WO2017217266A1 - グラフェン積層体とその製造方法 - Google Patents

グラフェン積層体とその製造方法 Download PDF

Info

Publication number
WO2017217266A1
WO2017217266A1 PCT/JP2017/020738 JP2017020738W WO2017217266A1 WO 2017217266 A1 WO2017217266 A1 WO 2017217266A1 JP 2017020738 W JP2017020738 W JP 2017020738W WO 2017217266 A1 WO2017217266 A1 WO 2017217266A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
graphene oxide
containing layer
layer
sheet
Prior art date
Application number
PCT/JP2017/020738
Other languages
English (en)
French (fr)
Inventor
祥 大澤
幸仁 中澤
北 弘志
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2017217266A1 publication Critical patent/WO2017217266A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide

Definitions

  • the present invention relates to a graphene laminate and a method for producing the same, and more particularly to a graphene laminate exhibiting good thermal conductivity suitable for a thermal diffusion sheet and an inexpensive method for producing the same.
  • CPU central processing unit
  • Conduction is a phenomenon in which heat is transmitted through a substance
  • convection is a phenomenon in which heat is transmitted by a liquid or gas flow
  • radiation is a phenomenon in which heat is transmitted by radiating electromagnetic waves from an object.
  • An example of a heat radiating member using convection is a heat pipe.
  • the heat pipe has a liquid inside, and a portion close to the heat generating portion becomes high temperature, the liquid inside boils, cools and condenses on the opposite side, and circulates to radiate heat.
  • a member that dissipates heat generated by the CPU or the like in the in-plane direction using a sheet-like member is called a heat diffusion sheet.
  • This thermal diffusion sheet is a member having a relatively high thermal conductivity. If the thickness is about several tens of ⁇ m, the thermal diffusion sheet can be introduced into a thin device such as a smartphone, and a local temperature due to heat generated by the CPU. The rise can be suppressed by dissipating heat.
  • the heat radiating member used for the heat diffusion sheet has a high thermal conductivity of several hundred W / (m ⁇ K) or more, and the thermal conductivity is 236 W / (m ⁇ K), 401 W /, respectively.
  • metal foils such as (m ⁇ K) aluminum foils and copper foils, and graphite sheets and the like which are several hundred W / (m ⁇ K) up to about 2000 W / (m ⁇ K).
  • the carriers responsible for heat transfer of the metal foil and graphite sheet are mainly free electrons and phonons derived from lattice vibration.
  • the high thermal conductivity of the metal foil is derived from the free electrons of the metal.
  • phonons that is, lattice vibrations, are the main carriers of heat transfer.
  • graphite a relatively light element such as carbon is strongly bound by a covalent bond in the plane and in a two-dimensional direction, so that the lattice vibration is transmitted quickly and the thermal conductivity in the sheet plane is high.
  • the main heat conduction carriers of the metal foil and the graphite sheet are different between free electrons and phonons, but both materials are electrically conductive.
  • thermal conductivity and electrical conductivity are correlated, and naturally it has electrical conductivity.
  • the thermal conductivity of graphite sheets due to phonons increases as the graphite covalent bond crystal increases.
  • the larger the graphite covalent bond crystal the larger the ⁇ -conjugated system of graphite, resulting in electrical conductivity due to ⁇ electrons. Becomes a sheet having electrical conductivity.
  • heat treatment near 3000 ° C requires a large amount of electric power, and it requires a method that requires high energy that cannot be said to be simple because it requires deterioration of heaters and heat insulating materials, construction of cooling facilities, and safety measures. is there.
  • the heat conductive sheet required in recent years has a structure in which an insulating layer is pasted together in a later step because electrical conductivity is generated in a sheet that requires high energy, which is not simple because of a higher heat conductive member. It has become.
  • graphene material has attracted attention as a material for making it easier to produce highly heat-conductive sheets by breaking away from crushed particles such as graphite powder.
  • Graphene is a state in which graphite is peeled off one by one, and the thermal conductivity of single-layer graphene is reported to be 2000 to 5000 W / (m ⁇ K), so make a sheet using this graphene as a raw material. For example, there is plenty of possibility to achieve high heat conduction, and many researchers and engineers are studying to achieve this.
  • a sheet or the like using graphene it can be generally produced by dispersing graphene in water or an organic solvent and removing the solvent after film formation.
  • graphene can be dispersed only in a very low concentration with respect to water or an organic solvent, generally, a sheet having a nano-order thickness can be produced.
  • the amount of heat transport which is the actual heat diffusion performance, is proportional to the volume of the molded product in addition to the thermal conductivity, so the heat transport amount is not sufficient at the nano-level thickness and exhibits high heat dissipation performance. I can't let you. If a graphene sheet having a thickness of several tens of ⁇ m is to be produced from graphene in order to secure the heat transport amount, an enormous amount of solvent is required due to its low concentration dispersibility, which is difficult to realize industrially. As another method, if a dispersant or the like is used, a higher concentration graphene dispersion can be produced. However, since the dispersant inhibits thermal conductivity, a method suitable for heat diffusion sheet use is I can't say that.
  • graphene oxide has attracted attention as a graphene material that can be dispersed in a solvent at a higher concentration.
  • Graphene oxide is obtained by oxidizing graphite with a strong oxidizing agent such as potassium permanganate and sulfuric acid, and adding oxygen-containing groups such as hydroxy, epoxy, carbonyl, and carboxy groups in the surface of graphene constituting graphite.
  • the graphene material has significantly improved dispersibility in water and some organic solvents.
  • heat treatment is a method that can apply energy uniformly to the entire film, it is not an efficient method because energy loss occurs because the entire space in the furnace must be heated.
  • the heat treatment temperature necessary for graphene oxide graphene conversion is achieved at a temperature lower than the heat treatment temperature for producing a graphite sheet from the above-described polymer film, but still requires a high temperature. For this reason, there has been a demand for a cheaper and higher thermal conductivity thermal diffusion sheet that has less energy loss than heat treatment.
  • the present invention has been made in view of the above-described problems and situations, and a problem to be solved is to provide a graphene laminate that exhibits good thermal conductivity suitable for a thermal diffusion sheet. Moreover, it is providing the cheap manufacturing method.
  • the present inventor applies an electric field of only about several volts to the graphene oxide sheet in the process of examining the cause of the above-described problem, whereby the graphene oxide reduction reaction occurs, and the graphene oxide layer And a graphene layer, and a mixed layer having a concentration gradient of oxygen content ratio between them can be formed, and the present invention has been achieved.
  • a graphene laminate having a graphene oxide-containing layer and a graphene-containing layer, wherein the thickness is between the graphene oxide-containing layer and the graphene-containing layer from the graphene oxide-containing layer side toward the graphene-containing layer side
  • a graphene laminated body having a mixed layer exhibiting a concentration gradient in which the oxygen content ratio (atomic%) continuously decreases in a direction.
  • the thickness and oxygen content ratio of the graphene-containing layer are in the range of 10 to 60 ⁇ m and 0.1 to 15 atomic%, respectively, and the thickness and oxygen content ratio of the graphene oxide-containing layer are 0.5 to 3.
  • the surface resistivity of the surface having the graphene oxide-containing layer is in the range of 1 ⁇ 10 4 to 1 ⁇ 10 9 ⁇ / sq, according to any one of items 1 to 5, The graphene laminate described.
  • the above means of the present invention can provide a graphene laminate suitable for a heat diffusion sheet and exhibiting good thermal conductivity.
  • an inexpensive manufacturing method can be provided.
  • the excited state of the graphene oxide molecule can be efficiently created. From this excited state, the oxygen-containing groups in the graphene oxide are dehydrated and deoxygenated, and the reduction reaction is performed on the cathode side. It is guessed that it is to progress efficiently.
  • the graphene laminate of the present invention is a graphene laminate having a graphene oxide-containing layer and a graphene-containing layer, and the graphene oxide-containing layer is interposed between the graphene oxide-containing layer and the graphene-containing layer from the graphene oxide-containing layer side. It is characterized by having a mixed layer exhibiting a concentration gradient in which the oxygen content ratio (atomic%) continuously decreases in the thickness direction toward the containing layer side. This feature is a technical feature common to the claimed invention.
  • the thickness of the mixed layer is within a range of 0.2 to 5 ⁇ m from the viewpoint of manifesting the effect of the present invention.
  • the thickness and oxygen content ratio of the graphene-containing layer are in the range of 10 to 60 ⁇ m and 0.1 to 15 atomic%, respectively, and the thickness and oxygen content ratio of the graphene oxide-containing layer are 0.5 to 10 ⁇ m, within the range of 24 to 50 atomic% exceeds the thermal conductivity of aluminum, which is a highly heat conductive metal with excellent versatility, from the viewpoint of heat transport, and from the viewpoint of high electrical resistance preferable.
  • the oxygen content ratio of the graphene-containing layer is in the range of 0.1 to 10 atomic%, because it exceeds the thermal conductivity of copper, which is a highly versatile metal with high thermal conductivity.
  • the oxygen content ratio of the graphene-containing layer is in the range of 0.1 to 3 atomic% because it has extremely high thermal conductivity exceeding 1000 W / (m ⁇ K).
  • the surface resistivity of the surface having the graphene oxide-containing layer is in the range of 1 ⁇ 10 4 to 1 ⁇ 10 9 ⁇ / sq, which is used as a heat diffusion sheet for electronic components. It is preferable from the viewpoint of preventing short circuit.
  • the graphene-containing layer is preferably a partially reduced body in the thickness direction of the graphene oxide sheet.
  • the graphene oxide As a method for producing a graphene laminate for producing the graphene laminate of the present invention, by applying a voltage from both sides of the graphene oxide sheet, the graphene oxide is partially reduced in the thickness direction of the graphene oxide sheet. , Forming a stack of a graphene-containing layer, a mixed layer of graphene and graphene oxide, and a graphene oxide-containing layer, and the mixed layer is directed from the graphene oxide-containing layer side to the graphene-containing layer side It is preferable that the production method is controlled so as to have a concentration gradient in which the oxygen content ratio (atomic%) continuously decreases in the thickness direction because it can be produced at low energy and at low cost.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the oxygen content ratio indicates the atomic ratio (O / (C + O)) of oxygen atoms to the sum of oxygen atoms and carbon atoms in%.
  • the graphene laminate 1 of the present invention is a graphene laminate having a graphene oxide-containing layer 3 and a graphene-containing layer 2, and the graphene oxide-containing layer is interposed between the graphene oxide-containing layer 3 and the graphene-containing layer 2.
  • the mixed layer 5 has a concentration gradient in which the oxygen content ratio (atomic%) continuously decreases in the thickness direction from the layer side toward the graphene-containing layer side (see FIG. 1).
  • this mixed layer 5 has a concentration gradient in which the oxygen content ratio (atomic%) continuously decreases in the thickness direction from the graphene oxide-containing layer 3 toward the graphene-containing layer 2, the reduced graphene-containing layer There is no clear interface between the unreduced graphene oxide-containing layer and it has excellent adhesion and heat dissipation performance.
  • a heat diffusion sheet used for an electronic component has a high electrical resistance layer such as an insulating layer on the electronic component, and a heat conductive layer is disposed thereon. Therefore, the heat generated in the electronic component passes through the high electrical resistance layer and penetrates into the heat conduction layer, and the thermal resistance of the thermal diffusion sheet is the interface heat resistance between the high electrical resistance layer and the heat conduction layer. Is considered to be affected.
  • FIG. 2A and 2B are conceptual diagrams showing heat conduction.
  • the heat generated in the electronic component H is dissipated in the heat dissipation direction 4 indicated by the white arrow.
