse Fourier transform calculation process on a spectral interference signal obtained by using the anti-Stokes light as interference light and separating the interference light.
 前記アンチストークス光は、例えば、CARS(Coherent Anti-Stokes Raman Scattering)により前記被験対象が有する分子から生じさせることが好ましい。
 次に、前記CARSについて図1A、図1B、図2A、及び図2Bを参照しながら説明する。
The anti-Stokes light is preferably generated from a molecule of the test subject by, for example, CARS (Coherent Anti-Stokes Raman Scattering).
Next, the CARS will be described with reference to FIGS. 1A, 1B, 2A, and 2B.
 図1Aは、CARSにおいてアンチストークス光が生じるまでのエネルギー準位過程を示す説明図である。
 図1Aに示すように、パルス発振させたポンプ光(角周波数ω)と、パルス発振させたストークス光(角周波数ω)とを、前記被験対象に時空間的に同時に照射する。このとき、前記ポンプ光と前記ストークス光との角周波数差(Δω=ω-ω)が被験対象の分子における振動バンドであると、前記分子のエネルギー準位は、前記ポンプ光により基底準位V=0から上準位へ上がるとともに、前記ストークス光により励起準位V=1に誘導される。その後、前記ポンプ光を前記被験対象に照射すると、より上準位へ上がった後、基底準位V=0に下がる過程でアンチストークス光を生じる。
 前記ポンプ光における前記パルスの幅、及び、前記ストークス光における前記パルスの幅としては、特に制限はなく、目的に応じて適宜選択することができるが、ピコ秒間オーダーが好ましい。これにより、前記被験対象に対して非侵襲になるとともに、前記非共鳴信号に対する前記共鳴信号の比(以下、「共鳴信号/非共鳴信号比」と称することもある)が確保しやすい。
FIG. 1A is an explanatory diagram showing an energy level process until anti-Stokes light is generated in CARS.
As shown in FIG. 1A, pulsed-oscillated pump light (angular frequency ω p ) and pulse-oscillated Stokes light (angular frequency ω s ) are simultaneously and temporally irradiated onto the test subject. At this time, if the angular frequency difference (Δω = ω p −ω s ) between the pump light and the Stokes light is a vibration band in the molecule to be tested, the energy level of the molecule is changed to the base level by the pump light. While rising from the level V = 0 to the upper level, the Stokes light induces the excitation level V = 1. Thereafter, when the test light is irradiated onto the test subject, anti-Stokes light is generated in the process of lowering to the ground level V = 0 after rising to a higher level.
The width of the pulse in the pump light and the width of the pulse in the Stokes light are not particularly limited and may be appropriately selected depending on the purpose, but are preferably in the order of picoseconds. This makes the test subject non-invasive and facilitates ensuring a ratio of the resonance signal to the non-resonance signal (hereinafter also referred to as “resonance signal / non-resonance signal ratio”).
 図1Bは、ポンプ光、ストークス光、及びアンチストークス光の角周波数の関係を示す説明図である。
 図1Bに示すように、前記ストークス光の角周波数ω及び前記アンチストークス光の角周波数ωasは、エネルギー準位の関係から、前記ポンプ光の角周波数ωを中心にそれぞれ±Δω離れて存在する。即ち、前記ストークス光の角周波数は、次式、ω=ω-Δωと表すことができる。また、前記アンチストークス光の角周波数は、次式、ωas=2ω-ω=ω+Δωと表すことができる。
FIG. 1B is an explanatory diagram illustrating a relationship between angular frequencies of pump light, Stokes light, and anti-Stokes light.
As shown in FIG. 1B, the angular frequency ω s of the Stokes light and the angular frequency ω as of the anti-Stokes light are separated from each other by ± Δω centered on the angular frequency ω p of the pump light from the relationship of energy levels. Exists. That is, the angular frequency of the Stokes light can be expressed by the following equation: ω s = ω p −Δω. The angular frequency of the anti-Stokes light can be expressed by the following equation: ω as = 2ω p −ω s = ω p + Δω.
 図2Aは、分子振動の励起準位V=1を経たときに共鳴アンチストークス光となる共鳴過程を示す説明図である。図2Bは、分子振動の励起準位V=1を経ないときに非共鳴アンチストークス光となる非共鳴過程を示す説明図である。
 図2A及び図2Bに示すように、前記アンチストークス光には、前記共鳴アンチストークス光(以下、「共鳴信号」又は単に「アンチストークス光」と称することもある)及び前記非共鳴アンチストークス光(以下、「非共鳴信号」と称することもある)の2種類がある。
 前記共鳴過程を経て生じた前記共鳴アンチストークス光は、前記被験対象が有する分子から生じたものであり、前記分子分布イメージ画像を生成する際に用いられる。
 前記非共鳴過程を経て生じた前記非共鳴アンチストークス光は、前記波長差にほとんど依存せず、水の電子励起が関与した応答である。
FIG. 2A is an explanatory diagram showing a resonance process that becomes resonance anti-Stokes light when passing through an excitation level V = 1 of molecular vibration. FIG. 2B is an explanatory diagram showing a non-resonant process that becomes non-resonant anti-Stokes light when the excitation level V = 1 of molecular vibration is not passed.
As shown in FIGS. 2A and 2B, the anti-Stokes light includes the resonance anti-Stokes light (hereinafter sometimes referred to as “resonance signal” or simply “anti-Stokes light”) and the non-resonance anti-Stokes light ( Hereinafter, there are two types of “non-resonant signals”.
The resonance anti-Stokes light generated through the resonance process is generated from molecules of the test object and is used when generating the molecular distribution image.
