WO2017217381A1 - Thermoplastic polymer composition, multilayer film using said composition, and molded article - Google Patents

Thermoplastic polymer composition, multilayer film using said composition, and molded article Download PDF

Info

Publication number
WO2017217381A1
WO2017217381A1 PCT/JP2017/021698 JP2017021698W WO2017217381A1 WO 2017217381 A1 WO2017217381 A1 WO 2017217381A1 JP 2017021698 W JP2017021698 W JP 2017021698W WO 2017217381 A1 WO2017217381 A1 WO 2017217381A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
polymer composition
thermoplastic polymer
resin
multilayer film
Prior art date
Application number
PCT/JP2017/021698
Other languages
French (fr)
Japanese (ja)
Inventor
圭佑 榎本
貴理博 中野
涼太 橋本
芳朗 近藤
向尾 良樹
佐々木 啓光
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2018523906A priority Critical patent/JP7030691B2/en
Publication of WO2017217381A1 publication Critical patent/WO2017217381A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J153/02Vinyl aromatic monomers and conjugated dienes

Definitions

  • the present invention relates to a thermoplastic polymer composition excellent in adhesiveness and surface smoothness, a multilayer film using the composition, and a molded body comprising the multilayer film.
  • Ceramics, metals, and synthetic resins with excellent design, durability, heat resistance, and mechanical strength are widely used in various applications such as home appliances, electronic parts, machine parts, and automobile parts. These members may be used by adhering or combining different materials depending on applications, component configurations, and usage methods.
  • the exterior and wallpaper of home appliances, the interior of automobiles, etc. are decorated with patterns such as wood grain, design features such as metallic tone and piano black tone, and functionality such as scratch resistance and weather resistance
  • a decorative film is used.
  • Patent Document 1 contains an ethylene polymer, a pressure-sensitive adhesive, a block copolymer having a vinyl aromatic compound polymer block and a conjugated diene compound polymer block, or a hydrogenated product thereof in a specific ratio.
  • An adhesive resin composition used when laminating the same or different materials is disclosed.
  • Patent Document 2 discloses a block copolymer composed of a vinyl aromatic compound polymer block and a conjugated diene compound polymer block or a hydrogenated product thereof, a vinyl cyanide compound monomer component, a rubber component, and an aromatic vinyl.
  • a heat-fusing resin composition suitable for composite molding comprising a copolymer comprising compound monomer components and the like and a non-aromatic rubber softener.
  • Patent Document 3 discloses a block copolymer having a polymer block containing an aromatic vinyl compound unit and a polymer block containing a conjugated diene compound unit, or a thermoplastic elastomer and a polar group, which are hydrogenated products thereof. There has been proposed a method for producing an adhesive body in which a film made of a thermoplastic polymer composition containing a contained polypropylene resin is bonded to an insert member, and then the resin member is insert-molded.
  • Patent Document 4 discloses a polyolefin polymer, a block copolymer containing an aromatic vinyl compound polymer block and a conjugated diene compound polymer block, or a thermoplastic resin composition containing a hydrogenated product thereof.
  • the laminated body excellent in interlayer adhesiveness containing the layer (I) which becomes is disclosed.
  • the adhesive composition described in Patent Document 1 has high surface tackiness due to the tackifying substance contained therein, resulting in poor handling and low productivity when formed into a film, and adhesion performance due to bleeding out of the tackifying substance. There is a problem that it varies.
  • the resin composition for heat fusion described in Patent Document 2 also has the same problem as described above due to the contained non-aromatic rubber softener.
  • thermoplastic polymer composition of patent document 3 when the present inventors examined about the thermoplastic polymer composition of patent document 3, and the film which consists of this thermoplastic polymer composition, the unevenness
  • the film was subjected to three-dimensional surface decoration molding (Threee dimension Overlay Method: TOM molding) when the film was subjected to three-dimensional surface decoration molding (Three dimension Overlay Method: TOM molding), the roughness of the surface of the thermoplastic polymer composition propagated to the surface of the film substrate, and the surface of the substrate was smooth.
  • TOM molding Three-dimensional surface decoration molding
  • an object of the present invention is to provide a thermoplastic polymer composition having ambipolar adhesiveness and excellent surface smoothness, and excellent surface smoothness composed of the thermoplastic polymer composition and a substrate.
  • Thermoplastic elastomer (A) 100 which is a block copolymer containing a polymer block (S) containing an aromatic vinyl compound unit and a polymer block (D) containing a conjugated diene compound unit or a hydrogenated product thereof
  • the film surface roughness (Ra) measured by the following method on a film surface having a rectangular cross section (length 8 mm ⁇ width 0.5 mm) obtained by extrusion with a capillary rheometer is 0.15 ⁇ m or less.
  • Surface roughness measuring method a method of measuring arithmetic average roughness (Ra) with a stylus shape measuring instrument using a needle having a tip radius of 12.5 ⁇ m. ;
  • the conjugated diene compound constituting the polymer block (D) is butadiene, isoprene, or butadiene and isoprene, and the total of 1,2-bond amount and 3,4-bond amount in the polymer block (D)
  • thermoplastic polymer composition according to the above [1] or [2], wherein the polypropylene resin (B) is a nonpolar polypropylene resin;
  • thermoplastic polymer composition further comprises 1 to 25 parts by mass of (meth) acrylic resin (C) with respect to 100 parts by mass of the thermoplastic elastomer (A).
  • thermoplastic polymer composition according to any one of the above [1] to [3];
  • thermoplastic polymer composition according to the above [4], wherein the (meth) acrylic resin (C) contains 80% by mass or more of a structural unit derived from methyl methacrylate;
  • a multilayer film having at least a base material layer and a layer comprising the thermoplastic polymer composition according to any one of [1] to [5] above; [7] The multilayer film according to [6], wherein the base material layer is made of an amorphous resin; [8] A decorative film comprising the multilayer film of [6] or [7] above; [9] A molded article comprising the multilayer film according to any one of [6] or [7] or the decorative film according to [8].
  • thermoplastic polymer composition of the present invention has bipolar adhesiveness and excellent surface smoothness, it can be suitably used as an adhesive layer for multilayer films.
  • the multilayer film of the present invention has an adhesive layer made of the thermoplastic polymer composition, it has excellent adhesion to an adherend, and the thermoplastic polymer composition has excellent surface smoothness.
  • the base material of the multilayer film is excellent in surface smoothness, and can be suitably used particularly for three-dimensional surface decoration molding. Since the molded body of the present invention comprises the multilayer film, it has excellent design properties.
  • thermoplastic polymer composition comprises a block copolymer containing a polymer block (S) containing an aromatic vinyl compound unit and a polymer block (D) containing a conjugated diene compound unit or its hydrogen. It contains at least one polypropylene resin (B) 1 to 50 parts by mass and (meth) acrylic resin (C) 1 to 20 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer (A) as an additive. Is.
  • the components (A) to (C) will be described in order.
  • thermoplastic elastomer (A) The thermoplastic elastomer (A) contained in the thermoplastic polymer composition is a block containing a polymer block (S) containing an aromatic vinyl compound unit and a polymer block (D) containing a conjugated diene compound unit. A copolymer or a hydrogenated product thereof.
  • the thermoplastic elastomer (A) imparts flexibility, good mechanical properties and molding processability to the thermoplastic polymer composition, and serves as a matrix in the composition.
  • aromatic vinyl compound constituting the polymer block (S) examples include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, and 4-cyclohexylstyrene. 4-dodecylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene, 1-vinylnaphthalene, 2-vinylnaphthalene and the like.
  • the polymer block containing the aromatic vinyl compound unit may be composed of a structural unit derived from only one of these aromatic vinyl compounds, or may be composed of a structural unit derived from two or more types. . Of these, styrene, ⁇ -methylstyrene, and 4-methylstyrene are preferable.
  • the polymer block (S) containing an aromatic vinyl compound unit is preferably 80% by mass or more of an aromatic vinyl compound unit, more preferably 90% by mass or more of an aromatic vinyl compound unit, and further preferably 95 of an aromatic vinyl compound unit. It is a polymer block containing at least mass%.
  • the polymer block (S) may have only an aromatic vinyl compound unit, but unless the effect of the present invention is impaired, the aromatic vinyl compound unit and other copolymerizable monomer units. You may have. Examples of other copolymerizable monomers include 1-butene, pentene, hexene, butadiene, isoprene, methyl vinyl ether, and the like.
  • the proportion thereof is preferably 20% by mass or less, more preferably 10%, based on the total amount of the aromatic vinyl compound unit and the other copolymerizable monomer unit. It is at most 5% by mass, more preferably at most 5% by mass.
  • the polymer block (D) containing a conjugated diene compound unit may consist of a structural unit derived from only one of these conjugated diene compounds, or may consist of a structural unit derived from two or more types. Good. In particular, it is preferably composed of a structural unit derived from butadiene or isoprene or a structural unit derived from butadiene and isoprene.
  • the polymer block (D) containing the conjugated diene compound unit is preferably 80% by mass or more of the conjugated diene compound unit, more preferably 90% by mass or more, more preferably 95% by mass or more of the conjugated diene compound unit. It is a polymer block to contain.
  • the polymer block (D) may have only a conjugated diene compound unit, but has another copolymerizable monomer unit together with the conjugated diene compound unit, as long as it does not interfere with the present invention. May be. Examples of other copolymerizable monomers include styrene, ⁇ -methylstyrene, 4-methylstyrene, and the like.
  • the proportion thereof is preferably 20% by mass or less, more preferably 10% by mass with respect to the total amount of the conjugated diene compound unit and the other copolymerizable monomer unit. % Or less, more preferably 5% by mass or less.
  • the bond form of the conjugated diene constituting the polymer block (D) containing the conjugated diene compound unit is not particularly limited.
  • 1,2-bond and 1,4-bond can be formed, and in the case of isoprene, 1,2-bond, 3,4-bond and 1,4-bond can be formed.
  • the polymer block (D) containing the conjugated diene compound unit is composed of butadiene, isoprene, or is composed of both butadiene and isoprene, 1,2-in the polymer block (D)
  • the total of the bonding amount and the 3,4-bonding amount is preferably 40 mol% or more from the viewpoint of developing particularly high adhesive performance.
  • the total amount of 1,2-bond and 3,4-bond in the polymer block (D) is preferably 40 to 90 mol%, and more preferably 50 to 80 mol%.
  • the total amount of 1,2-bond and 3,4-bond can be calculated by 1 H-NMR measurement. Specifically, the integrated value of the peak existing at 4.2 to 5.0 ppm derived from 1,2-bond and 3,4-bond units and 5.0 to 5.5 derived from 1,4-bond units. It can be calculated from the ratio with the integrated value of the peak existing at 45 ppm.
  • the bond form of the polymer block (S) containing an aromatic vinyl compound unit and the polymer block (D) containing a conjugated diene compound unit in the thermoplastic elastomer (A) is not particularly limited, and is linear or branched. , Radial, or a combined form in which two or more of these are combined, but a linear combined form is preferred.
  • a linear bond form when a polymer block (S) containing an aromatic vinyl compound unit is represented by a and a polymer block (D) containing a conjugated diene compound unit is represented by b, a A diblock copolymer represented by -b, a triblock copolymer represented by aba or b-a-b, a tetrablock copolymer represented by abbab, a pentablock copolymer represented by abababa or bababa, an ( perennial-b) nX copolymer (X represents a coupling residue, and n Represents an integer of 2 or more), and mixtures thereof.
  • a triblock copolymer is preferable, and a triblock copolymer represented by aba is more preferable.
  • thermoplastic elastomer (A) from the viewpoint of improving heat resistance and weather resistance, a part or all of the polymer block (D) containing the conjugated diene compound is hydrogenated (hereinafter abbreviated as “hydrogenated”). It is preferable that The hydrogenation rate of the polymer block containing the conjugated diene compound at that time is preferably 80% or more, more preferably 90% or more.
  • the hydrogenation rate is a value obtained by measuring the iodine value of the block copolymer before and after the hydrogenation reaction.
  • the content of the polymer block (S) containing the aromatic vinyl compound unit in the thermoplastic elastomer (A) is preferably 5 with respect to the entire thermoplastic elastomer (A) from the viewpoint of flexibility and mechanical properties. It is ⁇ 75% by mass, more preferably 5 to 60% by mass, and further preferably 10 to 40% by mass.
  • the weight average molecular weight of the thermoplastic elastomer (A) is preferably 30,000 to 500,000, more preferably 50,000 to 400,000, more preferably 60, from the viewpoints of mechanical properties and moldability. 000 to 200,000, more preferably 70,000 to 200,000, particularly preferably 70,000 to 190,000, and most preferably 80,000 to 180,000.
  • a weight average molecular weight is a weight average molecular weight of polystyrene conversion calculated
  • a thermoplastic elastomer (A) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • thermoplastic elastomer (A) it can manufacture by an anionic polymerization method. Specifically, (i) a method of sequentially polymerizing the aromatic vinyl compound, the conjugated diene compound, and then the aromatic vinyl compound using an alkyl lithium compound as an initiator; (ii) using an alkyl lithium compound as an initiator A method of sequentially polymerizing the aromatic vinyl compound and the conjugated diene compound, and then coupling by adding a coupling agent; (iii) using the dilithium compound as an initiator, the conjugated diene compound, and then the aromatic vinyl Examples include a method of polymerizing compounds sequentially.
  • the amount of 1,2-bond and 3,4-bond of the polymer block (D) in the thermoplastic elastomer (A) can be increased,
  • the amount of 1,2-bond and 3,4-bond can be easily controlled by the amount of organic Lewis base added.
  • the organic Lewis base include esters such as ethyl acetate; amines such as triethylamine, N, N, N ′, N′-tetramethylethylenediamine (TMEDA) and N-methylmorpholine; nitrogen-containing heterocyclic groups such as pyridine.
  • Aromatic compounds such as dimethylacetamide; Ethers such as dimethyl ether, diethyl ether, tetrahydrofuran (THF) and dioxane; Glycol ethers such as ethylene glycol dimethyl ether and diethylene glycol dimethyl ether; Sulphoxides such as dimethyl sulfoxide; Ketones such as acetone and methyl ethyl ketone Can be mentioned.
  • the hydrogenated thermoplastic elastomer (A) can be produced by subjecting the unhydrogenated thermoplastic elastomer (A) obtained above to a hydrogenation reaction.
  • the unhydrogenated thermoplastic elastomer (A) obtained above is dissolved in a solvent inert to the reaction and the hydrogenation catalyst, or the unhydrogenated thermoplastic elastomer (A) is dissolved.
  • a thermoplastic elastomer (A) a commercial item can also be used as a thermoplastic elastomer (A).
  • Polypropylene resin (B) When the polypropylene resin (B) is contained in the thermoplastic polymer composition, the molding processability is improved, and a film made of the thermoplastic polymer composition is easily produced. In addition, the mechanical properties of the film are improved and handling becomes easy. Furthermore, the adhesiveness of the thermoplastic polymer composition mainly to the nonpolar resin is improved, and it becomes possible to adhere well to the substrate or the adherend.
  • Examples of the polypropylene resin (B) include a propylene homopolymer or a copolymer of propylene and an ⁇ -olefin having 2 to 8 carbon atoms.
  • the ⁇ -olefin in the copolymer may be ethylene, butene-1, isobutene, pentene-1, hexene-1, 4-methylpentene. -1, octene-1 and the like.
  • polypropylene resin (B) examples include homopolypropylene, propylene-ethylene random copolymer, propylene-ethylene block copolymer, propylene-butene random copolymer, propylene-ethylene-butene random copolymer, propylene- Examples thereof include a pentene random copolymer, a propylene-hexene random copolymer, a propylene-octene random copolymer, a propylene-ethylene-pentene random copolymer, and a propylene-ethylene-hexene random copolymer.
  • the proportion of the structural units derived from the ⁇ -olefin other than propylene in the total structural units of the polypropylene resin (B) is preferably 0 to 45 mol% from the viewpoint of affinity with the thermoplastic elastomer (A). More preferably, it is 0 to 35 mol%, and further preferably 0 to 25 mol%. In other words, the content of the structural unit derived from propylene in the polypropylene resin (B) is preferably 55 mol% or more, more preferably 65 mol% or more, and further preferably 75 mol% or more.
  • a polypropylene resin (B) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the polypropylene resin (B) is preferably a nonpolar polypropylene resin having no polar functional group.
  • Use of a nonpolar polypropylene resin is excellent in that the melt fracture phenomenon hardly occurs during extrusion molding, and the surface of the multilayer film becomes smooth.
  • the polypropylene resin (B) can be synthesized by a conventionally known method. For example, using a Ziegler-Natta type catalyst or a metallocene type catalyst, a propylene homopolymer, random or block propylene and an ⁇ -olefin can be synthesized. The copolymer can be synthesized. Moreover, you may use a commercial item for a polypropylene resin (B).
  • the melt flow rate (MFR) under the condition of N) is preferably 0.1 to 300 g / 10 minutes, more preferably 0.1 to 100 g / 10 minutes, and further preferably 0.1 to 70 g / 10 minutes. . If the MFR of the polypropylene resin (B) under the above conditions is 0.1 g / 10 min or more, good moldability can be obtained. On the other hand, if the MFR is 300 g / 10 min or less, the mechanical characteristics are easily developed.
  • the MFR of the polypropylene resin (B) under the above conditions is more preferably 5 to 60 g / 10 minutes, and more preferably 8 to 50 g / 10 minutes. More preferably.
  • the MFR of the polypropylene resin (B) under the above conditions is more preferably 1 to 50 g / 10 minutes, and more preferably 3 to 30 g / 10 minutes. Is more preferable.
  • the melting point of the polypropylene resin (B) is preferably 100 ° C. or higher, more preferably 100 to 170 ° C., and still more preferably 110 to 140 ° C. from the viewpoints of heat resistance and adhesion by heat treatment.
  • the thermoplastic polymer composition contains 1 to 50 parts by mass of the polypropylene resin (B) with respect to 100 parts by mass of the thermoplastic elastomer (A).
  • the content of the polypropylene resin (B) is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and more preferably 40 parts by mass or less with respect to 100 parts by mass of the thermoplastic elastomer (A). More preferably, it is 30 parts by mass or less.
  • the content of the polypropylene resin (B) is preferably 5 to 40 parts by mass and more preferably 10 to 30 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer (A).
  • the (meth) acrylic resin (C) is for improving the adhesiveness of the thermoplastic polymer composition, and the (meth) acrylic resin (C) is contained in the thermoplastic polymer composition.
  • the adhesion of the thermoplastic polymer composition mainly to the polar resin is improved, and in the multilayer film using the thermoplastic polymer composition, the thermoplastic polymer composition and the substrate layer described below are strengthened. It becomes possible to adhere.
  • the (meth) acrylic resin (C) used in the present invention has a structural unit derived from methyl methacrylate of 80% by mass or more, preferably 90% by mass or more.
  • the structural unit derived from monomers other than methyl methacrylate of the (meth) acrylic resin (C) is 20% by mass or less, preferably 10% by mass or less.
  • the (meth) acrylic resin (C) may be a polymer containing only methyl methacrylate as a monomer.
  • Examples of monomers other than methyl methacrylate include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, s-butyl acrylate, and t-acrylate.
  • the stereoregularity of the (meth) acrylic resin (C) is not particularly limited, and for example, those having stereoregularity such as isotactic, heterotactic and syndiotactic may be used.
  • the weight average molecular weight of the (meth) acrylic resin (C) is preferably 20,000 to 180,000, more preferably 30,000 to 150,000, and particularly preferably 30,000 to 130,000. is there. When the weight average molecular weight is small, the mechanical strength of the resulting thermoplastic polymer composition tends to decrease. When the weight average molecular weight is large, the fluidity of the thermoplastic polymer composition tends to be lowered and the moldability tends to be lowered.
  • the molecular weight and molecular weight distribution of the (meth) acrylic resin (C) can be controlled by adjusting the types and amounts of the polymerization initiator and the chain transfer agent.
  • the production method of the (meth) acrylic resin (C) is not particularly limited, and a monomer (mixture) containing 80% by mass or more of methyl methacrylate is polymerized or copolymerized with a monomer other than methyl methacrylate. It is obtained by doing. Moreover, you may use a commercial item as (meth) acrylic-type resin (C). Examples of such commercially available methacrylic resins include “Parapet H1000B” (MFR: 22 g / 10 min (230 ° C., 37.3 N)) and “Parapet GF” (MFR: 15 g / 10 min (230 ° C., 37.3 N).
  • the thermoplastic polymer composition preferably contains 1 to 25 parts by weight of (meth) acrylic resin (C), preferably 3 to 20 parts by weight, per 100 parts by weight of the thermoplastic elastomer (A). Is more preferable.
  • the (meth) acrylic resin (C) is less than 1 part by mass, it may be difficult to adhere to the adherend by heat treatment.
  • the amount of the (meth) acrylic resin (C) is more than 25 parts by mass, the thermoplastic polymer composition becomes hard, and it may be difficult to express flexibility and mechanical properties.
  • the content of the (meth) acrylic resin (C) is preferably 1 to 18 parts by mass, more preferably 3 to 15 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer (A).
  • thermoplastic polymer composition of the present invention can be used as long as it does not significantly impair the effects of the present invention, as required by other thermoplastic heavy polymers such as olefin polymers, styrene polymers, polyphenylene ether resins, and polyethylene glycol. It may contain a coalescence.
  • thermoplastic heavy polymers such as olefin polymers, styrene polymers, polyphenylene ether resins, and polyethylene glycol. It may contain a coalescence.
  • olefin polymer include polyethylene, polypropylene, polybutene, block copolymers of propylene and other ⁇ -olefins such as ethylene and 1-butene, and random copolymers.
  • the content thereof is preferably 100 parts by mass or less, more preferably 50 parts by mass or less, more preferably 20 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer (A).
  • it is more preferably 10 parts by mass or less, particularly preferably 5 parts by mass or less.
  • the thermoplastic polymer composition of the present invention is an antioxidant, a lubricant, a light stabilizer, a processing aid, a colorant such as a pigment or a dye, a flame retardant, and the like, as long as the effects of the invention are not impaired. It may contain an antistatic agent, a matting agent, silicone oil, an antiblocking agent, an ultraviolet absorber, a release agent, a foaming agent, an antibacterial agent, an antifungal agent, a fragrance and the like.
  • the antioxidant include hindered phenol-based, phosphorus-based, lactone-based, and hydroxyl-based antioxidants. Among these, hindered phenol antioxidants are preferable.
  • thermoplastic polymer composition The method for preparing the thermoplastic polymer composition of the present invention is not particularly limited, but in order to improve the dispersibility of each component constituting the thermoplastic polymer composition, for example, a method of melt kneading and mixing is recommended.
  • a method of melt kneading and mixing is recommended.
  • the thermoplastic elastomer (A), the polypropylene resin (B) and the (meth) acrylic resin (C) and other components added as necessary may be mixed and melt-kneaded at the same time.
  • the mixing operation can be performed using a known mixing or kneading apparatus such as a kneader ruder, an extruder, a mixing roll, or a Banbury mixer.
  • thermoplastic elastomer (A) and the (meth) acrylic resin (C) are preferable to use from the viewpoint of improving the kneadability and compatibility between the thermoplastic elastomer (A) and the (meth) acrylic resin (C).
  • the temperature during mixing and kneading should be appropriately adjusted according to the melting temperature of the thermoplastic elastomer (A), polypropylene resin (B), (meth) acrylic resin (C), etc. Mixing at a temperature in the range of 110 ° C to 300 ° C is recommended.
  • thermoplastic polymer composition of the present invention can be obtained in any form such as pellets or powder.
  • the obtained thermoplastic polymer composition can be formed into various shapes such as a film, a sheet, a plate, a pipe, a tube, a rod-like body, and a granular body.
  • These production methods are not particularly limited, and can be formed by various conventional molding methods such as injection molding, blow molding, press molding, extrusion molding, and calendar molding.
  • the multilayer film of this invention has at least the layer which consists of a base material layer and the thermoplastic polymer composition of this invention.
  • the base material layer used in the multilayer film of the present invention will be described.
  • amorphous resin means a resin having no clear melting point in a differential scanning calorimetry (DSC) curve.
  • DSC differential scanning calorimetry
  • examples of the amorphous resin include polystyrene resin, polyvinyl chloride resin, acrylonitrile styrene resin, ABS resin (acrylonitrile butadiene styrene resin), polycarbonate resin, polyester resin, and (meth) acrylic resin.
  • (meth) acrylic resins ABS resins, polycarbonate resins and polyester resins are preferred from the viewpoints of weather resistance, surface gloss and scratch resistance, and (meth) acrylic resins from the viewpoint of transparency and surface gloss. Is preferred.
  • As the (meth) acrylic resin a (meth) acrylic resin composition containing a methacrylic resin (F) and an elastic body (R) is more preferable.
  • the methacrylic resin (F) has a structural unit derived from methyl methacrylate, preferably 80% by mass or more, more preferably 90% by mass or more.
  • the methacrylic resin (F) has a structural unit derived from a monomer other than methyl methacrylate, preferably 20% by mass or less, more preferably 10% by mass or less, and only methyl methacrylate is used as a monomer. It may be a polymer.
  • the monomer other than the methyl methacrylate those similar to those mentioned as the monomer other than methyl methacrylate in the (meth) acrylic resin (C) can be used.
  • the stereoregularity of the methacrylic resin (F) is not particularly limited, and for example, those having stereoregularity such as isotactic, heterotactic and syndiotactic may be used.
  • the weight average molecular weight of the methacrylic resin (F) is preferably in the range of 20,000 to 180,000, more preferably in the range of 30,000 to 150,000. When the weight average molecular weight is less than 20,000, impact resistance and toughness tend to decrease, and when it exceeds 180,000, the fluidity of the methacrylic resin (F) decreases and molding processability tends to decrease.
  • the production method of the methacrylic resin (F) is not particularly limited, and it is obtained by polymerizing a monomer (mixture) containing 80% by mass or more of methyl methacrylate or copolymerizing with a monomer other than methyl methacrylate. Moreover, you may use a commercial item as a methacryl resin (F).
  • the (meth) acrylic resin (C) used for the thermoplastic polymer composition and the methacrylic resin (F) used for the base layer may be the same, comonomer ratio, molecular weight, MFR. Etc. may be different.
  • Examples of the elastic body (R) include butadiene rubber, chloroprene rubber, block copolymer, multilayer structure and the like, and these may be used alone or in combination. Among these, from the viewpoint of transparency, impact resistance, and dispersibility, a block copolymer or a multilayer structure is preferable, and an acrylic block copolymer (G) or a multilayer structure (E) is more preferable.
  • the acrylic block copolymer (G) has a methacrylic acid ester polymer block (g1) and an acrylic acid ester polymer block (g2).
  • the acrylic block copolymer (G) may have only one methacrylic acid ester polymer block (g1) and one acrylic acid ester polymer block (g2), or a plurality thereof.
  • the methacrylic acid ester polymer block (g1) is mainly composed of structural units derived from methacrylic acid esters.
  • the proportion of the structural unit derived from the methacrylic ester in the methacrylic ester polymer block (g1) is preferably 80% by mass or more, more preferably 90% by mass or more, and still more preferably 95 from the viewpoints of stretchability and surface hardness. It is at least 98% by mass, particularly preferably at least 98% by mass.
  • methacrylic acid ester examples include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, sec-butyl methacrylate, tert-butyl methacrylate, and methacrylic acid.
  • Amyl isoamyl methacrylate, n-hexyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, pentadecyl methacrylate, dodecyl methacrylate, isobornyl methacrylate, phenyl methacrylate, benzyl methacrylate, phenoxyethyl methacrylate, 2 methacrylate -Hydroxyethyl, 2-methoxyethyl methacrylate, glycidyl methacrylate, allyl methacrylate, and the like. It can be polymerized in combination with at least species.
  • alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, tert-butyl methacrylate, cyclohexyl methacrylate, and isobornyl methacrylate. Is preferred, and methyl methacrylate is more preferred.
  • the methacrylic acid ester polymer block (g1) may contain a structural unit derived from a monomer other than the methacrylic acid ester, and the proportion thereof is preferably 20% by mass or less, more preferably from the viewpoint of stretchability and surface hardness. It is 10 mass% or less, More preferably, it is 5 mass% or less, Most preferably, it is 2 mass% or less.
  • Examples of the monomer other than the methacrylic acid ester include acrylic acid ester, unsaturated carboxylic acid, aromatic vinyl compound, olefin, conjugated diene, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, vinyl acetate, vinyl pyridine, vinyl ketone. , Vinyl chloride, vinylidene chloride, vinylidene fluoride, and the like. These may be used alone or in combination of two or more.
  • the composition ratio and molecular weight of the structural units constituting the respective methacrylate polymer blocks (g1) are the same. It may be different or different.
  • the proportion of the methacrylic ester polymer block (g1) in the block copolymer (G) is preferably in the range of 10% by mass to 70% by mass from the viewpoint of transparency, flexibility, molding processability and surface smoothness. More preferably, it is in the range of 25% by mass to 60% by mass.
  • the block copolymer (G) includes a plurality of methacrylate polymer blocks (g1), the above ratio is calculated based on the total mass of all methacrylate polymer blocks (g1).
  • the acrylic ester polymer block (g2) is mainly composed of a structural unit derived from an acrylic ester.
  • the proportion of structural units derived from the acrylate ester in the acrylate polymer block (g2) is preferably 45% by mass or more, more preferably 50% by mass or more, further preferably from the viewpoint of three-dimensional coating moldability and stretchability. Is 60% by mass or more, particularly preferably 90% by mass or more.
  • acrylate ester examples include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, sec-butyl acrylate, tert-butyl acrylate, and acrylic acid.
  • Amyl, isoamyl acrylate, n-hexyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, pentadecyl acrylate, dodecyl acrylate, isobornyl acrylate, phenyl acrylate, benzyl acrylate, phenoxyethyl acrylate, acrylic acid 2 -Hydroxyethyl, 2-methoxyethyl acrylate, glycidyl acrylate, allyl acrylate and the like can be mentioned, and these can be polymerized alone or in combination of two or more.
  • the acrylic ester polymer block (g2) is preferably composed of an acrylic acid alkyl ester and a (meth) acrylic acid aromatic ester from the viewpoint of stretchability and transparency.
  • the alkyl acrylate include methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, and the like. Of these, n-butyl acrylate and 2-ethylhexyl acrylate are preferred.
  • (Aromatic ester of (meth) acrylic acid means an aromatic ester of acrylic acid or an aromatic ester of methacrylic acid, and a compound containing an aromatic ring is ester-bonded to (meth) acrylic acid.
  • the (meth) acrylic acid aromatic ester include phenyl acrylate, benzyl acrylate, phenoxyethyl acrylate, styryl acrylate, phenyl methacrylate, benzyl methacrylate, phenoxyethyl methacrylate, and styryl methacrylate. .
  • phenyl methacrylate, benzyl methacrylate, phenoxyethyl methacrylate, and benzyl acrylate are preferable.
  • the acrylic acid ester polymer block (g2) is composed of an acrylic acid alkyl ester and a (meth) acrylic acid aromatic ester
  • the acrylic acid ester polymer block (g2) is derived from the acrylic acid alkyl ester from the viewpoint of transparency. It preferably contains 50 to 90% by mass of structural units and 50 to 10% by mass of structural units derived from (meth) acrylic acid aromatic ester, and 60 to 80% by mass of structural units derived from alkyl acrylate and (meth) More preferably, it contains 40 to 20% by mass of a structural unit derived from an acrylic acid aromatic ester.
  • the acrylate polymer block (g2) may contain a structural unit derived from a monomer other than the acrylate ester, and the content of the acrylate polymer block (g2) is preferably 55% by mass or less. More preferably, it is 50 mass% or less, More preferably, it is 40 mass% or less, Most preferably, it is 10 mass% or less.
  • Examples of monomers other than acrylic acid esters include methacrylic acid esters, unsaturated carboxylic acids, aromatic vinyl compounds, olefins, conjugated dienes, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, vinyl acetate, vinyl pyridine, vinyl ketone, Examples thereof include vinyl chloride, vinylidene chloride, and vinylidene fluoride, and these can be used alone or in combination of two or more.
  • the composition ratio and molecular weight of the structural units constituting each acrylate polymer block (g2) are the same. It may be different or different.
  • the proportion of the acrylate polymer block (g2) in the block copolymer (G) is preferably in the range of 30 to 90% by mass from the viewpoint of transparency, flexibility, molding processability, and surface smoothness. More preferably, it is in the range of 40 to 75% by mass.
  • the proportion is calculated based on the total mass of all acrylic ester polymer blocks (g2).
  • the bonding form of the methacrylic ester polymer block (g1) and the acrylate polymer block (g2) in the block copolymer (G) is not particularly limited.
  • Structure in which one end is connected ((g2)-(g1)-(g2) structure); Structure in which one end of methacrylic ester polymer block (g1) is connected to both ends of acrylate polymer block (g2) ((G1)-(g2)-(g1) structure), etc., methacrylic acid ester polymer block (g1) and acrylate weight Body block (g2) can be cited a structure that led to series.
  • a diblock copolymer having a (g1)-(g2) structure or a triblock copolymer having a (g1)-(g2)-(g1) structure is particularly preferable.
  • the acrylic block copolymer (G) may have a functional group such as a hydroxyl group, a carboxyl group, an acid anhydride, or an amino group in the molecular chain or at the molecular chain end.
  • the weight average molecular weight of the acrylic block copolymer (G) is preferably in the range of 60,000 to 400,000, more preferably in the range of 60,000 to 200,000. If the weight average molecular weight of the block copolymer (G) is less than 60,000, sufficient melt tension cannot be maintained in melt extrusion molding, making it difficult to obtain a good film, and mechanical properties such as breaking strength of the obtained film. When the viscosity is larger than 400,000, the viscosity of the molten resin increases, and the surface of the film obtained by melt extrusion molding has fine grain-like irregularities and irregularities due to unmelted material (high molecular weight). This tends to be difficult to obtain a good film.
  • the molecular weight distribution of the acrylic block copolymer (G) is preferably in the range of 1.0 to 2.0, more preferably in the range of 1.0 to 1.6. By having the molecular weight distribution within such a range, the content of unmelted material that causes the generation of scum in the base material layer can be reduced.
  • a weight average molecular weight and a number average molecular weight are molecular weights of standard polystyrene conversion measured by GPC.
  • the refractive index of the acrylic block copolymer (G) is preferably in the range of 1.485 to 1.495, more preferably in the range of 1.487 to 1.493. When the refractive index is within this range, the transparency of the obtained base material layer becomes high.
  • the refractive index is a value measured at a wavelength of 587.6 nm (d line).
  • the method for producing the acrylic block copolymer (G) is not particularly limited, and a method according to a known method can be adopted.
  • a method of living polymerizing monomers constituting each polymer block is generally used.
  • living polymerization methods include a method of anionic polymerization in the presence of a mineral salt such as an alkali metal or an alkaline earth metal salt using an organic alkali metal compound as a polymerization initiator; A method of anionic polymerization in the presence of an organoaluminum compound used as an agent; a method of polymerization using an organic rare earth metal complex as a polymerization initiator; a method of radical polymerization in the presence of a copper compound using an ⁇ -halogenated ester compound as an initiator Etc.
  • the method of polymerizing the monomer which comprises each block using a polyvalent radical polymerization initiator and a polyvalent radical chain transfer agent, and manufacturing as a mixture containing an acryl-type block copolymer (G), etc. are mentioned.
  • the acrylic block copolymer (G) can be obtained with high purity, the molecular weight and the composition ratio can be easily controlled, and it is economical.
  • a method in which anionic polymerization is used in the presence of an organoaluminum compound is preferred.
  • the multilayer structure (E) includes at least two layers of an inner layer and an outer layer, and has at least one layer structure in which the inner layer and the outer layer are arranged in this order from the center layer toward the outermost layer.
  • the multilayer structure (E) may further have a crosslinkable resin layer inside the inner layer or outside the outer layer.
  • the inner layer is a layer composed of a cross-linked elastic body obtained by copolymerizing a monomer mixture having an acrylic acid alkyl ester and a cross-linkable monomer.
  • an acrylic acid alkyl ester an acrylic acid alkyl ester having an alkyl group having 2 to 8 carbon atoms is preferably used, and examples thereof include butyl acrylate and 2-ethylhexyl acrylate.
  • the ratio of the alkyl acrylate ester in the total monomer mixture used to form the inner layer copolymer is preferably in the range of 70 to 99.8% by mass, more preferably. Is 80 to 90% by mass.
  • the crosslinkable monomer used in the inner layer may be any monomer having at least two polymerizable carbon-carbon double bonds in one molecule.
  • unsaturated glycols such as ethylene glycol dimethacrylate and butanediol dimethacrylate.
  • Polyalkenyl esters of polybasic acids such as carboxylic acid diesters, alkenyl esters of unsaturated carboxylic acids such as allyl acrylate, allyl methacrylate, allyl cinnamate, diallyl phthalate, diallyl maleate, triallyl cyanurate, triallyl isocyanurate
  • unsaturated carboxylic acid esters of polyhydric alcohols such as trimethylolpropane triacrylate, divinylbenzene and the like, and alkenyl esters of unsaturated carboxylic acids and polyalkenyl esters of polybasic acids are preferred.
  • the amount of the crosslinkable monomer in the total monomer mixture is preferably in the range of 0.2 to 30% by mass from the viewpoint of improving the impact resistance, heat resistance and surface hardness of the base material layer. The range of 10% by mass is more preferable.
  • the monomer mixture forming the inner layer may further have another monofunctional monomer.
  • monofunctional monomers include, for example, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, pentyl methacrylate, hexyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, Alkyl methacrylates such as dodecyl methacrylate, myristyl methacrylate, palmityl methacrylate, stearyl methacrylate, and behenyl methacrylate; methacrylates such as phenyl methacrylate and esters of phenols; methacrylates such as esters of methacrylic acid and aromatic alcohols such as benzyl methacrylate Styrene
  • the outer layer is composed of a hard thermoplastic resin obtained by polymerizing a monomer mixture containing 80% by mass or more, preferably 90% by mass or more of methyl methacrylate from the viewpoint of heat resistance of the base material layer.
  • the hard thermoplastic resin contains other monofunctional monomer in an amount of 20% by mass or less, preferably 10% by mass or less.
  • Other monofunctional monomers include, for example, acrylic acid alkyl esters such as methyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate; acrylic acid; methacrylic acid.
  • the content of the inner layer and the outer layer in the multilayer structure (E) is determined from the viewpoint of impact resistance, heat resistance, surface hardness, handleability, ease of melt kneading and the like of the obtained base material layer.
  • the content of the inner layer is selected from the range of 40 to 80% by mass
  • the content of the outer layer is selected from the range of 20 to 60% by mass, based on the mass (for example, the total amount of the inner layer and outer layer in the case of two layers) It is preferable that
  • the method for producing the multilayer structure (E) is not particularly limited, but it is preferably produced by emulsion polymerization from the viewpoint of controlling the layer structure of the multilayer structure (E).
  • a base material layer is comprised from the (meth) acrylic-type resin composition containing a methacryl resin (F) and an elastic body (R)
  • content of each component is a methacryl resin (F) and an elastic body (R). It is preferable that the content of the methacrylic resin (F) is 10 to 99 parts by mass and the content of the elastic body (R) is 90 to 1 part by mass with respect to 100 parts by mass in total.
  • the content of the methacrylic resin (F) is less than 10 parts by mass, the surface hardness of the base material layer tends to decrease.
  • the content of the methacrylic resin (F) is 55 to 90 parts by mass with respect to a total of 100 parts by mass of the methacrylic resin (F) and the elastic body (R), and the content of the elastic body (R) Is 45 to 10 parts by mass. More preferably, the content of the methacrylic resin (F) is 70 to 90 parts by mass, and the content of the elastic body (R) is 30 to 10 parts by mass.
  • the amorphous resin constituting the base material layer preferably has an elastic modulus of 2 to 600 MPa at an arbitrary temperature in the range of 110 to 160 ° C. If the elastic modulus is less than 2 MPa, the elongation during vacuum forming tends to be non-uniform, and if the elastic modulus is greater than 600 MPa, cracking or fracture tends to occur during vacuum forming.
  • the elastic modulus is a value obtained by rounding off the first decimal place when expressed in [MPa] units.
  • the amorphous resin constituting the base layer is various additives such as antioxidants, heat stabilizers, lubricants, processing aids, antistatic agents, heat deterioration inhibitors, ultraviolet absorbers, light stabilizers, polymers.
  • a processing aid colorant, an impact resistance aid and the like may be contained.
  • the amorphous resin can be used by mixing with other polymers.
  • other polymers include polyolefin resins such as polyethylene, polypropylene (PP), polybutene-1, poly-4-methylpentene-1, and polynorbornene; ethylene ionomers; polystyrene, styrene-maleic anhydride copolymers , High impact polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer (ABS), acrylonitrile-ethylene-styrene copolymer, acrylonitrile-acrylic ester-styrene copolymer resin, acrylonitrile-chlorinated polyethylene -Styrene resins such as styrene copolymers, methyl methacrylate-butadiene-styrene copolymers; methyl methacrylate-styrene
  • the method for preparing the amorphous resin constituting the base material layer is not particularly limited, but a method of melt kneading and mixing is preferable in order to improve the dispersibility of each component constituting the amorphous resin.
  • a known mixing or kneading apparatus such as a kneader ruder, an extruder, a mixing roll, or a Banbury mixer can be used. From the viewpoint of improving kneadability and compatibility, it is preferable to use a twin screw extruder.
  • the temperature at the time of mixing and kneading may be appropriately adjusted according to the melting temperature of the amorphous resin to be used, and is usually in the range of 110 to 300 ° C.
  • melt-kneading using a twin-screw extruder it is preferable to use a vent and melt-knead under reduced pressure and / or in a nitrogen atmosphere from the viewpoint of suppressing coloration.
  • a pattern or color such as a picture, a character, or a figure may be printed on the base layer and / or the layer made of the thermoplastic polymer composition.
  • the pattern may be chromatic or achromatic.
  • the printing method include known printing methods such as gravure printing, offset printing, screen printing, transfer printing, and ink jet printing.
  • a resin composition containing a resin such as a polyvinyl resin, a polyester resin, an acrylic resin, a polyvinyl acetal resin, or a cellulose resin as a binder and a pigment or a dye as a colorant, which is generally used in the printing method. Is preferably used.
  • the base material layer used in the multilayer film of the present invention may be colored.
  • the amorphous resin itself contains a pigment or a dye, and the resin itself before being formed into a film is colored; the amorphous resin film is colored by immersing it in a liquid in which the dye is dispersed. Examples thereof include, but are not limited to, staining methods.
  • a metal or metal oxide may be deposited on the base material layer.
  • any metal or metal oxide used for sputtering or vacuum deposition can be used without any particular limitation.
  • these metals or metal oxides may be used alone or as a mixture of two or more.
  • the method for depositing metal or metal oxide on the base material layer include vacuum film formation methods such as deposition and sputtering, electrolytic plating, and electroless plating.
  • the surface of the multilayer film of the present invention on the base material layer side is preferably HB or higher in pencil hardness, more preferably H or higher.
  • the pencil hardness is higher than HB, the multilayer film is hardly damaged, and is suitably used as a decorative and protective film for the surface of a molded product that requires design properties.
  • the total thickness of the multilayer film of the present invention is preferably in the range of 20 to 1,000 ⁇ m, more preferably in the range of 50 to 500 ⁇ m, and still more preferably in the range of 100 to 400 ⁇ m. If the thickness of the multilayer film is 20 ⁇ m or more, the production becomes easy, it is excellent in impact resistance and warpage reduction during heating, and has a concealing property during coloring. If the thickness of the multilayer film is 1,000 ⁇ m or less, the three-dimensional coating moldability tends to be improved.
  • the thickness of the base material layer is preferably 500 ⁇ m or less. If it is thicker than 500 ⁇ m, the secondary processability such as laminating property, handling property, cutting property and punching property will deteriorate, making it difficult to use as a film and increasing the unit price per unit area, which is economically disadvantageous. This is not preferable.
  • the thickness of the base material layer is more preferably 40 to 300 ⁇ m, particularly preferably 50 to 250 ⁇ m.
  • the ratio (y / x) of the thickness (y) of the base material layer to the thickness (x) of the layer made of the thermoplastic polymer composition is preferably in the range of 0.2 to 5, more preferably 0.
  • the range is from 5 to 4, more preferably from 0.8 to 3. If the value of the ratio (y / x) is less than 0.2, the surface hardness tends to be low, and if it is larger than 5, the multilayer film tends to break, and if it is larger than 4, the stretchability is lowered. It becomes a trend.
  • the multilayer film of the present invention has a base material layer and a layer made of the thermoplastic polymer composition of the present invention, and a layer made of the thermoplastic polymer composition is laminated on one surface of the base material layer. Can be obtained.
  • the method for producing the substrate layer is not particularly limited.
  • an amorphous resin when used, it can be performed using a known method such as a T-die method, an inflation method, a melt casting method, or a calendar method.
  • the molten kneaded material of the amorphous resin constituting the base material layer is extruded in a molten state from a T-die, and both surfaces thereof are mirror roll surface or mirror belt surface
  • a method including a step of forming the film by contacting the substrate is preferable.
  • the roll or belt used at this time is preferably made of metal.
  • the film When forming the film by bringing both sides of the extruded melt-kneaded material into contact with a mirror surface, it is preferable to press and sandwich both surfaces of the film with a mirror roll or a mirror belt.
  • the pinching pressure by the mirror roll or the mirror belt is preferably high, and the linear pressure is preferably 10 N / mm or more, and more preferably 30 N / mm or more.
  • the base material layer may be a film that has been subjected to stretching treatment.
  • the stretching process increases the mechanical strength and makes it difficult to crack.
  • the stretching method is not particularly limited, and examples thereof include a simultaneous biaxial stretching method, a sequential biaxial stretching method, a tuber stretching method, and a rolling method. *
  • Lamination of the layer comprising the thermoplastic polymer composition to the base material layer obtained as described above is a method of applying a solution of the thermoplastic polymer composition to the base material layer, and the thermoplastic layer to the base material layer.
  • Examples include a method of laminating a film made of a polymer composition.
  • a film made of the thermoplastic polymer composition can be obtained in the same manner as in the method for producing a base material layer exemplified above.
  • the amorphous resin and the thermoplastic polymer composition constituting the base material layer can be produced by co-extrusion using a T-die method. In particular, a co-extrusion method using a multi-manifold die is preferable.
  • the molded body of the present invention comprises the multilayer film of the present invention or a decorative film made of the multilayer film. More preferably, the multilayer film of the present invention is provided on the surface of an adherend such as a thermoplastic resin, a thermosetting resin, a wooden substrate, or a non-wood fiber substrate.
  • an adherend such as a thermoplastic resin, a thermosetting resin, a wooden substrate, or a non-wood fiber substrate.
  • thermoplastic resin used as the adherend examples include polycarbonate resin, polyethylene terephthalate resin, polyamide resin, polyethylene resin, polypropylene resin, polystyrene resin, polyvinyl chloride resin, other (meth) acrylic resins, ABS (acrylonitrile-butadiene). -Styrene copolymerization) resin and the like.
  • thermosetting resin examples include an epoxy resin, a phenol resin, and a melamine resin.
  • the molded body may be one in which the multilayer film of the present invention is provided on the surface of a non-wood fiber such as a wooden base material or kenaf.
  • the manufacturing method of the molded body is not particularly limited.
  • the multilayer film of the present invention is subjected to vacuum forming, air forming, and compression forming under heating on the surface of an adherend such as a thermoplastic resin, a thermosetting resin, a wooden base material, and a non-wood fiber base material.
  • the molded product of the present invention can be obtained.
  • the base material layer in the multilayer film of the present invention is provided on the outermost layer of the molded body, thereby being excellent in surface smoothness, surface hardness, surface gloss and the like.
  • vacuum molding and / or pressure molding is preferable because it can be shaped and adhered to various adherends with high accuracy
  • three-dimensional surface decoration molding (Three ⁇ dimension Overlay Method: TOM molding) is a combination of vacuum molding and pressure molding. More preferred.
  • a vacuum forming apparatus for TOM-forming a multilayer film for example, a vacuum forming apparatus described in JP-A No. 2002-0667137 or a coating apparatus described in JP-A No. 2005-262502 can be suitably used.
  • the molding apparatus or the coating apparatus includes a chamber box that can be closed and decompressed by installing a multilayer film and an adherend.
  • a method for producing a molded body by TOM molding includes a step of accommodating a multilayer film and an adherend in a chamber box; a step of reducing the pressure in the chamber box; a step of dividing the interior of the chamber box by the multilayer film; Covering the adherend with the multilayer film by setting the pressure in the chamber box not having the adherend higher than the pressure in the chamber box having the adherend.
  • Another preferable method among the manufacturing methods of a molded object is the method generally called the injection molding simultaneous bonding method.
  • the multilayer film of the present invention is inserted between male and female molds for injection molding, and a molten thermoplastic resin is injected into the mold from the surface on the adhesive layer side of the film.
  • the multilayer film is bonded to the surface of the molded body.
  • the multilayer film inserted into the mold may be a flat film as it is, or may be formed into a concavo-convex shape by preforming by vacuum forming, pressure forming or the like.
  • the preforming of the multilayer film may be performed by a separate molding machine, or may be preformed in a mold of an injection molding machine used for the injection molding simultaneous bonding method.
  • a multilayer film having a layer comprising the thermoplastic polymer composition of the present invention and a molded body comprising the multilayer film have good stretchability and moldability of the multilayer film, excellent ambipolar adhesion and surface smoothness. It can be applied to articles that require design properties.
  • billboard parts such as advertising towers, stand signboards, sleeve signboards, billboard signs, rooftop signboards; display parts such as showcases, partition plates, store displays; fluorescent lamp covers, mood lighting covers, lamp shades, light ceilings, light walls , Lighting parts such as chandeliers; interior parts such as furniture, pendants, mirrors; doors, domes, safety window glass, partitions, staircases, balconies, building parts such as roofs for leisure buildings, automobile interior and exterior components, Transport equipment-related parts such as automobile exterior parts such as bumpers; electronic equipment parts such as nameplates for audio images, stereo covers, vending machines, mobile phones, personal computers; incubators, rulers, dials, greenhouses, large tanks, box tanks , Bathroom parts, clock panels, bathtubs, sanitary, desk mats, game parts, toys, wallpaper; marking films, various home appliances Suitably used in decorative applications. Since the multilayer film of the present invention has the above characteristics, it can be suitably used particularly as a decorative film.
  • thermoplastic polymer composition A capillary-shaped rheometer (CAPIROGRAPH 1C, manufactured by TOYOSEIKI) is fitted with a slit-shaped capillary having a rectangular cross section (length 8 mm x width 0.5 mm). The obtained thermoplastic polymer composition was extruded to obtain a film-like strand. The arithmetic average roughness (Ra) of the strand surface obtained above was measured with a stylus shape measuring instrument (Dektak-150 manufactured by Bruker) using a needle having a tip radius of 12.5 ⁇ m. When Ra is smaller than 0.15 ⁇ m, the surface smoothness is excellent.
  • thermoplastic polymer composition PMMA
  • the pellets of the thermoplastic polymer compositions obtained in Examples and Comparative Examples and the methacrylic resin composition obtained in Production Example 5 were respectively subjected to conditions of 200 ° C. and a load of 50 kgf / cm 2 using a compression molding machine.
  • a sheet made of a thermoplastic polymer composition and a sheet made of a methacrylic resin composition were obtained by compression molding for 2 minutes.
  • Sheet made of 150 ⁇ 150 mm thermoplastic polymer composition (length 150 mm ⁇ width 150 mm ⁇ thickness 0.5 mm), polyimide film (Kapton film manufactured by Toray DuPont, length 75 mm ⁇ width 150 mm ⁇ thickness 0.05 mm) Sheets made of a methacrylic resin composition (length 150 mm ⁇ width 150 mm ⁇ thickness 0.5 mm) were stacked in this order, and placed in the center of a metal spacer having an inner dimension of 150 mm ⁇ 150 mm and a thickness of 0.8 mm.
  • thermoplastic polymer composition Using AGS-X), the measurement was carried out under the conditions of a peel angle of 90 °, a tensile speed of 300 mm / min, and an environmental temperature of 23 ° C., and was defined as the adhesive strength (PMMA) of the thermoplastic polymer composition.
  • thermoplastic polymer composition Adhesive strength (PP) of thermoplastic polymer composition
  • PMMA adhesive strength of the thermoplastic polymer composition
  • MA3 polypropylene sheet
  • MA3 manufactured by Nippon Polypro Co., Ltd., 150 mm long ⁇ 150 mm wide ⁇ 0.4 mm thick
  • a multilayer film was prepared in the same manner, and the peel strength between the thermoplastic polymer composition and polypropylene was measured to obtain the adhesive strength (PP) of the thermoplastic polymer composition.
  • a sheet-like adherend (length 150 mm ⁇ width 25 mm ⁇ thickness 0.3 mm) made of polypropylene resin (manufactured by Nippon Polypro Co., Ltd .; MA03) is placed on the flat stage of the above-described vacuum / pressure forming machine, and the polypropylene Three-dimensional surface decorative molding was carried out in the same manner as in Example 10 with a polyimide film (Kapton film manufactured by Toray DuPont, length 30 mm x width 30 mm x thickness 0.125 mm) placed on the edge of the sheet.
  • a test piece was prepared by excising a portion where the multilayer film and the polypropylene sheet did not overlap.
  • the multi-layer film side of the obtained test piece was fixed to a SUS plate with a strong adhesive tape, and using a peel tester (AGS-X, manufactured by Shimadzu Corporation), a peeling angle of 90 °, a tensile speed of 300 mm / min, and an environmental temperature of 23
  • a peel tester AGS-X, manufactured by Shimadzu Corporation
  • the peel strength between the layer made of the thermoplastic polymer composition and the polypropylene sheet was measured according to JIS K 6854-2 under the condition of ° C.
  • thermoplastic elastomer (A-1) A pressure-resistant container purged with nitrogen and dried was charged with 64 L of cyclohexane as a solvent, 0.20 L of sec-butyllithium (10 mass% cyclohexane solution) as an initiator, and 0.46 L of tetrahydrofuran as an organic Lewis base. After the temperature was raised to 50 ° C., 2.3 L of styrene was added for polymerization for 3 hours, then 23 L of isoprene was added for polymerization for 4 hours, and 2.3 L of styrene was further added for polymerization for 3 hours.
  • the obtained reaction liquid was poured into 80 L of methanol, and the precipitated solid was separated by filtration and dried at 50 ° C. for 20 hours to obtain a triblock copolymer composed of polystyrene-polyisoprene-polystyrene.
  • 10 kg of a triblock copolymer composed of polystyrene-polyisoprene-polystyrene was dissolved in 200 L of cyclohexane, and palladium carbon (palladium supported amount: 5% by mass) as a hydrogenation catalyst was 5% by mass with respect to the copolymer.
  • the reaction was carried out for 10 hours under the conditions of hydrogen pressure of 2 MPa and 150 ° C.
  • thermoplastic elastomer a triblock copolymer consisting of polystyrene-polyisoprene-polystyrene (hereinafter, thermoplastic elastomer).
  • thermoplastic elastomer (Referred to as (A-1)).
  • the resulting thermoplastic elastomer (A-1) has a weight average molecular weight of 107,000, a styrene content of 21% by mass, a hydrogenation rate of 85%, a molecular weight distribution of 1.04, and a polyisoprene block containing 1,1.
  • the total amount of 2-bond and 3,4-bond was 60 mol%.
  • Polypropylene resin (B-1) As the nonpolar polypropylene resin (B-1), J229E (230 ° C., MFR at a load of 2.16 kg (21.18 N) of 50 g / 10 min, melting point 144 ° C.) manufactured by Prime Polymer Co., Ltd. was used. Moreover, melting
  • Polypropylene resin (B-2) As the nonpolar polypropylene resin (B-2), WFX4TA (230 ° C., MFR at a load of 2.16 kg (21.18 N), 7 g / 10 min, melting point 124 ° C.) manufactured by Nippon Polypro Co., Ltd. was used. Moreover, melting
  • MFR [230 ° C., load 2.16 kg (21.18N)] of the obtained polar group-containing polypropylene resin (B-3) was 6 g / 10 min
  • the maleic anhydride concentration was 0.3%
  • the melting point was It was 138 ° C.
  • the maleic anhydride concentration is a value obtained by titrating the obtained kneaded product with a methanol solution of potassium hydroxide.
  • fusing point is the value read from the endothermic peak of the differential scanning calorimetry curve at the time of heating up at 10 degree-C / min.
  • methyl methacrylate polymer block (g1-1) 35.0 g of methyl methacrylate was added to this and reacted at room temperature for 1 hour, whereby the first methacrylate polymer block (g1) (hereinafter referred to as “methyl methacrylate polymer block (g1-1)”). ) was formed.
  • the polymer contained in the reaction solution was sampled and the weight average molecular weight (hereinafter referred to as Mw (g1-1)) was measured, and it was 40,000.
  • the reaction solution was brought to ⁇ 25 ° C., and a mixed solution of 24.5 g of n-butyl acrylate and 10.5 g of benzyl acrylate was added dropwise over 0.5 hours.
  • the polymer contained in the reaction solution was sampled and the weight average molecular weight was measured, and it was 80,000. Since the weight average molecular weight of the methyl methacrylate polymer block (g1-1) was 40,000, the weight of the acrylate polymer block (g2) comprising a copolymer of n-butyl acrylate and benzyl acrylate.
  • the average molecular weight (Mw (g2)) was determined to be 40,000.
  • methyl methacrylate polymer block (g1 -2) a second methacrylate polymer block (g1) (hereinafter, “methyl methacrylate polymer block (g1 -2) ”).
  • methyl methacrylate polymer block (g1 -2) a second methacrylate polymer block
  • 4 g of methanol was added to the reaction solution to stop the polymerization, and then the reaction solution was poured into a large amount of methanol to precipitate an acrylic block copolymer (G-1) as a triblock copolymer, followed by filtration. Then, it was isolated by drying at 80 ° C. and 1 torr (about 133 Pa) for 12 hours.
  • the resulting acrylic block copolymer (G-1) had a weight average molecular weight Mw (G) of 120,000. Since the weight average molecular weight of the diblock copolymer was 80,000, the weight average molecular weight (referred to as Mw (g1-2)) of the methyl methacrylate polymer block (g1-2) was 40,000. Were determined.
  • thermoplastic elastomer (A-1), polypropylene resin (B-1), and (meth) acrylic resin (C-1) are added to a twin screw extruder (ZSK-25 manufactured by KRUPP WERNER & PFLIDEERER) at the ratio shown in Table 1.
  • the mixture was melted and kneaded at 225 ° C. and 250 rpm, then extruded into strands and cut to obtain thermoplastic polymer composition pellets.
  • the surface smoothness and adhesive strength (PMMA, PP) of the obtained thermoplastic polymer composition were evaluated by the methods described above. The results are shown in Table 1.
  • thermoplastic elastomer (A-1), polypropylene resins (B-1) to (B-3) and (meth) acrylic resin (C-1) were mixed in the proportions shown in Table 1. 1 was used to obtain pellets of a thermoplastic polymer composition. The surface smoothness and adhesive strength (PMMA, PP) of the obtained thermoplastic polymer composition were evaluated by the methods described above. The results are shown in Table 1.
  • Example 12 The pellets of the thermoplastic polymer composition obtained in Example 1 and the pellets of the methacrylic resin composition obtained in Production Example 5 were respectively placed in the hopper of a single screw extruder (VGM25-28EX manufactured by GM ENGINEERING). Then, it was coextruded at 240 ° C. and a flow rate of 5 kg / h using a multi-manifold die to obtain a multilayer film having a width of 30 cm and a thickness of 350 ⁇ m. The thickness of the base material layer (methacrylic resin composition layer) was 230 ⁇ m, and the thickness of the adhesive layer (thermoplastic polymer composition layer) was 120 ⁇ m.
  • VGM25-28EX manufactured by GM ENGINEERING
  • the molded object was manufactured using the obtained multilayer film. That is, three-dimensional surface decoration using a vacuum / pressure forming machine (manufactured by Fuse Vacuum Co., Ltd .; NGF-0406-T) that forms the chamber box (CB) by closing the chamber box (CB1) and the chamber box (CB2). Molding was performed.
  • a sheet-like adherend (length 150 mm ⁇ width 25 mm ⁇ thickness 0.3 mm) made of polypropylene resin (manufactured by Nippon Polypro Co., Ltd .; MA03) was used.
  • the multilayer box and the adherend are placed in the chamber box (CB2) of the molding machine so that the adhesive layer of the multilayer film faces the adherend, and the chamber box (CB) is divided into two parts by the multilayer film.
  • the multilayer film was sandwiched between CB1) and a chamber box (CB2), and the chamber box (CB1) and the chamber box (CB2) were closed to form a chamber box (CB). Thereafter, the pressure in the chamber box (CB) was reduced to 0.5 kPa in 90 seconds.
  • the pressures in the chamber box (CB1) and the chamber box (CB2) were appropriately adjusted to keep the multilayer film parallel.
  • the multilayer film is heated by an infrared heating device for 120 seconds, and when the temperature of the multilayer film reaches 130 ° C., the chamber box (CB1) is quickly returned to atmospheric pressure so that the adherend is coated with the multilayer film.
  • a three-dimensional surface-decorated molded body in which the multilayer film was unstretched and adhered to the adherend was molded.
  • the temperature of the multilayer film was measured with a radiation thermometer.
  • the chamber box (CB) was opened, and the molded body was taken out from the chamber box (CB2).
  • the surface property and adhesive strength of the obtained three-dimensional surface decorative molded body were evaluated by the above-described methods. The results are shown in Table 2.
  • thermoplastic polymer composition pellets obtained in Comparative Example 1 were used as the thermoplastic polymer composition.
  • the surface property and adhesive strength of the obtained molded body were evaluated by the above-described methods. The results are shown in Table 2.
  • the adhesive strength (PP) and adhesive strength (PP) of the thermoplastic polymer composition ( PMMA) needs to be larger than 15 N / 25 mm.
  • the thermoplastic polymer composition of Example 1 was excellent in the surface smoothness of the film-like strand, showed high adhesive strength to the methacrylic resin composition and polypropylene, and was excellent in bipolar adhesion.
  • the thermoplastic polymer composition of Example 1 is excellent in surface smoothness, the molded product of Example 12 using the thermoplastic polymer composition of Example 1 has surface smoothness of the obtained molded product. The property was also excellent.
  • the adhesive strength to the adherend was also excellent.
  • thermoplastic polymer composition of the present invention is suitable for three-dimensional surface decoration molding.
  • thermoplastic polymer composition of Comparative Example 1 that does not contain a (meth) acrylic resin and contains a polar group-modified polypropylene was superior to the methacrylic resin composition and polypropylene as in Example 1.
  • the adhesive strength was shown, the surface smoothness of the film-like strand was poor. Therefore, in Comparative Example 5 using the thermoplastic polymer composition of Comparative Example 1, although the adhesive strength to the adherend was excellent, the surface smoothness of the obtained molded product was inferior.
  • thermoplastic polymer compositions of Examples 2 and 3 in which the contents of the polypropylene resin (B) and the (meth) acrylic resin (C) are changed as compared with Example 1 are film-like as in Example 1. It was excellent in the surface smoothness of the strand and showed high adhesive strength to the methacrylic resin composition and polypropylene. On the other hand, Comparative Examples 2 and 3 with a high content of polypropylene resin (B-3) have poor surface smoothness of the film-like strands, and Comparative Example 4 with a large amount of (meth) acrylic resin (C). The adhesive strength to (meth) acrylic resin composition and polypropylene was insufficient.
  • thermoplastic polymer compositions of Examples 4 to 7 and 11 using different types of polypropylene resins (B) from Examples 1 to 3 were particularly excellent in adhesive strength to methacrylic resin compositions and polypropylene.
  • the thermoplastic polymer composition of Example 8 using two types of polypropylene resins (B) was excellent in both surface smoothness and adhesive strength.
  • thermoplastic polymer compositions of Examples 9 and 10 that did not contain the (meth) acrylic resin (C) had excellent adhesion strength to the (meth) acrylic resin composition and polypropylene.