  • the graphene laminate of the present invention having no clear interface is used (see FIG. 2A)
  • the oxygen content ratio continuously decreases from the graphene oxide-containing layer 3 to the graphene-containing layer 2. It is considered that there is no clear interface, excellent adhesion, and heat can be effectively transferred from the graphene oxide-containing layer 3 to the graphene-containing layer 2.
  • FIG. 2B when the interface exists (see FIG. 2B), it is considered that heat cannot be transferred effectively compared to the case where there is no clear interface.
  • the graphene oxide sheet undergoes a reduction reaction from the cathode side. Holes are injected from the anode side, that is, electrons are drawn out and are always in an oxidized state, so that the graphene oxide on the surface in contact with the anode is not reduced, and as a result, an electric field is applied from both sides of the graphene oxide sheet. Then, in addition to the graphene-containing layer having high thermal conductivity, a graphene oxide layer having high electrical resistance remains, and the graphene suitable for the configuration of the thermal diffusion sheet having the thermal conductive layer and the high electrical resistance layer in one process A laminated body can be manufactured at low cost.
  • graphene oxide refers to graphene modified with oxygen-containing groups such as a carboxy group, a carbonyl group, a hydroxy group, and an epoxy group.
  • the graphene oxide used in the present invention is not particularly limited, but the oxygen content ratio (atomic%) of graphene oxide having an oxygen-containing group such as a carboxy group, a carbonyl group, a hydroxy group, or an epoxy group is in the range of 24 to 50 atomic%. It is preferable to be within.
  • the content is 24 atomic% or more, the above-described oxygen-containing group is bonded to a specific amount or more so that ⁇ conjugation is cut and the electric resistance of graphene oxide is increased, which is preferable.
  • Graphene oxide is used as a graphene oxide sheet.
  • Graphene oxide is a layered particle in which graphene constituting graphite is peeled off and oxidized by oxidizing graphite.
  • a larger diameter in the plane direction of the layered particle is preferable from the viewpoint of thermal conductivity. This is because the interface between the layered particles inside the sheet becomes an impediment to heat conduction. Therefore, the larger the diameter in the surface direction of the layer, the smaller the interface, which is preferable from the viewpoint of heat conductivity.
  • the diameter of the layer in the plane direction is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more as long as no trouble occurs in the dispersion state of the graphene oxide solvent dispersion. preferable.
  • the reduction of the graphene oxide sheet is a chemical reaction in which oxygen-containing groups in the graphene oxide are desorbed in the form of dehydration or deoxygenation. Therefore, in order to efficiently cause a chemical reaction, it is important how efficiently a molecule can be excited to a high energy state. In general, it is said that a temperature of several thousand to 10,000 degrees or more is necessary to generate enough excited molecules to advance a chemical reaction by heat. In fact, as described above, a polyimide film or a graphene oxide sheet In order to thermally convert to a graphite or graphene sheet, a temperature in the vicinity of 2000 ° C. to 3000 ° C. is required.
  • examples of techniques for efficiently creating an excited state include semiconductor elements that emit light when an electric field is applied, organic electroluminescence (organic EL) elements, and the like.
  • an organic EL element when an electric field is applied to a layered element, electrons in the highest occupied orbital (HOMO) level of the anode element move to the anode, and radical cations are generated.
  • the radical cation the neighboring electrons fill the cation, and the cation moves to the cathode side.
  • the cathode electrons are injected into the lowest unoccupied orbit (LUMO) of the device, radical anions are generated, and hopping moves toward the anode.
  • the excited radical is formed by recombination of the moved radical cation and radical anion.
  • This excited state can be generated with only a few V, and can be said to be low energy as a means for creating the excited state.
  • energy released when deactivated from this excited state is used as light.
  • an incandescent lamp or the like creates an excited state by energizing a filament and generating heat at 2000 ° C. or higher.
  • generation of an excited state by recombination of a radical cation and a radical anion is low energy.
  • FIG. 4 is a schematic diagram showing the generation of holes on the anode side of the graphene oxide sheet 6.
  • the LUMO level difference A between the cathode and the graphene oxide is different from the HOMO level difference B between the anode and the graphene oxide. Therefore, it is considered that the radical cation diffuses to the vicinity of the cathode before electron injection from the electrode (cathode) to the LUMO level occurs.
  • Radical cations (holes) generated in the vicinity of the anode side move from the right direction (anode side) to the left direction (cathode side) in the figure by the voltage applied from the DC power supply (see FIG. 5). .
  • electrons are injected into the LUMO level on the cathode side of graphene oxide by applying a voltage equal to or higher than the energy level difference between the electrode (cathode) level and the LUMO energy level of graphene oxide (see FIG. 6). .
  • graphene is formed from the cathode side.
  • graphene since graphene is a conductor according to Ohm's law, it contains graphene containing graphene that has been reduced over time as shown in FIG. Layer 2 becomes an electrode, the next layer reacts, and the reduction proceeds toward the anode side. On the cathode side, the conductive graphene-containing layer 2 is gradually thickened.
  • the feature of this method is that, even when an electric field is applied, the graphene oxide-containing layer 3 containing graphene oxide in contact with the anode keeps emitting electrons to the anode (injecting holes from the anode continuously), so that it is always oxidized. It becomes a state and is not reduced to graphene. That is, a layer having high electrical resistance remains on the side in contact with the anode, and the graphene-containing layer 2 containing reduced graphene and the graphene oxide-containing layer 3 containing non-reduced graphene oxide are formed on the same sheet. It will be.
  • Such reduction using excitation energy by charge recombination uses a carrier recombination method in which reduction proceeds at most from several volts to several tens of volts from the potential difference between the electrode level and the LUMO level of graphene oxide. For this reason, the maximum gain is that it can be manufactured with an energy consumption of about one-tenth compared with a conventional combustion method such as heating at 3000 ° C.
  • the graphene laminate produced by this method is in contact with the anode due to the specificity of the manufacturing method, or the graphene oxide layer existing in the vicinity of the anode is not reduced, so that the graphene oxide layer having high electrical resistance is thermally conductive. Being able to form at the same time as a high graphene layer is an advanced and innovative composition.
  • the conventional thermal diffusion sheet such as a graphite sheet
  • it was necessary to bond a film etc. in a post process it is also suitable for industrial use that such an expensive operation becomes unnecessary.
  • ⁇ Graphene-containing layer> By applying an electric field, oxygen-containing groups such as epoxy groups, hydroxy groups, carbonyl groups, and carboxy groups in graphene oxide are removed, and at the same time, double bonds and ⁇ -conjugated systems are formed in graphene oxide, and a graphene structure is generated. . It is considered that the removal of the oxygen-containing group proceeds in the form of deoxygenation, dehydration, or decarboxylation. In the present invention, such a reaction is referred to as reduction, and a layer formed by reduction reaction of graphene by applying an electric field to reduce graphene oxide is referred to as a graphene-containing layer. In the present invention, the graphene-containing layer refers to a layer having an oxygen content ratio (atomic%) of 15 atomic% or less.
  • the graphene-containing layer includes single-layer graphene or multilayer graphene of two to 100 layers.
  • Single-layer graphene refers to a sheet of one atomic layer of carbon molecules having a ⁇ bond.
  • the graphene oxide refers to a compound obtained by oxidizing the graphene.
  • the oxygen content is preferably in the range of 0.1 to 15 atomic% in the graphene stack when measured by XPS (X-ray Photoelectron Spectroscopy). Is in the range of 0.1 to 10 atomic%, more preferably 0.1 to 3 atomic% or less.
  • the oxygen content ratio is 15 atomic% or less, it exceeds the thermal conductivity of aluminum, which is a highly versatile high thermal conductive metal, and when it is 10 atomic% or less, it is the most thermal conductive among the versatile high thermal conductive metals. However, if it exceeds the performance of high copper and is 3 atomic% or less, it exceeds 1000 W / (m ⁇ K).
  • the amount of oxygen remaining in the graphene-containing layer can be adjusted by the applied voltage, reaction time, and the like.
  • the applied voltage is preferably in the range of 2 to 15V.
  • the graphene-containing layer functions as a good heat conductive layer.
  • the thickness of the graphene-containing layer is preferably 10 ⁇ m or more from the viewpoint of the amount of heat transport. Since the actual thermal diffusion performance is proportional to the thermal conductivity and the film thickness, it is preferable that a certain thickness of 10 ⁇ m or more exists. A thin film having a thickness of 60 ⁇ m or less is preferable from the viewpoint of space-saving heat diffusion in recent smartphones and tablets.
  • the graphene oxide-containing layer is a layer containing non-reduced graphene oxide remaining on the anode side in the reduction reaction of the graphene oxide sheet.
  • the graphene oxide-containing layer refers to a layer having an oxygen content ratio (atomic%) of 24 atomic% or more.
  • a graphene laminate can be produced by applying low energy, and simultaneously with the formation of a graphene oxide layer having high electrical resistance, a high electrical resistance layer can be formed in the same sheet, and aluminum (236 W / (m ⁇ K)) or High thermal conductivity exceeding the performance of copper (401W / (m ⁇ K)), and the configuration including a high resistance layer in the same laminate has industrial value, and the same laminate with high thermal conductivity of 1000W / (m ⁇ K) or more.
  • a configuration including a high resistance layer in the body is more valuable in industry.
  • an insulating layer may be further bonded.
  • the presence of the graphene oxide layer can reduce the thickness of the insulating layer, which is industrially valuable.
  • the mixed layer is a mixed layer having a concentration gradient in which the oxygen content ratio (atomic%) continuously decreases in the thickness direction from the graphene oxide-containing layer side toward the graphene-containing layer side. It has a concentration gradient continuously from less than 24 atomic% to over 15 atomic%.
  • the inclination is a decrease rate in the range of 0.15 to 25.0 atomic% per 0.1 ⁇ m and the oxygen content from the region of the graphene oxide-containing layer having an oxygen content ratio of 24 to 50 atomic%.
  • the region is preferably a region that continuously decreases to the region of the graphene-containing layer having a ratio of 0.1 to 15 atomic%.
  • This inclination can be obtained from, for example, measurement of the oxygen content ratio (atomic%) when peeling off from the graphene oxide-containing layer of the graphene laminate every 0.1 ⁇ m as necessary.
  • the thickness of the mixed layer is preferably in the range of 0.2 to 5 ⁇ m.
  • the distribution of the oxygen content ratio (atomic%) in the thickness direction of the graphene sheet produced by applying a voltage is determined by cleaving the graphene sheet with an adhesive tape and peeling it off. It can be clarified by measuring. Although there is a difference in the concentration gradient depending on the voltage and the application time, the graphene oxide reduced layer and the non-reduced layer do not clearly have a boundary and gradually change. With this state, it is considered that the interfacial thermal resistance when heat generated in the electronic component is transmitted in the thickness direction is small, and the material has excellent heat dissipation.
  • the oxygen content ratio can be measured as follows.
  • the oxygen content ratio (atomic%) of the graphene laminate can be measured by X-ray Photoelectron Spectroscopy (hereinafter also referred to as XPS), and is a value represented by O / (C + O) atomic%.
  • the oxygen content ratio of the graphene oxide used in the examples of the present invention is about 24 and 50 atomic%. However, depending on the application and within the range where no trouble occurs in the dispersion state, the conditions of the oxidation reaction are changed to change the oxygen content ratio. You may adjust.
  • Oxygen is peeled from the anode side every 1 ⁇ m thickness using an adhesive tape, and the oxygen content ratio and the thickness at that time are measured by XPS. It can be read from the XPS profile of the content ratio (atomic%). Further, the thickness of the mixed layer can be accurately obtained by peeling every 0.1 ⁇ m as necessary and measuring the oxygen content ratio each time.