The non-resonant anti-Stokes light generated through the non-resonant process is a response that is almost independent of the wavelength difference and involves the electronic excitation of water.
<断層画像生成部>
 前記断層画像生成部は、前記ポンプ光を照射したときの前記被験対象からの反射光、及び、前記ストークス光を照射したときの前記被験対象からの反射光の少なくともいずれかを検出し、検出した前記反射光に基づいて前記被験対象の断層画像を生成する。
 前記断層画像は、例えば、OCT(Optical Coherence Tomography)などにより取得することができるが、SS-OCT(Swept Source Optical Coherence Tomography)が好ましい。
 前記断層画像生成部は、前記ポンプ光を照射したときの前記被験対象からの前記反射光、及び、前記ストークス光を照射したときの前記被験対象からの前記反射光の少なくともいずれかを干渉光とし、前記干渉光を分光したスペクトル干渉信号に対してフーリエ逆変換の演算処理を行うことが好ましい。
<Tomographic image generator>
The tomographic image generation unit detects and detects at least one of reflected light from the test subject when irradiated with the pump light and reflected light from the test subject when irradiated with the Stokes light. A tomographic image of the test subject is generated based on the reflected light.
The tomographic image can be acquired by, for example, OCT (Optical Coherence Tomography) or the like, and SS-OCT (Swept Source Optical Coherence Tomography) is preferable.
The tomographic image generation unit uses interference light as at least one of the reflected light from the test subject when irradiated with the pump light and the reflected light from the test subject when irradiated with the Stokes light. It is preferable to perform an inverse Fourier transform calculation process on the spectral interference signal obtained by separating the interference light.
<画像表示部>
 前記画像表示部は、生成された前記分子分布イメージ画像及び前記断層画像の少なくともいずれかを表示する。
 前記画像表示部としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、液晶モニターなどが挙げられる。
<Image display section>
The image display unit displays at least one of the generated molecular distribution image and the tomographic image.
There is no restriction | limiting in particular as said image display part, According to the objective, it can select suitably, For example, a liquid crystal monitor etc. are mentioned.
<その他の部>
 前記その他の部としては、特に制限はなく、目的に応じて適宜選択することができるが、信号処理部を有することが好ましい。
 前記信号処理部としては、特に制限はなく、目的に応じて適宜選択することができるが、前記ポンプ光を照射したときの前記被験対象からの前記反射光に基づくデータと、前記ストークス光を照射したときの前記被験対象からの前記反射光に基づくデータとを、前記波長差が0となる波長において結合させることが好ましい。
<Other parts>
There is no restriction | limiting in particular as said other part, Although it can select suitably according to the objective, It is preferable to have a signal processing part.
The signal processing unit is not particularly limited and may be appropriately selected depending on the purpose. However, the signal processing unit irradiates data based on the reflected light from the test subject when the pump light is irradiated and the Stokes light. It is preferable to combine the data based on the reflected light from the subject under test at a wavelength where the wavelength difference is zero.
 図3は、グルコース溶液に前記ポンプ光及び前記ストークス光を同時に照射したときの、前記アンチストークス光の信号強度におけるストークス光の波長に対する依存性を示すグラフであり、縦軸が前記アンチストークス光の信号強度(mV)、横軸が前記ストークス光の波長(nm)である。図3では、前記ポンプ光の波長を1,064nmに固定し、前記ストークス光の波長を変化させ、前記グルコース溶液からの前記アンチストークス光の信号強度をプロットしたものである。
 図3に示すように、前記ストークス光の波長において1,209nmを中心とした±6nmの範囲では、前記アンチストークス光の信号強度が低下していないことが確認できる。このことから、前記ストークス光の波長を掃引しながら前記アンチストークス光を10nm程度の範囲で前記スペクトル干渉信号として検出することにより、前記アンチストークス光の光軸方向における分解能を確保することができる。また、前記ストークス光の波長を掃引しながら前記ストークス光の反射光を前記スペクトル干渉信号として検出することにより、SS-OCT(Swept Source Optical Coherence Tomography)における深度方向のスペクトル干渉信号(以下、「Aライン信号」と称することもある)の取得を行ったこととなり、前記断層画像を生成することができる。
FIG. 3 is a graph showing the dependence of the signal intensity of the anti-Stokes light on the wavelength of the Stokes light when the glucose solution is simultaneously irradiated with the pump light and the Stokes light, and the vertical axis represents the anti-Stokes light. The signal intensity (mV), and the horizontal axis represents the wavelength (nm) of the Stokes light. In FIG. 3, the wavelength of the pump light is fixed to 1,064 nm, the wavelength of the Stokes light is changed, and the signal intensity of the anti-Stokes light from the glucose solution is plotted.
As shown in FIG. 3, it can be confirmed that the signal strength of the anti-Stokes light does not decrease in the range of ± 6 nm centered at 1,209 nm in the wavelength of the Stokes light. From this, the resolution in the optical axis direction of the anti-Stokes light can be ensured by detecting the anti-Stokes light as the spectral interference signal in a range of about 10 nm while sweeping the wavelength of the Stokes light. Further, by detecting the reflected light of the Stokes light as the spectral interference signal while sweeping the wavelength of the Stokes light, a spectral interference signal in the depth direction (hereinafter referred to as “A” in SS-OCT (Swept Source Optical Coherence Tomography)). In other words, the tomographic image can be generated.
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
 図4は、実施例における被験対象可視化装置を示す説明図である。
 図4に示すように、被験対象可視化装置10は、光照射部100と、分子分布イメージ画像生成部200と、断層画像生成部300と、信号処理部400と、画像表示部500と、を有する。
 光照射部100の基本波レーザー101は、波長が1,064nmのレーザービームをダイクロイックミラー102に出射する。前記レーザービームは、ピコ秒あるいはフェムト秒のモードを同期させたモードロックレーザービームである。
FIG. 4 is an explanatory diagram illustrating a test subject visualization apparatus according to an embodiment.
As shown in FIG. 4, the test subject visualization apparatus 10 includes a light irradiation unit 100, a molecular distribution image image generation unit 200, a tomographic image generation unit 300, a signal processing unit 400, and an image display unit 500. .
The fundamental laser 101 of the light irradiation unit 100 emits a laser beam having a wavelength of 1,064 nm to the dichroic mirror 102. The laser beam is a mode-locked laser beam in which picosecond or femtosecond modes are synchronized.
 ダイクロイックミラー102は、S1面において、波長が1,064nmの光に対して非反射特性を有する。また、ダイクロイックミラー102は、S2面において、波長が1,064nmの光に対して非反射特性を有し、かつ波長が532nmの光に対して全反射特性を有する。 The dichroic mirror 102 has non-reflective characteristics with respect to light having a wavelength of 1,064 nm on the S1 surface. The dichroic mirror 102 has non-reflective characteristics with respect to light having a wavelength of 1,064 nm and total reflection characteristics with respect to light having a wavelength of 532 nm on the S2 surface.
 ダイクロイックミラー105は、S3面において、波長が532nmの光に対して非反射特性を有する。また、ダイクロイックミラー105は、S4面において、波長が900nm~1,200nmの光に対して全反射特性を有し、かつ波長が532nmの光に対して非反射特性を有する。 The dichroic mirror 105 has non-reflective characteristics with respect to light having a wavelength of 532 nm on the S3 surface. Further, the dichroic mirror 105 has total reflection characteristics with respect to light having a wavelength of 900 nm to 1,200 nm and non-reflection characteristics with respect to light having a wavelength of 532 nm on the S4 surface.
 全反射ミラー109は、S5面において、波長が900nm~1,200nmの光に対して全反射特性を有する。 The total reflection mirror 109 has total reflection characteristics with respect to light having a wavelength of 900 nm to 1,200 nm on the S5 surface.
 出力ミラー111は、S6面において、波長が900nm~1,200nmの光に対して70%PR(Partial Reflection)特性を有し、かつ波長が532nmの光に対して全反射特性を有する。また、出力ミラー111は、S7面において、波長が900nm~1,200nmの光に対して非反射特性を有する。 The output mirror 111 has 70% PR (Partial Reflection) characteristics for light with a wavelength of 900 nm to 1,200 nm and total reflection characteristics for light with a wavelength of 532 nm on the S6 surface. The output mirror 111 has non-reflective characteristics with respect to light having a wavelength of 900 nm to 1,200 nm on the S7 surface.
 ダイクロイックミラー102と全反射ミラー109との間の空間は、波長が532nmの光を閉じ込める光閉じ込め器(Cavity)を形成している。
 なお、ダイクロイックミラー102が移動ステージ103に設けられていることにより、前記光閉じ込め器の光路長を制御することができる。
A space between the dichroic mirror 102 and the total reflection mirror 109 forms an optical confinement device (Cavity) that confines light having a wavelength of 532 nm.
Note that the optical path length of the optical confinement device can be controlled by providing the dichroic mirror 102 on the moving stage 103.
 全反射ミラー109、ダイクロイックミラー105及び出力ミラー111によるL型の空間は、光共振器(Optical Parametric Oscillation Cavity)を形成している。
 前記光共振器では、波長が532nmの光が光パラメトリック結晶106を同一光路で通過する毎に前記シグナル光及び前記アイドラ光が増幅し、出力ミラー111の閾値を超えた前記シグナル光及び前記アイドラ光が、前記ポンプ光(図4中、点線矢印で示す)及び前記ストークス光(図4中、破線矢印で示す)として出力ミラー111から出射される。
 なお、前記光閉じ込め器と前記光共振器とが光パラメトリック結晶106を共有している。また、全反射ミラー109が移動ステージ110に設けられていることにより、前記光共振器の光路長を制御することができる。また、同一光路で発生させた前記ポンプ光の波長及び前記ストークス光の波長は、ガルバノ電源108からガルバノ駆動信号を入力されたガルバノモーター107を用いて、光パラメトリック結晶106の角度を変化させることにより、それぞれ可変させることができる。
An L-shaped space formed by the total reflection mirror 109, the dichroic mirror 105, and the output mirror 111 forms an optical resonator (Optical Parametric Oscillation Cavity).
In the optical resonator, each time light having a wavelength of 532 nm passes through the optical parametric crystal 106 in the same optical path, the signal light and the idler light are amplified, and the signal light and the idler light exceeding the threshold of the output mirror 111 are amplified. Are emitted from the output mirror 111 as the pump light (indicated by a dotted arrow in FIG. 4) and the Stokes light (indicated by a broken arrow in FIG. 4).
The optical confinement device and the optical resonator share the optical parametric crystal 106. Further, since the total reflection mirror 109 is provided on the moving stage 110, the optical path length of the optical resonator can be controlled. Further, the wavelength of the pump light and the wavelength of the Stokes light generated in the same optical path are changed by changing the angle of the optical parametric crystal 106 using the galvano motor 107 to which the galvano drive signal is input from the galvano power supply 108. , Each can be varied.
 移動ステージ103及び110により、波長が532nmの光が前記光閉じ込め器を往復する時間と、前記光共振器を往復する時間とを一致させ、前記光の1パルス周期内で光パラメトリック結晶106を複数回通過させて励起させる。 Due to the moving stages 103 and 110, the time for light having a wavelength of 532 nm to reciprocate through the optical confinement device and the time to reciprocate through the optical resonator are matched, and a plurality of optical parametric crystals 106 are formed within one light pulse period. Excited through multiple passes.
 前記光パラメトリック発振により、出力ミラー111から前記ポンプ光及び前記ストークス光が、直交した偏光方向で空間的にも時間的にも重なりあった状態で出射される。
 直交偏光2周波の前記ポンプ光及び前記ストークス光は、光軸方向を直交軸に対し45°傾けた偏光子112を通過させることにより、45°方向に偏光方向が一致した前記ポンプ光及び前記ストークス光となる。
Due to the optical parametric oscillation, the pump light and the Stokes light are emitted from the output mirror 111 in a state where they are overlapped spatially and temporally in orthogonal polarization directions.
The pump light and the Stokes light having two orthogonal polarization frequencies are passed through a polarizer 112 whose optical axis direction is inclined by 45 ° with respect to the orthogonal axis, whereby the pump light and the Stokes light whose polarization directions coincide with each other at 45 °. Become light.
 次に、断層画像の取得動作について説明する。
 45°方向に偏光方向が一致した前記ポンプ光と前記ストークス光は、それぞれハーフミラー113により分光される。
Next, a tomographic image acquisition operation will be described.
The pump light and the Stokes light whose polarization directions coincide with the 45 ° direction are each split by the half mirror 113.
 ハーフミラー113により二分された一方の前記ポンプ光と前記ストークス光は、ガルバノミラー115及び116を介して前記被験対象としての眼球部20の眼底に入射して、眼球部20の屈折率境界部において反射し、前記ポンプ光の反射光及び前記ストークス光の反射光として再びハーフミラー113に入射する。 One of the pump light and the Stokes light bisected by the half mirror 113 is incident on the fundus of the eyeball unit 20 as the test object via the galvanometer mirrors 115 and 116, and at the refractive index boundary of the eyeball unit 20. The light is reflected, and is incident on the half mirror 113 again as reflected light of the pump light and reflected light of the Stokes light.
 ハーフミラー113により二分された他方の前記ポンプ光と前記ストークス光は、反射ミラー301において反射し、干渉光を得るための参照光としてハーフミラー113上で、前記被験対象からの前記ポンプ光の反射光及び前記ストークス光の反射光と重なり合う。
 重なり合った前記参照光と前記反射光は、波長が1,064nm以上の光を反射するロングパスダイクロイックミラー302により、前記ポンプ光の前記干渉光及び前記ストークス光の前記干渉光とに分離され、それぞれ光検出器303及び304に入射する。
The other pump light and the Stokes light divided into two by the half mirror 113 are reflected by the reflection mirror 301 and reflected on the half mirror 113 as reference light for obtaining interference light. It overlaps with light and reflected light of the Stokes light.
The overlapped reference light and reflected light are separated into the interference light of the pump light and the interference light of the Stokes light by a long pass dichroic mirror 302 that reflects light having a wavelength of 1,064 nm or more. The light enters the detectors 303 and 304.
 図5は、ポンプ光及びストークス光の波長可変範囲、被験対象の分子における振動バンド、及びアンチストークス光の波長との関係の一例を示す説明図である。
 図5に示すように、前記波長差を可変させる範囲における最小値δmin及び最大値δmaxは、複数の被験対象の分子における振動バンドをδとすると、次式、0=δmin<δ<δmaxとする。
 例えば、被験対象の分子における振動バンドとして、512cm-1のグルコースの骨格振動バンドδ、1,050cm-1のルチノールのC-O振動バンドδ、及び1,159cm-1のルテインのC-C振動バンドδとする。この場合、前記波長差を可変させる範囲は、0cm-1<δ<1,400cm-1とする。また、前記ポンプ光の波長は、990nm≦λpump≦1,064nmの範囲を、前記ストークス光の波長は、1,150nm≧λstokes≧1,064nmの範囲を変化させる。
 これにより、前記ストークス光を検出する光検出器303は、1,064nm≦λstokes≦1,150nmのスペクトル干渉信号を出力し、前記ポンプ光を検出する光検出器304は、1,064nm≧λpump≧990nmのスペクトル干渉信号を出力する。
FIG. 5 is an explanatory diagram showing an example of the relationship between the wavelength variable range of the pump light and the Stokes light, the vibration band in the molecule to be tested, and the wavelength of the anti-Stokes light.
As shown in FIG. 5, the minimum value δ min and the maximum value δ max in the range in which the wavelength difference is variable are expressed by the following equation, where 0 = δ minLet nmax .
For example, as a vibration band in the molecules of the subject, skeletal vibration band [delta] 1 of glucose 512cm -1, C-O vibrational bands [delta] 2 of Ruchinoru of 1,050Cm -1, and 1,159cm -1 lutein C- and C vibration bands δ 3. In this case, the range for varying the wavelength difference, a 0cm -1 <δ <1,400cm -1. The wavelength of the pump light changes in the range of 990 nm ≦ λ pump ≦ 1,064 nm, and the wavelength of the Stokes light changes in the range of 1,150 nm ≧ λ stokes ≧ 1,064 nm.
Accordingly, the photodetector 303 for detecting the Stokes light outputs a spectral interference signal of 1,064 nm ≦ λ stokes ≦ 1,150 nm, and the photodetector 304 for detecting the pump light is 1,064 nm ≧ λ A spectral interference signal with pump ≧ 990 nm is output.
 それぞれの前記スペクトル干渉信号は、信号処理部400により、前記波長差が0となる波長1,064nmにおいて結合され、990nm≦λ≦1,150nmのスペクトル干渉信号となる。前記スペクトル干渉信号をフーリエ逆変換すると、深度分解能が、次式、Δz=(2ln2)/π・(λ /Δλ)=3.16μmである、前記断層画像を生成するための前記Aライン信号となる。前記Aライン信号の計測をX方向に走査することにより、前記断層画像を得ることができる。なお、lnは、自然対数であり、λは、前記アンチストークス光の波長であり、Δλは、前記ポンプ光及び前記ストークス光の波長を掃引する際の前記ステップである。 The spectral interference signals are combined by the signal processing unit 400 at a wavelength of 1064 nm where the wavelength difference is 0, and become a spectral interference signal of 990 nm ≦ λ ≦ 1,150 nm. When the spectral interference signal is subjected to inverse Fourier transform, the depth resolution is expressed by the following equation: Δz = (2ln2) / π · (λ 0 2 /Δλ)=3.16 μm The A line for generating the tomographic image Signal. The tomographic image can be obtained by scanning the measurement of the A line signal in the X direction. Here, ln is a natural logarithm, λ 0 is the wavelength of the anti-Stokes light, and Δλ is the step when sweeping the wavelengths of the pump light and the Stokes light.
 次に、分子分布イメージ画像の取得動作について図4を参照して説明する。
 ハーフミラー113により分光された一方の前記ポンプ光及び前記ストークス光は、更にハーフミラー201により分光される。
Next, the operation of acquiring the molecular distribution image will be described with reference to FIG.
One of the pump light and the Stokes light split by the half mirror 113 is further split by the half mirror 201.
 ハーフミラー201により分光された一方の前記ポンプ光及び前記ストークス光は、前記非共鳴アンチストークス光の参照光を発生させるために、アンチストークス光発生用試料としての水202及び反射ミラー203を介してレンズ213で集束される。集束点で誘起された前記非共鳴アンチストークス光は、反射ミラー203により反射し、レンズ213で集光されて平行光として再びハーフミラー201に入射する。 One of the pump light and the Stokes light separated by the half mirror 201 passes through water 202 and a reflection mirror 203 as an anti-Stokes light generation sample in order to generate reference light of the non-resonant anti-Stokes light. Focused by the lens 213. The non-resonant anti-Stokes light induced at the focal point is reflected by the reflection mirror 203, collected by the lens 213, and again incident on the half mirror 201 as parallel light.
 ハーフミラー201により二分された他方の前記ポンプ光及び前記ストークス光は、ガルバノミラー115及び116を介して、前記被験対象としての眼球部20に入射し、眼球部20の水晶体で集束され眼底網膜に達する。前記ポンプ光及び前記ストークス光を照射された前記眼底網膜内に存在する被験対象の分子から、前記共鳴アンチストークス光が生じる。生じた前記共鳴アンチストークス光は、前記水晶体で集光され、平行光としてハーフミラー201上において、干渉光を得るための参照光としての前記非共鳴アンチストークス光と重なり合う。 The other pump light and Stokes light bisected by the half mirror 201 are incident on the eyeball unit 20 as the test object via the galvanometer mirrors 115 and 116, and are focused on the crystalline lens of the eyeball unit 20 and are focused on the fundus retina. Reach. The resonance anti-Stokes light is generated from the molecule to be tested that is present in the fundus retina irradiated with the pump light and the Stokes light. The generated resonance anti-Stokes light is collected by the crystalline lens and overlaps with the non-resonance anti-Stokes light as reference light for obtaining interference light on the half mirror 201 as parallel light.
 波長が990nm以上の光を反射するロングパスダイクロイックミラー204は、重なり合った前記共鳴アンチストークス光及び前記非共鳴アンチストークス光と、同一の光軸方向である前記ポンプ光及び前記ストークス光とを分離する。
 分離された前記共鳴アンチストークス光と前記非共鳴アンチストークス光は、波長が950nm以上の光を反射するロングパスダイクロイックミラー205により分離され、グルコース骨格の振動モードにおけるアンチストークス光(984nm光)がグルコース共鳴信号として光検出器206に入射する。
 ロングパスダイクロイックミラー205が反射したルチノールC-O振動モードのアンチストークス光(911nm光)とルテインC-C振動モードのアンチストークス光(898nm光)は、波長が905nm以上の光を反射するロングパスダイクロイックミラー208により分離され、それぞれルチノール共鳴信号、ルテイン共鳴信号として光検出器209及び211に入射する。
The long-pass dichroic mirror 204 that reflects light having a wavelength of 990 nm or more separates the overlapping resonance anti-Stokes light and non-resonance anti-Stokes light from the pump light and Stokes light that are in the same optical axis direction.
The separated resonance anti-Stokes light and non-resonance anti-Stokes light are separated by a long-pass dichroic mirror 205 that reflects light having a wavelength of 950 nm or more, and the anti-Stokes light (984 nm light) in the vibration mode of the glucose skeleton is glucose resonance. It enters the photodetector 206 as a signal.
The anti-Stokes light (911 nm light) in the rutinol CO vibration mode and the anti-Stokes light (898 nm light) in the lutein CC vibration mode reflected by the long-pass dichroic mirror 205 reflects the light having a wavelength of 905 nm or more. 208, and enters the photodetectors 209 and 211 as a rutinol resonance signal and a lutein resonance signal, respectively.
 図5に示すように、波長差δの可変範囲0cm-1<δ<1,400cm-1においては、グルコース骨格振動の512cm-1に対応した前記共鳴アンチストークス光(波長984nm)が、ルチノールのC-O振動の1,050cm-1に対応した前記共鳴アンチストークス光(波長911nm)が、ルテインのC-C振動の1,525cm-1に対応した前記共鳴アンチストークス光(波長898nm)が、それぞれの中心波長から±5nm程度の範囲で生じる。
 これらの前記共鳴アンチストークス光は、前記参照光としての前記非共鳴アンチストークス光とハーフミラー201上で重ね合わされ、光検出器206、209、及び211で検出される。
As shown in FIG. 5, in the variable range 0cm -1 <1,400cm -1 in wavelength difference [delta], the resonance anti-Stokes light corresponding to 512cm -1 glucose skeleton vibration (wavelength 984 nm) is the Ruchinoru the resonance anti-Stokes light corresponding to 1,050Cm -1 of C-O vibrations (wavelength 911nm) is, the resonance anti-Stokes light corresponding to 1,525Cm -1 of C-C vibration of lutein (wavelength 898nm) is, It occurs in a range of about ± 5 nm from each central wavelength.
The resonance anti-Stokes light is superimposed on the non-resonance anti-Stokes light as the reference light on the half mirror 201 and detected by photodetectors 206, 209, and 211.
 光検出器206、209、及び211からの出力は、ハイパスフィルター207、210、及び212により直流成分が除かれ、スペクトル干渉信号となる。
 前記スペクトル干渉信号をフーリエ逆変換すると、深度分解能が、次式、Δz=(2ln2)/π・(λ /Δλ)=(2ln2)/π・(0.9/0.01)=35μmである、前記分子分布イメージ画像を生成するための前記Aライン信号となる。前記Aライン信号の計測をX方向に走査することにより、前記分子分布イメージ画像を得ることができる。
 従来の前記CARSを用いた前記分子分布イメージング技術では、高開口数とした光学系を用いて光軸方向への走査が必要であったが、前記アンチストークス光(CARS光)のスペクトル干渉信号をフーリエ逆変換することにより、光軸方向へ走査するための機構を不要にすることができる。
The outputs from the photo detectors 206, 209, and 211 are subjected to the removal of DC components by the high- pass filters 207, 210, and 212 to become spectral interference signals.
When the spectrum interference signal is subjected to inverse Fourier transform, the depth resolution is expressed by the following equation: Δz = (2ln2) / π · (λ 0 2 /Δλ)=(2ln2)/π·(0.9 2 /0.01)= The A line signal for generating the molecular distribution image is 35 μm. The molecular distribution image can be obtained by scanning the measurement of the A line signal in the X direction.
In the conventional molecular distribution imaging technique using the CARS, scanning in the optical axis direction is necessary using an optical system having a high numerical aperture, but the spectral interference signal of the anti-Stokes light (CARS light) is used. By performing inverse Fourier transform, a mechanism for scanning in the optical axis direction can be eliminated.
 以上のような動作により、前記被験対象における前記分子分布イメージ画像及び前記断層画像を同時に取得することができる。
 なお、X方向のみならずY方向に光走査を行うことにより、前記被験対象における分子分布イメージの3次元画像、及び形態の3次元画像を同時に取得することができる。
By the operation as described above, the molecular distribution image image and the tomographic image in the test subject can be acquired simultaneously.
In addition, by performing optical scanning not only in the X direction but also in the Y direction, a three-dimensional image of the molecular distribution image and a three-dimensional image of the form in the test subject can be acquired simultaneously.
  10  被験対象可視化装置
  20  眼球部(被験対象)
 100  光照射部
 200  分子分布イメージ画像生成部
 300  断層画像生成部
 400  信号処理部
 500  画像表示部
10 Test Subject Visualization Device 20 Eyeball (Test Subject)
DESCRIPTION OF SYMBOLS 100 Light irradiation part 200 Molecular distribution image image generation part 300 Tomographic image generation part 400 Signal processing part 500 Image display part

Claims (7)

  1.  被験対象の検査箇所毎に、同一光路で発生させたポンプ光及びストークス光の少なくともいずれかの波長を可変させ、前記ポンプ光及び前記ストークス光を前記被験対象に照射する光照射部と、
     前記ポンプ光及び前記ストークス光の波長差に応じて前記被験対象から生じるアンチストークス光を検出し、前記アンチストークス光に基づいて分子分布イメージ画像を生成する分子分布イメージ画像生成部と、
     前記ポンプ光を照射したときの前記被験対象からの反射光、及び、前記ストークス光を照射したときの前記被験対象からの反射光の少なくともいずれかを検出し、検出した前記反射光に基づいて前記被験対象の断層画像を生成する断層画像生成部と、
     生成された前記分子分布イメージ画像及び前記断層画像の少なくともいずれかを表示する画像表示部とを有することを特徴とする被験対象可視化装置。
    A light irradiation unit that varies the wavelength of at least one of pump light and Stokes light generated in the same optical path for each test location of the test target, and irradiates the test target with the pump light and the Stokes light;
    A molecular distribution image image generation unit that detects anti-Stokes light generated from the test object according to a wavelength difference between the pump light and the Stokes light, and generates a molecular distribution image image based on the anti-Stokes light;
    Detecting at least one of reflected light from the test subject when irradiated with the pump light, and reflected light from the test subject when irradiated with the Stokes light, and based on the detected reflected light A tomographic image generator for generating a tomographic image of the test object;
    A test object visualization device comprising: an image display unit that displays at least one of the generated molecular distribution image and the tomographic image.
  2.  前記光照射部が、前記ポンプ光の波長及び前記ストークス光の波長を可変させた範囲において、前記ポンプ光及び前記ストークス光の波長差が0となるように、前記ポンプ光及び前記ストークス光を前記被験対象に照射し、
     前記断層画像生成部が、前記ポンプ光を照射したときの前記被験対象からの前記反射光に基づくデータと、前記ストークス光を照射したときの前記被験対象からの前記反射光に基づくデータとを、前記波長差が0となる波長において結合させたデータに基づいて前記断層画像を生成する請求項1に記載の被験対象可視化装置。
    In the range in which the light irradiator varies the wavelength of the pump light and the wavelength of the Stokes light, the pump light and the Stokes light are set to be 0 so that the wavelength difference between the pump light and the Stokes light becomes zero. Irradiate the subject,
    Data based on the reflected light from the test subject when the tomographic image generation unit irradiates the pump light, and data based on the reflected light from the test subject when the Stokes light is irradiated, The test object visualization apparatus according to claim 1, wherein the tomographic image is generated based on data combined at a wavelength at which the wavelength difference is zero.
  3.  前記分子分布イメージ画像生成部が、前記アンチストークス光を干渉光とし、前記干渉光を分光したスペクトル干渉信号に対してフーリエ逆変換の演算処理を行う請求項1から2のいずれかに記載の被験対象可視化装置。 3. The test according to claim 1, wherein the molecular distribution image generation unit performs an inverse Fourier transform calculation process on a spectral interference signal obtained by using the anti-Stokes light as interference light and spectrally separating the interference light. Object visualization device.
  4.  前記断層画像生成部が、前記ポンプ光を照射したときの前記被験対象からの前記反射光、及び、前記ストークス光を照射したときの前記被験対象からの前記反射光の少なくともいずれかを干渉光とし、前記干渉光を分光したスペクトル干渉信号に対してフーリエ逆変換の演算処理を行う請求項1から3のいずれかに記載の被験対象可視化装置。 The tomographic image generation unit uses interference light as at least one of the reflected light from the test subject when irradiated with the pump light and the reflected light from the test subject when irradiated with the Stokes light. The test object visualization apparatus according to claim 1, wherein an arithmetic process of inverse Fourier transform is performed on a spectrum interference signal obtained by separating the interference light.
  5.  前記光照射部が、
     光の入射角度に応じて前記光の波長を変換する光パラメトリック結晶を有し、前記光を閉じ込める光閉じ込め器と、
     前記光パラメトリック結晶を前記光閉じ込め器と共有し、前記光パラメトリック結晶により波長が変換された光を増幅させる光共振器とを備える請求項1から4のいずれかに記載の被験対象可視化装置。
    The light irradiator is
    An optical parametric crystal that converts a wavelength of the light according to an incident angle of the light, and an optical confinement device that confines the light;
    The test object visualization apparatus according to claim 1, further comprising: an optical resonator that shares the optical parametric crystal with the optical confinement device and amplifies light having a wavelength converted by the optical parametric crystal.
  6.  前記光照射部が、前記被験対象が有する分子における振動バンドが前記波長差と一致するように、前記ポンプ光の波長及び前記ストークス光の波長を可変させる請求項1から5のいずれかに記載の被験対象可視化装置。 The said light irradiation part varies the wavelength of the said pump light and the wavelength of the said Stokes light so that the vibration band in the molecule | numerator which the said test subject has may correspond with the said wavelength difference. Test subject visualization device.
  7.  前記被験対象が有する分子が、グルコース、ルチノール、及びルテインの少なくともいずれかである請求項6に記載の被験対象可視化装置。 The test subject visualization apparatus according to claim 6, wherein the molecule of the test subject is at least one of glucose, rutinol, and lutein.
PCT/JP2017/022295 2016-06-17 2017-06-16 Test object visualizing device WO2017217534A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018524032A JP6804773B2 (en) 2016-06-17 2017-06-16 Subject visualization device
US16/309,732 US10809200B2 (en) 2016-06-17 2017-06-16 Test object visualizing device
EP17813428.4A EP3474001B1 (en) 2016-06-17 2017-06-16 Test object visualizing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-121108 2016-06-17
JP2016121108 2016-06-17

Publications (1)

Publication Number Publication Date
WO2017217534A1 true WO2017217534A1 (en) 2017-12-21

Family

ID=60663267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022295 WO2017217534A1 (en) 2016-06-17 2017-06-16 Test object visualizing device

Country Status (4)

Country Link
US (1) US10809200B2 (en)
EP (1) EP3474001B1 (en)
JP (1) JP6804773B2 (en)
WO (1) WO2017217534A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019142896A1 (en) * 2018-01-18 2020-01-23 株式会社アサヒビジョン Biological tissue analyzer and biological tissue analysis method
JP2022527415A (en) * 2019-04-30 2022-06-01 アトナープ株式会社 Measurement system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020222300A1 (en) * 2019-04-29 2020-11-05 Atonarp Inc. Hybrid optical system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145619A (en) * 1995-09-20 1997-06-06 Kdk Corp Method and instrument for spectroscopic measurement of scattered light and so on
US20110128538A1 (en) * 2008-08-01 2011-06-02 Politecnico Di Milano System for Generating Raman Vibrational Analysis Signals
JP2011170212A (en) * 2010-02-22 2011-09-01 Nikon Corp Nonlinear type microscope
JP2015141282A (en) * 2014-01-28 2015-08-03 学校法人 埼玉医科大学 measuring device and measuring method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0764844B1 (en) 1995-09-20 2007-03-14 ARKRAY, Inc Method for analysis by light scattering
EP2076172A4 (en) * 2006-10-27 2012-03-21 Aretais Inc Use of coherent raman techniques for medical diagnostic and therapeutic purposes, and calibration techniques for same
GB0813980D0 (en) * 2008-07-31 2008-09-10 Univ St Andrews Control of relaxation oscillations in intracavity optical parametric oscillato rs
FR2955664B1 (en) * 2010-01-22 2012-02-10 Centre Nat Rech Scient METHOD FOR THE DETECTION OF A RESONANT NONLINEAR OPTICAL SIGNAL AND DEVICE FOR THE IMPLEMENTATION OF SAID METHOD
US9599454B2 (en) * 2011-09-30 2017-03-21 Tokyo University Of Science Foundation Optical interferometer, data acquisition device, and data acquisition method
JP5901346B2 (en) * 2012-02-27 2016-04-06 学校法人 埼玉医科大学 Measuring device and measuring method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145619A (en) * 1995-09-20 1997-06-06 Kdk Corp Method and instrument for spectroscopic measurement of scattered light and so on
US20110128538A1 (en) * 2008-08-01 2011-06-02 Politecnico Di Milano System for Generating Raman Vibrational Analysis Signals
JP2011170212A (en) * 2010-02-22 2011-09-01 Nikon Corp Nonlinear type microscope
JP2015141282A (en) * 2014-01-28 2015-08-03 学校法人 埼玉医科大学 measuring device and measuring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019142896A1 (en) * 2018-01-18 2020-01-23 株式会社アサヒビジョン Biological tissue analyzer and biological tissue analysis method
JP2022527415A (en) * 2019-04-30 2022-06-01 アトナープ株式会社 Measurement system
JP7122786B2 (en) 2019-04-30 2022-08-22 アトナープ株式会社 measuring system

Also Published As

Publication number Publication date
EP3474001B1 (en) 2021-11-17
EP3474001A4 (en) 2020-01-15
JPWO2017217534A1 (en) 2019-04-04
US20190137402A1 (en) 2019-05-09
JP6804773B2 (en) 2020-12-23
US10809200B2 (en) 2020-10-20
EP3474001A1 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
US10351616B2 (en) Methods, arrangements and systems for obtaining information associated with an anatomical sample using optical microscopy
Drexler et al. Optical coherence tomography today: speed, contrast, and multimodality
US7623908B2 (en) Nonlinear interferometric vibrational imaging
Meyer et al. Expanding multimodal microscopy by high spectral resolution coherent anti-Stokes Raman scattering imaging for clinical disease diagnostics
US7586618B2 (en) Distinguishing non-resonant four-wave-mixing noise in coherent stokes and anti-stokes Raman scattering
US7075658B2 (en) Method for optical coherence tomography imaging with molecular contrast
JP5901346B2 (en) Measuring device and measuring method
JP6008299B2 (en) Optical interferometer, information acquisition apparatus, and information acquisition method
JP5679686B2 (en) Optical coherence tomography system
WO2017217534A1 (en) Test object visualizing device
JP6512756B2 (en) Light source device and information acquisition device using the same
JP6830427B2 (en) Optical measuring device
US20170049328A1 (en) Raman and resonant raman detection of vulnerable plaque optical analyzer and imager
JP6255257B2 (en) Measuring device and measuring method
JP6422449B2 (en) Measuring device and measuring method
Breunig et al. Combining multiphoton and CARS microscopy for skin imaging
Applegate et al. Molecular contrast OCT
Carrasco-Zevallos et al. Pump-probe optical coherence tomography imaging of Zenopus tadpole vasculature ex vivo
Jacob Design and Optimize a Two Color Fourier Domain Pump Probe Optical Coherence Tomography System
Regar et al. Molecular contrast OCT Brian E Applegate, Joseph A Izatt
Galli et al. Nonlinear Vibrational Spectroscopic Microscopy of Cells and Tissue

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813428

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018524032

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017813428

Country of ref document: EP

Effective date: 20190117