Abstract

The present invention addresses the problem of providing a thermoplastic polymer composition that exhibits a bipolar adhesiveness, and a multilayer film comprising the thermoplastic polymer composition and a substrate and having an excellent surface smoothness. This problem is solved by a thermoplastic polymer composition containing, relative to 100 parts by mass of (A) a thermoplastic elastomer that is a block copolymer of (S) a polymer block containing an aromatic vinyl compound unit and (D) a polymer block containing a conjugated diene compound unit, or is a hydrogenated product of said block copolymer, 1-20 parts by mass of (C) a (meth)acrylic resin, and 1-50 parts by mass of (B) at least one polypropylene resin, and by a multilayer film having a substrate layer and a layer comprising the thermoplastic polymer composition.

Description

熱可塑性重合体組成物、該組成物を用いた多層フィルム及び成形体Thermoplastic polymer composition, multilayer film and molded body using the composition
 本発明は、接着性及び表面平滑性に優れる熱可塑性重合体組成物及び該組成物を用いた多層フィルム、並びに該多層フィルムを具備する成形体に関する。 The present invention relates to a thermoplastic polymer composition excellent in adhesiveness and surface smoothness, a multilayer film using the composition, and a molded body comprising the multilayer film.
 家電製品、電子部品、機械部品、自動車部品などの様々な用途で意匠性、耐久性、耐熱性及び機械強度に優れたセラミックス、金属、合成樹脂が幅広く使用されている。これらの部材は用途、部品構成及び使用方法などにより、異なる材料同士を接着または複合化して使用する場合がある。例えば、家電製品の外装・壁紙、自動車の内装などには、木目調などの絵柄による加飾や、メタリック調やピアノブラック調などの意匠性の付与及び耐傷つき性や耐候性といった機能性の付与などを目的として、加飾フィルムが用いられている。 Ceramics, metals, and synthetic resins with excellent design, durability, heat resistance, and mechanical strength are widely used in various applications such as home appliances, electronic parts, machine parts, and automobile parts. These members may be used by adhering or combining different materials depending on applications, component configurations, and usage methods. For example, the exterior and wallpaper of home appliances, the interior of automobiles, etc. are decorated with patterns such as wood grain, design features such as metallic tone and piano black tone, and functionality such as scratch resistance and weather resistance For the purpose, a decorative film is used.
 しかしながら、特に加飾フィルムと被着体とが極性の異なる異種材料である場合、加飾フィルムが被着体に接着しないという問題がある。このような場合、フィルムを被着体に接着させるために、別途接着剤の塗布が必要となる。この作業には溶剤の塗工工程や乾燥工程、養生工程が必要であり接着性の付与に長い時間を要したり、VOCによる作業環境の悪化が懸念されたり、塗布ムラによる接着不良等が発生する。したがって、接着剤を必要とせず異種材料に接着できる加飾フィルムが求められている。 However, particularly when the decorative film and the adherend are different materials having different polarities, there is a problem that the decorative film does not adhere to the adherend. In such a case, it is necessary to separately apply an adhesive in order to adhere the film to the adherend. This process requires a solvent coating process, a drying process, and a curing process, and it takes a long time to impart adhesiveness, there is a concern about the deterioration of the working environment due to VOCs, and poor adhesion due to coating unevenness. To do. Therefore, there is a need for a decorative film that can adhere to different materials without the need for an adhesive.
 これに対し、特許文献1には、エチレン系重合体、粘着剤、ビニル芳香族化合物重合体ブロックと共役ジエン化合物重合体ブロックを有するブロック共重合体またはその水添物を特定の割合で含有する、同種または異種材料を積層する場合に用いられる接着性樹脂組成物が開示されている。また、特許文献2には、ビニル芳香族化合物重合体ブロックと共役ジエン化合物重合体ブロックからなるブロック共重合体またはその水添物と、シアン化ビニル化合物単量体成分、ゴム成分及び芳香族ビニル化合物単量体成分等からなる共重合体と、非芳香族系ゴム用軟化剤とを含有してなる、複合成形に適した熱融着用樹脂組成物が開示されている。 In contrast, Patent Document 1 contains an ethylene polymer, a pressure-sensitive adhesive, a block copolymer having a vinyl aromatic compound polymer block and a conjugated diene compound polymer block, or a hydrogenated product thereof in a specific ratio. An adhesive resin composition used when laminating the same or different materials is disclosed. Patent Document 2 discloses a block copolymer composed of a vinyl aromatic compound polymer block and a conjugated diene compound polymer block or a hydrogenated product thereof, a vinyl cyanide compound monomer component, a rubber component, and an aromatic vinyl. There is disclosed a heat-fusing resin composition suitable for composite molding, comprising a copolymer comprising compound monomer components and the like and a non-aromatic rubber softener.
 また、特許文献3には、芳香族ビニル化合物単位を含有する重合体ブロックと共役ジエン化合物単位を含有する重合体ブロックとを有するブロック共重合体またはその水素添加物である熱可塑性エラストマー及び極性基含有ポリプロピレン系樹脂を含有する熱可塑性重合体組成物からなるフィルムをインサート部材に貼り合せ、次いで樹脂部材をインサート成形する接着体の製造方法が提案されている。 Patent Document 3 discloses a block copolymer having a polymer block containing an aromatic vinyl compound unit and a polymer block containing a conjugated diene compound unit, or a thermoplastic elastomer and a polar group, which are hydrogenated products thereof. There has been proposed a method for producing an adhesive body in which a film made of a thermoplastic polymer composition containing a contained polypropylene resin is bonded to an insert member, and then the resin member is insert-molded.
 また、特許文献4には、ポリオレフィン系重合体、及び芳香族ビニル化合物重合体ブロックと共役ジエン化合物重合体ブロックとを含有するブロック共重合体またはその水素添加物を含有する熱可塑性樹脂組成物よりなる層(I)を含む、層間接着性に優れる積層体が開示されている。 Patent Document 4 discloses a polyolefin polymer, a block copolymer containing an aromatic vinyl compound polymer block and a conjugated diene compound polymer block, or a thermoplastic resin composition containing a hydrogenated product thereof. The laminated body excellent in interlayer adhesiveness containing the layer (I) which becomes is disclosed.
特開平7-207082号公報JP-A-7-207082 特開2001-247742号公報JP 2001-247742 A 特開2014-168940号公報JP 2014-168940 A 国際公開公報2007/066576パンフレットInternational Publication No. 2007/065576 Pamphlet
 特許文献1に記載の接着性組成物は、含有する粘着付与物質により表面粘着性が高いためフィルムにした際の取扱い性が悪く生産性が低くなるとともに、粘着付与物質のブリードアウトにより接着性能がばらついてしまうという問題がある。特許文献2に記載の熱融着用樹脂組成物も、含有する非芳香族系ゴム用軟化剤により上記と同様の問題がある。 The adhesive composition described in Patent Document 1 has high surface tackiness due to the tackifying substance contained therein, resulting in poor handling and low productivity when formed into a film, and adhesion performance due to bleeding out of the tackifying substance. There is a problem that it varies. The resin composition for heat fusion described in Patent Document 2 also has the same problem as described above due to the contained non-aromatic rubber softener.
 また、特許文献3に記載の熱可塑性重合体組成物及び該熱可塑性重合体組成物からなるフィルムについて本発明者らが検討したところ、前記熱可塑性重合体組成物の表面に凹凸や荒れが発生し、平滑なフィルムを得ることが困難であった。また、係るフィルムを三次元表面加飾成形(Three dimension Overlay Method:TOM成形)に供したところ、熱可塑性重合体組成物表面の荒れがフィルム基材の表面に伝播し、基材の表面が平滑にならず、意匠性が悪化するという問題があった。 Moreover, when the present inventors examined about the thermoplastic polymer composition of patent document 3, and the film which consists of this thermoplastic polymer composition, the unevenness | corrugation and roughness generate | occur | produce on the surface of the said thermoplastic polymer composition. However, it was difficult to obtain a smooth film. Moreover, when the film was subjected to three-dimensional surface decoration molding (Three dimension Overlay Method: TOM molding), the roughness of the surface of the thermoplastic polymer composition propagated to the surface of the film substrate, and the surface of the substrate was smooth. However, there was a problem that the designability deteriorated.
 以上より、本発明の目的は、両極性接着性を有し、かつ表面平滑性にも優れた熱可塑性重合体組成物、該熱可塑性重合体組成物と基材とからなる表面平滑性に優れた多層フィルム及び加飾フィルム、並びにこれらのフィルムを具備する成形体を提供することである。 As described above, an object of the present invention is to provide a thermoplastic polymer composition having ambipolar adhesiveness and excellent surface smoothness, and excellent surface smoothness composed of the thermoplastic polymer composition and a substrate. A multilayer film and a decorative film, and a molded body comprising these films.
 上記の課題を解決する本発明は、下記[1]~[10]である。
[1]
 芳香族ビニル化合物単位を含有する重合体ブロック(S)と共役ジエン化合物単位を含有する重合体ブロック(D)とを含有するブロック共重合体またはその水素添加物である熱可塑性エラストマー(A)100質量部に対して、少なくとも一種のポリプロピレン系樹脂(B)1~50質量部を含有する熱可塑性重合体組成物であって、前記熱可塑性重合体組成物を250℃、50mm/分の条件でキャピラリーレオメーターにより押出しして得られた、断面が長方形(縦8mm×横0.5mm)であるフィルム表面を、下記方法に従って測定したフィルムの表面粗さ(Ra)が0.15μm以下であることを特徴とする熱可塑性重合体組成物。
表面粗さ測定方法:スタイラス形状測定器で先端半径12.5μmの針を用いて算術平均荒さ(Ra)を測定する方法。;
The present invention for solving the above-mentioned problems is the following [1] to [10].
[1]
Thermoplastic elastomer (A) 100 which is a block copolymer containing a polymer block (S) containing an aromatic vinyl compound unit and a polymer block (D) containing a conjugated diene compound unit or a hydrogenated product thereof A thermoplastic polymer composition containing 1 to 50 parts by mass of at least one polypropylene-based resin (B) with respect to parts by mass, wherein the thermoplastic polymer composition is subjected to conditions of 250 ° C. and 50 mm / min. The film surface roughness (Ra) measured by the following method on a film surface having a rectangular cross section (length 8 mm × width 0.5 mm) obtained by extrusion with a capillary rheometer is 0.15 μm or less. A thermoplastic polymer composition characterized by the above.
Surface roughness measuring method: a method of measuring arithmetic average roughness (Ra) with a stylus shape measuring instrument using a needle having a tip radius of 12.5 μm. ;
[2]
 前記重合体ブロック(D)を構成する共役ジエン化合物が、ブタジエン、イソプレン、またはブタジエン及びイソプレンであり、前記重合体ブロック(D)中の1,2-結合量及び3,4-結合量の合計が40モル%以上である、上記[1]に記載の熱可塑性重合体組成物;
[2]
The conjugated diene compound constituting the polymer block (D) is butadiene, isoprene, or butadiene and isoprene, and the total of 1,2-bond amount and 3,4-bond amount in the polymer block (D) The thermoplastic polymer composition according to the above [1], wherein is 40 mol% or more;
[3]前記ポリプロピレン系樹脂(B)が非極性ポリプロピレン系樹脂である、上記[1]または[2]に記載の熱可塑性重合体組成物; [3] The thermoplastic polymer composition according to the above [1] or [2], wherein the polypropylene resin (B) is a nonpolar polypropylene resin;
[4] 前記熱可塑性重合体組成物が、前記熱可塑性エラストマー(A)100質量部に対して、さらに(メタ)アクリル系樹脂(C)を1~25質量部含んでいることを特徴とする、上記[1]~[3]のいずれかに記載の熱可塑性重合体組成物; [4] The thermoplastic polymer composition further comprises 1 to 25 parts by mass of (meth) acrylic resin (C) with respect to 100 parts by mass of the thermoplastic elastomer (A). The thermoplastic polymer composition according to any one of the above [1] to [3];
[5]前記(メタ)アクリル系樹脂(C)がメタクリル酸メチルに由来する構造単位を80質量%以上含有する、上記[4]に記載の熱可塑性重合体組成物; [5] The thermoplastic polymer composition according to the above [4], wherein the (meth) acrylic resin (C) contains 80% by mass or more of a structural unit derived from methyl methacrylate;
[6]基材層及び上記[1]~[5]のいずれかに記載の熱可塑性重合体組成物からなる層を少なくとも有する多層フィルム;
[7]前記基材層が非晶性樹脂からなる、上記[6]に記載の多層フィルム;
[8]上記[6]または[7]に記載の多層フィルムからなる加飾フィルム;
[9]上記[6]若しくは[7]のいずれかに記載の多層フィルムまたは上記[8]に記載の加飾フィルムを具備する成形体。
[6] A multilayer film having at least a base material layer and a layer comprising the thermoplastic polymer composition according to any one of [1] to [5] above;
[7] The multilayer film according to [6], wherein the base material layer is made of an amorphous resin;
[8] A decorative film comprising the multilayer film of [6] or [7] above;
[9] A molded article comprising the multilayer film according to any one of [6] or [7] or the decorative film according to [8].
 本発明の熱可塑性重合体組成物は、両極性接着性を有し、かつ表面平滑性にも優れるため、多層フィルムの接着層として好適に使用できる。また、本発明の多層フィルムは、前記熱可塑性重合体組成物からなる接着層を有するため被着体への接着性に優れ、また、前記熱可塑性重合体組成物が表面平滑性に優れることから、多層フィルムの基材も同様に表面平滑性に優れ、特に三次元表面加飾成形に好適に使用できる。本発明の成形体は、前記多層フィルムを具備するため、意匠性に優れる。 Since the thermoplastic polymer composition of the present invention has bipolar adhesiveness and excellent surface smoothness, it can be suitably used as an adhesive layer for multilayer films. In addition, since the multilayer film of the present invention has an adhesive layer made of the thermoplastic polymer composition, it has excellent adhesion to an adherend, and the thermoplastic polymer composition has excellent surface smoothness. Similarly, the base material of the multilayer film is excellent in surface smoothness, and can be suitably used particularly for three-dimensional surface decoration molding. Since the molded body of the present invention comprises the multilayer film, it has excellent design properties.
[熱可塑性重合体組成物]
 本発明の熱可塑性重合体組成物は、芳香族ビニル化合物単位を含有する重合体ブロック(S)と共役ジエン化合物単位を含有する重合体ブロック(D)とを含有するブロック共重合体またはその水素添加物である熱可塑性エラストマー(A)100質量部に対して、少なくとも一種のポリプロピレン系樹脂(B)1~50質量部、及び(メタ)アクリル系樹脂(C)1~20質量部を含有するものである。以下、上記成分(A)~(C)について順に説明する。
[Thermoplastic polymer composition]
The thermoplastic polymer composition of the present invention comprises a block copolymer containing a polymer block (S) containing an aromatic vinyl compound unit and a polymer block (D) containing a conjugated diene compound unit or its hydrogen. It contains at least one polypropylene resin (B) 1 to 50 parts by mass and (meth) acrylic resin (C) 1 to 20 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer (A) as an additive. Is. Hereinafter, the components (A) to (C) will be described in order.
[熱可塑性エラストマー(A)]
 熱可塑性重合体組成物が含有する熱可塑性エラストマー(A)は、芳香族ビニル化合物単位を含有する重合体ブロック(S)と共役ジエン化合物単位を含有する重合体ブロック(D)とを含有するブロック共重合体またはその水素添加物である。前記熱可塑性エラストマー(A)は、熱可塑性重合体組成物に柔軟性や、良好な力学特性及び成形加工性などを付与するものであり、該組成物中でマトリックスの役割を果たす。
[Thermoplastic elastomer (A)]
The thermoplastic elastomer (A) contained in the thermoplastic polymer composition is a block containing a polymer block (S) containing an aromatic vinyl compound unit and a polymer block (D) containing a conjugated diene compound unit. A copolymer or a hydrogenated product thereof. The thermoplastic elastomer (A) imparts flexibility, good mechanical properties and molding processability to the thermoplastic polymer composition, and serves as a matrix in the composition.
-芳香族ビニル化合物単位を含有する重合体ブロック(S)-
 前記重合体ブロック(S)を構成する芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-プロピルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン、1-ビニルナフタレン、2-ビニルナフタレンなどが挙げられる。芳香族ビニル化合物単位を含有する重合体ブロックは、これらの芳香族ビニル化合物の1種のみに由来する構造単位からなっていてもよいし、2種以上に由来する構造単位からなっていてもよい。中でも、スチレン、α-メチルスチレン、4-メチルスチレンが好ましい。
-Polymer block containing aromatic vinyl compound unit (S)-
Examples of the aromatic vinyl compound constituting the polymer block (S) include styrene, α-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, and 4-cyclohexylstyrene. 4-dodecylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene, 1-vinylnaphthalene, 2-vinylnaphthalene and the like. The polymer block containing the aromatic vinyl compound unit may be composed of a structural unit derived from only one of these aromatic vinyl compounds, or may be composed of a structural unit derived from two or more types. . Of these, styrene, α-methylstyrene, and 4-methylstyrene are preferable.
 芳香族ビニル化合物単位を含有する重合体ブロック(S)は、好ましくは芳香族ビニル化合物単位80質量%以上、より好ましくは芳香族ビニル化合物単位90質量%以上、さらに好ましくは芳香族ビニル化合物単位95質量%以上を含有する重合体ブロックである。前記重合体ブロック(S)は、芳香族ビニル化合物単位のみを有していてもよいが、本発明の効果を損なわない限り、芳香族ビニル化合物単位と共に、他の共重合性単量体単位を有していてもよい。他の共重合性単量体としては、例えば、1-ブテン、ペンテン、ヘキセン、ブタジエン、イソプレン、メチルビニルエーテルなどが挙げられる。他の共重合性単量体単位を有する場合、その割合は、芳香族ビニル化合物単位及び他の共重合性単量体単位の合計量に対して、好ましくは20質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。 The polymer block (S) containing an aromatic vinyl compound unit is preferably 80% by mass or more of an aromatic vinyl compound unit, more preferably 90% by mass or more of an aromatic vinyl compound unit, and further preferably 95 of an aromatic vinyl compound unit. It is a polymer block containing at least mass%. The polymer block (S) may have only an aromatic vinyl compound unit, but unless the effect of the present invention is impaired, the aromatic vinyl compound unit and other copolymerizable monomer units. You may have. Examples of other copolymerizable monomers include 1-butene, pentene, hexene, butadiene, isoprene, methyl vinyl ether, and the like. When it has another copolymerizable monomer unit, the proportion thereof is preferably 20% by mass or less, more preferably 10%, based on the total amount of the aromatic vinyl compound unit and the other copolymerizable monomer unit. It is at most 5% by mass, more preferably at most 5% by mass.
-共役ジエン化合物単位を含有する重合体ブロック(D)-
 前記重合体ブロック(D)を構成する共役ジエン化合物としては、例えば、ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエンなどが挙げられる。中でも、ブタジエン、イソプレンが好ましい。
 共役ジエン化合物単位を含有する重合体ブロック(D)は、これらの共役ジエン化合物の1種のみに由来する構造単位からなっていてもよいし、2種以上に由来する構造単位からなっていてもよい。特に、ブタジエンまたはイソプレンに由来する構造単位、またはブタジエン及びイソプレンに由来する構造単位からなっていることが好ましい。
-Polymer block (D) containing conjugated diene compound units-
Examples of the conjugated diene compound constituting the polymer block (D) include butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and the like. Of these, butadiene and isoprene are preferable.
The polymer block (D) containing a conjugated diene compound unit may consist of a structural unit derived from only one of these conjugated diene compounds, or may consist of a structural unit derived from two or more types. Good. In particular, it is preferably composed of a structural unit derived from butadiene or isoprene or a structural unit derived from butadiene and isoprene.
 共役ジエン化合物単位を含有する重合体ブロック(D)は、好ましくは共役ジエン化合物単位80質量%以上、より好ましくは共役ジエン化合物単位90質量%以上、さらに好ましくは共役ジエン化合物単位95質量%以上を含有する重合体ブロックである。前記重合体ブロック(D)は、共役ジエン化合物単位のみを有していてもよいが、本発明の妨げにならない限り、共役ジエン化合物単位と共に、他の共重合性単量体単位を有していてもよい。他の共重合性単量体としては、例えば、スチレン、α-メチルスチレン、4-メチルスチレンなどが挙げられる。他の共重合性単量体単位を有する場合、その割合は、共役ジエン化合物単位及び他の共重合性単量体単位の合計量に対して、好ましくは20質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。 The polymer block (D) containing the conjugated diene compound unit is preferably 80% by mass or more of the conjugated diene compound unit, more preferably 90% by mass or more, more preferably 95% by mass or more of the conjugated diene compound unit. It is a polymer block to contain. The polymer block (D) may have only a conjugated diene compound unit, but has another copolymerizable monomer unit together with the conjugated diene compound unit, as long as it does not interfere with the present invention. May be. Examples of other copolymerizable monomers include styrene, α-methylstyrene, 4-methylstyrene, and the like. When it has another copolymerizable monomer unit, the proportion thereof is preferably 20% by mass or less, more preferably 10% by mass with respect to the total amount of the conjugated diene compound unit and the other copolymerizable monomer unit. % Or less, more preferably 5% by mass or less.
 共役ジエン化合物単位を含有する重合体ブロック(D)を構成する共役ジエンの結合形態は特に制限されない。例えば、ブタジエンの場合には、1,2-結合、1,4-結合を、イソプレンの場合には、1,2-結合、3,4-結合、1,4-結合をとることができる。そのうちでも、共役ジエン化合物単位を含有する重合体ブロック(D)がブタジエンからなる場合、イソプレンからなる場合、またはブタジエンとイソプレンの両方からなる場合は、前記重合体ブロック(D)における1,2-結合量及び3,4-結合量の合計が、特に高い接着性能を発現するという観点から40モル%以上であることが好ましい。前記重合体ブロック(D)における1,2-結合量及び3,4-結合量の合計は、40~90モル%であることが好ましく、50~80モル%であることがより好ましい。
 なお、1,2-結合量及び3,4-結合量の合計量は、H-NMR測定によって算出できる。具体的には、1,2-結合及び3,4-結合単位に由来する4.2~5.0ppmに存在するピークの積分値及び1,4-結合単位に由来する5.0~5.45ppmに存在するピークの積分値との比から算出できる。
The bond form of the conjugated diene constituting the polymer block (D) containing the conjugated diene compound unit is not particularly limited. For example, in the case of butadiene, 1,2-bond and 1,4-bond can be formed, and in the case of isoprene, 1,2-bond, 3,4-bond and 1,4-bond can be formed. Among them, when the polymer block (D) containing the conjugated diene compound unit is composed of butadiene, isoprene, or is composed of both butadiene and isoprene, 1,2-in the polymer block (D), The total of the bonding amount and the 3,4-bonding amount is preferably 40 mol% or more from the viewpoint of developing particularly high adhesive performance. The total amount of 1,2-bond and 3,4-bond in the polymer block (D) is preferably 40 to 90 mol%, and more preferably 50 to 80 mol%.
The total amount of 1,2-bond and 3,4-bond can be calculated by 1 H-NMR measurement. Specifically, the integrated value of the peak existing at 4.2 to 5.0 ppm derived from 1,2-bond and 3,4-bond units and 5.0 to 5.5 derived from 1,4-bond units. It can be calculated from the ratio with the integrated value of the peak existing at 45 ppm.
 熱可塑性エラストマー(A)における芳香族ビニル化合物単位を含有する重合体ブロック(S)と共役ジエン化合物単位を含有する重合体ブロック(D)との結合形態は特に制限されず、直鎖状、分岐状、放射状、またはこれらの2つ以上が組み合わさった結合形態のいずれであってもよいが、直鎖状の結合形態であることが好ましい。
 直鎖状の結合形態の例としては、芳香族ビニル化合物単位を含有する重合体ブロック(S)をaで、共役ジエン化合物単位を含有する重合体ブロック(D)をbで表したとき、a-bで表されるジブロック共重合体、a-b-aまたはb-а-bで表されるトリブロック共重合体、a-b-a-bで表されるテトラブロック共重合体、a-b-a-b-aまたはb-a-b-a-bで表されるペンタブロック共重合体、(а-b)nX型共重合体(Xはカップリング残基を表し、nは2以上の整数を表す)、及びこれらの混合物が挙げられる。これらの中でも、トリブロック共重合体が好ましく、a-b-aで表されるトリブロック共重合体であることがより好ましい。
The bond form of the polymer block (S) containing an aromatic vinyl compound unit and the polymer block (D) containing a conjugated diene compound unit in the thermoplastic elastomer (A) is not particularly limited, and is linear or branched. , Radial, or a combined form in which two or more of these are combined, but a linear combined form is preferred.
As an example of a linear bond form, when a polymer block (S) containing an aromatic vinyl compound unit is represented by a and a polymer block (D) containing a conjugated diene compound unit is represented by b, a A diblock copolymer represented by -b, a triblock copolymer represented by aba or b-a-b, a tetrablock copolymer represented by abbab, a pentablock copolymer represented by abababa or bababa, an (а-b) nX copolymer (X represents a coupling residue, and n Represents an integer of 2 or more), and mixtures thereof. Among these, a triblock copolymer is preferable, and a triblock copolymer represented by aba is more preferable.
 熱可塑性エラストマー(A)は、耐熱性及び耐候性を向上させる観点から、共役ジエン化合物を含有する重合体ブロック(D)の一部または全部が水素添加(以下、「水添」と略称することがある)されていることが好ましい。その際の共役ジエン化合物を含有する重合体ブロックの水添率は、好ましくは80%以上、より好ましくは90%以上である。ここで、本明細書において、水添率は、水素添加反応前後のブロック共重合体のヨウ素価を測定して得られる値である。 In the thermoplastic elastomer (A), from the viewpoint of improving heat resistance and weather resistance, a part or all of the polymer block (D) containing the conjugated diene compound is hydrogenated (hereinafter abbreviated as “hydrogenated”). It is preferable that The hydrogenation rate of the polymer block containing the conjugated diene compound at that time is preferably 80% or more, more preferably 90% or more. Here, in this specification, the hydrogenation rate is a value obtained by measuring the iodine value of the block copolymer before and after the hydrogenation reaction.
 熱可塑性エラストマー(A)における芳香族ビニル化合物単位を含有する重合体ブロック(S)の含有量は、その柔軟性、力学特性の観点から、熱可塑性エラストマー(A)全体に対して、好ましくは5~75質量%、より好ましくは5~60質量%、さらに好ましくは10~40質量%である。
 また、熱可塑性エラストマー(A)の重量平均分子量は、その力学特性、成形加工性の観点から、好ましくは30,000~500,000、より好ましくは50,000~400,000、より好ましくは60,000~200,000、さらに好ましくは70,000~200,000、特に好ましくは70,000~190,000、最も好ましくは80,000~180,000である。なお、本明細書において重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)測定によって求めたポリスチレン換算の重量平均分子量である。
 熱可塑性エラストマー(A)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
The content of the polymer block (S) containing the aromatic vinyl compound unit in the thermoplastic elastomer (A) is preferably 5 with respect to the entire thermoplastic elastomer (A) from the viewpoint of flexibility and mechanical properties. It is ˜75% by mass, more preferably 5 to 60% by mass, and further preferably 10 to 40% by mass.
The weight average molecular weight of the thermoplastic elastomer (A) is preferably 30,000 to 500,000, more preferably 50,000 to 400,000, more preferably 60, from the viewpoints of mechanical properties and moldability. 000 to 200,000, more preferably 70,000 to 200,000, particularly preferably 70,000 to 190,000, and most preferably 80,000 to 180,000. In addition, in this specification, a weight average molecular weight is a weight average molecular weight of polystyrene conversion calculated | required by the gel permeation chromatography (GPC) measurement.
A thermoplastic elastomer (A) may be used individually by 1 type, and may be used in combination of 2 or more type.
 熱可塑性エラストマー(A)の製造方法としては、特に限定されないが、例えばアニオン重合法により製造することができる。具体的には、(i)アルキルリチウム化合物を開始剤として用い、前記芳香族ビニル化合物、前記共役ジエン化合物、次いで前記芳香族ビニル化合物を逐次重合させる方法;(ii)アルキルリチウム化合物を開始剤として用い、前記芳香族ビニル化合物、前記共役ジエン化合物を逐次重合させ、次いでカップリング剤を加えてカップリングする方法;(iii)ジリチウム化合物を開始剤として用い、前記共役ジエン化合物、次いで前記芳香族ビニル化合物を逐次重合させる方法などが挙げられる。 Although it does not specifically limit as a manufacturing method of a thermoplastic elastomer (A), For example, it can manufacture by an anionic polymerization method. Specifically, (i) a method of sequentially polymerizing the aromatic vinyl compound, the conjugated diene compound, and then the aromatic vinyl compound using an alkyl lithium compound as an initiator; (ii) using an alkyl lithium compound as an initiator A method of sequentially polymerizing the aromatic vinyl compound and the conjugated diene compound, and then coupling by adding a coupling agent; (iii) using the dilithium compound as an initiator, the conjugated diene compound, and then the aromatic vinyl Examples include a method of polymerizing compounds sequentially.
 上記アニオン重合の際、有機ルイス塩基を添加することによって、熱可塑性エラストマー(A)における前記重合体ブロック(D)の1,2-結合量及び3,4-結合量を増やすことができ、該有機ルイス塩基の添加量によって、1,2-結合量及び3,4-結合量を容易に制御することができる。
 該有機ルイス塩基としては、例えば、酢酸エチルなどのエステル;トリエチルアミン、N,N,N’,N’-テトラメチルエチレンジアミン(TMEDA)、N-メチルモルホリンなどのアミン;ピリジンなどの含窒素複素環式芳香族化合物;ジメチルアセトアミドなどのアミド;ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン(THF)、ジオキサンなどのエーテル;エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテルなどのグリコールエーテル;ジメチルスルホキシドなどのスルホキシド;アセトン、メチルエチルケトンなどのケトンなどが挙げられる。
In the anionic polymerization, by adding an organic Lewis base, the amount of 1,2-bond and 3,4-bond of the polymer block (D) in the thermoplastic elastomer (A) can be increased, The amount of 1,2-bond and 3,4-bond can be easily controlled by the amount of organic Lewis base added.
Examples of the organic Lewis base include esters such as ethyl acetate; amines such as triethylamine, N, N, N ′, N′-tetramethylethylenediamine (TMEDA) and N-methylmorpholine; nitrogen-containing heterocyclic groups such as pyridine. Aromatic compounds; Amides such as dimethylacetamide; Ethers such as dimethyl ether, diethyl ether, tetrahydrofuran (THF) and dioxane; Glycol ethers such as ethylene glycol dimethyl ether and diethylene glycol dimethyl ether; Sulphoxides such as dimethyl sulfoxide; Ketones such as acetone and methyl ethyl ketone Can be mentioned.
 さらに、上記で得られた未水添の熱可塑性エラストマー(A)を水素添加反応に付すことによって、水添された熱可塑性エラストマー(A)を製造することができる。水素添加反応は、反応及び水素添加触媒に対して不活性な溶媒に上記で得られた未水添の熱可塑性エラストマー(A)を溶解させるか、または、未水添の熱可塑性エラストマー(A)を前記の反応液から単離せずにそのまま用い、水素添加触媒の存在下、水素と反応させることにより行うことができる。
 また、熱可塑性エラストマー(A)としては、市販品を使用することもできる。
Furthermore, the hydrogenated thermoplastic elastomer (A) can be produced by subjecting the unhydrogenated thermoplastic elastomer (A) obtained above to a hydrogenation reaction. In the hydrogenation reaction, the unhydrogenated thermoplastic elastomer (A) obtained above is dissolved in a solvent inert to the reaction and the hydrogenation catalyst, or the unhydrogenated thermoplastic elastomer (A) is dissolved. Can be used as is without isolation from the reaction solution, and reacted with hydrogen in the presence of a hydrogenation catalyst.
Moreover, as a thermoplastic elastomer (A), a commercial item can also be used.
[ポリプロピレン系樹脂(B)]
 ポリプロピレン系樹脂(B)は、これを熱可塑性重合体組成物に含有させることにより成形加工性が向上し、該熱可塑性重合体組成物からなるフィルムを作成しやすくなる。また、フィルムの力学特性が向上し、取扱いが容易となる。さらに、熱可塑性重合体組成物の主に非極性樹脂に対する接着性が向上し、基材または被着体と良好に接着することが可能となる。
[Polypropylene resin (B)]
When the polypropylene resin (B) is contained in the thermoplastic polymer composition, the molding processability is improved, and a film made of the thermoplastic polymer composition is easily produced. In addition, the mechanical properties of the film are improved and handling becomes easy. Furthermore, the adhesiveness of the thermoplastic polymer composition mainly to the nonpolar resin is improved, and it becomes possible to adhere well to the substrate or the adherend.
 ポリプロピレン系樹脂(B)としては、プロピレン単独重合体またはプロピレンと炭素数2~8のα-オレフィンとの共重合体が挙げられる。プロピレンと炭素数2~8のα-オレフィンとの共重合体の場合、共重合体中のα-オレフィンとしては、エチレン、ブテン-1、イソブテン、ペンテン-1、ヘキセン-1、4-メチルペンテン-1、オクテン-1 等が挙げられる。ポリプロピレン系樹脂(B)としては、例えば、ホモポリプロピレン、プロピレン-エチレンランダム共重合体、プロピレン-エチレンブロック共重合体、プロピレン-ブテンランダム共重合体、プロピレン-エチレン-ブテンランダム共重合体、プロピレン-ペンテンランダム共重合体、プロピレン-ヘキセンランダム共重合体、プロピレン-オクテンランダム共重合体、プロピレン-エチレン-ペンテンランダム共重合体、プロピレン-エチレン-ヘキセンランダム共重合体等が挙げられる。ポリプロピレン系樹脂(B)が有する全構造単位においてプロピレン以外の前記α-オレフィンに由来する構造単位が占める割合は、熱可塑性エラストマー(A)との親和性の観点から、好ましくは0~45モル%であり、より好ましくは0~35モル%であり、さらに好ましくは0~25モル%の範囲である。換言すれば、ポリプロピレン系樹脂(B)におけるプロピレンに由来する構造単位の含有量は55モル%以上が好ましく、65モル%以上がより好ましく、75モル%以上がさらに好ましい。
 ポリプロピレン系樹脂(B)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Examples of the polypropylene resin (B) include a propylene homopolymer or a copolymer of propylene and an α-olefin having 2 to 8 carbon atoms. In the case of a copolymer of propylene and an α-olefin having 2 to 8 carbon atoms, the α-olefin in the copolymer may be ethylene, butene-1, isobutene, pentene-1, hexene-1, 4-methylpentene. -1, octene-1 and the like. Examples of the polypropylene resin (B) include homopolypropylene, propylene-ethylene random copolymer, propylene-ethylene block copolymer, propylene-butene random copolymer, propylene-ethylene-butene random copolymer, propylene- Examples thereof include a pentene random copolymer, a propylene-hexene random copolymer, a propylene-octene random copolymer, a propylene-ethylene-pentene random copolymer, and a propylene-ethylene-hexene random copolymer. The proportion of the structural units derived from the α-olefin other than propylene in the total structural units of the polypropylene resin (B) is preferably 0 to 45 mol% from the viewpoint of affinity with the thermoplastic elastomer (A). More preferably, it is 0 to 35 mol%, and further preferably 0 to 25 mol%. In other words, the content of the structural unit derived from propylene in the polypropylene resin (B) is preferably 55 mol% or more, more preferably 65 mol% or more, and further preferably 75 mol% or more.
A polypropylene resin (B) may be used individually by 1 type, and may be used in combination of 2 or more type.
 これらの中でも、ポリプロピレン系樹脂(B)としては、極性官能基を有しない非極性ポリプロピレン系樹脂であることが好ましい。非極性ポリプロピレン系樹脂を用いることにより押出成形時にメルトフラクチャー現象が発生しづらくなり、多層フィルムの表面が平滑になるという点で優れる。 Among these, the polypropylene resin (B) is preferably a nonpolar polypropylene resin having no polar functional group. Use of a nonpolar polypropylene resin is excellent in that the melt fracture phenomenon hardly occurs during extrusion molding, and the surface of the multilayer film becomes smooth.
 ポリプロピレン系樹脂(B)は、従来公知の方法で合成することができ、例えば、チーグラー・ナッタ型触媒やメタロセン型触媒を用いて、プロピレン単独重合体、ランダム、もしくはブロックのプロピレンとα-オレフィンとの共重合体を合成することができる。また、ポリプロピレン系樹脂(B)は市販品を用いてもよい。 The polypropylene resin (B) can be synthesized by a conventionally known method. For example, using a Ziegler-Natta type catalyst or a metallocene type catalyst, a propylene homopolymer, random or block propylene and an α-olefin can be synthesized. The copolymer can be synthesized. Moreover, you may use a commercial item for a polypropylene resin (B).
 ポリプロピレン系樹脂(B)の230℃、荷重2.16kg(21.18
N)の条件下におけるメルトフローレート(MFR)は、好ましくは0.1~300g/10分、より好ましくは0.1~100g/10分、さらに好ましくは0.1~70g/10分である。ポリプロピレン系樹脂(B)の上記条件下におけるMFRが0.1g/10分以上であれば、良好な成形加工性が得られる。一方、該MFRが300g/10分以下であれば、力学特性が発現し易い。熱可塑性重合体組成物の表面平滑性向上の観点からは、ポリプロピレン系樹脂(B)の上記条件下におけるMFRが5~60g/10分であることがより好ましく、8~50g/10分であることが更に好ましい。熱可塑性重合体組成物の接着性向上の観点からは、ポリプロピレン系樹脂(B)の上記条件下におけるMFRが1~50g/10分であることがより好ましく、3~30g/10分であることが更に好ましい。また、MFRの異なる2種以上のポリプロピレン系樹脂(B)を用いることにより、表面平滑性及び接着性の双方を向上させられる場合があり好ましい。
 ポリプロピレン系樹脂(B)の融点は、耐熱性および加熱処理による接着性の観点から、好ましくは100℃以上、より好ましくは100~170℃、さらに好ましくは110~140℃である。
230 degreeC of a polypropylene-type resin (B), a load 2.16kg (21.18)
The melt flow rate (MFR) under the condition of N) is preferably 0.1 to 300 g / 10 minutes, more preferably 0.1 to 100 g / 10 minutes, and further preferably 0.1 to 70 g / 10 minutes. . If the MFR of the polypropylene resin (B) under the above conditions is 0.1 g / 10 min or more, good moldability can be obtained. On the other hand, if the MFR is 300 g / 10 min or less, the mechanical characteristics are easily developed. From the viewpoint of improving the surface smoothness of the thermoplastic polymer composition, the MFR of the polypropylene resin (B) under the above conditions is more preferably 5 to 60 g / 10 minutes, and more preferably 8 to 50 g / 10 minutes. More preferably. From the viewpoint of improving the adhesiveness of the thermoplastic polymer composition, the MFR of the polypropylene resin (B) under the above conditions is more preferably 1 to 50 g / 10 minutes, and more preferably 3 to 30 g / 10 minutes. Is more preferable. In addition, it is preferable to use two or more types of polypropylene resins (B) having different MFRs because both surface smoothness and adhesiveness may be improved.
The melting point of the polypropylene resin (B) is preferably 100 ° C. or higher, more preferably 100 to 170 ° C., and still more preferably 110 to 140 ° C. from the viewpoints of heat resistance and adhesion by heat treatment.
 熱可塑性重合体組成物は、熱可塑性エラストマー(A)100質量部に対して、ポリプロピレン系樹脂(B)を1~50質量部含有する。ポリプロピレン系樹脂(B)が1質量部より少ないと、被着体に加熱処理によって接着させることが難しいことがある。一方、ポリプロピレン系樹脂(B)が50質量部より多くなると、熱可塑性重合体組成物が硬くなり、柔軟性及び力学特性が発現しにくくなることがある。ポリプロピレン系樹脂(B)の含有量は、熱可塑性エラストマー(A)100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上であり、より好ましくは40質量部以下であり、さらに好ましくは30質量部以下である。
 ポリプロピレン系樹脂(B)の含有量は、熱可塑性エラストマー(A)100質量部に対して5~40質量部が好ましく、10~30質量部がより好ましい。
The thermoplastic polymer composition contains 1 to 50 parts by mass of the polypropylene resin (B) with respect to 100 parts by mass of the thermoplastic elastomer (A). When the amount of the polypropylene resin (B) is less than 1 part by mass, it may be difficult to adhere to the adherend by heat treatment. On the other hand, when the amount of the polypropylene resin (B) is more than 50 parts by mass, the thermoplastic polymer composition becomes hard, and it may be difficult to express flexibility and mechanical properties. The content of the polypropylene resin (B) is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and more preferably 40 parts by mass or less with respect to 100 parts by mass of the thermoplastic elastomer (A). More preferably, it is 30 parts by mass or less.
The content of the polypropylene resin (B) is preferably 5 to 40 parts by mass and more preferably 10 to 30 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer (A).
[(メタ)アクリル系樹脂(C)]
 (メタ)アクリル系樹脂(C)は、熱可塑性重合体組成物の接着性を向上させるためのものであり、熱可塑性重合体組成物に(メタ)アクリル系樹脂(C)を含有させることにより、熱可塑性重合体組成物の主に極性樹脂に対する接着性が向上し、該熱可塑性重合体組成物を用いた多層フィルムにおいて、熱可塑性重合体組成物と下記記載の基材層とを強固に接着することが可能となる。
[(Meth) acrylic resin (C)]
The (meth) acrylic resin (C) is for improving the adhesiveness of the thermoplastic polymer composition, and the (meth) acrylic resin (C) is contained in the thermoplastic polymer composition. The adhesion of the thermoplastic polymer composition mainly to the polar resin is improved, and in the multilayer film using the thermoplastic polymer composition, the thermoplastic polymer composition and the substrate layer described below are strengthened. It becomes possible to adhere.
 本発明に用いる(メタ)アクリル系樹脂(C)は、メタクリル酸メチルに由来する構造単位を80質量%以上、好ましくは90質量%以上有する。換言すると、(メタ)アクリル系樹脂(C)のメタクリル酸メチル以外の単量体に由来する構造単位を20質量%以下、好ましくは10質量%以下とする。(メタ)アクリル系樹脂(C)は、メタクリル酸メチルのみを単量体とする重合体であってもよい。 The (meth) acrylic resin (C) used in the present invention has a structural unit derived from methyl methacrylate of 80% by mass or more, preferably 90% by mass or more. In other words, the structural unit derived from monomers other than methyl methacrylate of the (meth) acrylic resin (C) is 20% by mass or less, preferably 10% by mass or less. The (meth) acrylic resin (C) may be a polymer containing only methyl methacrylate as a monomer.
 かかるメタクリル酸メチル以外の単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸s-ブチル、アクリル酸t-ブチル、アクリル酸アミル、アクリル酸イソアミル、アクリル酸n-へキシル、アクリル酸2-エチルへキシル、アクリル酸ペンタデシル、アクリル酸ドデシル;アクリル酸フェニル、アクリル酸ベンジル、アクリル酸フェノキシエチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-エトキシエチル、アクリル酸グリシジル、アクリル酸アリル;アクリル酸シクロへキシル、アクリル酸ノルボルネニル、アクリル酸イソボニルなどのアクリル酸エステル;メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸s-ブチル、メタクリル酸t-ブチル、メタクリル酸アミル、メタクリル酸イソアミル、メタクリル酸n-へキシル、メタクリル酸2-エチルへキシル、メタクリル酸ペンタデシル、メタクリル酸ドデシル;メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸フェノキシエチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-エトキシエチル、メタクリル酸グリシジル、メタクリル酸アリル;メタクリル酸シクロへキシル、メタクリル酸ノルボルネニル、メタクリル酸イソボニルなどのメタクリル酸メチル以外のメタクリル酸エステル;アクリル酸、メタクリル酸、無水マレイン酸、マレイン酸、イタコン酸などの不飽和カルボン酸;エチレン、プロピレン、1-ブテン、イソブチレン、1-オクテンなどのオレフィン;ブタジエン、イソプレン、ミルセンなどの共役ジエン;スチレン、α-メチルスチレン、p-メチルスチレン、m-メチルスチレンなどの芳香族ビニル化合物;アクリルアミド、メタクリルアミド、アクリロニトリル、メタクリロニトリル、酢酸ビニル、ビニルピリジン、ビニルケトン、塩化ビニル、塩化ビニリデン、フッ化ビニリデンなどが挙げられる。 Examples of monomers other than methyl methacrylate include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, s-butyl acrylate, and t-acrylate. Butyl, amyl acrylate, isoamyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, pentadecyl acrylate, dodecyl acrylate; phenyl acrylate, benzyl acrylate, phenoxyethyl acrylate, 2-acrylate Hydroxyethyl, 2-ethoxyethyl acrylate, glycidyl acrylate, allyl acrylate; acrylate esters such as cyclohexyl acrylate, norbornenyl acrylate, isobornyl acrylate; ethyl methacrylate, n-promethacrylate , Isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, s-butyl methacrylate, t-butyl methacrylate, amyl methacrylate, isoamyl methacrylate, n-hexyl methacrylate, 2-ethylhexyl methacrylate Pentadecyl methacrylate, dodecyl methacrylate; phenyl methacrylate, benzyl methacrylate, phenoxyethyl methacrylate, 2-hydroxyethyl methacrylate, 2-ethoxyethyl methacrylate, glycidyl methacrylate, allyl methacrylate; cyclohexyl methacrylate, Methacrylic acid esters other than methyl methacrylate such as norbornenyl methacrylate and isobornyl methacrylate; unsaturated compounds such as acrylic acid, methacrylic acid, maleic anhydride, maleic acid and itaconic acid Carboxylic acid; Olefin such as ethylene, propylene, 1-butene, isobutylene and 1-octene; Conjugated dienes such as butadiene, isoprene and myrcene; Aromatics such as styrene, α-methylstyrene, p-methylstyrene and m-methylstyrene Examples of the vinyl compound include acrylamide, methacrylamide, acrylonitrile, methacrylonitrile, vinyl acetate, vinyl pyridine, vinyl ketone, vinyl chloride, vinylidene chloride, and vinylidene fluoride.
 (メタ)アクリル系樹脂(C)の立体規則性は、特に制限されず、例えば、イソタクチック、ヘテロタクチック、シンジオタクチックなどの立体規則性を有するものを用いてもよい。 The stereoregularity of the (meth) acrylic resin (C) is not particularly limited, and for example, those having stereoregularity such as isotactic, heterotactic and syndiotactic may be used.
 (メタ)アクリル系樹脂(C)の重量平均分子量は、好ましくは20,000以上180,000以下、より好ましくは30,000以上150,000以下、特に好ましくは30,000以上130,000以下である。重量平均分子量が小さいと、得られる熱可塑性重合体組成物の力学強度低下する傾向がある。重量平均分子量が大きいと熱可塑性重合体組成物の流動性が低下し成形加工性が低下する傾向がある。
 また、(メタ)アクリル系樹脂(C)の分子量や分子量分布は、重合開始剤及び連鎖移動剤の種類や量などを調整することによって制御できる。
The weight average molecular weight of the (meth) acrylic resin (C) is preferably 20,000 to 180,000, more preferably 30,000 to 150,000, and particularly preferably 30,000 to 130,000. is there. When the weight average molecular weight is small, the mechanical strength of the resulting thermoplastic polymer composition tends to decrease. When the weight average molecular weight is large, the fluidity of the thermoplastic polymer composition tends to be lowered and the moldability tends to be lowered.
The molecular weight and molecular weight distribution of the (meth) acrylic resin (C) can be controlled by adjusting the types and amounts of the polymerization initiator and the chain transfer agent.
 (メタ)アクリル系樹脂(C)の製造方法は特に限定されず、メタクリル酸メチルを80質量%以上含む単量体(混合物)を重合するか、またはメタクリル酸メチル以外の単量体と共重合することによって得られる。また、(メタ)アクリル系樹脂(C)として市販品を用いてもよい。かかる市販されているメタクリル樹脂としては、例えば「パラペットH1000B」(MFR:22g/10分(230℃、37.3N))、「パラペットGF」(MFR:15g/10分(230℃、37.3N))、「パラペットEH」(MFR:1.3g/10分(230℃、37.3N))、「パラペットHRL」(MFR:2.0g/10分(230℃、37.3N))、「パラペットHRS」(MFR:2.4g/10分(230℃、37.3N))及び「パラペットG」(MFR:8.0g/10分(230℃、37.3N))[いずれも商品名、株式会社クラレ製]などが挙げられる。 The production method of the (meth) acrylic resin (C) is not particularly limited, and a monomer (mixture) containing 80% by mass or more of methyl methacrylate is polymerized or copolymerized with a monomer other than methyl methacrylate. It is obtained by doing. Moreover, you may use a commercial item as (meth) acrylic-type resin (C). Examples of such commercially available methacrylic resins include “Parapet H1000B” (MFR: 22 g / 10 min (230 ° C., 37.3 N)) and “Parapet GF” (MFR: 15 g / 10 min (230 ° C., 37.3 N). )), “Parapet EH” (MFR: 1.3 g / 10 min (230 ° C., 37.3 N)), “Parapet HRL” (MFR: 2.0 g / 10 min (230 ° C., 37.3 N)), “ Parapet HRS ”(MFR: 2.4 g / 10 min (230 ° C., 37.3 N)) and“ Parapet G ”(MFR: 8.0 g / 10 min (230 ° C., 37.3 N))) Kuraray Co., Ltd.].
 熱可塑性重合体組成物は、熱可塑性エラストマー(A)100質量部に対して、(メタ)アクリル系樹脂(C)を1~25質量部含有するのが好ましく、3~20質量部含有するのがより好ましい。(メタ)アクリル系樹脂(C)が1質量部より少ないと、被着体に加熱処理によって接着させることが難しいことがある。一方、(メタ)アクリル系樹脂(C)が25質量部より多くなると、熱可塑性重合体組成物が硬くなり、柔軟性及び力学特性が発現しにくくなることがある。
 上記観点より、(メタ)アクリル系樹脂(C)の含有量は、熱可塑性エラストマー(A)100質量部に対して、好ましくは1~18質量部、より好ましくは3~15質量部である。
The thermoplastic polymer composition preferably contains 1 to 25 parts by weight of (meth) acrylic resin (C), preferably 3 to 20 parts by weight, per 100 parts by weight of the thermoplastic elastomer (A). Is more preferable. When the (meth) acrylic resin (C) is less than 1 part by mass, it may be difficult to adhere to the adherend by heat treatment. On the other hand, when the amount of the (meth) acrylic resin (C) is more than 25 parts by mass, the thermoplastic polymer composition becomes hard, and it may be difficult to express flexibility and mechanical properties.
From the above viewpoint, the content of the (meth) acrylic resin (C) is preferably 1 to 18 parts by mass, more preferably 3 to 15 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer (A).
[その他の成分]
 本発明の熱可塑性重合体組成物は、本発明の効果を著しく損なわない範囲で、必要に応じてオレフィン系重合体、スチレン系重合体、ポリフェニレンエーテル系樹脂、ポリエチレングリコールなど、他の熱可塑性重合体を含有していてもよい。オレフィン系重合体としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、プロピレンとエチレンや1-ブテンなどの他のα-オレフィンとのブロック共重合体やランダム共重合体などが挙げられる。
 他の熱可塑性重合体を含有させる場合、その含有量は、熱可塑性エラストマー(A)100質量部に対して、好ましくは100質量部以下、より好ましくは50質量部以下、より好ましくは20質量部以下、さらに好ましくは10質量部以下、特に好ましくは5質量部以下である。
[Other ingredients]
The thermoplastic polymer composition of the present invention can be used as long as it does not significantly impair the effects of the present invention, as required by other thermoplastic heavy polymers such as olefin polymers, styrene polymers, polyphenylene ether resins, and polyethylene glycol. It may contain a coalescence. Examples of the olefin polymer include polyethylene, polypropylene, polybutene, block copolymers of propylene and other α-olefins such as ethylene and 1-butene, and random copolymers.
When other thermoplastic polymer is contained, the content thereof is preferably 100 parts by mass or less, more preferably 50 parts by mass or less, more preferably 20 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer (A). Hereinafter, it is more preferably 10 parts by mass or less, particularly preferably 5 parts by mass or less.
 本発明の熱可塑性重合体組成物は、発明の効果を損なわない範囲で、必要に応じて、酸化防止剤、滑剤、光安定剤、加工助剤、顔料や色素などの着色剤、難燃剤、帯電防止剤、艶消し剤、シリコンオイル、ブロッキング防止剤、紫外線吸収剤、離型剤、発泡剤、抗菌剤、防カビ剤、香料などを含有していてもよい。
 酸化防止剤としては、例えばヒンダードフェノール系、リン系、ラクトン系、ヒドロキシル系の酸化防止剤などが挙げられる。これらの中でも、ヒンダードフェノール系酸化防止剤が好ましい。
The thermoplastic polymer composition of the present invention is an antioxidant, a lubricant, a light stabilizer, a processing aid, a colorant such as a pigment or a dye, a flame retardant, and the like, as long as the effects of the invention are not impaired. It may contain an antistatic agent, a matting agent, silicone oil, an antiblocking agent, an ultraviolet absorber, a release agent, a foaming agent, an antibacterial agent, an antifungal agent, a fragrance and the like.
Examples of the antioxidant include hindered phenol-based, phosphorus-based, lactone-based, and hydroxyl-based antioxidants. Among these, hindered phenol antioxidants are preferable.
[熱可塑性重合体組成物の製造方法]
 本発明の熱可塑性重合体組成物を調製する方法は特に制限されないが、該熱可塑性重合体組成物を構成する各成分の分散性を高めるため、例えば、溶融混練して混合する方法が推奨される。この場合に、熱可塑性エラストマー(A)、ポリプロピレン系樹脂(B)及び(メタ)アクリル系樹脂(C)と、必要に応じて添加されるその他の成分とを同時に混合して溶融混練してもよい。混合操作は、例えばニ一ダールーダー、押出機、ミキシングロール、バンバリーミキサーなどの既知の混合または混練装置を使用して行なうことができる。特に、熱可塑性エラストマー(A)と(メタ)アクリル系樹脂(C)の混練性、相溶性を向上させる観点から、二軸押出機を使用することが好ましい。混合・混練時の温度は、使用する熱可塑性エラストマー(A)、ポリプロピレン系樹脂(B)、(メタ)アクリル系樹脂(C)、等の溶融温度などに応じて適宜調節するのがよく、通常110℃~300℃の範囲内の温度で混合するとよい。
[Method for producing thermoplastic polymer composition]
The method for preparing the thermoplastic polymer composition of the present invention is not particularly limited, but in order to improve the dispersibility of each component constituting the thermoplastic polymer composition, for example, a method of melt kneading and mixing is recommended. The In this case, the thermoplastic elastomer (A), the polypropylene resin (B) and the (meth) acrylic resin (C) and other components added as necessary may be mixed and melt-kneaded at the same time. Good. The mixing operation can be performed using a known mixing or kneading apparatus such as a kneader ruder, an extruder, a mixing roll, or a Banbury mixer. In particular, it is preferable to use a twin screw extruder from the viewpoint of improving the kneadability and compatibility between the thermoplastic elastomer (A) and the (meth) acrylic resin (C). The temperature during mixing and kneading should be appropriately adjusted according to the melting temperature of the thermoplastic elastomer (A), polypropylene resin (B), (meth) acrylic resin (C), etc. Mixing at a temperature in the range of 110 ° C to 300 ° C is recommended.
 このようにして、本発明の熱可塑性重合体組成物を、ペレット、粉末などの任意の形態で得ることができる。得られた熱可塑性重合体組成物は、フィルム、シート、プレート、パイプ、チューブ、棒状体、粒状体など種々の形状に成形することができる。これらの製造方法は特に制限はなく、従来からの各種成形法、例えば射出成形、ブロー成形、プレス成形、押出成形、カレンダー成形などにより成形することができる。 In this way, the thermoplastic polymer composition of the present invention can be obtained in any form such as pellets or powder. The obtained thermoplastic polymer composition can be formed into various shapes such as a film, a sheet, a plate, a pipe, a tube, a rod-like body, and a granular body. These production methods are not particularly limited, and can be formed by various conventional molding methods such as injection molding, blow molding, press molding, extrusion molding, and calendar molding.
[多層フィルム]
 本発明の多層フィルムは、基材層と本発明の熱可塑性重合体組成物からなる層を少なくとも有する。以下、本発明の多層フィルムで用いられる基材層について説明する。
[Multilayer film]
The multilayer film of this invention has at least the layer which consists of a base material layer and the thermoplastic polymer composition of this invention. Hereinafter, the base material layer used in the multilayer film of the present invention will be described.
[基材層]
 基材層としては特に限定されるものではないが、非晶性樹脂からなるものが好ましい。本明細書において「非晶性樹脂」とは、示差走査熱量測定(DSC)曲線において明確な融点を持たない樹脂を意味する。
 非晶性樹脂としては、例えばポリスチレン系樹脂、ポリ塩化ビニル樹脂、アクリロニトリルスチレン樹脂、ABS樹脂(アクリロニトリルブタジエンスチレン樹脂)、ポリカーボネート樹脂、ポリエステル系樹脂、(メタ)アクリル系樹脂などが挙げられる。中でも耐候性、表面光沢性、耐擦傷性の観点から、(メタ)アクリル系樹脂、ABS樹脂、ポリカーボネート系樹脂及びポリエステル系樹脂が好ましく、透明性及び表面光沢性の観点から(メタ)アクリル系樹脂が好ましい。かかる(メタ)アクリル系樹脂としては、メタクリル樹脂(F)及び弾性体(R)を含む(メタ)アクリル系樹脂組成物がより好ましい。
[Base material layer]
Although it does not specifically limit as a base material layer, What consists of an amorphous resin is preferable. In the present specification, “amorphous resin” means a resin having no clear melting point in a differential scanning calorimetry (DSC) curve.
Examples of the amorphous resin include polystyrene resin, polyvinyl chloride resin, acrylonitrile styrene resin, ABS resin (acrylonitrile butadiene styrene resin), polycarbonate resin, polyester resin, and (meth) acrylic resin. Of these, (meth) acrylic resins, ABS resins, polycarbonate resins and polyester resins are preferred from the viewpoints of weather resistance, surface gloss and scratch resistance, and (meth) acrylic resins from the viewpoint of transparency and surface gloss. Is preferred. As the (meth) acrylic resin, a (meth) acrylic resin composition containing a methacrylic resin (F) and an elastic body (R) is more preferable.
 メタクリル樹脂(F)はメタクリル酸メチルに由来する構造単位を好ましくは80質量%以上、より好ましくは90質量%以上有する。換言すると、メタクリル樹脂(F)はメタクリル酸メチル以外の単量体に由来する構造単位を好ましくは20質量%以下、より好ましくは10質量%以下有し、メタクリル酸メチルのみを単量体とする重合体であってもよい。
 係るメタクリル酸メチル以外の単量体としては、前述の(メタ)アクリル系樹脂(C)でメタクリル酸メチル以外の単量体として挙げられたものと同様のものを使用することができる。
The methacrylic resin (F) has a structural unit derived from methyl methacrylate, preferably 80% by mass or more, more preferably 90% by mass or more. In other words, the methacrylic resin (F) has a structural unit derived from a monomer other than methyl methacrylate, preferably 20% by mass or less, more preferably 10% by mass or less, and only methyl methacrylate is used as a monomer. It may be a polymer.
As the monomer other than the methyl methacrylate, those similar to those mentioned as the monomer other than methyl methacrylate in the (meth) acrylic resin (C) can be used.
 メタクリル樹脂(F)の立体規則性は特に制限されず、例えばイソタクチック、ヘテロタクチック、シンジオタクチックなどの立体規則性を有するものを用いてもよい。
 メタクリル樹脂(F)の重量平均分子量は好ましくは20,000~180,000の範囲であり、より好ましくは30,000~150,000の範囲である。重量平均分子量が20,000未満だと耐衝撃性や靭性が低下する傾向となり、180,000より大きいとメタクリル樹脂(F)の流動性が低下し成形加工性が低下する傾向となる。
The stereoregularity of the methacrylic resin (F) is not particularly limited, and for example, those having stereoregularity such as isotactic, heterotactic and syndiotactic may be used.
The weight average molecular weight of the methacrylic resin (F) is preferably in the range of 20,000 to 180,000, more preferably in the range of 30,000 to 150,000. When the weight average molecular weight is less than 20,000, impact resistance and toughness tend to decrease, and when it exceeds 180,000, the fluidity of the methacrylic resin (F) decreases and molding processability tends to decrease.
 メタクリル樹脂(F)の製造方法は特に限定されず、メタクリル酸メチルを80質量%以上含む単量体(混合物)を重合するか、メタクリル酸メチル以外の単量体と共重合して得られる。また、メタクリル樹脂(F)として市販品を用いてもよい。
 また、前述の熱可塑性重合体組成物に用いられる(メタ)アクリル系樹脂(C)と、基材層に用いられるメタクリル樹脂(F)とは同一であってもよく、コモノマー比、分子量、MFR等が異なるものであってもよい。
The production method of the methacrylic resin (F) is not particularly limited, and it is obtained by polymerizing a monomer (mixture) containing 80% by mass or more of methyl methacrylate or copolymerizing with a monomer other than methyl methacrylate. Moreover, you may use a commercial item as a methacryl resin (F).
The (meth) acrylic resin (C) used for the thermoplastic polymer composition and the methacrylic resin (F) used for the base layer may be the same, comonomer ratio, molecular weight, MFR. Etc. may be different.
 弾性体(R)としてはブタジエン系ゴム、クロロプレン系ゴム、ブロック共重合体、多層構造体などが挙げられ、これらを単独でまたは組み合わせて用いてもよい。これらの中でも透明性、耐衝撃性、分散性の観点からブロック共重合体または多層構造体が好ましく、アクリル系ブロック共重合体(G)または多層構造体(E)がより好ましい。 Examples of the elastic body (R) include butadiene rubber, chloroprene rubber, block copolymer, multilayer structure and the like, and these may be used alone or in combination. Among these, from the viewpoint of transparency, impact resistance, and dispersibility, a block copolymer or a multilayer structure is preferable, and an acrylic block copolymer (G) or a multilayer structure (E) is more preferable.
 アクリル系ブロック共重合体(G)はメタクリル酸エステル重合体ブロック(g1)及びアクリル酸エステル重合体ブロック(g2)を有する。アクリル系ブロック共重合体(G)はメタクリル酸エステル重合体ブロック(g1)及びアクリル酸エステル重合体ブロック(g2)をそれぞれ1つのみ有していてもよいし、複数有していてもよい。 The acrylic block copolymer (G) has a methacrylic acid ester polymer block (g1) and an acrylic acid ester polymer block (g2). The acrylic block copolymer (G) may have only one methacrylic acid ester polymer block (g1) and one acrylic acid ester polymer block (g2), or a plurality thereof.
 メタクリル酸エステル重合体ブロック(g1)はメタクリル酸エステルに由来する構造単位を主たる構成単位とするものである。メタクリル酸エステル重合体ブロック(g1)におけるメタクリル酸エステルに由来する構造単位の割合は、延伸性、表面硬度の観点から、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上、特に好ましくは98質量%以上である。 The methacrylic acid ester polymer block (g1) is mainly composed of structural units derived from methacrylic acid esters. The proportion of the structural unit derived from the methacrylic ester in the methacrylic ester polymer block (g1) is preferably 80% by mass or more, more preferably 90% by mass or more, and still more preferably 95 from the viewpoints of stretchability and surface hardness. It is at least 98% by mass, particularly preferably at least 98% by mass.
 係るメタクリル酸エステルとしては、例えばメタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸sec-ブチル、メタクリル酸tert-ブチル、メタクリル酸アミル、メタクリル酸イソアミル、メタクリル酸n-ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸ペンタデシル、メタクリル酸ドデシル、メタクリル酸イソボルニル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸フェノキシエチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-メトキシエチル、メタクリル酸グリシジル、メタクリル酸アリルなどが挙げられ、これらを1種単独でまたは2種以上を組み合わせて重合できる。これらの中でも、透明性、耐熱性の観点から、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸tert-ブチル、メタクリル酸シクロヘキシル、メタクリル酸イソボルニルなどのメタクリル酸アルキルエステルが好ましく、メタクリル酸メチルがより好ましい。 Examples of the methacrylic acid ester include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, sec-butyl methacrylate, tert-butyl methacrylate, and methacrylic acid. Amyl, isoamyl methacrylate, n-hexyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, pentadecyl methacrylate, dodecyl methacrylate, isobornyl methacrylate, phenyl methacrylate, benzyl methacrylate, phenoxyethyl methacrylate, 2 methacrylate -Hydroxyethyl, 2-methoxyethyl methacrylate, glycidyl methacrylate, allyl methacrylate, and the like. It can be polymerized in combination with at least species. Among these, from the viewpoint of transparency and heat resistance, alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, tert-butyl methacrylate, cyclohexyl methacrylate, and isobornyl methacrylate. Is preferred, and methyl methacrylate is more preferred.
 メタクリル酸エステル重合体ブロック(g1)はメタクリル酸エステル以外の単量体に由来する構造単位を含んでもよく、延伸性及び表面硬度の観点から、その割合は好ましくは20質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下、特に好ましくは2質量%以下である。 The methacrylic acid ester polymer block (g1) may contain a structural unit derived from a monomer other than the methacrylic acid ester, and the proportion thereof is preferably 20% by mass or less, more preferably from the viewpoint of stretchability and surface hardness. It is 10 mass% or less, More preferably, it is 5 mass% or less, Most preferably, it is 2 mass% or less.
 前記メタクリル酸エステル以外の単量体としては、例えばアクリル酸エステル、不飽和カルボン酸、芳香族ビニル化合物、オレフィン、共役ジエン、アクリロニトリル、メタクリロニトリル、アクリルアミド、メタクリルアミド、酢酸ビニル、ビニルピリジン、ビニルケトン、塩化ビニル、塩化ビニリデン、フッ化ビニリデンなどが挙げられ、これらを1種単独でまたは2種以上を組み合わせて使用できる。 Examples of the monomer other than the methacrylic acid ester include acrylic acid ester, unsaturated carboxylic acid, aromatic vinyl compound, olefin, conjugated diene, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, vinyl acetate, vinyl pyridine, vinyl ketone. , Vinyl chloride, vinylidene chloride, vinylidene fluoride, and the like. These may be used alone or in combination of two or more.
 ブロック共重合体(G)がメタクリル酸エステル重合体ブロック(g1)を複数有する場合、それぞれのメタクリル酸エステル重合体ブロック(g1)を構成する構造単位の組成比や分子量は相互に同じであってもよいし、異なっていてもよい。 When the block copolymer (G) has a plurality of methacrylate polymer blocks (g1), the composition ratio and molecular weight of the structural units constituting the respective methacrylate polymer blocks (g1) are the same. It may be different or different.
 ブロック共重合体(G)におけるメタクリル酸エステル重合体ブロック(g1)の割合は、透明性、柔軟性、成形加工性及び表面平滑性の観点から、好ましくは10質量%~70質量%の範囲であり、より好ましくは25質量%~60質量%の範囲である。ブロック共重合体(G)にメタクリル酸エステル重合体ブロック(g1)が複数含まれる場合、前記の割合はすべてのメタクリル酸エステル重合体ブロック(g1)の合計質量に基づいて算出する。 The proportion of the methacrylic ester polymer block (g1) in the block copolymer (G) is preferably in the range of 10% by mass to 70% by mass from the viewpoint of transparency, flexibility, molding processability and surface smoothness. More preferably, it is in the range of 25% by mass to 60% by mass. When the block copolymer (G) includes a plurality of methacrylate polymer blocks (g1), the above ratio is calculated based on the total mass of all methacrylate polymer blocks (g1).
 アクリル酸エステル重合体ブロック(g2)はアクリル酸エステルに由来する構造単位を主たる構成単位とするものである。アクリル酸エステル重合体ブロック(g2)におけるアクリル酸エステルに由来する構造単位の割合は、三次元被覆成形性及び延伸性の観点から好ましくは45質量%以上、より好ましくは50質量%以上、さらに好ましくは60質量%以上、特に好ましくは90質量%以上である。 The acrylic ester polymer block (g2) is mainly composed of a structural unit derived from an acrylic ester. The proportion of structural units derived from the acrylate ester in the acrylate polymer block (g2) is preferably 45% by mass or more, more preferably 50% by mass or more, further preferably from the viewpoint of three-dimensional coating moldability and stretchability. Is 60% by mass or more, particularly preferably 90% by mass or more.
 係るアクリル酸エステルとしては、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸sec-ブチル、アクリル酸tert-ブチル、アクリル酸アミル、アクリル酸イソアミル、アクリル酸n-ヘキシル、アクリル酸シクロヘキシル、アクリル酸2-エチルヘキシル、アクリル酸ペンタデシル、アクリル酸ドデシル、アクリル酸イソボルニル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸フェノキシエチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-メトキシエチル、アクリル酸グリシジル、アクリル酸アリルなどが挙げられ、これらを1種単独でまたは2種以上を組み合わせて重合できる。 Examples of the acrylate ester include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, sec-butyl acrylate, tert-butyl acrylate, and acrylic acid. Amyl, isoamyl acrylate, n-hexyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, pentadecyl acrylate, dodecyl acrylate, isobornyl acrylate, phenyl acrylate, benzyl acrylate, phenoxyethyl acrylate, acrylic acid 2 -Hydroxyethyl, 2-methoxyethyl acrylate, glycidyl acrylate, allyl acrylate and the like can be mentioned, and these can be polymerized alone or in combination of two or more.
 アクリル酸エステル重合体ブロック(g2)は、延伸性、透明性の観点から、アクリル酸アルキルエステル及び(メタ)アクリル酸芳香族エステルからなることが好ましい。アクリル酸アルキルエステルとしては、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル、アクリル酸ドデシルなどが挙げられる。これらのうち、アクリル酸n-ブチル、アクリル酸2-エチルヘキシルが好ましい。 The acrylic ester polymer block (g2) is preferably composed of an acrylic acid alkyl ester and a (meth) acrylic acid aromatic ester from the viewpoint of stretchability and transparency. Examples of the alkyl acrylate include methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, and the like. Of these, n-butyl acrylate and 2-ethylhexyl acrylate are preferred.
 (メタ)アクリル酸芳香族エステルはアクリル酸芳香族エステルまたはメタクリル酸芳香族エステルを意味し、芳香環を含む化合物が(メタ)アクリル酸にエステル結合してなる。係る(メタ)アクリル酸芳香族エステルとしては、例えばアクリル酸フェニル、アクリル酸ベンジル、アクリル酸フェノキシエチル、アクリル酸スチリル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸フェノキシエチル、メタクリル酸スチリルなどが挙げられる。中でも透明性の観点から、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸フェノキシエチル、アクリル酸ベンジルが好ましい。 (Aromatic ester of (meth) acrylic acid means an aromatic ester of acrylic acid or an aromatic ester of methacrylic acid, and a compound containing an aromatic ring is ester-bonded to (meth) acrylic acid. Examples of the (meth) acrylic acid aromatic ester include phenyl acrylate, benzyl acrylate, phenoxyethyl acrylate, styryl acrylate, phenyl methacrylate, benzyl methacrylate, phenoxyethyl methacrylate, and styryl methacrylate. . Among these, from the viewpoint of transparency, phenyl methacrylate, benzyl methacrylate, phenoxyethyl methacrylate, and benzyl acrylate are preferable.
 アクリル酸エステル重合体ブロック(g2)がアクリル酸アルキルエステル及び(メタ)アクリル酸芳香族エステルからなる場合、透明性の観点から該アクリル酸エステル重合体ブロック(g2)はアクリル酸アルキルエステルに由来する構造単位50~90質量%及び(メタ)アクリル酸芳香族エステルに由来する構造単位50~10質量%を含むことが好ましく、アクリル酸アルキルエステルに由来する構造単位60~80質量%及び(メタ)アクリル酸芳香族エステルに由来する構造単位40~20質量%を含むことがより好ましい。 When the acrylic acid ester polymer block (g2) is composed of an acrylic acid alkyl ester and a (meth) acrylic acid aromatic ester, the acrylic acid ester polymer block (g2) is derived from the acrylic acid alkyl ester from the viewpoint of transparency. It preferably contains 50 to 90% by mass of structural units and 50 to 10% by mass of structural units derived from (meth) acrylic acid aromatic ester, and 60 to 80% by mass of structural units derived from alkyl acrylate and (meth) More preferably, it contains 40 to 20% by mass of a structural unit derived from an acrylic acid aromatic ester.
 アクリル酸エステル重合体ブロック(g2)はアクリル酸エステル以外の単量体に由来する構造単位を含んでもよく、アクリル酸エステル重合体ブロック(g2)においてその含有量は好ましくは55質量%以下であり、より好ましくは50質量%以下であり、さらに好ましくは40質量%以下であり、特に好ましくは10質量%以下である。 The acrylate polymer block (g2) may contain a structural unit derived from a monomer other than the acrylate ester, and the content of the acrylate polymer block (g2) is preferably 55% by mass or less. More preferably, it is 50 mass% or less, More preferably, it is 40 mass% or less, Most preferably, it is 10 mass% or less.
 アクリル酸エステル以外の単量体としては、例えばメタクリル酸エステル、不飽和カルボン酸、芳香族ビニル化合物、オレフィン、共役ジエン、アクリロニトリル、メタクリロニトリル、アクリルアミド、メタクリルアミド、酢酸ビニル、ビニルピリジン、ビニルケトン、塩化ビニル、塩化ビニリデン、フッ化ビニリデンなどが挙げられ、これらを1種単独でまたは2種以上を組み合わせて使用できる。 Examples of monomers other than acrylic acid esters include methacrylic acid esters, unsaturated carboxylic acids, aromatic vinyl compounds, olefins, conjugated dienes, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, vinyl acetate, vinyl pyridine, vinyl ketone, Examples thereof include vinyl chloride, vinylidene chloride, and vinylidene fluoride, and these can be used alone or in combination of two or more.
 ブロック共重合体(G)がアクリル酸エステル重合体ブロック(g2)を複数有する場合、それぞれのアクリル酸エステル重合体ブロック(g2)を構成する構造単位の組成比や分子量は相互に同じであってもよいし、異なっていてもよい。 When the block copolymer (G) has a plurality of acrylate polymer blocks (g2), the composition ratio and molecular weight of the structural units constituting each acrylate polymer block (g2) are the same. It may be different or different.
 ブロック共重合体(G)におけるアクリル酸エステル重合体ブロック(g2)の割合は、透明性、柔軟性、成形加工性、表面平滑性の観点から、好ましくは30~90質量%の範囲であり、より好ましくは40~75質量%の範囲である。ブロック共重合体(G)にアクリル酸エステル重合体ブロック(g2)が複数含まれる場合、係る割合はすべてのアクリル酸エステル重合体ブロック(g2)の合計質量に基づいて算出する。 The proportion of the acrylate polymer block (g2) in the block copolymer (G) is preferably in the range of 30 to 90% by mass from the viewpoint of transparency, flexibility, molding processability, and surface smoothness. More preferably, it is in the range of 40 to 75% by mass. When the block copolymer (G) contains a plurality of acrylic ester polymer blocks (g2), the proportion is calculated based on the total mass of all acrylic ester polymer blocks (g2).
 ブロック共重合体(G)におけるメタクリル酸エステル重合体ブロック(g1)とアクリル酸エステル重合体ブロック(g2)の結合形態は特に限定されず、例えばメタクリル酸エステル重合体ブロック(g1)の一末端にアクリル酸エステル重合体ブロック(g2)の一末端が繋がった構造((g1)-(g2)構造);メタクリル酸エステル重合体ブロック(g1)の両末端にアクリル酸エステル重合体ブロック(g2)の一末端が繋がった構造((g2)-(g1)-(g2)構造);アクリル酸エステル重合体ブロック(g2)の両末端にメタクリル酸エステル重合体ブロック(g1)の一末端が繋がった構造((g1)-(g2)-(g1)構造)など、メタクリル酸エステル重合体ブロック(g1)及びアクリル酸エステル重合体ブロック(g2)が直列に繋がった構造が挙げられる。これらの中でも、(g1)-(g2)構造のジブロック共重合体または(g1)-(g2)-(g1)構造のトリブロック共重合体が特に好ましい。 The bonding form of the methacrylic ester polymer block (g1) and the acrylate polymer block (g2) in the block copolymer (G) is not particularly limited. For example, at one end of the methacrylic ester polymer block (g1) A structure in which one end of the acrylate polymer block (g2) is connected ((g1)-(g2) structure); an acrylate polymer block (g2) at both ends of the methacrylate polymer block (g1). Structure in which one end is connected ((g2)-(g1)-(g2) structure); Structure in which one end of methacrylic ester polymer block (g1) is connected to both ends of acrylate polymer block (g2) ((G1)-(g2)-(g1) structure), etc., methacrylic acid ester polymer block (g1) and acrylate weight Body block (g2) can be cited a structure that led to series. Among these, a diblock copolymer having a (g1)-(g2) structure or a triblock copolymer having a (g1)-(g2)-(g1) structure is particularly preferable.
 アクリル系ブロック共重合体(G)は、分子鎖中または分子鎖末端に水酸基、カルボキシル基、酸無水物、アミノ基などの官能基を有してもよい。 The acrylic block copolymer (G) may have a functional group such as a hydroxyl group, a carboxyl group, an acid anhydride, or an amino group in the molecular chain or at the molecular chain end.
 アクリル系ブロック共重合体(G)の重量平均分子量は好ましくは60,000~400,000の範囲であり、より好ましくは60,000~200,000の範囲である。ブロック共重合体(G)の重量平均分子量が60,000未満だと溶融押出成形において十分な溶融張力を保持できず良好なフィルムが得られにくく、また得られたフィルムの破断強度などの力学物性が低下する傾向となり、400,000より大きいと溶融樹脂の粘度が高くなり、溶融押出成形で得られるフィルムの表面に微細なシボ調の凹凸や未溶融物(高分子量体)に起因するブツが生じ、良好なフィルムが得られにくい傾向となる。 The weight average molecular weight of the acrylic block copolymer (G) is preferably in the range of 60,000 to 400,000, more preferably in the range of 60,000 to 200,000. If the weight average molecular weight of the block copolymer (G) is less than 60,000, sufficient melt tension cannot be maintained in melt extrusion molding, making it difficult to obtain a good film, and mechanical properties such as breaking strength of the obtained film. When the viscosity is larger than 400,000, the viscosity of the molten resin increases, and the surface of the film obtained by melt extrusion molding has fine grain-like irregularities and irregularities due to unmelted material (high molecular weight). This tends to be difficult to obtain a good film.
 アクリル系ブロック共重合体(G)の分子量分布は好ましくは1.0~2.0の範囲であり、より好ましくは1.0~1.6の範囲である。このような範囲内に分子量分布があることで、基材層においてブツの発生原因となる未溶融物の含有量を低減できる。なお、重量平均分子量及び数平均分子量はGPCで測定した標準ポリスチレン換算の分子量である。 The molecular weight distribution of the acrylic block copolymer (G) is preferably in the range of 1.0 to 2.0, more preferably in the range of 1.0 to 1.6. By having the molecular weight distribution within such a range, the content of unmelted material that causes the generation of scum in the base material layer can be reduced. In addition, a weight average molecular weight and a number average molecular weight are molecular weights of standard polystyrene conversion measured by GPC.
 アクリル系ブロック共重合体(G)の屈折率は好ましくは1.485~1.495の範囲であり、より好ましくは1.487~1.493の範囲である。屈折率がこの範囲内であると、得られる基材層の透明性が高くなる。なお、屈折率は波長587.6nm(d線)で測定した値である。 The refractive index of the acrylic block copolymer (G) is preferably in the range of 1.485 to 1.495, more preferably in the range of 1.487 to 1.493. When the refractive index is within this range, the transparency of the obtained base material layer becomes high. The refractive index is a value measured at a wavelength of 587.6 nm (d line).
 アクリル系ブロック共重合体(G)の製造方法は特に限定されず、公知の手法に準じた方法を採用でき、例えば各重合体ブロックを構成する単量体をリビング重合する方法が一般に使用される。このようなリビング重合の手法としては、例えば有機アルカリ金属化合物を重合開始剤として用いアルカリ金属またはアルカリ土類金属塩などの鉱酸塩の存在下でアニオン重合する方法;有機アルカリ金属化合物を重合開始剤として用い有機アルミニウム化合物の存在下でアニオン重合する方法;有機希土類金属錯体を重合開始剤として用い重合する方法;α-ハロゲン化エステル化合物を開始剤として用い銅化合物の存在下でラジカル重合する方法などが挙げられる。また、多価ラジカル重合開始剤や多価ラジカル連鎖移動剤を用いて各ブロックを構成するモノマーを重合させ、アクリル系ブロック共重合体(G)を含有する混合物として製造する方法なども挙げられる。これらの方法のうち、アクリル系ブロック共重合体(G)を高純度で得られ、また分子量や組成比の制御が容易であり、かつ経済的であることから、有機アルカリ金属化合物を重合開始剤として用い有機アルミニウム化合物の存在下でアニオン重合する方法が好ましい。 The method for producing the acrylic block copolymer (G) is not particularly limited, and a method according to a known method can be adopted. For example, a method of living polymerizing monomers constituting each polymer block is generally used. . Examples of such living polymerization methods include a method of anionic polymerization in the presence of a mineral salt such as an alkali metal or an alkaline earth metal salt using an organic alkali metal compound as a polymerization initiator; A method of anionic polymerization in the presence of an organoaluminum compound used as an agent; a method of polymerization using an organic rare earth metal complex as a polymerization initiator; a method of radical polymerization in the presence of a copper compound using an α-halogenated ester compound as an initiator Etc. Moreover, the method of polymerizing the monomer which comprises each block using a polyvalent radical polymerization initiator and a polyvalent radical chain transfer agent, and manufacturing as a mixture containing an acryl-type block copolymer (G), etc. are mentioned. Among these methods, the acrylic block copolymer (G) can be obtained with high purity, the molecular weight and the composition ratio can be easily controlled, and it is economical. A method in which anionic polymerization is used in the presence of an organoaluminum compound is preferred.
 多層構造体(E)は内層及び外層の少なくとも2層を含有し、内層及び外層が中心層から最外層方向へこの順に配されている層構造を少なくとも一つ有している。多層構造体(E)は内層の内側または外層の外側にさらに架橋性樹脂層を有してもよい。 The multilayer structure (E) includes at least two layers of an inner layer and an outer layer, and has at least one layer structure in which the inner layer and the outer layer are arranged in this order from the center layer toward the outermost layer. The multilayer structure (E) may further have a crosslinkable resin layer inside the inner layer or outside the outer layer.
 上記内層は、アクリル酸アルキルエステル及び架橋性単量体を有する単量体混合物を共重合してなる架橋弾性体から構成される層である。係るアクリル酸アルキルエステルとしては、アルキル基の炭素数が2~8の範囲であるアクリル酸アルキルエステルが好ましく用いられ、ブチルアクリレート、2-エチルヘキシルアクリレートなどが挙げられる。内層の共重合体を形成させるために使用される全単量体混合物におけるアクリル酸アルキルエステルの割合は、耐衝撃性の点から、好ましくは70~99.8質量%の範囲であり、より好ましくは80~90質量%である。 The inner layer is a layer composed of a cross-linked elastic body obtained by copolymerizing a monomer mixture having an acrylic acid alkyl ester and a cross-linkable monomer. As such an acrylic acid alkyl ester, an acrylic acid alkyl ester having an alkyl group having 2 to 8 carbon atoms is preferably used, and examples thereof include butyl acrylate and 2-ethylhexyl acrylate. From the viewpoint of impact resistance, the ratio of the alkyl acrylate ester in the total monomer mixture used to form the inner layer copolymer is preferably in the range of 70 to 99.8% by mass, more preferably. Is 80 to 90% by mass.
 上記内層に用いられる架橋性単量体は一分子内に重合性炭素-炭素二重結合を少なくとも2個有するものであればよく、例えばエチレングリコールジメタクリレート、ブタンジオールジメタクリレートなどグリコール類の不飽和カルボン酸ジエステル、アクリル酸アリル、メタクリル酸アリル、ケイ皮酸アリルなど不飽和カルボン酸のアルケニルエステル、フタル酸ジアリル、マレイン酸ジアリル、トリアリルシアヌレート、トリアリルイソシアヌレートなど多塩基酸のポリアルケニルエステル、トリメチロールプロパントリアクリレートなど多価アルコールの不飽和カルボン酸エステル、ジビニルベンゼンなどが挙げられ、不飽和カルボン酸のアルケニルエステルや多塩基酸のポリアルケニルエステルが好ましい。全単量体混合物における架橋性単量体の量は、基材層の耐衝撃性、耐熱性及び表面硬度を向上させる観点から、0.2~30質量%の範囲が好ましく、0.2~10質量%の範囲がより好ましい。 The crosslinkable monomer used in the inner layer may be any monomer having at least two polymerizable carbon-carbon double bonds in one molecule. For example, unsaturated glycols such as ethylene glycol dimethacrylate and butanediol dimethacrylate. Polyalkenyl esters of polybasic acids such as carboxylic acid diesters, alkenyl esters of unsaturated carboxylic acids such as allyl acrylate, allyl methacrylate, allyl cinnamate, diallyl phthalate, diallyl maleate, triallyl cyanurate, triallyl isocyanurate And unsaturated carboxylic acid esters of polyhydric alcohols such as trimethylolpropane triacrylate, divinylbenzene and the like, and alkenyl esters of unsaturated carboxylic acids and polyalkenyl esters of polybasic acids are preferred. The amount of the crosslinkable monomer in the total monomer mixture is preferably in the range of 0.2 to 30% by mass from the viewpoint of improving the impact resistance, heat resistance and surface hardness of the base material layer. The range of 10% by mass is more preferable.
 上記内層を形成する単量体混合物は他の単官能性単量体をさらに有してもよい。係る単官能性単量体は、例えばメタクリル酸メチル、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、イソブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、シクロヘキシルメタクリレート、ドデシルメタクリレート、ミリスチルメタクリレート、パルミチルメタクリレート、ステアリルメタクリレート、ベヘニルメタクリレートなどのアルキルメタクリレート;フェニルメタクリレートなどのメタクリル酸とフェノール類のエステル、ベンジルメタクリレートなどのメタクリル酸と芳香族アルコールとのエステルなどのメタクリル酸エステル;スチレン、α-メチルスチレン、1-ビニルナフタレン、3-メチルスチレン、4-プロピルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン、ハロゲン化スチレンなどの芳香族ビニル系単量体;アクリロニトリル、メタクリロニトリルなどのシアン化ビニル系単量体;ブタジエン、イソプレンなどの共役ジエン系単量体などが挙げられる。全単量体混合物における他の単官能性単量体の量は、基材層の耐衝撃性を向上させる観点から、好ましくは24.5質量%以下であり、より好ましくは20質量%以下である。 The monomer mixture forming the inner layer may further have another monofunctional monomer. Such monofunctional monomers include, for example, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, pentyl methacrylate, hexyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, Alkyl methacrylates such as dodecyl methacrylate, myristyl methacrylate, palmityl methacrylate, stearyl methacrylate, and behenyl methacrylate; methacrylates such as phenyl methacrylate and esters of phenols; methacrylates such as esters of methacrylic acid and aromatic alcohols such as benzyl methacrylate Styrene, α-methylstyrene, 1- Aromatic vinyl series such as nylnaphthalene, 3-methylstyrene, 4-propylstyrene, 4-cyclohexylstyrene, 4-dodecylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene, halogenated styrene Examples thereof include vinyl cyanide monomers such as acrylonitrile and methacrylonitrile; conjugated diene monomers such as butadiene and isoprene. The amount of the other monofunctional monomer in the total monomer mixture is preferably 24.5% by mass or less, more preferably 20% by mass or less, from the viewpoint of improving the impact resistance of the base material layer. is there.
 上記外層は基材層の耐熱性の点からメタクリル酸メチルを80質量%以上、好ましくは90質量%以上含有する単量体混合物を重合してなる硬質熱可塑性樹脂から構成される。また、硬質熱可塑性樹脂は他の単官能性単量体を20質量%以下、好ましくは10質量%以下含む。他の単官能性単量体としては、例えばメチルアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレートなどのアクリル酸アルキルエステル;アクリル酸;メタクリル酸などが挙げられる。 The outer layer is composed of a hard thermoplastic resin obtained by polymerizing a monomer mixture containing 80% by mass or more, preferably 90% by mass or more of methyl methacrylate from the viewpoint of heat resistance of the base material layer. The hard thermoplastic resin contains other monofunctional monomer in an amount of 20% by mass or less, preferably 10% by mass or less. Other monofunctional monomers include, for example, acrylic acid alkyl esters such as methyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate; acrylic acid; methacrylic acid.
 多層構造体(E)における内層及び外層の含有率は、得られる基材層の耐衝撃性、耐熱性、表面硬度、取扱性及び溶融混練の容易さなどの観点から、多層構造体(E)の質量(例えば2層からなる場合は内層及び外層の総量)を基準として、内層の含有率が40~80質量%の範囲から選ばれ、外層の含有率が20~60質量%の範囲から選ばれることが好ましい。 The content of the inner layer and the outer layer in the multilayer structure (E) is determined from the viewpoint of impact resistance, heat resistance, surface hardness, handleability, ease of melt kneading and the like of the obtained base material layer. The content of the inner layer is selected from the range of 40 to 80% by mass, and the content of the outer layer is selected from the range of 20 to 60% by mass, based on the mass (for example, the total amount of the inner layer and outer layer in the case of two layers) It is preferable that
 多層構造体(E)を製造するための方法は特に限定されないが、多層構造体(E)の層構造の制御の観点から乳化重合により製造されることが好ましい。 The method for producing the multilayer structure (E) is not particularly limited, but it is preferably produced by emulsion polymerization from the viewpoint of controlling the layer structure of the multilayer structure (E).
 基材層が、メタクリル樹脂(F)及び弾性体(R)を含む(メタ)アクリル系樹脂組成物から構成される場合、各成分の含有量は、メタクリル樹脂(F)と弾性体(R)との合計100質量部に対して、メタクリル樹脂(F)の含有量が10~99質量部であり、弾性体(R)の含有量が90~1質量部であることが好ましい。メタクリル樹脂(F)の含有量が10質量部未満だと、基材層の表面硬度が低下する傾向となる。より好ましくは、メタクリル樹脂(F)と弾性体(R)との合計100質量部に対して、メタクリル樹脂(F)の含有量が55~90質量部であり、弾性体(R)の含有量が45~10質量部である。さらに好ましくは、メタクリル樹脂(F)の含有量が70~90質量部であり、弾性体(R)の含有量が30~10質量部である。 When a base material layer is comprised from the (meth) acrylic-type resin composition containing a methacryl resin (F) and an elastic body (R), content of each component is a methacryl resin (F) and an elastic body (R). It is preferable that the content of the methacrylic resin (F) is 10 to 99 parts by mass and the content of the elastic body (R) is 90 to 1 part by mass with respect to 100 parts by mass in total. When the content of the methacrylic resin (F) is less than 10 parts by mass, the surface hardness of the base material layer tends to decrease. More preferably, the content of the methacrylic resin (F) is 55 to 90 parts by mass with respect to a total of 100 parts by mass of the methacrylic resin (F) and the elastic body (R), and the content of the elastic body (R) Is 45 to 10 parts by mass. More preferably, the content of the methacrylic resin (F) is 70 to 90 parts by mass, and the content of the elastic body (R) is 30 to 10 parts by mass.
 基材層を構成する非晶性樹脂は、110~160℃の範囲における任意の温度で弾性率が2~600MPaであることが好ましい。弾性率が2MPa未満だと真空成形時の伸びが不均一になる傾向となり、弾性率が600MPaより大きいと真空成形時に割れや破断が発生する傾向となる。なお、弾性率は[MPa]単位で表したときの少数点第一位を四捨五入した値である。 The amorphous resin constituting the base material layer preferably has an elastic modulus of 2 to 600 MPa at an arbitrary temperature in the range of 110 to 160 ° C. If the elastic modulus is less than 2 MPa, the elongation during vacuum forming tends to be non-uniform, and if the elastic modulus is greater than 600 MPa, cracking or fracture tends to occur during vacuum forming. The elastic modulus is a value obtained by rounding off the first decimal place when expressed in [MPa] units.
 基材層を構成する非晶性樹脂は各種の添加剤、例えば酸化防止剤、熱安定剤、滑剤、加工助剤、帯電防止剤、熱劣化防止剤、紫外線吸収剤、光安定剤、高分子加工助剤着色剤、耐衝撃助剤などを含有してもよい。 The amorphous resin constituting the base layer is various additives such as antioxidants, heat stabilizers, lubricants, processing aids, antistatic agents, heat deterioration inhibitors, ultraviolet absorbers, light stabilizers, polymers. A processing aid colorant, an impact resistance aid and the like may be contained.
 また、上記非晶性樹脂は他の重合体と混合して使用できる。係る他の重合体としては、例えばポリエチレン、ポリプロピレン(PP)、ポリブテン-1、ポリ-4-メチルペンテン-1、ポリノルボルネンなどのポリオレフィン樹脂;エチレン系アイオノマー;ポリスチレン、スチレン-無水マレイン酸共重合体、ハイインパクトポリスチレン、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)、アクリロニトリル-エチレン-スチレン共重合体、アクリロニトリル-アクリル酸エステル-スチレン共重合体樹脂、アクリロニトリル-塩素化ポリエチレン-スチレン共重合体、メタクリル酸メチル-ブタジエン-スチレン共重合体などのスチレン系樹脂;メチルメタクリレート-スチレン共重合体;ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレートなどのポリエステル樹脂;ナイロン6、ナイロン66、ポリアミドエラストマーなどのポリアミド;ポリカーボネート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレンービニルアルコール共重合体、ポリアセタール、ポリフッ化ビニリデン、ポリウレタン、変性ポリフェニレンエーテル、ポリフェニレンスルフィド、シリコーン変性樹脂;アクリルゴム、シリコーンゴム;スチレン-エチレン/プロピレン-スチレン共重合体、スチレン-エチレン/ブタジエン-スチレン共重合体、スチレン-イソプレン-スチレン共重合体などのスチレン系熱可塑性エラストマー;イソプレンゴム、エチレンプロピレンゴム、エチレンプロピレンジエンゴムなどのオレフィン系ゴムなどが挙げられる。 The amorphous resin can be used by mixing with other polymers. Examples of such other polymers include polyolefin resins such as polyethylene, polypropylene (PP), polybutene-1, poly-4-methylpentene-1, and polynorbornene; ethylene ionomers; polystyrene, styrene-maleic anhydride copolymers , High impact polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer (ABS), acrylonitrile-ethylene-styrene copolymer, acrylonitrile-acrylic ester-styrene copolymer resin, acrylonitrile-chlorinated polyethylene -Styrene resins such as styrene copolymers, methyl methacrylate-butadiene-styrene copolymers; methyl methacrylate-styrene copolymers; polyethylene terephthalate (PET), polybutyl Polyester resins such as terephthalate; polyamides such as nylon 6, nylon 66, polyamide elastomer; polycarbonate, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyacetal, polyvinylidene fluoride, polyurethane, modified polyphenylene Ether, polyphenylene sulfide, silicone modified resin; acrylic rubber, silicone rubber; styrene heat such as styrene-ethylene / propylene-styrene copolymer, styrene-ethylene / butadiene-styrene copolymer, styrene-isoprene-styrene copolymer Plastic elastomers; olefin rubbers such as isoprene rubber, ethylene propylene rubber, and ethylene propylene diene rubber.
 基材層を構成する非晶性樹脂を調製する方法は特に制限されないが、該非晶性樹脂を構成する各成分の分散性を高めるため、溶融混練して混合する方法が好ましい。混合操作は、例えばニーダールーダー、押出機、ミキシングロール、バンバリーミキサーなどの既知の混合または混練装置を使用でき、混練性、相溶性を向上させる観点から、二軸押出機を使用することが好ましい。混合・混練時の温度は使用する非晶性樹脂の溶融温度などに応じて適宜調節すればよく、通常110~300℃の範囲である。二軸押出機を使用し溶融混練する場合、着色抑制の観点から、ベントを使用し、減圧下で及び/または窒素雰囲気下で溶融混練することが好ましい。 The method for preparing the amorphous resin constituting the base material layer is not particularly limited, but a method of melt kneading and mixing is preferable in order to improve the dispersibility of each component constituting the amorphous resin. For the mixing operation, for example, a known mixing or kneading apparatus such as a kneader ruder, an extruder, a mixing roll, or a Banbury mixer can be used. From the viewpoint of improving kneadability and compatibility, it is preferable to use a twin screw extruder. The temperature at the time of mixing and kneading may be appropriately adjusted according to the melting temperature of the amorphous resin to be used, and is usually in the range of 110 to 300 ° C. When melt-kneading using a twin-screw extruder, it is preferable to use a vent and melt-knead under reduced pressure and / or in a nitrogen atmosphere from the viewpoint of suppressing coloration.
[その他の層]
 本発明の多層フィルムは、基材層及び/または熱可塑性重合体組成物からなる層に絵柄、文字、図形などの模様または色彩が印刷されていてもよい。模様は有彩色のものであっても無彩色のものであってもよい。印刷の方法としては、グラビア印刷、オフセット印刷、スクリーン印刷、転写印刷、インキジェット印刷など公知の印刷法が挙げられる。印刷においては、係る印刷方法で一般的に使用される、ポリビニル樹脂、ポリエステル樹脂、アクリル系樹脂、ポリビニルアセタール樹脂、セルロース樹脂などの樹脂をバインダーとして、顔料または染料を着色剤として含有する樹脂組成物を使用することが好ましい。
[Other layers]
In the multilayer film of the present invention, a pattern or color such as a picture, a character, or a figure may be printed on the base layer and / or the layer made of the thermoplastic polymer composition. The pattern may be chromatic or achromatic. Examples of the printing method include known printing methods such as gravure printing, offset printing, screen printing, transfer printing, and ink jet printing. In printing, a resin composition containing a resin such as a polyvinyl resin, a polyester resin, an acrylic resin, a polyvinyl acetal resin, or a cellulose resin as a binder and a pigment or a dye as a colorant, which is generally used in the printing method. Is preferably used.
 本発明の多層フィルムに用いられる基材層は、着色されていてもよい。着色法としては、前記非晶性樹脂自体に、顔料または染料を含有させ、フィルム化前の樹脂自体を着色する方法;非晶性樹脂フィルムを、染料が分散した液中に浸漬して着色させる染色法などが挙げられるが、特にこれらに限定されるものではない。 The base material layer used in the multilayer film of the present invention may be colored. As a coloring method, the amorphous resin itself contains a pigment or a dye, and the resin itself before being formed into a film is colored; the amorphous resin film is colored by immersing it in a liquid in which the dye is dispersed. Examples thereof include, but are not limited to, staining methods.
 本発明の多層フィルムは、基材層に金属または金属酸化物が蒸着されてもよい。係る金属または金属酸化物としてはスパッタや真空蒸着などに使用される金属または金属酸化物を特に制限なく使用でき、例えば金、銀、銅、アルミニウム、亜鉛、ニッケル、クロム、インジウムやこれらの酸化物などが挙げられる。また、これらの金属または金属酸化物は単独で使用してもよく、2以上の混合物として使用してもよい。基材層に金属または金属酸化物を蒸着する方法としては、蒸着やスパッタなどの真空成膜法や、電解メッキ、無電解メッキなどが挙げられる。 In the multilayer film of the present invention, a metal or metal oxide may be deposited on the base material layer. As the metal or metal oxide, any metal or metal oxide used for sputtering or vacuum deposition can be used without any particular limitation. For example, gold, silver, copper, aluminum, zinc, nickel, chromium, indium and oxides thereof Etc. Further, these metals or metal oxides may be used alone or as a mixture of two or more. Examples of the method for depositing metal or metal oxide on the base material layer include vacuum film formation methods such as deposition and sputtering, electrolytic plating, and electroless plating.
 本発明の多層フィルムの基材層側の表面は、鉛筆硬度でHBまたはそれよりも硬いことが好ましく、Hまたはそれよりも硬いことがより好ましい。鉛筆硬度がHBよりも硬いと多層フィルムが傷つき難く、意匠性の要求される成形品の表面の加飾兼保護フィルムとして好適に用いられる。 The surface of the multilayer film of the present invention on the base material layer side is preferably HB or higher in pencil hardness, more preferably H or higher. When the pencil hardness is higher than HB, the multilayer film is hardly damaged, and is suitably used as a decorative and protective film for the surface of a molded product that requires design properties.
 本発明の多層フィルムの全厚さは好ましくは20~1,000μmの範囲であり、より好ましくは50~500μmの範囲であり、さらに好ましくは100~400μmの範囲である。多層フィルムの厚さが20μm以上であれば製造が容易となり、耐衝撃性及び加熱時の反り低減に優れ、着色時に隠蔽性を有する。多層フィルムの厚さが1,000μm以下であれば、三次元被覆成形性がよくなる傾向となる。 The total thickness of the multilayer film of the present invention is preferably in the range of 20 to 1,000 μm, more preferably in the range of 50 to 500 μm, and still more preferably in the range of 100 to 400 μm. If the thickness of the multilayer film is 20 μm or more, the production becomes easy, it is excellent in impact resistance and warpage reduction during heating, and has a concealing property during coloring. If the thickness of the multilayer film is 1,000 μm or less, the three-dimensional coating moldability tends to be improved.
 本発明の多層フィルムにおいて、基材層の厚さは、500μm以下であることが好ましい。500μmより厚くなると、ラミネート性、ハンドリング性、切断性・打抜き性などの二次加工性が低下し、フィルムとしての使用が困難になるとともに、単位面積あたりの単価も増大し、経済的に不利であるため好ましくない。基材層の厚さとしては40~300μmがより好ましく、50~250μmが特に好ましい。 In the multilayer film of the present invention, the thickness of the base material layer is preferably 500 μm or less. If it is thicker than 500μm, the secondary processability such as laminating property, handling property, cutting property and punching property will deteriorate, making it difficult to use as a film and increasing the unit price per unit area, which is economically disadvantageous. This is not preferable. The thickness of the base material layer is more preferably 40 to 300 μm, particularly preferably 50 to 250 μm.
 熱可塑性重合体組成物からなる層の厚さ(x)に対する基材層の厚さ(y)の比(y/x)は、好ましくは0.2~5の範囲であり、より好ましくは0.5~4の範囲であり、さらに好ましくは0.8~3の範囲である。上記比(y/x)の値が0.2未満だと表面硬度が低くなる傾向となり、5よりも大きいと多層フィルムが破断しやすくなる傾向となり、4よりも大きいとより延伸性が低くなる傾向となる。 The ratio (y / x) of the thickness (y) of the base material layer to the thickness (x) of the layer made of the thermoplastic polymer composition is preferably in the range of 0.2 to 5, more preferably 0. The range is from 5 to 4, more preferably from 0.8 to 3. If the value of the ratio (y / x) is less than 0.2, the surface hardness tends to be low, and if it is larger than 5, the multilayer film tends to break, and if it is larger than 4, the stretchability is lowered. It becomes a trend.
[多層フィルムの製造方法]
 本発明の多層フィルムは、基材層と本発明の熱可塑性重合体組成物からなる層とを有するものであり、基材層の一方の面に前記熱可塑性重合体組成物からなる層を積層して得ることができる。
[Method for producing multilayer film]
The multilayer film of the present invention has a base material layer and a layer made of the thermoplastic polymer composition of the present invention, and a layer made of the thermoplastic polymer composition is laminated on one surface of the base material layer. Can be obtained.
 前記基材層の製造方法は特に制限はなく、例えば非晶性樹脂を用いる場合は、Tダイ法、インフレーション法、溶融流延法、カレンダー法等の公知の方法を用いて行うことができる。良好な表面平滑性、低ヘイズのフィルムが得られるという観点から、基材層を構成する非晶性樹脂の溶融混練物をTダイから溶融状態で押し出し、その両面を鏡面ロール表面または鏡面ベルト表面に接触させて成形する工程を含む方法が好ましい。この際に用いるロールまたはベルトは、いずれも金属製であることが好ましい。このように押し出された溶融混練物の両面を鏡面に接触させて製膜する場合には、フィルム両面を鏡面ロール若しくは鏡面ベルトで加圧し挟むことが好ましい。鏡面ロール若しくは鏡面ベルトによる挟み込み圧力は、高いほうが好ましく、線圧として10N/mm以上であることが好ましく、30N/mm以上であることがさらに好ましい。 The method for producing the substrate layer is not particularly limited. For example, when an amorphous resin is used, it can be performed using a known method such as a T-die method, an inflation method, a melt casting method, or a calendar method. From the viewpoint that a film with good surface smoothness and low haze can be obtained, the molten kneaded material of the amorphous resin constituting the base material layer is extruded in a molten state from a T-die, and both surfaces thereof are mirror roll surface or mirror belt surface A method including a step of forming the film by contacting the substrate is preferable. The roll or belt used at this time is preferably made of metal. When forming the film by bringing both sides of the extruded melt-kneaded material into contact with a mirror surface, it is preferable to press and sandwich both surfaces of the film with a mirror roll or a mirror belt. The pinching pressure by the mirror roll or the mirror belt is preferably high, and the linear pressure is preferably 10 N / mm or more, and more preferably 30 N / mm or more.
 なお、基材層は、延伸処理が施されたフィルムであってもよい。延伸処理によって、機械的強度が高まり、ひび割れし難くなる。延伸方法は特に限定されず、同時二軸延伸法、逐次二軸延伸法、チュブラー延伸法、圧延法などが挙げられる。    The base material layer may be a film that has been subjected to stretching treatment. The stretching process increases the mechanical strength and makes it difficult to crack. The stretching method is not particularly limited, and examples thereof include a simultaneous biaxial stretching method, a sequential biaxial stretching method, a tuber stretching method, and a rolling method. *
 上記のようにして得られた基材層に対する熱可塑性重合体組成物からなる層の積層は、基材層に前記熱可塑性重合体組成物の溶液を塗布する方法、基材層に前記熱可塑性重合体組成物からなるフィルムをラミネートする方法等を挙げることができる。前記熱可塑性重合体組成物からなるフィルムは、上記で例示した基材層の製造方法と同様にして得ることができる。
 また、基材層を構成する非晶性樹脂と熱可塑性重合体組成物とをTダイ法を用いた共押出しにより製造することもできる。特に、マルチマニホールドダイを用いた共押出し成形法が好ましい。
Lamination of the layer comprising the thermoplastic polymer composition to the base material layer obtained as described above is a method of applying a solution of the thermoplastic polymer composition to the base material layer, and the thermoplastic layer to the base material layer. Examples include a method of laminating a film made of a polymer composition. A film made of the thermoplastic polymer composition can be obtained in the same manner as in the method for producing a base material layer exemplified above.
Moreover, the amorphous resin and the thermoplastic polymer composition constituting the base material layer can be produced by co-extrusion using a T-die method. In particular, a co-extrusion method using a multi-manifold die is preferable.
[成形体]
 本発明の成形体は、本発明の多層フィルムまたは該多層フィルムからなる加飾フィルムを具備するものである。より好ましくは、本発明の多層フィルムが、熱可塑性樹脂、熱硬化性樹脂、木質基材または非木質繊維基材等の被着体の表面に設けられてなるものである。
[Molded body]
The molded body of the present invention comprises the multilayer film of the present invention or a decorative film made of the multilayer film. More preferably, the multilayer film of the present invention is provided on the surface of an adherend such as a thermoplastic resin, a thermosetting resin, a wooden substrate, or a non-wood fiber substrate.
 被着体として用いられる前記熱可塑性樹脂としては、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリアミド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、他の(メタ)アクリル樹脂、ABS(アクリロニトリル-ブタジエン-スチレン共重合)樹脂などが挙げられる。前記熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、メラミン樹脂などが挙げられる。また、成形体は、本発明の多層フィルムが、木製基材やケナフなどの非木質繊維の表面に設けられてなるものであってもよい。 Examples of the thermoplastic resin used as the adherend include polycarbonate resin, polyethylene terephthalate resin, polyamide resin, polyethylene resin, polypropylene resin, polystyrene resin, polyvinyl chloride resin, other (meth) acrylic resins, ABS (acrylonitrile-butadiene). -Styrene copolymerization) resin and the like. Examples of the thermosetting resin include an epoxy resin, a phenol resin, and a melamine resin. In addition, the molded body may be one in which the multilayer film of the present invention is provided on the surface of a non-wood fiber such as a wooden base material or kenaf.
 成形体の製法は、特に制限されない。例えば、本発明の多層フィルムを、熱可塑性樹脂、熱硬化性樹脂、木製基材及び非木質繊維基材等の被着体の表面に、加熱下で真空成形・圧空成形・圧縮成形することにより、本発明の成形体を得ることができる。成形体は、本発明の多層フィルムにおける基材層が、成形体の最表層に設けられており、それによって、表面平滑性、表面硬度、表面光沢などに優れる。中でも多様な被着体に精度よく賦形および接着できる点から真空成形及び/または圧空成形が好ましく、真空成形と圧空成形を組み合わせた三次元表面加飾成形(Three dimension Overlay Method:TOM成形)がより好ましい。多層フィルムをTOM成形するための真空成形装置は、例えば特開2002-067137号公報に記載の真空成形装置または特開2005-262502号公報に記載の被覆装置を好適に用いることができ、該真空成形装置または該被覆装置は多層フィルムおよび被着体を設置して閉塞し減圧することが可能なチャンバーボックスを備える。 The manufacturing method of the molded body is not particularly limited. For example, the multilayer film of the present invention is subjected to vacuum forming, air forming, and compression forming under heating on the surface of an adherend such as a thermoplastic resin, a thermosetting resin, a wooden base material, and a non-wood fiber base material. The molded product of the present invention can be obtained. In the molded body, the base material layer in the multilayer film of the present invention is provided on the outermost layer of the molded body, thereby being excellent in surface smoothness, surface hardness, surface gloss and the like. Among them, vacuum molding and / or pressure molding is preferable because it can be shaped and adhered to various adherends with high accuracy, and three-dimensional surface decoration molding (Three た dimension Overlay Method: TOM molding) is a combination of vacuum molding and pressure molding. More preferred. As a vacuum forming apparatus for TOM-forming a multilayer film, for example, a vacuum forming apparatus described in JP-A No. 2002-0667137 or a coating apparatus described in JP-A No. 2005-262502 can be suitably used. The molding apparatus or the coating apparatus includes a chamber box that can be closed and decompressed by installing a multilayer film and an adherend.
 TOM成形により成形体を製造する方法は、多層フィルムおよび被着体をチャンバーボックスに収容する工程;前記チャンバーボックス内を減圧する工程;前記多層フィルムで前記チャンバーボックス内を二分する工程;および前記被着体を有しない方のチャンバーボックス内の圧力を前記被着体を有する方のチャンバーボックス内の圧力よりも高くして前記被着体を前記多層フィルムで被覆する工程;を有する。なお、多層フィルムおよび被着体をチャンバーボックスに収容する工程において、多層フィルムでチャンバーボックス内を二分する工程を同時に実施してもよい。 A method for producing a molded body by TOM molding includes a step of accommodating a multilayer film and an adherend in a chamber box; a step of reducing the pressure in the chamber box; a step of dividing the interior of the chamber box by the multilayer film; Covering the adherend with the multilayer film by setting the pressure in the chamber box not having the adherend higher than the pressure in the chamber box having the adherend. In addition, in the process of accommodating a multilayer film and a to-be-adhered body in a chamber box, you may implement simultaneously the process of dividing the inside of a chamber box into a multilayer film.
 成形体の製法のうち、別の好ましい方法は、射出成形同時貼合法と一般に呼ばれている方法である。
 この射出成形同時貼合法は、本発明の多層フィルムを射出成形用雌雄金型間に挿入し、その金型に該フィルムの接着層側の面から溶融した熱可塑性樹脂を射出して、射出成形体を形成すると同時に、その成形体の表面に前記多層フィルムを貼合する方法である。
Another preferable method among the manufacturing methods of a molded object is the method generally called the injection molding simultaneous bonding method.
In this simultaneous injection molding method, the multilayer film of the present invention is inserted between male and female molds for injection molding, and a molten thermoplastic resin is injected into the mold from the surface on the adhesive layer side of the film. At the same time as forming the body, the multilayer film is bonded to the surface of the molded body.
 金型に挿入される多層フィルムは、平らなものそのままであってもよいし、真空成形、圧空成形等で予備成形して凹凸形状に賦形されたものであってもよい。
 多層フィルムの予備成形は、別個の成形機で行ってもよいし、射出成形同時貼合法に用いる射出成形機の金型内で予備成形を行ってもよい。
The multilayer film inserted into the mold may be a flat film as it is, or may be formed into a concavo-convex shape by preforming by vacuum forming, pressure forming or the like.
The preforming of the multilayer film may be performed by a separate molding machine, or may be preformed in a mold of an injection molding machine used for the injection molding simultaneous bonding method.
 本発明の熱可塑性重合体組成物からなる層を有する多層フィルム及び該多層フィルムを具備する成形体は、多層フィルムの良好な延伸性及び成形加工性、優れた両極性接着性及び表面平滑性を活かして、意匠性の要求される物品に適用することができる。例えば、広告塔、スタンド看板、袖看板、欄間看板、屋上看板等の看板部品;ショーケース、仕切板、店舗ディスプレイ等のディスプレイ部品;蛍光灯カバー、ムード照明カバー、ランプシェード、光天井、光壁、シャンデリア等の照明部品;家具、ペンダント、ミラー等のインテリア部品;ドア、ドーム、安全窓ガラス、間仕切り、階段腰板、バルコニー腰板、レジャー用建築物の屋根等の建築用部品、自動車内外装部材、バンパーなどの自動車外装部材等の輸送機関係部品;音響映像用銘板、ステレオカバー、自動販売機、携帯電話、パソコン等の電子機器部品;保育器、定規、文字盤、温室、大型水槽、箱水槽、浴室部材、時計パネル、バスタブ、サニタリー、デスクマット、遊技部品、玩具、壁紙;マーキングフィルム、各種家電製品の加飾用途に好適に用いられる。本発明の多層フィルムは上記特性を備えるため、特に加飾フィルムとして好適に用いることができる。 A multilayer film having a layer comprising the thermoplastic polymer composition of the present invention and a molded body comprising the multilayer film have good stretchability and moldability of the multilayer film, excellent ambipolar adhesion and surface smoothness. It can be applied to articles that require design properties. For example, billboard parts such as advertising towers, stand signboards, sleeve signboards, billboard signs, rooftop signboards; display parts such as showcases, partition plates, store displays; fluorescent lamp covers, mood lighting covers, lamp shades, light ceilings, light walls , Lighting parts such as chandeliers; interior parts such as furniture, pendants, mirrors; doors, domes, safety window glass, partitions, staircases, balconies, building parts such as roofs for leisure buildings, automobile interior and exterior components, Transport equipment-related parts such as automobile exterior parts such as bumpers; electronic equipment parts such as nameplates for audio images, stereo covers, vending machines, mobile phones, personal computers; incubators, rulers, dials, greenhouses, large tanks, box tanks , Bathroom parts, clock panels, bathtubs, sanitary, desk mats, game parts, toys, wallpaper; marking films, various home appliances Suitably used in decorative applications. Since the multilayer film of the present invention has the above characteristics, it can be suitably used particularly as a decorative film.
 以下、実施例などにより本発明をさらに詳細に説明するが、本発明はこれらの実施例に何ら限定されない。実施例及び比較例中の試験サンプルの作製及び各物性の測定または評価は、以下のようにして行い、結果を表にまとめた。 Hereinafter, the present invention will be described in more detail with reference to examples and the like, but the present invention is not limited to these examples. Preparation of test samples in Examples and Comparative Examples and measurement or evaluation of physical properties were performed as follows, and the results were summarized in a table.
[熱可塑性重合体組成物の表面平滑性]
 キャピラリーレオメーター(CAPIROGRAPH 1C,TOYOSEIKI社製)に断面が長方形(縦8mm×横0.5mm)のスリット形状キャピラリーを取り付け、250℃、ピストンスピード50mm/分の条件で、各実施例及び比較例で得られた熱可塑性重合体組成物を押し出し、フィルム状のストランドを得た。スタイラス形状測定器(Bruker社製Dektak―150)で先端半径12.5μmの針を用いて、上記で得られたストランド表面の算術平均荒さ(Ra)を測定した。Raが0.15μmより小さいと、表面平滑性に優れる。   
[Surface smoothness of thermoplastic polymer composition]
A capillary-shaped rheometer (CAPIROGRAPH 1C, manufactured by TOYOSEIKI) is fitted with a slit-shaped capillary having a rectangular cross section (length 8 mm x width 0.5 mm). The obtained thermoplastic polymer composition was extruded to obtain a film-like strand. The arithmetic average roughness (Ra) of the strand surface obtained above was measured with a stylus shape measuring instrument (Dektak-150 manufactured by Bruker) using a needle having a tip radius of 12.5 μm. When Ra is smaller than 0.15 μm, the surface smoothness is excellent.
[熱可塑性重合体組成物の接着強度(PMMA)]
 実施例及び比較例で得られた熱可塑性重合体組成物及び製造例5で得られたメタクリル樹脂組成物のペレットを、それぞれ圧縮成形機を用いて200℃ 、荷重50kgf/cmの条件下で2分間圧縮成形することで、熱可塑性重合体組成物からなるシート及びメタクリル樹脂組成物からなるシートを得た。150×150mmの熱可塑性重合体組成物からなるシート(縦150mm×横150mm×厚さ0.5mm)、ポリイミドフィルム(東レ・デュポン社製カプトンフィルム、縦75mm×横150mm×厚さ0.05mm)、メタクリル樹脂組成物からなるシート(縦150mm×横150mm×厚さ0.5mm)をこの順で重ね、内寸150mm×150mm、厚さ0.8mmの金属製スペーサーの中央部に配置した。この重ねたシートと金属製スペーサーをポリテトラフルオロエチレン製シートで挟み、さらに外側から金属板で挟み、圧縮成形機を用いて、130℃、荷重50kgf/cmで2分間圧縮成形することで、熱可塑性重合体組成物とメタクリル樹脂組成物の多層フィルムを得た。
 該多層フィルムを25mm幅に切断し、接着強度測定用試験片とし、熱可塑性重合体組成物とメタクリル樹脂組成物間の剥離強度をJIS K 6854-2に準じて、ピール試験機(島津製作所社製AGS-X)を使用して、剥離角度90°、引張速度300mm/分、環境温度23℃の条件で測定し、熱可塑性重合体組成物の接着強度(PMMA)とした。
[Adhesive strength of thermoplastic polymer composition (PMMA)]
The pellets of the thermoplastic polymer compositions obtained in Examples and Comparative Examples and the methacrylic resin composition obtained in Production Example 5 were respectively subjected to conditions of 200 ° C. and a load of 50 kgf / cm 2 using a compression molding machine. A sheet made of a thermoplastic polymer composition and a sheet made of a methacrylic resin composition were obtained by compression molding for 2 minutes. Sheet made of 150 × 150 mm thermoplastic polymer composition (length 150 mm × width 150 mm × thickness 0.5 mm), polyimide film (Kapton film manufactured by Toray DuPont, length 75 mm × width 150 mm × thickness 0.05 mm) Sheets made of a methacrylic resin composition (length 150 mm × width 150 mm × thickness 0.5 mm) were stacked in this order, and placed in the center of a metal spacer having an inner dimension of 150 mm × 150 mm and a thickness of 0.8 mm. By sandwiching this overlapped sheet and a metal spacer with a polytetrafluoroethylene sheet, further sandwiching with a metal plate from the outside, using a compression molding machine, compression molding is performed at 130 ° C. and a load of 50 kgf / cm 2 for 2 minutes. A multilayer film of a thermoplastic polymer composition and a methacrylic resin composition was obtained.
The multilayer film is cut to a width of 25 mm to form a test piece for measuring adhesive strength, and the peel strength between the thermoplastic polymer composition and the methacrylic resin composition is measured according to JIS K 6854-2 (Shimadzu Corporation). Using AGS-X), the measurement was carried out under the conditions of a peel angle of 90 °, a tensile speed of 300 mm / min, and an environmental temperature of 23 ° C., and was defined as the adhesive strength (PMMA) of the thermoplastic polymer composition.
[熱可塑性重合体組成物の接着強度(PP)]
 前述の熱可塑性重合体組成物の接着強度(PMMA)において、メタクリル樹脂組成物からなるシートをポリプロピレンシート(日本ポリプロ株式会社製のMA3、縦150mm×横150mm×厚さ0.4mm)に変更した以外は同様にして多層フィルムを作成し、熱可塑性重合体組成物とポリプロピレン間の剥離強度を測定し、熱可塑性重合体組成物の接着強度(PP)とした。
[Adhesive strength (PP) of thermoplastic polymer composition]
In the adhesive strength (PMMA) of the thermoplastic polymer composition described above, the sheet made of the methacrylic resin composition was changed to a polypropylene sheet (MA3 manufactured by Nippon Polypro Co., Ltd., 150 mm long × 150 mm wide × 0.4 mm thick). Except for the above, a multilayer film was prepared in the same manner, and the peel strength between the thermoplastic polymer composition and polypropylene was measured to obtain the adhesive strength (PP) of the thermoplastic polymer composition.
[成形体の表面平滑性評価]
 後述する実施例12及び比較例5で作製した多層フィルムを、真空圧空成形機(布施真空社製;NGF-0406-T)内に挿入し、板状ガラスに対して三次元表面加飾成形を行うことにより、評価用サンプルを作製し、成形体の表面性を評価した。評価はスタイラス形状測定器(Bruker社製Dektak―150)で先端半径12.5μmの針を用いて算術平均荒さ(Ra)を測定した。Raが0.15μmより小さいと、表面平滑性に優れる。
[Evaluation of surface smoothness of molded product]
The multilayer film produced in Example 12 and Comparative Example 5, which will be described later, is inserted into a vacuum / pressure forming machine (manufactured by Fuse Vacuum Co., Ltd .; NGF-0406-T), and three-dimensional surface decoration molding is performed on the sheet glass. By performing, the sample for evaluation was produced and the surface property of the molded object was evaluated. The evaluation was performed by measuring the arithmetic average roughness (Ra) with a stylus shape measuring instrument (Duktak-150 manufactured by Bruker) using a needle having a tip radius of 12.5 μm. When Ra is smaller than 0.15 μm, the surface smoothness is excellent.
[成形体における接着強度の評価]
 上述の真空圧空成形機の平面ステージ上に、ポリプロピレン樹脂(日本ポリプロ社製;MA03)からなるシート状の被着体(長さ150mm×幅25mm×厚さ0.3mm)を配置し、該ポリプロピレンシートの端部にポリイミドフィルム(東レ・デュポン社製カプトンフィルム、縦30mm×横30mm×厚さ0.125mm)を重ねて配置した状態で、実施例10と同様にして三次元表面加飾成形し、多層フィルムとポリプロピレンシートとが重なっていない部分を切除することにより試験片を作製した。得られた試験片の多層フィルム側をSUS板に強粘着テープで固定し、ピール試験機(島津製作所社製AGS-X)を使用して剥離角度90°、引張速度300mm/分、環境温度23℃の条件で、熱可塑性重合体組成物からなる層とポリプロピレンシートの間の剥離強度をJIS K 6854-2に準じて測定した。
[Evaluation of adhesive strength in compacts]
A sheet-like adherend (length 150 mm × width 25 mm × thickness 0.3 mm) made of polypropylene resin (manufactured by Nippon Polypro Co., Ltd .; MA03) is placed on the flat stage of the above-described vacuum / pressure forming machine, and the polypropylene Three-dimensional surface decorative molding was carried out in the same manner as in Example 10 with a polyimide film (Kapton film manufactured by Toray DuPont, length 30 mm x width 30 mm x thickness 0.125 mm) placed on the edge of the sheet. A test piece was prepared by excising a portion where the multilayer film and the polypropylene sheet did not overlap. The multi-layer film side of the obtained test piece was fixed to a SUS plate with a strong adhesive tape, and using a peel tester (AGS-X, manufactured by Shimadzu Corporation), a peeling angle of 90 °, a tensile speed of 300 mm / min, and an environmental temperature of 23 The peel strength between the layer made of the thermoplastic polymer composition and the polypropylene sheet was measured according to JIS K 6854-2 under the condition of ° C.
 なお、以下の実施例及び比較例で用いた各成分は以下の通りである。 In addition, each component used in the following Examples and Comparative Examples is as follows.
<製造例1>[熱可塑性エラストマー(A-1)の合成]
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン64L、開始剤としてsec-ブチルリチウム(10質量%シクロヘキサン溶液)0.20Lを仕込み、有機ルイス塩基としてテトラヒドロフラン0.46Lを仕込んだ。50℃に昇温した後、スチレン2.3Lを加えて3時間重合させ、引き続いてイソプレン23Lを加えて4時間重合を行い、さらにスチレン2.3Lを加えて3時間重合を行った。得られた反応液をメタノール80Lに注ぎ、析出した固体を濾別して50℃で20時間乾燥することにより、ポリスチレン-ポリイソプレン-ポリスチレンからなるトリブロック共重合体を得た。
 続いて、ポリスチレン-ポリイソプレン-ポリスチレンからなるトリブロック共重合体10kgをシクロヘキサン200Lに溶解し、水素添加触媒としてパラジウムカーボン(パラジウム担持量:5質量%)を該共重合体に対して5質量%添加し、水素圧力2MPa、150℃の条件で10時間反応を行った。放冷、放圧後、濾過によりパラジウムカーボンを除去し、濾液を濃縮し、さらに真空乾燥することにより、ポリスチレン-ポリイソプレン-ポリスチレンからなるトリブロック共重合体の水添物(以下、熱可塑性エラストマー(A-1)と称する)を得た。得られた熱可塑性エラストマー(A-1)の重量平均分子量は107,000、スチレン含有量は21質量%、水素添加率は85%、分子量分布は1.04、ポリイソプレンブロックに含まれる1,2-結合及び3,4-結合量の合計は60モル%であった。
<Production Example 1> [Synthesis of thermoplastic elastomer (A-1)]
A pressure-resistant container purged with nitrogen and dried was charged with 64 L of cyclohexane as a solvent, 0.20 L of sec-butyllithium (10 mass% cyclohexane solution) as an initiator, and 0.46 L of tetrahydrofuran as an organic Lewis base. After the temperature was raised to 50 ° C., 2.3 L of styrene was added for polymerization for 3 hours, then 23 L of isoprene was added for polymerization for 4 hours, and 2.3 L of styrene was further added for polymerization for 3 hours. The obtained reaction liquid was poured into 80 L of methanol, and the precipitated solid was separated by filtration and dried at 50 ° C. for 20 hours to obtain a triblock copolymer composed of polystyrene-polyisoprene-polystyrene.
Subsequently, 10 kg of a triblock copolymer composed of polystyrene-polyisoprene-polystyrene was dissolved in 200 L of cyclohexane, and palladium carbon (palladium supported amount: 5% by mass) as a hydrogenation catalyst was 5% by mass with respect to the copolymer. The reaction was carried out for 10 hours under the conditions of hydrogen pressure of 2 MPa and 150 ° C. After allowing to cool and release, palladium carbon is removed by filtration, the filtrate is concentrated, and further dried under vacuum to give a hydrogenated product of a triblock copolymer consisting of polystyrene-polyisoprene-polystyrene (hereinafter, thermoplastic elastomer). (Referred to as (A-1)). The resulting thermoplastic elastomer (A-1) has a weight average molecular weight of 107,000, a styrene content of 21% by mass, a hydrogenation rate of 85%, a molecular weight distribution of 1.04, and a polyisoprene block containing 1,1. The total amount of 2-bond and 3,4-bond was 60 mol%.
[ポリプロピレン系樹脂(B-1)]
 非極性ポリプロピレン系樹脂(B-1)として、プライムポリマー社製のJ229E(230℃、荷重2.16kg(21.18N)におけるMFRが50g/10分、融点144℃)を使用した。また、融点は10℃/分で昇温した際の示差走査熱量測定曲線の吸熱ピークから読み取った値である。
[Polypropylene resin (B-1)]
As the nonpolar polypropylene resin (B-1), J229E (230 ° C., MFR at a load of 2.16 kg (21.18 N) of 50 g / 10 min, melting point 144 ° C.) manufactured by Prime Polymer Co., Ltd. was used. Moreover, melting | fusing point is the value read from the endothermic peak of the differential scanning calorimetry curve at the time of heating up at 10 degree-C / min.
[ポリプロピレン系樹脂(B-2)]
 非極性ポリプロピレン系樹脂(B-2)として、日本ポリプロ社製のWFX4TA(230℃、荷重2.16kg(21.18N)におけるMFRが7g/10分、融点124℃)を使用した。また、融点は10℃/分で昇温した際の示差走査熱量測定曲線の吸熱ピークから読み取った値である。
[Polypropylene resin (B-2)]
As the nonpolar polypropylene resin (B-2), WFX4TA (230 ° C., MFR at a load of 2.16 kg (21.18 N), 7 g / 10 min, melting point 124 ° C.) manufactured by Nippon Polypro Co., Ltd. was used. Moreover, melting | fusing point is the value read from the endothermic peak of the differential scanning calorimetry curve at the time of heating up at 10 degree-C / min.
<製造例2>[極性基含有ポリプロピレン系樹脂(B-3)の合成]
 ポリプロピレン「プライムポリプロF327」(プライムポリマー社製)42g、無水マレイン酸160mg及び2,5-ジメチル-2,5-ジ(ターシャルブチルパーオキシ)ヘキサン42mgを、バッチミキサーを用いて180℃及びスクリュー回転数40rpmの条件下で溶融混練し、極性基含有ポリプロピレン系樹脂(B―3)を得た。得られた極性基含有ポリプロピレン系樹脂(B―3)のMFR[230℃、荷重2.16kg(21.18N)]は6g/10分、無水マレイン酸濃度は0.3%であり、融点は138℃であった。なお、該無水マレイン酸濃度は、得られた混練物を水酸化カリウムのメタノール溶液を用いて滴定して得られた値である。また、融点は10℃/分で昇温した際の示差走査熱量測定曲線の吸熱ピークから読み取った値である。
<Production Example 2> [Synthesis of polar group-containing polypropylene resin (B-3)]
42 g of polypropylene “Prime Polypro F327” (manufactured by Prime Polymer Co., Ltd.), 160 mg of maleic anhydride and 42 mg of 2,5-dimethyl-2,5-di (tertiarybutylperoxy) hexane, 180 ° C. and screw using a batch mixer It was melt-kneaded under the condition of a rotation speed of 40 rpm to obtain a polar group-containing polypropylene resin (B-3). MFR [230 ° C., load 2.16 kg (21.18N)] of the obtained polar group-containing polypropylene resin (B-3) was 6 g / 10 min, the maleic anhydride concentration was 0.3%, and the melting point was It was 138 ° C. The maleic anhydride concentration is a value obtained by titrating the obtained kneaded product with a methanol solution of potassium hydroxide. Moreover, melting | fusing point is the value read from the endothermic peak of the differential scanning calorimetry curve at the time of heating up at 10 degree-C / min.
<製造例3>[(メタ)アクリル系樹脂(C-1)の合成]
 メタクリル酸メチル95質量部、アクリル酸メチル5質量部からなる単量体混合物に重合開始剤(2,2’-アゾビス(2-メチルプロピオニトリル)、水素引抜能:1%、1時間半減期温度:83℃)0.1質量部及び連鎖移動剤(n-オクチルメルカプタン)0.28質量部を加え溶解させて原料液を得た。
 イオン交換水100質量部、硫酸ナトリウム0.03質量部及び懸濁分散剤0.45質量部を混ぜ合わせて混合液を得た。耐圧重合槽に、前記混合液420質量部と前記原料液210質量部を仕込み、窒素雰囲気下で撹拌しながら、温度を70℃にして重合反応を開始させた。重合反応開始後、3時間経過時に、温度を90℃に上げ、撹拌を引き続き1時間行って、ビーズ状共重合体が分散した液を得た。得られた共重合体分散液を適量のイオン交換水で洗浄し、バケット式遠心分離機により、ビーズ状共重合体を取り出し、80℃の熱風乾燥機で12時間乾燥し、ビーズ状の(メタ)アクリル系樹脂(C-1)を得た。得られた(メタ)アクリル系樹脂(C-1)の重量平均分子量は30,000、Tgは128℃であった。
<Production Example 3> [Synthesis of (Meth) acrylic resin (C-1)]
Polymerization initiator (2,2′-azobis (2-methylpropionitrile), hydrogen abstraction capacity: 1%, half-life for 1 hour, in a monomer mixture consisting of 95 parts by weight of methyl methacrylate and 5 parts by weight of methyl acrylate (Temperature: 83 ° C.) 0.1 part by mass and chain transfer agent (n-octyl mercaptan) 0.28 part by mass were added and dissolved to obtain a raw material solution.
100 parts by mass of ion-exchanged water, 0.03 parts by mass of sodium sulfate and 0.45 parts by mass of the suspension / dispersant were mixed to obtain a mixed solution. In a pressure-resistant polymerization tank, 420 parts by mass of the mixed liquid and 210 parts by mass of the raw material liquid were charged, and the polymerization reaction was started at a temperature of 70 ° C. while stirring in a nitrogen atmosphere. After 3 hours from the start of the polymerization reaction, the temperature was raised to 90 ° C. and stirring was continued for 1 hour to obtain a liquid in which the bead copolymer was dispersed. The obtained copolymer dispersion is washed with an appropriate amount of ion-exchanged water, the bead-like copolymer is taken out with a bucket-type centrifuge, and dried with a hot air dryer at 80 ° C. for 12 hours. ) Acrylic resin (C-1) was obtained. The obtained (meth) acrylic resin (C-1) had a weight average molecular weight of 30,000 and Tg of 128 ° C.
<製造例4>[アクリル系ブロック共重合体(G-1)の合成]
 内部を脱気し、窒素で置換した三口フラスコに、室温にて乾燥トルエン735g、ヘキサメチルトリエチレンテトラミン0.4g、及びイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウム20mmolを含有するトルエン溶液39.4gを加え、さらに、sec-ブチルリチウム1.17mmolを加えた。これにメタクリル酸メチル35.0gを加え、室温で1時間反応させることで、1つめのメタクリル酸エステル重合体ブロック(g1)(以下、「メタクリル酸メチル重合体ブロック(g1-1)」と称する)を形成した。反応液に含まれる重合体をサンプリングして重量平均分子量(以下、Mw(g1-1)と称する)を測定したところ、40,000であった。
<Production Example 4> [Synthesis of acrylic block copolymer (G-1)]
In a three-necked flask purged with nitrogen and purged with nitrogen, 735 g of dry toluene, 0.4 g of hexamethyltriethylenetetramine, and isobutylbis (2,6-di-t-butyl-4-methylphenoxy) aluminum at room temperature 39.4 g of a toluene solution containing 20 mmol was added, and 1.17 mmol of sec-butyllithium was further added. 35.0 g of methyl methacrylate was added to this and reacted at room temperature for 1 hour, whereby the first methacrylate polymer block (g1) (hereinafter referred to as “methyl methacrylate polymer block (g1-1)”). ) Was formed. The polymer contained in the reaction solution was sampled and the weight average molecular weight (hereinafter referred to as Mw (g1-1)) was measured, and it was 40,000.
 次いで、反応液を-25℃にし、アクリル酸n-ブチル24.5g及びアクリル酸ベンジル10.5gの混合液を0.5時間かけて滴下した。滴下直後、反応液に含まれる重合体をサンプリングして重量平均分子量を測定したところ、80,000であった。メタクリル酸メチル重合体ブロック(g1-1)の重量平均分子量は40,000であったので、アクリル酸n-ブチル及びアクリル酸ベンジルの共重合体からなるアクリル酸エステル重合体ブロック(g2)の重量平均分子量(Mw(g2))を40,000であると決定した。 Next, the reaction solution was brought to −25 ° C., and a mixed solution of 24.5 g of n-butyl acrylate and 10.5 g of benzyl acrylate was added dropwise over 0.5 hours. Immediately after the dropping, the polymer contained in the reaction solution was sampled and the weight average molecular weight was measured, and it was 80,000. Since the weight average molecular weight of the methyl methacrylate polymer block (g1-1) was 40,000, the weight of the acrylate polymer block (g2) comprising a copolymer of n-butyl acrylate and benzyl acrylate. The average molecular weight (Mw (g2)) was determined to be 40,000.
 続いて、メタクリル酸メチル35.0gを加え、反応液を室温に戻し、8時間攪拌することで、2つめのメタクリル酸エステル重合体ブロック(g1)(以下、「メタクリル酸メチル重合体ブロック(g1-2)」と称する)を形成した。その後、反応液にメタノール4gを添加して重合を停止させた後、反応液を大量のメタノールに注ぎ、トリブロック共重合体であるアクリル系ブロック共重合体(G-1)を析出させ、ろ過し、80℃にて、1torr(約133Pa)で、12時間乾燥して単離した。得られたアクリル系ブロック共重合体(G-1)の重量平均分子量Mw(G)は120,000であった。ジブロック共重合体の重量平均分子量は80,000であったので、メタクリル酸メチル重合体ブロック(g1-2)の重量平均分子量(Mw(g1-2)と称する)を40,000であると決定した。 Subsequently, 35.0 g of methyl methacrylate was added, the reaction solution was returned to room temperature, and stirred for 8 hours, whereby a second methacrylate polymer block (g1) (hereinafter, “methyl methacrylate polymer block (g1 -2) ”). Thereafter, 4 g of methanol was added to the reaction solution to stop the polymerization, and then the reaction solution was poured into a large amount of methanol to precipitate an acrylic block copolymer (G-1) as a triblock copolymer, followed by filtration. Then, it was isolated by drying at 80 ° C. and 1 torr (about 133 Pa) for 12 hours. The resulting acrylic block copolymer (G-1) had a weight average molecular weight Mw (G) of 120,000. Since the weight average molecular weight of the diblock copolymer was 80,000, the weight average molecular weight (referred to as Mw (g1-2)) of the methyl methacrylate polymer block (g1-2) was 40,000. Were determined.
<製造例5> [基材層]
 製造例4で得られたアクリル系ブロック共重合体(G-1)20質量部と、製造例2で得られた(メタ)アクリル系樹脂(C-1)80質量部とを、二軸押出機(東芝機械社製TEM-28)を用いて230℃で溶融混練した後、ストランド状に押出し、切断することによって、メタクリル樹脂組成物のペレットを製造した。
<Production Example 5> [Base material layer]
Biaxial extrusion of 20 parts by mass of the acrylic block copolymer (G-1) obtained in Production Example 4 and 80 parts by mass of the (meth) acrylic resin (C-1) obtained in Production Example 2 A methacrylic resin composition pellet was produced by melt kneading at 230 ° C. using a machine (TEM-28 manufactured by Toshiba Machine Co., Ltd.), extruding into a strand, and cutting.
<実施例1>
 熱可塑性エラストマー(A-1)、ポリプロピレン系樹脂(B-1)及び(メタ)アクリル系樹脂(C-1)を、表1に示す割合で二軸押出機(KRUPP WERNER&PFLEIDERER製ZSK-25)に投入し、225℃、250rpmで溶融混練した後、ストランド状に押出し、切断することによって、熱可塑性重合体組成物のペレットを得た。
 得られた熱可塑性重合体組成物の表面平滑性、接着強度(PMMA、PP)を上述の方法により評価した。結果を表1に示す。
<Example 1>
Thermoplastic elastomer (A-1), polypropylene resin (B-1), and (meth) acrylic resin (C-1) are added to a twin screw extruder (ZSK-25 manufactured by KRUPP WERNER & PFLIDEERER) at the ratio shown in Table 1. The mixture was melted and kneaded at 225 ° C. and 250 rpm, then extruded into strands and cut to obtain thermoplastic polymer composition pellets.
The surface smoothness and adhesive strength (PMMA, PP) of the obtained thermoplastic polymer composition were evaluated by the methods described above. The results are shown in Table 1.
<実施例2~11、比較例1~4>
 熱可塑性エラストマー(A-1)、ポリプロピレン系樹脂(B-1)~(B-3)及び(メタ)アクリル系樹脂(C-1)を、表1に示す割合で混合したこと以外は実施例1と同様の方法で、熱可塑性重合体組成物のペレットを得た。得られた熱可塑性重合体組成物の表面平滑性、接着強度(PMMA、PP)を上述の方法により評価した。結果を表1に示す。
<Examples 2 to 11 and Comparative Examples 1 to 4>
Examples except that thermoplastic elastomer (A-1), polypropylene resins (B-1) to (B-3) and (meth) acrylic resin (C-1) were mixed in the proportions shown in Table 1. 1 was used to obtain pellets of a thermoplastic polymer composition. The surface smoothness and adhesive strength (PMMA, PP) of the obtained thermoplastic polymer composition were evaluated by the methods described above. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<実施例12>
 実施例1で得られた熱可塑性重合体組成物のペレット及び製造例5で得られたメタクリル樹脂組成物のペレットをそれぞれ単軸押出機(G.M.ENGINEERING社製VGM25-28EX)のホッパーに投入し、マルチマニホールドダイを用いて240℃、流量5kg/hで共押出し、幅30cm、厚み350μmの多層フィルムを得た。基材層(メタクリル樹脂組成物層)の厚さは230μm、接着層(熱可塑性重合体組成物層)の厚さは120μmであった。
 続いて、得られた多層フィルムを用いて成形体を製造した。すなわち、チャンバーボックス(CB1)とチャンバーボックス(CB2)を閉めることでチャンバーボックス(CB)を形成する真空圧空成形機(布施真空社製;NGF-0406-T)を使用して三次元表面加飾成形を行った。被着体として、ポリプロピレン樹脂(日本ポリプロ社製;MA03)からなるシート状の被着体(長さ150mm×幅25mm×厚さ0.3mm)を用いた。成形機のチャンバーボックス(CB2)に、多層フィルムの接着層が被着体に面するように多層フィルム及び被着体を入れ、該多層フィルムがチャンバーボックス(CB)を二分するようにチャンバーボックス(CB1)及びチャンバーボックス(CB2)で該多層フィルムを挟み、チャンバーボックス(CB1)及びチャンバーボックス(CB2)を閉めてチャンバーボックス(CB)を形成した。その後、90秒間でチャンバーボックス(CB)内を0.5kPaに減圧した。このとき減圧度の非平衡及び多層フィルムの自重によって多層フィルムがたわむため、チャンバーボックス(CB1)及びチャンバーボックス(CB2)内の圧力を適宜調整して多層フィルムを平行に保った。減圧と並行して赤外線加熱装置により多層フィルムを120秒間加熱し、多層フィルムの温度が130℃に到達したとき速やかにチャンバーボックス(CB1)内を大気圧に戻すことで被着体を多層フィルムで被覆し、多層フィルムが無延伸で被着体に接着された三次元表面加飾成形体を成形した。なお、多層フィルムの温度は放射温度計で測定した。その後、チャンバーボックス(CB)を開放し、成形体をチャンバーボックス(CB2)から取り出した。得られた三次元表面加飾成形体の表面性と接着強度を上述の方法で評価した。結果を表2に示す。
<Example 12>
The pellets of the thermoplastic polymer composition obtained in Example 1 and the pellets of the methacrylic resin composition obtained in Production Example 5 were respectively placed in the hopper of a single screw extruder (VGM25-28EX manufactured by GM ENGINEERING). Then, it was coextruded at 240 ° C. and a flow rate of 5 kg / h using a multi-manifold die to obtain a multilayer film having a width of 30 cm and a thickness of 350 μm. The thickness of the base material layer (methacrylic resin composition layer) was 230 μm, and the thickness of the adhesive layer (thermoplastic polymer composition layer) was 120 μm.
Then, the molded object was manufactured using the obtained multilayer film. That is, three-dimensional surface decoration using a vacuum / pressure forming machine (manufactured by Fuse Vacuum Co., Ltd .; NGF-0406-T) that forms the chamber box (CB) by closing the chamber box (CB1) and the chamber box (CB2). Molding was performed. As the adherend, a sheet-like adherend (length 150 mm × width 25 mm × thickness 0.3 mm) made of polypropylene resin (manufactured by Nippon Polypro Co., Ltd .; MA03) was used. The multilayer box and the adherend are placed in the chamber box (CB2) of the molding machine so that the adhesive layer of the multilayer film faces the adherend, and the chamber box (CB) is divided into two parts by the multilayer film. The multilayer film was sandwiched between CB1) and a chamber box (CB2), and the chamber box (CB1) and the chamber box (CB2) were closed to form a chamber box (CB). Thereafter, the pressure in the chamber box (CB) was reduced to 0.5 kPa in 90 seconds. At this time, since the multilayer film was bent due to non-equilibrium of the degree of vacuum and the self-weight of the multilayer film, the pressures in the chamber box (CB1) and the chamber box (CB2) were appropriately adjusted to keep the multilayer film parallel. In parallel with decompression, the multilayer film is heated by an infrared heating device for 120 seconds, and when the temperature of the multilayer film reaches 130 ° C., the chamber box (CB1) is quickly returned to atmospheric pressure so that the adherend is coated with the multilayer film. A three-dimensional surface-decorated molded body in which the multilayer film was unstretched and adhered to the adherend was molded. The temperature of the multilayer film was measured with a radiation thermometer. Thereafter, the chamber box (CB) was opened, and the molded body was taken out from the chamber box (CB2). The surface property and adhesive strength of the obtained three-dimensional surface decorative molded body were evaluated by the above-described methods. The results are shown in Table 2.
<比較例5>
 熱可塑性重合体組成物として比較例1で得られた熱可塑性重合体組成物のペレットを用いた以外は実施例12と同様にして、三次元表面加飾成形体を作製した。得られた成形体の表面性と接着強度を上述の方法で評価した。結果を表2に示す。
<Comparative Example 5>
A three-dimensional surface-decorated molded article was produced in the same manner as in Example 12, except that the thermoplastic polymer composition pellets obtained in Comparative Example 1 were used as the thermoplastic polymer composition. The surface property and adhesive strength of the obtained molded body were evaluated by the above-described methods. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の熱可塑性重合体組成物からなる層を有する多層フィルムの被着体に対する接着強度が充分な大きさになるためには、熱可塑性重合体組成物の接着強度(PP)及び接着強度(PMMA)が15N/25mmより大きくなる必要がある。実施例1の熱可塑性重合体組成物は、フィルム状ストランドの表面平滑性に優れ、メタクリル樹脂組成物及びポリプロピレンに対して高い接着強度を示し、両極性接着性に優れていた。また、実施例1の熱可塑性重合体組成物を用いた実施例12の成形体は、実施例1の熱可塑性重合体組成物が表面平滑性に優れることから、得られた成形体の表面平滑性も優れていた。また、被着体に対する接着強度も優れていた。これにより、本発明の熱可塑性重合体組成物は、三次元表面加飾成形に好適であることが明らかとなった。一方、(メタ)アクリル系樹脂を含まず、極性基変性されたポリプロピレンを含む比較例1の熱可塑性重合体組成物は、実施例1と同様に、メタクリル樹脂組成物及びポリプロピレンに対して優れた接着強度を示したが、フィルム状ストランドの表面平滑性が悪かった。それゆえ、比較例1の熱可塑性重合体組成物を用いた比較例5では、被着体に対する接着強度は優れるものの、得られた成形体の表面平滑性が劣っていた。 In order for the multilayer film having a layer made of the thermoplastic polymer composition of the present invention to have a sufficient adhesive strength to the adherend, the adhesive strength (PP) and adhesive strength (PP) of the thermoplastic polymer composition ( PMMA) needs to be larger than 15 N / 25 mm. The thermoplastic polymer composition of Example 1 was excellent in the surface smoothness of the film-like strand, showed high adhesive strength to the methacrylic resin composition and polypropylene, and was excellent in bipolar adhesion. Moreover, since the thermoplastic polymer composition of Example 1 is excellent in surface smoothness, the molded product of Example 12 using the thermoplastic polymer composition of Example 1 has surface smoothness of the obtained molded product. The property was also excellent. Moreover, the adhesive strength to the adherend was also excellent. Thereby, it became clear that the thermoplastic polymer composition of the present invention is suitable for three-dimensional surface decoration molding. On the other hand, the thermoplastic polymer composition of Comparative Example 1 that does not contain a (meth) acrylic resin and contains a polar group-modified polypropylene was superior to the methacrylic resin composition and polypropylene as in Example 1. Although the adhesive strength was shown, the surface smoothness of the film-like strand was poor. Therefore, in Comparative Example 5 using the thermoplastic polymer composition of Comparative Example 1, although the adhesive strength to the adherend was excellent, the surface smoothness of the obtained molded product was inferior.
 実施例1と比べてポリプロピレン系樹脂(B)及び(メタ)アクリル系樹脂(C)の含有量を変更した実施例2、3の熱可塑性重合体組成物は、実施例1と同様にフィルム状ストランドの表面平滑性に優れ、メタクリル樹脂組成物及びポリプロピレンに対して高い接着強度を示した。一方、ポリプロピレン系樹脂(B-3)の含有量が多い比較例2、3は、フィルム状ストランドの表面平滑性が劣り、(メタ)アクリル系樹脂(C)の配合量が多い比較例4では、(メタ)アクリル樹脂組成物及びポリプロピレンに対する接着強度が不足していた。
 また、実施例1~3と異なる種類のポリプロピレン系樹脂(B)を用いた実施例4~7及び11の熱可塑性重合体組成物は、特にメタクリル樹脂組成物及びポリプロピレンに対する接着強度が優れていた。2種類のポリプロピレン系樹脂(B)を用いた実施例8の熱可塑性重合体組成物は、表面平滑性及び接着強度の両方に優れていた。また、(メタ)アクリル系樹脂(C)を含有しない実施例9、10の熱可塑性重合体組成物は、(メタ)アクリル樹脂組成物及びポリプロピレンに対する接着強度が優れていた。
The thermoplastic polymer compositions of Examples 2 and 3 in which the contents of the polypropylene resin (B) and the (meth) acrylic resin (C) are changed as compared with Example 1 are film-like as in Example 1. It was excellent in the surface smoothness of the strand and showed high adhesive strength to the methacrylic resin composition and polypropylene. On the other hand, Comparative Examples 2 and 3 with a high content of polypropylene resin (B-3) have poor surface smoothness of the film-like strands, and Comparative Example 4 with a large amount of (meth) acrylic resin (C). The adhesive strength to (meth) acrylic resin composition and polypropylene was insufficient.
In addition, the thermoplastic polymer compositions of Examples 4 to 7 and 11 using different types of polypropylene resins (B) from Examples 1 to 3 were particularly excellent in adhesive strength to methacrylic resin compositions and polypropylene. . The thermoplastic polymer composition of Example 8 using two types of polypropylene resins (B) was excellent in both surface smoothness and adhesive strength. In addition, the thermoplastic polymer compositions of Examples 9 and 10 that did not contain the (meth) acrylic resin (C) had excellent adhesion strength to the (meth) acrylic resin composition and polypropylene.

Claims (9)

  1.  芳香族ビニル化合物単位を含有する重合体ブロック(S)と共役ジエン化合物単位を含有する重合体ブロック(D)とを含有するブロック共重合体またはその水素添加物である熱可塑性エラストマー(A)100質量部に対して、少なくとも一種のポリプロピレン系樹脂(B)1~50質量部を含有する熱可塑性重合体組成物であって、前記熱可塑性重合体組成物を250℃、50mm/分の条件でキャピラリーレオメーターにより押出しして得られた、断面が長方形(縦8mm×横0.5mm)であるフィルム表面を、下記方法に従って測定したフィルムの表面粗さ(Ra)が0.15μm以下であることを特徴とする熱可塑性重合体組成物。
     表面粗さ測定方法:スタイラス形状測定器で先端半径12.5μmの針を用いて算術平均荒さ(Ra)を測定する方法。
    Thermoplastic elastomer (A) 100 which is a block copolymer containing a polymer block (S) containing an aromatic vinyl compound unit and a polymer block (D) containing a conjugated diene compound unit or a hydrogenated product thereof A thermoplastic polymer composition containing 1 to 50 parts by mass of at least one polypropylene-based resin (B) with respect to parts by mass, wherein the thermoplastic polymer composition is subjected to conditions of 250 ° C. and 50 mm / min. The film surface roughness (Ra) measured by the following method on a film surface having a rectangular cross section (length 8 mm × width 0.5 mm) obtained by extrusion with a capillary rheometer is 0.15 μm or less. A thermoplastic polymer composition characterized by the above.
    Surface roughness measuring method: a method of measuring arithmetic average roughness (Ra) with a stylus shape measuring instrument using a needle having a tip radius of 12.5 μm.
  2.  前記重合体ブロック(D)を構成する共役ジエン化合物が、ブタジエン、イソプレン、またはブタジエン及びイソプレンであり、前記重合体ブロック(D)中の1,2-結合量及び3,4-結合量の合計が40モル%以上である、請求項1に記載の熱可塑性重合体組成物。 The conjugated diene compound constituting the polymer block (D) is butadiene, isoprene, or butadiene and isoprene, and the total of 1,2-bond amount and 3,4-bond amount in the polymer block (D) The thermoplastic polymer composition according to claim 1, wherein is 40 mol% or more.
  3.  前記ポリプロピレン系樹脂(B)が非極性ポリプロピレン系樹脂である、請求項1または2に記載の熱可塑性重合体組成物。 The thermoplastic polymer composition according to claim 1 or 2, wherein the polypropylene resin (B) is a nonpolar polypropylene resin.
  4.  前記熱可塑性重合体組成物が、前記熱可塑性エラストマー(A)100質量部に対して、さらに(メタ)アクリル系樹脂(C)を1~25質量部含んでいることを特徴とする、請求項1~3のいずれかに記載の熱可塑性重合体組成物。 The thermoplastic polymer composition further comprises 1 to 25 parts by mass of (meth) acrylic resin (C) with respect to 100 parts by mass of the thermoplastic elastomer (A). The thermoplastic polymer composition according to any one of 1 to 3.
  5.  前記(メタ)アクリル系樹脂(C)がメタクリル酸メチルに由来する構造単位を80質量%以上含有する、請求項4に記載の熱可塑性重合体組成物。 The thermoplastic polymer composition according to claim 4, wherein the (meth) acrylic resin (C) contains 80% by mass or more of a structural unit derived from methyl methacrylate.
  6.  基材層及び請求項1~5のいずれかに記載の熱可塑性重合体組成物からなる層を少なくとも有する多層フィルム。 A multilayer film having at least a base layer and a layer comprising the thermoplastic polymer composition according to any one of claims 1 to 5.
  7.  前記基材層が非晶性樹脂からなる、請求項6に記載の多層フィルム。 The multilayer film according to claim 6, wherein the base material layer is made of an amorphous resin.
  8.  請求項6または7に記載の多層フィルムからなる加飾フィルム。 A decorative film comprising the multilayer film according to claim 6 or 7.
  9.  請求項6若しくは7に記載の多層フィルムまたは請求項8に記載の加飾フィルムを具備する成形体。 A molded body comprising the multilayer film according to claim 6 or 7, or the decorative film according to claim 8.
PCT/JP2017/021698 2016-06-13 2017-06-12 Thermoplastic polymer composition, multilayer film using said composition, and molded article WO2017217381A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018523906A JP7030691B2 (en) 2016-06-13 2017-06-12 Thermoplastic polymer composition, multilayer film and molded product using the composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-117117 2016-06-13
JP2016117117 2016-06-13

Publications (1)

Publication Number Publication Date
WO2017217381A1 true WO2017217381A1 (en) 2017-12-21

Family

ID=60664035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021698 WO2017217381A1 (en) 2016-06-13 2017-06-12 Thermoplastic polymer composition, multilayer film using said composition, and molded article

Country Status (3)

Country Link
JP (1) JP7030691B2 (en)
TW (1) TW201811898A (en)
WO (1) WO2017217381A1 (en)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034834A (en) * 1983-08-05 1985-02-22 Sekisui Seikei Kogyo Kk Preparation of polypropylene-laminate decorative sheet
JPH02252745A (en) * 1989-03-28 1990-10-11 Ube Ind Ltd Noncrystalline polyolefin composition and adhesive composition prepared therefrom
JPH0352980A (en) * 1989-07-20 1991-03-07 Mitsui Toatsu Chem Inc Adhesive for laminated product
JPH08157681A (en) * 1994-12-09 1996-06-18 Kuraray Co Ltd Surface protecting film
JPH10306196A (en) * 1997-03-06 1998-11-17 Kuraray Co Ltd Thermoplastic polymer composition
JP2003312718A (en) * 2002-04-19 2003-11-06 Dainippon Printing Co Ltd Package
WO2004003027A1 (en) * 2002-06-27 2004-01-08 Asahi Kasei Chemicals Corporation Hydrogenated copolymer and composition thereof
WO2009151029A1 (en) * 2008-06-09 2009-12-17 Jsr株式会社 Sealing material and solar battery module wherein same is used
JP2009299022A (en) * 2008-04-23 2009-12-24 Toyobo Co Ltd Pressure-sensitive adhesive film roll
JP2010247513A (en) * 2009-03-25 2010-11-04 Sekisui Chem Co Ltd Surface protective film
JP2012107107A (en) * 2010-11-17 2012-06-07 Aron Kasei Co Ltd Composition of film for sealing solar cell
JP2012190512A (en) * 2011-03-11 2012-10-04 Bridgestone Corp Disk stopper
JP2013018817A (en) * 2011-07-07 2013-01-31 Asahi Kasei Chemicals Corp Thermoplastic elastomer composition, molded body thereof, and composite molded product thereof
WO2013105392A1 (en) * 2012-01-11 2013-07-18 株式会社クラレ Thermoplastic polymer composition and molded article
JP2013226791A (en) * 2012-03-28 2013-11-07 Dainippon Printing Co Ltd Decorative sheet and decorative board using the decorative sheet
WO2016031550A1 (en) * 2014-08-26 2016-03-03 株式会社クラレ Thermoplastic polymer composition, and moudled article
WO2016136760A1 (en) * 2015-02-24 2016-09-01 株式会社クラレ Hydrogenated block copolymer, resin composition, pressure-sensitive adhesive, adhesive, molded object, liquid-packaging container, medical tool, medical tube, corner member for weather seal, and weather seal
WO2017043532A1 (en) * 2015-09-09 2017-03-16 旭化成株式会社 Hydrogenated block copolymer, polypropylene resin composition, and molded article

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6413707B2 (en) * 2014-02-28 2018-10-31 株式会社三洋物産 Game machine

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034834A (en) * 1983-08-05 1985-02-22 Sekisui Seikei Kogyo Kk Preparation of polypropylene-laminate decorative sheet
JPH02252745A (en) * 1989-03-28 1990-10-11 Ube Ind Ltd Noncrystalline polyolefin composition and adhesive composition prepared therefrom
JPH0352980A (en) * 1989-07-20 1991-03-07 Mitsui Toatsu Chem Inc Adhesive for laminated product
JPH08157681A (en) * 1994-12-09 1996-06-18 Kuraray Co Ltd Surface protecting film
JPH10306196A (en) * 1997-03-06 1998-11-17 Kuraray Co Ltd Thermoplastic polymer composition
JP2003312718A (en) * 2002-04-19 2003-11-06 Dainippon Printing Co Ltd Package
WO2004003027A1 (en) * 2002-06-27 2004-01-08 Asahi Kasei Chemicals Corporation Hydrogenated copolymer and composition thereof
JP2009299022A (en) * 2008-04-23 2009-12-24 Toyobo Co Ltd Pressure-sensitive adhesive film roll
WO2009151029A1 (en) * 2008-06-09 2009-12-17 Jsr株式会社 Sealing material and solar battery module wherein same is used
JP2010247513A (en) * 2009-03-25 2010-11-04 Sekisui Chem Co Ltd Surface protective film
JP2012107107A (en) * 2010-11-17 2012-06-07 Aron Kasei Co Ltd Composition of film for sealing solar cell
JP2012190512A (en) * 2011-03-11 2012-10-04 Bridgestone Corp Disk stopper
JP2013018817A (en) * 2011-07-07 2013-01-31 Asahi Kasei Chemicals Corp Thermoplastic elastomer composition, molded body thereof, and composite molded product thereof
WO2013105392A1 (en) * 2012-01-11 2013-07-18 株式会社クラレ Thermoplastic polymer composition and molded article
JP2013226791A (en) * 2012-03-28 2013-11-07 Dainippon Printing Co Ltd Decorative sheet and decorative board using the decorative sheet
WO2016031550A1 (en) * 2014-08-26 2016-03-03 株式会社クラレ Thermoplastic polymer composition, and moudled article
WO2016136760A1 (en) * 2015-02-24 2016-09-01 株式会社クラレ Hydrogenated block copolymer, resin composition, pressure-sensitive adhesive, adhesive, molded object, liquid-packaging container, medical tool, medical tube, corner member for weather seal, and weather seal
WO2017043532A1 (en) * 2015-09-09 2017-03-16 旭化成株式会社 Hydrogenated block copolymer, polypropylene resin composition, and molded article

Also Published As

Publication number Publication date
JPWO2017217381A1 (en) 2019-04-11
TW201811898A (en) 2018-04-01
JP7030691B2 (en) 2022-03-07

Similar Documents

Publication Publication Date Title
EP3251840B1 (en) Multilayer film
JP6912461B2 (en) Multilayer film
JP6934864B2 (en) Laminate
CN110719843B (en) Multilayer film and method for producing same
JP2018020487A (en) Multilayer film and molded body
JP7293199B2 (en) Multilayer film and molded article provided with same
JP2018150447A (en) Multilayered film and molding
KR102477318B1 (en) Multi-layer film and molded article having the same
JP7030691B2 (en) Thermoplastic polymer composition, multilayer film and molded product using the composition
JP2018016698A (en) Multilayer film and molded body
JP7322134B2 (en) ELASTOMER RESIN COMPOSITION, ADHESIVE FILM AND METHOD FOR MANUFACTURING SAME, FILM, AND MOLDED PRODUCT
JPWO2019039550A1 (en) Laminated body and manufacturing method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018523906

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813277

Country of ref document: EP

Kind code of ref document: A1