WO2017217248A1 - Power converter unit - Google Patents

Power converter unit Download PDF

Info

Publication number
WO2017217248A1
WO2017217248A1 PCT/JP2017/020540 JP2017020540W WO2017217248A1 WO 2017217248 A1 WO2017217248 A1 WO 2017217248A1 JP 2017020540 W JP2017020540 W JP 2017020540W WO 2017217248 A1 WO2017217248 A1 WO 2017217248A1
Authority
WO
WIPO (PCT)
Prior art keywords
power converter
capacitor
voltage
switch element
capacitive
Prior art date
Application number
PCT/JP2017/020540
Other languages
French (fr)
Japanese (ja)
Inventor
和則 津田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201790000939.5U priority Critical patent/CN209267450U/en
Publication of WO2017217248A1 publication Critical patent/WO2017217248A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to a power converter unit in which two power conversion units are connected in cascade.
  • the power supply capability of a capacitive power converter such as a switched capacitor (also referred to as a charge pump circuit) depends on the product of the drive frequency, the capacitance of the capacitor, and the voltage applied to the capacitor.
  • a capacitive power converter decreases. This decrease is mainly caused by capacitor overdischarge. In such a state, an inrush current corresponding to the voltage drop occurs at the start of the charging period for the capacitor. This inrush current causes noise and has an adverse effect such as destruction of the element.
  • Patent Document 1 discloses a capacitive power converter including a precharge circuit for preventing an inrush current to a capacitor.
  • the precharge circuit described in Patent Literature 1 includes a switch element connected to each capacitor and a resistor. Then, by turning on the switch element, an inrush current to the capacitor is prevented.
  • the capacitor charging time is determined by the size of the resistor. For this reason, if the resistance value is increased in order to prevent an inrush current when the power supply voltage is high, it takes time to precharge the capacitor. On the other hand, if the resistance value is reduced to shorten the precharge time, inrush current cannot be prevented when the power supply voltage is high.
  • an object of the present invention is to provide a safe power converter unit that can prevent an inrush current without taking time.
  • a power converter unit includes an input unit to which a DC voltage is input, an output unit to which a DC voltage is output, a plurality of capacitors connected in parallel to the input unit, and a plurality of capacitive switching elements And a capacitive side control unit that controls the switching of the plurality of capacitive side switch elements, and changes the state of the plurality of capacitive side switch elements to charge and discharge the plurality of capacitors to increase and decrease the voltage.
  • a capacitive power converter that compresses, and is connected to the input unit or the output unit, and includes an inductor, an inductive side switch element, and an inductive side control unit that performs switching control of the inductive side switch element.
  • An inductive power converter that switches the state of the inductive side switch element and discharges energy to the inductor, and a constant current source.
  • The supplies a constant current from the constant current source to the connection point of said plurality of capacitors, or, characterized in that it comprises a charging circuit for interrupting the supply.
  • inrush current to the capacitor can be prevented by charging the capacitor of the capacitive power converter with a constant current by the charging circuit. At this time, since a constant current is supplied to a plurality of capacitors connected in parallel, it is possible to charge each capacitor in a lump, and charging does not take time.
  • the power converter unit includes a voltage detection unit that detects a charging voltage to any of the plurality of capacitors, and an abnormality determination unit that compares the detection value detected by the voltage detection unit with a target value to determine an abnormality. And may be provided.
  • the abnormality determination unit may operate within a predetermined time after the capacitive power converter is activated.
  • the power converter unit may include a power conversion limiting unit that limits power conversion by the capacitive power converter when the abnormality determination unit determines that an abnormality has occurred.
  • the drive of the power converter unit can be stopped when there is an abnormality.
  • inrush current to the capacitor can be prevented by charging the capacitor of the capacitive power converter with a constant current by the charging circuit. At this time, since a constant current is supplied to a plurality of capacitors connected in parallel, it is possible to charge each capacitor in a lump, and charging does not take time.
  • FIG. 1 is a block diagram of a power converter unit according to the first embodiment.
  • FIG. 2 is a circuit diagram of the power converter unit according to the first embodiment.
  • FIGS. 3A and 3B are diagrams for explaining switching control in the capacitive power converter.
  • FIG. 4 is a diagram for explaining the operation at the time of precharging by the charging circuit.
  • FIG. 5 is a circuit diagram of the charging circuit.
  • FIG. 6 is a diagram illustrating the output of each element of the failure determination circuit when the capacitive power converter is normal.
  • FIG. 7 is a diagram illustrating the output of each element of the failure determination circuit when the capacitive power converter is abnormal.
  • FIG. 8 is a circuit diagram of another example of the charging circuit.
  • FIG. 1 is a block diagram of a power converter unit according to the first embodiment.
  • FIG. 2 is a circuit diagram of the power converter unit according to the first embodiment.
  • FIGS. 3A and 3B are diagrams for explaining switching control in the capacitive power converter.
  • FIG. 9 is a block diagram of a failure determination unit that performs abnormality determination of the capacitive power converter.
  • FIG. 10 is a circuit diagram of the capacitive power converter according to the second embodiment.
  • FIG. 11 is a diagram for explaining the operation at the time of precharging by the charging circuit.
  • FIG. 1 is a block diagram of a power converter unit 1 according to this embodiment.
  • the power converter unit 1 includes an input unit including a pair of terminals In1 and In2, and an output unit including a terminal Out1 and a terminal Out2.
  • a DC power supply is connected to the terminals In1 and In2.
  • a load is connected to the terminal Out1 and the terminal Out2.
  • the power converter unit 1 steps down a DC voltage V1 (hereinafter referred to as an input voltage V1) input from the terminal In1 and the terminal In2 to a voltage V3 (hereinafter referred to as an output voltage V3), and outputs the voltage from the terminal Out1 and the terminal Out2. .
  • V1 hereinafter referred to as an input voltage V1
  • V3 hereinafter referred to as an output voltage V3
  • the power converter unit 1 includes a capacitive power converter 10, an inductive power converter 20, a charging circuit 30, a failure determination circuit 40, and a control circuit 50.
  • the capacitive power converter 10 and the inductive power converter 20 are cascade-connected between the terminal In1 and the terminal In2 and the terminal Out1 and the terminal Out2 so that the capacitive power converter 10 is on the input side. .
  • Capacitive power converter 10 steps down input voltage V1 to voltage V2 (hereinafter referred to as intermediate voltage V2).
  • the capacitive power converter 10 is a switched capacitor, for example, and steps down the input voltage V1 by switching the switch element to charge and discharge the capacitor.
  • the inductive power converter 20 receives the intermediate voltage V2 and steps down the intermediate voltage V2 to the output voltage V3.
  • the output voltage V3 is supplied to a load connected to the terminal Out1 and the terminal Out2.
  • the charging circuit 30 has a constant current source.
  • the charging circuit 30 charges the capacitor of the capacitive power converter 10 immediately after the power converter unit 1 is started and before the step-down operation by the capacitive power converter 10 and the inductive power converter 20 is performed.
  • this charging is referred to as “pre-charging”.
  • the capacitor of the capacitive power converter 10 is not charged. In this state, when a capacitor is charged from a DC power source connected to the terminal In1 and the terminal In2, an inrush current flows through each capacitor, and each capacitor or switch element may be damaged.
  • the charging circuit 30 interrupts the current flowing from the DC power source connected to the terminal In1 and the terminal In2 to the capacitive power converter 10. Then, the charging circuit 30 supplies a constant current to the capacitive power converter 10 from a constant current source that the charging circuit 30 has.
  • the charging voltage of the capacitor increases in proportion to the charging time. For this reason, immediately after the power converter unit 1 is activated, the charging circuit 30 charges the capacitor with a constant current, thereby preventing an inrush current from flowing into the capacitor of the capacitive power converter 10. As a result, failure of the capacitor can be prevented.
  • the failure determination circuit 40 determines whether or not the capacitive power converter 10 has failed. Failure determination circuit 40 detects the charging voltage of the capacitor of capacitive power converter 10 during the period of precharging by charging circuit 30 or after the end of precharging. Then, the failure determination circuit 40 compares the detected charging voltage with the target value to determine whether there is a failure.
  • the failure of the capacitive power converter 10 includes short-circuit breakdown or open breakdown of the capacitor, excess or insufficient capacity, formation of an unexpected current path, and the like.
  • the control circuit 50 detects the input voltage V1, the intermediate voltage V2, and the output voltage V3.
  • the control circuit 50 compares the intermediate voltage V2 and the output voltage V3 with each target voltage value, and outputs a command signal to the capacitive power converter 10 and the inductive power converter 20 according to the comparison result.
  • the capacitive power converter 10 and the inductive power converter 20 change the driving frequency, for example, according to the command signal.
  • the control circuit 50 stops driving the power converter unit when the failure determination circuit 40 determines that there is an abnormality.
  • the control circuit 50 is an example of the “power conversion limiting unit” according to the present invention.
  • FIG. 2 is a circuit diagram of the power converter unit 1 according to the present embodiment. 2, illustration of the control circuit 50 shown in FIG. 1 is omitted.
  • the capacitive power converter 10 has an input unit composed of a terminal 101 and a terminal 102 and an output unit composed of a terminal 103 and a terminal 104.
  • Terminal 101 is connected to terminal In1.
  • Terminal 102 is connected to terminal In2.
  • the terminal 103 is connected to a terminal 201 of the inductive power converter 20 described later.
  • the terminal 104 is connected to a terminal 202 of the inductive power converter 20 described later.
  • the capacitive power converter 10 includes a switch element S11, a switch element S12, a switch element S13, a switch element S14, a switch element S15, a switch element S16, a switch element S17, a capacitor C11, and a capacitor C12. And a capacitor C13 and a switching control circuit 111.
  • the switching control circuit 111 performs switching control of the switch elements S11 to S17.
  • the switching control circuit 111 is an example of the “capacitive side control unit” according to the present invention.
  • the switch elements S11 to S17 are examples of the “capacitive side switch element” according to the present invention.
  • the switch element S11 and the switch element S12 are connected in series between the terminal 101 and the terminal 103.
  • a capacitor C11 and a switch element S14 are sequentially connected in series to a connection point between the switch element S11 and the switch element S12.
  • the terminal 103 is connected in series with a switch element S16, a capacitor C12, and a switch element S15.
  • a switch element S13 is connected between a connection point between the capacitor C11 and the switch element S14 and a connection point between the switch element S16 and the capacitor C12. Further, the switch element S17 is connected between the connection point between the capacitor C12 and the switch element S15 and the terminal 103.
  • the capacitor C13 is connected between the terminal 103 and the terminal 104. Capacitor C11, capacitor C12, and capacitor C13 each have the same capacitance.
  • FIGS. 3A and 3B are diagrams for explaining switching control in the capacitive power converter 10. 3A and 3B, the charging circuit 30 is not shown.
  • the capacitive power converter 10 steps down the input voltage V1 of 3.0V to the intermediate voltage V2 of 1.0V.
  • the switching control circuit 111 turns on the switch element S11, the switch element S13, and the switch element S17 as shown in FIG.
  • the element S14, the switch element S15, and the switch element S16 are turned off.
  • the terminal 101 is connected to a series circuit of a capacitor C11, a capacitor C12, and a capacitor C13.
  • the capacitor C11, the capacitor C12, and the capacitor C13 are each charged with a voltage of 1.0V.
  • the switching control circuit 111 turns off the switch element S11, the switch element S13, and the switch element S17 as shown in FIG. 3B, and switches the switch element S12 and the switch element S14. Then, the switch element S15 and the switch element S16 are turned on.
  • the terminal 103 has a configuration in which a capacitor C11, a capacitor C12, and a capacitor C13 are connected in parallel. In this case, since the capacitor C11, the capacitor C12, and the capacitor C13 are each charged with a voltage of 1.0 V, an intermediate voltage V2 of 1.0 V is output from the terminal 103 and the terminal 104.
  • the input voltage V1 is stepped down to the intermediate voltage V2 by alternately switching between the first state of FIG. 3A and the second state of FIG. 3B.
  • the inductive power converter 20 includes an input unit including a terminal 201 and a terminal 202 and an output unit including a terminal 203 and a terminal 204.
  • Terminal 201 is connected to terminal 103 of capacitive power converter 10.
  • Terminal 202 is connected to terminal 104 of capacitive power converter 10.
  • the terminal 203 is connected to the terminal Out1.
  • Terminal 204 is connected to terminal Out2.
  • the inductive power converter 20 is a step-down converter.
  • Inductive power converter 20 includes switch element Q11, switch element Q12, inductor L1, capacitor C2, and driver 21.
  • the switch element Q11 is a p-type MOS-FET.
  • the switch element Q12 is an n-type MOS-FET.
  • the driver 21 performs switching control of the switch element Q11 and the switch element Q12.
  • Inductive power converter 20 turns on and off switch element Q11 and switch element Q12 to step down intermediate voltage V2 to output voltage V3.
  • the switch element Q11 and the switch element Q12 are examples of the “inductive side switch element” according to the present invention.
  • the driver 21 is an example of the “inductive side control unit” according to the present invention.
  • the power converter unit 1 steps down the input voltage V1 to the intermediate voltage V2 by the capacitive power converter 10. Then, the inductive power converter 20 further reduces the intermediate voltage V2 to the output voltage V3. That is, the power converter unit 1 steps down the voltage in two stages. Compared with the case where the input voltage V1 is stepped down to the output voltage V3 with only one power conversion unit, for example, the inductive power converter 20, the input / output at the capacitive power converter 10 and the inductive power converter 20 respectively. The voltage difference is small. For this reason, the power conversion loss in the power converter unit 1 can be reduced.
  • the charging circuit 30 includes a constant current source 31 and a switch element S31.
  • the constant current source 31 and the switch element S31 are connected in series. This series circuit is connected between the terminal In1 and a connection point between the switch element S11 and the capacitor C11.
  • the charging circuit 30 turns on the switch element S31 when starting up the power converter unit 1 and supplies a constant current to the capacitive power converter 10. Capacitor C11, capacitor C12, and capacitor C13 of capacitive power converter 10 are charged by this constant current.
  • FIG. 4 is a diagram for explaining the operation at the time of precharging by the charging circuit 30.
  • the charging circuit 30 When performing precharging, the charging circuit 30 turns on the switch element S31.
  • the switching control circuit 111 (see FIG. 2) of the capacitive power converter 10 turns on the switch element S12, the switch element S14, the switch element S15, and the switch element S16, and switches the switch element S11 and the switch element. S13 and the switch element S17 are turned off. Accordingly, the capacitor C11, the capacitor C12, and the capacitor C13 are configured to be connected in parallel to the charging circuit 30. That is, since a constant current is supplied from the charging circuit 30 to a connection point between the capacitor C11, the capacitor C12, and the capacitor C13 that are connected in parallel, the constant current is supplied to the capacitor C11, the capacitor C12, and the capacitor C13. Supplied at the same time.
  • the charging circuit 30 stops charging with a constant current when each of the capacitor C11, the capacitor C12, and the capacitor C13 is charged to a reference voltage that is a target value.
  • the capacitances of the capacitor C11, the capacitor C12, and the capacitor C13 are the same. Therefore, the same voltage is charged in each of the capacitor C11, the capacitor C12, and the capacitor C13.
  • FIG. 5 is a circuit diagram of the charging circuit 30.
  • FIG. 5 shows a simplified state of the capacitive power converter 10 at the time of precharging. That is, the capacitive power converter 10 turns on the switch element S12, the switch element S14, the switch element S15, and the switch element S16, and turns off the switch element S11, the switch element S13, and the switch element S17. It is in the state.
  • the charging circuit 30 includes a constant current source (constant current circuit) 31, a switch element S31, a switch element S32, a switch element S33, a comparator 32, and a reference voltage power supply 33.
  • the series circuit of the constant current source 31 and the switch element S32 and the switch element S33 are connected in parallel to form a current mirror circuit and connected to the terminal In1.
  • the switch element S31 is connected in series to the switch element S33.
  • the switch element S31 is an n-type MOS-FET, and the output of the comparator 32 is input to the gate and turned on / off.