  • the oxygen content ratio of the graphene oxide-containing layer is calculated from the thickness until the oxygen content ratio reaches 24% when peeled from the anode every 1 ⁇ m, and the arithmetic average value of the oxygen content ratio so far. be able to.
  • the graphene-containing layer can be obtained from the thickness from when the oxygen content ratio decreases to 15% until it reaches the surface in contact with the cathode when peeling is performed every 1 ⁇ m.
  • the thickness of the mixed layer can be determined as an intermediate layer between the graphene oxide-containing layer and the graphene-containing layer measured as described above.
  • the oxygen content ratio of each layer is the arithmetic average value of the oxygen content ratio for each 1 ⁇ m obtained as described above.
  • the oxygen content ratio of the layer can be obtained based on data obtained by measuring the oxygen content ratio (atomic%) by XPS every time 0.1 ⁇ m is peeled off. .
  • Electrode As an electrode, a metal, an alloy, an electrically conductive compound and a mixture thereof are preferably used. Specific examples of such an electrode substance include metals such as copper, aluminum, silver, platinum, gold, iron and magnesium, alloys such as stainless steel and brass, carbon materials such as graphite, and inorganic semiconductors such as indium tin oxide. Materials and the like.
  • Thermal conductivity As a physical quantity that represents heat dissipation performance.
  • Thermal conductivity (W / (m ⁇ K)) is represented by the product of thermal diffusivity (m 2 / s), specific heat capacity (J / kg ⁇ K), and density (kg / m 3 ). The thermal conductivity can be calculated by measuring the thermal diffusivity, specific heat capacity, and density.
  • ⁇ Heat diffusion sheet performance> In each electronic component, there is a heat amount to be radiated so that the electronic component does not fail with respect to the maximum heat generation amount during operation.
  • the thermal conductivity is the amount of heat that passes through the unit cross-sectional area when there is a temperature gradient of 1 ° C. per unit length. Therefore, if the sheet area is constant, the amount of heat actually transported is the thermal conductivity. Proportional to thickness. By adjusting the thermal conductivity and thickness of the graphene-containing layer, it is possible to perform appropriate heat dissipation so that the electronic component does not fail.
  • “Production method” In the method for producing a graphene laminate for producing the graphene laminate of the present invention, by applying a voltage from both sides of the graphene oxide sheet, the graphene oxide is partially reduced in the thickness direction of the graphene oxide sheet, A stacked body including a graphene-containing layer, a mixed layer of graphene and graphene oxide, and a graphene oxide-containing layer is formed, and the mixed layer is directed from the graphene oxide-containing layer side toward the graphene-containing layer side.
  • the oxygen content ratio (atomic%) is controlled to have a concentration gradient that continuously decreases in the thickness direction.
  • Graphene oxide solvent dispersion Graphene oxide oxidizes graphite or multilayer graphene with a strong oxidant to provide oxygen-containing groups such as epoxy groups, hydroxy groups, carbonyls, and carboxy groups on the surface and edges of graphene particles and is necessary for sheet production It is possible to have a good solvent dispersibility.
  • the graphene oxide solvent dispersion can be prepared based on known literature by the Hummers method or the Modified Hummers method obtained by improving the Hummers method. From the viewpoint of the dispersibility of graphene oxide, water is most commonly used as the solvent, but an organic solvent can also be used as long as no problems occur with respect to the aggregation of graphene oxide and the film quality of the produced sheet.
  • Known documents for producing graphene oxide include, for example, W.W. S. Hummers. , Journal of American Chemistry (1958) 1339, M .; Hirata. , Carbon 42 (2004) 2929, and the like.
  • the graphene oxide sheet can be produced by applying a graphene oxide solvent dispersion with a certain thickness and drying the solvent. Any coating method may be used as long as the film quality is not affected as long as it can be applied and dried at a constant thickness. For example, in addition to cast film formation in the embodiments of the present invention, there are filtration film formation, dip coating, spin coating, spray coating, and the like. Further, the graphene oxide sheet can be peeled off by applying it to a glass substrate or a resin base material. Any material may be used for the substrate and the substrate as long as the graphene oxide sheet can be peeled off.
  • the thickness of the graphene oxide sheet is preferably 10 ⁇ m or more from the viewpoint of maintaining the strength to withstand the tension generated when peeling from the substrate.
  • the thickness of the graphene oxide sheet can be increased, but the graphene oxide by increasing the concentration From the viewpoint of the aggregation of the film and the smoothness of the film surface of the sheet, it is usually preferably in the range of 100 ⁇ m or less.
  • the content of graphene oxide in the graphene oxide sheet is preferably 80 to 100% by mass.
  • the graphene oxide sheet is made of only graphene oxide.
  • a known reducing agent may be added to the graphene oxide sheet.
  • examples thereof include reducing agents described in known literature (CK Chua., Chemical Society Reviews 43 (2014) 291).
  • the additive can be added to the graphene oxide sheet by mixing and forming a film at the stage of the graphene oxide solvent dispersion.
  • the oxygen content ratio of graphene oxide in the dispersion state May be adjusted.
  • Electrode can be in any form as long as it can be sandwiched between the electrodes in the film pressure direction.
  • an electric field may be applied by simply sandwiching between metal plates, or two roll-shaped electrodes may be prepared, and an electric field may be applied while the sheet is pressure-bonded between the roll electrodes and conveyed.
  • any electrode material such as an inorganic oxide such as ITO or a carbon material may be used for the electrode as long as there is no problem in grapheneization.
  • the graphene laminate of the present invention has a low energy, a high thermal conductivity layer and a high electrical resistance layer by applying an electric field once, and the boundary between the high thermal conductivity layer and the high electrical resistance layer is not a clear interface but a concentration. Since it has a gradient, heat generated from an electronic component or the like can be effectively transferred. Moreover, it can be manufactured at low cost and can be preferably applied to a thermal diffusion sheet.
  • the graphene oxide aqueous dispersion 1 was prepared in the same manner as the graphene laminate 1 except that the applicator gap was changed to 1.5 mm, and the voltage and application time were changed to the conditions shown in Table 1. Laminates 9 to 16 were obtained.
  • the graphene laminates 25 to 32 were obtained in the same manner as the graphene laminate 1 except that the graphene oxide aqueous dispersion 2 was used and the voltage and application time were changed to the conditions shown in Table 2.
  • the graphene laminate 1 was cleaved and peeled from the surface in contact with the anode every 1 ⁇ m with an adhesive tape (3M, Scotch adhesive tape), measured by XPS, until the oxygen content ratio reached 24.0% The thickness was determined, and this was the thickness of the graphene oxide-containing layer. Similarly, cleavage and peeling were advanced, and the thickness from when the oxygen content ratio was reduced to 15% until reaching the surface in contact with the cathode was defined as the graphene-containing layer. Further, the oxygen content ratios of the graphene oxide-containing layer and the graphene-containing layer were determined from the arithmetic average value of the oxygen content ratios of the XPS measurement values for each 1 ⁇ m.
  • the oxygen content ratio of the layer was determined based on data obtained by measuring the oxygen content ratio (atomic%) by XPS every time 0.1 ⁇ m was peeled off.
  • the oxygen content ratio (atomic%) by XPS is measured every time 0.1 ⁇ m is peeled off, and the thickness of each layer was measured.
  • the graphene laminates 2 to 48 were cleaved and peeled from the oxygen content ratio of the graphene oxide-containing layer to the oxygen content ratio of the graphene-containing layer over the thicknesses of the mixed layers described in Table 1 and Table 2. It was confirmed that it decreased.
  • the XPS measurement conditions are as follows.
  • Measurement was performed using a Quantera SXM manufactured by ULVAC-PHI.
  • a monochromatic Al—K ⁇ ray was used as the X-ray source, and the spectroscope was such that the half width of the peak when measuring the Ag 3 d 5/2 peak of the cleaned silver was 0.5 eV or less.
  • the measurement was performed under various conditions.
  • Spectrometer calibration was performed according to ISO 15472.
  • the thermal conductivity is represented by the following equation, and can be calculated by measuring the thermal diffusivity, specific heat capacity, and density, respectively.
  • Thermal conductivity thermal diffusivity ⁇ specific heat capacity ⁇ density
  • the thermal diffusivity is Laser Pit of Advance Riko Co., Ltd.
  • the specific heat capacity is a differential scanning calorimeter (DSC 6220: manufactured by Hitachi High-Technologies Corporation)
  • the density is a sheet. The mass and volume were measured, and the thermal conductivity at a temperature of 23 ° C. was calculated.
  • Example 2 ⁇ Production of Comparative Laminates 1 to 48>
  • Each of the graphene laminates 1 to 48 is peeled off with an adhesive tape, the graphene oxide-containing layer and the mixed layer are removed, and the graphene oxide aqueous dispersion is applied to the remaining graphene-containing layer at a magnification described in Table 3.
  • a graphene oxide-containing layer having the same thickness as each graphene oxide-containing layer of the graphene laminates 1 to 48 of the present invention is prepared by diluting, applying an applicator gap of 0.75 mm, and drying at 50 ° C. for 10 hours. It was.
  • This laminate was designated as Comparative laminates 1 to 48. Note that the graphene oxide aqueous dispersion 1 was used for the production of the comparative laminates 1 to 24, and the graphene oxide aqueous dispersion 2 was used for the comparison laminates 25 to 48.
  • the thermal diffusivity of the graphene laminate of the present invention was evaluated as follows.
  • the graphene laminates 1 to 48 were cut into a length of 1 cm and a width of 3 cm, and the surface on the graphene oxide-containing layer side of the one end of the test piece, the length of 1 cm and the width of 1 cm was placed on the heat conductive sheet (Taika Co., Ltd., ⁇ GEL , COH-4000LVC, 1 mm).
  • the temperature of the hot plate is raised to 80 ° C., and after 1 minute, the center of the other end, 1 cm in length and 1 cm in width, on the side opposite to the area in contact with the heater of the test piece is on the graphene-containing layer side Then, the temperature was measured using a non-contact thermometer, and the thermal diffusibility of the graphene laminates 1 to 48 of the present invention was evaluated. Further, the thermal diffusibility of the comparative laminates 1 to 48 was evaluated in the same manner as described above.
  • FIGS. 9A to 9C The results are shown in FIGS. 9A to 9C.
  • a black bar graph and a white bar graph are the present invention and a comparative example, respectively.
  • the numbers on the horizontal axis are the numbers of the laminates corresponding to the graphene laminates 1 to 48 and the comparative laminates 1 to 48 of the present invention, respectively.
  • the graphene laminate of the present invention was separated from the point in contact with the heater as compared with the measured temperature of the comparative laminate in which the graphene-containing layer was simply applied by stacking the graphene-containing layer. It can be seen that the temperature is high even at the position and the heat of the heater can be transferred more, and the heat diffusion performance is high.
  • the oxygen content ratio continuously decreases from the graphene-containing layer having high thermal conductivity, the graphene-containing layer having high electrical resistance, and the graphene-containing layer to the graphene-containing layer therebetween.
  • the graphene laminate of the present invention having a mixed layer is a preferred form as a heat diffusion sheet and has high heat dissipation. Further, by applying an electric field in the film thickness direction of the graphene oxide sheet, the graphene oxide sheet can be manufactured by a single treatment, and can be easily manufactured with low energy.
  • the graphene laminate of the present invention can be preferably applied to a thermal diffusion sheet that exhibits good thermal conductivity and effectively dissipates heat generated from electronic components. Moreover, it can be manufactured at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明の課題は、熱拡散シートに適した、良好な熱伝導性を示すグラフェン積層体を提供することである。また、安価なその製造方法を提供することである。 本発明のグラフェン積層体は、酸化グラフェン含有層とグラフェン含有層とを有するグラフェン積層体であって、前記酸化グラフェン含有層と前記グラフェン含有層との間に、前記酸化グラフェン含有層側からグラフェン含有層側に向けて厚さ方向に酸素含有比率が連続的に減少する濃度勾配を示す混合層を有することを特徴とする。

Description

グラフェン積層体とその製造方法
 本発明は、グラフェン積層体とその製造方法に関し、より詳しくは、熱拡散シートに適した、良好な熱伝導性を示すグラフェン積層体及び安価なその製造方法に関する。
 スマートフォンが普及して以来、ユーザーがより快適に利用するために、新製品が開発されるごとに、ソフトウェアの処理速度の向上が追い求められてきた。その中でも近年マルチコア型のセントラルプロセッシングユニット(中央処理装置、以下CPUともいう。)が普及している。単一のCPUは、プログラム中の複数の処理を行うとき利用時間を細かく分割して順番に割り当てることによって処理しているが、マルチコア型のCPUは、同時に並列で複数の処理を行うことができ、処理速度が速くなるため、CPUの形態として主流となっている。
 しかしながら、一つのCPUの処理能力が高いものをマルチコア化すると、必然的に消費電力は増え、それに伴い発熱量も増加する。このCPUから発生する熱は、適切にCPUから熱を除去、放熱されることが、高温によるCPU自体の故障を防ぐことと、ユーザーのやけどを防ぐために、必須であり、スマートフォンの開発における最も重要な課題の一つとなっている。
 発熱体から熱を放熱させる方法としては、伝導、対流、放射の三つがある。伝導は物質を通して熱が伝わる現象、対流は、液体や気体の流れによって熱が伝わる現象、放射は物体から電磁波が放射することによって熱が伝わる現象である。これらは、対流、伝導、放射の順に放熱性能が高い。
 対流を利用した放熱部材の例としてはヒートパイプが挙げられる。ヒートパイプは内部に液体を有しており、発熱部に近い箇所が高温になり、内部の液体が沸騰し、反対側で冷却され凝縮し、これが循環することによって、放熱がなされている。
 しかしながら、スマートフォンのような薄型機器では、十分な熱輸送を実現できる量の液体を導入できるスペースがないため、対流の次に放熱性能が高い伝導の機構を用いたシート状の部材による熱伝導が放熱の手段として利用されることになる。特にCPUなどで発生した熱をシート状の部材を用いて、面内方向に放熱する部材を熱拡散シートと呼ぶ。この熱拡散シートは、比較的高い熱伝導率を有する部材で、数十μm程の厚さであれば、薄型機器であるスマートフォンなどに導入することができ、かつCPUの発熱による局所的な温度上昇を放熱させて抑えることができる。
 実際、熱拡散シートに使われる放熱部材は、数百W/(m・K)以上の高熱伝導のものが使用されており、熱伝導率が、それぞれ、236W/(m・K)、401W/(m・K)のアルミニウム箔や銅箔などの金属箔と、数百W/(m・K)から最高で約2000W/(m・K)となるグラファイトシートなどがある。
 上記金属箔やグラファイトシートの熱伝達を担うキャリアはそれぞれ主に自由電子と、格子振動に由来する音子(フォノン)である。金属箔の高熱伝導性は金属が有する自由電子に由来している。グラファイトシートでは、フォノン、つまり格子振動が熱伝達の主なキャリアとなっている。グラファイトは、炭素のような比較的軽い元素が、面内、二次元方向に共有結合で強く束縛されているため、格子振動の伝達が速く、シート面内の熱伝導性が高いと考えられる。
 以上のように金属箔とグラファイトシートの主な熱伝導のキャリアは自由電子とフォノンとで異なっているが、しかし、どちらの材料も電気伝導性を有している。前述したように金属材料は主に自由電子によって熱が伝わるため、熱伝導性と電気伝導性は相関しており、当然電気伝導性を有する。グラファイトシートのフォノンによる熱伝導は、グラファイトの共有結合結晶が大きいほど高くなるが、グラファイトの共有結合結晶が大きいと、グラファイトのπ共役系も大きくなるため、π電子による電気伝導性が生じ、こちらも電気伝導性を有するシートとなる。
 したがって、熱拡散シートに使われる金属箔やグラファイトシートなどの高熱伝導部材は、いずれも電気伝導性を有するため、CPUなどの電子部品の放熱を目的にスマートフォン内部に熱拡散シートを設置する場合などは、熱拡散シートが電子部品と触れてショートするのを防ぐため、放熱層にPETフィルムなどの絶縁層を積層して用いることが一般的となっている。つまり、高熱伝導性を有する部材をスマートフォンの熱拡散用途で使用する場合は、必然的に、高い熱伝導性を有するが電気伝導性を有してしまう部材を、絶縁層を積層して使用するという構成となってしまう。
 さらに近年では、CPUの性能向上に伴う発熱量の増加によって、より高熱伝導性のシートが求められてきており、ポリイミドなどの高分子フィルムを3000℃付近の超高温熱処理で作製する高熱伝導性のグラファイトシートが普及してきている。高分子フィルムを原料として3000℃付近まで加熱することで、シート状態を維持しながら高分子組成物をグラファイト化することができ、炭素-炭素再結合によるグラファイト結晶の増大と配向性の向上により、最高で2000W/(m・K)近い熱伝導率を有する熱拡散シートが報告されている。
 しかしながら、3000℃付近の熱処理では、多大な電力が必要となり、また、ヒーターや断熱材の劣化、冷却設備の構築、安全面での対策が必要となり、簡便とはいえない高エネルギーを要する手法である。つまり、近年必要とされる熱伝導シートは、より高熱伝導性の部材ゆえに簡便ではない高エネルギーを要して作製されるシートに電気伝導性が生じるため、絶縁層を後工程で貼り合わせるという構成となっている。
 もちろんこのような製法が最適とは考えにくく、当然、旧来から微小な炭素材料粒子を原料として大面積の放熱シートを作りたいという考えはあり、実際にグラファイト粉末を圧力と熱を使ってシート状にした放熱材料も市販されている。しかし、単に粉末を固めただけでは、数百W/(m・K)のものしかできていないのが現状である。つまり、数百W/(m・K)から1000W/(m・K)を超えるような高熱伝導性のグラファイトシートを、炭素材料微粒子を原料として低コストで作製することは難しいと考えられてきた。
 新たな潮流として、グラファイト粉末のような破砕型粒子から脱却して、より簡便に高熱伝導性のシートを作製するための材料としてグラフェン材料が注目されている。グラフェンとはグラファイトを一枚一枚剥離した状態のものをいい、単層グラフェンの熱伝導率は2000~5000W/(m・K)とも報告されているため、このグラフェンを原料にシートを作製すれば、高熱伝導を達成できる可能性は十分にあり、多くの研究者、技術者がその実現に向けて検討を行っている。
 グラフェンを用いてシートなどを成形するには、一般的にはグラフェンを水や有機溶媒などに分散し、成膜後、溶媒を除去することで作製することができる。ただし、グラフェンは、水や有機溶媒に対して非常に低濃度でしか分散できないため、一般的にはナノオーダーの厚さのシートならば作製することができる。
 しかしながら、実際の熱拡散性能となる熱輸送量は、熱伝導率に加えて、その成形品の体積に比例するため、ナノレベルの厚さでは熱輸送量が十分ではなく、高い放熱性能を発揮させることができない。熱輸送量を担保するため、グラフェンから数十μmの厚さのグラフェンシートを作製しようとすると、その低濃度の分散性から膨大な量の溶媒が必要となり、工業的に実現するのは難しい。その他の方法として、分散剤などを使用すれば、より高濃度のグラフェン分散物を作製することができるが、分散剤は熱伝導性を阻害するため、熱拡散シート用途には適した方法とはいえない。
 そこで、より高濃度で溶媒に分散できるグラフェン材料として、酸化グラフェンが注目されている。酸化グラフェンは、グラファイトを過マンガン酸カリウム、硫酸などの強酸化剤で酸化し、グラファイトを構成するグラフェンの面内にヒドロキシ基、エポキシ基、カルボニル基及びカルボキシ基などの酸素含有基を付与することで、水や一部の有機溶媒への分散性を著しく向上させたグラフェン材料である。酸化グラフェン分散物を成膜、溶媒を除去することで、数十μmの厚さの酸化グラフェンシートを作製することができる。
 ただし、酸化グラフェンは、グラフェン面内に官能基を導入したことによって、グラフェンの共有結合結晶構造が失われており、グラフェンに比べて熱伝導性は減少している。そのため、高熱伝導を達成するためには再びグラフェン構造に戻す必要がある。なお、酸化グラフェンから酸素含有基を除去し再びグラフェンに戻す処理を以下において、還元とも呼ぶ。
 酸化グラフェンの還元方法の中で最も検討されているのが熱処理による還元である(例えば、特許文献1参照。)。酸化グラフェンを熱処理することで、脱水や脱酸素を経て、酸化グラフェン中の酸素含有基が除去され、グラフェン構造を作り出せることが知られている。
 ただし、熱処理は膜全体に均一にエネルギーを印加できる方法であるが、炉内の空間全体を高温にしなければならない点からエネルギーロスが生じるため、効率的な方法とはいえない。また、酸化グラフェンのグラフェン化に必要な熱処理温度は、前述した高分子フィルムからグラファイトシートを作製する際の熱処理温度より低い温度で達成されるが、依然として高温が必要である。このため、熱処理よりエネルギーロスが少ない、より安価で高熱伝導性の熱拡散シートが求められていた。
特表2015-536900号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、熱拡散シートに適した、良好な熱伝導性を示すグラフェン積層体を提供することである。また、安価なその製造方法を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において酸化グラフェンシートに、僅か数V程度の電界を印加することにより、酸化グラフェンの還元反応が起こり、酸化グラフェン層とグラフェン層、及びその間に酸素含有比率の濃度勾配を有する混合層を形成することができることを見いだし本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.酸化グラフェン含有層とグラフェン含有層とを有するグラフェン積層体であって、前記酸化グラフェン含有層と前記グラフェン含有層との間に、前記酸化グラフェン含有層側から前記グラフェン含有層側に向けて厚さ方向に酸素含有比率(原子%)が連続的に減少する濃度勾配を示す混合層を有することを特徴とするグラフェン積層体。
 2.前記混合層の厚さが、0.2~5μmの範囲内であることを特徴とする第1項に記載のグラフェン積層体。
 3.前記グラフェン含有層の厚さと酸素含有比率が、それぞれ、10~60μm、0.1~15原子%の範囲内であり、前記酸化グラフェン含有層の厚さと酸素含有比率が、それぞれ、0.5~10μm、24~50原子%の範囲内であることを特徴とする第1項又は第2項に記載のグラフェン積層体。
 4.前記グラフェン含有層の酸素含有比率が、0.1~10原子%の範囲内であることを特徴とする第3項に記載のグラフェン積層体。
 5.前記グラフェン含有層の酸素含有比率が、0.1~3原子%の範囲内であることを特徴とする第3項に記載のグラフェン積層体。
 6.前記酸化グラフェン含有層を有する面の表面抵抗率が、1×10~1×10Ω/sqの範囲内であることを特徴とする第1項から第5項までのいずれか一項に記載のグラフェン積層体。
 7.前記グラフェン含有層が、酸化グラフェンシートの厚さ方向の部分還元体であることを特徴とする第1項から第6項までのいずれか一項に記載のグラフェン積層体。
 8.第1項から第7項までのいずれか一項に記載のグラフェン積層体を製造するグラフェン積層体の製造方法であって、酸化グラフェンシートの両面から電圧を印加することにより、当該酸化グラフェンシートの厚さ方向において、酸化グラフェンを部分的に還元して、グラフェン含有層と、グラフェンと酸化グラフェンとの混合層と、酸化グラフェン含有層とからなる積層体を形成し、かつ、当該混合層が、前記酸化グラフェン含有層側から前記グラフェン含有層側に向けて厚さ方向に酸素含有比率(原子%)が連続的に減少する濃度勾配を有するように制御することを特徴とするグラフェン積層体の製造方法。
 本発明の上記手段により、熱拡散シートに適した、良好な熱伝導性を示すグラフェン積層体を提供することができる。また、安価なその製造方法を提供することができる。
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
 酸化グラフェンシートに電界を印加すると、効率的に酸化グラフェン分子の励起状態を作り出すことができ、この励起状態から酸化グラフェン中にある酸素含有基が脱水や脱酸素の形で、還元反応が陰極側から効率的に進行するためであると推察している。
本発明のグラフェン積層体の断面図の一例 熱伝導を示す概念図 熱伝導を示す概念図 電極と酸化グラフェンシートのエネルギー準位の模式図 酸化グラフェンシートの陽極側における正孔の生成を表した模式図 陽極側から陰極側にラジカルカチオンが移動する過程を表した模式図 酸化グラフェンシートの陰極側のLUMO準位に電子が注入されることを表した模式図 キャリア再結合で励起状態が形成され、その励起状態から還元される様子を表した模式図 還元されたグラフェン層が電極となり、さらに次の層が反応し、還元反応が進行する様子を表した模式図 本発明のグラフェン積層体と比較例の積層体の熱拡散性評価結果 本発明のグラフェン積層体と比較例の積層体の熱拡散性評価結果 本発明のグラフェン積層体と比較例の積層体の熱拡散性評価結果
 本発明のグラフェン積層体は、酸化グラフェン含有層とグラフェン含有層とを有するグラフェン積層体であって、前記酸化グラフェン含有層と前記グラフェン含有層との間に、前記酸化グラフェン含有層側から前記グラフェン含有層側に向けて厚さ方向に酸素含有比率(原子%)が連続的に減少する濃度勾配を示す混合層を有することを特徴とする。この特徴は、各請求項に係る発明に共通する技術的特徴である。
 本発明の実施態様としては、本発明の効果発現の観点から、前記混合層の厚さが、0.2~5μmの範囲内であることが好ましい。
 前記グラフェン含有層の厚さと酸素含有比率が、それぞれ、10~60μm、0.1~15原子%の範囲内であり、前記酸化グラフェン含有層の厚さと酸素含有比率が、それぞれ、0.5~10μm、24~50原子%の範囲内であることが、汎用性に優れた高熱伝導金属であるアルミニウムの熱伝導率を上回ることと、熱輸送量の観点、また、高電気抵抗性の観点から好ましい。
 前記グラフェン含有層の酸素含有比率が、0.1~10原子%の範囲内であることが、汎用性の高い高熱伝導金属である銅の熱伝導率を上回るため産業上価値がある。
 前記グラフェン含有層の酸素含有比率が、0.1~3原子%の範囲内であることが、1000W/(m・K)を超える極めて高い熱伝導性を有するため、産業上特に価値がある。
 さらに、本発明においては、前記酸化グラフェン含有層を有する面の表面抵抗率が、1×10~1×10Ω/sqの範囲内であることが、電子部品に対する熱拡散シートとして用いた場合にショートを防ぐ観点から好ましい。
 また、前記グラフェン含有層が、酸化グラフェンシートの厚さ方向の部分還元体であることが好ましい。
 本発明のグラフェン積層体を製造するグラフェン積層体の製造方法としては、酸化グラフェンシートの両面から電圧を印加することにより、当該酸化グラフェンシートの厚さ方向において、酸化グラフェンを部分的に還元して、グラフェン含有層と、グラフェンと酸化グラフェンとの混合層と、酸化グラフェン含有層とからなる積層体を形成し、かつ、当該混合層が、前記酸化グラフェン含有層側から前記グラフェン含有層側に向けて厚さ方向に酸素含有比率(原子%)が連続的に減少する濃度勾配を有するように制御する態様の製造方法であることが、低エネルギーで安価に製造できることから好ましい。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 なお本発明において酸素含有比率(原子%)は、酸素原子と炭素原子を足し合わせたものに対する酸素原子の原子比率(O/(C+O))を%で示したものである。
 《グラフェン積層体の概要》
 本発明のグラフェン積層体1は、酸化グラフェン含有層3とグラフェン含有層2とを有するグラフェン積層体であって、前記酸化グラフェン含有層3と前記グラフェン含有層2との間に、前記酸化グラフェン含有層側から前記グラフェン含有層側に向けて厚さ方向に酸素含有比率(原子%)が連続的に減少する濃度勾配を有する混合層5を有することを特徴とする(図1参照。)。
 この混合層5は前記酸化グラフェン含有層3から前記グラフェン含有層2に向けて厚さ方向に酸素含有比率(原子%)が連続的に減少する濃度勾配を有するために、還元されたグラフェン含有層と還元されていない酸化グラフェン含有層の間で明確な界面が存在しないことから、密着性に優れ、放熱性能に優れる。通常、電子部品に用いられる熱拡散シートは、電子部品の上に、絶縁層などの高電気抵抗層があり、その上に熱伝導層が配置される。そのため、電子部品で発生した熱は高電気抵抗層を通り熱伝導層に浸透することになり、熱拡散シートの実際の放熱性能に対して高電気抵抗層と熱伝導層の間の界面熱抵抗が影響すると考えられる。
 図2A及び図2Bは、熱伝導を示す概念図である。電子部品Hで発生する熱は、白矢印で示した放熱方向4に放熱する。この時、明確な界面が存在しない本発明のグラフェン積層体を用いた場合(図2A参照。)は、酸化グラフェン含有層3からグラフェン含有層2まで、連続的に酸素含有比率が減少することにより明確な界面が存在せず、密着性に優れ酸化グラフェン含有層3からグラフェン含有層2に効果的に熱を伝えることができると考えられる。一方、界面が存在する場合(図2B参照。)は、明確な界面が存在しない場合と比べ、効果的に熱を伝えることができないと考えられる。
 本発明のグラフェン積層体を電界印加により作製するとき、酸化グラフェンシートは陰極側から還元反応が進む。陽極側からは正孔が注入される、つまり電子が引き抜かれ、常に酸化状態となるため、陽極に接する面の酸化グラフェンは還元されることがなく、結果として、酸化グラフェンシートの両面から電界印加すると、高熱伝導性を有するグラフェン含有層に加えて、高い電気抵抗を有する酸化グラフェン層が残り、一回の処理で熱伝導層と高電気抵抗層とを有する熱拡散シートの構成に適したグラフェン積層体を安価に製造することができる。
 《酸化グラフェン》
 本発明において、酸化グラフェンとは、グラフェンに、カルボキシ基、カルボニル基、ヒドロキシ基及びエポキシ基等の酸素含有基が修飾されたものを指す。本発明に用いる酸化グラフェンについては特に限定されないが、カルボキシ基、カルボニル基、ヒドロキシ基又はエポキシ基等の酸素含有基を有する酸化グラフェンの酸素含有比率(原子%)は、24~50原子%の範囲内であることが好ましい。24原子%以上であると上述の酸素含有基が特定量以上結合することでπ共役が切断され、酸化グラフェンの電気抵抗が高くなるため好ましい。また、50原子%以下であると還元反応を効果的に進行させられるため好ましい。酸化グラフェンは酸化グラフェンシートとして用いる。
 <酸化グラフェンの面方向の径>
 酸化グラフェンは、グラファイトを酸化処理することで、グラファイトを構成するグラフェンが剥離、酸化された、層状粒子である。この層状粒子の面方向の径が大きいほど、熱伝導性の観点で好ましい。これは、シート内部の層状粒子間の界面は、熱伝導の阻害要因となるため、層の面方向の径が大きいほど、界面が少なくなり、熱伝導性の観点で好ましい。高熱伝導性の観点で、層の面方向の径が、1μm以上あることが好ましく、5μm以上がより好ましく、酸化グラフェン溶媒分散体の分散状態に不具合が生じない範囲で、10μm以上あることがさらに好ましい。
 《酸化グラフェンシートの還元》
 酸化グラフェンシートの還元は、酸化グラフェン中にある酸素含有基が脱水や脱酸素の形で脱離していく化学反応である。したがって、化学反応を効率的に引き起こすには、いかに分子を効率的に励起して高エネルギー状態にできるかが重要となる。一般に熱によって、化学反応を進行させるのに十分な励起分子を生じさせるには、数千度から一万度以上の温度が必要といわれており、事実、前述したようにポリイミドフィルムや酸化グラフェンシートをグラファイト、グラフェンシートに熱的に変換するには、2000℃から3000℃付近の温度が必要となっている。
 そこで、励起状態を効率的につくる技術の例として、電界を加えたときに発光する半導体素子、有機エレクトロルミネッセンス(有機EL)素子などが挙げられる。
 有機EL素子では、層状の素子に電界印加することで、陽極側素子の最高被占軌道(HOMO)準位にある電子が陽極に移り、ラジカルカチオンが生じる。ラジカルカチオンは隣の電子がカチオンを埋める形で、カチオンとしては陰極側に移動していく。一方、陰極では電子が素子の最低空軌道(LUMO)に注入され、ラジカルアニオンが生じ、陽極側にホッピング移動していく。移動したラジカルカチオンとラジカルアニオンが再結合することで、励起状態が形成されることになる。
 この励起状態は、僅か数Vで生成させることができ、励起状態を作り出す手段としては低エネルギーといえる。実際、有機EL素子では、この励起状態から失活するとき放出するエネルギーを光として利用しているが、例えば、白熱電灯などは、フィラメントに通電し2000℃以上に発熱させることで励起状態を作り出し発光させており、これに対してラジカルカチオンとラジカルアニオンの再結合による励起状態の生成は、低エネルギーであるといえる。実際、白熱電灯とLED照明、有機EL照明のエネルギー効率は約10倍の差があるといわれている。
 ここで、有機ELの機構と酸化グラフェンの特性を利用することで、酸化グラフェンを効率的にグラフェン化させることができるのではないかと考えた。
 グラフェンやグラファイトに電界印加した場合には、金属材料と同じようにオームの法則に従い、抵抗体に電流が流れるだけであって、分子の励起状態を効率的に作り出すことはできない。
 一方、酸化グラフェンは、実際にシートにして、HOMO-LUMO準位を測定すると、HOMO準位は約5.7eVと計測され、吸収スペクトルからの解析でLUMO準位は約3.1eVと推算された。さらに金属電極で酸化グラフェンシートを挟むと電極と酸化グラフェンシート6のエネルギー準位の模式図は図3のようになり、この構成で電界印加することで、酸化グラフェン内部に電荷再結合による励起状態を形成させ、効率的にグラフェン化させることができると考えた。
 この酸化グラフェンシート6の厚さ方向の電界印加による還元の推定メカニズムを以下にさらに詳しく説明する。図4は、酸化グラフェンシート6の陽極側における正孔の生成を表した模式図である。
 まず酸化グラフェンシート6に電界をかけると、陽極との酸化グラフェンのHOMOの準位差Bが小さいため、陽極からキャリアの注入が起こる。つまり、酸化グラフェンから電子が陽極に注入される。すなわち、陽極から正孔(ラジカルカチオン)が注入される。
 陽極及び陰極と酸化グラフェンの準位が図4の左図のような位置関係にある場合は、陰極と酸化グラフェンのLUMO準位差Aの方が、陽極と酸化グラフェンのHOMO準位の差Bよりも大きくなるため、電極(陰極)からLUMO準位への電子注入が起こる前に、ラジカルカチオンが陰極近傍にまで拡散していくと考えられる。
 陽極側付近で生じたラジカルカチオン(正孔)は、直流電源から印加された電圧により、図では右方向(陽極側)から左方向(陰極側)へと移動していく(図5参照。)。
 もちろん陰極でも電極(陰極)の準位と、酸化グラフェンのLUMOのエネルギー準位差以上の電圧をかけることにより、酸化グラフェンの陰極側のLUMO準位に電子が注入される(図6参照。)。
 この時、先に説明したように、陰極近傍までラジカルカチオンが存在しているために、その部位でキャリア(ラジカルアニオンとラジカルカチオン)の再結合が起こり、励起状態が形成され、この励起状態が効率的に酸化グラフェンの還元反応へと使われていくと考えられる(図7参照。)。なお、以下の図では簡略のため混合層を省略した。
 つまり、模式図のようなエネルギー準位を持つ酸化グラフェンにおいては、陰極側でまずキャリア再結合が起き、励起状態が形成されることで、酸化グラフェンが還元されグラフェンになり、グラフェン含有層2と酸化グラフェン含有層3が形成すると考えられる。
 このようにして、陰極側からグラフェンが形成していくが、前記のとおりグラフェンはオームの法則に従う導電体であるため、図8で示したように通電経時で還元されたグラフェンを含有するグラフェン含有層2が電極となり、さらに次の層が反応し、還元が陽極側へと進行していく。陰極側は導電性のグラフェン含有層2が徐々に厚くなる。
 この方式の特徴は、電界を印加しても、陽極に接している酸化グラフェンを含有する酸化グラフェン含有層3は、陽極に電子を出し続ける(陽極から正孔を注入し続ける)ため、常に酸化状態となり、還元されてグラフェンとなることはない。つまり、陽極に接している側は電気抵抗が高い層が残り、還元されたグラフェンを含有するグラフェン含有層2と、還元されない酸化グラフェンを含有する酸化グラフェン含有層3が同一のシートに形成されることになる。
 このような電荷再結合による励起エネルギーを用いた還元は、電極準位と酸化グラフェンのLUMO準位の電位差から、せいぜい数ボルトから十数ボルト程度で還元が進むことと、キャリア再結合方式を用いるために、3000℃加熱のような従来の燃焼方式に較べると約10分の1程度のエネルギー使用量で製造ができることが最大の利得である。
 また、この方式で作製したグラフェン積層体は、その製法上の特異性から陽極に接する、又は陽極近傍に存在する酸化グラフェン層は還元されないため、電気抵抗が高い酸化グラフェン層が、熱伝導性の高いグラフェン層と同時に形成できることが先進的であり、画期的な組成物となる。
 従来のグラファイトシートなどの熱拡散シートでは、グラファイト構造又はグラフェン構造を有するシート状組成物を作製するために、ポリイミドフィルムや酸化グラフェンシートを高温熱処理する必要があり、さらに絶縁性をもたせるために樹脂フィルムなどを後工程で貼り合わせる必要があったが、このようなコストのかかる操作が不要になることも産業利用上好適である。
 <グラフェン含有層>
 電界印加によって、酸化グラフェン中のエポキシ基、ヒドロキシ基、カルボニル基及びカルボキシ基などの酸素含有基が除去され、それとともに、酸化グラフェンに二重結合、π共役系が形成され、グラフェン構造が生成する。酸素含有基の除去は脱酸素、脱水、又は脱炭酸の形で進行していると考えられる。このような反応を本発明では還元と呼び、電界印加によって還元反応が進行して酸化グラフェンが還元されて形成された層を、グラフェン含有層と呼ぶ。本発明において、グラフェン含有層は酸素含有比率(原子%)が15原子%以下の層をいう。
 なお、本明細書において、グラフェン含有層は、単層のグラフェン又は2層以上100層以下の多層グラフェンを含むものである。単層グラフェンとは、π結合を有する1原子層の炭素分子のシートのことをいう。また、酸化グラフェンとは、上記グラフェンが酸化された化合物のことをいう。
 また、酸化グラフェンを還元してグラフェンを形成する場合、酸化グラフェンに含まれる酸素は全て脱離される訳でなく、一部の酸素はグラフェンに残存する。グラフェンに酸素が含まれる場合、酸素の割合は、XPS(X-ray Photoelectron Spectroscopy)で測定した場合にグラフェン積層体中の酸素含有比率が、0.1~15原子%の範囲内であり、好ましくは0.1~10原子%であり、より好ましくは0.1~3原子%以下の範囲内である。酸素含有比率が15原子%以下であると、汎用性の高い高熱伝導金属であるアルミニウムの熱伝導率を上回り、10原子%以下だと、汎用性の高い高熱伝導金属の中で最も熱伝導性が高い銅の性能を上回り、3原子%以下だと、1000W/(m・K)を超え、低エネルギーで作製することで、産業上特に価値がある。
 グラフェン含有層中に残存する酸素量は印加する電圧、反応時間等で調整することができる。印加する電圧は2~15Vの範囲内が好ましい。グラフェン含有層は良好な熱伝導層として機能する。
 グラフェン含有層の厚さは、熱輸送量の観点から10μm以上であることが好ましい。実際の熱拡散性能は、熱伝導率と膜厚に比例するため、10μm以上の一定の厚さが存在することが好ましい。近年のスマートフォンやタブレット用途における省スペースでの熱拡散用途の観点から60μm以下の薄膜が好ましい。
 <酸化グラフェン含有層>
 酸化グラフェン含有層は、酸化グラフェンシートの還元反応で陽極側に残る還元されなかった酸化グラフェンを含有する層である。本発明において、酸化グラフェン含有層は酸素含有比率(原子%)が24原子%以上の層をいう。
 酸化グラフェンシートに電圧印加し、グラフェン積層体を作製する際、陽極側部分で必ず還元されない酸化グラフェン層が残ることになる。低エネルギー印加でグラフェン積層体を作製できると同時に、電気抵抗の高い酸化グラフェン層の形成とともに、高電気抵抗層を同一シート内で形成させることができ、アルミニウム(236W/(m・K))や銅(401W/(m・K))の性能を超える高熱伝導で、同一積層体内に高抵抗層を含む構成は、産業上価値があり、1000W/(m・K)以上の高熱伝導で同一積層体内に高抵抗層を含む構成は、産業上さらに価値がある。
 (高電気抵抗層)
 一方の面に電気抵抗が高い還元されない酸化グラフェン層が残ることによって、この層に接している面では、電子部品のショートによる不具合を起こしにくい。
 もちろん用途によってはさらに絶縁層を貼り合わせてもよく、その際も酸化グラフェン層が存在する方が、絶縁層の厚さを薄くすることができ、産業上価値がある。
 <混合層>
 混合層は、前記酸化グラフェン含有層側から前記グラフェン含有層側に向けて厚さ方向に酸素含有比率(原子%)が連続的に減少する濃度勾配を有する混合層である。24原子%未満から15原子%超の領域まで連続的に濃度勾配を有している。このような濃度勾配を有することで、前述したように、酸化グラフェン含有層とグラフェン含有層が界面を有する場合と比べて界面熱抵抗が減少し、熱伝導性を良好にすることができる。
 その傾きは、酸素含有比率が0.1μm当たり、0.15~25.0原子%の範囲内の減少率で、酸素含有比率が24~50原子%の酸化グラフェン含有層の領域から、酸素含有比率が0.1~15原子%のグラフェン含有層の領域まで連続して減少する領域であることが好ましい。この傾きは、例えば、グラフェン積層体の酸化グラフェン含有層から、必要に応じ0.1μm厚ごとに剥離していったときの酸素含有比率(原子%)の測定から求めることができる。
 混合層の厚さは、0.2~5μmの範囲内であることが好ましい。
 電圧印加によって作製されたグラフェンシートの厚さ方向の酸素含有比率(原子%)の分布は、グラフェンシートを粘着テープでへき開、剥離していき、都度XPSで酸素含有比率とそのときの厚さを計測することで明らかにすることができる。電圧や印加時間によって、濃度勾配の差はあるものの、酸化グラフェンの還元された層と、還元されていない層は明白に境界があるわけではなく、徐々に変化している。この状態によって、電子部品の発熱が厚さ方向に伝わる際の界面熱抵抗が少なく、放熱性で優れた材料となっていると考えられる。
 酸素含有比率の測定は以下のようにして行うことができる。
 <酸素含有比率と各層の厚さの測定>
 グラフェン積層体の酸素含有比率(原子%)はX-ray Photoelectron Spectroscopy(以下、XPSともいう。)で測定することができ、O/(C+O)原子%で表される値である。本発明の実施例で用いた酸化グラフェンの酸素含有比率は約24、50原子%であるが、用途によって、また分散状態に不具合が生じない範囲で、酸化反応の条件を変え、酸素含有比率を調整してもよい。
 粘着テープを用いて、陽極側から1μm厚ごとに剥離していき、都度XPSで酸素含有比率とそのときの厚さを計測することにより厚さを横軸、酸素含有比率を縦軸にした酸素含有比率(原子%)のXPSプロファイルから読み取ることができる。また、必要に応じ0.1μmごとに剥離して、都度酸素含有比率を測定することで、混合層の厚さを正確に求めることができる。
 具体的には酸化グラフェン含有層の酸素含有比率は、陽極から1μmごとに剥離したとき、酸素含有比率が24%に達するまでの厚さと、それまでの酸素含有比率の算術平均値とから算出することができる。
 グラフェン含有層も同様にして、1μmごとに剥離していったとき、酸素含有比率が15%に減少してから、陰極に接していた面に達するまでの厚さから求めることができる。
 混合層は、上記のようにして測定した酸化グラフェン含有層とグラフェン含有層の中間の層として厚さを求めることができる。
 本発明において、それぞれの層の酸素含有比率は、上記のようにして求めた1μmごとの酸素含有比率の算術平均値とする。層の厚さが2μm以下の場合、酸素含有比率は0.1μm剥離していくごとにXPSによる酸素含有比率(原子%)を測定したデータをもとに層の酸素含有比率を求めることができる。
 <電極>
 電極としては、金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、銅、アルミニウム、銀、白金、金、鉄、マグネシウム、などの金属、ステンレス、真鍮などの合金、グラファイトなどの炭素材料や、インジウムチンオキシドなどの無機半導体材料などが挙げられる。
 《グラフェン積層体の物性》
 <熱伝導率>
 放熱性能を表す物理量として熱伝導率がある。熱伝導率(W/(m・K))は熱拡散率(m/s)、比熱容量(J/kg・K)、密度(kg/m)の積で表される。熱拡散率、比熱容量、密度をそれぞれ測定することで、熱伝導率を算出できる。
 <放熱性能>
 高い熱伝導率を有する汎用性の金属の性能は、アルミニウムで300Kの温度で236W/(m・K)、銅で401W/(m・K)である。したがって、アルミニウムや銅を超える熱伝導率を有し、かつ安価に作ることができれば、産業上価値がある。さらに、1000W/(m・K)以上の熱伝導率を有する部材を提供するためには、現状、約3000℃付近の焼結によってグラファイトシートを作製するしかなく、本発明の、低エネルギーで作製することができ、1000W/(m・K)以上の熱伝導率を有する部材は、産業上特に価値がある。
 <熱拡散シート性能>
 それぞれの電子部品において、動作時の最高発熱量に対して、電子部品が故障しないための放熱すべき熱量が存在する。熱伝導率は、単位長さあたりに1℃の温度勾配があるときに、単位断面積を通過する熱量であるため、シートの面積が一定であれば実際に輸送される熱量は熱伝導率と厚さに比例する。グラフェン含有層の熱伝導率と厚さを調整することで、電子部品が故障しないための適切な放熱を行うことができる。
 《製造方法》
 本発明のグラフェン積層体を製造するグラフェン積層体の製造方法は、酸化グラフェンシートの両面から電圧を印加することにより、当該酸化グラフェンシートの厚さ方向において、酸化グラフェンを部分的に還元して、グラフェン含有層と、グラフェンと酸化グラフェンとの混合層と、酸化グラフェン含有層とからなる積層体を形成し、かつ、当該混合層が、前記酸化グラフェン含有層側から前記グラフェン含有層側に向けて厚さ方向に酸素含有比率(原子%)が連続的に減少する濃度勾配を有するように制御することを特徴とする。
 <酸化グラフェン溶媒分散体>
 酸化グラフェンは、グラファイト、又は多層グラフェンを強酸化剤で酸化することによって、グラフェン粒子の面上や縁にエポキシ基、ヒドロキシ基、カルボニル及びカルボキシ基などの酸素含有基を付与し、シート作製に必要な溶媒分散性をもたせることができる。酸化グラフェン溶媒分散物はHummers法、又はそれを改良したModified Hummers法で、公知の文献に基づいて作製することができる。溶媒は酸化グラフェンの分散性の観点から、水が最も汎用的だが、酸化グラフェンの凝集や、作製されたシートの膜質に関して不具合が生じない範囲で有機溶媒を用いることもできる。酸化グラフェン作製の公知文献としては、例えば、W.S.Hummers.,Journal of American Chemistry (1958)1339、M.Hirata.,Carbon 42(2004)2929などが挙げられる。
 <酸化グラフェンシートの作製>
 酸化グラフェンシートは、酸化グラフェン溶媒分散体をある一定の厚さで塗布し、溶媒を乾燥させることで作製することができる。一定の厚さで塗布し、乾燥させることができれば、膜質に不具合が生じない範囲でいかなる塗布方法を用いてもよい。例えば、本発明の実施例におけるキャスト製膜に加えて、濾過製膜、ディップコート、スピンコート、スプレー塗布などがある。また、酸化グラフェンシートはガラス基板や樹脂基材に塗布することで、剥離することができる。酸化グラフェンシートが剥離できる範囲で、基板や基材にはいかなる材料を用いてもよい。
 酸化グラフェンシートの厚さは、基板からの剥離時に生じる張力に耐えるための強度を保つ観点から、10μm以上であることが好ましい。また、酸化グラフェン溶媒分散体の濃度や、製膜時の酸化グラフェン溶媒分散体の厚さを大きくすることで、酸化グラフェンシートの厚さを大きくすることができるが、濃度を上げることによる酸化グラフェンの凝集や、シートの膜面の平滑性の観点から通常100μm以下の範囲内であることが好ましい。また酸化グラフェンシート中の酸化グラフェンの含有量は80~100質量%であることが好ましい。好ましくは、酸化グラフェンシートは酸化グラフェンのみからなることである。
 <添加物>
 還元反応の活性化エネルギーをさらに下げる目的で、公知の還元剤を酸化グラフェンシートに添加してもよい。例えば、公知文献(C.K.Chua.,Chemical Society Reviews 43(2014)291)に記載の還元剤などが挙げられる。添加物は例えば、酸化グラフェン溶媒分散体の段階で混ぜ、製膜することで、酸化グラフェンシートに添加することができる。また、分散状態に不具合が生じない範囲で、酸化グラフェン溶媒分散体に還元剤を添加し、撹拌、適切に加温、反応時間を調整することで、分散体の状態で酸化グラフェンの酸素含有比率を調整してもよい。
 <電界印加>
 剥離した酸化グラフェンシートを電極で両面を挟むことで膜全体に電界印加することができる。膜圧方向に電極で挟むことがきれば、電極はいかなる形態であってもよい。例えば、単に金属板で挟んで電界印加してもよいし、ロール状の電極を二つ用意し、シートを、ロール電極間を圧着し、搬送させながら電界印加してもよい。また電極は金属や合金に加えて、ITOなどの無機酸化物、炭素材料など、グラフェン化に不具合が生じない限り、いかなる電極材料を用いてもよい。
 《用途》
 本発明のグラフェン積層体は、低エネルギーで、1回の電界印加で高熱伝導層と高電気抵抗層を有し、かつ、高熱伝導層と高電気抵抗層の境界が、明確な界面ではなく濃度勾配を有しているため、電子部品などから発生した熱を効果的に伝えることができる。また、安価に製造することができ、熱拡散シートに好ましく適用することができる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 〔実施例1〕
 《グラフェン積層体の作製》
 〈グラフェン積層体1の作製〉
 (酸化グラフェン水分散体1の調製)
 東京化成工業(株)のグラフェンナノプレートレット(厚さ6~8nm、幅5μm)10g、硝酸ナトリウム7.5gをフラスコに入れ、そこに濃硫酸621gを加えた。フラスコを氷浴につけ、撹拌しながら、過マンガン酸カリウム45gを溶液温度が20℃を超えないように少量ずつ加えた。その後、室温に戻し、5日間撹拌した後、そこに、1Lの5質量%硫酸を加え1時間撹拌した。さらに、そこに30質量%の過酸化水素水30gを加え、1時間撹拌した。硫酸の濃度が3質量%、過酸化水素水の濃度が0.5質量%となるように調整した混合溶液1Lを加え希釈した。この溶液を、遠心分離(5000rpm、15分)し、上澄みを除去、同様の混合溶液を加え、遠心分離を繰り返し10回行った。同様の遠心分離を純水で10回行い、10回目で上澄みを捨てた後、250mLの純水を加え酸化グラフェン水分散体1を作製した。
 (酸化グラフェン水分散体2の調製)
 過マンガン酸カリウムを加えた後14日間撹拌したこと以外は、酸化グラフェン水分散体1と同様に作製した。
 (酸化グラフェンシートの作製)
 4gの酸化グラフェン水分散体1をガラス基板に貼り付けた25μmのPET(ポリエチレンテレフタレート)フィルム上に0.75mmのギャップに調整したアプリケーターで塗布した。50℃で10時間乾燥させた後、PETフィルムから剥離し、厚さ20.7μmの酸化グラフェンシートを得た。
 (酸化グラフェンシートの部分還元)
 この酸化グラフェンシートを2枚の100μm銅箔板で挟み、プレス機を用いて10MPaの圧力をかけながら、2枚の銅箔板間に12Vの電圧を1時間印加し、グラフェン積層体1を作製した。
 〈グラフェン積層体2~8の作製〉
 表1に記載の電圧と印加時間を変更した以外は、グラフェン積層体1と同様に作製し、グラフェン積層体2~8を得た。
 〈グラフェン積層体9~16の作製〉
 酸化グラフェン水分散体1を塗布する際の、アプリケーターのギャップを1.5mmに、また、電圧、印加時間を表1に記載の条件に変更した以外はグラフェン積層体1と同様に作製し、グラフェン積層体9~16を得た。
 〈グラフェン積層体17~24の作製〉
 酸化グラフェン水分散体1を塗布する際の、アプリケーターのギャップを2.25mmに、また、電圧、印加時間を表1に記載の条件に変更した以外はグラフェン積層体1と同様に作製し、グラフェン積層体17~24を得た。
 〈グラフェン積層体25~32の作製〉
 酸化グラフェン水分散体2を使用し、また、電圧、印加時間を表2に記載の条件に変更した以外は、グラフェン積層体1と同様に作製し、グラフェン積層体25~32を得た。
 〈グラフェン積層体33~40の作製〉
 酸化グラフェン水分散体2を使用し、酸化グラフェン水分散体2を塗布する際の、アプリケーターのギャップを1.5mmに、また、電圧、印加時間を表2に記載の条件に変更した以外はグラフェン積層体1と同様に作製し、グラフェン積層体33~40を得た。
 〈グラフェン積層体41~48の作製〉
 酸化グラフェン水分散体2を使用し、酸化グラフェン水分散体2を塗布する際の、アプリケーターのギャップを2.25mmに、また、電圧、印加時間を表2に記載の条件に変更した以外はグラフェン積層体1と同様に作製し、グラフェン積層体41~48を得た。
 〈グラフェン積層体の酸素含有比率(原子%)の測定〉
 得られたグラフェン積層体1の、グラフェン含有層の酸素含有比率(原子%)を以下に述べる方法で測定したところ、酸素含有比率が24.6原子%から1.2原子%まで減少しており、還元が進行していることを確認した。また、酸化グラフェン含有層をXPSで同様に測定したところ、酸素含有比率が24.7原子%と還元が進行していないことを確認した。
 グラフェン積層体1を粘着テープ(3M、スコッチ粘着テープ)によって、陽極に接していた面から1μmごとにへき開、剥離していき、XPSで測定し、酸素含有比率が24.0%に達するまでの厚さを求め、これを酸化グラフェン含有層の厚さとした。同様にへき開、剥離を進め、酸素含有比率が15%に減少してから、陰極に接していた面に達するまでの厚さをグラフェン含有層とした。また、それぞれの1μmごとのXPS測定値の酸素含有比率の算術平均値から酸化グラフェン含有層及びグラフェン含有層の酸素含有比率を求めた。
 層の厚さが2μm以下の場合、酸素含有比率は0.1μm剥離していくごとにXPSによる酸素含有比率(原子%)を測定したデータをもとに層の酸素含有比率を求めた。
 また、混合層と、グラフェン含有層又は酸化グラフェン含有層の境界部分においては、0.1μm剥離していくごとにXPSによる酸素含有比率(原子%)を測定していき、それぞれの層の厚さを測定した。
 グラフェン積層体2~48について同様にへき開・剥離し、表1及び表2に記載の混合層のそれぞれの厚さに渡って、酸化グラフェン含有層の酸素含有比率からグラフェン含有層の酸素含有比率まで減少していることを確認した。
 また、XPS測定条件は以下のとおりである。
 アルバック・ファイ株式会社製のQuanteraSXMを用いて測定を行った。測定条件としてはX線源として、単色化したAl-Kα線を用い、分光器は清浄化した銀のAg5/2ピークを測定した際のピーク半値幅が0.5eV以下となるような条件で設定し、測定を行った。分光器の較正はISO15472に従って行った。
 〈表面抵抗率の測定〉
 グラフェン積層体1~48を23℃相対湿度55%の環境下で24時間静置した後、酸化グラフェン含有層側の表面抵抗率を電気抵抗率計測器(三菱化学アナリテック社製、ハイレスタUP、MCP-HT450)で測定した。その結果を表1及び表2に示す。グラフェン積層体1~48について電気抵抗の高い層が残ることを確認した。
 〈熱伝導率の測定〉
 上記作製したグラフェン積層体1~48において、酸化グラフェン含有層、混合層を粘着テープで剥離していき、除去し、グラフェン層の熱伝導率を測定した。前述したように熱伝導率は以下の式で表され、熱拡散率、比熱容量、密度をそれぞれ測定することで算出できる。
  熱伝導率=熱拡散率×比熱容量×密度
 熱拡散率は、アドバンス理工(株)のLaser Pit、比熱容量は、示差走査熱量計(DSC6220:(株)日立ハイテクノロジーズ製)、密度は、シートの質量と体積を測定し、温度23℃における熱伝導率を算出した。
 〈厚さの測定〉
 層の厚さは、ニコン社製デジマイクロMH-15Mで測定した。
 以上の結果を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 〔実施例2〕
 〈比較積層体1~48の作製〉
 グラフェン積層体1~48をそれぞれ、粘着テープで、剥離していき、酸化グラフェン含有層、混合層を除去し、残ったグラフェン含有層に対し、酸化グラフェン水分散体を表3に記載の倍率で希釈し、アプリケーターのギャップを0.75mmで塗布、50℃で10時間乾燥させることにより、本発明のグラフェン積層体1~48のそれぞれの酸化グラフェン含有層と同じ厚さの酸化グラフェン含有層を設けた。この積層体を比較積層体1~48とした。なお、比較積層体1~24の作製には、酸化グラフェン水分散体1を用い、比較積層体25~48には、酸化グラフェン水分散体2を用いた。
Figure JPOXMLDOC01-appb-T000003
 〈熱拡散性の評価〉
 次に、本発明のグラフェン積層体の熱拡散性を以下のように評価した。グラフェン積層体1~48を縦1cm、横3cmに切り出し、試験片の一方の端、縦1cm、横1cmの領域において、酸化グラフェン含有層側の面を、熱伝導シート(タイカ(株)、αGEL、COH-4000LVC、1mm)を介してホットプレートに貼りつけた。ホットプレートを80℃に昇温させ、1分後、試験片のヒーターと接している領域とは反対側の、もう一方の端、縦1cm、横1cmの領域の中心部を、グラフェン含有層側から非接触温度計を用いて、温度を測定し、本発明のグラフェン積層体1~48の熱拡散性を評価した。また、上記と同様に比較積層体1~48の熱拡散性を評価した。
 その結果を図9A~図9Cに示す。黒色の棒グラフ、白抜きの棒グラフがそれぞれ、本発明、比較例である。横軸の番号はそれぞれ本発明のグラフェン積層体1~48、比較積層体1~48に対応した積層体の番号である。図9A~図9Cにあるように、グラフェン含有層に、単に酸化グラフェン層を積層塗布した比較積層体の測定温度と比較して、本発明のグラフェン積層体は、ヒーターに接した箇所から離れた位置でも温度が高く、ヒーターの熱をより伝えることができており、熱拡散性能が高いことがわかる。
 以上、これらの結果を統括すると、高熱伝導性のグラフェン含有層、高電気抵抗性の酸化グラフェン含有層、また、その間に前記酸化グラフェン含有層からグラフェン含有層まで酸素含有比率が連続的に減少する混合層を有する本発明のグラフェン積層体は、熱拡散シートとして好ましい形態であり、高い放熱性を有する。さらに、酸化グラフェンシート膜厚方向に電界を加えることによって、一回の処理で作製することができ、簡便に低エネルギーで作製することができる。
 本発明のグラフェン積層体は、良好な熱伝導性を示し、電子部品などから発生した熱を効果的に放熱する、熱拡散シートに好ましく適用することができる。また、安価に製造することができきる。
 1 グラフェン積層体
 2 グラフェン含有層
 3 酸化グラフェン含有層
 4 放熱の方向
 5 混合層
 6 酸化グラフェンシート
 H 熱源(電子部品)
 A 陰極と酸化グラフェンのLUMOの準位差
 B 陽極と酸化グラフェンのHOMOの準位差

Claims (8)

  1.  酸化グラフェン含有層とグラフェン含有層とを有するグラフェン積層体であって、前記酸化グラフェン含有層と前記グラフェン含有層との間に、前記酸化グラフェン含有層側から前記グラフェン含有層側に向けて厚さ方向に酸素含有比率(原子%)が連続的に減少する濃度勾配を示す混合層を有することを特徴とするグラフェン積層体。
  2.  前記混合層の厚さが、0.2~5μmの範囲内であることを特徴とする請求項1に記載のグラフェン積層体。
  3.  前記グラフェン含有層の厚さと酸素含有比率が、それぞれ、10~60μm、0.1~15原子%の範囲内であり、前記酸化グラフェン含有層の厚さと酸素含有比率が、それぞれ、0.5~10μm、24~50原子%の範囲内であることを特徴とする請求項1又は請求項2に記載のグラフェン積層体。
  4.  前記グラフェン含有層の酸素含有比率が、0.1~10原子%であることを特徴とする請求項3に記載のグラフェン積層体。
  5.  前記グラフェン含有層の酸素含有比率が、0.1~3原子%であることを特徴とする請求項3に記載のグラフェン積層体。
  6.  前記酸化グラフェン含有層を有する面の表面抵抗率が1×10~1×10Ω/sqの範囲内であることを特徴とする請求項1から請求項5までのいずれか一項に記載のグラフェン積層体。
  7.  前記グラフェン含有層が、酸化グラフェンシートの厚さ方向の部分還元体であることを特徴とする請求項1から請求項6までのいずれか一項に記載のグラフェン積層体。
  8.  請求項1から請求項7までのいずれか一項に記載のグラフェン積層体を製造するグラフェン積層体の製造方法であって、酸化グラフェンシートの両面から電圧を印加することにより、当該酸化グラフェンシートの厚さ方向において、酸化グラフェンを部分的に還元して、グラフェン含有層と、グラフェンと酸化グラフェンとの混合層と、酸化グラフェン含有層とからなる積層体を形成し、かつ、当該混合層が、前記酸化グラフェン含有層側から前記グラフェン含有層側に向けて厚さ方向に酸素含有比率(原子%)が連続的に減少する濃度勾配を有するように制御することを特徴とするグラフェン積層体の製造方法。
PCT/JP2017/020738 2016-06-14 2017-06-05 グラフェン積層体とその製造方法 WO2017217266A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016117600A JP2019135196A (ja) 2016-06-14 2016-06-14 グラフェン積層体とその製造方法
JP2016-117600 2016-06-14

Publications (1)

Publication Number Publication Date
WO2017217266A1 true WO2017217266A1 (ja) 2017-12-21

Family

ID=60664111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020738 WO2017217266A1 (ja) 2016-06-14 2017-06-05 グラフェン積層体とその製造方法

Country Status (3)

Country Link
JP (1) JP2019135196A (ja)
TW (1) TW201815564A (ja)
WO (1) WO2017217266A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019189520A (ja) * 2018-04-23 2019-10-31 國立臺北科技大學 グラフェン材料の製作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110227000A1 (en) * 2010-03-19 2011-09-22 Ruoff Rodney S Electrophoretic deposition and reduction of graphene oxide to make graphene film coatings and electrode structures
JP2012224526A (ja) * 2011-04-21 2012-11-15 Hiroshima Univ グラフェンの製造方法
JP2013035739A (ja) * 2011-07-11 2013-02-21 National Institute Of Advanced Industrial Science & Technology 酸化グラフェン構造体、その製造方法、およびそれらによる電界効果トランジスタ作成工程
JP2013151398A (ja) * 2012-01-26 2013-08-08 Dowa Electronics Materials Co Ltd 酸化グラフェンの還元方法およびその方法を利用した電極材料の製造方法
WO2015190432A1 (ja) * 2014-06-12 2015-12-17 東レ株式会社 積層体およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110227000A1 (en) * 2010-03-19 2011-09-22 Ruoff Rodney S Electrophoretic deposition and reduction of graphene oxide to make graphene film coatings and electrode structures
JP2012224526A (ja) * 2011-04-21 2012-11-15 Hiroshima Univ グラフェンの製造方法
JP2013035739A (ja) * 2011-07-11 2013-02-21 National Institute Of Advanced Industrial Science & Technology 酸化グラフェン構造体、その製造方法、およびそれらによる電界効果トランジスタ作成工程
JP2013151398A (ja) * 2012-01-26 2013-08-08 Dowa Electronics Materials Co Ltd 酸化グラフェンの還元方法およびその方法を利用した電極材料の製造方法
WO2015190432A1 (ja) * 2014-06-12 2015-12-17 東レ株式会社 積層体およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
G. LIU ET AL.: "Investigation of conductivity and catalytic ability at an electrochemically reduced graphene oxide film modified electrode", J. MATER. SCI. MATER. ELECTRON., vol. 26, 2015, pages 943 - 949, XP035439979 *
Q. ZHANG ET AL.: "Anomalous Capacitive Behaviors of Graphene Oxide Based Solid-State Supercapacitors", NANO LETT., vol. 14, 2014, pages 1938 - 1943, XP055450921 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019189520A (ja) * 2018-04-23 2019-10-31 國立臺北科技大學 グラフェン材料の製作方法

Also Published As

Publication number Publication date
TW201815564A (zh) 2018-05-01
JP2019135196A (ja) 2019-08-15

Similar Documents

Publication Publication Date Title
CN110182793B (zh) 一种高导热石墨烯散热片的制备方法
JP5583097B2 (ja) 透明電極積層体
Huang et al. Enhanced reduction of graphene oxide on recyclable Cu foils to fabricate graphene films with superior thermal conductivity
Zhou et al. Use of BN-coated copper nanowires in nanocomposites with enhanced thermal conductivity and electrical insulation
TWI646047B (zh) 石墨成形體之製造方法
Seki et al. Freestanding bilayers of drop-cast single-walled carbon nanotubes and electropolymerized poly (3, 4-ethylenedioxythiophene) for thermoelectric energy harvesting
Wang et al. Through-thickness thermal conductivity enhancement of graphite film/epoxy composite via short duration acidizing modification
Li et al. Enhancement of the thermal conductivity of polymer composites with Ag–graphene hybrids as fillers
Gogoi et al. Electric field induced tunable memristive characteristics of exfoliated graphene oxide embedded polymer nanocomposites
KR20100004399A (ko) 저차원 소재 고전도성 전도막
CN110255538A (zh) 一种石墨烯散热片的制备方法
Li et al. Improvement of the thermal transport performance of a poly (vinylidene fluoride) composite film including silver nanowire
Yang et al. One step synthesis of a hybrid Ag/rGO conductive ink using a complexation–covalent bonding based approach
WO2018061828A1 (ja) グラファイトシート、熱拡散シート及びグラファイトシートの製造方法
JPWO2017122808A1 (ja) 熱電変換素子用フィルムの製造方法
WO2017217266A1 (ja) グラフェン積層体とその製造方法
Naruse et al. Effect of SiC formation temperature on improvement in thermal conductivity of electrodeposited SiC-coated diamond/Cu composite plating
Tao et al. Enhancement of in-plane thermal conductivity of flexible boron nitride heat spreaders by micro/nanovoid filling using deformable liquid metal nanoparticles
CN108486568B (zh) 一种用于导热的大鳞片石墨烯/金属异质结复合薄膜及其制备方法
Jabari et al. Laser heat treatment of aerosol-jet additive manufactured graphene patterns
Selvaraj et al. Covalent functionalization of graphene for the enhancement of thermophysical properties in nanofluids
Lin et al. Aligned graphene oxide nanofillers: an approach to prepare highly thermally conductive and electrically insulative transparent polymer composites
Di Siena et al. Study of the electroplating process parameters on the electrical resistance of an aluminium alloy with a Cu-graphene-based coating
Yu et al. Silver-based thermal interface materials with low thermal resistance
Liu et al. High efficient photothermal energy conversion of topologic insulator Bi2Se3 nanosheets thin film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP