WO2017217168A1 - Optical element - Google Patents

Optical element Download PDF

Info

Publication number
WO2017217168A1
WO2017217168A1 PCT/JP2017/018331 JP2017018331W WO2017217168A1 WO 2017217168 A1 WO2017217168 A1 WO 2017217168A1 JP 2017018331 W JP2017018331 W JP 2017018331W WO 2017217168 A1 WO2017217168 A1 WO 2017217168A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
type semiconductor
semiconductor layer
electrode
substrate
Prior art date
Application number
PCT/JP2017/018331
Other languages
French (fr)
Japanese (ja)
Inventor
聡 上野山
和義 廣瀬
黒坂 剛孝
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Publication of WO2017217168A1 publication Critical patent/WO2017217168A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction

Definitions

  • the present disclosure relates to an optical element for modulating at least one of the phase, intensity, and polarization of light.
  • metasurfaces have attracted attention as optical elements for modulating at least one of the phase, intensity, and polarization of light (see, for example, Patent Document 1).
  • a plurality of minute metal structures are two-dimensionally arranged at a pitch smaller than the wavelength of light to be modulated.
  • the metasurface as described above is composed of a static structure such as a plurality of fine metal structures, it is only possible to realize predetermined constant modulation.
  • an object of the present disclosure is to provide an optical element that can dynamically modulate at least one of the phase, intensity, and polarization of light.
  • An optical element includes a substrate and a plurality of antenna structures that are two-dimensionally arranged on the substrate and include at least one of an n-type semiconductor layer and a p-type semiconductor layer for forming an electron channel. And an electrode for changing the shape of the electron flow path by enlarging or reducing the depletion layer in each of the plurality of antenna structures.
  • the depletion layer when a voltage is applied to the electrodes in each of the plurality of antenna structures arranged in a two-dimensional shape, the depletion layer is expanded or contracted to change the shape of the electron flow path. Therefore, according to this optical element, at least one of the phase, intensity, and polarization of light can be dynamically modulated.
  • the plurality of antenna structures may be arranged two-dimensionally on the substrate or may be arranged two-dimensionally within the substrate.
  • the electrode may be bonded to the n-type semiconductor layer or the p-type semiconductor layer so that the depletion layer expands when a reverse voltage is applied. According to this configuration, the shape of the electron channel can be suitably changed in each of the plurality of antenna structures.
  • the electrode is disposed on the n-type semiconductor layer or the p-type semiconductor layer via the insulating layer so that the depletion layer expands when a reverse voltage is applied. May be. According to this configuration, the shape of the electron channel can be suitably changed in each of the plurality of antenna structures.
  • each of the plurality of antenna structures has an n-type semiconductor layer and a p-type semiconductor layer forming a PN junction, and the electrode is a depletion layer when a forward voltage is applied. May be bonded to the n-type semiconductor layer or the p-type semiconductor layer so as to be reduced. According to this configuration, the shape of the electron channel can be suitably changed in each of the plurality of antenna structures.
  • each of the plurality of antenna structures may be provided with a plurality of electrodes. According to this configuration, it is possible to appropriately change the shape of the electron flow path by selectively applying a voltage to the plurality of electrodes in each of the plurality of antenna structures arranged two-dimensionally.
  • each of the plurality of antenna structures has an annular or C-shape when viewed from the thickness direction of the substrate, and each of the plurality of electrodes has a position different from each other. May be arranged. According to this configuration, each of the plurality of antenna structures can function as, for example, a C-shaped antenna opened in different directions.
  • each of the plurality of antenna structures has a plurality of arms arranged radially when viewed from the thickness direction of the substrate, and each of the plurality of electrodes includes a plurality of It may be arranged on each of the arms.
  • each of the plurality of antenna structures can function as, for example, a V-shaped antenna opened at different angles in different directions.
  • each of the plurality of antenna structures has a polygonal shape when viewed from the thickness direction of the substrate, and each of the plurality of electrodes includes at least a plurality of polygonal shapes. You may arrange
  • each of the plurality of antenna structures may have a side surface extending along the thickness direction of the substrate, and the electrode may be disposed on the side surface. According to this configuration, for example, when light is transmitted along the thickness direction of the substrate, it is possible to suppress the plurality of electrodes from becoming light scattering sources in each of the plurality of antenna structures.
  • An optical element includes a switching element having a control terminal and a pair of current terminals, the electrode being electrically connected to one of the pair of current terminals, and the other of the pair of current terminals being electrically
  • a first wiring connected to the control terminal and a second wiring electrically connected to the control terminal may be further provided. According to this configuration, a voltage signal can be sent to the switching element via the first wiring, and a control signal can be sent to the switching element via the second wiring to switch ON / OFF the voltage application to the electrodes.
  • the optical element according to an embodiment of the present disclosure may further include a capacitor electrically connected to one of the pair of current terminals and the ground potential. According to this configuration, a voltage applied to the electrode can be held.
  • an optical element that can dynamically modulate at least one of the phase, intensity, and polarization of light.
  • FIG. 1 is a perspective view of an optical element according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the antenna structure of the optical element according to the first embodiment.
  • FIG. 3A is a cross-sectional view showing a state of a depletion layer when a reverse voltage is applied to one divided electrode in the antenna structure of the optical element of the first embodiment.
  • FIG. 3B is a plan view showing the shape of the electron flow path when a reverse voltage is applied to one of the divided electrodes in the antenna structure of the optical element according to the first embodiment.
  • FIG. 4A is a cross-sectional view showing a state of a depletion layer when a reverse voltage is applied to the other divided electrode in the antenna structure of the optical element of the first embodiment.
  • FIG. 4B is a plan view showing the shape of the electron flow path when a reverse voltage is applied to the other divided electrode in the antenna structure of the optical element of the first embodiment.
  • FIG. 5A is a cross-sectional view showing a state of a depletion layer when a reverse voltage is applied to one divided electrode and the other divided electrode in the antenna structure of the optical element of the first embodiment.
  • FIG. 5B is a plan view showing the shape of the electron flow path when a reverse voltage is applied to one divided electrode and the other divided electrode in the antenna structure of the optical element of the first embodiment.
  • FIG. 6 is a diagram showing the relationship between the electron density of n-type GaAs and the plasma frequency.
  • FIG. 7 is a plan view of a first modification of the optical element of the first embodiment.
  • FIG. 8 is sectional drawing of the 2nd modification of the optical element of 1st Embodiment.
  • FIG. 8B is a cross-sectional view showing the state of the depletion layer when a reverse voltage is applied to one of the divided electrodes in the antenna structure of the second modified example.
  • (A) of FIG. 9 is sectional drawing of the 3rd modification of the optical element of 1st Embodiment.
  • FIG. 9B is a cross-sectional view showing the state of the depletion layer when a reverse voltage is applied to one of the divided electrodes in the antenna structure according to the third modification.
  • (A) of FIG. 10 is sectional drawing of the 4th modification of the optical element of 1st Embodiment.
  • FIG. 10 is sectional drawing of the 4th modification of the optical element of 1st Embodiment.
  • FIG. 10B is a cross-sectional view showing the state of the depletion layer when a reverse voltage is applied to one of the divided electrodes in the antenna structure according to the fourth modified example.
  • FIG. 11 is a plan view of an antenna structure of a fifth modification of the optical element of the first embodiment.
  • FIG. 12 is a cross-sectional view of a sixth modification of the optical element of the first embodiment.
  • FIG. 13 is a cross-sectional view of the optical element of the second embodiment.
  • FIG. 14A is a cross-sectional view showing a state of a depletion layer when a forward voltage is applied to a plurality of divided electrodes except one of the divided electrodes in the antenna structure of the optical element of the second embodiment.
  • FIG. 14B is a plan view showing the shape of the electron flow path when a forward voltage is applied to a plurality of divided electrodes except one of the divided electrodes in the antenna structure of the optical element of the second embodiment.
  • FIG. 15A is a cross-sectional view showing a state of a depletion layer when a forward voltage is applied to a plurality of divided electrodes excluding the other divided electrode in the antenna structure of the optical element of the second embodiment.
  • FIG. 15B is a plan view showing the shape of the electron flow path when a forward voltage is applied to a plurality of divided electrodes excluding the other divided electrode in the antenna structure of the optical element of the second embodiment.
  • FIG. 16 is a plan view of an optical element according to the third embodiment.
  • FIG. 17 is a cross-sectional view of the optical element of the third embodiment.
  • FIG. 18A is a plan view showing the shape of an electron flow path when a reverse voltage is applied to one combination of divided electrodes in the optical element antenna structure of the third embodiment.
  • FIG. 18B is a plan view showing the shape of the electron flow path when a reverse voltage is applied to another combination of divided electrodes in the optical element antenna structure of the third embodiment.
  • FIG. 19 is a plan view of an optical element according to the fourth embodiment.
  • FIG. 20 is a cross-sectional view of the optical element according to the fourth embodiment.
  • FIG. 21A is a plan view showing the shape of the electron flow path when a reverse voltage is applied to one combination of divided electrodes in the antenna structure of the optical element of the fourth embodiment.
  • FIG. 21A is a plan view showing the shape of the electron flow path when a reverse voltage is applied to one combination of divided electrodes in the antenna structure of the optical element of the fourth embodiment.
  • FIG. 21B is a plan view showing the shape of the electron channel when a reverse voltage is applied to another combination of divided electrodes in the antenna structure of the optical element according to the fourth embodiment.
  • (A) of FIG. 22 is sectional drawing of the 7th modification of the optical element of 1st Embodiment.
  • FIG. 22B is a cross-sectional view showing the state of the depletion layer when a reverse voltage is applied to one of the divided electrodes in the antenna structure according to the seventh modified example.
  • FIG. 23 is a plan view of an eighth modification of the optical element of the first embodiment.
  • FIG. 24 is a cross-sectional view of a ninth modification of the optical element of the first embodiment.
  • the optical element 1 ⁇ / b> A of the first embodiment includes a substrate 2, a plurality of antenna structures 3, and a plurality of divided electrodes (electrodes) 4.
  • the optical element 1A functions as a metasurface for modulating at least one of the phase, intensity, and polarization of light.
  • the substrate 2 is made of a semiconductor material such as GaAs.
  • the substrate 2 has a rectangular plate shape, for example.
  • the substrate 2 has a front surface 2a and a back surface 2b facing each other in the thickness direction.
  • the plurality of antenna structures 3 are two-dimensionally arranged on the surface 2a of the substrate 2 (in the optical element 1A, in a matrix shape).
  • Each antenna structure 3 includes an n-type semiconductor layer 31 made of an n-type semiconductor material such as n-type GaAs.
  • Each antenna structure 3 has an annular shape when viewed from the thickness direction of the substrate 2. The size of each antenna structure 3 and the distance between adjacent antenna structures 3 are smaller than the wavelength of light to be modulated.
  • the plurality of divided electrodes 4 are arranged at different positions in each antenna structure 3.
  • the pair of divided electrodes 4 are disposed at positions facing each other across the center of the antenna structure 3 when viewed from the thickness direction of the substrate 2.
  • Each divided electrode 4 is made of, for example, a metal material.
  • each of the pair of divided electrodes 4 is formed on the surface 3 a opposite to the substrate 2 side in the antenna structure 3, and is joined to the n-type semiconductor layer 31. More specifically, each divided electrode 4 is connected to the divided electrode 4 in the n-type semiconductor layer 31 when a reverse voltage (positive voltage with respect to the joint surface with the n-type semiconductor layer 31) is applied. It is joined to the n-type semiconductor layer 31 so that a depletion layer appears at the junction and expands (in other words, forms a Schottky junction).
  • the wirings 5a and 5b are omitted (the same applies to FIGS. 3 to 5 and 8 to 22).
  • each antenna structure 3 is electrically connected to a gate electrode 6a through a wiring 5a.
  • the other divided electrode 4 provided in each antenna structure 3 is electrically connected to the gate electrode 6b through the wiring 5b.
  • Each gate electrode 6a, 6b is electrically connected to an external power source.
  • the external power supply applies a voltage between the gate electrodes 6 a and 6 b and the ohmic electrode 7.
  • Each antenna structure 3, each wiring 5a, 5b, and each gate electrode 6a, 6b are formed on the surface 2a of the substrate 2 via an insulating film made of SiO 2 , Si 3 N 4 , Si 3 C 4 or the like. .
  • the ohmic electrode 7 is formed on the surface 2 a of the substrate 2 so as to form an ohmic junction with the substrate 2.
  • Each wiring 5a, 5b, each gate electrode 6a, 6b, and ohmic electrode 7 consists of metal materials, for example.
  • the antenna structure 3 in this case functions as a C-type antenna opened on one side (the right side in FIG. 3).
  • the antenna structure 3 in this case functions as a C-type antenna opened on the other side (left side in FIG. 4).
  • FIG. 5A a reverse voltage is applied to one divided electrode 4 (right divided electrode 4 in FIG. 5) and the other divided electrode 4 (left divided electrode 4 in FIG. 5). Then, the depletion layer D appears and expands only at the junction with the one divided electrode 4 and the junction with the other divided electrode 4 in the n-type semiconductor layer 31. As a result, as shown in FIG. 5B, the portion of the n-type semiconductor layer 31 excluding the junction with the one divided electrode 4 and the junction with the other divided electrode 4 is the electron flow path F. Become.
  • the optical element 1A of the first embodiment a voltage is selectively applied to the plurality of divided electrodes 4 in each of the plurality of antenna structures 3 arranged two-dimensionally.
  • the depletion layer D is expanded and the shape of the electron flow path F is changed. Therefore, the optical element 1A can dynamically modulate at least one of the phase, intensity, and polarization of light.
  • each divided electrode 4 is joined to the n-type semiconductor layer 31 so that the depletion layer D expands when a reverse voltage is applied. According to this configuration, the shape of the electron flow path F can be suitably changed in each antenna structure 3.
  • each antenna structure 3 has an annular shape when viewed from the thickness direction of the substrate 2, and the divided electrodes 4 are arranged at different positions. According to this configuration, each antenna structure 3 can function as, for example, a C-shaped antenna that is opened in different directions.
  • FIG. 6 is a diagram showing the relationship between the electron density of n-type GaAs and the plasma frequency (where the vertical axis is the wavelength).
  • the light source of light to be modulated can be obtained by increasing the electron density to about 1.3 ⁇ 10 18 / cm 3 or more.
  • QCL quantum cascade laser
  • a PCSEL photonic crystal laser
  • a PCSEL photonic crystal laser
  • AZO ZnO to which Al is added
  • ITO In 2 O 3 to which Sn is added
  • QCL QCL that outputs laser light having a wavelength of 7.75 ⁇ m can be used as the light source.
  • GZO is ZnO to which 4% by weight of gallium is added
  • AZO is ZnO to which 2% by weight of Al is added
  • ITO is InO to which 10% by weight of Sn is added. 2 O 3 . Note that in a material having a plasma frequency higher than the frequency of the external electric field (lower side in FIG. 6), internal electrons are vibrated (followed), and light scattering occurs.
  • a substrate 2 made of GaAs is prepared. Subsequently, in order to generate a potential difference in the portion corresponding to each divided electrode 4 in the n-type semiconductor layer 31, the portion excluding the portion corresponding to the ohmic electrode 7 in the surface 2 a of the substrate 2 is insulated by plasma CVD. A film is formed. Subsequently, an electron beam resist is formed on the surface 2a of the substrate 2 by spin coating. Subsequently, patterns corresponding to the plurality of antenna structures 3 are formed by electron beam drawing and development on the electron beam resist.
  • the diameter of the antenna structure 3 is 1 ⁇ m
  • the width of the antenna structure 3 is 0.2 ⁇ m
  • the distance between adjacent antenna structures 3 is 2 ⁇ m.
  • n-type GaAs is deposited by a molecular beam epitaxy method to form a plurality of antenna structures 3 made of n-type GaAs.
  • the thickness of the antenna structure 3 is 50 nm.
  • the electron beam resist is removed from the surface 2 a of the substrate 2.
  • an electron beam resist is formed again on the surface 2a of the substrate 2 by spin coating.
  • a pattern corresponding to the plurality of divided electrodes 4, the plurality of wirings 5a and 5b, the pair of gate electrodes 6a and 6b, and the ohmic electrode 7 is formed.
  • Ti is vapor-deposited by electron beam vapor deposition, and Au is further deposited to form a plurality of divided electrodes 4, a plurality of wirings 5a and 5b, a pair of gate electrodes 6a and 6b, and an ohmic electrode 7.
  • the thickness of the Ti layer as the adhesion layer is 5 nm
  • the thickness of the Au layer is 50 to 150 nm.
  • the electron beam resist is removed from the surface 2a of the substrate 2 to obtain the optical element 1A.
  • the optical element 1A includes a switching element 10 having a control terminal and a pair of current terminals, a voltage supply line (first wiring) 8 for sending a voltage signal to the switching element 10, and a switching element. And a switch line (second wiring) 9 for sending a control signal to 10.
  • the divided electrode 4 is electrically connected to one of the pair of current terminals
  • the voltage supply line 8 is electrically connected to the other of the pair of current terminals
  • the switch line 9 is electrically connected to the control terminal.
  • the switching element 10 is a transistor.
  • the control terminal is a gate electrode
  • the pair of current terminals are a drain electrode and a source electrode.
  • This configuration can be applied to each of the divided electrodes 4 with respect to the plurality of antenna structures 3.
  • a voltage signal is sent to the switching element 10 via the voltage supply line 8
  • a control signal is sent to the switching element 10 via the switch line 9 to turn on / off voltage application to the divided electrode 4.
  • the optical element 1A may further include a capacitor 11 that is electrically connected to one of a pair of current terminals in the switching element 10 and a ground potential. According to this configuration, the voltage applied to the divided electrode 4 can be held.
  • each antenna structure 3 may have a p-type semiconductor layer instead of the n-type semiconductor layer 31.
  • a reverse voltage negative voltage with respect to the junction surface with the p-type semiconductor layer
  • the depletion layer D is applied only to the junction portion with the divided electrode 4 in the p-type semiconductor layer. Appears and expands.
  • the divided electrode 4 may be disposed on the side surface 3 b of the antenna structure 3. Also in this case, when a reverse voltage is applied to the divided electrode 4, as shown in FIG. 8B and FIG. 9B, the junction between the n-type semiconductor layer 31 and the divided electrode 4 is applied. Since the depletion layer D appears and expands, the shape of the electron flow path F can be changed suitably.
  • the divided electrode 4 when the divided electrode 4 is disposed on the side surface 3 b extending along the thickness direction of the substrate 2, for example, light is transmitted along the thickness direction of the substrate 2. In this case, it is possible to suppress the plurality of divided electrodes 4 from becoming light scattering sources in each antenna structure 3. In particular, when the insulating layer 12 is disposed between the divided electrode 4 and the substrate 2, it is possible to more reliably suppress the plurality of divided electrodes 4 from becoming light scattering sources in each antenna structure 3. . Furthermore, as shown in FIG. 9, if the side surface 3b is inclined by etching or the like, the divisional electrode 4 can be easily and reliably formed by vapor deposition or the like.
  • the divided electrode 4 has an n-type semiconductor layer through the insulating layer 12 so that the depletion layer D expands when a reverse voltage is applied.
  • 31 may be arranged.
  • the shape of the electron flow path F can be suitably changed in each antenna structure 3.
  • each antenna structure 3 may have a p-type semiconductor layer instead of the n-type semiconductor layer 31. That is, the divided electrode 4 may be disposed on the p-type semiconductor layer via the insulating layer 12 so that the depletion layer D expands when a reverse voltage is applied.
  • the plurality of divided electrodes 4 may be arranged in a part of the antenna structure 3 having an annular shape (a quarter in this modification). Good. Also in this case, the shape of the electron flow path F can be appropriately changed by selectively applying a voltage to one or a plurality (including all) of the divided electrodes 4. In addition, the some division
  • a mirror 13 may be disposed on the surface 3 a of the antenna structure 3. In this case, the modulated light can be extracted as reflected light by causing the light to be modulated to enter from the back surface 2 b side of the substrate 2. Further, as shown in FIG. 24, a mirror 13 may be disposed between the surface 2 a of the substrate 2 and the antenna structure 3. In this case, the modulated light can be extracted as reflected light by causing the light to be modulated to enter from the surface 2a side of the substrate 2.
  • each antenna structure 3 may have an annular shape other than an annular shape or a C-shape when viewed from the thickness direction of the substrate 2.
  • annular shape other than the annular shape a polygon, an ellipse and the like can be exemplified.
  • each antenna structure 3 includes an n-type semiconductor layer 31 and a p-type semiconductor layer 32.
  • the n-type semiconductor layer 31 is formed on the surface 2 a of the substrate 2.
  • the p-type semiconductor layer 32 is formed on the n-type semiconductor layer 31.
  • the n-type semiconductor layer 31 and the p-type semiconductor layer 32 form a PN junction, and a depletion layer D is formed at the junction between the n-type semiconductor layer 31 and the p-type semiconductor layer 32.
  • Each antenna structure 3 has a plurality of divided electrodes 4 arranged in a ring shape.
  • Each divided electrode 4 is formed on the surface 3 a of the antenna structure 3 and is joined to the p-type semiconductor layer 32. More specifically, each divided electrode 4 is applied to the n-type semiconductor layer 31 and the p-type semiconductor layer 32 when a forward voltage (positive voltage with respect to the junction surface with the p-type semiconductor layer 32) is applied.
  • the depletion layer D is bonded to the p-type semiconductor layer 32 so that the depletion layer D is reduced in a portion located immediately below the divided electrode 4 in the bonding portion. Note that the gap between the adjacent divided electrodes 4 is narrowed to such a width that electrical insulation between the adjacent divided electrodes 4 can be maintained.
  • a forward voltage is applied to the plurality of divided electrodes 4 except for one divided electrode 4 (the right divided electrode 4 in FIG. 14).
  • the depletion layer D shrinks and disappears at the portion of the junction between the n-type semiconductor layer 31 and the p-type semiconductor layer 32 located immediately below the plurality of divided electrodes 4 to which the forward voltage is applied.
  • a portion that is, a depletion layer D is formed immediately below one of the divided electrodes 4 in the junction portion of the n-type semiconductor layer 31 and the p-type semiconductor layer 32.
  • a portion excluding the portion that is formed becomes an electron flow path F (an electron-filled region that can cause light scattering). Therefore, the antenna structure 3 in this case functions as a C-type antenna opened on one side (right side in FIG. 14).
  • the antenna structure 3 in this case functions as a C-type antenna opened on the other side (left side in FIG. 15).
  • the optical element 1B of the second embodiment a voltage is selectively applied to the plurality of divided electrodes 4 in each of the plurality of antenna structures 3 arranged two-dimensionally.
  • the depletion layer D is reduced and the shape of the electron flow path F is changed. Therefore, the optical element 1B can dynamically modulate at least one of the phase, intensity, and polarization of light.
  • each antenna structure 3 has an n-type semiconductor layer 31 and a p-type semiconductor layer 32 forming a PN junction, and each depletion electrode 4 has a depletion layer D when a forward voltage is applied.
  • the p-type semiconductor layer 32 is joined so as to be reduced. According to this configuration, the shape of the electron flow path F can be suitably changed in each antenna structure 3.
  • each antenna structure 3 has an annular shape when viewed from the thickness direction of the substrate 2, and the divided electrodes 4 are arranged at different positions. According to this configuration, each antenna structure 3 can function as, for example, a C-shaped antenna that is opened in different directions.
  • the optical element 1B of the second embodiment also sends a voltage signal to the switching element 10 via the voltage supply line 8 and the switching element 10 via the switch line 9 in the same manner as the optical element 1A of the first embodiment. It may be configured so that a control signal can be sent to and ON / OFF of voltage application to the divided electrode 4 can be switched (see FIGS. 7 and 23). Further, the p-type semiconductor layer 32 may be formed on the surface 2 a of the substrate 2, and the n-type semiconductor layer 31 may be formed on the p-type semiconductor layer 32.
  • each antenna structure 3 may have an annular shape other than an annular shape or a C-shape when viewed from the thickness direction of the substrate 2.
  • each antenna structure 3 has a plurality of arms 33 arranged radially when viewed from the thickness direction of the substrate 2. More specifically, the plurality of arms 33 are connected to each other at the base end portion 33a, and are arranged radially, for example, at intervals of 45 degrees.
  • each divided electrode 4 is formed on the surface 3 a of the antenna structure 3 for each arm 33, and is joined to the n-type semiconductor layer 31 as shown in FIG. 17. More specifically, each divided electrode 4 has a depletion layer that appears and expands at the junction with the divided electrode 4 in the n-type semiconductor layer 31 when a reverse voltage is applied (in other words, , So as to form a Schottky junction).
  • a pair of appropriately selected divided electrodes 4 in FIGS. 18A and 18B.
  • a reverse voltage is applied to a plurality of divided electrodes 4 (divided electrodes 4 indicated by two-dot chain lines in FIGS. 18A and 18B) excluding the divided electrodes 4 indicated by solid lines, an n-type
  • the depletion layer D appears and expands only at the junctions with the plurality of divided electrodes 4 excluding the pair of appropriately selected divided electrodes 4 in the semiconductor layer 31.
  • the antenna structure 3 shown in FIG. 18A functions as a C-type antenna that is opened at an angle of 90 degrees in the direction of 45 degrees from the upper side in FIG.
  • the antenna structure 3 shown in FIG. 18 functions as a C-shaped antenna opened at an angle of 45 degrees in the direction of 135 degrees from the upper side in FIG.
  • a voltage is selectively applied to the plurality of divided electrodes 4 in each of the plurality of antenna structures 3 arranged two-dimensionally.
  • the depletion layer D is expanded and the shape of the electron flow path F is changed. Therefore, according to the optical element 1C, it is possible to dynamically modulate at least one of the phase, intensity, and polarization of light.
  • each divided electrode 4 is joined to the n-type semiconductor layer 31 so that the depletion layer D expands when a reverse voltage is applied. According to this configuration, the shape of the electron flow path F can be suitably changed in each antenna structure 3.
  • Each antenna structure 3 has a plurality of arms 33 arranged radially when viewed from the thickness direction of the substrate 2, and each divided electrode 4 is disposed on each arm 33. According to this configuration, each antenna structure 3 can function as, for example, a V-shaped antenna opened at different angles in different directions.
  • a plurality of divided electrodes 4 may be arranged on one arm 33. According to this configuration, in addition to the opening direction and angle of the V-shaped antenna, the length of each arm of the V-shaped antenna can be changed.
  • the optical element 1C of the third embodiment also sends a voltage signal to the switching element 10 via the voltage supply line 8 and also the switching element 10 via the switch line 9 in the same manner as the optical element 1A of the first embodiment. It may be configured so that a control signal can be sent to and ON / OFF of voltage application to the divided electrode 4 can be switched (see FIGS. 7 and 23).
  • Each antenna structure 3 may have a p-type semiconductor layer instead of the n-type semiconductor layer 31.
  • each antenna structure 3 may have an annular shape other than an annular shape or a C-shape when viewed from the thickness direction of the substrate 2.
  • each antenna structure 3 has an n-type semiconductor layer 31 and a p-type semiconductor layer 32 forming a PN junction, as in the optical element 1B of the second embodiment.
  • Each divided electrode 4 may be joined to the n-type semiconductor layer 31 or the p-type semiconductor layer 32.
  • the n-type semiconductor layer 31 and The depletion layer D shrinks and disappears only at the portion of the junction portion of the p-type semiconductor layer 32 located immediately below the pair of divided electrodes 4.
  • a portion of the junction portion between the n-type semiconductor layer 31 and the p-type semiconductor layer 32 that is located immediately below the pair of divided electrodes 4 can function as the electron flow path F.
  • each antenna structure 3 has a square shape when viewed from the thickness direction of the substrate 2.
  • each divided electrode 4 has a shape of an isosceles right-angled isosceles triangle that divides the square into eight when viewed from the thickness direction of the substrate 2. It arrange
  • each divided electrode 4 is formed on the surface 3a of the antenna structure 3, and is joined to the n-type semiconductor layer 31 as shown in FIG.
  • each divided electrode 4 has a depletion layer that appears and expands at the junction with the divided electrode 4 in the n-type semiconductor layer 31 when a reverse voltage is applied (in other words, , So as to form a Schottky junction). Note that the gap between the adjacent divided electrodes 4 is narrowed to such a width that electrical insulation between the adjacent divided electrodes 4 can be maintained.
  • the antenna structure 3 shown in FIG. 21A functions as a C-type antenna or a V-type antenna opened to the right side in FIG. 21A, and the antenna structure shown in FIG.
  • the body 3 functions as a C-type antenna or a V-type antenna that opens downward in FIG.
  • a voltage is selectively applied to the plurality of divided electrodes 4 in each of the plurality of antenna structures 3 arranged two-dimensionally.
  • the depletion layer D is expanded and the shape of the electron flow path F is changed.
  • at least one of the phase, intensity, and polarization of light can be dynamically modulated.
  • each divided electrode 4 is joined to the n-type semiconductor layer 31 so that the depletion layer D expands when a reverse voltage is applied. According to this configuration, the shape of the electron flow path F can be suitably changed in each antenna structure 3.
  • each antenna structure 3 has a square shape when viewed from the thickness direction of the substrate 2, and each divided electrode 4 is disposed at each of a plurality of corner portions 34 in the square. According to this configuration, each antenna structure 3 can function as, for example, a C-type antenna or a V-type antenna as described above.
  • the optical element 1D of the fourth embodiment also sends a voltage signal to the switching element 10 via the voltage supply line 8 and the switching element 10 via the switch line 9 in the same manner as the optical element 1A of the first embodiment. It may be configured so that a control signal can be sent to and ON / OFF of voltage application to the divided electrode 4 can be switched (see FIGS. 7 and 23).
  • Each antenna structure 3 may have a p-type semiconductor layer instead of the n-type semiconductor layer 31. In that case, when a reverse voltage is applied to the divided electrode 4, the depletion layer D appears and expands only at the junction with the divided electrode 4 in the p-type semiconductor layer. Further, the mirror 13 may be disposed on the surface 3a of the antenna structure 3 (see FIG. 12).
  • each antenna structure 3 may have a polygonal shape other than a square when viewed from the thickness direction of the substrate 2. Examples of polygonal shapes other than squares include rectangles, pentagons, hexagons, and the like. At this time, each divided electrode 4 should just be arrange
  • each antenna structure 3 includes an n-type semiconductor layer 31 and a p-type semiconductor layer 32 forming a PN junction, as in the optical element 1B of the second embodiment.
  • Each divided electrode 4 may be joined to the n-type semiconductor layer 31 or the p-type semiconductor layer 32. In this case, when a forward voltage is applied only to a plurality of divided electrodes 4 (a divided electrode 4 indicated by a solid line in FIGS. 21A and 21B) excluding a pair of appropriately selected divided electrodes 4.
  • the depletion layer D shrinks and disappears only at the portion of the junction between the n-type semiconductor layer 31 and the p-type semiconductor layer 32 that is located immediately below the plurality of divided electrodes 4 excluding the pair of divided electrodes 4.
  • segmentation electrode 4 among the junction parts of the n-type semiconductor layer 31 and the p-type semiconductor layer 32 can be functioned as the electron flow path F.
  • the optical element of the present disclosure is limited to the above-described first, second, third, and fourth embodiments. is not.
  • the material of the n-type semiconductor layer 31 an n-type semiconductor material such as n-type GaAs, GZO, AZO, or ITO can be used.
  • an insulating material or the like can be used as the material of the substrate 2.
  • transparent electrode materials such as ITO other than a metal material, can be used.
  • each of the optical elements 1 of the first, second, third, and fourth embodiments may be stacked on a transmission type PCSEL to constitute a self-luminous phase control element.
  • each of the optical elements 1 of the first, second, third, and fourth embodiments is not limited to low-order mode scattered light, and can be used for high-order mode scattered light.
  • a pattern portion is formed with an n-type semiconductor layer 31 by an electron beam lithography method, and then an insulating layer 12 is formed on the surface 2a of the substrate 2, and then an n-type semiconductor is formed.
  • the divided electrode 4 may be formed on the semiconductor layer 31. Also in this case, as shown in FIG. 22B, the voltage is selectively applied to the plurality of divided electrodes 4 in each antenna structure 3, so that the depletion layer D is expanded and electrons are The shape of the flow path F is changed.
  • a plurality of antenna structures are formed by forming at least one of the n-type semiconductor layer 31 and the p-type semiconductor layer 32 in the substrate 2 by doping impurities, for example. 3 may be configured. That is, the plurality of antenna structures 3 may be two-dimensionally arranged in the substrate 2.
  • one divided electrode 4 may be provided for one antenna structure 3. Even in that case, the voltage is applied to the divided electrode 4 in each antenna structure 3, whereby the depletion layer D is expanded or contracted, and the shape of the electron flow path F is changed.

Abstract

This optical element is provided with: a substrate; a plurality of antenna structures, which are two-dimensionally arrayed on the substrate, and each of which has an n-type semiconductor layer and/or a p-type semiconductor layer for forming an electron flow channel; and electrodes for changing the shape of the electron flow channel by expanding or reducing a depletion layer in each of the antenna structures.

Description

光学素子Optical element
 本開示は、光の位相、強度及び偏光の少なくとも1つを変調するための光学素子に関する。 The present disclosure relates to an optical element for modulating at least one of the phase, intensity, and polarization of light.
 近年、光の位相、強度及び偏光の少なくとも1つを変調するための光学素子として、メタサーフェスが注目されている(例えば、特許文献1参照)。メタサーフェスにおいては、例えば、複数の微小金属構造体が、変調対象とする光の波長よりも小さいピッチで二次元状に配列されている。 In recent years, metasurfaces have attracted attention as optical elements for modulating at least one of the phase, intensity, and polarization of light (see, for example, Patent Document 1). In the metasurface, for example, a plurality of minute metal structures are two-dimensionally arranged at a pitch smaller than the wavelength of light to be modulated.
米国特許第8848273号明細書U.S. Pat. No. 8,848,273
 しかしながら、上述したようなメタサーフェスは、複数の微小金属構造体という静的な構造体によって構成されているため、予め定められた一定の変調を実現するに留まっている。 However, since the metasurface as described above is composed of a static structure such as a plurality of fine metal structures, it is only possible to realize predetermined constant modulation.
 そこで、本開示は、光の位相、強度及び偏光の少なくとも1つを動的に変調することができる光学素子を提供することを目的とする。 Therefore, an object of the present disclosure is to provide an optical element that can dynamically modulate at least one of the phase, intensity, and polarization of light.
 本開示の一形態に係る光学素子は、基板と、基板に二次元状に配列され、電子流路を形成するためのn型半導体層及びp型半導体層の少なくとも1つを有する複数のアンテナ構造体と、複数のアンテナ構造体のそれぞれにおいて空乏層を拡大又は縮小させて電子流路の形状を変化させるための電極と、を備える。 An optical element according to an embodiment of the present disclosure includes a substrate and a plurality of antenna structures that are two-dimensionally arranged on the substrate and include at least one of an n-type semiconductor layer and a p-type semiconductor layer for forming an electron channel. And an electrode for changing the shape of the electron flow path by enlarging or reducing the depletion layer in each of the plurality of antenna structures.
 この光学素子では、二次元状に配列された複数のアンテナ構造体のそれぞれにおいて電極に電圧が印加されることで、空乏層が拡大又は縮小させられて電子流路の形状が変化させられる。よって、この光学素子によれば、光の位相、強度及び偏光の少なくとも1つを動的に変調することができる。 In this optical element, when a voltage is applied to the electrodes in each of the plurality of antenna structures arranged in a two-dimensional shape, the depletion layer is expanded or contracted to change the shape of the electron flow path. Therefore, according to this optical element, at least one of the phase, intensity, and polarization of light can be dynamically modulated.
 本開示の一形態に係る光学素子では、複数のアンテナ構造体は、基板上に二次元状に配列されていてもよいし、基板内に二次元状に配列されていてもよい。 In the optical element according to an embodiment of the present disclosure, the plurality of antenna structures may be arranged two-dimensionally on the substrate or may be arranged two-dimensionally within the substrate.
 本開示の一形態に係る光学素子では、電極は、逆電圧が印加された際に空乏層が拡大するように、n型半導体層又はp型半導体層と接合されていてもよい。この構成によれば、複数のアンテナ構造体のそれぞれにおいて、電子流路の形状を好適に変化させることができる。 In the optical element according to an embodiment of the present disclosure, the electrode may be bonded to the n-type semiconductor layer or the p-type semiconductor layer so that the depletion layer expands when a reverse voltage is applied. According to this configuration, the shape of the electron channel can be suitably changed in each of the plurality of antenna structures.
 本開示の一形態に係る光学素子では、電極は、逆電圧が印加された際に空乏層が拡大するように、絶縁層を介してn型半導体層上又はp型半導体層上に配置されていてもよい。この構成によれば、複数のアンテナ構造体のそれぞれにおいて、電子流路の形状を好適に変化させることができる。 In the optical element according to an embodiment of the present disclosure, the electrode is disposed on the n-type semiconductor layer or the p-type semiconductor layer via the insulating layer so that the depletion layer expands when a reverse voltage is applied. May be. According to this configuration, the shape of the electron channel can be suitably changed in each of the plurality of antenna structures.
 本開示の一形態に係る光学素子では、複数のアンテナ構造体のそれぞれは、PN接合を成すn型半導体層及びp型半導体層を有し、電極は、順電圧が印加された際に空乏層が縮小するように、n型半導体層又はp型半導体層と接合されていてもよい。この構成によれば、複数のアンテナ構造体のそれぞれにおいて、電子流路の形状を好適に変化させることができる。 In the optical element according to an embodiment of the present disclosure, each of the plurality of antenna structures has an n-type semiconductor layer and a p-type semiconductor layer forming a PN junction, and the electrode is a depletion layer when a forward voltage is applied. May be bonded to the n-type semiconductor layer or the p-type semiconductor layer so as to be reduced. According to this configuration, the shape of the electron channel can be suitably changed in each of the plurality of antenna structures.
 本開示の一形態に係る光学素子では、複数のアンテナ構造体のそれぞれには、複数の電極が設けられていてもよい。この構成によれば、二次元状に配列された複数のアンテナ構造体のそれぞれにおいて複数の電極に選択的に電圧を印加することで、電子流路の形状を適宜に変化させることができる。 In the optical element according to an embodiment of the present disclosure, each of the plurality of antenna structures may be provided with a plurality of electrodes. According to this configuration, it is possible to appropriately change the shape of the electron flow path by selectively applying a voltage to the plurality of electrodes in each of the plurality of antenna structures arranged two-dimensionally.
 本開示の一形態に係る光学素子では、複数のアンテナ構造体のそれぞれは、基板の厚さ方向から見た場合に環状又はC字状の形状を呈し、複数の電極のそれぞれは、互いに異なる位置に配置されていてもよい。この構成によれば、複数のアンテナ構造体のそれぞれを、例えば互いに異なる方向に開いたC型アンテナとして、機能させることができる。 In the optical element according to an embodiment of the present disclosure, each of the plurality of antenna structures has an annular or C-shape when viewed from the thickness direction of the substrate, and each of the plurality of electrodes has a position different from each other. May be arranged. According to this configuration, each of the plurality of antenna structures can function as, for example, a C-shaped antenna opened in different directions.
 本開示の一形態に係る光学素子では、複数のアンテナ構造体のそれぞれは、基板の厚さ方向から見た場合に放射状に配列された複数のアームを有し、複数の電極のそれぞれは、複数のアームのそれぞれに配置されていてもよい。この構成によれば、複数のアンテナ構造体のそれぞれを、例えば互いに異なる方向に互いに異なる角度で開いたV型アンテナとして、機能させることができる。 In the optical element according to an aspect of the present disclosure, each of the plurality of antenna structures has a plurality of arms arranged radially when viewed from the thickness direction of the substrate, and each of the plurality of electrodes includes a plurality of It may be arranged on each of the arms. According to this configuration, each of the plurality of antenna structures can function as, for example, a V-shaped antenna opened at different angles in different directions.
 本開示の一形態に係る光学素子では、複数のアンテナ構造体のそれぞれは、基板の厚さ方向から見た場合に多角形の形状を呈し、複数の電極のそれぞれは、少なくとも多角形における複数の角部のそれぞれに配置されていてもよい。この構成によれば、複数のアンテナ構造体のそれぞれを、例えば上述したようなC型アンテナ乃至V型アンテナとして、機能させることができる。 In the optical element according to an aspect of the present disclosure, each of the plurality of antenna structures has a polygonal shape when viewed from the thickness direction of the substrate, and each of the plurality of electrodes includes at least a plurality of polygonal shapes. You may arrange | position at each of a corner | angular part. According to this configuration, each of the plurality of antenna structures can function as, for example, a C-type antenna or a V-type antenna as described above.
 本開示の一形態に係る光学素子では、複数のアンテナ構造体のそれぞれは、基板の厚さ方向に沿って延在する側面を有し、電極は、側面に配置されていてもよい。この構成によれば、例えば基板の厚さ方向に沿って光を透過させる場合に、複数のアンテナ構造体のそれぞれにおいて複数の電極が光の散乱源となるのを抑制することができる。 In the optical element according to an embodiment of the present disclosure, each of the plurality of antenna structures may have a side surface extending along the thickness direction of the substrate, and the electrode may be disposed on the side surface. According to this configuration, for example, when light is transmitted along the thickness direction of the substrate, it is possible to suppress the plurality of electrodes from becoming light scattering sources in each of the plurality of antenna structures.
 本開示の一形態に係る光学素子は、制御端子及び一対の電流端子を有し、一対の電流端子の一方に電極が電気的に接続されたスイッチング素子と、一対の電流端子の他方に電気的に接続された第1配線と、制御端子に電気的に接続された第2配線と、を更に備えてもよい。この構成によれば、第1配線を介してスイッチング素子に電圧信号を送ると共に、第2配線を介してスイッチング素子に制御信号を送り、電極に対する電圧の印加のON/OFFを切り替えることができる。 An optical element according to an embodiment of the present disclosure includes a switching element having a control terminal and a pair of current terminals, the electrode being electrically connected to one of the pair of current terminals, and the other of the pair of current terminals being electrically A first wiring connected to the control terminal and a second wiring electrically connected to the control terminal may be further provided. According to this configuration, a voltage signal can be sent to the switching element via the first wiring, and a control signal can be sent to the switching element via the second wiring to switch ON / OFF the voltage application to the electrodes.
 本開示の一形態に係る光学素子は、一対の電流端子の一方とグランド電位とに電気的に接続されたコンデンサを更に備えてもよい。この構成によれば、電極に印加される電圧を保持することができる。 The optical element according to an embodiment of the present disclosure may further include a capacitor electrically connected to one of the pair of current terminals and the ground potential. According to this configuration, a voltage applied to the electrode can be held.
 本開示によれば、光の位相、強度及び偏光の少なくとも1つを動的に変調することができる光学素子を提供することが可能となる。 According to the present disclosure, it is possible to provide an optical element that can dynamically modulate at least one of the phase, intensity, and polarization of light.
図1は、第1実施形態の光学素子の斜視図である。FIG. 1 is a perspective view of an optical element according to the first embodiment. 図2は、第1実施形態の光学素子のアンテナ構造体の断面図である。FIG. 2 is a cross-sectional view of the antenna structure of the optical element according to the first embodiment. 図3の(a)は、第1実施形態の光学素子のアンテナ構造体において一方の分割電極に逆電圧が印加された際の空乏層の状態を示す断面図である。図3の(b)は、第1実施形態の光学素子のアンテナ構造体において一方の分割電極に逆電圧が印加された際の電子流路の形状を示す平面図である。FIG. 3A is a cross-sectional view showing a state of a depletion layer when a reverse voltage is applied to one divided electrode in the antenna structure of the optical element of the first embodiment. FIG. 3B is a plan view showing the shape of the electron flow path when a reverse voltage is applied to one of the divided electrodes in the antenna structure of the optical element according to the first embodiment. 図4の(a)は、第1実施形態の光学素子のアンテナ構造体において他方の分割電極に逆電圧が印加された際の空乏層の状態を示す断面図である。図4の(b)は、第1実施形態の光学素子のアンテナ構造体において他方の分割電極に逆電圧が印加された際の電子流路の形状を示す平面図である。FIG. 4A is a cross-sectional view showing a state of a depletion layer when a reverse voltage is applied to the other divided electrode in the antenna structure of the optical element of the first embodiment. FIG. 4B is a plan view showing the shape of the electron flow path when a reverse voltage is applied to the other divided electrode in the antenna structure of the optical element of the first embodiment. 図5の(a)は、第1実施形態の光学素子のアンテナ構造体において一方の分割電極及び他方の分割電極に逆電圧が印加された際の空乏層の状態を示す断面図である。図5の(b)は、第1実施形態の光学素子のアンテナ構造体において一方の分割電極及び他方の分割電極に逆電圧が印加された際の電子流路の形状を示す平面図である。FIG. 5A is a cross-sectional view showing a state of a depletion layer when a reverse voltage is applied to one divided electrode and the other divided electrode in the antenna structure of the optical element of the first embodiment. FIG. 5B is a plan view showing the shape of the electron flow path when a reverse voltage is applied to one divided electrode and the other divided electrode in the antenna structure of the optical element of the first embodiment. 図6は、n型GaAsの電子密度とプラズマ周波数との関係を示す図である。FIG. 6 is a diagram showing the relationship between the electron density of n-type GaAs and the plasma frequency. 図7は、第1実施形態の光学素子の第1変形例の平面図である。FIG. 7 is a plan view of a first modification of the optical element of the first embodiment. 図8の(a)は、第1実施形態の光学素子の第2変形例の断面図である。図8の(b)は、第2変形例のアンテナ構造体において一方の分割電極に逆電圧が印加された際の空乏層の状態を示す断面図である。(A) of FIG. 8 is sectional drawing of the 2nd modification of the optical element of 1st Embodiment. FIG. 8B is a cross-sectional view showing the state of the depletion layer when a reverse voltage is applied to one of the divided electrodes in the antenna structure of the second modified example. 図9の(a)は、第1実施形態の光学素子の第3変形例の断面図である。図9の(b)は、第3変形例のアンテナ構造体において一方の分割電極に逆電圧が印加された際の空乏層の状態を示す断面図である。(A) of FIG. 9 is sectional drawing of the 3rd modification of the optical element of 1st Embodiment. FIG. 9B is a cross-sectional view showing the state of the depletion layer when a reverse voltage is applied to one of the divided electrodes in the antenna structure according to the third modification. 図10の(a)は、第1実施形態の光学素子の第4変形例の断面図である。図10の(b)は、第4変形例のアンテナ構造体において一方の分割電極に逆電圧が印加された際の空乏層の状態を示す断面図である。(A) of FIG. 10 is sectional drawing of the 4th modification of the optical element of 1st Embodiment. FIG. 10B is a cross-sectional view showing the state of the depletion layer when a reverse voltage is applied to one of the divided electrodes in the antenna structure according to the fourth modified example. 図11は、第1実施形態の光学素子の第5変形例のアンテナ構造体の平面図である。FIG. 11 is a plan view of an antenna structure of a fifth modification of the optical element of the first embodiment. 図12は、第1実施形態の光学素子の第6変形例の断面図である。FIG. 12 is a cross-sectional view of a sixth modification of the optical element of the first embodiment. 図13は、第2実施形態の光学素子の断面図である。FIG. 13 is a cross-sectional view of the optical element of the second embodiment. 図14の(a)は、第2実施形態の光学素子のアンテナ構造体において一方の分割電極を除く複数の分割電極に順電圧が印加された際の空乏層の状態を示す断面図である。図14の(b)は、第2実施形態の光学素子のアンテナ構造体において一方の分割電極を除く複数の分割電極に順電圧が印加された際の電子流路の形状を示す平面図である。FIG. 14A is a cross-sectional view showing a state of a depletion layer when a forward voltage is applied to a plurality of divided electrodes except one of the divided electrodes in the antenna structure of the optical element of the second embodiment. FIG. 14B is a plan view showing the shape of the electron flow path when a forward voltage is applied to a plurality of divided electrodes except one of the divided electrodes in the antenna structure of the optical element of the second embodiment. . 図15の(a)は、第2実施形態の光学素子のアンテナ構造体において他方の分割電極を除く複数の分割電極に順電圧が印加された際の空乏層の状態を示す断面図である。図15の(b)は、第2実施形態の光学素子のアンテナ構造体において他方の分割電極を除く複数の分割電極に順電圧が印加された際の電子流路の形状を示す平面図である。FIG. 15A is a cross-sectional view showing a state of a depletion layer when a forward voltage is applied to a plurality of divided electrodes excluding the other divided electrode in the antenna structure of the optical element of the second embodiment. FIG. 15B is a plan view showing the shape of the electron flow path when a forward voltage is applied to a plurality of divided electrodes excluding the other divided electrode in the antenna structure of the optical element of the second embodiment. . 図16は、第3実施形態の光学素子の平面図である。FIG. 16 is a plan view of an optical element according to the third embodiment. 図17は、第3実施形態の光学素子の断面図である。FIG. 17 is a cross-sectional view of the optical element of the third embodiment. 図18の(a)は、第3実施形態の光学素子のアンテナ構造体において一の組合せの分割電極に逆電圧が印加された際の電子流路の形状を示す平面図である。図18の(b)は、第3実施形態の光学素子のアンテナ構造体において他の組合せの分割電極に逆電圧が印加された際の電子流路の形状を示す平面図である。FIG. 18A is a plan view showing the shape of an electron flow path when a reverse voltage is applied to one combination of divided electrodes in the optical element antenna structure of the third embodiment. FIG. 18B is a plan view showing the shape of the electron flow path when a reverse voltage is applied to another combination of divided electrodes in the optical element antenna structure of the third embodiment. 図19は、第4実施形態の光学素子の平面図である。FIG. 19 is a plan view of an optical element according to the fourth embodiment. 図20は、第4実施形態の光学素子の断面図である。FIG. 20 is a cross-sectional view of the optical element according to the fourth embodiment. 図21の(a)は、第4実施形態の光学素子のアンテナ構造体において一の組合せの分割電極に逆電圧が印加された際の電子流路の形状を示す平面図である。図21の(b)は、第4実施形態の光学素子のアンテナ構造体において他の組合せの分割電極に逆電圧が印加された際の電子流路の形状を示す平面図である。FIG. 21A is a plan view showing the shape of the electron flow path when a reverse voltage is applied to one combination of divided electrodes in the antenna structure of the optical element of the fourth embodiment. FIG. 21B is a plan view showing the shape of the electron channel when a reverse voltage is applied to another combination of divided electrodes in the antenna structure of the optical element according to the fourth embodiment. 図22の(a)は、第1実施形態の光学素子の第7変形例の断面図である。図22の(b)は、第7変形例のアンテナ構造体において一方の分割電極に逆電圧が印加された際の空乏層の状態を示す断面図である。(A) of FIG. 22 is sectional drawing of the 7th modification of the optical element of 1st Embodiment. FIG. 22B is a cross-sectional view showing the state of the depletion layer when a reverse voltage is applied to one of the divided electrodes in the antenna structure according to the seventh modified example. 図23は、第1実施形態の光学素子の第8変形例の平面図である。FIG. 23 is a plan view of an eighth modification of the optical element of the first embodiment. 図24は、第1実施形態の光学素子の第9変形例の断面図である。FIG. 24 is a cross-sectional view of a ninth modification of the optical element of the first embodiment.
 以下、本開示の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[第1実施形態]
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping description is abbreviate | omitted.
[First Embodiment]
 図1に示されるように、第1実施形態の光学素子1Aは、基板2と、複数のアンテナ構造体3と、複数の分割電極(電極)4と、を備えている。光学素子1Aは、光の位相、強度及び偏光の少なくとも1つを変調するためのメタサーフェスとして機能する。 As shown in FIG. 1, the optical element 1 </ b> A of the first embodiment includes a substrate 2, a plurality of antenna structures 3, and a plurality of divided electrodes (electrodes) 4. The optical element 1A functions as a metasurface for modulating at least one of the phase, intensity, and polarization of light.
 基板2は、例えばGaAs等の半導体材料からなる。基板2は、例えば矩形板状を呈している。基板2は、その厚さ方向おいて互いに対向する表面2a及び裏面2bを有している。 The substrate 2 is made of a semiconductor material such as GaAs. The substrate 2 has a rectangular plate shape, for example. The substrate 2 has a front surface 2a and a back surface 2b facing each other in the thickness direction.
 複数のアンテナ構造体3は、基板2の表面2aに二次元状(光学素子1Aでは、マトリックス状)に配列されている。各アンテナ構造体3は、例えばn型GaAs等のn型半導体材料からなるn型半導体層31を有している。各アンテナ構造体3は、基板2の厚さ方向から見た場合に円環状の形状を呈している。各アンテナ構造体3のサイズ、及び隣り合うアンテナ構造体3間の距離は、変調対象とする光の波長よりも小さい。 The plurality of antenna structures 3 are two-dimensionally arranged on the surface 2a of the substrate 2 (in the optical element 1A, in a matrix shape). Each antenna structure 3 includes an n-type semiconductor layer 31 made of an n-type semiconductor material such as n-type GaAs. Each antenna structure 3 has an annular shape when viewed from the thickness direction of the substrate 2. The size of each antenna structure 3 and the distance between adjacent antenna structures 3 are smaller than the wavelength of light to be modulated.
 複数の分割電極4は、各アンテナ構造体3において、互いに異なる位置に配置されている。光学素子1Aでは、一対の分割電極4が、基板2の厚さ方向から見た場合にアンテナ構造体3の中心を挟んで互いに対向する位置に配置されている。各分割電極4は、例えば金属材料からなる。 The plurality of divided electrodes 4 are arranged at different positions in each antenna structure 3. In the optical element 1 </ b> A, the pair of divided electrodes 4 are disposed at positions facing each other across the center of the antenna structure 3 when viewed from the thickness direction of the substrate 2. Each divided electrode 4 is made of, for example, a metal material.
 図2に示されるように、一対の分割電極4のそれぞれは、アンテナ構造体3における基板2側とは反対側の表面3aに形成されており、n型半導体層31と接合されている。より具体的には、各分割電極4は、逆電圧(n型半導体層31との接合面に対して正の電圧)が印加された際に、n型半導体層31における当該分割電極4との接合部分に空乏層が出現して拡大するように(換言すれば、ショットキー接合を成すように)、n型半導体層31と接合されている。なお、図2では、配線5a,5bが省略されている(図3~5,8~22でも同様)。 As shown in FIG. 2, each of the pair of divided electrodes 4 is formed on the surface 3 a opposite to the substrate 2 side in the antenna structure 3, and is joined to the n-type semiconductor layer 31. More specifically, each divided electrode 4 is connected to the divided electrode 4 in the n-type semiconductor layer 31 when a reverse voltage (positive voltage with respect to the joint surface with the n-type semiconductor layer 31) is applied. It is joined to the n-type semiconductor layer 31 so that a depletion layer appears at the junction and expands (in other words, forms a Schottky junction). In FIG. 2, the wirings 5a and 5b are omitted (the same applies to FIGS. 3 to 5 and 8 to 22).
 図1に示されるように、各アンテナ構造体3に設けられた一方の分割電極4は、配線5aを介してゲート電極6aと電気的に接続されている。各アンテナ構造体3に設けられた他方の分割電極4は、配線5bを介してゲート電極6bと電気的に接続されている。各ゲート電極6a,6bは、外部電源と電気的に接続されている。外部電源は、各ゲート電極6a,6bとオーミック電極7との間に電圧を印加する。各アンテナ構造体3、各配線5a,5b及び各ゲート電極6a,6bは、SiO、Si、Si等からなる絶縁膜を介して基板2の表面2aに形成されている。オーミック電極7は、基板2とオーミック接合を成すように、基板2の表面2aに形成されている。各配線5a,5b、各ゲート電極6a,6b及びオーミック電極7は、例えば金属材料からなる。 As shown in FIG. 1, one divided electrode 4 provided in each antenna structure 3 is electrically connected to a gate electrode 6a through a wiring 5a. The other divided electrode 4 provided in each antenna structure 3 is electrically connected to the gate electrode 6b through the wiring 5b. Each gate electrode 6a, 6b is electrically connected to an external power source. The external power supply applies a voltage between the gate electrodes 6 a and 6 b and the ohmic electrode 7. Each antenna structure 3, each wiring 5a, 5b, and each gate electrode 6a, 6b are formed on the surface 2a of the substrate 2 via an insulating film made of SiO 2 , Si 3 N 4 , Si 3 C 4 or the like. . The ohmic electrode 7 is formed on the surface 2 a of the substrate 2 so as to form an ohmic junction with the substrate 2. Each wiring 5a, 5b, each gate electrode 6a, 6b, and ohmic electrode 7 consists of metal materials, for example.
 以上のように構成された光学素子1Aでは、図3の(a)に示されるように、一方の分割電極4(図3における右側の分割電極4)に逆電圧が印加され、他方の分割電極4(図3における左側の分割電極4)に電圧が印加されないと、n型半導体層31における一方の分割電極4との接合部分のみに空乏層Dが出現して拡大する。これにより、図3の(b)に示されるように、n型半導体層31のうち一方の分割電極4との接合部分を除く部分が電子流路F(光の散乱を生じさせ得る電子充填領域)となる。したがって、この場合のアンテナ構造体3は、一方の側(図3における右側)に開いたC型アンテナとして機能する。 In the optical element 1A configured as described above, as shown in FIG. 3A, a reverse voltage is applied to one divided electrode 4 (the right divided electrode 4 in FIG. 3), and the other divided electrode. 4 (the left divided electrode 4 in FIG. 3), when no voltage is applied, the depletion layer D appears and expands only at the junction with the one divided electrode 4 in the n-type semiconductor layer 31. As a result, as shown in FIG. 3B, the portion of the n-type semiconductor layer 31 excluding the junction with one of the divided electrodes 4 has an electron flow path F (an electron-filled region that can cause light scattering). ) Therefore, the antenna structure 3 in this case functions as a C-type antenna opened on one side (the right side in FIG. 3).
 また、図4の(a)に示されるように、他方の分割電極4(図4における左側の分割電極4)に逆電圧が印加され、一方の分割電極4(図4における右側の分割電極4)に電圧が印加されないと、n型半導体層31における他方の分割電極4との接合部分のみに空乏層Dが出現して拡大する。これにより、図4の(b)に示されるように、n型半導体層31のうち他方の分割電極4との接合部分を除く部分が電子流路Fとなる。したがって、この場合のアンテナ構造体3は、他方の側(図4における左側)に開いたC型アンテナとして機能する。 Also, as shown in FIG. 4A, a reverse voltage is applied to the other divided electrode 4 (left divided electrode 4 in FIG. 4), and one divided electrode 4 (right divided electrode 4 in FIG. 4). ), No depletion layer D appears and expands only at the junction of the n-type semiconductor layer 31 with the other divided electrode 4. Thereby, as shown in FIG. 4B, the portion of the n-type semiconductor layer 31 excluding the junction with the other divided electrode 4 becomes the electron flow path F. Therefore, the antenna structure 3 in this case functions as a C-type antenna opened on the other side (left side in FIG. 4).
 また、図5の(a)に示されるように、一方の分割電極4(図5における右側の分割電極4)及び他方の分割電極4(図5における左側の分割電極4)に逆電圧が印加されると、n型半導体層31における一方の分割電極4との接合部分及び他方の分割電極4との接合部分のみに空乏層Dが出現して拡大する。これにより、図5の(b)に示されるように、n型半導体層31のうち一方の分割電極4との接合部分及び他方の分割電極4との接合部分を除く部分が電子流路Fとなる。 Further, as shown in FIG. 5A, a reverse voltage is applied to one divided electrode 4 (right divided electrode 4 in FIG. 5) and the other divided electrode 4 (left divided electrode 4 in FIG. 5). Then, the depletion layer D appears and expands only at the junction with the one divided electrode 4 and the junction with the other divided electrode 4 in the n-type semiconductor layer 31. As a result, as shown in FIG. 5B, the portion of the n-type semiconductor layer 31 excluding the junction with the one divided electrode 4 and the junction with the other divided electrode 4 is the electron flow path F. Become.
 以上説明したように、第1実施形態の光学素子1Aでは、二次元状に配列された複数のアンテナ構造体3のそれぞれにおいて、複数の分割電極4に選択的に電圧が印加されることで、空乏層Dが拡大させられて電子流路Fの形状が変化させられる。よって、光学素子1Aによれば、光の位相、強度及び偏光の少なくとも1つを動的に変調することができる。 As described above, in the optical element 1A of the first embodiment, a voltage is selectively applied to the plurality of divided electrodes 4 in each of the plurality of antenna structures 3 arranged two-dimensionally. The depletion layer D is expanded and the shape of the electron flow path F is changed. Therefore, the optical element 1A can dynamically modulate at least one of the phase, intensity, and polarization of light.
 より具体的には、各分割電極4が、逆電圧が印加された際に空乏層Dが拡大するように、n型半導体層31と接合されている。この構成によれば、各アンテナ構造体3において、電子流路Fの形状を好適に変化させることができる。 More specifically, each divided electrode 4 is joined to the n-type semiconductor layer 31 so that the depletion layer D expands when a reverse voltage is applied. According to this configuration, the shape of the electron flow path F can be suitably changed in each antenna structure 3.
 また、各アンテナ構造体3が、基板2の厚さ方向から見た場合に円環状の形状を呈しており、各分割電極4が、互いに異なる位置に配置されている。この構成によれば、各アンテナ構造体3を、例えば互いに異なる方向に開いたC型アンテナとして、機能させることができる。 Further, each antenna structure 3 has an annular shape when viewed from the thickness direction of the substrate 2, and the divided electrodes 4 are arranged at different positions. According to this configuration, each antenna structure 3 can function as, for example, a C-shaped antenna that is opened in different directions.
 ここで、アンテナ構造体3に用いられる材料について説明する。図6は、n型GaAsの電子密度とプラズマ周波数との関係を示す図(ただし、縦軸は波長)である。図6に示されるように、アンテナ構造体3に材料としてn型GaAsを用いる場合には、電子密度を1.3×1018/cm程度以上に高くすれば、変調対象とする光の光源として、例えば波長7.75μmのレーザ光を出力するQCL(量子カスケードレーザ)を用いることができる。更に、電子密度を9.3×1020/cm程度以上に高くすれば、変調対象とする光の光源として、例えば波長0.94μmのレーザ光を出力するPCSEL(フォトニック結晶レーザ)を用いることができる。また、アンテナ構造体3に材料として、GZO(ガリウムが添加されたZnO)、AZO(Alが添加されたZnO)又はITO(Snが添加されたIn)を用いる場合には、変調対象とする光の光源として、例えば波長7.75μmのレーザ光を出力するQCLを用いることができる。図6に示される例では、GZOは、ガリウムが4重量%添加されたZnOであり、AZOは、Alが2重量%添加されたZnOであり、ITOは、Snが10重量%添加されたInである。なお、外部電界の周波数よりも高い(図6では下側の)プラズマ周波数を有する材料において、内部電子が振動させられて(追従して)光の散乱が生じる。 Here, materials used for the antenna structure 3 will be described. FIG. 6 is a diagram showing the relationship between the electron density of n-type GaAs and the plasma frequency (where the vertical axis is the wavelength). As shown in FIG. 6, when n-type GaAs is used as the material for the antenna structure 3, the light source of light to be modulated can be obtained by increasing the electron density to about 1.3 × 10 18 / cm 3 or more. For example, QCL (quantum cascade laser) that outputs laser light having a wavelength of 7.75 μm can be used. Further, if the electron density is increased to about 9.3 × 10 20 / cm 3 or more, for example, a PCSEL (photonic crystal laser) that outputs laser light having a wavelength of 0.94 μm is used as a light source of light to be modulated. be able to. Further, when GZO (ZnO to which gallium is added), AZO (ZnO to which Al is added) or ITO (In 2 O 3 to which Sn is added) is used as a material for the antenna structure 3, a modulation target is used. For example, QCL that outputs laser light having a wavelength of 7.75 μm can be used as the light source. In the example shown in FIG. 6, GZO is ZnO to which 4% by weight of gallium is added, AZO is ZnO to which 2% by weight of Al is added, and ITO is InO to which 10% by weight of Sn is added. 2 O 3 . Note that in a material having a plasma frequency higher than the frequency of the external electric field (lower side in FIG. 6), internal electrons are vibrated (followed), and light scattering occurs.
 次に、アンテナ構造体3に材料としてn型GaAsを用いる場合の光学素子1Aの製造方法の一例について説明する。 Next, an example of a method for manufacturing the optical element 1A when n-type GaAs is used as the material for the antenna structure 3 will be described.
 まず、GaAsからなる基板2を用意する。続いて、n型半導体層31のうち各分割電極4に対応する部分に電位差を生じさせるために、基板2の表面2aのうちオーミック電極7に対応する部分を除く部分に、プラズマCVD法によって絶縁膜を形成する。続いて、スピンコーティング法によって、基板2の表面2aに電子線レジストを形成する。続いて、電子線レジストに対する電子線描画及び現像によって、複数のアンテナ構造体3に対応するパターンを形成する。ここで、アンテナ構造体3の直径は1μmであり、アンテナ構造体3の幅は0.2μmであり、隣り合うアンテナ構造体3間の距離は2μmである。続いて、分子線エピキタシー法によって、n型GaAsを堆積させて、n型GaAsからなる複数のアンテナ構造体3を形成する。ここで、アンテナ構造体3の厚さは50nmである。続いて、基板2の表面2aから電子線レジストを除去する。 First, a substrate 2 made of GaAs is prepared. Subsequently, in order to generate a potential difference in the portion corresponding to each divided electrode 4 in the n-type semiconductor layer 31, the portion excluding the portion corresponding to the ohmic electrode 7 in the surface 2 a of the substrate 2 is insulated by plasma CVD. A film is formed. Subsequently, an electron beam resist is formed on the surface 2a of the substrate 2 by spin coating. Subsequently, patterns corresponding to the plurality of antenna structures 3 are formed by electron beam drawing and development on the electron beam resist. Here, the diameter of the antenna structure 3 is 1 μm, the width of the antenna structure 3 is 0.2 μm, and the distance between adjacent antenna structures 3 is 2 μm. Subsequently, n-type GaAs is deposited by a molecular beam epitaxy method to form a plurality of antenna structures 3 made of n-type GaAs. Here, the thickness of the antenna structure 3 is 50 nm. Subsequently, the electron beam resist is removed from the surface 2 a of the substrate 2.
 続いて、スピンコーティング法によって、基板2の表面2aに電子線レジストを再度形成する。続いて、複数の分割電極4、複数の配線5a,5b、一対のゲート電極6a,6b、及びオーミック電極7に対応するパターンを形成する。続いて、電子線蒸着によって、Tiを蒸着し、更にAuを堆積させて、複数の分割電極4、複数の配線5a,5b、一対のゲート電極6a,6b、及びオーミック電極7を形成する。ここで、密着層であるTi層の厚さは5nmであり、Au層の厚さは50~150nmである。最後に、基板2の表面2aから電子線レジストを除去し、光学素子1Aを得る。 Subsequently, an electron beam resist is formed again on the surface 2a of the substrate 2 by spin coating. Subsequently, a pattern corresponding to the plurality of divided electrodes 4, the plurality of wirings 5a and 5b, the pair of gate electrodes 6a and 6b, and the ohmic electrode 7 is formed. Subsequently, Ti is vapor-deposited by electron beam vapor deposition, and Au is further deposited to form a plurality of divided electrodes 4, a plurality of wirings 5a and 5b, a pair of gate electrodes 6a and 6b, and an ohmic electrode 7. Here, the thickness of the Ti layer as the adhesion layer is 5 nm, and the thickness of the Au layer is 50 to 150 nm. Finally, the electron beam resist is removed from the surface 2a of the substrate 2 to obtain the optical element 1A.
 次に、第1実施形態の光学素子1Aの変形例について説明する。まず、1つのアンテナ構造体3に3つ以上の分割電極4が配置されていてもよい。また、光学素子1Aは、図7に示されるように、制御端子及び一対の電流端子を有するスイッチング素子10と、スイッチング素子10に電圧信号を送る電圧供給ライン(第1配線)8と、スイッチング素子10に制御信号を送るスイッチライン(第2配線)9と、を更に備えてもよい。その場合、一対の電流端子の一方には分割電極4が電気的に接続され、一対の電流端子の他方には電圧供給ライン8が電気的に接続され、制御端子にはスイッチライン9が電気的に接続される。一例として、スイッチング素子10はトランジスタである。その場合、制御端子はゲート電極であり、一対の電流端子はドレイン電極及びソース電極である。この構成は、複数のアンテナ構造体3に対して分割電極4ごとに適用することが可能である。この構成によれば、電圧供給ライン8を介してスイッチング素子10に電圧信号を送ると共に、スイッチライン9を介してスイッチング素子10に制御信号を送り、分割電極4に対する電圧の印加のON/OFFを切り替えることができる。つまり、この構成によれば、アンテナ構造体3ごとに所望の分割電極4にスイッチング素子10を介して電圧を印加することができる。また、光学素子1Aは、図23に示されるように、スイッチング素子10における一対の電流端子の一方とグランド電位とに電気的に接続されたコンデンサ11を更に備えてもよい。この構成によれば、分割電極4に印加される電圧を保持することができる。 Next, a modified example of the optical element 1A of the first embodiment will be described. First, three or more divided electrodes 4 may be arranged on one antenna structure 3. As shown in FIG. 7, the optical element 1A includes a switching element 10 having a control terminal and a pair of current terminals, a voltage supply line (first wiring) 8 for sending a voltage signal to the switching element 10, and a switching element. And a switch line (second wiring) 9 for sending a control signal to 10. In that case, the divided electrode 4 is electrically connected to one of the pair of current terminals, the voltage supply line 8 is electrically connected to the other of the pair of current terminals, and the switch line 9 is electrically connected to the control terminal. Connected to. As an example, the switching element 10 is a transistor. In that case, the control terminal is a gate electrode, and the pair of current terminals are a drain electrode and a source electrode. This configuration can be applied to each of the divided electrodes 4 with respect to the plurality of antenna structures 3. According to this configuration, a voltage signal is sent to the switching element 10 via the voltage supply line 8, and a control signal is sent to the switching element 10 via the switch line 9 to turn on / off voltage application to the divided electrode 4. Can be switched. That is, according to this configuration, it is possible to apply a voltage to the desired divided electrode 4 via the switching element 10 for each antenna structure 3. Further, as shown in FIG. 23, the optical element 1A may further include a capacitor 11 that is electrically connected to one of a pair of current terminals in the switching element 10 and a ground potential. According to this configuration, the voltage applied to the divided electrode 4 can be held.
 また、各アンテナ構造体3が、n型半導体層31に替えてp型半導体層を有していてもよい。その場合、分割電極4に逆電圧(p型半導体層との接合面に対して負の電圧)が印加されると、p型半導体層のうち当該分割電極4との接合部分のみに空乏層Dが出現して拡大する。 Further, each antenna structure 3 may have a p-type semiconductor layer instead of the n-type semiconductor layer 31. In that case, when a reverse voltage (negative voltage with respect to the junction surface with the p-type semiconductor layer) is applied to the divided electrode 4, the depletion layer D is applied only to the junction portion with the divided electrode 4 in the p-type semiconductor layer. Appears and expands.
 また、図8の(a)及び図9の(a)に示されるように、分割電極4は、アンテナ構造体3の側面3bに配置されていてもよい。この場合にも、分割電極4に逆電圧が印加されると、図8の(b)及び図9の(b)に示されるように、n型半導体層31における分割電極4との接合部分に空乏層Dが出現して拡大するため、電子流路Fの形状を好適に変化させることができる。 Further, as shown in FIGS. 8A and 9A, the divided electrode 4 may be disposed on the side surface 3 b of the antenna structure 3. Also in this case, when a reverse voltage is applied to the divided electrode 4, as shown in FIG. 8B and FIG. 9B, the junction between the n-type semiconductor layer 31 and the divided electrode 4 is applied. Since the depletion layer D appears and expands, the shape of the electron flow path F can be changed suitably.
 図8及び図9に示されるように、分割電極4が、基板2の厚さ方向に沿って延在する側面3bに配置されていると、例えば基板2の厚さ方向に沿って光を透過させる場合に、各アンテナ構造体3において複数の分割電極4が光の散乱源となるのを抑制することができる。特に、分割電極4と基板2との間に絶縁層12が配置されていると、各アンテナ構造体3において複数の分割電極4が光の散乱源となるのをより確実に抑制することができる。更に、図9に示されるように、エッチング等によって側面3bを傾斜させておくと、蒸着等による分割電極4の形成を容易に且つ確実に実施することができる。なお、図9に示される側面3bは、基板2の厚さ方向に垂直な方向にも延在しているが、基板2の厚さ方向に平行な方向にも延在している。このような側面3bも、基板2の厚さ方向に沿って延在する側面に含まれる。 As shown in FIGS. 8 and 9, when the divided electrode 4 is disposed on the side surface 3 b extending along the thickness direction of the substrate 2, for example, light is transmitted along the thickness direction of the substrate 2. In this case, it is possible to suppress the plurality of divided electrodes 4 from becoming light scattering sources in each antenna structure 3. In particular, when the insulating layer 12 is disposed between the divided electrode 4 and the substrate 2, it is possible to more reliably suppress the plurality of divided electrodes 4 from becoming light scattering sources in each antenna structure 3. . Furthermore, as shown in FIG. 9, if the side surface 3b is inclined by etching or the like, the divisional electrode 4 can be easily and reliably formed by vapor deposition or the like. 9 extends in a direction perpendicular to the thickness direction of the substrate 2, but also extends in a direction parallel to the thickness direction of the substrate 2. The side surface 3b shown in FIG. Such a side surface 3 b is also included in the side surface extending along the thickness direction of the substrate 2.
 また、図10の(a)及び(b)に示されるように、分割電極4は、逆電圧が印加された際に空乏層Dが拡大するように、絶縁層12を介してn型半導体層31上に配置されていてもよい。この構成(いわゆるMIS構造)によっても、各アンテナ構造体3において、電子流路Fの形状を好適に変化させることができる。なお、この場合にも、各アンテナ構造体3が、n型半導体層31に替えてp型半導体層を有していてもよい。つまり、分割電極4は、逆電圧が印加された際に空乏層Dが拡大するように、絶縁層12を介してp型半導体層上に配置されていてもよい。 Further, as shown in FIGS. 10A and 10B, the divided electrode 4 has an n-type semiconductor layer through the insulating layer 12 so that the depletion layer D expands when a reverse voltage is applied. 31 may be arranged. Also with this configuration (so-called MIS structure), the shape of the electron flow path F can be suitably changed in each antenna structure 3. Also in this case, each antenna structure 3 may have a p-type semiconductor layer instead of the n-type semiconductor layer 31. That is, the divided electrode 4 may be disposed on the p-type semiconductor layer via the insulating layer 12 so that the depletion layer D expands when a reverse voltage is applied.
 また、図11に示されるように、複数の分割電極4は、円環状の形状を呈するアンテナ構造体3の一部の部分(本変形例では、1/4の部分)に配置されていてもよい。この場合にも、1つ若しくは複数(全てを含む)の分割電極4に選択的に電圧を印加することで、電子流路Fの形状を適宜に変化させることができる。なお、複数の分割電極4は、円環状の形状を呈するアンテナ構造体3の全ての部分に配置されていてもよい。 In addition, as shown in FIG. 11, the plurality of divided electrodes 4 may be arranged in a part of the antenna structure 3 having an annular shape (a quarter in this modification). Good. Also in this case, the shape of the electron flow path F can be appropriately changed by selectively applying a voltage to one or a plurality (including all) of the divided electrodes 4. In addition, the some division | segmentation electrode 4 may be arrange | positioned at all the parts of the antenna structure 3 which exhibits an annular | circular shape.
 また、図12に示されるように、アンテナ構造体3の表面3aにミラー13が配置されていてもよい。この場合、変調対象とする光を基板2の裏面2b側から入射させることで、変調された光を反射光として取り出すことができる。また、図24に示されるように、基板2の表面2aとアンテナ構造体3との間にミラー13が配置されていてもよい。この場合、変調対象とする光を基板2の表面2a側から入射させることで、変調された光を反射光として取り出すことができる。 Further, as shown in FIG. 12, a mirror 13 may be disposed on the surface 3 a of the antenna structure 3. In this case, the modulated light can be extracted as reflected light by causing the light to be modulated to enter from the back surface 2 b side of the substrate 2. Further, as shown in FIG. 24, a mirror 13 may be disposed between the surface 2 a of the substrate 2 and the antenna structure 3. In this case, the modulated light can be extracted as reflected light by causing the light to be modulated to enter from the surface 2a side of the substrate 2.
 また、各アンテナ構造体3は、基板2の厚さ方向から見た場合に円環状以外の環状又はC字状の形状を呈していてもよい。円環状以外の環状の形状として、多角形、楕円等を例示することができる。
[第2実施形態]
In addition, each antenna structure 3 may have an annular shape other than an annular shape or a C-shape when viewed from the thickness direction of the substrate 2. As an annular shape other than the annular shape, a polygon, an ellipse and the like can be exemplified.
[Second Embodiment]
 図13に示されるように、第2実施形態の光学素子1Bは、アンテナ構造体3の層構造及び複数の分割電極4の配置において、第1実施形態の光学素子1Aと主に相違している。光学素子1Bにおいて、各アンテナ構造体3は、n型半導体層31と、p型半導体層32と、を有している。n型半導体層31は、基板2の表面2aに形成されている。p型半導体層32は、n型半導体層31上に形成されている。n型半導体層31及びp型半導体層32は、PN接合を成し、n型半導体層31及びp型半導体層32の接合部分には、空乏層Dが形成されている。 As shown in FIG. 13, the optical element 1B of the second embodiment is mainly different from the optical element 1A of the first embodiment in the layer structure of the antenna structure 3 and the arrangement of the plurality of divided electrodes 4. . In the optical element 1 </ b> B, each antenna structure 3 includes an n-type semiconductor layer 31 and a p-type semiconductor layer 32. The n-type semiconductor layer 31 is formed on the surface 2 a of the substrate 2. The p-type semiconductor layer 32 is formed on the n-type semiconductor layer 31. The n-type semiconductor layer 31 and the p-type semiconductor layer 32 form a PN junction, and a depletion layer D is formed at the junction between the n-type semiconductor layer 31 and the p-type semiconductor layer 32.
 各アンテナ構造体3には、複数の分割電極4が環状に配列されている。各分割電極4は、アンテナ構造体3の表面3aに形成されており、p型半導体層32と接合されている。より具体的には、各分割電極4は、順電圧(p型半導体層32との接合面に対して正の電圧)が印加された際に、n型半導体層31及びp型半導体層32の接合部分のうち当該分割電極4の直下に位置する部分で空乏層Dが縮小するように、p型半導体層32と接合されている。なお、隣り合う分割電極4間の隙間は、隣り合う分割電極4間における電気的な絶縁が維持され得る幅に狭められている。 Each antenna structure 3 has a plurality of divided electrodes 4 arranged in a ring shape. Each divided electrode 4 is formed on the surface 3 a of the antenna structure 3 and is joined to the p-type semiconductor layer 32. More specifically, each divided electrode 4 is applied to the n-type semiconductor layer 31 and the p-type semiconductor layer 32 when a forward voltage (positive voltage with respect to the junction surface with the p-type semiconductor layer 32) is applied. The depletion layer D is bonded to the p-type semiconductor layer 32 so that the depletion layer D is reduced in a portion located immediately below the divided electrode 4 in the bonding portion. Note that the gap between the adjacent divided electrodes 4 is narrowed to such a width that electrical insulation between the adjacent divided electrodes 4 can be maintained.
 以上のように構成された光学素子1Bでは、図14の(a)に示されるように、一方の分割電極4(図14における右側の分割電極4)を除く複数の分割電極4に順電圧が印加されると、n型半導体層31及びp型半導体層32の接合部分のうち順電圧が印加された複数の分割電極4の直下に位置する部分で空乏層Dが縮小して消滅する。これにより、図14の(b)に示されるように、n型半導体層31及びp型半導体層32の接合部分のうち一方の分割電極4の直下に位置する部分(すなわち、空乏層Dが形成されている部分)を除く部分が電子流路F(光の散乱を生じさせ得る電子充填領域)となる。したがって、この場合のアンテナ構造体3は、一方の側(図14における右側)に開いたC型アンテナとして機能する。 In the optical element 1B configured as described above, as shown in FIG. 14A, a forward voltage is applied to the plurality of divided electrodes 4 except for one divided electrode 4 (the right divided electrode 4 in FIG. 14). When applied, the depletion layer D shrinks and disappears at the portion of the junction between the n-type semiconductor layer 31 and the p-type semiconductor layer 32 located immediately below the plurality of divided electrodes 4 to which the forward voltage is applied. As a result, as shown in FIG. 14B, a portion (that is, a depletion layer D is formed immediately below one of the divided electrodes 4 in the junction portion of the n-type semiconductor layer 31 and the p-type semiconductor layer 32). A portion excluding the portion that is formed becomes an electron flow path F (an electron-filled region that can cause light scattering). Therefore, the antenna structure 3 in this case functions as a C-type antenna opened on one side (right side in FIG. 14).
 また、図15の(a)に示されるように、他方の分割電極4(図15における左側の分割電極4)を除く複数の分割電極4に順電圧が印加されると、n型半導体層31及びp型半導体層32の接合部分のうち順電圧が印加された複数の分割電極4の直下に位置する部分で空乏層Dが縮小して消滅する。これにより、図15の(b)に示されるように、n型半導体層31及びp型半導体層32の接合部分のうち他方の分割電極4の直下に位置する部分(すなわち、空乏層Dが形成されている部分)を除く部分が電子流路Fとなる。したがって、この場合のアンテナ構造体3は、他方の側(図15における左側)に開いたC型アンテナとして機能する。 Further, as shown in FIG. 15A, when a forward voltage is applied to a plurality of divided electrodes 4 excluding the other divided electrode 4 (left divided electrode 4 in FIG. 15), the n-type semiconductor layer 31 is applied. In addition, the depletion layer D shrinks and disappears in a portion located immediately below the plurality of divided electrodes 4 to which the forward voltage is applied in the junction portion of the p-type semiconductor layer 32. As a result, as shown in FIG. 15B, a portion (that is, a depletion layer D formed immediately below the other divided electrode 4) in the junction portion of the n-type semiconductor layer 31 and the p-type semiconductor layer 32 is formed. The portion excluding the portion that is formed becomes the electron flow path F. Therefore, the antenna structure 3 in this case functions as a C-type antenna opened on the other side (left side in FIG. 15).
 以上説明したように、第2実施形態の光学素子1Bでは、二次元状に配列された複数のアンテナ構造体3のそれぞれにおいて、複数の分割電極4に選択的に電圧が印加されることで、空乏層Dが縮小させられて電子流路Fの形状が変化させられる。よって、光学素子1Bによれば、光の位相、強度及び偏光の少なくとも1つを動的に変調することができる。 As described above, in the optical element 1B of the second embodiment, a voltage is selectively applied to the plurality of divided electrodes 4 in each of the plurality of antenna structures 3 arranged two-dimensionally. The depletion layer D is reduced and the shape of the electron flow path F is changed. Therefore, the optical element 1B can dynamically modulate at least one of the phase, intensity, and polarization of light.
 より具体的には、各アンテナ構造体3が、PN接合を成すn型半導体層31及びp型半導体層32を有し、各分割電極4が、順電圧が印加された際に空乏層Dが縮小するように、p型半導体層32と接合されている。この構成によれば、各アンテナ構造体3において、電子流路Fの形状を好適に変化させることができる。 More specifically, each antenna structure 3 has an n-type semiconductor layer 31 and a p-type semiconductor layer 32 forming a PN junction, and each depletion electrode 4 has a depletion layer D when a forward voltage is applied. The p-type semiconductor layer 32 is joined so as to be reduced. According to this configuration, the shape of the electron flow path F can be suitably changed in each antenna structure 3.
 また、各アンテナ構造体3が、基板2の厚さ方向から見た場合に円環状の形状を呈しており、各分割電極4が、互いに異なる位置に配置されている。この構成によれば、各アンテナ構造体3を、例えば互いに異なる方向に開いたC型アンテナとして、機能させることができる。 Further, each antenna structure 3 has an annular shape when viewed from the thickness direction of the substrate 2, and the divided electrodes 4 are arranged at different positions. According to this configuration, each antenna structure 3 can function as, for example, a C-shaped antenna that is opened in different directions.
 なお、第2実施形態の光学素子1Bも、第1実施形態の光学素子1Aと同様に、電圧供給ライン8を介してスイッチング素子10に電圧信号を送ると共に、スイッチライン9を介してスイッチング素子10に制御信号を送り、分割電極4に対する電圧の印加のON/OFFを切り替えることができるように、構成されていてもよい(図7及び図23参照)。また、p型半導体層32が基板2の表面2aに形成されており、n型半導体層31がp型半導体層32上に形成されていてもよい。その場合、分割電極4に順電圧(n型半導体層31との接合面に対して負の電圧)が印加されると、p型半導体層32及びn型半導体層31の接合部分のうち当該分割電極4の直下に位置する部分で空乏層Dが縮小して消滅する。また、アンテナ構造体3の表面3aにミラー13が配置されていてもよい(図12参照)。また、基板2の表面2aとアンテナ構造体3との間にミラー13が配置されていてもよい(図24参照)。また、各アンテナ構造体3は、基板2の厚さ方向から見た場合に円環状以外の環状又はC字状の形状を呈していてもよい。
[第3実施形態]
Note that the optical element 1B of the second embodiment also sends a voltage signal to the switching element 10 via the voltage supply line 8 and the switching element 10 via the switch line 9 in the same manner as the optical element 1A of the first embodiment. It may be configured so that a control signal can be sent to and ON / OFF of voltage application to the divided electrode 4 can be switched (see FIGS. 7 and 23). Further, the p-type semiconductor layer 32 may be formed on the surface 2 a of the substrate 2, and the n-type semiconductor layer 31 may be formed on the p-type semiconductor layer 32. In that case, when a forward voltage (negative voltage with respect to the junction surface with the n-type semiconductor layer 31) is applied to the divided electrode 4, the division of the junction portion between the p-type semiconductor layer 32 and the n-type semiconductor layer 31 is performed. The depletion layer D shrinks and disappears at a portion located directly below the electrode 4. Further, the mirror 13 may be disposed on the surface 3a of the antenna structure 3 (see FIG. 12). Further, a mirror 13 may be disposed between the surface 2a of the substrate 2 and the antenna structure 3 (see FIG. 24). In addition, each antenna structure 3 may have an annular shape other than an annular shape or a C-shape when viewed from the thickness direction of the substrate 2.
[Third Embodiment]
 図16に示されるように、第3実施形態の光学素子1Cは、アンテナ構造体3の形状に及び複数の分割電極4の配置おいて、第1実施形態の光学素子1Aと主に相違している。光学素子1Cにおいて、各アンテナ構造体3は、基板2の厚さ方向から見た場合に放射状に配列された複数のアーム33を有している。より具体的には、複数のアーム33は、基端部33aにおいて互いに接続されており、例えば45度間隔で放射状に配列されている。各アンテナ構造体3において、各分割電極4は、アーム33ごとにアンテナ構造体3の表面3aに形成されており、図17に示されるように、n型半導体層31と接合されている。より具体的には、各分割電極4は、逆電圧が印加された際に、n型半導体層31における当該分割電極4との接合部分に空乏層が出現して拡大するように(換言すれば、ショットキー接合を成すように)、n型半導体層31と接合されている。 As shown in FIG. 16, the optical element 1C of the third embodiment is mainly different from the optical element 1A of the first embodiment in the shape of the antenna structure 3 and the arrangement of the plurality of divided electrodes 4. Yes. In the optical element 1 </ b> C, each antenna structure 3 has a plurality of arms 33 arranged radially when viewed from the thickness direction of the substrate 2. More specifically, the plurality of arms 33 are connected to each other at the base end portion 33a, and are arranged radially, for example, at intervals of 45 degrees. In each antenna structure 3, each divided electrode 4 is formed on the surface 3 a of the antenna structure 3 for each arm 33, and is joined to the n-type semiconductor layer 31 as shown in FIG. 17. More specifically, each divided electrode 4 has a depletion layer that appears and expands at the junction with the divided electrode 4 in the n-type semiconductor layer 31 when a reverse voltage is applied (in other words, , So as to form a Schottky junction).
 以上のように構成された光学素子1Cでは、図18の(a)及び(b)に示されるように、適宜に選択された一対の分割電極4(図18の(a)及び(b)において実線で示された分割電極4)を除く複数の分割電極4(図18の(a)及び(b)において二点鎖線で示された分割電極4)に逆電圧が印加されると、n型半導体層31のうち適宜に選択された一対の分割電極4を除く複数の分割電極4との接合部分のみに空乏層Dが出現して拡大する。これにより、n型半導体層31のうち適宜に選択された一対の分割電極4との接合部分が電子流路F(光の散乱を生じさせ得る電子充填領域)となる。したがって、図18の(a)に示されるアンテナ構造体3は、図18の(a)における上側から45度の方向に90度の角度で開いたC型アンテナとして機能し、図18の(b)に示されるアンテナ構造体3は、図18の(b)における上側から135度の方向に45度の角度で開いたC型アンテナとして機能する。 In the optical element 1C configured as described above, as shown in FIGS. 18A and 18B, a pair of appropriately selected divided electrodes 4 (in FIGS. 18A and 18B). When a reverse voltage is applied to a plurality of divided electrodes 4 (divided electrodes 4 indicated by two-dot chain lines in FIGS. 18A and 18B) excluding the divided electrodes 4 indicated by solid lines, an n-type The depletion layer D appears and expands only at the junctions with the plurality of divided electrodes 4 excluding the pair of appropriately selected divided electrodes 4 in the semiconductor layer 31. Thereby, the junction part with a pair of division | segmentation electrode 4 selected suitably among the n-type semiconductor layers 31 becomes the electron flow path F (electron filling area | region which can produce scattering of light). Therefore, the antenna structure 3 shown in FIG. 18A functions as a C-type antenna that is opened at an angle of 90 degrees in the direction of 45 degrees from the upper side in FIG. The antenna structure 3 shown in FIG. 18 functions as a C-shaped antenna opened at an angle of 45 degrees in the direction of 135 degrees from the upper side in FIG.
 以上説明したように、第3実施形態の光学素子1Cでは、二次元状に配列された複数のアンテナ構造体3のそれぞれにおいて、複数の分割電極4に選択的に電圧が印加されることで、空乏層Dが拡大させられて電子流路Fの形状が変化させられる。よって、光学素子1Cによれば、光の位相、強度及び偏光の少なくとも1つを動的に変調することができる。 As described above, in the optical element 1C of the third embodiment, a voltage is selectively applied to the plurality of divided electrodes 4 in each of the plurality of antenna structures 3 arranged two-dimensionally. The depletion layer D is expanded and the shape of the electron flow path F is changed. Therefore, according to the optical element 1C, it is possible to dynamically modulate at least one of the phase, intensity, and polarization of light.
 より具体的には、各分割電極4が、逆電圧が印加された際に空乏層Dが拡大するように、n型半導体層31と接合されている。この構成によれば、各アンテナ構造体3において、電子流路Fの形状を好適に変化させることができる。 More specifically, each divided electrode 4 is joined to the n-type semiconductor layer 31 so that the depletion layer D expands when a reverse voltage is applied. According to this configuration, the shape of the electron flow path F can be suitably changed in each antenna structure 3.
 また、各アンテナ構造体3が、基板2の厚さ方向から見た場合に放射状に配列された複数のアーム33を有しており、各分割電極4が、各アーム33に配置されている。この構成によれば、各アンテナ構造体3を、例えば互いに異なる方向に互いに異なる角度で開いたV型アンテナとして、機能させることができる。 Each antenna structure 3 has a plurality of arms 33 arranged radially when viewed from the thickness direction of the substrate 2, and each divided electrode 4 is disposed on each arm 33. According to this configuration, each antenna structure 3 can function as, for example, a V-shaped antenna opened at different angles in different directions.
 なお、第3実施形態の光学素子1Cにおいては、1つのアーム33に複数の分割電極4が配置されていてもよい。この構成によれば、V型アンテナが開く方向及び角度に加え、V型アンテナの各アームの長さを変更することができる。また、第3実施形態の光学素子1Cも、第1実施形態の光学素子1Aと同様に、電圧供給ライン8を介してスイッチング素子10に電圧信号を送ると共に、スイッチライン9を介してスイッチング素子10に制御信号を送り、分割電極4に対する電圧の印加のON/OFFを切り替えることができるように、構成されていてもよい(図7及び図23参照)。また、各アンテナ構造体3が、n型半導体層31に替えてp型半導体層を有していてもよい。その場合、分割電極4に逆電圧が印加されると、p型半導体層のうち当該分割電極4との接合部分のみに空乏層Dが出現して拡大する。また、アンテナ構造体3の側面3bに分割電極4が配置されていてもよい(図8及び図9参照)。また、アンテナ構造体3の表面3aにミラー13が配置されていてもよい(図12参照)。また、基板2の表面2aとアンテナ構造体3との間にミラー13が配置されていてもよい(図24参照)。また、各アンテナ構造体3は、基板2の厚さ方向から見た場合に円環状以外の環状又はC字状の形状を呈していてもよい。 In the optical element 1 </ b> C of the third embodiment, a plurality of divided electrodes 4 may be arranged on one arm 33. According to this configuration, in addition to the opening direction and angle of the V-shaped antenna, the length of each arm of the V-shaped antenna can be changed. The optical element 1C of the third embodiment also sends a voltage signal to the switching element 10 via the voltage supply line 8 and also the switching element 10 via the switch line 9 in the same manner as the optical element 1A of the first embodiment. It may be configured so that a control signal can be sent to and ON / OFF of voltage application to the divided electrode 4 can be switched (see FIGS. 7 and 23). Each antenna structure 3 may have a p-type semiconductor layer instead of the n-type semiconductor layer 31. In that case, when a reverse voltage is applied to the divided electrode 4, the depletion layer D appears and expands only at the junction with the divided electrode 4 in the p-type semiconductor layer. Moreover, the division | segmentation electrode 4 may be arrange | positioned at the side surface 3b of the antenna structure 3 (refer FIG.8 and FIG.9). Further, the mirror 13 may be disposed on the surface 3a of the antenna structure 3 (see FIG. 12). Further, a mirror 13 may be disposed between the surface 2a of the substrate 2 and the antenna structure 3 (see FIG. 24). In addition, each antenna structure 3 may have an annular shape other than an annular shape or a C-shape when viewed from the thickness direction of the substrate 2.
 また、第3実施形態の光学素子1Cにおいても、第2実施形態の光学素子1Bと同様に、各アンテナ構造体3が、PN接合を成すn型半導体層31及びp型半導体層32を有しており、各分割電極4が、n型半導体層31又はp型半導体層32と接合されていてもよい。この場合、適宜に選択された一対の分割電極4(図18の(a)及び(b)において実線で示された分割電極4)のみに順電圧が印加されると、n型半導体層31及びp型半導体層32の接合部分のうち一対の分割電極4の直下に位置する部分のみで空乏層Dが縮小して消滅する。これにより、n型半導体層31及びp型半導体層32の接合部分のうち一対の分割電極4の直下に位置する部分を電子流路Fとして機能させることができる。
[第4実施形態]
Also in the optical element 1C of the third embodiment, each antenna structure 3 has an n-type semiconductor layer 31 and a p-type semiconductor layer 32 forming a PN junction, as in the optical element 1B of the second embodiment. Each divided electrode 4 may be joined to the n-type semiconductor layer 31 or the p-type semiconductor layer 32. In this case, when a forward voltage is applied only to a pair of appropriately selected divided electrodes 4 (divided electrodes 4 indicated by solid lines in FIGS. 18A and 18B), the n-type semiconductor layer 31 and The depletion layer D shrinks and disappears only at the portion of the junction portion of the p-type semiconductor layer 32 located immediately below the pair of divided electrodes 4. As a result, a portion of the junction portion between the n-type semiconductor layer 31 and the p-type semiconductor layer 32 that is located immediately below the pair of divided electrodes 4 can function as the electron flow path F.
[Fourth Embodiment]
 図19に示されるように、第4実施形態の光学素子1Dは、アンテナ構造体3の形状において、第1実施形態の光学素子1Aと主に相違している。光学素子1Dにおいて、各アンテナ構造体3は、基板2の厚さ方向から見た場合に正方形の形状を呈している。各アンテナ構造体3において、各分割電極4は、基板2の厚さ方向から見た場合に、当該正方形を8分する同形の直角二等辺三角形の形状を呈しており、当該正方形における複数の角部34のそれぞれに配置されている。各アンテナ構造体3において、各分割電極4は、アンテナ構造体3の表面3aに形成されており、図20に示されるように、n型半導体層31と接合されている。より具体的には、各分割電極4は、逆電圧が印加された際に、n型半導体層31における当該分割電極4との接合部分に空乏層が出現して拡大するように(換言すれば、ショットキー接合を成すように)、n型半導体層31と接合されている。なお、隣り合う分割電極4間の隙間は、隣り合う分割電極4間における電気的な絶縁が維持され得る幅に狭められている。 As shown in FIG. 19, the optical element 1D of the fourth embodiment is mainly different from the optical element 1A of the first embodiment in the shape of the antenna structure 3. In the optical element 1D, each antenna structure 3 has a square shape when viewed from the thickness direction of the substrate 2. In each antenna structure 3, each divided electrode 4 has a shape of an isosceles right-angled isosceles triangle that divides the square into eight when viewed from the thickness direction of the substrate 2. It arrange | positions at each of the part 34. FIG. In each antenna structure 3, each divided electrode 4 is formed on the surface 3a of the antenna structure 3, and is joined to the n-type semiconductor layer 31 as shown in FIG. More specifically, each divided electrode 4 has a depletion layer that appears and expands at the junction with the divided electrode 4 in the n-type semiconductor layer 31 when a reverse voltage is applied (in other words, , So as to form a Schottky junction). Note that the gap between the adjacent divided electrodes 4 is narrowed to such a width that electrical insulation between the adjacent divided electrodes 4 can be maintained.
 以上のように構成された光学素子1Dでは、図21の(a)及び(b)に示されるように、適宜に選択された一対の分割電極4(図21の(a)及び(b)において二点鎖線で示された分割電極4)のみに逆電圧が印加されると、n型半導体層31のうち適宜に選択された一対の分割電極4との接合部分のみに空乏層Dが出現して拡大する。これにより、n型半導体層31のうち適宜に選択された一対の分割電極4を除く複数の分割電極4(図21の(a)及び(b)において実線で示された分割電極4)との接合部分が電子流路F(光の散乱を生じさせ得る電子充填領域)となる。したがって、図21の(a)に示されるアンテナ構造体3は、図21の(a)における右側に開いたC型アンテナ乃至V型アンテナとして機能し、図21の(b)に示されるアンテナ構造体3は、図21の(b)における下側に開いたC型アンテナ乃至V型アンテナとして機能する。 In the optical element 1D configured as described above, as shown in FIGS. 21A and 21B, a pair of appropriately selected divided electrodes 4 (in FIGS. 21A and 21B). When a reverse voltage is applied only to the divided electrode 4) indicated by the two-dot chain line, the depletion layer D appears only at the junction between the n-type semiconductor layer 31 and the appropriately selected pair of divided electrodes 4. To enlarge. Thereby, a plurality of divided electrodes 4 (divided electrodes 4 indicated by solid lines in FIGS. 21A and 21B) excluding a pair of appropriately selected divided electrodes 4 in the n-type semiconductor layer 31. The joint portion becomes an electron flow path F (an electron filling region that can cause light scattering). Therefore, the antenna structure 3 shown in FIG. 21A functions as a C-type antenna or a V-type antenna opened to the right side in FIG. 21A, and the antenna structure shown in FIG. The body 3 functions as a C-type antenna or a V-type antenna that opens downward in FIG.
 以上説明したように、第4実施形態の光学素子1Dでは、二次元状に配列された複数のアンテナ構造体3のそれぞれにおいて、複数の分割電極4に選択的に電圧が印加されることで、空乏層Dが拡大させられて電子流路Fの形状が変化させられる。よって、光学素子1Dによれば、光の位相、強度及び偏光の少なくとも1つを動的に変調することができる。 As described above, in the optical element 1D of the fourth embodiment, a voltage is selectively applied to the plurality of divided electrodes 4 in each of the plurality of antenna structures 3 arranged two-dimensionally. The depletion layer D is expanded and the shape of the electron flow path F is changed. Thus, according to the optical element 1D, at least one of the phase, intensity, and polarization of light can be dynamically modulated.
 より具体的には、各分割電極4が、逆電圧が印加された際に空乏層Dが拡大するように、n型半導体層31と接合されている。この構成によれば、各アンテナ構造体3において、電子流路Fの形状を好適に変化させることができる。 More specifically, each divided electrode 4 is joined to the n-type semiconductor layer 31 so that the depletion layer D expands when a reverse voltage is applied. According to this configuration, the shape of the electron flow path F can be suitably changed in each antenna structure 3.
 また、各アンテナ構造体3が、基板2の厚さ方向から見た場合に正方形の形状を呈しており、各分割電極4が、当該正方形における複数の角部34のそれぞれに配置されている。この構成によれば、各アンテナ構造体3を、例えば上述したようなC型アンテナ乃至V型アンテナとして、機能させることができる。 Further, each antenna structure 3 has a square shape when viewed from the thickness direction of the substrate 2, and each divided electrode 4 is disposed at each of a plurality of corner portions 34 in the square. According to this configuration, each antenna structure 3 can function as, for example, a C-type antenna or a V-type antenna as described above.
 なお、第4実施形態の光学素子1Dも、第1実施形態の光学素子1Aと同様に、電圧供給ライン8を介してスイッチング素子10に電圧信号を送ると共に、スイッチライン9を介してスイッチング素子10に制御信号を送り、分割電極4に対する電圧の印加のON/OFFを切り替えることができるように、構成されていてもよい(図7及び図23参照)。また、各アンテナ構造体3が、n型半導体層31に替えてp型半導体層を有していてもよい。その場合、分割電極4に逆電圧が印加されると、p型半導体層のうち当該分割電極4との接合部分のみに空乏層Dが出現して拡大する。また、アンテナ構造体3の表面3aにミラー13が配置されていてもよい(図12参照)。また、基板2の表面2aとアンテナ構造体3との間にミラー13が配置されていてもよい(図24参照)。また、各アンテナ構造体3は、基板2の厚さ方向から見た場合に正方形以外の多角形の形状を呈していてもよい。正方形以外の多角形の形状として、長方形、五角形、六角形等を例示することができる。このとき、各分割電極4は、少なくとも当該正方形における各角部34に配置されていればよい。 Note that the optical element 1D of the fourth embodiment also sends a voltage signal to the switching element 10 via the voltage supply line 8 and the switching element 10 via the switch line 9 in the same manner as the optical element 1A of the first embodiment. It may be configured so that a control signal can be sent to and ON / OFF of voltage application to the divided electrode 4 can be switched (see FIGS. 7 and 23). Each antenna structure 3 may have a p-type semiconductor layer instead of the n-type semiconductor layer 31. In that case, when a reverse voltage is applied to the divided electrode 4, the depletion layer D appears and expands only at the junction with the divided electrode 4 in the p-type semiconductor layer. Further, the mirror 13 may be disposed on the surface 3a of the antenna structure 3 (see FIG. 12). Further, a mirror 13 may be disposed between the surface 2a of the substrate 2 and the antenna structure 3 (see FIG. 24). Each antenna structure 3 may have a polygonal shape other than a square when viewed from the thickness direction of the substrate 2. Examples of polygonal shapes other than squares include rectangles, pentagons, hexagons, and the like. At this time, each divided electrode 4 should just be arrange | positioned at each corner | angular part 34 in the said square at least.
 また、第4実施形態の光学素子1Dにおいても、第2実施形態の光学素子1Bと同様に、各アンテナ構造体3が、PN接合を成すn型半導体層31及びp型半導体層32を有しており、各分割電極4が、n型半導体層31又はp型半導体層32と接合されていてもよい。この場合、適宜に選択された一対の分割電極4を除く複数の分割電極4(図21の(a)及び(b)において実線で示された分割電極4)のみに順電圧が印加されると、n型半導体層31及びp型半導体層32の接合部分のうち一対の分割電極4を除く複数の分割電極4の直下に位置する部分のみで空乏層Dが縮小して消滅する。これにより、n型半導体層31及びp型半導体層32の接合部分のうち一対の分割電極4を除く複数の分割電極4の直下に位置する部分を電子流路Fとして機能させることができる。 Also in the optical element 1D of the fourth embodiment, each antenna structure 3 includes an n-type semiconductor layer 31 and a p-type semiconductor layer 32 forming a PN junction, as in the optical element 1B of the second embodiment. Each divided electrode 4 may be joined to the n-type semiconductor layer 31 or the p-type semiconductor layer 32. In this case, when a forward voltage is applied only to a plurality of divided electrodes 4 (a divided electrode 4 indicated by a solid line in FIGS. 21A and 21B) excluding a pair of appropriately selected divided electrodes 4. The depletion layer D shrinks and disappears only at the portion of the junction between the n-type semiconductor layer 31 and the p-type semiconductor layer 32 that is located immediately below the plurality of divided electrodes 4 excluding the pair of divided electrodes 4. Thereby, the part located just under the some division | segmentation electrode 4 except a pair of division | segmentation electrode 4 among the junction parts of the n-type semiconductor layer 31 and the p-type semiconductor layer 32 can be functioned as the electron flow path F. FIG.
 以上、本開示の第1、第2、第3及び第4実施形態について説明したが、本開示の光学素子は、上述した第1、第2、第3及び第4実施形態に限定されるものではない。例えば、n型半導体層31の材料としては、n型GaAs、GZO、AZO、ITO等のn型半導体材料を用いることができる。また、基板2の材料としては、半導体材料の他、絶縁材料等を用いることもできる。また、分割電極4の材料としては、金属材料の他、ITO等の透明電極材料を用いることができる。また、第1、第2、第3及び第4実施形態の光学素子1のそれぞれを透過型PCSEL上にスタックすることで、自発光型位相制御素子として構成してもよい。また、第1、第2、第3及び第4実施形態の光学素子1のそれぞれは、低次モードの散乱光に限定されず、高次モードの散乱光にも利用され得る。 The first, second, third, and fourth embodiments of the present disclosure have been described above, but the optical element of the present disclosure is limited to the above-described first, second, third, and fourth embodiments. is not. For example, as the material of the n-type semiconductor layer 31, an n-type semiconductor material such as n-type GaAs, GZO, AZO, or ITO can be used. In addition to the semiconductor material, an insulating material or the like can be used as the material of the substrate 2. Moreover, as a material of the division | segmentation electrode 4, transparent electrode materials, such as ITO other than a metal material, can be used. Alternatively, each of the optical elements 1 of the first, second, third, and fourth embodiments may be stacked on a transmission type PCSEL to constitute a self-luminous phase control element. In addition, each of the optical elements 1 of the first, second, third, and fourth embodiments is not limited to low-order mode scattered light, and can be used for high-order mode scattered light.
 また、図22の(a)に示されるように、電子線リソグラフィー法によってパターン部をn型半導体層31で形成し、その後、絶縁層12を基板2の表面2aに形成し、その後、n型半導体層31上に分割電極4を形成してもよい。この場合にも、図22の(b)に示されるように、各アンテナ構造体3において、複数の分割電極4に選択的に電圧が印加されることで、空乏層Dが拡大させられて電子流路Fの形状が変化させられる。 Further, as shown in FIG. 22A, a pattern portion is formed with an n-type semiconductor layer 31 by an electron beam lithography method, and then an insulating layer 12 is formed on the surface 2a of the substrate 2, and then an n-type semiconductor is formed. The divided electrode 4 may be formed on the semiconductor layer 31. Also in this case, as shown in FIG. 22B, the voltage is selectively applied to the plurality of divided electrodes 4 in each antenna structure 3, so that the depletion layer D is expanded and electrons are The shape of the flow path F is changed.
 また、上述した全ての実施形態及び全ての変形例において、例えば不純物のドープによってn型半導体層31及びp型半導体層32の少なくとも1つを基板2内に形成することで、複数のアンテナ構造体3を構成してもよい。つまり、複数のアンテナ構造体3は、基板2内に二次元状に配列されていてもよい。 In all the embodiments and all the modifications described above, a plurality of antenna structures are formed by forming at least one of the n-type semiconductor layer 31 and the p-type semiconductor layer 32 in the substrate 2 by doping impurities, for example. 3 may be configured. That is, the plurality of antenna structures 3 may be two-dimensionally arranged in the substrate 2.
 また、1つのアンテナ構造体3に対して1つの分割電極4が設けられていてもよい。その場合にも、各アンテナ構造体3において分割電極4に電圧が印加されることで、空乏層Dが拡大又は縮小させられて電子流路Fの形状が変化させられる。 Further, one divided electrode 4 may be provided for one antenna structure 3. Even in that case, the voltage is applied to the divided electrode 4 in each antenna structure 3, whereby the depletion layer D is expanded or contracted, and the shape of the electron flow path F is changed.
 1A,1B,1C,1D…光学素子、2…基板、2a…表面、3…アンテナ構造体、3b…側面、4…分割電極(電極)、8…電圧供給ライン(第1配線)、9…スイッチライン(第2配線)、10…スイッチング素子、11…コンデンサ、31…n型半導体層、32…p型半導体層、33…アーム、34…角部、D…空乏層、F…電子流路。 DESCRIPTION OF SYMBOLS 1A, 1B, 1C, 1D ... Optical element, 2 ... Board | substrate, 2a ... Surface, 3 ... Antenna structure, 3b ... Side surface, 4 ... Divided electrode (electrode), 8 ... Voltage supply line (1st wiring), 9 ... Switch line (second wiring), 10 ... switching element, 11 ... capacitor, 31 ... n-type semiconductor layer, 32 ... p-type semiconductor layer, 33 ... arm, 34 ... corner, D ... depletion layer, F ... electron flow path .

Claims (13)

  1.  基板と、
     前記基板に二次元状に配列され、電子流路を形成するためのn型半導体層及びp型半導体層の少なくとも1つを有する複数のアンテナ構造体と、
     複数の前記アンテナ構造体のそれぞれにおいて空乏層を拡大又は縮小させて前記電子流路の形状を変化させるための電極と、を備える、光学素子。
    A substrate,
    A plurality of antenna structures that are two-dimensionally arranged on the substrate and have at least one of an n-type semiconductor layer and a p-type semiconductor layer for forming an electron flow path;
    An electrode for expanding or reducing a depletion layer in each of the plurality of antenna structures to change the shape of the electron flow path.
  2.  複数の前記アンテナ構造体は、前記基板上に二次元状に配列されている、請求項1記載の光学素子。 2. The optical element according to claim 1, wherein the plurality of antenna structures are two-dimensionally arranged on the substrate.
  3.  複数の前記アンテナ構造体は、前記基板内に二次元状に配列されている、請求項1記載の光学素子。 The optical element according to claim 1, wherein the plurality of antenna structures are two-dimensionally arranged in the substrate.
  4.  前記電極は、逆電圧が印加された際に前記空乏層が拡大するように、前記n型半導体層又は前記p型半導体層と接合されている、請求項1~3のいずれか一項記載の光学素子。 The electrode according to any one of claims 1 to 3, wherein the electrode is joined to the n-type semiconductor layer or the p-type semiconductor layer such that the depletion layer expands when a reverse voltage is applied. Optical element.
  5.  前記電極は、逆電圧が印加された際に前記空乏層が拡大するように、絶縁層を介して前記n型半導体層上又は前記p型半導体層上に配置されている、請求項1~3のいずれか一項記載の光学素子。 The electrode is disposed on the n-type semiconductor layer or the p-type semiconductor layer via an insulating layer so that the depletion layer expands when a reverse voltage is applied. An optical element according to any one of the above.
  6.  複数の前記アンテナ構造体のそれぞれは、PN接合を成す前記n型半導体層及び前記p型半導体層を有し、
     前記電極は、順電圧が印加された際に前記空乏層が縮小するように、前記n型半導体層又は前記p型半導体層と接合されている、請求項1~3のいずれか一項記載の光学素子。
    Each of the plurality of antenna structures has the n-type semiconductor layer and the p-type semiconductor layer forming a PN junction,
    The electrode according to any one of claims 1 to 3, wherein the electrode is joined to the n-type semiconductor layer or the p-type semiconductor layer so that the depletion layer shrinks when a forward voltage is applied. Optical element.
  7.  複数の前記アンテナ構造体のそれぞれには、複数の前記電極が設けられている、請求項1~6のいずれか一項記載の光学素子。 The optical element according to any one of claims 1 to 6, wherein each of the plurality of antenna structures is provided with a plurality of the electrodes.
  8.  複数の前記アンテナ構造体のそれぞれは、前記基板の厚さ方向から見た場合に環状又はC字状の形状を呈し、
     複数の前記電極のそれぞれは、互いに異なる位置に配置されている、請求項7記載の光学素子。
    Each of the plurality of antenna structures has an annular or C-shape when viewed from the thickness direction of the substrate,
    The optical element according to claim 7, wherein each of the plurality of electrodes is disposed at a different position.
  9.  複数の前記アンテナ構造体のそれぞれは、前記基板の厚さ方向から見た場合に放射状に配列された複数のアームを有し、
     複数の前記電極のそれぞれは、複数の前記アームのそれぞれに配置されている、請求項7記載の光学素子。
    Each of the plurality of antenna structures has a plurality of arms arranged radially when viewed from the thickness direction of the substrate,
    The optical element according to claim 7, wherein each of the plurality of electrodes is disposed on each of the plurality of arms.
  10.  複数の前記アンテナ構造体のそれぞれは、前記基板の厚さ方向から見た場合に多角形の形状を呈し、
     複数の前記電極のそれぞれは、少なくとも前記多角形における複数の角部のそれぞれに配置されている、請求項7記載の光学素子。
    Each of the plurality of antenna structures has a polygonal shape when viewed from the thickness direction of the substrate,
    The optical element according to claim 7, wherein each of the plurality of electrodes is disposed at least at each of a plurality of corner portions of the polygon.
  11.  複数の前記アンテナ構造体のそれぞれは、前記基板の厚さ方向に沿って延在する側面を有し、
     前記電極は、前記側面に配置されている、請求項1~10のいずれか一項記載の光学素子。
    Each of the plurality of antenna structures has a side surface extending along the thickness direction of the substrate,
    The optical element according to any one of claims 1 to 10, wherein the electrode is disposed on the side surface.
  12.  制御端子及び一対の電流端子を有し、一対の前記電流端子の一方に前記電極が電気的に接続されたスイッチング素子と、
     一対の前記電流端子の他方に電気的に接続された第1配線と、
     前記制御端子に電気的に接続された第2配線と、を更に備える、請求項1~11のいずれか一項記載の光学素子。
    A switching element having a control terminal and a pair of current terminals, wherein the electrode is electrically connected to one of the pair of current terminals;
    A first wiring electrically connected to the other of the pair of current terminals;
    The optical element according to any one of claims 1 to 11, further comprising a second wiring electrically connected to the control terminal.
  13.  一対の前記電流端子の前記一方とグランド電位とに電気的に接続されたコンデンサを更に備える、請求項12記載の光学素子。 The optical element according to claim 12, further comprising a capacitor electrically connected to the one of the pair of current terminals and a ground potential.
PCT/JP2017/018331 2016-06-16 2017-05-16 Optical element WO2017217168A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-119982 2016-06-16
JP2016119982A JP6688168B2 (en) 2016-06-16 2016-06-16 Optical element

Publications (1)

Publication Number Publication Date
WO2017217168A1 true WO2017217168A1 (en) 2017-12-21

Family

ID=60663119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018331 WO2017217168A1 (en) 2016-06-16 2017-05-16 Optical element

Country Status (2)

Country Link
JP (1) JP6688168B2 (en)
WO (1) WO2017217168A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019201065A (en) * 2018-05-15 2019-11-21 浜松ホトニクス株式会社 Light-emitting device
JP2019200251A (en) * 2018-05-15 2019-11-21 浜松ホトニクス株式会社 Reflection type kinetic meta surface
CN112164869A (en) * 2020-09-25 2021-01-01 京信通信技术(广州)有限公司 Antenna, low-frequency radiation unit and radiation arm
US11971643B2 (en) 2018-05-15 2024-04-30 Hamamatsu Photonics K.K. Reflective dynamic metasurface

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51144166A (en) * 1975-06-05 1976-12-10 Agency Of Ind Science & Technol Transmission line amplitude modulator element
JPH06214169A (en) * 1992-06-08 1994-08-05 Texas Instr Inc <Ti> Controllable optical and periodic surface filter
JP2000028974A (en) * 1998-07-13 2000-01-28 Fuji Photo Film Co Ltd Optical modulation element and exposure element and display device
JP2007188107A (en) * 2002-01-07 2007-07-26 Matsushita Electric Ind Co Ltd Planar type optical modulator
US20090096545A1 (en) * 2007-10-12 2009-04-16 Los Alamos National Security Llc Dynamic frequency tuning of electric and magnetic metamaterial response
JP2013509097A (en) * 2009-10-22 2013-03-07 エイ・ティ・アンド・ティ インテレクチュアル プロパティ アイ,エル.ピー. Method and apparatus for dynamically processing an electron beam
JP2013174735A (en) * 2012-02-24 2013-09-05 Chube Univ Planar optical modulator
JP2014103694A (en) * 2014-02-04 2014-06-05 Nippon Dengyo Kosaku Co Ltd Plane antenna
JP2015231184A (en) * 2014-06-06 2015-12-21 日本電信電話株式会社 Metamaterial active element

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51144166A (en) * 1975-06-05 1976-12-10 Agency Of Ind Science & Technol Transmission line amplitude modulator element
JPH06214169A (en) * 1992-06-08 1994-08-05 Texas Instr Inc <Ti> Controllable optical and periodic surface filter
JP2000028974A (en) * 1998-07-13 2000-01-28 Fuji Photo Film Co Ltd Optical modulation element and exposure element and display device
JP2007188107A (en) * 2002-01-07 2007-07-26 Matsushita Electric Ind Co Ltd Planar type optical modulator
US20090096545A1 (en) * 2007-10-12 2009-04-16 Los Alamos National Security Llc Dynamic frequency tuning of electric and magnetic metamaterial response
JP2013509097A (en) * 2009-10-22 2013-03-07 エイ・ティ・アンド・ティ インテレクチュアル プロパティ アイ,エル.ピー. Method and apparatus for dynamically processing an electron beam
JP2013174735A (en) * 2012-02-24 2013-09-05 Chube Univ Planar optical modulator
JP2014103694A (en) * 2014-02-04 2014-06-05 Nippon Dengyo Kosaku Co Ltd Plane antenna
JP2015231184A (en) * 2014-06-06 2015-12-21 日本電信電話株式会社 Metamaterial active element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019201065A (en) * 2018-05-15 2019-11-21 浜松ホトニクス株式会社 Light-emitting device
WO2019221133A1 (en) * 2018-05-15 2019-11-21 浜松ホトニクス株式会社 Light-emitting device
JP2019200251A (en) * 2018-05-15 2019-11-21 浜松ホトニクス株式会社 Reflection type kinetic meta surface
WO2019221120A1 (en) * 2018-05-15 2019-11-21 浜松ホトニクス株式会社 Reflective dynamic metasurface
JP7144188B2 (en) 2018-05-15 2022-09-29 浜松ホトニクス株式会社 Reflective dynamic metasurface
JP7219552B2 (en) 2018-05-15 2023-02-08 浜松ホトニクス株式会社 light emitting device
US11971643B2 (en) 2018-05-15 2024-04-30 Hamamatsu Photonics K.K. Reflective dynamic metasurface
CN112164869A (en) * 2020-09-25 2021-01-01 京信通信技术(广州)有限公司 Antenna, low-frequency radiation unit and radiation arm

Also Published As

Publication number Publication date
JP6688168B2 (en) 2020-04-28
JP2017223867A (en) 2017-12-21

Similar Documents

Publication Publication Date Title
US11855239B2 (en) Electrode assembly having lower electrode directly on the surface of a base substrate, a first electrode on the lower electrode, and the second electrode formed on and spaced apart from the first electrode
US10658540B2 (en) Micro-light-emitting diode device
TWI723207B (en) Micro light emitting diode and manufacturing method thereof
JP6550437B2 (en) Method of manufacturing semiconductor microwire or nanowire, semiconductor structure comprising the microwire or nanowire, and method of manufacturing semiconductor structure
WO2017217168A1 (en) Optical element
KR101622308B1 (en) Light emitting device and method of manufacturing the same
TWI415302B (en) Optoelectronic semiconductor body
KR20230004445A (en) Light emitting diode structure and manufacturing method thereof
KR20140004315A (en) Light emitting diode module for surface mount technology and method of manufacturing the same
JP2015126048A (en) Light-emitting element, method of manufacturing light-emitting element, light-emitting device comprising plurality of light-emitting elements, and method of manufacturing light-emitting device
KR20200088960A (en) Light emitting devcie, dislay devcie having the same, and method of manufacturing display device
JP2004119983A (en) Beam radiation semiconductor element
US11747706B2 (en) Optical display device having variable conductivity patterns
JP2020161621A (en) Light-emitting device and projector
US20140203249A1 (en) Quasi-Surface Emission Vertical-Type Organic Light-Emitting Transistors And Method Of Manufacturing The Same
KR20060023966A (en) Tunable radiation emitting semiconductor device
CN104882461A (en) Light emitting diode and method of fabricating the same
US11069798B2 (en) Ballistic transport device and corresponding component
JP5014403B2 (en) BAR-LIKE STRUCTURE LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE MANUFACTURING METHOD, BACKLIGHT, LIGHTING DEVICE, AND DISPLAY DEVICE
JP2020064993A5 (en)
TW201013984A (en) Optoelectronic semiconductor device
KR20230033218A (en) Light emitting element, display device including the same, and method of fabricating light emitting element
CN116583961A (en) Light emitting diode and display device including the same
CN112968089B (en) Light emitting device and manufacturing method thereof, and back plate and manufacturing method thereof
KR102283105B1 (en) High heat dissipation nanostructure photonic device and method of manuafcturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813071

Country of ref document: EP

Kind code of ref document: A1