  • the comparator 32 receives and compares the detection result of the charging voltage of the capacitor C11, the capacitor C12, and the capacitor C13 and the reference voltage from the reference voltage power source 33. Note that the charging voltages of the capacitor C11, the capacitor C12, and the capacitor C13 are the same. Therefore, by providing a voltage dividing circuit in parallel with the capacitor C13, the charging voltages of the capacitor C11, the capacitor C12, and the capacitor C13 can be detected. In the following description, it is expressed that the detection result of the charging voltage of the capacitor C13 is input to the comparator 32.
  • the comparator 32 outputs an H level signal when the charging voltage of the capacitor C13 is lower than the reference voltage, and outputs an L level signal when the charging voltage of the capacitor C13 is higher than the reference voltage. That is, when the charging voltage of the capacitor C13 is lower than the reference voltage, the switch element S31 is turned on. Thereby, a constant current is supplied to the capacitor C11, the capacitor C12, and the capacitor C13, and precharging is started. When the charging voltage of the capacitor C13 becomes higher than the reference voltage, the switch element S31 is turned off. As a result, the supply of constant current to the capacitor C11, the capacitor C12, and the capacitor C13 is cut off, and the precharge ends.
  • the capacitors C11, C12, and C13 are connected in parallel, and a constant current is supplied, so that it is possible to charge the capacitors all at once. For this reason, time is not required for charge.
  • the capacitor C11, the capacitor C12, and the capacitor C13 are connected in series and precharged, if a short circuit failure occurs in one capacitor, the voltage applied to the other capacitor increases, and the other capacitor also fails. There is a risk. For this reason, the voltage applied to each capacitor can be suppressed by connecting the capacitor C11, the capacitor C12, and the capacitor C13 in parallel. Further, when normal, the output voltage of the capacitive power converter 10 is the same as the charging voltage of each capacitor. Therefore, it is not necessary to provide a plurality of charging voltage detection circuits, and space can be saved.
  • the failure determination circuit 40 determines the failure of the capacitive power converter 10 by comparing the output voltage of the capacitive power converter 10 with a target value after the charging circuit 30 starts precharging. As described above, at the time of precharging, the capacitor C11, the capacitor C12, and the capacitor C13 are connected in parallel, and the respective capacitances are the same (may be different capacitances). That is, if the capacitive power converter 10 is normal, the output voltage of the capacitive power converter 10 is the same as the charging voltages of the capacitor C11, the capacitor C12, and the capacitor C13. Therefore, by detecting the output voltage of the capacitive power converter 10, an abnormality of the entire capacitive power converter 10 such as an abnormality of a plurality of capacitors or an abnormality of a plurality of switch elements can be determined.
  • the constant current supplied from the charging circuit 30 is known.
  • the capacitances of the capacitor C11, the capacitor C12, and the capacitor C13 of the capacitive power converter 10 are also known because they are design values or recommended values. Since the charging voltage of the capacitor increases in proportion to the charging time, the time until the target voltage is charged in the capacitor can be calculated in advance.
  • the failure determination circuit 40 determines the presence / absence of an abnormality based on whether the output voltage of the capacitive power converter 10 after the elapse of the calculated time from the start of precharge is within the range including the target value and its error. To do.
  • the determination range is a range of the reference voltage REFL or more and the reference voltage REFH or less.
  • the output voltage of the capacitive power converter 10 at the time of precharging is represented by VM.
  • the output voltage VM can be detected by providing a voltage dividing circuit of resistors R11 and R12 on the output side of the capacitive power converter 10.
  • the voltage dividing circuit of the resistor R11 and the resistor R12 is an example of the “voltage detection unit” according to the present invention.
  • the failure determination circuit 40 includes a comparator 41, a comparator 42, an AND gate 43, a NOT circuit 44, and an AND gate 45.
  • the failure determination circuit 40 is an example of the “abnormality determination unit” according to the present invention.
  • the detection voltage VMd of the output voltage VM of the capacitive power converter 10 is input to the inverting input of the comparator 41.
  • a reference voltage REFH is input to the non-inverting input of the comparator 41.
  • the detection voltage VMd of the output voltage VM of the capacitive power converter 10 is input to the non-inverting input of the comparator 42.
  • the reference voltage REFL ( ⁇ reference voltage REFH) is input to the inverting input of the comparator 42.
  • the AND gate 43 receives an output signal DETH from the comparator 41 and an output signal DETL from the comparator 42.
  • the NOT circuit 44 inverts the output signal DET of the AND gate 43.
  • the AND gate 45 receives the output signal DETX from the NOT circuit 44 and the clock counter CTR.
  • the clock counter CTR is a signal output from the counter 46.
  • the counter 46 counts the clock signal from the beginning of the precharge, and outputs an H level signal for a time corresponding to one clock when a predetermined time has elapsed.
  • the AND gate 45 outputs an H level signal when the capacitive power converter 10 has an abnormality.
  • the AND gate 45 outputs an L level signal when there is no abnormality in the capacitive power converter 10.
  • the position where the failure determination circuit 40 is connected can be changed as appropriate.
  • the failure determination circuit 40 may be connected to a connection point between the capacitor C11 and the switch element S12, a connection point between the capacitor C12 and the switch element S16, or the like.
  • FIG. 6 is a diagram showing the output of each element of the failure determination circuit 40 when the capacitive power converter 10 is normal.
  • the output voltage VM of the capacitive power converter 10 also increases in proportion to time.
  • the output voltage VM becomes the reference voltage REFL when the time T1 has elapsed since the start of precharge, and becomes the reference voltage REFH when the time T2 has elapsed.
  • the output voltage VM is lower than the reference voltage REFL and the reference voltage REFH until the time T1 elapses after the precharge is started.
  • the output signal DETH of the comparator 41 becomes H level
  • the output signal DETL of the comparator 42 becomes L level.
  • the output voltage VM is higher than the reference voltage REFL and lower than the reference voltage REFH until the time T2 elapses after the elapse of time T1 from the start of precharge.
  • the output signal DETH of the comparator 41 becomes H level
  • the output signal DETL of the comparator 42 becomes L level.
  • the output signal DET of the AND gate 43 becomes H level.
  • the output signal DETX of the NOT circuit 44 outputs an inverted signal of the signal DET. That is, the output signal DETX is at the L level during the period from time T1 to time T2.
  • the clock counter CTR is set to be input to the AND gate 45 during the period from the time T1 to the time T2.
  • the output signal DETX input to the AND gate 45 is at L level during the period from time T1 to time T2. Therefore, the output signal FLT of the AND gate 45 remains at the L level.
  • FIG. 7 is a diagram showing the output of each element of the failure determination circuit 40 when the capacitive power converter 10 is abnormal.
  • the inclination of the detection voltage VMd becomes gentler than in the case of FIG.
  • the detection voltage VMd becomes higher than the reference voltage REFL when the time T3 (> T2) has elapsed after the start of precharging.
  • the detection voltage VMd is lower than the reference voltage REFL and the reference voltage REFH until the time T3 elapses after the precharge is started.
  • the output signal DETH of the comparator 41 is at the H level
  • the output signal DETL of the comparator 42 is at the L level.
  • the output signal DET of the AND gate 43 becomes L level
  • the signal DETX becomes H level. In other words, during the period from time T1 to time T2, the signal DETX is at the H level. Therefore, a period in which the output signal FLT of the AND gate 45 is at the H level occurs.
  • an abnormality can be detected even when the slope of the detection voltage VMd is greater than by limiting the charge upper limit potential without stopping the charge upon completion of the charge.
  • the output signal FLT of the AND gate 45 is at the H level.
  • the lack of capacity can be easily detected from the point where the charge completion detection signal is earlier than expected.
  • a method of comparing the timing of the charging completion detection signal with the count number of the counter can be considered.
  • the timing of outputting the clock counter CTR, the values of the reference voltage REFL, the reference voltage REFH, and the like can be changed as appropriate.
  • the failure determination circuit 40 outputs an H level signal when the capacitive power converter 10 is abnormal.
  • the control circuit 50 does not drive the capacitive power converter 10. Thereby, it is possible to suppress the possibility that the abnormal power converter unit 1 continues to drive and causes further problems. Further, when there is an abnormality, the failure may be notified to the outside.
  • the power converter unit 1 steps down the input voltage V1 to the intermediate voltage V2 by the capacitive power converter 10. Then, the inductive power converter 20 further reduces the intermediate voltage V2 to the output voltage V3. For this reason, when there is an abnormality in the capacitive power converter 10, an overvoltage equal to or higher than the intermediate voltage V2 is applied to the inductive power converter 20, and the inductive power converter 20 may fail. Therefore, failure of the inductive power converter 20 can be prevented by determining the abnormality of the capacitive power converter 10 by the failure determination circuit 40 and not driving the capacitive power converter 10.
  • the inductive power converter 20 it is not necessary to configure the inductive power converter 20 with an element having a high withstand voltage.
  • the switch elements Q11 and Q12 which are FETs
  • the gate capacitance is reduced and the on-resistance is also reduced. For this reason, the switching frequency can be increased.
  • the inductor L1 can be reduced, and the power converter unit 1 can be reduced in size.
  • circuit configuration of the charging circuit 30 can be changed as appropriate.
  • FIG. 8 is a circuit diagram of another example of the charging circuit 30A.
  • the reference voltage power supply 34 is connected to the gate of the switch element S31 and no comparator is used.
  • the capacitor C11 When the capacitor C11 is fully charged, the source potential of the switch element S31 rises and the switch element S31 is turned off. Then, the constant current is not supplied to the capacitor C11, the capacitor C12, and the capacitor C13.
  • abnormality determination of the capacitive power converter 10 may be performed by digital processing.
  • FIG. 9 is a block diagram of the failure determination unit 40A that performs abnormality determination of the capacitive power converter 10.
  • the failure determination unit 40A includes an AD converter (ADC) 401, an arithmetic processing unit 402, a counter 403, and a storage unit 404.
  • the ADC 401 converts the detection result of the output voltage VM of the capacitive power converter 10 into a digital value.
  • the storage unit 404 is an EEPROM or the like, and stores a target value for comparison with the output voltage VM.
  • the storage unit 404 can be rewritten from the outside.
  • the counter 403 outputs a clock counter to the arithmetic processing unit 402 at a preset timing.
  • the arithmetic processing unit 402 is, for example, a microcomputer, and performs failure determination by comparing the output voltage VM of the capacitive power converter 10 with the target value stored in the storage unit 404 at the timing of the clock counter.
  • FIG. 10 is a circuit diagram of the capacitive power converter 60 according to the second embodiment.
  • the capacitive power converter 60 has an input unit composed of terminals 601 and 602 and an output unit composed of terminals 603 and 604.
  • the capacitive power converter 60 includes a switch element S41, a switch element S42, a switch element S43, a switch element S44, a switch element S45, a switch element S46, a switch element S47, a capacitor C31, and a capacitor. C32, a capacitor C33, and a switching control circuit 112.
  • the switching control circuit 112 performs switching control of the switch elements S41 to S47.
  • the switching control circuit 112 is an example of a “capacitive side control unit” according to the present invention.
  • the switch elements S41 to S47 are examples of the “capacitive side switch element” according to the present invention.
  • the switch element S41, the switch element S42, and the switch element S43 are connected in series between the terminal 601 and the terminal 603.
  • a capacitor C31 and a switch element S45 are sequentially connected in series to a connection point between the switch element S41 and the switch element S42.
  • a capacitor C32 and a switch element S46 are sequentially connected in series to a connection point between the switch element S42 and the switch element S43.
  • the switch element S44 is connected between a connection point between the capacitor C31 and the switch element S45 and the terminal 603.
  • the switch element S47 is connected between a connection point between the capacitor C32 and the switch element S46 and the terminal 603.
  • the capacitor C33 is connected between the terminal 603 and the terminal 604.
  • the potential difference between both ends of the capacitor C31 is larger than the potential difference between both ends of the capacitor C32 and the potential difference between both ends of the capacitor C33.
  • the switching control circuit 112 turns on the switch element S41, the switch element S44, the switch element S43, and the switch element S46, and turns off the switch element S42, the switch element S45, and the switch element S47 (the first element). Configuration). As a result, a power supply voltage potential is applied to the positive electrode of the capacitor C31, an output voltage potential is applied to the negative electrode, and a potential difference of 2/3 of the power supply voltage is applied to both electrodes of the capacitor C31.
  • the switching control circuit 112 turns off the switch element S41, the switch element S44, the switch element S43, and the switch element S46, and turns on the switch element S42, the switch element S45, and the switch element S47.
  • a voltage 2/3 of the power supply voltage appears at the positive electrode of the capacitor C31
  • a GND potential appears at the negative electrode
  • a voltage 2/3 of the power supply voltage appears at the positive electrode of the capacitor C32
  • the input voltage is stepped down to an intermediate voltage.
  • FIG. 11 is a diagram for explaining the operation at the time of precharging by the charging circuit 30.
  • the switching control circuit 112 of the capacitive power converter 60 turns on the switch element S42, the switch element S43, the switch element S45, and the switch element S46, The switch element S44 and the switch element S47 are turned off. Thereby, the capacitor C31, the capacitor C32, and the capacitor C33 are configured to be connected in parallel to the charging circuit 30. A constant current is supplied from the constant current source 31 to the capacitor C31, the capacitor C32, and the capacitor C33.
  • the charging circuit 30 stops charging with a constant current when each of the capacitor C31, the capacitor C32, and the capacitor C33 is charged to the reference voltage that is a target value.
  • the charging voltages of the capacitor C31, the capacitor C32, and the capacitor C33 are not common. For this reason, when charging by supplying a constant current, the voltages charged in the capacitor C31, the capacitor C32, and the capacitor C33 are different. However, in the same manner as in the above-described embodiment, the inrush current is suppressed by precharging the capacitor C31, the capacitor C32, and the capacitor C33 to appropriate voltages.
  • the on / off states of the switch elements S41 to S47 of the capacitive power converter 60 at the time of precharging can be changed as appropriate.
  • the switch elements S31, S45, S42, S46, and S43 may be turned on to precharge the capacitors C31, C32, and C33, and then the switch element S42 may be turned off to additionally charge the capacitor C31.
  • the capacitor C31 and the series circuit of the capacitor C32 and the capacitor C33 are connected to the charging circuit 30 in parallel.
  • the failure determination circuit detects a charging voltage of at least one of the capacitor C31, the capacitor C32, and the capacitor C33. Then, the abnormality is determined by comparing with the target value.
  • the timing of outputting the clock counter CTR described in the first embodiment the values of the reference voltage REFL, the reference voltage REFH, and the like are appropriately changed according to the capacitor that detects the charging voltage.
  • the capacitances of the capacitor C31, the capacitor C32, and the capacitor C33 can be set arbitrarily and may be the same. Furthermore, each capacitance may be charged one by one, or a plurality may be charged together.
  • the configuration at the time of charging can be changed as appropriate.
  • the charging time can be calculated from the charging current, the combined capacity of the capacitors, the target voltage, and the like.
  • each capacitor may be detected, or a plurality of capacitors may be detected as a group. Further, only some representative parts may be detected.
  • the step-down power converter unit has been described, but the power converter unit may be used for step-up.
  • the terminal Out1 and the terminal Out2 shown in FIG. 1 are input units, and the terminal In1 and the terminal In2 are output units. Then, the voltage input from the input portions of the terminal Out1 and the terminal Out2 is boosted and output from the output portion of the terminals In1 and In2.
  • the charging circuit is provided between the inductive power converter and the capacitive power converter. When precharging is performed, the inductive power converter and the capacitive power converter are disconnected from each other. , Supplying a constant current to the capacitive power converter. Thereby, the inrush current to the capacitive power converter can be prevented.
  • power converter unit 10 ... capacitive power converter 20 ... inductive power converter 21 ... driver (inductive side controller) 30, 30A ... charging circuit 31 ... constant current source 32 ... comparator 33 ... reference voltage power source 34 ... reference voltage power source 40 ... failure determination circuit (failure determination unit) 40A ... Failure determination unit 41, 42 ... Comparator 43 ... AND gate 44 ... NOT circuit 45 ... AND gate 46 ... Counter 50 ... Control circuit (power conversion limiting unit) 60 ... Capacitive power converters 101, 102, 103, 104 ... Terminals 111, 112 ... Switching control circuits 201, 202, 203, 204 ... Terminal 402 ... Arithmetic processing unit 403 ... Counter 404 ... Storage units 601, 602, 603 604 ... Terminal

Abstract

A power converter unit (1) is provided with a capacitive power converter (10) and an inductive power converter (20) that are connected in a cascade arrangement, and a charging circuit (30). The capacitive power converter (10) comprises a plurality of capacitors (C11, C12, C13) connected in parallel to a terminal (101) to which a DC voltage is input, and a plurality of switch elements (S11-S17). The capacitive converter (10) steps the voltage up or down by switching the state of the switch elements (S11-S17) to charge or discharge the capacitors (C11, C12, C13). The charging circuit (30) comprises a switch element (S31) that connects or cuts off the capacitive power converter (10) and a constant current source (31) for supplying a constant current to the capacitive power converter (10).

Description

パワーコンバータユニットPower converter unit
 本発明は、2つの電力変換部が縦続接続されたパワーコンバータユニットに関する。 The present invention relates to a power converter unit in which two power conversion units are connected in cascade.
 一般的に、スイッチトキャパシタ(チャージポンプ回路とも言う)等の容量性電力変換器の電力供給能力は、駆動周波数と、キャパシタの容量と、キャパシタへの印加電圧との積に依存する。供給能力を超える要求がある場合、容量性電力変換器の出力は低下する。この低下は、主にキャパシタの過放電により引き起こされる。このような状態では、キャパシタへの充電期間の開始時に、電圧低下分に応じた突入電流が発生する。この突入電流は、ノイズの原因となり、また、素子を破壊するなど、悪影響を及ぼす。 Generally, the power supply capability of a capacitive power converter such as a switched capacitor (also referred to as a charge pump circuit) depends on the product of the drive frequency, the capacitance of the capacitor, and the voltage applied to the capacitor. When there is a demand exceeding the supply capacity, the output of the capacitive power converter decreases. This decrease is mainly caused by capacitor overdischarge. In such a state, an inrush current corresponding to the voltage drop occurs at the start of the charging period for the capacitor. This inrush current causes noise and has an adverse effect such as destruction of the element.
 特許文献1には、キャパシタへの突入電流を防ぐためのプリチャージ回路を備える容量性電力変換器が開示されている。特許文献1に記載のプリチャージ回路は、各キャパシタに接続されるスイッチ素子と抵抗とを有する。そして、スイッチ素子をオンすることで、キャパシタへの突入電流を防ぐ。 Patent Document 1 discloses a capacitive power converter including a precharge circuit for preventing an inrush current to a capacitor. The precharge circuit described in Patent Literature 1 includes a switch element connected to each capacitor and a resistor. Then, by turning on the switch element, an inrush current to the capacitor is prevented.
米国特許第8503203号明細書US Pat. No. 8,503,203
 特許文献1に記載のプリチャージ回路は、抵抗の大きさによって、キャパシタの充電時間が決まる。このため、電源電圧が高い場合に、突入電流を防ぐために抵抗値を大きくすると、キャパシタへのプリチャージに時間を要する。一方で、プリチャージ時間を早くするために抵抗値を小さくすると、電源電圧が高い場合に、突入電流を防ぐことができない。 In the precharge circuit described in Patent Document 1, the capacitor charging time is determined by the size of the resistor. For this reason, if the resistance value is increased in order to prevent an inrush current when the power supply voltage is high, it takes time to precharge the capacitor. On the other hand, if the resistance value is reduced to shorten the precharge time, inrush current cannot be prevented when the power supply voltage is high.
 そこで、本発明の目的は、時間を要せずに突入電流を防ぐことができる安全なパワーコンバータユニットを提供することである。 Therefore, an object of the present invention is to provide a safe power converter unit that can prevent an inrush current without taking time.
 本発明に係るパワーコンバータユニットは、直流電圧が入力される入力部と、直流電圧が出力される出力部と、前記入力部に対し並列接続される複数のキャパシタと、複数の容量性側スイッチ素子と、前記複数の容量性側スイッチ素子をスイッチング制御する容量性側制御部とを有し、前記複数の容量性側スイッチ素子の状態を切り替えて前記複数のキャパシタを充放電することで電圧を昇降圧する容量性電力変換器と、前記入力部又は前記出力部に接続されており、インダクタと、誘導性側スイッチ素子と、前記誘導性側スイッチ素子をスイッチング制御する誘導性側制御部とを有し、前記誘導性側スイッチ素子の状態を切り替えて前記インダクタへのエネルギーを畜放電することで電圧を昇降圧する誘導性電力変換器と、定電流源を有し、前記定電流源から前記複数のキャパシタの接続点へ定電流を供給し、又は、供給を遮断する充電回路と、を備えることを特徴とする。 A power converter unit according to the present invention includes an input unit to which a DC voltage is input, an output unit to which a DC voltage is output, a plurality of capacitors connected in parallel to the input unit, and a plurality of capacitive switching elements And a capacitive side control unit that controls the switching of the plurality of capacitive side switch elements, and changes the state of the plurality of capacitive side switch elements to charge and discharge the plurality of capacitors to increase and decrease the voltage. A capacitive power converter that compresses, and is connected to the input unit or the output unit, and includes an inductor, an inductive side switch element, and an inductive side control unit that performs switching control of the inductive side switch element. An inductive power converter that switches the state of the inductive side switch element and discharges energy to the inductor, and a constant current source. The supplies a constant current from the constant current source to the connection point of said plurality of capacitors, or, characterized in that it comprises a charging circuit for interrupting the supply.
 この構成では、充電回路により、容量性電力変換器のキャパシタを定電流で充電することで、キャパシタへの突入電流を防ぐことができる。このとき、並列接続される複数のキャパシタに対して定電流が供給されるため、各キャパシタを一括して充電することが可能となり、充電に時間を要しない。 In this configuration, inrush current to the capacitor can be prevented by charging the capacitor of the capacitive power converter with a constant current by the charging circuit. At this time, since a constant current is supplied to a plurality of capacitors connected in parallel, it is possible to charge each capacitor in a lump, and charging does not take time.
 前記パワーコンバータユニットは、前記複数のキャパシタの何れかへの充電電圧を検出する電圧検出部と、前記電圧検出部が検出する検出値と、目標値とを比較して異常を判定する異常判定部とを備えてもよい。 The power converter unit includes a voltage detection unit that detects a charging voltage to any of the plurality of capacitors, and an abnormality determination unit that compares the detection value detected by the voltage detection unit with a target value to determine an abnormality. And may be provided.
 この構成では、キャパシタの充電電圧と目標値とを比較することで、キャパシタの異常、又は、スイッチ素子の異常等、容量性電力変換器の異常を判定することができる。 In this configuration, it is possible to determine an abnormality of the capacitive power converter such as an abnormality of the capacitor or an abnormality of the switch element by comparing the charging voltage of the capacitor with the target value.
 前記異常判定部は、前記容量性電力変換器の起動後、所定時間内に動作してもよい。 The abnormality determination unit may operate within a predetermined time after the capacitive power converter is activated.
 この構成では、パワーコンバータユニットの起動直後に異常の有無を判定することで、異常がある状態で、パワーコンバータユニットを駆動し続けて、さらなる不具合を引き起こすおそれを抑制できる。 In this configuration, it is possible to suppress the possibility of causing further problems by continuing to drive the power converter unit in the presence of an abnormality by determining the presence or absence of the abnormality immediately after the power converter unit is started.
 前記パワーコンバータユニットは、前記異常判定部が異常と判定した場合に、前記容量性電力変換器による電力変換を制限する電力変換制限部を備えてもよい。 The power converter unit may include a power conversion limiting unit that limits power conversion by the capacitive power converter when the abnormality determination unit determines that an abnormality has occurred.
 この構成では、異常がある場合に、パワーコンバータユニットの駆動を停止させることができる。 In this configuration, the drive of the power converter unit can be stopped when there is an abnormality.
 本発明によれば、充電回路により、容量性電力変換器のキャパシタを定電流で充電することで、キャパシタへの突入電流を防ぐことができる。このとき、並列接続される複数のキャパシタに対して定電流が供給されるため、各キャパシタを一括して充電することが可能となり、充電に時間を要しない。 According to the present invention, inrush current to the capacitor can be prevented by charging the capacitor of the capacitive power converter with a constant current by the charging circuit. At this time, since a constant current is supplied to a plurality of capacitors connected in parallel, it is possible to charge each capacitor in a lump, and charging does not take time.
図1は、実施形態1に係るパワーコンバータユニットのブロック図である。FIG. 1 is a block diagram of a power converter unit according to the first embodiment. 図2は、実施形態1に係るパワーコンバータユニットの回路図である。FIG. 2 is a circuit diagram of the power converter unit according to the first embodiment. 図3(A)及び図3(B)は、容量性電力変換器でのスイッチング制御を説明するための図である。FIGS. 3A and 3B are diagrams for explaining switching control in the capacitive power converter. 図4は、充電回路によるプリチャージ時の動作を説明するための図である。FIG. 4 is a diagram for explaining the operation at the time of precharging by the charging circuit. 図5は充電回路の回路図である。FIG. 5 is a circuit diagram of the charging circuit. 図6は、容量性電力変換器が正常の場合の、故障判定回路の各素子の出力を示す図である。FIG. 6 is a diagram illustrating the output of each element of the failure determination circuit when the capacitive power converter is normal. 図7は、容量性電力変換器が異常の場合の、故障判定回路の各素子の出力を示す図である。FIG. 7 is a diagram illustrating the output of each element of the failure determination circuit when the capacitive power converter is abnormal. 図8は、別の例の充電回路の回路図である。FIG. 8 is a circuit diagram of another example of the charging circuit. 図9は、容量性電力変換器の異常判定を行う故障判定部のブロック図である。FIG. 9 is a block diagram of a failure determination unit that performs abnormality determination of the capacitive power converter. 図10は、実施形態2に係る容量性電力変換器の回路図である。FIG. 10 is a circuit diagram of the capacitive power converter according to the second embodiment. 図11は、充電回路によるプリチャージ時の動作を説明するための図である。FIG. 11 is a diagram for explaining the operation at the time of precharging by the charging circuit.
 図1は、本実施形態に係るパワーコンバータユニット1のブロック図である。 FIG. 1 is a block diagram of a power converter unit 1 according to this embodiment.
 パワーコンバータユニット1は、一対の端子In1及び端子In2でなる入力部と、端子Out1及び端子Out2でなる出力部とを備える。端子In1及び端子In2には直流電源が接続される。端子Out1及び端子Out2には負荷が接続される。パワーコンバータユニット1は、端子In1及び端子In2から入力される直流電圧V1(以下、入力電圧V1という)を電圧V3(以下、出力電圧V3という)に降圧して、端子Out1及び端子Out2から出力する。 The power converter unit 1 includes an input unit including a pair of terminals In1 and In2, and an output unit including a terminal Out1 and a terminal Out2. A DC power supply is connected to the terminals In1 and In2. A load is connected to the terminal Out1 and the terminal Out2. The power converter unit 1 steps down a DC voltage V1 (hereinafter referred to as an input voltage V1) input from the terminal In1 and the terminal In2 to a voltage V3 (hereinafter referred to as an output voltage V3), and outputs the voltage from the terminal Out1 and the terminal Out2. .
 パワーコンバータユニット1は、容量性電力変換器10と、誘導性電力変換器20と、充電回路30と、故障判定回路40と、制御回路50とを備える。容量性電力変換器10と誘導性電力変換器20とは、容量性電力変換器10が入力側となるように、端子In1及び端子In2と、端子Out1及び端子Out2との間で縦続接続される。 The power converter unit 1 includes a capacitive power converter 10, an inductive power converter 20, a charging circuit 30, a failure determination circuit 40, and a control circuit 50. The capacitive power converter 10 and the inductive power converter 20 are cascade-connected between the terminal In1 and the terminal In2 and the terminal Out1 and the terminal Out2 so that the capacitive power converter 10 is on the input side. .
 容量性電力変換器10は、入力電圧V1を電圧V2(以下、中間電圧V2という)に降圧する。容量性電力変換器10は、例えばスイッチトキャパシタであり、スイッチ素子を切り替えてキャパシタを充放電させることで、入力電圧V1を降圧する。 Capacitive power converter 10 steps down input voltage V1 to voltage V2 (hereinafter referred to as intermediate voltage V2). The capacitive power converter 10 is a switched capacitor, for example, and steps down the input voltage V1 by switching the switch element to charge and discharge the capacitor.
 誘導性電力変換器20は、中間電圧V2を入力し、その中間電圧V2を出力電圧V3に降圧する。出力電圧V3は、端子Out1及び端子Out2に接続される負荷へ供給される。 The inductive power converter 20 receives the intermediate voltage V2 and steps down the intermediate voltage V2 to the output voltage V3. The output voltage V3 is supplied to a load connected to the terminal Out1 and the terminal Out2.
 充電回路30は定電流源を有する。充電回路30は、パワーコンバータユニット1の起動直後から、容量性電力変換器10及び誘導性電力変換器20による降圧動作を行うまでの間、容量性電力変換器10のキャパシタを充電する。以下、この充電を「プリチャージ」と言う。パワーコンバータユニット1の起動直後、容量性電力変換器10のキャパシタは充電されていない。この状態で、端子In1及び端子In2に接続される直流電源からキャパシタが充電されると、各キャパシタに突入電流が流れ、各キャパシタ又はスイッチ素子等が破損することがある。 The charging circuit 30 has a constant current source. The charging circuit 30 charges the capacitor of the capacitive power converter 10 immediately after the power converter unit 1 is started and before the step-down operation by the capacitive power converter 10 and the inductive power converter 20 is performed. Hereinafter, this charging is referred to as “pre-charging”. Immediately after the power converter unit 1 is started, the capacitor of the capacitive power converter 10 is not charged. In this state, when a capacitor is charged from a DC power source connected to the terminal In1 and the terminal In2, an inrush current flows through each capacitor, and each capacitor or switch element may be damaged.
 そこで、充電回路30は、パワーコンバータユニット1の起動直後には、端子In1及び端子In2に接続される直流電源から容量性電力変換器10へ流れる電流を遮断する。そして、充電回路30は、自身が有する定電流源から容量性電力変換器10へ定電流を供給する。キャパシタを定電流で充電すると、キャパシタの充電電圧は充電時間に比例して増加する。このため、パワーコンバータユニット1の起動直後は、充電回路30により定電流でキャパシタを充電することで、容量性電力変換器10のキャパシタへ突入電流が流れ込むことを防止できる。その結果、キャパシタの故障を防止できる。 Therefore, immediately after the power converter unit 1 is started, the charging circuit 30 interrupts the current flowing from the DC power source connected to the terminal In1 and the terminal In2 to the capacitive power converter 10. Then, the charging circuit 30 supplies a constant current to the capacitive power converter 10 from a constant current source that the charging circuit 30 has. When the capacitor is charged with a constant current, the charging voltage of the capacitor increases in proportion to the charging time. For this reason, immediately after the power converter unit 1 is activated, the charging circuit 30 charges the capacitor with a constant current, thereby preventing an inrush current from flowing into the capacitor of the capacitive power converter 10. As a result, failure of the capacitor can be prevented.
 故障判定回路40は、容量性電力変換器10の故障の有無を判定する。故障判定回路40は、充電回路30によるプリチャージの期間中、又は、プリチャージの終了後に、容量性電力変換器10のキャパシタの充電電圧を検出する。そして、故障判定回路40は、検出する充電電圧と目標値とを比較して、故障の有無を判定する。 The failure determination circuit 40 determines whether or not the capacitive power converter 10 has failed. Failure determination circuit 40 detects the charging voltage of the capacitor of capacitive power converter 10 during the period of precharging by charging circuit 30 or after the end of precharging. Then, the failure determination circuit 40 compares the detected charging voltage with the target value to determine whether there is a failure.
 なお、容量性電力変換器10の故障には、キャパシタのショート破壊又は、オープン破壊、容量過不足、想定外の電流経路の形成等が挙げられる。 Note that the failure of the capacitive power converter 10 includes short-circuit breakdown or open breakdown of the capacitor, excess or insufficient capacity, formation of an unexpected current path, and the like.
 制御回路50は、入力電圧V1と、中間電圧V2と、出力電圧V3とを検出する。制御回路50は、中間電圧V2及び出力電圧V3をそれぞれの目標電圧値と比較し、その比較結果に応じて、容量性電力変換器10及び誘導性電力変換器20へ指令信号を出力する。容量性電力変換器10及び誘導性電力変換器20は、指令信号に応じて、例えば駆動周波数を変更する。また、制御回路50は、故障判定回路40が異常と判定した場合に、パワーコンバータユニットの駆動を停止する。制御回路50は、本発明に係る「電力変換制限部」の一例である。 The control circuit 50 detects the input voltage V1, the intermediate voltage V2, and the output voltage V3. The control circuit 50 compares the intermediate voltage V2 and the output voltage V3 with each target voltage value, and outputs a command signal to the capacitive power converter 10 and the inductive power converter 20 according to the comparison result. The capacitive power converter 10 and the inductive power converter 20 change the driving frequency, for example, according to the command signal. The control circuit 50 stops driving the power converter unit when the failure determination circuit 40 determines that there is an abnormality. The control circuit 50 is an example of the “power conversion limiting unit” according to the present invention.
 図2は、本実施形態に係るパワーコンバータユニット1の回路図である。図2では、図1に示す制御回路50の図示は省略する。 FIG. 2 is a circuit diagram of the power converter unit 1 according to the present embodiment. 2, illustration of the control circuit 50 shown in FIG. 1 is omitted.
 容量性電力変換器10は、端子101及び端子102からなる入力部と、端子103及び端子104からなる出力部とを有する。端子101は端子In1に接続される。端子102は端子In2に接続される。端子103は、後述する誘導性電力変換器20の端子201に接続される。端子104は、後述する誘導性電力変換器20の端子202に接続される。 The capacitive power converter 10 has an input unit composed of a terminal 101 and a terminal 102 and an output unit composed of a terminal 103 and a terminal 104. Terminal 101 is connected to terminal In1. Terminal 102 is connected to terminal In2. The terminal 103 is connected to a terminal 201 of the inductive power converter 20 described later. The terminal 104 is connected to a terminal 202 of the inductive power converter 20 described later.
 容量性電力変換器10は、スイッチ素子S11と、スイッチ素子S12と、スイッチ素子S13と、スイッチ素子S14と、スイッチ素子S15と、スイッチ素子S16と、スイッチ素子S17と、キャパシタC11と、キャパシタC12と、キャパシタC13と、スイッチング制御回路111とを有する。スイッチング制御回路111は、スイッチ素子S11~S17をスイッチング制御する。 The capacitive power converter 10 includes a switch element S11, a switch element S12, a switch element S13, a switch element S14, a switch element S15, a switch element S16, a switch element S17, a capacitor C11, and a capacitor C12. And a capacitor C13 and a switching control circuit 111. The switching control circuit 111 performs switching control of the switch elements S11 to S17.
 スイッチング制御回路111は、本発明に係る「容量性側制御部」の一例である。また、スイッチ素子S11~S17は、本発明に係る「容量性側スイッチ素子」の一例である。 The switching control circuit 111 is an example of the “capacitive side control unit” according to the present invention. The switch elements S11 to S17 are examples of the “capacitive side switch element” according to the present invention.
 スイッチ素子S11とスイッチ素子S12とは、端子101と端子103との間で直列接続される。スイッチ素子S11とスイッチ素子S12との接続点には、キャパシタC11とスイッチ素子S14とが順に直列接続される。端子103には、スイッチ素子S16と、キャパシタC12と、スイッチ素子S15とが順に直列接続される。キャパシタC11とスイッチ素子S14との接続点と、スイッチ素子S16とキャパシタC12との接続点との間には、スイッチ素子S13が接続される。また、キャパシタC12とスイッチ素子S15との接続点と、端子103との間には、スイッチ素子S17が接続される。キャパシタC13は、端子103と端子104との間に接続される。キャパシタC11と、キャパシタC12と、キャパシタC13とは、それぞれ同じキャパシタンスを有する。 The switch element S11 and the switch element S12 are connected in series between the terminal 101 and the terminal 103. A capacitor C11 and a switch element S14 are sequentially connected in series to a connection point between the switch element S11 and the switch element S12. The terminal 103 is connected in series with a switch element S16, a capacitor C12, and a switch element S15. A switch element S13 is connected between a connection point between the capacitor C11 and the switch element S14 and a connection point between the switch element S16 and the capacitor C12. Further, the switch element S17 is connected between the connection point between the capacitor C12 and the switch element S15 and the terminal 103. The capacitor C13 is connected between the terminal 103 and the terminal 104. Capacitor C11, capacitor C12, and capacitor C13 each have the same capacitance.
 以下に、容量性電力変換器10での降圧動作について説明する。 Hereinafter, the step-down operation in the capacitive power converter 10 will be described.
 図3(A)及び図3(B)は、容量性電力変換器10でのスイッチング制御を説明するための図である。図3(A)及び図3(B)では、充電回路30の図示は省略している。この例では、容量性電力変換器10は、3.0Vの入力電圧V1を、1.0Vの中間電圧V2に降圧する場合について考える。 FIGS. 3A and 3B are diagrams for explaining switching control in the capacitive power converter 10. 3A and 3B, the charging circuit 30 is not shown. In this example, consider the case where the capacitive power converter 10 steps down the input voltage V1 of 3.0V to the intermediate voltage V2 of 1.0V.
 スイッチング制御回路111(図2参照)は、第1状態で、図3(A)に示すように、スイッチ素子S11と、スイッチ素子S13と、スイッチ素子S17とをオンにし、スイッチ素子S12と、スイッチ素子S14と、スイッチ素子S15と、スイッチ素子S16とをオフにする。この場合、図3(A)の矢印で示すように、端子101には、キャパシタC11と、キャパシタC12と、キャパシタC13との直列回路が接続される構成となる。この場合には、入力電圧V1は3.0Vであるため、キャパシタC11と、キャパシタC12と、キャパシタC13とに、それぞれ1.0Vの電圧が充電される。 In the first state, the switching control circuit 111 (see FIG. 2) turns on the switch element S11, the switch element S13, and the switch element S17 as shown in FIG. The element S14, the switch element S15, and the switch element S16 are turned off. In this case, as shown by an arrow in FIG. 3A, the terminal 101 is connected to a series circuit of a capacitor C11, a capacitor C12, and a capacitor C13. In this case, since the input voltage V1 is 3.0V, the capacitor C11, the capacitor C12, and the capacitor C13 are each charged with a voltage of 1.0V.
 次に、スイッチング制御回路111は、第2状態で、図3(B)に示すように、スイッチ素子S11と、スイッチ素子S13と、スイッチ素子S17とをオフにし、スイッチ素子S12と、スイッチ素子S14と、スイッチ素子S15と、スイッチ素子S16とをオンにする。この場合、図3(B)に示すように、端子103には、キャパシタC11と、キャパシタC12と、キャパシタC13とがそれぞれ並列に接続される構成となる。この場合には、キャパシタC11と、キャパシタC12と、キャパシタC13とにはそれぞれ1.0Vの電圧が充電されているため、端子103と端子104とから1.0Vの中間電圧V2が出力される。 Next, in the second state, the switching control circuit 111 turns off the switch element S11, the switch element S13, and the switch element S17 as shown in FIG. 3B, and switches the switch element S12 and the switch element S14. Then, the switch element S15 and the switch element S16 are turned on. In this case, as shown in FIG. 3B, the terminal 103 has a configuration in which a capacitor C11, a capacitor C12, and a capacitor C13 are connected in parallel. In this case, since the capacitor C11, the capacitor C12, and the capacitor C13 are each charged with a voltage of 1.0 V, an intermediate voltage V2 of 1.0 V is output from the terminal 103 and the terminal 104.
 このように、容量性電力変換器10において、図3(A)の第1状態と、図3(B)の第2状態とを交互に切り替えることによって、入力電圧V1は中間電圧V2に降圧される。 Thus, in the capacitive power converter 10, the input voltage V1 is stepped down to the intermediate voltage V2 by alternately switching between the first state of FIG. 3A and the second state of FIG. 3B. The
 図2に戻り、誘導性電力変換器20は、端子201及び端子202からなる入力部と、端子203及び端子204からなる出力部とを有する。端子201は、容量性電力変換器10の端子103に接続される。端子202は、容量性電力変換器10の端子104に接続される。端子203は端子Out1に接続される。端子204は端子Out2に接続される。 Returning to FIG. 2, the inductive power converter 20 includes an input unit including a terminal 201 and a terminal 202 and an output unit including a terminal 203 and a terminal 204. Terminal 201 is connected to terminal 103 of capacitive power converter 10. Terminal 202 is connected to terminal 104 of capacitive power converter 10. The terminal 203 is connected to the terminal Out1. Terminal 204 is connected to terminal Out2.
 誘導性電力変換器20は降圧コンバータである。誘導性電力変換器20は、スイッチ素子Q11と、スイッチ素子Q12と、インダクタL1と、キャパシタC2と、ドライバ21とを有する。スイッチ素子Q11はp型MOS-FETである。スイッチ素子Q12はn型MOS-FETである。ドライバ21は、スイッチ素子Q11とスイッチ素子Q12とをスイッチング制御する。誘導性電力変換器20は、スイッチ素子Q11と、スイッチ素子Q12とをオンオフして、中間電圧V2を出力電圧V3に降圧する。 The inductive power converter 20 is a step-down converter. Inductive power converter 20 includes switch element Q11, switch element Q12, inductor L1, capacitor C2, and driver 21. The switch element Q11 is a p-type MOS-FET. The switch element Q12 is an n-type MOS-FET. The driver 21 performs switching control of the switch element Q11 and the switch element Q12. Inductive power converter 20 turns on and off switch element Q11 and switch element Q12 to step down intermediate voltage V2 to output voltage V3.
 スイッチ素子Q11とスイッチ素子Q12とは、本発明に係る「誘導性側スイッチ素子」の一例である。ドライバ21は、本発明に係る「誘導性側制御部」の一例である。 The switch element Q11 and the switch element Q12 are examples of the “inductive side switch element” according to the present invention. The driver 21 is an example of the “inductive side control unit” according to the present invention.
 このように、パワーコンバータユニット1は、容量性電力変換器10で入力電圧V1を中間電圧V2に降圧する。そして、誘導性電力変換器20で中間電圧V2を出力電圧V3にさらに降圧する。つまり、パワーコンバータユニット1は、電圧を2段階に降圧する。一つの電力変換部、例えば、誘導性電力変換器20のみで、入力電圧V1を出力電圧V3に降圧する場合と比べると、容量性電力変換器10及び誘導性電力変換器20それぞれでの入出力電圧差は小さい。このため、パワーコンバータユニット1での電力変換損失の低減化が図れる。 Thus, the power converter unit 1 steps down the input voltage V1 to the intermediate voltage V2 by the capacitive power converter 10. Then, the inductive power converter 20 further reduces the intermediate voltage V2 to the output voltage V3. That is, the power converter unit 1 steps down the voltage in two stages. Compared with the case where the input voltage V1 is stepped down to the output voltage V3 with only one power conversion unit, for example, the inductive power converter 20, the input / output at the capacitive power converter 10 and the inductive power converter 20 respectively. The voltage difference is small. For this reason, the power conversion loss in the power converter unit 1 can be reduced.
 充電回路30は、定電流源31とスイッチ素子S31とを有する。定電流源31とスイッチ素子S31とは直列接続される。この直列回路は、端子In1と、スイッチ素子S11とキャパシタC11との接続点との間に接続される。充電回路30は、パワーコンバータユニット1の起動時にスイッチ素子S31をオンして、容量性電力変換器10へ定電流を供給する。容量性電力変換器10のキャパシタC11と、キャパシタC12と、キャパシタC13とは、この定電流により充電される。 The charging circuit 30 includes a constant current source 31 and a switch element S31. The constant current source 31 and the switch element S31 are connected in series. This series circuit is connected between the terminal In1 and a connection point between the switch element S11 and the capacitor C11. The charging circuit 30 turns on the switch element S31 when starting up the power converter unit 1 and supplies a constant current to the capacitive power converter 10. Capacitor C11, capacitor C12, and capacitor C13 of capacitive power converter 10 are charged by this constant current.
 図4は、充電回路30によるプリチャージ時の動作を説明するための図である。 FIG. 4 is a diagram for explaining the operation at the time of precharging by the charging circuit 30.
 プリチャージを行う場合、充電回路30はスイッチ素子S31をオンにする。また、容量性電力変換器10のスイッチング制御回路111(図2参照)は、スイッチ素子S12と、スイッチ素子S14と、スイッチ素子S15と、スイッチ素子S16とをオンにし、スイッチ素子S11と、スイッチ素子S13と、スイッチ素子S17とをオフにする。これにより、キャパシタC11と、キャパシタC12と、キャパシタC13とは、充電回路30に対して並列接続される構成となる。つまり、並列接続されるキャパシタC11と、キャパシタC12と、キャパシタC13との接続点へ充電回路30から定電流が供給されるため、キャパシタC11と、キャパシタC12と、キャパシタC13とには、定電流が同時に供給される。 When performing precharging, the charging circuit 30 turns on the switch element S31. The switching control circuit 111 (see FIG. 2) of the capacitive power converter 10 turns on the switch element S12, the switch element S14, the switch element S15, and the switch element S16, and switches the switch element S11 and the switch element. S13 and the switch element S17 are turned off. Accordingly, the capacitor C11, the capacitor C12, and the capacitor C13 are configured to be connected in parallel to the charging circuit 30. That is, since a constant current is supplied from the charging circuit 30 to a connection point between the capacitor C11, the capacitor C12, and the capacitor C13 that are connected in parallel, the constant current is supplied to the capacitor C11, the capacitor C12, and the capacitor C13. Supplied at the same time.
 充電回路30は、キャパシタC11と、キャパシタC12と、キャパシタC13とのそれぞれが、目標値である基準電圧まで充電されると、定電流による充電を停止する。なお、キャパシタC11と、キャパシタC12と、キャパシタC13とのそれぞれのキャパシタンスは同じである。このため、キャパシタC11と、キャパシタC12と、キャパシタC13とには、それぞれ同じ電圧が充電される。 The charging circuit 30 stops charging with a constant current when each of the capacitor C11, the capacitor C12, and the capacitor C13 is charged to a reference voltage that is a target value. The capacitances of the capacitor C11, the capacitor C12, and the capacitor C13 are the same. Therefore, the same voltage is charged in each of the capacitor C11, the capacitor C12, and the capacitor C13.
 図5は充電回路30の回路図である。図5では、プリチャージ時での容量性電力変換器10の状態を簡略化して示している。つまり、容量性電力変換器10は、スイッチ素子S12と、スイッチ素子S14と、スイッチ素子S15と、スイッチ素子S16とをオンにし、スイッチ素子S11と、スイッチ素子S13と、スイッチ素子S17とをオフにした状態である。 FIG. 5 is a circuit diagram of the charging circuit 30. FIG. 5 shows a simplified state of the capacitive power converter 10 at the time of precharging. That is, the capacitive power converter 10 turns on the switch element S12, the switch element S14, the switch element S15, and the switch element S16, and turns off the switch element S11, the switch element S13, and the switch element S17. It is in the state.
 充電回路30は、定電流源(定電流回路)31と、スイッチ素子S31と、スイッチ素子S32と、スイッチ素子S33と、比較器32と、基準電圧電源33とを有する。定電流源31とスイッチ素子S32との直列回路と、スイッチ素子S33とは、並列接続されて、カレントミラー回路を構成し、端子In1に接続される。スイッチ素子S31は、スイッチ素子S33に直列接続される。スイッチ素子S31はn型MOS-FETであり、比較器32の出力がゲートに入力されてオンオフされる。 The charging circuit 30 includes a constant current source (constant current circuit) 31, a switch element S31, a switch element S32, a switch element S33, a comparator 32, and a reference voltage power supply 33. The series circuit of the constant current source 31 and the switch element S32 and the switch element S33 are connected in parallel to form a current mirror circuit and connected to the terminal In1. The switch element S31 is connected in series to the switch element S33. The switch element S31 is an n-type MOS-FET, and the output of the comparator 32 is input to the gate and turned on / off.
 比較器32には、キャパシタC11と、キャパシタC12と、キャパシタC13との充電電圧の検出結果と、基準電圧電源33からの基準電圧とが入力され比較する。なお、キャパシタC11と、キャパシタC12と、キャパシタC13との充電電圧はそれぞれ同じである。したがって、キャパシタC13に対して並列に分圧回路を設けることで、キャパシタC11と、キャパシタC12と、キャパシタC13との充電電圧を検出できる。以下の説明では、比較器32には、キャパシタC13の充電電圧の検出結果が入力されると表現する。 The comparator 32 receives and compares the detection result of the charging voltage of the capacitor C11, the capacitor C12, and the capacitor C13 and the reference voltage from the reference voltage power source 33. Note that the charging voltages of the capacitor C11, the capacitor C12, and the capacitor C13 are the same. Therefore, by providing a voltage dividing circuit in parallel with the capacitor C13, the charging voltages of the capacitor C11, the capacitor C12, and the capacitor C13 can be detected. In the following description, it is expressed that the detection result of the charging voltage of the capacitor C13 is input to the comparator 32.
 比較器32は、キャパシタC13の充電電圧が基準電圧よりも低いとHレベルの信号を出力し、キャパシタC13の充電電圧が基準電圧よりも高いとLレベルの信号を出力する。つまり、キャパシタC13の充電電圧が基準電圧よりも低いとスイッチ素子S31はオンする。これにより、キャパシタC11と、キャパシタC12と、キャパシタC13とには定電流が供給され、プリチャージが開始される。キャパシタC13の充電電圧が基準電圧よりも高くなるとスイッチ素子S31はオフする。これにより、キャパシタC11と、キャパシタC12と、キャパシタC13とへの定電流の供給は遮断され、プリチャージが終了する。 The comparator 32 outputs an H level signal when the charging voltage of the capacitor C13 is lower than the reference voltage, and outputs an L level signal when the charging voltage of the capacitor C13 is higher than the reference voltage. That is, when the charging voltage of the capacitor C13 is lower than the reference voltage, the switch element S31 is turned on. Thereby, a constant current is supplied to the capacitor C11, the capacitor C12, and the capacitor C13, and precharging is started. When the charging voltage of the capacitor C13 becomes higher than the reference voltage, the switch element S31 is turned off. As a result, the supply of constant current to the capacitor C11, the capacitor C12, and the capacitor C13 is cut off, and the precharge ends.
 このように、プリチャージには、キャパシタC11と、キャパシタC12と、キャパシタC13とを並列接続して、定電流を供給することで、各キャパシタを一括して充電することが可能となる。このため、充電に時間を要しない。また、キャパシタC11と、キャパシタC12と、キャパシタC13とを直列接続してプリチャージする場合、一つのキャパシタに短絡故障が発生すると、他のキャパシタへ印加される電圧が大きくなり、他のキャパシタも故障するおそれがある。このため、キャパシタC11と、キャパシタC12と、キャパシタC13とを並列接続することで、各キャパシタへの印加電圧を抑えることができる。さらに、正常である場合、容量性電力変換器10の出力電圧は、各キャパシタの充電電圧と同じであるため、充電電圧の検出回路を複数設ける必要がなく、省スペース化が可能となる。 Thus, for precharging, the capacitors C11, C12, and C13 are connected in parallel, and a constant current is supplied, so that it is possible to charge the capacitors all at once. For this reason, time is not required for charge. In addition, when the capacitor C11, the capacitor C12, and the capacitor C13 are connected in series and precharged, if a short circuit failure occurs in one capacitor, the voltage applied to the other capacitor increases, and the other capacitor also fails. There is a risk. For this reason, the voltage applied to each capacitor can be suppressed by connecting the capacitor C11, the capacitor C12, and the capacitor C13 in parallel. Further, when normal, the output voltage of the capacitive power converter 10 is the same as the charging voltage of each capacitor. Therefore, it is not necessary to provide a plurality of charging voltage detection circuits, and space can be saved.
 故障判定回路40は、充電回路30によるプリチャージの開始後、容量性電力変換器10の出力電圧と、目標値とを比較することで、容量性電力変換器10の故障判定を行う。前記したように、プリチャージ時は、キャパシタC11と、キャパシタC12と、キャパシタC13とは並列接続され、また、それぞれのキャパシタンスは同じである(なお、異なるキャパシタンスであってもよい)。つまり、容量性電力変換器10が正常であれば、容量性電力変換器10の出力電圧は、キャパシタC11と、キャパシタC12と、キャパシタC13とのそれぞれの充電電圧と同じである。したがって、容量性電力変換器10の出力電圧を検出することで、複数のキャパシタの異常、又は、複数のスイッチ素子の異常等、容量性電力変換器10全体の異常を判定できる。 The failure determination circuit 40 determines the failure of the capacitive power converter 10 by comparing the output voltage of the capacitive power converter 10 with a target value after the charging circuit 30 starts precharging. As described above, at the time of precharging, the capacitor C11, the capacitor C12, and the capacitor C13 are connected in parallel, and the respective capacitances are the same (may be different capacitances). That is, if the capacitive power converter 10 is normal, the output voltage of the capacitive power converter 10 is the same as the charging voltages of the capacitor C11, the capacitor C12, and the capacitor C13. Therefore, by detecting the output voltage of the capacitive power converter 10, an abnormality of the entire capacitive power converter 10 such as an abnormality of a plurality of capacitors or an abnormality of a plurality of switch elements can be determined.
 充電回路30から供給される定電流は既知である。また、容量性電力変換器10のキャパシタC11と、キャパシタC12と、キャパシタC13とのキャパシタンスも、設計値又は推奨値であるため、既知である。キャパシタの充電電圧は充電時間に比例して増加するため、目標値の電圧がキャパシタに充電されるまでの時間は予め算出できる。故障判定回路40は、プリチャージ開始から、算出した時間の経過後の、容量性電力変換器10の出力電圧が、目標値と、その誤差を含む範囲内か否かで、異常の有無を判定する。 The constant current supplied from the charging circuit 30 is known. The capacitances of the capacitor C11, the capacitor C12, and the capacitor C13 of the capacitive power converter 10 are also known because they are design values or recommended values. Since the charging voltage of the capacitor increases in proportion to the charging time, the time until the target voltage is charged in the capacitor can be calculated in advance. The failure determination circuit 40 determines the presence / absence of an abnormality based on whether the output voltage of the capacitive power converter 10 after the elapse of the calculated time from the start of precharge is within the range including the target value and its error. To do.
 以下では、判定する範囲は、基準電圧REFL以上、基準電圧REFH以下の範囲とする。また、プリチャージ時での容量性電力変換器10の出力電圧はVMで表す。出力電圧VMは、容量性電力変換器10の出力側に抵抗R11と抵抗R12との分圧回路を設けることで検出できる。抵抗R11と抵抗R12との分圧回路は、本発明に係る「電圧検出部」の一例である。 In the following, the determination range is a range of the reference voltage REFL or more and the reference voltage REFH or less. Further, the output voltage of the capacitive power converter 10 at the time of precharging is represented by VM. The output voltage VM can be detected by providing a voltage dividing circuit of resistors R11 and R12 on the output side of the capacitive power converter 10. The voltage dividing circuit of the resistor R11 and the resistor R12 is an example of the “voltage detection unit” according to the present invention.
 故障判定回路40は、比較器41と、比較器42と、ANDゲート43と、NOT回路44と、ANDゲート45とを有する。故障判定回路40は、本発明に係る「異常判定部」の一例である。 The failure determination circuit 40 includes a comparator 41, a comparator 42, an AND gate 43, a NOT circuit 44, and an AND gate 45. The failure determination circuit 40 is an example of the “abnormality determination unit” according to the present invention.
 比較器41の反転入力には、容量性電力変換器10の出力電圧VMの検出電圧VMdが入力される。比較器41の非反転入力には、基準電圧REFHが入力される。比較器42の非反転入力には、容量性電力変換器10の出力電圧VMの検出電圧VMdが入力される。比較器42の反転入力には、基準電圧REFL(<基準電圧REFH)が入力される。 The detection voltage VMd of the output voltage VM of the capacitive power converter 10 is input to the inverting input of the comparator 41. A reference voltage REFH is input to the non-inverting input of the comparator 41. The detection voltage VMd of the output voltage VM of the capacitive power converter 10 is input to the non-inverting input of the comparator 42. The reference voltage REFL (<reference voltage REFH) is input to the inverting input of the comparator 42.
 ANDゲート43には、比較器41の出力信号DETHと、比較器42の出力信号DETLとが入力される。NOT回路44は、ANDゲート43の出力信号DETを反転する。 The AND gate 43 receives an output signal DETH from the comparator 41 and an output signal DETL from the comparator 42. The NOT circuit 44 inverts the output signal DET of the AND gate 43.
 ANDゲート45には、NOT回路44の出力信号DETXと、クロックカウンタCTRが入力される。クロックカウンタCTRはカウンタ46が出力する信号である。カウンタ46は、プリチャージの開始時からクロック信号をカウントして、一定時間経過した時点で、1クロック分の時間だけHレベルの信号を出力する。ANDゲート45は、容量性電力変換器10に異常がある場合には、Hレベルの信号を出力する。ANDゲート45は、容量性電力変換器10に異常がない場合には、Lレベルの信号を出力する。 The AND gate 45 receives the output signal DETX from the NOT circuit 44 and the clock counter CTR. The clock counter CTR is a signal output from the counter 46. The counter 46 counts the clock signal from the beginning of the precharge, and outputs an H level signal for a time corresponding to one clock when a predetermined time has elapsed. The AND gate 45 outputs an H level signal when the capacitive power converter 10 has an abnormality. The AND gate 45 outputs an L level signal when there is no abnormality in the capacitive power converter 10.
 なお、故障判定回路40を接続する位置は適宜変更可能である。例えば、故障判定回路40は、キャパシタC11とスイッチ素子S12との接続点、又は、キャパシタC12とスイッチ素子S16との接続点等に、接続するようにしてもよい。 The position where the failure determination circuit 40 is connected can be changed as appropriate. For example, the failure determination circuit 40 may be connected to a connection point between the capacitor C11 and the switch element S12, a connection point between the capacitor C12 and the switch element S16, or the like.
 図6は、容量性電力変換器10が正常の場合の、故障判定回路40の各素子の出力を示す図である。 FIG. 6 is a diagram showing the output of each element of the failure determination circuit 40 when the capacitive power converter 10 is normal.
 前記のように、キャパシタに定電流が供給されると、キャパシタの充電電圧は充電時間に比例して増加する。したがって、容量性電力変換器10の出力電圧VMも時間に比例して増加する。この例では、出力電圧VMは、プリチャージが開始されたから時間T1の経過時に、基準電圧REFLとなり、時間T2の経過時に、基準電圧REFHとなる。 As described above, when a constant current is supplied to the capacitor, the charging voltage of the capacitor increases in proportion to the charging time. Therefore, the output voltage VM of the capacitive power converter 10 also increases in proportion to time. In this example, the output voltage VM becomes the reference voltage REFL when the time T1 has elapsed since the start of precharge, and becomes the reference voltage REFH when the time T2 has elapsed.
 プリチャージが開始されてから時間T1が経過するまでは、出力電圧VMは基準電圧REFL及び基準電圧REFHよりも低い。この場合、比較器41の出力信号DETHはHレベルとなり、比較器42の出力信号DETLはLレベルとなる。 The output voltage VM is lower than the reference voltage REFL and the reference voltage REFH until the time T1 elapses after the precharge is started. In this case, the output signal DETH of the comparator 41 becomes H level, and the output signal DETL of the comparator 42 becomes L level.
 プリチャージが開始されてから時間T1の経過後、時間T2が経過するまでは、出力電圧VMは、基準電圧REFLより高く、基準電圧REFHよりも低い。この場合、比較器41の出力信号DETHはHレベルとなり、比較器42の出力信号DETLはLレベルとなる。そして、ANDゲート43の出力信号DETはHレベルになる。NOT回路44の出力信号DETXは、信号DETの反転信号を出力する。つまり、時間T1から時間T2までの期間は、出力信号DETXはLレベルである。 The output voltage VM is higher than the reference voltage REFL and lower than the reference voltage REFH until the time T2 elapses after the elapse of time T1 from the start of precharge. In this case, the output signal DETH of the comparator 41 becomes H level, and the output signal DETL of the comparator 42 becomes L level. Then, the output signal DET of the AND gate 43 becomes H level. The output signal DETX of the NOT circuit 44 outputs an inverted signal of the signal DET. That is, the output signal DETX is at the L level during the period from time T1 to time T2.
 前記のように、容量性電力変換器10が正常であれば、時間T1から時間T2までの期間内で、キャパシタC11と、キャパシタC12と、キャパシタC13とには目標値の電圧が充電されることが分かっている。このため、時間T1から時間T2までの期間に、ANDゲート45にクロックカウンタCTRが入力されるように設定される。容量性電力変換器10が正常である場合には、時間T1から時間T2までの期間、ANDゲート45に入力される出力信号DETXはLレベルである。そのため、ANDゲート45の出力信号FLTはLレベルのままである。 As described above, if the capacitive power converter 10 is normal, the target voltage is charged to the capacitor C11, the capacitor C12, and the capacitor C13 within the period from the time T1 to the time T2. I know. Therefore, the clock counter CTR is set to be input to the AND gate 45 during the period from the time T1 to the time T2. When the capacitive power converter 10 is normal, the output signal DETX input to the AND gate 45 is at L level during the period from time T1 to time T2. Therefore, the output signal FLT of the AND gate 45 remains at the L level.
 図7は、容量性電力変換器10が異常の場合の、故障判定回路40の各素子の出力を示す図である。 FIG. 7 is a diagram showing the output of each element of the failure determination circuit 40 when the capacitive power converter 10 is abnormal.
 例えば、キャパシタの容量が大きすぎたり、短絡故障、又は短絡経路が形成されてリークが発生したりすると、キャパシタの充電時間は遅くなる。このため、図6の場合と比べて、検出電圧VMdの傾きは緩やかになる。この例では、プリチャージの開始後、時間T3(>T2)経過時に、検出電圧VMdが基準電圧REFLより高くなるものとする。 For example, if the capacity of the capacitor is too large, or if a short circuit failure or a short circuit path is formed and a leak occurs, the charging time of the capacitor is delayed. For this reason, the inclination of the detection voltage VMd becomes gentler than in the case of FIG. In this example, it is assumed that the detection voltage VMd becomes higher than the reference voltage REFL when the time T3 (> T2) has elapsed after the start of precharging.
 プリチャージが開始されてから時間T3が経過するまでは、検出電圧VMdは基準電圧REFL及び基準電圧REFHよりも低い。この場合、比較器41の出力信号DETHはHレベルであり、比較器42の出力信号DETLはLレベルである。そして、ANDゲート43の出力信号DETはLレベルとなり、信号DETXはHレベルとなる。つまり、時間T1から時間T2までの期間は、信号DETXはHレベルである。したがって、ANDゲート45の出力信号FLTはHレベルとなる期間が生じる。 The detection voltage VMd is lower than the reference voltage REFL and the reference voltage REFH until the time T3 elapses after the precharge is started. In this case, the output signal DETH of the comparator 41 is at the H level, and the output signal DETL of the comparator 42 is at the L level. Then, the output signal DET of the AND gate 43 becomes L level, and the signal DETX becomes H level. In other words, during the period from time T1 to time T2, the signal DETX is at the H level. Therefore, a period in which the output signal FLT of the AND gate 45 is at the H level occurs.
 なお、充電完了により充電をとめず、充電上限電位に制限をつけるようにすることで、検出電圧VMdの傾きよりも大きい場合についても異常検出が可能となる。この場合、図7と同様、ANDゲート45の出力信号FLTはHレベルとなる期間が生じる。また、容量不足に関しては、充電完了検出信号が想定より早い点から容易に検出可能である。例えば、充電完了時間を検出する別の手段として、充電完了検出信号のタイミングとカウンタのカウント数とを比較する方法も考えられる。 It should be noted that an abnormality can be detected even when the slope of the detection voltage VMd is greater than by limiting the charge upper limit potential without stopping the charge upon completion of the charge. In this case, as in FIG. 7, there is a period in which the output signal FLT of the AND gate 45 is at the H level. Further, the lack of capacity can be easily detected from the point where the charge completion detection signal is earlier than expected. For example, as another means for detecting the charging completion time, a method of comparing the timing of the charging completion detection signal with the count number of the counter can be considered.
 この説明において、クロックカウンタCTRを出力するタイミング、基準電圧REFL、基準電圧REFH等の値は、適宜変更可能である。 In this description, the timing of outputting the clock counter CTR, the values of the reference voltage REFL, the reference voltage REFH, and the like can be changed as appropriate.
 このように、故障判定回路40は、容量性電力変換器10が異常の場合には、Hレベルの信号を出力する。故障判定回路40からHレベルの信号が出力されると、例えば、制御回路50は、容量性電力変換器10を駆動させない。これにより、異常があるパワーコンバータユニット1が駆動し続けて、さらなる不具合を引き起こすおそれを抑制できる。また、異常がある場合には外部に故障を報知するようにしてもよい。 Thus, the failure determination circuit 40 outputs an H level signal when the capacitive power converter 10 is abnormal. When an H level signal is output from the failure determination circuit 40, for example, the control circuit 50 does not drive the capacitive power converter 10. Thereby, it is possible to suppress the possibility that the abnormal power converter unit 1 continues to drive and causes further problems. Further, when there is an abnormality, the failure may be notified to the outside.
 上述のように、パワーコンバータユニット1は、入力電圧V1を容量性電力変換器10で中間電圧V2に降圧する。そして、誘導性電力変換器20で中間電圧V2を出力電圧V3にさらに降圧する。このため、容量性電力変換器10に異常がある場合、誘導性電力変換器20に中間電圧V2以上の過電圧が印加され、誘導性電力変換器20が故障するおそれがある。そこで、故障判定回路40により、容量性電力変換器10の異常を判定し、容量性電力変換器10を駆動させないことで、誘導性電力変換器20の故障を防止できる。 As described above, the power converter unit 1 steps down the input voltage V1 to the intermediate voltage V2 by the capacitive power converter 10. Then, the inductive power converter 20 further reduces the intermediate voltage V2 to the output voltage V3. For this reason, when there is an abnormality in the capacitive power converter 10, an overvoltage equal to or higher than the intermediate voltage V2 is applied to the inductive power converter 20, and the inductive power converter 20 may fail. Therefore, failure of the inductive power converter 20 can be prevented by determining the abnormality of the capacitive power converter 10 by the failure determination circuit 40 and not driving the capacitive power converter 10.
 また、過電圧が印加されることを想定して、誘導性電力変換器20を耐圧が高い素子で構成する必要がない。特に、FETであるスイッチ素子Q11及びスイッチ素子Q12の耐圧を下げることで、ゲート容量は小さくなり、また、オン抵抗も小さくなる。このため、スイッチング周波数の高周波数化が可能となる。さらに、インダクタL1を小さくでき、パワーコンバータユニット1の小型化を実現できる。 Also, assuming that an overvoltage is applied, it is not necessary to configure the inductive power converter 20 with an element having a high withstand voltage. In particular, by reducing the breakdown voltage of the switch elements Q11 and Q12, which are FETs, the gate capacitance is reduced and the on-resistance is also reduced. For this reason, the switching frequency can be increased. Further, the inductor L1 can be reduced, and the power converter unit 1 can be reduced in size.
 なお、充電回路30の回路構成は適宜変更可能である。 Note that the circuit configuration of the charging circuit 30 can be changed as appropriate.
 図8は、別の例の充電回路30Aの回路図である。 FIG. 8 is a circuit diagram of another example of the charging circuit 30A.
 図8に示す充電回路30Aは、スイッチ素子S31のゲートに基準電圧電源34が接続され、比較器を用いない点で、図5の充電回路30と相違する。キャパシタC11が満充電となると、スイッチ素子S31のソース電位が上がり、スイッチ素子S31はオフする。そうすると、定電流がキャパシタC11と、キャパシタC12と、キャパシタC13とに供給されなくなる。 8 is different from the charging circuit 30 of FIG. 5 in that the reference voltage power supply 34 is connected to the gate of the switch element S31 and no comparator is used. When the capacitor C11 is fully charged, the source potential of the switch element S31 rises and the switch element S31 is turned off. Then, the constant current is not supplied to the capacitor C11, the capacitor C12, and the capacitor C13.
 また、容量性電力変換器10の異常判定を、デジタル処理で行うようにしてもよい。 Further, abnormality determination of the capacitive power converter 10 may be performed by digital processing.
 図9は、容量性電力変換器10の異常判定を行う故障判定部40Aのブロック図である。 FIG. 9 is a block diagram of the failure determination unit 40A that performs abnormality determination of the capacitive power converter 10.
 故障判定部40Aは、ADコンバータ(ADC)401と、演算処理部402と、カウンタ403と、記憶部404とを有する。ADC401は、容量性電力変換器10の出力電圧VMの検出結果をデジタル値に変換する。記憶部404はEEPROM等であって、出力電圧VMと比較するための目標値を記憶する。記憶部404は、外部から書き換え可能である。カウンタ403は、予め設定されたタイミングで、演算処理部402にクロックカウンタを出力する。演算処理部402は、例えばマイコンであり、クロックカウンタのタイミングで、容量性電力変換器10の出力電圧VMと、記憶部404に記憶される目標値とを比較して、故障判定を行う。 The failure determination unit 40A includes an AD converter (ADC) 401, an arithmetic processing unit 402, a counter 403, and a storage unit 404. The ADC 401 converts the detection result of the output voltage VM of the capacitive power converter 10 into a digital value. The storage unit 404 is an EEPROM or the like, and stores a target value for comparison with the output voltage VM. The storage unit 404 can be rewritten from the outside. The counter 403 outputs a clock counter to the arithmetic processing unit 402 at a preset timing. The arithmetic processing unit 402 is, for example, a microcomputer, and performs failure determination by comparing the output voltage VM of the capacitive power converter 10 with the target value stored in the storage unit 404 at the timing of the clock counter.
(実施形態2)
 以下に、実施形態2に係るパワーコンバータユニットについて説明する。本実施形態では、容量性電力変換器の構成が、実施形態1と相違する。
(Embodiment 2)
The power converter unit according to the second embodiment will be described below. In the present embodiment, the configuration of the capacitive power converter is different from that of the first embodiment.
 図10は、実施形態2に係る容量性電力変換器60の回路図である。 FIG. 10 is a circuit diagram of the capacitive power converter 60 according to the second embodiment.
 容量性電力変換器60は、端子601及び端子602からなる入力部と、端子603及び端子604からなる出力部とを有する。また、容量性電力変換器60は、スイッチ素子S41と、スイッチ素子S42と、スイッチ素子S43と、スイッチ素子S44と、スイッチ素子S45と、スイッチ素子S46と、スイッチ素子S47と、キャパシタC31と、キャパシタC32と、キャパシタC33と、スイッチング制御回路112とを有する。スイッチング制御回路112は、スイッチ素子S41~S47をスイッチング制御する。 The capacitive power converter 60 has an input unit composed of terminals 601 and 602 and an output unit composed of terminals 603 and 604. The capacitive power converter 60 includes a switch element S41, a switch element S42, a switch element S43, a switch element S44, a switch element S45, a switch element S46, a switch element S47, a capacitor C31, and a capacitor. C32, a capacitor C33, and a switching control circuit 112. The switching control circuit 112 performs switching control of the switch elements S41 to S47.
 スイッチング制御回路112は、本発明に係る「容量性側制御部」の一例である。また、スイッチ素子S41~S47は、本発明に係る「容量性側スイッチ素子」の一例である。 The switching control circuit 112 is an example of a “capacitive side control unit” according to the present invention. The switch elements S41 to S47 are examples of the “capacitive side switch element” according to the present invention.
 スイッチ素子S41と、スイッチ素子S42と、スイッチ素子S43とは、端子601と端子603との間で直列接続される。スイッチ素子S41とスイッチ素子S42との接続点には、キャパシタC31とスイッチ素子S45とが順に直列接続される。スイッチ素子S42とスイッチ素子S43との接続点には、キャパシタC32とスイッチ素子S46とが順に直列接続される。スイッチ素子S44は、キャパシタC31とスイッチ素子S45との接続点と、端子603との間に接続される。スイッチ素子S47は、キャパシタC32とスイッチ素子S46との接続点と、端子603との間に接続される。キャパシタC33は、端子603と端子604との間に接続される。 The switch element S41, the switch element S42, and the switch element S43 are connected in series between the terminal 601 and the terminal 603. A capacitor C31 and a switch element S45 are sequentially connected in series to a connection point between the switch element S41 and the switch element S42. A capacitor C32 and a switch element S46 are sequentially connected in series to a connection point between the switch element S42 and the switch element S43. The switch element S44 is connected between a connection point between the capacitor C31 and the switch element S45 and the terminal 603. The switch element S47 is connected between a connection point between the capacitor C32 and the switch element S46 and the terminal 603. The capacitor C33 is connected between the terminal 603 and the terminal 604.
 なお、この構成では、キャパシタC31の両端電位差は、キャパシタC32の両端電位差、及びキャパシタC33の両端電位差よりも大きい。 In this configuration, the potential difference between both ends of the capacitor C31 is larger than the potential difference between both ends of the capacitor C32 and the potential difference between both ends of the capacitor C33.
 スイッチング制御回路112は、スイッチ素子S41と、スイッチ素子S44と、スイッチ素子S43と、スイッチ素子S46とをオンにし、スイッチ素子S42と、スイッチ素子S45と、スイッチ素子S47とをオフにする(第1の構成)。これによりキャパシタC31の正極には電源電圧電位が、負極には出力電圧電位が、キャパシタC31の両極には電源電圧の2/3の電位差が印加される。 The switching control circuit 112 turns on the switch element S41, the switch element S44, the switch element S43, and the switch element S46, and turns off the switch element S42, the switch element S45, and the switch element S47 (the first element). Configuration). As a result, a power supply voltage potential is applied to the positive electrode of the capacitor C31, an output voltage potential is applied to the negative electrode, and a potential difference of 2/3 of the power supply voltage is applied to both electrodes of the capacitor C31.
 次に、スイッチング制御回路112は、スイッチ素子S41と、スイッチ素子S44と、スイッチ素子S43と、スイッチ素子S46とをオフにし、スイッチ素子S42と、スイッチ素子S45と、スイッチ素子S47とをオンにする(第2の構成)。これにより、キャパシタC31の正極には電源電圧の2/3の電圧が、負極にはGND電位が現れ、キャパシタC32の正極には電源電圧の2/3の電圧が、負極には出力電圧(=電源電圧の1/3の電位)が、キャパシタC32の両極には電源電圧の1/3の電圧が印加される。この第2の構成から第1の構成に戻ると、キャパシタC32の負極はGND電位となり、正極は電源電圧の1/3となり、これを出力へ供給する。 Next, the switching control circuit 112 turns off the switch element S41, the switch element S44, the switch element S43, and the switch element S46, and turns on the switch element S42, the switch element S45, and the switch element S47. (Second configuration). As a result, a voltage 2/3 of the power supply voltage appears at the positive electrode of the capacitor C31, a GND potential appears at the negative electrode, a voltage 2/3 of the power supply voltage appears at the positive electrode of the capacitor C32, and an output voltage (= 1/3 of the power supply voltage is applied to both electrodes of the capacitor C32. When returning from the second configuration to the first configuration, the negative electrode of the capacitor C32 becomes the GND potential, and the positive electrode becomes 1/3 of the power supply voltage, which is supplied to the output.
 このように、容量性電力変換器60において、各スイッチ素子を切り替えることにより、入力電圧は中間電圧に降圧される。 Thus, in the capacitive power converter 60, by switching each switch element, the input voltage is stepped down to an intermediate voltage.
 図11は、充電回路30によるプリチャージ時の動作を説明するための図である。 FIG. 11 is a diagram for explaining the operation at the time of precharging by the charging circuit 30.
 充電回路30によるプリチャージを行う場合、容量性電力変換器60のスイッチング制御回路112は、スイッチ素子S42と、スイッチ素子S43と、スイッチ素子S45と、スイッチ素子S46とをオンにし、スイッチ素子S41と、スイッチ素子S44と、スイッチ素子S47とをオフにする。これにより、キャパシタC31と、キャパシタC32と、キャパシタC33とは、充電回路30に対して並列接続される構成となる。そして、キャパシタC31と、キャパシタC32と、キャパシタC33とには、定電流源31から定電流が供給される。 When precharging by the charging circuit 30 is performed, the switching control circuit 112 of the capacitive power converter 60 turns on the switch element S42, the switch element S43, the switch element S45, and the switch element S46, The switch element S44 and the switch element S47 are turned off. Thereby, the capacitor C31, the capacitor C32, and the capacitor C33 are configured to be connected in parallel to the charging circuit 30. A constant current is supplied from the constant current source 31 to the capacitor C31, the capacitor C32, and the capacitor C33.
 実施形態1と同様に、充電回路30は、キャパシタC31と、キャパシタC32と、キャパシタC33とのそれぞれが目標値である基準電圧まで充電されると、定電流による充電を停止する。 As in the first embodiment, the charging circuit 30 stops charging with a constant current when each of the capacitor C31, the capacitor C32, and the capacitor C33 is charged to the reference voltage that is a target value.
 なお、本実施形態に係る容量性電力変換器60の構成は、キャパシタC31と、キャパシタC32と、キャパシタC33とのそれぞれの充電電圧が共通ではない。このため、定電流を供給して充電する場合、キャパシタC31と、キャパシタC32と、キャパシタC33とそれぞれに充電される電圧は異なる。しかしながら、前述の実施形態と同様に、キャパシタC31と、キャパシタC32と、キャパシタC33とをそれぞれ適切な電圧までプリチャージすることで、突入電流は抑制される。 Note that, in the configuration of the capacitive power converter 60 according to the present embodiment, the charging voltages of the capacitor C31, the capacitor C32, and the capacitor C33 are not common. For this reason, when charging by supplying a constant current, the voltages charged in the capacitor C31, the capacitor C32, and the capacitor C33 are different. However, in the same manner as in the above-described embodiment, the inrush current is suppressed by precharging the capacitor C31, the capacitor C32, and the capacitor C33 to appropriate voltages.
 また、プリチャージ時の容量性電力変換器60の各スイッチ素子S41~S47のオンオフ状態は適宜変更可能である。例えば、スイッチ素子S31,S45,S42,S46,S43をオンにし、キャパシタC31、C32、C33をプリチャージした後、スイッチ素子S42をオフにして、キャパシタC31を追加充電するようにしてもよい。 Further, the on / off states of the switch elements S41 to S47 of the capacitive power converter 60 at the time of precharging can be changed as appropriate. For example, the switch elements S31, S45, S42, S46, and S43 may be turned on to precharge the capacitors C31, C32, and C33, and then the switch element S42 may be turned off to additionally charge the capacitor C31.
 また、キャパシタC32とキャパシタC33とのキャパシタンスが同じで、キャパシタC32と、キャパシタC31の目標電圧が、VC32、VC31=2*VC32である場合には、スイッチ素子S45と、スイッチ素子S42と、スイッチ素子S47とをオンにし、他をオフにして、プリチャージするようにしてもよい。この場合、キャパシタC31と、キャパシタC32及びキャパシタC33の直列回路とが、充電回路30に対して並列に接続される構成となる。 Further, when the capacitances of the capacitor C32 and the capacitor C33 are the same and the target voltages of the capacitor C32 and the capacitor C31 are V C32 and V C31 = 2 * V C32 , the switch element S45, the switch element S42, Alternatively, the switch element S47 may be turned on and the others may be turned off to perform precharge. In this case, the capacitor C31 and the series circuit of the capacitor C32 and the capacitor C33 are connected to the charging circuit 30 in parallel.
 さらに、本実施形態では、キャパシタC31と、キャパシタC32と、キャパシタC33とはキャパシタンスが異なるため、故障判定回路は、キャパシタC31と、キャパシタC32と、キャパシタC33との少なくとも何れか一つの充電電圧を検出して、目標値と比較することで、異常判定を行う。この場合、充電電圧を検出するキャパシタに応じて、実施形態1で説明したクロックカウンタCTRを出力するタイミング、基準電圧REFL、基準電圧REFH等の値を適宜変更する。 Further, in the present embodiment, since the capacitances of the capacitor C31, the capacitor C32, and the capacitor C33 are different, the failure determination circuit detects a charging voltage of at least one of the capacitor C31, the capacitor C32, and the capacitor C33. Then, the abnormality is determined by comparing with the target value. In this case, the timing of outputting the clock counter CTR described in the first embodiment, the values of the reference voltage REFL, the reference voltage REFH, and the like are appropriately changed according to the capacitor that detects the charging voltage.
 なお、キャパシタC31と、キャパシタC32と、キャパシタC33とはキャパシタンスは任意に設定可能であり、同じであってもよい。さらに、各キャパシタンスは、一つずつ充電してもよいし、複数を纏めて充電してもよい。 The capacitances of the capacitor C31, the capacitor C32, and the capacitor C33 can be set arbitrarily and may be the same. Furthermore, each capacitance may be charged one by one, or a plurality may be charged together.
 このように、充電の際の構成は適宜変更できる。一方で、いずれの場合においても、充電時間は、充電電流、キャパシタの合成容量、目標電圧などにより算出できる。つまり、構成によらず既知の電流レートを持つ充電回路と、充電対象であるキャパシタと、充電完了を検出する検出回路と、その時間を監視するタイマがあれば、プリチャージしながら故障検出が可能である。故障検出に関しては、キャパシタごとに検出しても良いし、複数のキャパシタをグループとしてまとめて検出してもよい。また、一部の代表的な部品のみを検出してもよい。 Thus, the configuration at the time of charging can be changed as appropriate. On the other hand, in any case, the charging time can be calculated from the charging current, the combined capacity of the capacitors, the target voltage, and the like. In other words, regardless of the configuration, if there is a charging circuit with a known current rate, a capacitor to be charged, a detection circuit that detects the completion of charging, and a timer that monitors the time, failure detection is possible while precharging. It is. Regarding failure detection, each capacitor may be detected, or a plurality of capacitors may be detected as a group. Further, only some representative parts may be detected.
 実施形態1,2では、降圧用のパワーコンバータユニットについて説明したが、パワーコンバータユニットは昇圧用であってもよい。この場合、図1に示す端子Out1と端子Out2とは入力部となり、端子In1と端子In2とは出力部となる。そして、端子Out1と端子Out2との入力部から入力される電圧を昇圧して、端子In1と端子In2との出力部から出力する。この構成の場合、充電回路は、誘導性電力変換器と容量性電力変換器との間に設け、プリチャージを行う場合には、誘導性電力変換器と容量性電力変換器とを遮断して、定電流を容量性電力変換器へ供給する。これにより、容量性電力変換器への突入電流を防止できる。 In the first and second embodiments, the step-down power converter unit has been described, but the power converter unit may be used for step-up. In this case, the terminal Out1 and the terminal Out2 shown in FIG. 1 are input units, and the terminal In1 and the terminal In2 are output units. Then, the voltage input from the input portions of the terminal Out1 and the terminal Out2 is boosted and output from the output portion of the terminals In1 and In2. In this configuration, the charging circuit is provided between the inductive power converter and the capacitive power converter. When precharging is performed, the inductive power converter and the capacitive power converter are disconnected from each other. , Supplying a constant current to the capacitive power converter. Thereby, the inrush current to the capacitive power converter can be prevented.
C11,C12,C13…キャパシタ
C2…キャパシタ
C31,C32,C33…キャパシタ
In1,In2…端子
L1…インダクタ
Out1,Out2…端子
Q11,Q12…スイッチ素子(誘導性側スイッチ素子)
R11,R12…抵抗(電圧検出部)
S11,S12,S13,S14,S15,S16,S17…スイッチ素子(容量性側スイッチ素子)
S31…スイッチ素子
S32,S33…スイッチ素子
S41,S42,S43,S44,S45,S46,S47…スイッチ素子(容量性側スイッチ素子)
V1…入力電圧
V2…中間電圧
V3…出力電圧
VM…出力電圧
1…パワーコンバータユニット
10…容量性電力変換器
20…誘導性電力変換器
21…ドライバ(誘導性側制御部)
30,30A…充電回路
31…定電流源
32…比較器
33…基準電圧電源
34…基準電圧電源
40…故障判定回路(故障判定部)
40A…故障判定部
41,42…比較器
43…ANDゲート
44…NOT回路
45…ANDゲート
46…カウンタ
50…制御回路(電力変換制限部)
60…容量性電力変換器
101,102,103,104…端子
111,112…スイッチング制御回路
201,202,203,204…端子
402…演算処理部
403…カウンタ
404…記憶部
601,602,603,604…端子
C11, C12, C13 ... Capacitor C2 ... Capacitors C31, C32, C33 ... Capacitor In1, In2 ... Terminal L1 ... Inductor Out1, Out2 ... Terminals Q11, Q12 ... Switch elements (inductive side switch elements)
R11, R12 ... Resistance (Voltage detector)
S11, S12, S13, S14, S15, S16, S17 ... switch element (capacitive side switch element)
S31 ... Switch elements S32, S33 ... Switch elements S41, S42, S43, S44, S45, S46, S47 ... Switch elements (capacitive side switch elements)
V1 ... input voltage V2 ... intermediate voltage V3 ... output voltage VM ... output voltage 1 ... power converter unit 10 ... capacitive power converter 20 ... inductive power converter 21 ... driver (inductive side controller)
30, 30A ... charging circuit 31 ... constant current source 32 ... comparator 33 ... reference voltage power source 34 ... reference voltage power source 40 ... failure determination circuit (failure determination unit)
40A ... Failure determination unit 41, 42 ... Comparator 43 ... AND gate 44 ... NOT circuit 45 ... AND gate 46 ... Counter 50 ... Control circuit (power conversion limiting unit)
60 ... Capacitive power converters 101, 102, 103, 104 ... Terminals 111, 112 ... Switching control circuits 201, 202, 203, 204 ... Terminal 402 ... Arithmetic processing unit 403 ... Counter 404 ... Storage units 601, 602, 603 604 ... Terminal

Claims (4)

  1.  直流電圧が入力される入力部と、直流電圧が出力される出力部と、前記入力部に対し並列接続される複数のキャパシタと、複数の容量性側スイッチ素子と、前記複数の容量性側スイッチ素子をスイッチング制御する容量性側制御部とを有し、前記複数の容量性側スイッチ素子の状態を切り替えて前記複数のキャパシタを充放電することで電圧を昇降圧する容量性電力変換器と、
     前記入力部又は前記出力部に接続されており、インダクタと、誘導性側スイッチ素子と、前記誘導性側スイッチ素子をスイッチング制御する誘導性側制御部とを有し、前記誘導性側スイッチ素子の状態を切り替えて前記インダクタへのエネルギーを畜放電することで電圧を昇降圧する誘導性電力変換器と、
     定電流源を有し、前記定電流源から前記複数のキャパシタの接続点へ定電流を供給し、又は、供給を遮断する充電回路と、
     を備えるパワーコンバータユニット。
    An input unit to which a DC voltage is input, an output unit to which a DC voltage is output, a plurality of capacitors connected in parallel to the input unit, a plurality of capacitive side switch elements, and the plurality of capacitive side switches A capacitive side control unit that performs switching control of the element, and a capacitive power converter that steps up and down the voltage by charging and discharging the plurality of capacitors by switching the state of the plurality of capacitive side switch elements;
    The inductive side switch element is connected to the input unit or the output unit, and includes an inductor, an inductive side switch element, and an inductive side control unit that controls the switching of the inductive side switch element. An inductive power converter that steps up and down the voltage by switching the state and discharging the energy to the inductor;
    A charging circuit having a constant current source, supplying a constant current from the constant current source to a connection point of the plurality of capacitors, or cutting off the supply;
    Power converter unit with
  2.  前記複数のキャパシタの何れかへの充電電圧を検出する電圧検出部と、
     前記電圧検出部が検出する検出値と、目標値とを比較して異常を判定する異常判定部と、
     を備える請求項1に記載のパワーコンバータユニット。
    A voltage detector for detecting a charging voltage to any of the plurality of capacitors;
    An abnormality determination unit that compares the detection value detected by the voltage detection unit with a target value to determine abnormality,
    A power converter unit according to claim 1.
  3.  前記異常判定部は、前記容量性電力変換器の起動後、所定時間内に動作する、
     請求項2に記載のパワーコンバータユニット。
    The abnormality determination unit operates within a predetermined time after the capacitive power converter is activated.
    The power converter unit according to claim 2.
  4.  前記異常判定部が異常と判定した場合に、前記容量性電力変換器による電力変換を制限する電力変換制限部、
     を備える請求項2又は3に記載のパワーコンバータユニット。
    A power conversion limiting unit that limits power conversion by the capacitive power converter when the abnormality determination unit determines that an abnormality has occurred;
    A power converter unit according to claim 2 or 3.
PCT/JP2017/020540 2016-06-13 2017-06-02 Power converter unit WO2017217248A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201790000939.5U CN209267450U (en) 2016-06-13 2017-06-02 Power converter unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016116773 2016-06-13
JP2016-116773 2016-06-13

Publications (1)

Publication Number Publication Date
WO2017217248A1 true WO2017217248A1 (en) 2017-12-21

Family

ID=60663184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020540 WO2017217248A1 (en) 2016-06-13 2017-06-02 Power converter unit

Country Status (2)

Country Link
CN (1) CN209267450U (en)
WO (1) WO2017217248A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI679514B (en) * 2018-12-04 2019-12-11 新唐科技股份有限公司 Power converter
TWI689161B (en) * 2018-12-22 2020-03-21 新唐科技股份有限公司 Power converter
JP2020096479A (en) * 2018-12-14 2020-06-18 株式会社Subaru Inrush current limiting system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7324685B2 (en) * 2019-11-01 2023-08-10 株式会社ミツトヨ Encoders and encoder detection heads
CN112583255B (en) * 2020-12-18 2022-05-31 合肥联宝信息技术有限公司 Power supply device of electronic equipment and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233139A (en) * 2001-02-05 2002-08-16 Matsushita Electric Ind Co Ltd Dc-dc converter
JP2009055722A (en) * 2007-08-28 2009-03-12 Seiko Npc Corp Charge-pump power supply circuit
JP2013085328A (en) * 2011-10-06 2013-05-09 Denso Corp Overvoltage protection circuit
JP2015192496A (en) * 2014-03-27 2015-11-02 新日本無線株式会社 charge pump circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233139A (en) * 2001-02-05 2002-08-16 Matsushita Electric Ind Co Ltd Dc-dc converter
JP2009055722A (en) * 2007-08-28 2009-03-12 Seiko Npc Corp Charge-pump power supply circuit
JP2013085328A (en) * 2011-10-06 2013-05-09 Denso Corp Overvoltage protection circuit
JP2015192496A (en) * 2014-03-27 2015-11-02 新日本無線株式会社 charge pump circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI679514B (en) * 2018-12-04 2019-12-11 新唐科技股份有限公司 Power converter
JP2020096479A (en) * 2018-12-14 2020-06-18 株式会社Subaru Inrush current limiting system
JP7132840B2 (en) 2018-12-14 2022-09-07 株式会社Subaru Inrush current limiting system
TWI689161B (en) * 2018-12-22 2020-03-21 新唐科技股份有限公司 Power converter

Also Published As

Publication number Publication date
CN209267450U (en) 2019-08-16

Similar Documents

Publication Publication Date Title
WO2017217248A1 (en) Power converter unit
US9438104B2 (en) Fast startup charge pump
US20060114053A1 (en) Charge-pump-type power supply circuit
US20070159233A1 (en) Charge pump power supply circuit
JP4729330B2 (en) Switching power supply
US8723552B2 (en) Configuration and method for improving noise immunity of a floating gate driver circuit
WO2017199534A1 (en) Battery pack monitoring system
US20060164778A1 (en) Inrush current limiting circuit
US20110221415A1 (en) Dc/dc converter
US20200186038A1 (en) Troubleshooting method and apparatus for power supply device
TW200303117A (en) Rush current limiting circuit for a PFM control charge pump
US10884445B2 (en) Power supply control device for maintaining power supply to a load
JP6390801B2 (en) Overheat detection device and semiconductor device
US11128289B2 (en) Driver circuit having overcurrent protection function
JP2022528335A (en) 3-level boost circuit, multi-output parallel system
JP6138354B2 (en) Load drive circuit and load short circuit detection circuit
JP2004336972A (en) Power supply and power supply control device
WO2020059699A1 (en) Battery monitoring device
WO2018150789A1 (en) Switch circuit
US7239495B2 (en) Output circuit with transistor overcurrent protection
JP6575484B2 (en) Voltage detector
JP2009060722A (en) Rush-current preventing circuit and power supply device
WO2017217249A1 (en) Power converter
JP5814009B2 (en) Voltage balance circuit of inverter device
JP2008283794A (en) Charge pump circuit, solid imaging device, and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP