WO2017217112A1 - Switchable flow control valve - Google Patents

Switchable flow control valve Download PDF

Info

Publication number
WO2017217112A1
WO2017217112A1 PCT/JP2017/015853 JP2017015853W WO2017217112A1 WO 2017217112 A1 WO2017217112 A1 WO 2017217112A1 JP 2017015853 W JP2017015853 W JP 2017015853W WO 2017217112 A1 WO2017217112 A1 WO 2017217112A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
hole
main valve
open
sub
Prior art date
Application number
PCT/JP2017/015853
Other languages
French (fr)
Japanese (ja)
Inventor
拓郎 古越
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2017217112A1 publication Critical patent/WO2017217112A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/08Details
    • F16K5/10Means for additional adjustment of the rate of flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • F16K11/12Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit with one plug turning in another

Definitions

  • the present disclosure relates to a switching flow control valve that switches, opens and closes a flow path through which a fluid flows and adjusts the flow rate of the fluid.
  • Patent Document 1 describes a flow path switching valve.
  • the flow path switching valve of Patent Document 1 includes a rotary valve mechanism that selectively connects two outflow ports to the inflow port.
  • the flow path switching valve of Patent Document 1 includes a valve main body, a seal member, a valve body, and a drive device including a motor and the like.
  • a valve chamber, an inlet, and two outlets are formed in the valve body, and the inlet and the two outlets open to the valve chamber, respectively.
  • the seal member is made of an elastic material and is disposed in the valve chamber.
  • the seal member has a cylindrical body in which a plurality of through holes are formed in the circumferential direction, an outer rib, and an inner rib.
  • the outer rib of the seal member protrudes outward from the outer peripheral surface of the cylindrical body along the periphery of the through hole of the cylindrical body, and the inner rib extends from the inner peripheral surface of the cylindrical body along the periphery of the through hole. Projected toward
  • the valve body has a valve shaft coupled to the driving device and a valve body portion accommodated inside the seal member in the valve chamber. Further, the inner rib of the seal member contacts the outer peripheral surface of the valve body, and the outer rib of the seal member contacts the inner peripheral surface forming the valve chamber of the valve body. Further, the inner rib and the outer rib of the seal member serve as a seal portion that seals around the outflow port in the valve chamber. Therefore, the seal portion is constantly compressed and elastically deformed between the inner peripheral surface of the valve body and the outer peripheral surface of the valve body portion. The seal portion is provided for each of the two outlets.
  • the flow-path switching valve of patent document 1 opens the two outflow ports of a valve main body alternatively with respect to a valve chamber by rotating a valve body part via a valve shaft with a drive device. At this time, the valve body portion rotates and slides with respect to the inner rib of the seal member as the valve body portion rotates.
  • the flow path switching valve of the above-mentioned patent document 1 has two outlets that are selectively opened with respect to the valve chamber, but the fluid flowing out from the inlet to the one outlet through the valve chamber It can also function as a switching flow control valve that adjusts the flow rate. Specifically, in the flow path switching valve of Patent Document 1, the flow rate of the fluid flowing out to the one outlet is adjusted by partially overlapping the communication hole on the side of the valve body part with the one outlet. be able to.
  • the valve body part when adjusting the flow rate so that the communication hole of the valve body part and the through hole of the seal part partially overlap, the valve body part has the periphery of the communication hole of the valve body part intersecting the inner rib of the seal part.
  • the seal part is pressed in a state where the seal part intersects. Furthermore, when the flow rate of the fluid flowing out from the inflow port to the one outflow port is maintained, the seal portion continues to be pressed against the valve body portion while being in the crossed state of the seal portion.
  • a partial step may remain on the seal surface on the valve body side of the seal portion (that is, the seal surface configured by the inner rib).
  • step difference of such a seal surface becomes a cause which worsens the sealing performance of a seal part.
  • a switching flow regulating valve is: A switching flow control valve that switches or opens and closes the flow path of the fluid and adjusts the flow rate of the fluid, A valve body having a valve chamber and an open / close flow hole and an open flow hole that are open to the valve chamber and through which fluid flows; and A main valve which is housed in the valve chamber and which opens and closes the opening and closing flow hole by rotating around a uniaxial center; A secondary valve housed in the valve chamber, disposed on the opposite side of the main valve with respect to the open / close flow hole, and rotated about a single axis; A seal that is elastic and is sandwiched between the valve body and the main valve so as to surround the open end of the open / close flow hole on the valve chamber side, and seals around the open end of the open / close flow hole in the valve chamber With A main valve through hole is formed in the main valve, The main valve opens the open / close flow hole by causing the one end of the main valve
  • the sub-valve that is not in direct contact with the seal portion increases or decreases by rotating the area covering the other end of the main valve through-hole around the uniaxial center, thereby switching the flow control valve Can adjust the flow rate of the fluid. Therefore, it is not necessary to adjust the flow rate of the main valve, and it is sufficient to open and close the open / close flow hole. That is, when the flow rate of the fluid is adjusted, it is not necessary to continue the state in which the peripheral edge of one end of the main valve through hole intersects the seal portion. Can be kept good. In short, it is possible to adjust the flow rate of the fluid so as not to deteriorate the sealing performance of the seal portion.
  • FIG. 3 is a cross-sectional view showing a III-III cross section of FIG. It is the typical perspective view which showed the main valve which the inlet side three-way valve of 1st Embodiment has alone. It is the typical perspective view which extracted and showed the subvalve and drive shaft which the inlet side three-way valve of 1st Embodiment has.
  • FIG. 4 is a view showing a structure of a rotation connecting / disconnecting portion in the first embodiment, that is, a cross-sectional view showing a VIII-VIII cross section of FIG. 2. It is IX arrow line view in FIG. It is the figure which showed typically the structure of the three-way valve of a comparative example, Comprising: It is a figure corresponded in FIG.
  • FIG. 2 of 1st Embodiment It is the typical perspective view which extracted and represented the main valve and drive shaft which the three-way valve of a comparative example has, and is a figure equivalent to Drawing 4 of a 1st embodiment. It is the typical perspective view showing the 1st seal member and the 2nd seal member which the three-way valve of a comparative example has alone.
  • the three-way valve of the comparative example it is a diagram in which the first seal member or the second seal member is overlapped and displayed on a developed view in which the outer peripheral surface of the main valve peripheral wall portion is developed with the valve circumferential direction being the horizontal direction of the drawing. It is a figure equivalent to FIG. 7 of a form.
  • FIG. 7 It is a figure equivalent to FIG. 7 of a form.
  • FIG. 11 is a cross-sectional view showing the XIV-XIV cross section of FIG. 10 and showing a certain rotational position of the main valve during flow rate adjustment in which the flow rate of hot water passing through a second radial hole is adjusted.
  • FIG. 15 is a cross-sectional view illustrating the XV-XV cross section of FIG. 14 while extracting and illustrating the second seal member, the main valve, and the drive shaft of the three-way valve of the comparative example.
  • FIG. 11 is a cross-sectional view showing the XIV-XIV cross section of FIG. 10 and showing a certain rotational position of the main valve during flow rate adjustment in which the flow rate of cold water passing through the first radial hole is adjusted.
  • FIG. 15 is a cross-sectional view illustrating the XV-XV cross section of FIG. 14 while extracting and illustrating the second seal member, the main valve, and the drive shaft of the three-way valve of the comparative example.
  • FIG. 11 is a cross-sectional view
  • FIG. 17 is a cross-sectional view illustrating the XVII-XVII cross section of FIG. 16 while extracting and illustrating the second seal member, the main valve, and the drive shaft of the three-way valve of the comparative example.
  • It is the perspective view which showed typically the structure of the inlet side three-way valve of 2nd Embodiment.
  • FIG. 1 is a block diagram showing a schematic configuration of an integrated heat management system 10 in the present embodiment.
  • the integrated heat management system 10 shown in FIG. 1 is a system mounted on a vehicle such as a hybrid vehicle.
  • the integrated heat management system 10 generates cold water and hot water by the refrigeration cycle device 12, and cools or adjusts the temperature by supplying the cold water or hot water to a plurality of devices 11a, 11b, and 11c including a heat exchanger for air conditioning. I do.
  • the integrated heat management system 10 in the integrated heat management system 10, cold water as the first heat exchange medium and hot water as the second heat exchange medium having a temperature higher than that of the cold water circulate. Then, the integrated heat management system 10 selectively supplies the cold water and hot water to the first device 11a.
  • the integrated heat management system 10 supplies cold water to the cooler core 11b as the second device 11b, and supplies hot water to the heater core 11c as the third device 11c.
  • the first device 11a is, for example, a battery.
  • the first heat exchange medium and the second heat exchange medium are both an aqueous solution, ie, a liquid, in which an antifreeze liquid is mixed, but may be a gas.
  • the integrated heat management system 10 includes a refrigeration cycle apparatus 12, a cold water pump 13, a hot water pump 14, a cold water supply passage 161, a cold water recovery passage 162, a cold water bypass passage 163, an on-off valve 163a, and hot water supply.
  • a passage 171, a hot water recovery passage 172, a hot water bypass passage 173, an inlet side three-way valve 18, an outlet side three-way valve 19, an inlet pipe 20, and an outlet pipe 21 are provided as main components.
  • the refrigeration cycle apparatus 12 cools the cold water circulating in the integrated heat management system 10 and heats the hot water circulating in the integrated heat management system 10. In short, the refrigeration cycle apparatus 12 serves as a heat pump that transfers heat from the cold water to the hot water.
  • the refrigeration cycle apparatus 12 includes a vapor compression refrigeration cycle, and includes a compressor 121, a water-cooled condenser 122, an expansion valve 123, and a chiller 124. These components 121, 122, 123, and 124 are connected in an annular shape by piping, and the piping constitutes a refrigerant circulation path through which the refrigerant circulates as shown by an arrow FL3.
  • the compressor 121 sucks the refrigerant from the chiller 124, compresses the sucked refrigerant, and then discharges it to the water-cooled condenser 122.
  • the water-cooled condenser 122 is a heat exchanger that exchanges heat between the refrigerant and the hot water.
  • the water-cooled condenser 122 dissipates heat from the refrigerant to the hot water, thereby condensing the refrigerant and heating the hot water.
  • the refrigerant flows from the water-cooled condenser 122 into the expansion valve 123.
  • the expansion valve 123 decompresses and expands the refrigerant that has flowed from the water-cooled condenser 122, and causes the refrigerant after the decompression and expansion to flow out to the chiller 124.
  • the chiller 124 is a heat exchanger that exchanges heat between the refrigerant and the cold water.
  • the refrigerant flows into the chiller 124 from the expansion valve 123.
  • the chiller 124 absorbs heat from the cold water to the refrigerant, thereby evaporating the refrigerant and cooling the cold water.
  • the cold water pump 13 has a cold water suction port 13a and a cold water discharge port 13b, and discharges cold water sucked from the cold water suction port 13a from the cold water discharge port 13b.
  • the cold water discharged from the cold water discharge port 13 b flows into the cold water supply passage 161 after being cooled by the chiller 124.
  • a cold water recovery passage 162 is connected to the cold water inlet 13a of the cold water pump 13.
  • the cold water recovery passageway 162 guides the cold water after heat exchange by the first device 11 a to the cold water inlet 13 a of the cold water pump 13.
  • the cold water bypass passage 163 is connected between the cold water supply passage 161 and the cold water inlet 13 a of the cold water pump 13. That is, the upstream end of the cold water bypass passage 163 is connected to the cold water supply passage 161, and the downstream end of the cold water bypass passage 163 is connected to the cold water inlet 13 a of the cold water pump 13.
  • a cooler core 11b and an electric on-off valve 163a for opening and closing the cold water bypass passage 163 are provided in series.
  • the cooler core 11b is provided in an air conditioning unit (not shown) that air-conditions the passenger compartment.
  • the cooler core 11b heat-exchanges the cold water which distribute
  • the hot water pump 14 has a hot water inlet 14a and a hot water outlet 14b, and discharges hot water drawn from the hot water inlet 14a from the hot water outlet 14b.
  • the hot water discharged from the hot water discharge port 14 b flows into the hot water supply passage 171 after being heated by the water cooling condenser 122.
  • a heater core 11c is provided in the middle of the hot water supply passage 171.
  • the heater core 11c is provided in the air conditioning unit. And the heater core 11c heat-exchanges the hot water which distribute
  • a hot water recovery passage 172 is connected to the hot water inlet 14a of the hot water pump 14.
  • the warm water recovery passage 172 guides the warm water after heat exchange by the first device 11 a to the warm water inlet 14 a of the warm water pump 14.
  • the hot water bypass passage 173 is connected between the hot water outlet of the heater core 11 c and the hot water inlet 14 a of the hot water pump 14. That is, the upstream end of the hot water bypass passage 173 is connected to the hot water outlet of the heater core 11 c, and the downstream end of the hot water bypass passage 173 is connected to the hot water inlet 14 a of the hot water pump 14.
  • the device to be heated is not provided in the hot water bypass passage 173, but the device to be heated may be provided in the hot water bypass passage 173 and heated by the hot water.
  • the inlet side three-way valve 18 selectively connects the cold water supply passage 161 and the hot water supply passage 171 to the inlet pipe 20 connected to the inlet side of the first device 11a, and the inlet pipe of the cold water and the hot water.
  • the flow rate of the fluid flowing to 20 is adjusted.
  • the inlet side three-way valve 18 is a switching flow regulating valve that switches the flow path through which the fluid flows on the inlet side of the first device 11a and adjusts the flow rate of the fluid.
  • the cold water flowing from the cold water supply passage 161 to the inlet side three-way valve 18 is about ⁇ 20 ° C.
  • the hot water flowing from the hot water supply passage 171 to the inlet side three way valve 18 is about 60 ° C.
  • the outlet side three-way valve 19 is a flow path switching valve that selectively connects the outlet pipe 21 connected to the outlet side of the first device 11a to the cold water recovery path 162 and the hot water recovery path 172.
  • the outlet-side three-way valve 19 does not have a flow rate adjusting function for adjusting the flow rate of fluid. This is because if one of the inlet side three-way valve 18 and the outlet side three-way valve 19 has a flow rate adjusting function, the flow rate of cold water and the flow rate of hot water flowing to the first device 11a can be adjusted.
  • the outlet side three-way valve 19 of the present embodiment is a known three-way valve.
  • the cold water or hot water that has flowed into the first device 11a from the inlet pipe 20 exchanges heat inside the first device 11a and then flows out to the outlet pipe 21. That is, if cold water flows into the first device 11a, the first device 11a is cooled by the cold water, and if warm water flows into the first device 11a, the first device 11a is heated by the hot water.
  • the inlet-side three-way valve 18 and the outlet-side three-way valve 19 are operated in conjunction with each other. Specifically, when the inlet-side three-way valve 18 communicates the cold water supply passage 161 with the first inlet pipe 20, the outlet-side three-way valve 19 connects the outlet pipe 21 to the cold water pump 13 via the cold water recovery passage 162. It communicates with the cold water inlet 13a. At that time, the port of the inlet-side three-way valve 18 connected to the hot water supply passage 171 is closed by the inlet-side three-way valve 18, and the port of the outlet-side three-way valve 19 connected to the hot water recovery passage 172 is closed by the outlet-side three-way valve 19. Blocked.
  • the outlet-side three-way valve 19 connects the outlet pipe 21 via the hot water recovery passage 172 to the hot water inlet of the hot water pump 14. Communicate to 14a. At that time, the port of the inlet-side three-way valve 18 connected to the cold water supply passage 161 is closed by the inlet-side three-way valve 18, and the port of the outlet-side three-way valve 19 connected to the cold water recovery passage 162 is closed by the outlet-side three-way valve 19. Blocked.
  • the inlet side three-way valve 18 adjusts the flow rate of the fluid flowing into the inlet pipe 20 out of the cold water and the hot water regardless of which of the cold water supply path 161 and the hot water supply path 171 communicates with the inlet pipe 20. can do.
  • the cold water and the hot water are selected.
  • it can be supplied to the first device 11a.
  • the cold water discharged from the cold water pump 13 and the hot water discharged from the hot water pump 14 merge with each other by the control of the three-way valves 18 and 19 as described above. It will circulate through a separate heat carrier circuit.
  • the integrated heat management system 10 in addition to the control of the three-way valves 18 and 19, the on-off control of the on-off valve 163a, the operation control of the refrigeration cycle apparatus 12, and the operation control of the pumps 13 and 14 are performed. Thereby, the integrated thermal management system 10 is switched to various operating situations. Further, the integrated heat management system 10 distributes the hot water flowing out from the heater core 11c as indicated by an arrow FL4, and can supply the hot water to the engine for traveling.
  • the inlet side three-way valve 18 is a rotary switching flow control valve.
  • the inlet side three-way valve 18 includes a valve main body 30, a main valve 32, a sub valve 34, a drive shaft 36, a first seal member 40, a second seal member 42, and a drive device 44.
  • the drive device 44 is connected to the auxiliary valve 34 via the drive shaft 36. That is, the auxiliary valve 34 is a drive valve that is driven by the drive device 44 among the plurality of rotary valves 32, 34 included in the inlet side three-way valve 18.
  • the drive device 44 is a drive source that rotates the sub-valve 34 according to electrical control of an electronic control device (not shown), and is disposed on one side of the valve body 30 in the axial direction DRa of the valve axis CLv.
  • the drive device 44 includes, for example, a speed reduction mechanism such as a gear train and an electric motor.
  • FIG. 2 is a cross-sectional view showing the II-II cross section of FIG.
  • the drive device 44 is not shown in cross section except for a part thereof.
  • FIG. 2 is shown with a space between each component of the inlet side three-way valve 18 in order to easily understand the structure of the inlet side three-way valve 18.
  • the seal members 40 and 42 are actually in close contact with the main valve 32 and the valve body 30 in the radial direction DRr of the valve axis CLv, but FIG. Is shown.
  • Such a schematic drawing method is the same in other drawings.
  • valve axis direction DRa the axial direction DRa of the valve axis CLv is referred to as the valve axis direction DRa
  • the radial direction DRr of the valve axis CLv is referred to as the valve diameter direction DRr
  • the circumferential direction DRc of the valve axis CLv is the valve circumference. It shall be called direction DRc.
  • the valve axis CLv is a uniaxial center that becomes the rotation center of the main valve 32 and the sub valve 34.
  • the valve body 30 is a non-rotating portion that does not rotate, and serves as a housing for the inlet-side three-way valve 18.
  • the valve body 30 includes a valve chamber forming part 301, a first radial pipe part 305, a second radial pipe part 306, and an axial pipe part 307.
  • the valve chamber forming portion 301, the first radial piping portion 305, the second radial piping portion 306, and the axial piping portion 307 are integrally configured so that hot water and cold water do not leak from the connection portions. ing.
  • a valve chamber 301 a is formed inside the valve chamber forming portion 301.
  • the valve chamber forming portion 301 has a valve chamber peripheral wall portion 302, one end portion 303, and the other end portion 304.
  • the valve chamber peripheral wall 302 has a cylindrical shape centered on the valve axis CLv. That is, the valve chamber peripheral wall 302 is formed so as to surround the valve chamber 301a around the valve axis CLv over the entire circumference.
  • One end portion 303 of the valve chamber forming portion 301 is joined to one end of the valve chamber peripheral wall portion 302 on one side in the valve axial direction DRa with respect to the valve chamber peripheral wall portion 302.
  • the one end part 303 of the valve chamber formation part 301 comprises the plate shape which made the valve-axis direction DRa the thickness direction, for example, and has covered one side of the valve-chamber 301a in the valve-axis direction DRa.
  • the drive device 44 is disposed on the opposite side to the valve chamber 301a side with respect to the one end portion 303 of the valve chamber forming portion 301 in the valve axial direction DRa. Therefore, a shaft insertion hole 303a through which the drive shaft 36 is inserted through the one end portion 303 in the valve shaft direction DRa is formed in the one end portion 303 of the valve chamber forming portion 301.
  • an O-ring 361 that seals a radial clearance around the drive shaft 36 in the shaft insertion hole 303a is provided.
  • the other end 304 of the valve chamber forming portion 301 is joined to the other end of the valve chamber peripheral wall 302 on the other side in the valve axial direction DRa with respect to the valve chamber peripheral wall 302.
  • the other end 304 of the valve chamber forming portion 301 has, for example, a plate shape with the valve axis direction DRa as the thickness direction, and covers the other side of the valve chamber 301a in the valve axis direction DRa.
  • the first radial pipe portion 305 protrudes outward from the valve chamber peripheral wall portion 302 in the valve radial direction DRr, and has a cylindrical shape, for example. That is, a first radial hole 305 a is formed inside the first radial pipe portion 305.
  • the first radial hole 305a is, for example, a circular hole.
  • the 1st radial direction hole 305a penetrates the 1st radial direction piping part 305 and the valve chamber surrounding wall part 302, and is opened with respect to the valve chamber 301a. Accordingly, the first radial hole 305 a has an open end 305 b on the valve chamber 301 a side of the first radial hole 305 a, and the open end 305 b is formed in the valve chamber peripheral wall 302.
  • the first radial hole 305a is connected to the cold water supply passage 161 (see FIG. 1) and functions as a first inlet port through which cold water flows from the cold water supply passage 161.
  • the first radial hole 305 a is a first opening / closing circulation hole through which fluid (specifically, cold water) from the cold water supply passage 161 flows and is opened and closed by the rotation of the main valve 32.
  • the second radial pipe portion 306 protrudes outward from the valve chamber peripheral wall portion 302 in the valve radial direction DRr. Moreover, the 2nd radial direction piping part 306 has comprised the cylindrical shape, for example. That is, a second radial hole 306 a is formed inside the second radial pipe portion 306. The second radial hole 306a is, for example, a circular hole.
  • the second radial hole 306a penetrates the second radial pipe portion 306 and the valve chamber peripheral wall portion 302 and opens to the valve chamber 301a. Therefore, the second radial hole 306 a has an open end 306 b on the valve chamber 301 a side of the second radial hole 306 a, and the open end 306 b is formed in the valve chamber peripheral wall 302.
  • the second radial pipe portion 306 protrudes to the opposite side of the first radial pipe portion 305 with the valve shaft center CLv interposed therebetween. Therefore, the second radial hole 306a is provided on the opposite side to the first radial hole 305a with the valve shaft center CLv interposed therebetween. Furthermore, the opening end 306b of the second radial hole 306a is disposed so as to face the opening end 305b of the first radial hole 305a with the valve axis CLv interposed therebetween.
  • the second radial hole 306a is connected to the hot water supply passage 171 (see FIG. 1), and functions as a second inlet port through which the hot water flows from the hot water supply passage 171.
  • the second radial hole 306 a is a second opening / closing circulation hole through which fluid (specifically, hot water) from the hot water supply passage 171 flows and is opened and closed by the rotation of the main valve 32.
  • the axial piping part 307 protrudes from the other end part 304 of the valve chamber forming part 301 to the other side in the valve axial direction DRa, and has, for example, a cylindrical shape. That is, an axial hole 307 a is formed inside the axial pipe portion 307.
  • the axial hole 307a is, for example, a circular hole.
  • the axial hole 307a passes through the axial pipe portion 307 and the other end portion 304 of the valve chamber forming portion 301 and opens to the valve chamber 301a. Accordingly, the axial hole 307 a has an open end 307 b on the valve chamber 301 a side of the axial hole 307 a, and the open end 307 b is formed at the other end 304 of the valve chamber forming portion 301.
  • the axial hole 307a is connected to the inlet pipe 20 (see FIG. 1), and functions as an outlet port through which the fluid in the valve chamber 301a flows out to the inlet pipe 20.
  • the axial hole 307a is an opening circulation hole through which fluid (specifically, cold water or hot water) flowing out from the valve chamber 301a to the inlet pipe 20 flows.
  • the main valve 32 of the inlet side three-way valve 18 is a rotating valve body that rotates about the valve axis CLv, and is accommodated in the valve chamber 301a.
  • the main valve 32 has, for example, a bottomed cylindrical shape in which one side in the valve axial direction DRa is closed.
  • the main valve 32 has a main valve peripheral wall portion 321 and one end portion 322.
  • the main valve peripheral wall portion 321 and the one end portion 322 are integrally formed.
  • the main valve peripheral wall 321 has a cylindrical shape centered on the valve axis CLv.
  • a sub valve 34 is arranged inside the main valve peripheral wall 321. Therefore, the main valve peripheral wall portion 321 is configured to surround the auxiliary valve 34 around the valve axis CLv over the entire periphery thereof.
  • the main valve 32 has a main valve through hole 321a.
  • the main valve through hole 321a is, for example, a circular hole.
  • the main valve through-hole 321a is formed so as to penetrate the main valve peripheral wall portion 321 of the main valve 32 in the valve radial direction DRr.
  • the main valve through hole 321a has one end 321b outside the valve radial direction DRr and the other end 321c inside the valve radial direction DRr of the main valve through hole 321a.
  • One end 322 of the main valve 32 is joined to one end of the main valve peripheral wall 321 on one side in the valve axial direction DRa with respect to the main valve peripheral wall 321.
  • the one end part 322 of the main valve 32 comprises the plate shape which made the valve-axis direction DRa the thickness direction, for example, and has covered one side of the inner space of the main-valve surrounding wall part 321 in the valve-axis direction DRa.
  • a shaft insertion hole 322a through which the drive shaft 36 is inserted through the one end 322 in the valve shaft direction DRa is formed in the one end 322 of the main valve 32.
  • the drive shaft 36 is connected to the sub valve 34 so as to transmit power to the drive device 44 in a state of being inserted into the shaft insertion hole 322a of the main valve 32 and the shaft insertion hole 303a of the valve chamber forming portion 301. .
  • the main valve 32 opens and closes the first radial hole 305a and the second radial hole 306a of the valve body 30 by rotating around the valve axis CLv in the valve chamber 301a. Specifically, the main valve 32 selectively closes the first radial hole 305a and the second radial hole 306a by rotating around the valve axis CLv.
  • the main valve 32 is positioned at least in the first rotation position and the second rotation position by being rotated around the valve axis CLv.
  • the first rotation position is a rotation position at which the main valve 32 opens the first radial hole 305a and closes the second radial hole 306a.
  • the second rotational position is a rotational position where the main valve 32 closes the first radial hole 305a and opens the second radial hole 306a.
  • the second rotational position is a rotational position in which the main valve 32 is inverted about the valve axis CLv with respect to the first rotational position. 2, FIG. 3, and FIG. 8 described later are all shown in a state where the main valve 32 is positioned at the first rotational position.
  • the main valve 32 when the main valve 32 is positioned at the first rotation position as the main valve 32 rotates, the one end 321b of the main valve through-hole 321a is opposed to the opening end 305b of the first radial hole 305a.
  • the main valve 32 opens the first radial hole 305a to the valve chamber 301a.
  • the main valve 32 closes the open end 306b of the second radial hole 306a with the outer peripheral surface 321d of the main valve peripheral wall 321.
  • the main valve 32 When the main valve 32 is positioned at the first rotational position as described above, that is, in the first case where the first radial hole 305a is opened and the second radial hole 306a is closed, the first diameter Cold water flows through the valve chamber 301a between the directional hole 305a and the axial hole 307a.
  • the main valve 32 when the main valve 32 is positioned at the second rotational position as the main valve 32 rotates, the one end 321b of the main valve through-hole 321a is relative to the opening end 306b of the second radial hole 306a. Turn. Accordingly, the main valve 32 opens the second radial hole 306a to the valve chamber 301a. At the same time, the main valve 32 closes the open end 305b of the first radial hole 305a with the outer peripheral surface 321d of the main valve peripheral wall 321.
  • the main valve 32 When the main valve 32 is positioned at the second rotational position as described above, that is, in the second case where the first radial hole 305a is closed and the second radial hole 306a is opened, the second diameter Hot water flows through the valve chamber 301a between the directional hole 306a and the axial hole 307a. That is, in the second case, a fluid having a higher temperature than the first case flows between the second radial hole 306a and the axial hole 307a through the valve chamber 301a.
  • the auxiliary valve 34 of the inlet side three-way valve 18 is a rotating valve body that rotates about the valve axis CLv, and is accommodated in the valve chamber 301a.
  • the sub valve 34 is disposed on the opposite side of the main valve 32 with respect to the first radial hole 305a in the valve radial direction DRr. Further, the sub valve 34 is arranged on the opposite side of the main valve 32 in the valve radial direction DRr with respect to the second radial hole 306a.
  • the auxiliary valve 34 is disposed inside the main valve peripheral wall 321, the main valve 32 is provided for each of the first radial hole 305 a and the second radial hole 306 a in the valve radial direction DRr.
  • the main valve peripheral wall portion 321 is disposed on the opposite side.
  • the sub valve 34 is integrated with the drive shaft 36, and the sub valve 34 and the drive shaft 36 constitute a sub valve combined body 38 as a whole.
  • the secondary valve 34 has, for example, a bottomed cylindrical shape in which one side in the valve axial direction DRa is closed.
  • the auxiliary valve 34 has an auxiliary valve peripheral wall 341 and one end 342.
  • the auxiliary valve peripheral wall portion 341 and the one end portion 342 are integrally formed.
  • the auxiliary valve peripheral wall part 341 has a cylindrical shape centered on the valve axis CLv.
  • the auxiliary valve peripheral wall 341 is formed along the main valve peripheral wall 321 on the inner peripheral side of the main valve peripheral wall 321. Accordingly, when the auxiliary valve 34 rotates relative to the main valve 32 around the valve axis CLv, the auxiliary valve peripheral wall part 341 rotates around the valve axis CLv along the main valve peripheral wall part 321.
  • the open end 307b of the axial hole 307a formed in the valve body 30 is disposed on the inner side in the valve radial direction DRr than the auxiliary valve peripheral wall portion 341.
  • the sub-valve 34 has a sub-valve through hole 341a.
  • the auxiliary valve through hole 341a is formed through the auxiliary valve peripheral wall portion 341 of the auxiliary valve 34 in the valve radial direction DRr.
  • the sub-valve through hole 341a has one end 341b outside the sub-valve through hole 341a in the valve radial direction DRr and the other end 341c inside the valve radial direction DRr.
  • the sub-valve through hole 341a may be a circular hole, but in this embodiment, has a hole shape that expands in the valve circumferential direction DRc. Specifically, the sub valve through hole 341a has a portion where the hole width Wh in the valve axial direction DRa becomes narrower toward one side in the valve circumferential direction DRc on the one side in the valve circumferential direction DRc in the sub valve through hole 341a. Have. At the same time, the auxiliary valve through hole 341a has a portion on the other side of the valve circumferential direction DRc in the auxiliary valve through hole 341a where the hole width Wh in the valve axial direction DRa becomes narrower toward the other side in the valve circumferential direction DRc. ing.
  • the sub-valve through hole 341a has a composite shape in which a plurality of holes 341d, 341e, 341f are connected to each other. That is, the sub-valve through-hole 341a is composed of a central hole 341d, one side hole 341e, and the other side hole 341f.
  • the central hole portion 341d has a circular hole shape.
  • the one side hole 341e is formed so as to expand from the center hole 341d to one side in the valve circumferential direction DRc.
  • the hole width Wh in the valve shaft direction DRa of the one side hole 341e is narrower toward one side in the valve circumferential direction DRc.
  • the other side hole 341f is formed so as to extend from the central hole 341d to the other side in the valve circumferential direction DRc.
  • the hole width Wh in the valve axial direction DRa of the other side hole 341f is narrower toward the other side in the valve circumferential direction DRc.
  • one half of the valve circumferential direction DRc and one side hole 341e of the central hole 341d are the hole width of the auxiliary valve through hole 341a in the valve axial direction DRa. This corresponds to a portion where Wh becomes narrower toward one side in the valve circumferential direction DRc. Further, the other half of the valve circumferential direction DRc and the other hole 341f in the central hole portion 341d have a hole width Wh in the valve axial direction DRa of the auxiliary valve through-hole 341a that is closer to the other side in the valve circumferential direction DRc. Corresponds to a narrowed part.
  • FIG. 6 is a development view in which the outer peripheral surface 341g of the sub-valve peripheral wall portion 341 is developed with the valve circumferential direction DRc as the horizontal direction on the paper surface.
  • the other end 321c of the main valve through hole 321a is indicated by a two-dot chain line.
  • the auxiliary valve 34 increases or decreases the area covering the other end 321 c of the main valve through-hole 321 a by rotating around the valve axis CLv.
  • the auxiliary valve 34 increases the area Ah of the auxiliary valve through-hole 341a overlapping the other end 321c of the main valve through-hole 321a with the rotation of the auxiliary valve 34, so that the auxiliary valve peripheral wall portion 341 is connected to the main valve through-hole 321a.
  • the area covering the other end 321c is reduced.
  • the area Ah of the sub-valve through hole 341a that overlaps the other end 321c of the main valve through hole 321a is expressed as the area of the hatched portion.
  • the one end 342 of the sub valve 34 is joined to one end of the sub valve peripheral wall 341 on one side in the valve axial direction DRa with respect to the sub valve peripheral wall 341.
  • the one end portion 342 of the auxiliary valve 34 has a plate shape whose thickness direction is, for example, the valve shaft direction DRa, and the inner space on one side of the valve shaft direction DRa with respect to the inner space of the auxiliary valve peripheral wall portion 341. Covering.
  • the drive shaft 36 is connected to the one end 342 of the auxiliary valve 34.
  • the first seal member 40 and the second seal member 42 are made of an elastic body such as rubber, for example. That is, the first seal member 40 and the second seal member 42 have elasticity.
  • the first seal member 40 and the second seal member 42 are provided so as not to rotate with respect to the valve body 30. That is, the first seal member 40 and the second seal member 42 are also non-rotating parts, like the valve body 30.
  • the first seal member 40 is disposed inside the valve chamber peripheral wall portion 302 at a location where the opening end 305b of the first radial hole 305a is provided. Further, the second seal member 42 is disposed inside the valve chamber peripheral wall portion 302 at a location where the open end 306b of the second radial hole 306a is provided.
  • the first seal member 40 is formed with a first seal hole 40a penetrating the first seal member 40 in the valve diameter direction DRr.
  • the first seal member 40 is arranged such that the center of the first seal hole 40a is aligned with the center of the opening end 305b of the first radial hole 305a. Further, the hole diameter of the first seal hole 40a is slightly larger than the hole diameter of the opening end 305b of the first radial hole 305a.
  • the first radial hole 305a of the valve body 30 is formed by sequentially connecting the first seal hole 40a, the main valve through hole 321a, and the sub valve through hole 341a.
  • the valve body 30 communicates with the axial hole 307a.
  • the first seal member 40 has a first seal portion 401 formed by surrounding the first seal hole 40a in an annular shape.
  • the first seal portion 401 has a first seal hole 40 a formed inside the first seal portion 401.
  • the first seal portion 401 also has elasticity. Further, as can be seen from the arrangement of the first seal hole 40a, the first seal portion 401 surrounds the open end 305b of the first radial hole 305a facing the inside in the valve radial direction DRr over the entire circumference. Is formed.
  • first seal portion 401 is clamped between the valve body 30 and the main valve 32. Specifically, the first seal portion 401 is sandwiched between the valve chamber peripheral wall portion 302 of the valve body 30 and the main valve peripheral wall portion 321 of the main valve 32 in the valve radial direction DRr. With such a configuration, the first seal portion 401 seals around the open end 305b of the first radial hole 305a in the valve chamber 301a.
  • sticker part 401 has the cyclic
  • the first seal surface 401 a is in contact with the outer peripheral surface 321 d of the main valve peripheral wall portion 321, and slides as the main valve 32 rotates.
  • the second seal member 42 has the same configuration as the first seal member 40 except for its arrangement. That is, the second seal member 42 is formed with a second seal hole 42a penetrating the second seal member 42 in the valve diameter direction DRr. The second seal member 42 is disposed such that the center of the second seal hole 42a is aligned with the center of the open end 306b of the second radial hole 306a. The hole diameter of the second seal hole 42a is slightly larger than the hole diameter of the opening end 306b of the second radial hole 306a.
  • the second radial hole 306a of the valve body 30 is connected to the second seal hole 42a, the main valve through hole 321a, and the sub valve through hole 341a in order.
  • the valve body 30 communicates with the axial hole 307a.
  • the second seal member 42 has a second seal portion 421.
  • the second seal portion 421 has a second seal hole 42 a formed inside the second seal portion 421.
  • the second seal portion 421 has elasticity like the first seal portion 401.
  • the second seal portion 421 has an annular shape and is formed so as to surround the open end 306b of the second radial hole 306a facing the inside in the valve radial direction DRr over the entire circumference.
  • the second seal portion 421 is pinched between the valve body 30 and the main valve 32. More specifically, like the first seal portion 401, the second seal portion 421 is also pinched in the valve radial direction DRr between the valve chamber peripheral wall portion 302 of the valve body 30 and the main valve peripheral wall portion 321 of the main valve 32. Has been. With such a configuration, the second seal portion 421 seals around the open end 306b of the second radial hole 306a in the valve chamber 301a.
  • the second seal portion 421 has an annular second seal surface 421a as an end portion provided inside the valve radial direction DRr.
  • the second seal surface 421a is in contact with the outer peripheral surface 321d of the main valve peripheral wall portion 321 and slides as the main valve 32 rotates.
  • the diameter of the first seal hole 40a is slightly larger than the diameter of the one end 321b of the main valve through-hole 321a. Therefore, when the main valve 32 is positioned at the first rotation position, one end 321b of the main valve through hole 321a is a range obtained by projecting the first seal hole 40a in the axial direction of the first seal hole 40a. Fits within. That is, the peripheral edge of one end 321b of the main valve through hole 321a does not intersect the first seal surface 401a that forms the peripheral edge of the first seal hole 40a on the main valve 32 side, and one end 321b of the main valve through hole 321a. Fits on the inner peripheral side of the first seal surface 401a.
  • the diameter of the second seal hole 42a is slightly larger than the diameter of the one end 321b of the main valve through hole 321a. Therefore, when the main valve 32 is positioned at the second rotation position, one end 321b of the main valve through hole 321a is obtained by projecting the second seal hole 42a in the axial direction of the second seal hole 42a. Fits within. That is, the peripheral edge of one end 321b of the main valve through hole 321a does not intersect the second seal surface 421a that forms the peripheral edge of the second seal hole 42a on the main valve 32 side, and one end 321b of the main valve through hole 321a. Fits on the inner peripheral side of the second seal surface 421a.
  • the first seal member 40 and the second seal member 42 are indicated by a two-dot chain line.
  • the first seal member 40 is displayed so as to overlap the outer peripheral surface 321d of the main valve peripheral wall 321 when the main valve 32 is in the first rotation position.
  • the second seal member 42 is displayed so as to overlap the outer peripheral surface 321d of the main valve peripheral wall 321 when the main valve 32 is in the second rotational position.
  • the main valve 32 is rotationally driven by a drive device 44 indirectly via a sub valve 34.
  • the main valve 32 is a driven valve that rotates along with the sub valve 34 driven by the drive device 44.
  • the inlet side three-way valve 18 has a rotation connecting / disconnecting portion 46 as a link mechanism for connecting / disconnecting torque transmission between the main valve 32 and the sub-valve 34. I have.
  • the rotation connecting / disconnecting portion 46 rotates the main valve 32 together with the sub valve 34 when the sub valve 34 is rotated by a predetermined first rotation operation.
  • the rotation connecting / disconnecting portion 46 allows the sub valve 34 to rotate relative to the main valve 32 when the sub valve 34 is rotated by a predetermined second rotation operation.
  • the first rotation operation and the second rotation operation are both mechanical rotation operations of the auxiliary valve 34 determined by the structure of the rotation connecting / disconnecting portion 46, and the second rotation operation is a rotation operation different from the first rotation operation. It is.
  • the rotation connecting / disconnecting portion 46 includes a groove forming portion 461 included in the main valve 32 and a protrusion 462 included in the auxiliary valve 34. Yes.
  • the groove forming portion 461 forms a groove 461a extending in the valve circumferential direction DRc.
  • the groove forming portion 461 is included in the end portion 322 in detail in the main valve 32. Further, the groove 461a of the groove forming portion 461 extends, for example, in a C shape, and is open to the other side in the valve axial direction DRa, that is, the sub valve 34 side.
  • the groove 461a has one end 461b and the other end 461c in the valve circumferential direction DRc. That is, the groove forming portion 461 has an end forming portion 461d that forms one end 461b of the groove 461a and an other end forming portion 461e that forms the other end 461c of the groove 461a.
  • One end 461b of the groove 461a is provided on one side of the groove 461a in the valve circumferential direction DRc
  • the other end 461c of the groove 461a is provided on the other side of the groove 461a in the valve circumferential direction DRc.
  • the protrusion 462 of the rotation connecting / disconnecting portion 46 is formed so as to protrude to one side in the valve axial direction DRa at one end 342 of the sub valve 34.
  • the protrusion 462 is inserted into the groove 461 a of the rotation connecting / disconnecting portion 46.
  • the protrusion 462 has one end 462a on one side in the valve circumferential direction DRc, and the other end 462b on the other side in the valve circumferential direction DRc. Accordingly, one end 462a of the projection 462 abuts on the one end forming portion 461d when the sub valve 34 is rotated to one side in the valve circumferential direction DRc. Further, the other end 462b of the protrusion 462 abuts against the other end forming portion 461e when the sub valve 34 is rotated to the other side in the valve circumferential direction DRc.
  • the rotation connecting / disconnecting portion 46 has such a groove forming portion 461 and a protrusion 462, when the auxiliary valve 34 is rotated by the driving device 44 while pressing the protrusion 462 against the one end forming portion 461d.
  • the main valve 32 is rotated together with the sub valve 34 to one side in the valve circumferential direction DRc.
  • the rotation connecting / disconnecting portion 46 moves the main valve 32 to the other side in the valve circumferential direction DRc.
  • the auxiliary valve 34 is rotated together. Therefore, the rotation of the auxiliary valve 34 while the protrusion 462 is pressed against the one end forming portion 461d or the other end forming portion 461e corresponds to the first rotating operation.
  • the rotation connecting / disconnecting portion 46 is configured such that when the auxiliary valve 34 is rotated with the protrusion 462 away from the one end forming portion 461d and the other end forming portion 461e within the groove 461a, the auxiliary valve 34 is in relation to the main valve 32. Allow relative rotation. In short, in that case, the protrusion 462 only moves in the groove circumferential direction DRc in the groove 461a. For example, in the state shown in FIG. 8, the sub valve 34 is allowed to rotate to the other side in the valve circumferential direction DRc with respect to the main valve 32 as indicated by an arrow AR1. Accordingly, the fact that the protrusion 462 moves away from the one end forming portion 461d and the other end forming portion 461e within the groove 461a and the auxiliary valve 34 is rotated corresponds to the second rotating operation.
  • the rotation angle AGp (see FIG. 8) of the auxiliary valve 34 that allows the auxiliary valve 34 to rotate relative to the main valve 32 is the auxiliary valve through-hole about the valve axis CLv. 341a is larger than the angle AGh (see FIG. 3) that extends in the valve circumferential direction DRc.
  • the rotation angle AGp of the sub-valve 34 that allows the sub-valve 34 to rotate relative to the main valve 32 is, in other words, from the state in which the protrusion 462 contacts the one end forming portion 461d. Is an angle AGp that rotates around the valve axis CLv until it comes into contact with.
  • the three-way valve 90 of the comparative example compared with this embodiment is demonstrated.
  • the same or equivalent parts as those of the inlet-side three-way valve 18 of the present embodiment will be described by omitting or simplifying them.
  • the three-way valve 90 of the comparative example shown in FIG. 10 functions as a switching flow control valve, similarly to the inlet-side three-way valve 18 of the present embodiment.
  • the three-way valve 90 of this comparative example includes a main valve 92, but does not include the auxiliary valve 34, unlike the inlet-side three-way valve 18 of the present embodiment.
  • the drive shaft 36 is connected to the main valve 92. Therefore, the main valve 92 is rotated around the valve axis CLv as indicated by an arrow AR2 in FIG. And the main valve through-hole 921a formed in the main valve 92 is not a circular hole but has a hole shape extending in the valve circumferential direction DRc as shown in FIG. Except for these points, the main valve 92 included in the three-way valve 90 of the comparative example is the same as the main valve 32 included in the inlet-side three-way valve 18 of the present embodiment.
  • the first seal member 40 and the second seal member 42 are the same as those of the inlet-side three-way valve 18 of this embodiment as shown in FIG. Further, since the first seal member 40 and the second seal member 42 have the same configuration, they are shown in FIG. 12, which is a common view.
  • the main valve through hole 921a overlaps the second seal surface 421a when the flow rate is adjusted with respect to the second radial hole 306a, that is, when warm water is passed. Therefore, the second seal member 42 expands into the main valve through hole 921a.
  • the B1 portion of the second seal member 42 is the expanded portion.
  • a step remains on the second seal surface 421a, and the sealing performance of the second seal surface 421a with respect to the main valve 92 is deteriorated.
  • the sealing performance of the second seal surface 421a is deteriorated in such a manner, for example, cold water passes between the second seal surface 421a and the main valve 92 as indicated by an arrow FLes and from the valve chamber 301a to the second radial hole 306a. It will leak out.
  • the steps of the seal surfaces 401a and 421a that cause fluid leakage as described above are likely to occur significantly when there are temperature differences in the plurality of fluids flowing through the three-way valve 90. Though conceivable, it may occur even if there is no temperature difference in the fluid flowing through the three-way valve 90.
  • the sub-valve 34 that is not in direct contact with the seal portions 401 and 421 is connected to the main valve through hole 321a.
  • the area covering the other end 321c of the valve is increased or decreased by rotating around the valve axis CLv. Therefore, the inlet side three-way valve 18 can adjust the flow rate of the fluid passing through the inlet side three-way valve 18 by the rotation of the sub valve 34.
  • the main valve 32 of the inlet side three-way valve 18 does not need to adjust the flow rate of the fluid, and it is sufficient to selectively open and close the first radial hole 305a and the second radial hole 306a. That is, when the flow rate of the fluid is adjusted, the state in which the peripheral edge of the one end 321b of the main valve through hole 321a intersects the seal surfaces 401a and 421a of the seal portions 401 and 421 is not continued. As a result, it is difficult for steps to remain on the seal surfaces 401a and 421a of the seal portions 401 and 421, and the sealability of the seal portions 401 and 421 can be kept good. In short, it is possible to adjust the flow rate of the fluid so as not to deteriorate the sealing performance of the seal portions 401 and 421.
  • the main valve peripheral wall portion 321 surrounds the auxiliary valve 34 around the valve axis CLv over the entire periphery thereof.
  • the main valve through hole 321a is formed so as to penetrate the main valve peripheral wall portion 321 in the valve radial direction DRr. Therefore, since the auxiliary valve 34 is disposed inside the main valve peripheral wall 321 in the valve radial direction DRr, it is easy to suppress the volume occupied by the entire main valve 32 and the auxiliary valve 34.
  • the opening end 307 b of the axial hole 307 a formed in the valve body 30 is disposed on the inner side in the valve radial direction DRr than the auxiliary valve peripheral wall portion 341. Yes. That is, since the main valve peripheral wall portion 321 is disposed outside the sub valve peripheral wall portion 341 in the valve radial direction DRr, the opening end 307b of the axial hole 307a is positioned in the valve radial direction DRr rather than the main valve peripheral wall portion 321. Is arranged inside. Therefore, it is possible to maintain the state in which the axial hole 307a is opened to the valve chamber 301a regardless of the rotational position of the main valve 32.
  • the auxiliary valve through-hole 341 a has a portion where the hole width Wh in the valve axial direction DRa becomes narrower toward one side in the valve circumferential direction DRc.
  • the through hole 341a has one side in the valve circumferential direction DRc.
  • the auxiliary valve 34 increases the area Ah of the auxiliary valve through hole 341a that overlaps the other end 321c of the main valve through hole 321a with the rotation of the auxiliary valve 34, so that the auxiliary valve peripheral wall 341 passes through the main valve.
  • the area covering the other end 321c of the hole 321a is reduced. Therefore, by defining the shape of the sub valve through hole 341a, it is possible to easily determine the relationship between the rotation of the sub valve 34 and the change in the opening of the main valve through hole 321a.
  • the rotation connecting / disconnecting portion 46 allows the main valve 32 to be connected to the auxiliary valve 34 when the auxiliary valve 34 is rotated by a predetermined first rotation operation. Rotate with valve 34.
  • the rotation connecting / disconnecting portion 46 allows the sub valve 34 to rotate relative to the main valve 32 when the sub valve 34 is rotated by a predetermined second rotation operation. Therefore, as long as the drive device 44 is connected to the sub valve 34 as in the present embodiment, the main valve 32 can be rotated via the rotation connecting / disconnecting portion 46 without being connected to the main valve 32.
  • the drive device 44 can be configured simply.
  • the driving device 44 positions the main valve 32 in an arbitrary rotation position by rotating the sub valve 34 in the first rotation operation, and then rotates the sub valve 34 in the second rotation operation to return to the original rotation position. If it returns, it is possible to position the main valve 32 at an arbitrary rotational position without changing the rotational position of the auxiliary valve 34.
  • the drive device 44 can position the main valve 32 at each of the first rotation position and the second rotation position by rotating the sub valve 34 in the first rotation operation. Further, the driving device 44 can adjust the opening degree of the main valve through-hole 321a, that is, the fluid flow rate without rotating the main valve 32 by rotating the sub valve 34 by the second rotation operation.
  • the rotation connecting / disconnecting portion 46 includes a groove forming portion 461 included in the main valve 32 and a protrusion 462 included in the sub valve 34. ing. Therefore, since it is not necessary to provide the rotation connecting / disconnecting portion 46 separately from the main valve 32 and the sub valve 34, it is easy to reduce the size of the inlet side three-way valve 18.
  • the auxiliary valve 34 is a drive valve that is driven by the drive device 44 among the plurality of rotary valves 32, 34 included in the inlet side three-way valve 18. Therefore, the drive device 44 can rotate the auxiliary valve 34 without the rotation connecting / disconnecting portion 46, thereby adjusting the flow rate of the fluid. Thereby, for example, fine adjustment of the flow rate can be performed with high accuracy when adjusting the flow rate of the fluid.
  • the sealing performance of the seal portions 401 and 421 is kept good. It is possible.
  • the internal sealing performance of the inlet side three-way valve 18 is an important function that greatly affects the fuel consumption of an automobile in which the integrated heat management system 10 is mounted.
  • the inlet side three-way valve 18 operates frequently for the purpose of adjusting the flow rate of the fluid.
  • the auxiliary valve 34 that rotates to adjust the flow rate does not slide directly with the seal portions 401 and 421, wear of the seal portions 401 and 421 can be suppressed. That is, the durability of the inlet side three-way valve 18 can be improved.
  • the main valve 32 is responsible for opening and closing the radial holes 305a and 306a. Therefore, for example, as compared to the case where the radial holes 305a, 306a are opened and closed and the flow rate is adjusted with one valve, such as the three-way valve 90 of the comparative example, the auxiliary valve through hole is centered on the valve axis CLv. It is easy to ensure a large angle AGh at which 341a extends in the valve circumferential direction DRc. Therefore, it is possible to easily improve the accuracy of the fluid flow rate adjustment by the rotation of the auxiliary valve 34.
  • the inlet side three-way valve 18 of the present embodiment is a so-called thrust valve.
  • the inlet side three-way valve 18 of the present embodiment differs from the inlet side three-way valve 18 of the first embodiment mainly in this respect.
  • the valve main body 30 is indicated by a two-dot chain line in order to display the difference of the present embodiment with respect to the first embodiment in an easily understandable manner, and the first seal member 40, the second seal member 42, and the drive device 44. And the rotation connecting / disconnecting portion 46 are omitted.
  • the main valve 32 and the subvalve 34 are accommodated in the valve chamber 301a.
  • the main valve 32 has a disc shape centered on the valve axis CLv, and rotates around the valve axis CLv as indicated by an arrow AR3.
  • the main valve 32 selectively opens and closes the first opening / closing circulation hole 301b and the second opening / closing circulation hole 301c by rotating around the valve axis CLv.
  • the auxiliary valve 34 has a disc shape centered on the valve axis CLv, and rotates around the valve axis CLv as indicated by an arrow AR3.
  • the sub-valve through hole 341a of the present embodiment has a hole shape extending in the valve circumferential direction DRc, but is different from the first embodiment in that it penetrates in the valve axial direction DRa. Is different.
  • the subvalve 34 of this embodiment is arrange
  • the main valve 32 when the main valve 32 is positioned at the rotational position where the main valve through hole 321a is arranged in series in the valve axial direction DRa with respect to the first opening / closing flow hole 301b, that is, the first rotational position, One end 321b of 321a is opposed to the opening end 301e of the first opening / closing circulation hole 301b. Thereby, the main valve 32 opens the opening end 301e of the first opening / closing circulation hole 301b. At the same time, the main valve 32 closes the open end 301f of the second opening / closing flow hole 301c.
  • the main valve 32 When the main valve 32 is positioned at the rotational position where the main valve through-hole 321a is arranged in series in the valve axial direction DRa with respect to the second opening / closing flow hole 301c, that is, the second rotational position, One end 321b of 321a is opposed to the opening end 301f of the second opening / closing circulation hole 301c. Thereby, the main valve 32 opens the opening end 301f of the second opening / closing flow hole 301c. At the same time, the main valve 32 closes the opening end 301e of the first opening / closing circulation hole 301b.
  • the inlet side three-way valve 18 of this embodiment includes two seal members 50 and 52 provided between the main valve 32 and the sub valve 34. This embodiment is different from the first embodiment in this point.
  • the two seal members 50 and 52 are both made of an elastic body such as rubber.
  • the two seal members 50 and 52 are, for example, O-rings, and are formed in an annular shape around the valve axis CLv.
  • the two seal members 50 and 52 are both disposed between the main valve peripheral wall portion 321 and the sub valve peripheral wall portion 341.
  • the two seal members 50 and 52 are compressed and elastically deformed in the valve radial direction DRr by the main valve peripheral wall portion 321 and the sub valve peripheral wall portion 341.
  • the one-side seal member 50 that is one of the two seal members 50 and 52 is disposed on one side in the valve axial direction DRa with respect to both the main valve through-hole 321a and the sub-valve through-hole 341a.
  • the other seal member 52 which is the other of the two seal members 50, 52, is disposed on the other side in the valve axial direction DRa with respect to both the main valve through hole 321a and the sub valve through hole 341a. Has been.
  • the two seal members 50 and 52 are thus provided, when the fluid flows from the main valve through hole 321a to the sub valve through hole 341a as indicated by an arrow AR4, the main valve peripheral wall 321 and the sub valve peripheral wall 341 are provided.
  • the fluid flow passing between is blocked. That is, the fluid flow flowing as indicated by the arrow AR5 is blocked.
  • this embodiment is a modification based on 1st Embodiment, it is also possible to combine this embodiment with the above-mentioned 2nd Embodiment.
  • the switching flow regulating valve shown in the first embodiment described above is the inlet side three-way valve 18, the switching flow regulating valve is a three-way valve having a total of three connection ports. There is no limit to the number.
  • the switching flow regulating valve may be a two-way valve having two connection ports. The same applies to the second embodiment and the third embodiment.
  • the switching flow regulating valve opens and closes the flow path through which the fluid flows and adjusts the flow rate of the fluid.
  • the switching flow regulating valve is a two-way valve, for example, the axial hole 307a in FIG. 2 is provided, but the number of the radial holes 305a and 306a is one.
  • the inlet-side three-way valve 18 shown in FIG. 1 has a flow rate switching function in addition to a flow-path switching function for switching the flow path through which the fluid flows. Is provided with the flow path switching function but not the flow rate adjustment function.
  • this is merely an example, and conversely, although the inlet side three-way valve 18 has a flow path switching function, it does not have a flow rate adjustment function, and the outlet side three-way valve 19 has a flow path switching function and a flow rate adjustment function. It does not matter if both are provided.
  • one of the inlet side three-way valve 18 and the outlet side three-way valve 19 only needs to have a flow rate adjusting function.
  • the sub-valve through hole 341a is composed of the central hole portion 341d, the one side hole portion 341e, and the other side hole portion 341f, but this is an example.
  • the sub-valve through hole 341a may not have any of those holes 341d, 341e, and 341f.
  • the auxiliary valve through hole 341a has a portion where the hole width Wh in the valve axial direction DRa becomes narrower toward one side in the valve circumferential direction DRc on at least one side in the valve circumferential direction DRc in the auxiliary valve through hole 341a. It is preferable.
  • the auxiliary valve through hole 341a has a portion where the hole width Wh in the valve axial direction DRa is narrower toward the other side in the valve circumferential direction DRc on at least the other side in the valve circumferential direction DRc in the auxiliary valve through hole 341a. It is preferable.
  • the sub valve through hole 341a may have any hole shape as long as the hole width Wh in the valve axial direction DRa changes according to the position in the valve circumferential direction DRc.
  • the sub-valve through hole 341a may have a triangular hole shape in which the hole width Wh in the valve axial direction DRa becomes narrower toward one side in the valve circumferential direction DRc. If the sub valve through hole 341a has such a triangular hole shape, the sub valve through hole 341a has a hole shape in which the hole width Wh in the valve axial direction DRa becomes narrower toward one side in the valve circumferential direction DRc. 341a is provided over the entire valve circumferential direction DRc.
  • the auxiliary valve 34 is formed with the auxiliary valve through hole 341a, but this is an example. That is, if the area where the sub valve 34 covers the other end 321c of the main valve through hole 321a is increased or decreased according to the rotation of the sub valve 34, it is not necessary to provide the sub valve through hole 341a in the sub valve 34.
  • the sub-valve 34 covers at least a part of the other end 321c of the main valve through-hole 321a as the sub-valve 34 rotates, but other than the main valve through-hole 321a.
  • the entire end 321c may or may not be covered.
  • the sub-valve 34 removes all of the other end 321c of the main valve through-hole 321a from the sub-valve peripheral wall. It will be covered with a part 341.
  • the opening end 307b of the axial hole 307a formed in the valve body 30 is disposed on the inner side of the auxiliary valve peripheral wall portion 341 in the valve radial direction DRr.
  • the entire opening end 307b of the axial hole 307a may not be disposed on the inner side of the auxiliary valve peripheral wall portion 341 but only on the inner side of the main valve peripheral wall portion 321.
  • the main valve 32 has the groove forming portion 461 of the rotation connecting / disconnecting portion 46
  • the sub valve 34 has the projection 462 of the rotation connecting / disconnecting portion 46.
  • the main valve 32 may have the protrusion 462 and the sub valve 34 may have the groove forming portion 461.
  • the inlet-side three-way valve 18 includes the rotation connecting / disconnecting portion 46, but the rotation connecting / disconnecting portion 46 is not essential.
  • the rotation connecting / disconnecting portion 46 may not be provided.
  • the sub valve 34 is a drive valve that is driven by the drive device 44, and the main valve 32 is a driven valve that rotates according to the drive valve.
  • the main valve 32 may be a drive valve and the sub valve 34 may be a driven valve.
  • the drive device 44 can rotate the main valve 32 between the first rotation position and the second rotation position by rotating the main valve 32 in the first rotation operation.
  • the drive device 44 When the flow rate of the fluid is adjusted in a state where the main valve 32 is positioned at the first rotation position, for example, the drive device 44 first rotates the main valve 32 by the first rotation operation to thereby rotate the sub valve. 34 is positioned at an arbitrary rotational position. Next, the drive device 44 rotates the main valve 32 in the second rotation operation to return to the first rotation position. As a result, the sub valve 34 can be positioned at an arbitrary rotational position, so that the flow rate of the fluid can be adjusted with the rotational position of the main valve 32 as the first rotational position. This is the same even if the rotation position of the main valve 32 is replaced from the first rotation position to the second rotation position.
  • the axial hole 307a is open to the valve chamber 301a at the other end 304 of the valve chamber forming portion 301. There is no limitation on the location where the hole 307a is provided.
  • valve body 30, the first seal member 40, and the second seal member 42 are each configured as separate parts, but may be an integral component.
  • the diameter of the outer peripheral surface 321d of the main valve peripheral wall portion 321 is uniform at any position in the valve axial direction DRa.
  • the outer peripheral surface 321d is shown in FIG. As shown, it may have a spherical shape.
  • the first seal portion 401 and the second seal portion 421 are shaped to match the spherical outer peripheral surface 321d.
  • the rotation connecting / disconnecting portion 46 includes a groove forming portion 461 included in the main valve 32 and a protrusion 462 included in the sub valve 34.
  • the rotation connecting / disconnecting portion 46 may be configured by a one-way clutch provided between the main valve 32 and the sub valve 34 instead of the groove forming portion 461 and the protrusion 462.
  • the drive device 44 rotates the sub-valve 34 in the engaging direction for engaging the one-way clutch, thereby rotating the sub-valve 34 in the rotation direction.
  • the main valve 32 can be rotated together with the sub valve 34 in the same direction. Thereby, the inlet-side three-way valve 18 can switch the flow path.
  • the driving device 44 rotates the main valve 32 by rotating the sub valve 34 in the releasing direction for releasing the one-way clutch (that is, the rotating direction opposite to the engaging direction).
  • the auxiliary valve 34 can be rotated without any trouble.
  • the inlet side three-way valve 18 can adjust the flow rate of the fluid.
  • the rotation connecting / disconnecting portion 46 is constituted by a one-way clutch
  • the rotation of the auxiliary valve 34 in the engagement direction of the one-way clutch corresponds to the first rotation operation.
  • the rotation of the sub valve 34 in the one-way clutch release direction corresponds to the second rotation operation.
  • the rotation connecting / disconnecting portion 46 may be formed of a belt-like belt-like member wound around the drive shaft 36 in a spiral shape instead of the groove forming portion 461 and the protrusion 462.
  • the rotation connecting / disconnecting portion 46 is formed of a strip-like member, the strip-like member has flexibility.
  • the belt-shaped member has one end on the spiral inner peripheral side and the other end on the spiral outer peripheral side. Further, one end of the belt-like member is fixed to a part of the outer peripheral surface of the drive shaft 36, and the other end of the belt-like member is fixed to the main valve 32.
  • the drive device 44 connected to the drive shaft 36 rotates the drive shaft 36 and the sub valve 34 in the direction in which the belt member is wound, thereby generating tension in the belt member, and the rotation direction of the sub valve 34.
  • the main valve 32 can be rotated together with the sub valve 34 in the same direction. Thereby, the inlet-side three-way valve 18 can switch the flow path.
  • the drive device 44 rotates the sub-valve 34 without rotating the main valve 32 by rotating the drive shaft 36 and the sub-valve 34 in the direction of loosening the winding of the belt-shaped member. Can do.
  • the inlet side three-way valve 18 can adjust the flow rate of the fluid.
  • the sub-valve 34 is rotated in a state where the band-shaped member is already wound and tightened in the direction in which the band-shaped member is wound. Applicable. And it is said 2nd rotation operation that the subvalve 34 is rotated in the loose state where the belt-shaped member is not tightened.
  • the main valve opposes one end of the main valve through hole to the open end of the opening / closing flow hole as the main valve rotates.
  • the opening and closing flow hole is opened.
  • the sub valve covers at least a part of the other end of the main valve through hole as the sub valve rotates, and increases or decreases by rotating an area covering the other end of the main valve through hole around a single axis. To do.
  • the main valve has a main valve peripheral wall portion surrounding the auxiliary valve around the uniaxial center, and the main valve through-hole has a diameter of the uniaxial center of the main valve peripheral wall portion. It is formed to penetrate in the direction. Therefore, since the auxiliary valve is disposed inside the main valve peripheral wall in the radial direction, it is easy to suppress the volume occupied by the entire main valve and auxiliary valve.
  • the opening end of the opening circulation hole is arranged inside the main valve peripheral wall portion in the radial direction. Therefore, it is possible to maintain the state where the opening circulation hole is opened to the valve chamber regardless of the rotation position of the main valve.
  • the auxiliary valve through-hole has a portion in which the axial hole width of the uniaxial center becomes narrower toward one side in the circumferential direction of the uniaxial center in the auxiliary valve through-hole. At least on one side in the circumferential direction. Then, the auxiliary valve increases the area of the auxiliary valve through hole that overlaps the other end of the main valve through hole with the rotation of the auxiliary valve, thereby reducing the area of the auxiliary valve peripheral wall covering the other end of the main valve through hole. . Therefore, by determining the shape of the sub valve through hole, it is possible to easily determine the relationship between the rotation of the sub valve and the change in the opening of the main valve through hole.
  • the rotation connecting / disconnecting portion is configured such that when the drive valve that is one of the main valve and the sub valve is rotated by a predetermined first rotation operation, the main valve and the sub valve The driven valve, which is the other of these, is rotated together with the drive valve.
  • the rotation connecting / disconnecting portion allows the drive valve to rotate relative to the driven valve when the drive valve is rotated by a predetermined second rotation operation different from the first rotation operation. . Therefore, if the drive device is connected to the drive valve, it is not necessary to be connected to the driven valve, so that the drive device can be configured simply.
  • the drive device rotates the drive valve in the first rotation operation and positions the driven valve at an arbitrary rotation position
  • the drive device rotates the drive valve in the second rotation operation and returns to the original rotation position. It is possible to position the driven valve at an arbitrary rotational position without changing the rotational position of the valve.
  • one of the drive valve and the driven valve has a groove forming portion that forms a groove extending in the circumferential direction of the uniaxial center, and the drive valve and the driven valve
  • the other valve has a protrusion inserted into its groove.
  • the rotation connection / disconnection part is comprised from the groove
  • the drive device can rotate the sub-valve without going through the rotation connecting / disconnecting portion, thereby adjusting the flow rate of the fluid. . Therefore, fine adjustment of the flow rate can be performed with high accuracy when adjusting the flow rate of the fluid.
  • the switching flow control valve is mounted on the automobile.
  • the valve chamber is provided between the first opening / closing circulation hole and the opening circulation hole.
  • the fluid flows through.
  • a fluid having a higher temperature than the first case causes the second opening / closing circulation hole, the opening circulation hole, Circulates through the valve chamber. Therefore, it is possible to keep the sealability of the seal part favorable in an environment where the first seal part and the second seal part repeat expansion and hardening according to the temperature of the fluid.

Abstract

A valve chamber (301a), and opening/closing flow holes (301b, 301c, 305a, 306a) and open flow holes (301d, 307a) which open into the valve chamber and through which a fluid flows are formed in a valve body (30) of a switchable flow control valve. A primary valve (32) opens and closes the opening/closing flow holes by rotating about a single axial center. A secondary valve (34) is disposed opposite to the opening/closing flow holes, with the primary valve interposed therebetween, and rotates about the single axial center. Seals (401, 421) are compressed between the valve body and the primary valve, and seal the peripheries of the open ends of the opening/closing flow holes in the valve chamber. As the primary valve rotates, the primary valve causes a first end (321b) of a primary valve through-hole (321a) formed in the primary valve to face the open ends of the opening/closing flow holes so as to open the opening/closing flow holes. The secondary valve at least partially covers the other end (321c) of the primary valve through-hole as the secondary valve rotates, and increases or decreases the area covering the other end of the primary valve through-hole by rotating about the single axial center.

Description

切替流調弁Switching flow control 関連出願への相互参照Cross-reference to related applications
 本出願は、2016年6月15日に出願された日本特許出願番号2016-118527号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2016-118527 filed on June 15, 2016, the description of which is incorporated herein by reference.
 本開示は、流体が流れる流路の切替えまたは開閉を行うと共に流体の流量を調整する切替流調弁に関するものである。 The present disclosure relates to a switching flow control valve that switches, opens and closes a flow path through which a fluid flows and adjusts the flow rate of the fluid.
 特許文献1には流路切替弁が記載されている。その特許文献1の流路切替弁は、2つの流出口を択一的に流入口へ連通させる回転式の弁機構を備えている。その特許文献1の流路切替弁は、弁本体とシール部材と弁体とモータ等を含む駆動装置とを備えている。その弁本体には、弁室と流入口と2つの流出口とが形成されており、その流入口および2つの流出口はそれぞれ弁室に開口している。 Patent Document 1 describes a flow path switching valve. The flow path switching valve of Patent Document 1 includes a rotary valve mechanism that selectively connects two outflow ports to the inflow port. The flow path switching valve of Patent Document 1 includes a valve main body, a seal member, a valve body, and a drive device including a motor and the like. A valve chamber, an inlet, and two outlets are formed in the valve body, and the inlet and the two outlets open to the valve chamber, respectively.
 シール部材は弾性材料で構成され、弁室内に配置されている。シール部材は、複数の貫通孔が周方向に並んで形成された円筒体と、外側リブと、内側リブとを有している。シール部材の外側リブは円筒体の貫通孔の周囲に沿ってその円筒体の外周面から外側へ向かって突設され、内側リブはその貫通孔の周囲に沿って円筒体の内周面から内側へ向かって突設されている。 The seal member is made of an elastic material and is disposed in the valve chamber. The seal member has a cylindrical body in which a plurality of through holes are formed in the circumferential direction, an outer rib, and an inner rib. The outer rib of the seal member protrudes outward from the outer peripheral surface of the cylindrical body along the periphery of the through hole of the cylindrical body, and the inner rib extends from the inner peripheral surface of the cylindrical body along the periphery of the through hole. Projected toward
 弁体は、駆動装置に連結される弁軸と、弁室内においてシール部材の内側に収容される弁体部とを有している。また、シール部材の内側リブは弁体部の外周面に当接し、シール部材の外側リブは弁本体の弁室を形成する内周面に当接する。更に、そのシール部材の内側リブおよび外側リブは、弁室において流出口周りをシールするシール部としての役割を果たす。そのために、そのシール部は、弁本体の内周面と弁体部の外周面との間で常時圧縮され弾性変形させられている。なお、そのシール部は、2つの流出口の各々に対して設けられている。 The valve body has a valve shaft coupled to the driving device and a valve body portion accommodated inside the seal member in the valve chamber. Further, the inner rib of the seal member contacts the outer peripheral surface of the valve body, and the outer rib of the seal member contacts the inner peripheral surface forming the valve chamber of the valve body. Further, the inner rib and the outer rib of the seal member serve as a seal portion that seals around the outflow port in the valve chamber. Therefore, the seal portion is constantly compressed and elastically deformed between the inner peripheral surface of the valve body and the outer peripheral surface of the valve body portion. The seal portion is provided for each of the two outlets.
 そして、特許文献1の流路切替弁は、駆動装置で弁軸を介し弁体部を回転させることによって、弁室に対し弁本体の2つの流出口を択一的に開放させる。このとき、弁体部は、その弁体部の回転に伴って、シール部材の内側リブに対し回転摺動する。 And the flow-path switching valve of patent document 1 opens the two outflow ports of a valve main body alternatively with respect to a valve chamber by rotating a valve body part via a valve shaft with a drive device. At this time, the valve body portion rotates and slides with respect to the inner rib of the seal member as the valve body portion rotates.
特開2015-34560号公報Japanese Patent Laid-Open No. 2015-34560
 上記の特許文献1の流路切替弁は、2つの流出口が弁室に対し択一的に開放させられるものであるが、流入口から弁室を介して一の流出口へ流出する流体の流量を調整する切替流調弁としても機能し得る。具体的には、特許文献1の流路切替弁では、弁体部の側部の連通孔を一の流出口に部分的に重なり合わせることで一の流出口へ流出する流体の流量を調整することができる。 The flow path switching valve of the above-mentioned patent document 1 has two outlets that are selectively opened with respect to the valve chamber, but the fluid flowing out from the inlet to the one outlet through the valve chamber It can also function as a switching flow control valve that adjusts the flow rate. Specifically, in the flow path switching valve of Patent Document 1, the flow rate of the fluid flowing out to the one outlet is adjusted by partially overlapping the communication hole on the side of the valve body part with the one outlet. be able to.
 このように流量調整が行われる場合、特許文献1の流路切替弁では、詳細には、上記一の流出口に対して配置されたシール部の貫通孔に重なり合う弁体部の連通孔の面積によって流体の流量が定まる。 When the flow rate adjustment is performed in this way, in the flow path switching valve of Patent Document 1, in detail, the area of the communication hole of the valve body portion that overlaps the through hole of the seal portion arranged with respect to the one outlet port. Determines the flow rate of the fluid.
 そのため、そのように弁体部の連通孔とシール部の貫通孔とが部分的に重なる流量調整時には、弁体部は、弁体部の連通孔の周縁がシール部の内側リブに対して交差したシール部交差状態でそのシール部を押圧する。更に、流入口から上記一の流出口へ流出する流体の流量が維持される場合には、そのシール部は、シール部交差状態のまま弁体部に押圧され続ける。 Therefore, when adjusting the flow rate so that the communication hole of the valve body part and the through hole of the seal part partially overlap, the valve body part has the periphery of the communication hole of the valve body part intersecting the inner rib of the seal part. The seal part is pressed in a state where the seal part intersects. Furthermore, when the flow rate of the fluid flowing out from the inflow port to the one outflow port is maintained, the seal portion continues to be pressed against the valve body portion while being in the crossed state of the seal portion.
 その結果として、シール部のうちの弁体部側のシール面(すなわち、内側リブで構成されたシール面)に部分的な段差が残ったままになることがある。そして、そのようなシール面の段差は、シール部のシール性を悪化させる原因になる。発明者の詳細な検討の結果、以上のようなことが見出された。 As a result, a partial step may remain on the seal surface on the valve body side of the seal portion (that is, the seal surface configured by the inner rib). And the level | step difference of such a seal surface becomes a cause which worsens the sealing performance of a seal part. As a result of detailed studies by the inventor, the above has been found.
 本開示は上記点に鑑みて、シール部のシール性を悪化させないように流体の流量調整を行うことが可能な切替流調弁を提供することを目的とする。 In view of the above, it is an object of the present disclosure to provide a switching flow control valve capable of adjusting the flow rate of a fluid so as not to deteriorate the sealing performance of the seal portion.
 上記目的を達成するため、本開示の1つの観点による切替流調弁は、
 流体が流れる流路の切替えまたは開閉を行うと共に流体の流量を調整する切替流調弁であって、
 弁室とその弁室に対して開口し流体が流通する開閉流通孔および開口流通孔とが形成された弁本体と、
 弁室内に収容されると共に、一軸心まわりに回転することにより開閉流通孔を開閉する主弁と、
 弁室内に収容され、開閉流通孔に対し主弁を挟んだ反対側に配置され、一軸心まわりに回転する副弁と、
 弾力性を有し、弁本体と主弁との間で挟圧され、開閉流通孔の弁室側の開口端を取り巻くように形成され、弁室において開閉流通孔の開口端周りをシールするシール部とを備え、
 主弁には主弁貫通孔が形成され、
 その主弁は、その主弁の回転に伴って、主弁貫通孔の一端を開閉流通孔の開口端に相対向させることによりその開閉流通孔を開放し、
 副弁は、その副弁の回転に伴って主弁貫通孔の他端の少なくとも一部を覆い、その主弁貫通孔の他端を覆う面積を一軸心まわりに回転することにより増減する。
In order to achieve the above object, a switching flow regulating valve according to one aspect of the present disclosure is:
A switching flow control valve that switches or opens and closes the flow path of the fluid and adjusts the flow rate of the fluid,
A valve body having a valve chamber and an open / close flow hole and an open flow hole that are open to the valve chamber and through which fluid flows; and
A main valve which is housed in the valve chamber and which opens and closes the opening and closing flow hole by rotating around a uniaxial center;
A secondary valve housed in the valve chamber, disposed on the opposite side of the main valve with respect to the open / close flow hole, and rotated about a single axis;
A seal that is elastic and is sandwiched between the valve body and the main valve so as to surround the open end of the open / close flow hole on the valve chamber side, and seals around the open end of the open / close flow hole in the valve chamber With
A main valve through hole is formed in the main valve,
The main valve opens the open / close flow hole by causing the one end of the main valve through hole to face the open end of the open / close flow hole as the main valve rotates.
The sub valve covers at least a part of the other end of the main valve through-hole with the rotation of the sub-valve, and increases or decreases by rotating an area covering the other end of the main valve through-hole around the uniaxial center.
 これによれば、シール部に対し直接には接触していない副弁が、主弁貫通孔の他端を覆う面積を一軸心まわりに回転することにより増減し、それによって、切替流調弁は、流体の流量調整を行うことができる。従って、主弁はその流量調整を行う必要がなく、開閉流通孔を開閉すれば足りる。すなわち、その流体の流量調整が行われる際に、主弁貫通孔の一端の周縁がシール部に対し交差した状態が継続されずに済むので、そのシール部に段差が残りにくくシール部のシール性を良好に保つことが可能である。要するに、そのシール部のシール性を悪化させないように流体の流量調整を行うことが可能である。 According to this, the sub-valve that is not in direct contact with the seal portion increases or decreases by rotating the area covering the other end of the main valve through-hole around the uniaxial center, thereby switching the flow control valve Can adjust the flow rate of the fluid. Therefore, it is not necessary to adjust the flow rate of the main valve, and it is sufficient to open and close the open / close flow hole. That is, when the flow rate of the fluid is adjusted, it is not necessary to continue the state in which the peripheral edge of one end of the main valve through hole intersects the seal portion. Can be kept good. In short, it is possible to adjust the flow rate of the fluid so as not to deteriorate the sealing performance of the seal portion.
第1実施形態において統合熱マネージメントシステムの概略構成を示したブロック図である。It is the block diagram which showed schematic structure of the integrated heat management system in 1st Embodiment. 第1実施形態の入口側三方弁の構造を模式的に示した図であって、入口側三方弁の弁軸心を含む平面で切断した断面図である。It is the figure which showed typically the structure of the inlet side three-way valve of 1st Embodiment, Comprising: It is sectional drawing cut | disconnected by the plane containing the valve shaft center of an inlet side three-way valve. 図2のIII-III断面を示した断面図である。FIG. 3 is a cross-sectional view showing a III-III cross section of FIG. 第1実施形態の入口側三方弁が有する主弁を単体で示した模式的な斜視図である。It is the typical perspective view which showed the main valve which the inlet side three-way valve of 1st Embodiment has alone. 第1実施形態の入口側三方弁が有する副弁および駆動軸を抜粋して示した模式的な斜視図である。It is the typical perspective view which extracted and showed the subvalve and drive shaft which the inlet side three-way valve of 1st Embodiment has. 第1実施形態において、弁周方向を紙面横方向として副弁周壁部の外周面を展開した展開図である。In 1st Embodiment, it is the expanded view which expand | deployed the outer peripheral surface of the subvalve surrounding wall part by making the valve circumferential direction into the paper surface horizontal direction. 第1実施形態において、弁周方向を紙面横方向として主弁周壁部の外周面を展開した展開図である。In 1st Embodiment, it is the expanded view which expand | deployed the outer peripheral surface of the main valve surrounding wall part by making the valve circumferential direction into the paper surface horizontal direction. 第1実施形態において回転断接部の構造を示した図であり、すなわち、図2のVIII-VIII断面を示した断面図である。FIG. 4 is a view showing a structure of a rotation connecting / disconnecting portion in the first embodiment, that is, a cross-sectional view showing a VIII-VIII cross section of FIG. 2. 図5におけるIX矢視図である。It is IX arrow line view in FIG. 比較例の三方弁の構造を模式的に示した図であって、第1実施形態の図2に相当する図である。It is the figure which showed typically the structure of the three-way valve of a comparative example, Comprising: It is a figure corresponded in FIG. 2 of 1st Embodiment. 比較例の三方弁が有する主弁と駆動軸とを抜粋して表した模式的な斜視図であって、第1実施形態の図4に相当する図である。It is the typical perspective view which extracted and represented the main valve and drive shaft which the three-way valve of a comparative example has, and is a figure equivalent to Drawing 4 of a 1st embodiment. 比較例の三方弁が有する第1シール部材と第2シール部材とを単体で表した模式的な斜視図である。It is the typical perspective view showing the 1st seal member and the 2nd seal member which the three-way valve of a comparative example has alone. 比較例の三方弁において、弁周方向を紙面横方向として主弁周壁部の外周面を展開した展開図に第1シール部材または第2シール部材を重ねて表示した図であって、第1実施形態の図7に相当する図である。In the three-way valve of the comparative example, it is a diagram in which the first seal member or the second seal member is overlapped and displayed on a developed view in which the outer peripheral surface of the main valve peripheral wall portion is developed with the valve circumferential direction being the horizontal direction of the drawing. It is a figure equivalent to FIG. 7 of a form. 図10のXIV-XIV断面を示した断面図であって、第2径方向孔を通過する温水の流量調整が行われる流量調整時にて主弁の或る回転位置を示した図である。FIG. 11 is a cross-sectional view showing the XIV-XIV cross section of FIG. 10 and showing a certain rotational position of the main valve during flow rate adjustment in which the flow rate of hot water passing through a second radial hole is adjusted. 比較例の三方弁のうち第2シール部材と主弁と駆動軸とを抜粋して図示すると共に、図14のXV-XV断面を示した断面図である。FIG. 15 is a cross-sectional view illustrating the XV-XV cross section of FIG. 14 while extracting and illustrating the second seal member, the main valve, and the drive shaft of the three-way valve of the comparative example. 図10のXIV-XIV断面を示した断面図であって、第1径方向孔を通過する冷水の流量調整が行われる流量調整時にて主弁の或る回転位置を示した図である。FIG. 11 is a cross-sectional view showing the XIV-XIV cross section of FIG. 10 and showing a certain rotational position of the main valve during flow rate adjustment in which the flow rate of cold water passing through the first radial hole is adjusted. 比較例の三方弁のうち第2シール部材と主弁と駆動軸とを抜粋して図示すると共に、図16のXVII-XVII断面を示した断面図である。FIG. 17 is a cross-sectional view illustrating the XVII-XVII cross section of FIG. 16 while extracting and illustrating the second seal member, the main valve, and the drive shaft of the three-way valve of the comparative example. 第2実施形態の入口側三方弁の構造を模式的に示した斜視図である。It is the perspective view which showed typically the structure of the inlet side three-way valve of 2nd Embodiment. 第3実施形態の入口側三方弁の構造を模式的に示した断面図であって、第1実施形態の図2に相当する図である。It is sectional drawing which showed typically the structure of the inlet side three-way valve of 3rd Embodiment, Comprising: It is a figure corresponded in FIG. 2 of 1st Embodiment. 第1実施形態の変形例において入口側三方弁の構造を模式的に示した断面図であって、第1実施形態の図2に相当する図である。It is sectional drawing which showed typically the structure of the inlet side three-way valve in the modification of 1st Embodiment, Comprising: It is a figure corresponded in FIG. 2 of 1st Embodiment.
 以下、図面を参照しながら、本開示の実施形態を説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.
 (第1実施形態)
 図1は、本実施形態において統合熱マネージメントシステム10の概略構成を示したブロック図である。この図1に示す統合熱マネージメントシステム10は、例えばハイブリッド車などの自動車に搭載されるシステムである。統合熱マネージメントシステム10は、冷凍サイクル装置12によって冷水と温水とを生成し、空調用の熱交換器を含む複数の機器11a、11b、11cにその冷水または温水を供給することで冷却または温調を行う。
(First embodiment)
FIG. 1 is a block diagram showing a schematic configuration of an integrated heat management system 10 in the present embodiment. The integrated heat management system 10 shown in FIG. 1 is a system mounted on a vehicle such as a hybrid vehicle. The integrated heat management system 10 generates cold water and hot water by the refrigeration cycle device 12, and cools or adjusts the temperature by supplying the cold water or hot water to a plurality of devices 11a, 11b, and 11c including a heat exchanger for air conditioning. I do.
 具体的に、その統合熱マネージメントシステム10では、第1熱交換媒体としての冷水と、その冷水よりも高温の第2熱交換媒体としての温水とが循環する。そして、統合熱マネージメントシステム10は、第1の機器11aへはその冷水と温水とを択一的に切り替えて供給する。また、統合熱マネージメントシステム10は、第2の機器11bとしてのクーラコア11bへは冷水を供給し、第3の機器11cとしてのヒータコア11cへは温水を供給する。第1の機器11aは、例えばバッテリである。 Specifically, in the integrated heat management system 10, cold water as the first heat exchange medium and hot water as the second heat exchange medium having a temperature higher than that of the cold water circulate. Then, the integrated heat management system 10 selectively supplies the cold water and hot water to the first device 11a. The integrated heat management system 10 supplies cold water to the cooler core 11b as the second device 11b, and supplies hot water to the heater core 11c as the third device 11c. The first device 11a is, for example, a battery.
 なお、図1の矢印FL1は冷水が流れる向きを示し、矢印FL2は温水が流れる向きを示し、矢印FL3は冷凍サイクル装置12の冷媒が流れる向きを示している。また、本実施形態では第1熱交換媒体および第2熱交換媒体は何れも、不凍液が混合された水溶液すなわち液体であるが、気体であっても構わない。 1 indicates the direction in which cold water flows, arrow FL2 indicates the direction in which hot water flows, and arrow FL3 indicates the direction in which the refrigerant in the refrigeration cycle apparatus 12 flows. In the present embodiment, the first heat exchange medium and the second heat exchange medium are both an aqueous solution, ie, a liquid, in which an antifreeze liquid is mixed, but may be a gas.
 統合熱マネージメントシステム10は、図1に示すように、冷凍サイクル装置12、冷水用ポンプ13、温水用ポンプ14、冷水供給通路161、冷水回収通路162、冷水バイパス通路163、開閉弁163a、温水供給通路171、温水回収通路172、温水バイパス通路173、入口側三方弁18、出口側三方弁19、入口配管20、および出口配管21を主要構成要素として備えている。 As shown in FIG. 1, the integrated heat management system 10 includes a refrigeration cycle apparatus 12, a cold water pump 13, a hot water pump 14, a cold water supply passage 161, a cold water recovery passage 162, a cold water bypass passage 163, an on-off valve 163a, and hot water supply. A passage 171, a hot water recovery passage 172, a hot water bypass passage 173, an inlet side three-way valve 18, an outlet side three-way valve 19, an inlet pipe 20, and an outlet pipe 21 are provided as main components.
 冷凍サイクル装置12は、統合熱マネージメントシステム10で循環する冷水を冷却すると共に、統合熱マネージメントシステム10で循環する温水を加熱する。要するに、冷凍サイクル装置12は、その冷水から温水へ熱を移動させるヒートポンプとしての役割を果たす。 The refrigeration cycle apparatus 12 cools the cold water circulating in the integrated heat management system 10 and heats the hot water circulating in the integrated heat management system 10. In short, the refrigeration cycle apparatus 12 serves as a heat pump that transfers heat from the cold water to the hot water.
 冷凍サイクル装置12は蒸気圧縮冷凍サイクルで構成されており、圧縮機121、水冷コンデンサ122、膨張弁123、およびチラー124を有している。これらの構成機器121、122、123、124は配管によって環状に接続され、その配管は、冷媒が矢印FL3のように循環する冷媒循環路を構成する。 The refrigeration cycle apparatus 12 includes a vapor compression refrigeration cycle, and includes a compressor 121, a water-cooled condenser 122, an expansion valve 123, and a chiller 124. These components 121, 122, 123, and 124 are connected in an annular shape by piping, and the piping constitutes a refrigerant circulation path through which the refrigerant circulates as shown by an arrow FL3.
 圧縮機121は、チラー124から冷媒を吸い込み、その吸い込んだ冷媒を圧縮してから水冷コンデンサ122へ吐出する。水冷コンデンサ122は、冷媒と温水とを熱交換させる熱交換器である。水冷コンデンサ122は、冷媒から温水へ放熱させることにより、冷媒を凝縮させると共に温水を加熱する。 The compressor 121 sucks the refrigerant from the chiller 124, compresses the sucked refrigerant, and then discharges it to the water-cooled condenser 122. The water-cooled condenser 122 is a heat exchanger that exchanges heat between the refrigerant and the hot water. The water-cooled condenser 122 dissipates heat from the refrigerant to the hot water, thereby condensing the refrigerant and heating the hot water.
 膨張弁123には水冷コンデンサ122から冷媒が流入する。膨張弁123は、その水冷コンデンサ122から流入した冷媒を減圧膨張させ、その減圧膨張後の冷媒をチラー124へ流出させる。チラー124は、冷媒と冷水とを熱交換させる熱交換器である。チラー124には膨張弁123から冷媒が流入し、チラー124は、冷水から冷媒へ吸熱させることにより、その冷媒を蒸発させると共に冷水を冷却する。 The refrigerant flows from the water-cooled condenser 122 into the expansion valve 123. The expansion valve 123 decompresses and expands the refrigerant that has flowed from the water-cooled condenser 122, and causes the refrigerant after the decompression and expansion to flow out to the chiller 124. The chiller 124 is a heat exchanger that exchanges heat between the refrigerant and the cold water. The refrigerant flows into the chiller 124 from the expansion valve 123. The chiller 124 absorbs heat from the cold water to the refrigerant, thereby evaporating the refrigerant and cooling the cold water.
 冷水用ポンプ13は冷水吸入口13aと冷水吐出口13bとを有し、その冷水吸入口13aから吸入した冷水を冷水吐出口13bから吐出する。その冷水吐出口13bから吐出された冷水は、チラー124で冷却されてから冷水供給通路161へと流れる。 The cold water pump 13 has a cold water suction port 13a and a cold water discharge port 13b, and discharges cold water sucked from the cold water suction port 13a from the cold water discharge port 13b. The cold water discharged from the cold water discharge port 13 b flows into the cold water supply passage 161 after being cooled by the chiller 124.
 また、冷水用ポンプ13の冷水吸入口13aには冷水回収通路162が接続されている。その冷水回収通路162は、第1の機器11aで熱交換された後の冷水を冷水用ポンプ13の冷水吸入口13aへ導く。 Further, a cold water recovery passage 162 is connected to the cold water inlet 13a of the cold water pump 13. The cold water recovery passageway 162 guides the cold water after heat exchange by the first device 11 a to the cold water inlet 13 a of the cold water pump 13.
 冷水バイパス通路163は、冷水供給通路161と冷水用ポンプ13の冷水吸入口13aとの間に接続されている。すなわち、その冷水バイパス通路163の上流端は冷水供給通路161に接続され、冷水バイパス通路163の下流端は冷水用ポンプ13の冷水吸入口13aに接続されている。 The cold water bypass passage 163 is connected between the cold water supply passage 161 and the cold water inlet 13 a of the cold water pump 13. That is, the upstream end of the cold water bypass passage 163 is connected to the cold water supply passage 161, and the downstream end of the cold water bypass passage 163 is connected to the cold water inlet 13 a of the cold water pump 13.
 そして、その冷水バイパス通路163には、クーラコア11bと、冷水バイパス通路163を開閉する電動の開閉弁163aとが直列に設けられている。そのクーラコア11bは、車室内の空調を行う不図示の空調ユニット内に設けられている。そして、クーラコア11bは、クーラコア11b内を流通する冷水と、空調ユニット内でクーラコア11bを通過する空気とを熱交換させ、その熱交換によってその空気を冷却する。 In the cold water bypass passage 163, a cooler core 11b and an electric on-off valve 163a for opening and closing the cold water bypass passage 163 are provided in series. The cooler core 11b is provided in an air conditioning unit (not shown) that air-conditions the passenger compartment. And the cooler core 11b heat-exchanges the cold water which distribute | circulates the inside of the cooler core 11b, and the air which passes the cooler core 11b within an air conditioning unit, and cools the air by the heat exchange.
 温水用ポンプ14は温水吸入口14aと温水吐出口14bとを有し、その温水吸入口14aから吸入した温水を温水吐出口14bから吐出する。その温水吐出口14bから吐出された温水は、水冷コンデンサ122で加熱されてから温水供給通路171へと流れる。 The hot water pump 14 has a hot water inlet 14a and a hot water outlet 14b, and discharges hot water drawn from the hot water inlet 14a from the hot water outlet 14b. The hot water discharged from the hot water discharge port 14 b flows into the hot water supply passage 171 after being heated by the water cooling condenser 122.
 その温水供給通路171の途中にはヒータコア11cが設けられている。そのヒータコア11cは、上記の空調ユニット内に設けられている。そして、ヒータコア11cは、ヒータコア11c内を流通する温水と、空調ユニット内でヒータコア11cを通過する空気とを熱交換させ、その熱交換によってその空気を加熱する。 A heater core 11c is provided in the middle of the hot water supply passage 171. The heater core 11c is provided in the air conditioning unit. And the heater core 11c heat-exchanges the hot water which distribute | circulates the inside of the heater core 11c, and the air which passes the heater core 11c within an air conditioning unit, and heats the air by the heat exchange.
 また、温水用ポンプ14の温水吸入口14aには温水回収通路172が接続されている。その温水回収通路172は、第1の機器11aで熱交換された後の温水を温水用ポンプ14の温水吸入口14aへ導く。 Further, a hot water recovery passage 172 is connected to the hot water inlet 14a of the hot water pump 14. The warm water recovery passage 172 guides the warm water after heat exchange by the first device 11 a to the warm water inlet 14 a of the warm water pump 14.
 温水バイパス通路173は、ヒータコア11cの温水出口と温水用ポンプ14の温水吸入口14aとの間に接続されている。すなわち、その温水バイパス通路173の上流端はヒータコア11cの温水出口に接続され、温水バイパス通路173の下流端は温水用ポンプ14の温水吸入口14aに接続されている。なお、本実施形態では温水バイパス通路173に、加熱対象となる機器は設けられていないが、加熱対象となる機器が温水バイパス通路173に設けられ、温水によって加熱されてもよい。 The hot water bypass passage 173 is connected between the hot water outlet of the heater core 11 c and the hot water inlet 14 a of the hot water pump 14. That is, the upstream end of the hot water bypass passage 173 is connected to the hot water outlet of the heater core 11 c, and the downstream end of the hot water bypass passage 173 is connected to the hot water inlet 14 a of the hot water pump 14. In the present embodiment, the device to be heated is not provided in the hot water bypass passage 173, but the device to be heated may be provided in the hot water bypass passage 173 and heated by the hot water.
 入口側三方弁18は、第1の機器11aの入口側へ接続された入口配管20に冷水供給通路161と温水供給通路171とを択一的に連通させると共に、冷水と温水とのうち入口配管20へ流れる流体の流量を調整する。要するに、入口側三方弁18は、第1の機器11aの入口側において流体が流れる流路の切替えを行うと共にその流体の流量を調整する切替流調弁である。 The inlet side three-way valve 18 selectively connects the cold water supply passage 161 and the hot water supply passage 171 to the inlet pipe 20 connected to the inlet side of the first device 11a, and the inlet pipe of the cold water and the hot water. The flow rate of the fluid flowing to 20 is adjusted. In short, the inlet side three-way valve 18 is a switching flow regulating valve that switches the flow path through which the fluid flows on the inlet side of the first device 11a and adjusts the flow rate of the fluid.
 例えば冷水供給通路161から入口側三方弁18へ流入する冷水は-20℃程度であり、温水供給通路171から入口側三方弁18へ流入する温水は60℃程度である。 For example, the cold water flowing from the cold water supply passage 161 to the inlet side three-way valve 18 is about −20 ° C., and the hot water flowing from the hot water supply passage 171 to the inlet side three way valve 18 is about 60 ° C.
 また、出口側三方弁19は、第1の機器11aの出口側へ接続された出口配管21を冷水回収通路162と温水回収通路172とへ択一的に連通させる流路切替弁である。本実施形態では、出口側三方弁19は、入口側三方弁18とは異なり、流体の流量を調整する流量調整機能を備えていない。入口側三方弁18と出口側三方弁19との一方が流量調整機能を備えていれば、第1の機器11aへ流通する冷水の流量と温水の流量とをそれぞれ調整できるからである。なお、本実施形態の出口側三方弁19は周知の三方弁である。 Further, the outlet side three-way valve 19 is a flow path switching valve that selectively connects the outlet pipe 21 connected to the outlet side of the first device 11a to the cold water recovery path 162 and the hot water recovery path 172. In the present embodiment, unlike the inlet-side three-way valve 18, the outlet-side three-way valve 19 does not have a flow rate adjusting function for adjusting the flow rate of fluid. This is because if one of the inlet side three-way valve 18 and the outlet side three-way valve 19 has a flow rate adjusting function, the flow rate of cold water and the flow rate of hot water flowing to the first device 11a can be adjusted. The outlet side three-way valve 19 of the present embodiment is a known three-way valve.
 入口配管20から第1の機器11aへ流入した冷水または温水は、第1の機器11aの内部で熱交換してから出口配管21へ流出する。すなわち、第1の機器11aに冷水が流入すれば第1の機器11aはその冷水によって冷却され、第1の機器11aに温水が流入すれば第1の機器11aはその温水によって加熱される。 The cold water or hot water that has flowed into the first device 11a from the inlet pipe 20 exchanges heat inside the first device 11a and then flows out to the outlet pipe 21. That is, if cold water flows into the first device 11a, the first device 11a is cooled by the cold water, and if warm water flows into the first device 11a, the first device 11a is heated by the hot water.
 入口側三方弁18と出口側三方弁19は互いに連動して作動させられる。詳細には、入口側三方弁18が冷水供給通路161を第1入口配管20へ連通させる場合には、出口側三方弁19は、冷水回収通路162を介して出口配管21を冷水用ポンプ13の冷水吸入口13aへ連通させる。そのとき、温水供給通路171へ接続された入口側三方弁18のポートは入口側三方弁18によって閉塞され、温水回収通路172へ接続された出口側三方弁19のポートは出口側三方弁19によって閉塞される。 The inlet-side three-way valve 18 and the outlet-side three-way valve 19 are operated in conjunction with each other. Specifically, when the inlet-side three-way valve 18 communicates the cold water supply passage 161 with the first inlet pipe 20, the outlet-side three-way valve 19 connects the outlet pipe 21 to the cold water pump 13 via the cold water recovery passage 162. It communicates with the cold water inlet 13a. At that time, the port of the inlet-side three-way valve 18 connected to the hot water supply passage 171 is closed by the inlet-side three-way valve 18, and the port of the outlet-side three-way valve 19 connected to the hot water recovery passage 172 is closed by the outlet-side three-way valve 19. Blocked.
 逆に、入口側三方弁18が温水供給通路171を入口配管20へ連通させる場合には、出口側三方弁19は、温水回収通路172を介して出口配管21を温水用ポンプ14の温水吸入口14aへ連通させる。そのとき、冷水供給通路161へ接続された入口側三方弁18のポートは入口側三方弁18によって閉塞され、冷水回収通路162へ接続された出口側三方弁19のポートは出口側三方弁19によって閉塞される。 Conversely, when the inlet-side three-way valve 18 communicates the hot water supply passage 171 with the inlet pipe 20, the outlet-side three-way valve 19 connects the outlet pipe 21 via the hot water recovery passage 172 to the hot water inlet of the hot water pump 14. Communicate to 14a. At that time, the port of the inlet-side three-way valve 18 connected to the cold water supply passage 161 is closed by the inlet-side three-way valve 18, and the port of the outlet-side three-way valve 19 connected to the cold water recovery passage 162 is closed by the outlet-side three-way valve 19. Blocked.
 また、入口側三方弁18は、冷水供給通路161と温水供給通路171との何れが入口配管20へ連通させる場合であっても、冷水と温水とのうち入口配管20へ流れる流体の流量を調整することができる。 Further, the inlet side three-way valve 18 adjusts the flow rate of the fluid flowing into the inlet pipe 20 out of the cold water and the hot water regardless of which of the cold water supply path 161 and the hot water supply path 171 communicates with the inlet pipe 20. can do.
 以上のような構成から、例えば冷凍サイクル装置12および各ポンプ13、14が運転されている状態で、上記のような各三方弁18、19の制御を行うことにより、冷水と温水とを択一的に第1の機器11aへ供給することが可能である。そして、本実施形態の統合熱マネージメントシステム10では、上記のような各三方弁18、19の制御により、冷水用ポンプ13が吐出する冷水と、温水用ポンプ14が吐出する温水は、互いに合流することがない別個の熱媒体回路を循環することになる。 From the above configuration, for example, by controlling the three- way valves 18 and 19 as described above in a state where the refrigeration cycle apparatus 12 and the pumps 13 and 14 are operated, the cold water and the hot water are selected. In particular, it can be supplied to the first device 11a. In the integrated heat management system 10 of the present embodiment, the cold water discharged from the cold water pump 13 and the hot water discharged from the hot water pump 14 merge with each other by the control of the three- way valves 18 and 19 as described above. It will circulate through a separate heat carrier circuit.
 また、統合熱マネージメントシステム10では、上記の各三方弁18、19の制御に加え、開閉弁163aの開閉制御、冷凍サイクル装置12の作動制御、および各ポンプ13、14の運転制御も行われる。それによって、統合熱マネージメントシステム10は種々の運転状況に切り替えられる。また、統合熱マネージメントシステム10は、ヒータコア11cから流出した温水を矢印FL4のように流通させ、その温水を走行用のエンジンへも供給できるようになっている。 In addition, in the integrated heat management system 10, in addition to the control of the three- way valves 18 and 19, the on-off control of the on-off valve 163a, the operation control of the refrigeration cycle apparatus 12, and the operation control of the pumps 13 and 14 are performed. Thereby, the integrated thermal management system 10 is switched to various operating situations. Further, the integrated heat management system 10 distributes the hot water flowing out from the heater core 11c as indicated by an arrow FL4, and can supply the hot water to the engine for traveling.
 次に本実施形態の入口側三方弁18の構造について説明する。図2および図3に示すように、入口側三方弁18は回転式の切替流調弁である。入口側三方弁18は、弁本体30と主弁32と副弁34と駆動軸36と第1シール部材40と第2シール部材42と駆動装置44とを備えている。 Next, the structure of the inlet side three-way valve 18 of this embodiment will be described. As shown in FIGS. 2 and 3, the inlet side three-way valve 18 is a rotary switching flow control valve. The inlet side three-way valve 18 includes a valve main body 30, a main valve 32, a sub valve 34, a drive shaft 36, a first seal member 40, a second seal member 42, and a drive device 44.
 駆動装置44は、駆動軸36を介して副弁34に連結されている。すなわち、副弁34は、入口側三方弁18が有する複数の回転弁32、34のうち駆動装置44に駆動される駆動弁である。 The drive device 44 is connected to the auxiliary valve 34 via the drive shaft 36. That is, the auxiliary valve 34 is a drive valve that is driven by the drive device 44 among the plurality of rotary valves 32, 34 included in the inlet side three-way valve 18.
 駆動装置44は、不図示の電子制御装置の電気的な制御に従って副弁34を回転させる駆動源であり、弁本体30に対し弁軸心CLvの軸方向DRaの一方側に配置されている。駆動装置44は、例えば、歯車列等の減速機構と電動モータとを含んで構成されている。 The drive device 44 is a drive source that rotates the sub-valve 34 according to electrical control of an electronic control device (not shown), and is disposed on one side of the valve body 30 in the axial direction DRa of the valve axis CLv. The drive device 44 includes, for example, a speed reduction mechanism such as a gear train and an electric motor.
 なお、図2は、図3のII-II断面を示した断面図である。図2では、駆動装置44はその一部を除いて断面図示されていない。また、図2は、入口側三方弁18の構造を判りやすく示すために、入口側三方弁18の各構成部品間に敢えて隙間を空けて図示されている。例えば各シール部材40、42は弁軸心CLvの径方向DRrにおいて主弁32と弁本体30とのそれぞれに対し実際には密着しているが、図2は、それらの間に敢えて隙間を空けて図示されている。このような模式的な図示方法は、他の図でも同様である。 FIG. 2 is a cross-sectional view showing the II-II cross section of FIG. In FIG. 2, the drive device 44 is not shown in cross section except for a part thereof. Further, FIG. 2 is shown with a space between each component of the inlet side three-way valve 18 in order to easily understand the structure of the inlet side three-way valve 18. For example, the seal members 40 and 42 are actually in close contact with the main valve 32 and the valve body 30 in the radial direction DRr of the valve axis CLv, but FIG. Is shown. Such a schematic drawing method is the same in other drawings.
 また、以下の説明では、弁軸心CLvの軸方向DRaを弁軸方向DRaと呼び、弁軸心CLvの径方向DRrを弁径方向DRrと呼び、弁軸心CLvの周方向DRcを弁周方向DRcと呼ぶものとする。また、その弁軸心CLvは、主弁32および副弁34の回転中心となる一軸心である。 In the following description, the axial direction DRa of the valve axis CLv is referred to as the valve axis direction DRa, the radial direction DRr of the valve axis CLv is referred to as the valve diameter direction DRr, and the circumferential direction DRc of the valve axis CLv is the valve circumference. It shall be called direction DRc. Further, the valve axis CLv is a uniaxial center that becomes the rotation center of the main valve 32 and the sub valve 34.
 弁本体30は、回転しない非回転部であり、入口側三方弁18の筐体となっている。弁本体30は、弁室形成部301と第1径方向配管部305と第2径方向配管部306と軸方向配管部307とを有している。これらの弁室形成部301と第1径方向配管部305と第2径方向配管部306と軸方向配管部307は、互いの接続箇所から温水および冷水が漏れ出ないように一体的に構成されている。 The valve body 30 is a non-rotating portion that does not rotate, and serves as a housing for the inlet-side three-way valve 18. The valve body 30 includes a valve chamber forming part 301, a first radial pipe part 305, a second radial pipe part 306, and an axial pipe part 307. The valve chamber forming portion 301, the first radial piping portion 305, the second radial piping portion 306, and the axial piping portion 307 are integrally configured so that hot water and cold water do not leak from the connection portions. ing.
 弁室形成部301の内部には弁室301aが形成されている。詳細には、弁室形成部301は、弁室周壁部302と一端部303と他端部304とを有している。その弁室周壁部302は、弁軸心CLvを中心とした筒形状を成している。すなわち、弁室周壁部302は、弁室301aをその全周にわたって弁軸心CLvまわりに取り囲んで形成している。 A valve chamber 301 a is formed inside the valve chamber forming portion 301. Specifically, the valve chamber forming portion 301 has a valve chamber peripheral wall portion 302, one end portion 303, and the other end portion 304. The valve chamber peripheral wall 302 has a cylindrical shape centered on the valve axis CLv. That is, the valve chamber peripheral wall 302 is formed so as to surround the valve chamber 301a around the valve axis CLv over the entire circumference.
 弁室形成部301の一端部303は、弁室周壁部302に対する弁軸方向DRaの一方側にて弁室周壁部302の一端に接合されている。そして、弁室形成部301の一端部303は、例えば弁軸方向DRaを厚み方向とした板状を成しており、弁軸方向DRaにおける弁室301aの一方側を覆っている。 One end portion 303 of the valve chamber forming portion 301 is joined to one end of the valve chamber peripheral wall portion 302 on one side in the valve axial direction DRa with respect to the valve chamber peripheral wall portion 302. And the one end part 303 of the valve chamber formation part 301 comprises the plate shape which made the valve-axis direction DRa the thickness direction, for example, and has covered one side of the valve-chamber 301a in the valve-axis direction DRa.
 また、駆動装置44は、弁軸方向DRaにおいて、弁室形成部301の一端部303に対し弁室301a側とは反対側に配置されている。そのため、弁室形成部301の一端部303には、その一端部303を弁軸方向DRaに貫通し駆動軸36が挿通される軸挿通孔303aが形成されている。そして、弁室301aからの流体の漏れ出しを防止するために、軸挿通孔303aにおける駆動軸36まわりの径方向隙間をシールするOリング361が設けられている。 Further, the drive device 44 is disposed on the opposite side to the valve chamber 301a side with respect to the one end portion 303 of the valve chamber forming portion 301 in the valve axial direction DRa. Therefore, a shaft insertion hole 303a through which the drive shaft 36 is inserted through the one end portion 303 in the valve shaft direction DRa is formed in the one end portion 303 of the valve chamber forming portion 301. In order to prevent fluid from leaking from the valve chamber 301a, an O-ring 361 that seals a radial clearance around the drive shaft 36 in the shaft insertion hole 303a is provided.
 弁室形成部301の他端部304は、弁室周壁部302に対する弁軸方向DRaの他方側にて弁室周壁部302の他端に接合されている。そして、弁室形成部301の他端部304は、例えば弁軸方向DRaを厚み方向とした板状を成しており、弁軸方向DRaにおける弁室301aの他方側を覆っている。 The other end 304 of the valve chamber forming portion 301 is joined to the other end of the valve chamber peripheral wall 302 on the other side in the valve axial direction DRa with respect to the valve chamber peripheral wall 302. The other end 304 of the valve chamber forming portion 301 has, for example, a plate shape with the valve axis direction DRa as the thickness direction, and covers the other side of the valve chamber 301a in the valve axis direction DRa.
 図2および図3に示すように、第1径方向配管部305は、弁室周壁部302から弁径方向DRrでの外側へ突き出ており、例えば円筒形状を成している。すなわち、第1径方向配管部305の内側には第1径方向孔305aが形成されている。この第1径方向孔305aは例えば円形孔である。 As shown in FIGS. 2 and 3, the first radial pipe portion 305 protrudes outward from the valve chamber peripheral wall portion 302 in the valve radial direction DRr, and has a cylindrical shape, for example. That is, a first radial hole 305 a is formed inside the first radial pipe portion 305. The first radial hole 305a is, for example, a circular hole.
 そして、第1径方向孔305aは、第1径方向配管部305と弁室周壁部302とを貫通し、弁室301aに対して開口している。従って、第1径方向孔305aは、その第1径方向孔305aの弁室301a側に開口端305bを有し、その開口端305bは弁室周壁部302に形成されている。 And the 1st radial direction hole 305a penetrates the 1st radial direction piping part 305 and the valve chamber surrounding wall part 302, and is opened with respect to the valve chamber 301a. Accordingly, the first radial hole 305 a has an open end 305 b on the valve chamber 301 a side of the first radial hole 305 a, and the open end 305 b is formed in the valve chamber peripheral wall 302.
 また、第1径方向孔305aは冷水供給通路161(図1参照)に接続されており、その冷水供給通路161から冷水が流入する第1入口ポートとして機能する。第1径方向孔305aは、冷水供給通路161からの流体(具体的には、冷水)が流通し主弁32の回転によって開閉される第1開閉流通孔である。 The first radial hole 305a is connected to the cold water supply passage 161 (see FIG. 1) and functions as a first inlet port through which cold water flows from the cold water supply passage 161. The first radial hole 305 a is a first opening / closing circulation hole through which fluid (specifically, cold water) from the cold water supply passage 161 flows and is opened and closed by the rotation of the main valve 32.
 第2径方向配管部306は、弁室周壁部302から弁径方向DRrでの外側へ突き出ている。また、第2径方向配管部306は例えば円筒形状を成している。すなわち、第2径方向配管部306の内側には第2径方向孔306aが形成されている。この第2径方向孔306aは例えば円形孔である。 The second radial pipe portion 306 protrudes outward from the valve chamber peripheral wall portion 302 in the valve radial direction DRr. Moreover, the 2nd radial direction piping part 306 has comprised the cylindrical shape, for example. That is, a second radial hole 306 a is formed inside the second radial pipe portion 306. The second radial hole 306a is, for example, a circular hole.
 そして、第2径方向孔306aは、第2径方向配管部306と弁室周壁部302とを貫通し、弁室301aに対して開口している。従って、第2径方向孔306aは、その第2径方向孔306aの弁室301a側に開口端306bを有し、その開口端306bは弁室周壁部302に形成されている。 The second radial hole 306a penetrates the second radial pipe portion 306 and the valve chamber peripheral wall portion 302 and opens to the valve chamber 301a. Therefore, the second radial hole 306 a has an open end 306 b on the valve chamber 301 a side of the second radial hole 306 a, and the open end 306 b is formed in the valve chamber peripheral wall 302.
 また、第2径方向配管部306は、第1径方向配管部305に対し弁軸心CLvを挟んだ反対側へ突き出ている。従って、第2径方向孔306aは、第1径方向孔305aに対し弁軸心CLvを挟んだ反対側に設けられている。更に、その第2径方向孔306aの開口端306bは、第1径方向孔305aの開口端305bに対し弁軸心CLvを挟んで相対向するように配置されている。 Further, the second radial pipe portion 306 protrudes to the opposite side of the first radial pipe portion 305 with the valve shaft center CLv interposed therebetween. Therefore, the second radial hole 306a is provided on the opposite side to the first radial hole 305a with the valve shaft center CLv interposed therebetween. Furthermore, the opening end 306b of the second radial hole 306a is disposed so as to face the opening end 305b of the first radial hole 305a with the valve axis CLv interposed therebetween.
 また、第2径方向孔306aは温水供給通路171(図1参照)に接続されており、その温水供給通路171から温水が流入する第2入口ポートとして機能する。第2径方向孔306aは、温水供給通路171からの流体(具体的には、温水)が流通し主弁32の回転によって開閉される第2開閉流通孔である。 The second radial hole 306a is connected to the hot water supply passage 171 (see FIG. 1), and functions as a second inlet port through which the hot water flows from the hot water supply passage 171. The second radial hole 306 a is a second opening / closing circulation hole through which fluid (specifically, hot water) from the hot water supply passage 171 flows and is opened and closed by the rotation of the main valve 32.
 軸方向配管部307は、弁室形成部301の他端部304から弁軸方向DRaの他方側へ突き出ており、例えば円筒形状を成している。すなわち、軸方向配管部307の内側には軸方向孔307aが形成されている。この軸方向孔307aは例えば円形孔である。 The axial piping part 307 protrudes from the other end part 304 of the valve chamber forming part 301 to the other side in the valve axial direction DRa, and has, for example, a cylindrical shape. That is, an axial hole 307 a is formed inside the axial pipe portion 307. The axial hole 307a is, for example, a circular hole.
 この軸方向孔307aは、軸方向配管部307と弁室形成部301の他端部304とを貫通し、弁室301aに対して開口している。従って、軸方向孔307aは、その軸方向孔307aの弁室301a側に開口端307bを有し、その開口端307bは弁室形成部301の他端部304に形成されている。 The axial hole 307a passes through the axial pipe portion 307 and the other end portion 304 of the valve chamber forming portion 301 and opens to the valve chamber 301a. Accordingly, the axial hole 307 a has an open end 307 b on the valve chamber 301 a side of the axial hole 307 a, and the open end 307 b is formed at the other end 304 of the valve chamber forming portion 301.
 また、軸方向孔307aは入口配管20(図1参照)に接続されており、弁室301a内の流体を入口配管20へ流出させる出口ポートとして機能する。軸方向孔307aは、弁室301aから入口配管20へ流出する流体(具体的には、冷水または温水)が流通する開口流通孔である。 Further, the axial hole 307a is connected to the inlet pipe 20 (see FIG. 1), and functions as an outlet port through which the fluid in the valve chamber 301a flows out to the inlet pipe 20. The axial hole 307a is an opening circulation hole through which fluid (specifically, cold water or hot water) flowing out from the valve chamber 301a to the inlet pipe 20 flows.
 図2~4に示すように、入口側三方弁18の主弁32は、弁軸心CLvまわりに回転する回転弁体であり、弁室301a内に収容されている。主弁32は、例えば弁軸方向DRaの一方側が閉じた有底円筒形状を成している。そして、主弁32は、主弁周壁部321と一端部322とを有している。これらの主弁周壁部321と一端部322は一体的に構成されている。 2 to 4, the main valve 32 of the inlet side three-way valve 18 is a rotating valve body that rotates about the valve axis CLv, and is accommodated in the valve chamber 301a. The main valve 32 has, for example, a bottomed cylindrical shape in which one side in the valve axial direction DRa is closed. The main valve 32 has a main valve peripheral wall portion 321 and one end portion 322. The main valve peripheral wall portion 321 and the one end portion 322 are integrally formed.
 主弁周壁部321は、弁軸心CLvを中心とした円筒形状を成している。そして、その主弁周壁部321の内側には副弁34が配置されている。従って、主弁周壁部321は、副弁34をその全周にわたって弁軸心CLvまわりに取り囲むように構成されている。 The main valve peripheral wall 321 has a cylindrical shape centered on the valve axis CLv. A sub valve 34 is arranged inside the main valve peripheral wall 321. Therefore, the main valve peripheral wall portion 321 is configured to surround the auxiliary valve 34 around the valve axis CLv over the entire periphery thereof.
 また、主弁32には主弁貫通孔321aが形成されている。その主弁貫通孔321aは例えば円形孔である。詳細には、主弁貫通孔321aは、主弁32のうち主弁周壁部321を弁径方向DRrに貫通して形成されている。そして、主弁貫通孔321aは、主弁貫通孔321aのうち弁径方向DRrの外側に一端321bを有し、弁径方向DRrの内側に他端321cを有している。 The main valve 32 has a main valve through hole 321a. The main valve through hole 321a is, for example, a circular hole. Specifically, the main valve through-hole 321a is formed so as to penetrate the main valve peripheral wall portion 321 of the main valve 32 in the valve radial direction DRr. The main valve through hole 321a has one end 321b outside the valve radial direction DRr and the other end 321c inside the valve radial direction DRr of the main valve through hole 321a.
 主弁32の一端部322は、主弁周壁部321に対する弁軸方向DRaの一方側にて主弁周壁部321の一端に接合されている。そして、主弁32の一端部322は、例えば弁軸方向DRaを厚み方向とした板状を成しており、弁軸方向DRaにおける主弁周壁部321の内側空間の一方側を覆っている。 One end 322 of the main valve 32 is joined to one end of the main valve peripheral wall 321 on one side in the valve axial direction DRa with respect to the main valve peripheral wall 321. And the one end part 322 of the main valve 32 comprises the plate shape which made the valve-axis direction DRa the thickness direction, for example, and has covered one side of the inner space of the main-valve surrounding wall part 321 in the valve-axis direction DRa.
 また、主弁32の一端部322には、その一端部322を弁軸方向DRaに貫通し駆動軸36が挿通される軸挿通孔322aが形成されている。そして、その駆動軸36は、主弁32の軸挿通孔322aと弁室形成部301の軸挿通孔303aとに挿通された状態で副弁34を駆動装置44へ動力伝達可能に連結している。 Further, a shaft insertion hole 322a through which the drive shaft 36 is inserted through the one end 322 in the valve shaft direction DRa is formed in the one end 322 of the main valve 32. The drive shaft 36 is connected to the sub valve 34 so as to transmit power to the drive device 44 in a state of being inserted into the shaft insertion hole 322a of the main valve 32 and the shaft insertion hole 303a of the valve chamber forming portion 301. .
 主弁32は弁室301a内において、弁軸心CLvまわりに回転することにより、弁本体30の第1径方向孔305aと第2径方向孔306aとを各々開閉する。詳細に言えば、主弁32は、弁軸心CLvまわりに回転することにより、第1径方向孔305aと第2径方向孔306aとを択一的に閉じる。 The main valve 32 opens and closes the first radial hole 305a and the second radial hole 306a of the valve body 30 by rotating around the valve axis CLv in the valve chamber 301a. Specifically, the main valve 32 selectively closes the first radial hole 305a and the second radial hole 306a by rotating around the valve axis CLv.
 具体的に、主弁32は、弁軸心CLvまわりに回転させられることにより、少なくとも第1回転位置と第2回転位置とに位置決めされる。その第1回転位置とは、主弁32が第1径方向孔305aを開き且つ第2径方向孔306aを閉じる回転位置である。また、第2回転位置とは、主弁32が第1径方向孔305aを閉じ且つ第2径方向孔306aを開く回転位置である。本実施形態では、第2回転位置は、第1回転位置に対し主弁32が弁軸心CLvまわりに反転した回転位置になっている。図2、図3、および後述の図8は何れも、主弁32が第1回転位置に位置決めされた状態で表されている。 Specifically, the main valve 32 is positioned at least in the first rotation position and the second rotation position by being rotated around the valve axis CLv. The first rotation position is a rotation position at which the main valve 32 opens the first radial hole 305a and closes the second radial hole 306a. The second rotational position is a rotational position where the main valve 32 closes the first radial hole 305a and opens the second radial hole 306a. In the present embodiment, the second rotational position is a rotational position in which the main valve 32 is inverted about the valve axis CLv with respect to the first rotational position. 2, FIG. 3, and FIG. 8 described later are all shown in a state where the main valve 32 is positioned at the first rotational position.
 例えば、主弁32は、その主弁32の回転に伴って第1回転位置に位置決めされた場合には、主弁貫通孔321aの一端321bを第1径方向孔305aの開口端305bに相対向させる。これにより、主弁32は、その第1径方向孔305aを弁室301aへ開放する。このとき同時に、主弁32は、主弁周壁部321の外周面321dで第2径方向孔306aの開口端306bを塞ぐ。 For example, when the main valve 32 is positioned at the first rotation position as the main valve 32 rotates, the one end 321b of the main valve through-hole 321a is opposed to the opening end 305b of the first radial hole 305a. Let Accordingly, the main valve 32 opens the first radial hole 305a to the valve chamber 301a. At the same time, the main valve 32 closes the open end 306b of the second radial hole 306a with the outer peripheral surface 321d of the main valve peripheral wall 321.
 そして、上記のように主弁32が第1回転位置に位置決めされた場合すなわち第1径方向孔305aが開放され且つ第2径方向孔306aが閉じられた第1の場合には、第1径方向孔305aと軸方向孔307aとの間で弁室301aを介して冷水が流通する。 When the main valve 32 is positioned at the first rotational position as described above, that is, in the first case where the first radial hole 305a is opened and the second radial hole 306a is closed, the first diameter Cold water flows through the valve chamber 301a between the directional hole 305a and the axial hole 307a.
 逆に、主弁32は、その主弁32の回転に伴って第2回転位置に位置決めされた場合には、主弁貫通孔321aの一端321bを第2径方向孔306aの開口端306bに相対向させる。これにより、主弁32は、その第2径方向孔306aを弁室301aへ開放する。このとき同時に、主弁32は、主弁周壁部321の外周面321dで第1径方向孔305aの開口端305bを塞ぐ。 Conversely, when the main valve 32 is positioned at the second rotational position as the main valve 32 rotates, the one end 321b of the main valve through-hole 321a is relative to the opening end 306b of the second radial hole 306a. Turn. Accordingly, the main valve 32 opens the second radial hole 306a to the valve chamber 301a. At the same time, the main valve 32 closes the open end 305b of the first radial hole 305a with the outer peripheral surface 321d of the main valve peripheral wall 321.
 そして、上記のように主弁32が第2回転位置に位置決めされた場合すなわち第1径方向孔305aが閉じられ且つ第2径方向孔306aが開放された第2の場合には、第2径方向孔306aと軸方向孔307aとの間で弁室301aを介して温水が流通する。すなわち、その第2の場合には、第1の場合に比して高温の流体が第2径方向孔306aと軸方向孔307aとの間で弁室301aを介して流通する。 When the main valve 32 is positioned at the second rotational position as described above, that is, in the second case where the first radial hole 305a is closed and the second radial hole 306a is opened, the second diameter Hot water flows through the valve chamber 301a between the directional hole 306a and the axial hole 307a. That is, in the second case, a fluid having a higher temperature than the first case flows between the second radial hole 306a and the axial hole 307a through the valve chamber 301a.
 図2、図3、および図5に示すように、入口側三方弁18の副弁34は、弁軸心CLvまわりに回転する回転弁体であり、弁室301a内に収容されている。弁室301a内では、副弁34は、第1径方向孔305aに対し弁径方向DRrにおいて主弁32を挟んだ反対側に配置されている。また、副弁34は、第2径方向孔306aに対しても弁径方向DRrにおいて主弁32を挟んだ反対側に配置されている。 As shown in FIGS. 2, 3, and 5, the auxiliary valve 34 of the inlet side three-way valve 18 is a rotating valve body that rotates about the valve axis CLv, and is accommodated in the valve chamber 301a. In the valve chamber 301a, the sub valve 34 is disposed on the opposite side of the main valve 32 with respect to the first radial hole 305a in the valve radial direction DRr. Further, the sub valve 34 is arranged on the opposite side of the main valve 32 in the valve radial direction DRr with respect to the second radial hole 306a.
 詳細には、副弁34は主弁周壁部321の内側に配置されているので、弁径方向DRrにおいて、第1径方向孔305aと第2径方向孔306aとのそれぞれに対し、主弁32のうちの主弁周壁部321を挟んだ反対側に配置されている。また、副弁34は駆動軸36と一体構成になっており、その副弁34と駆動軸36は全体として副弁結合体38を構成している。 Specifically, since the auxiliary valve 34 is disposed inside the main valve peripheral wall 321, the main valve 32 is provided for each of the first radial hole 305 a and the second radial hole 306 a in the valve radial direction DRr. The main valve peripheral wall portion 321 is disposed on the opposite side. Further, the sub valve 34 is integrated with the drive shaft 36, and the sub valve 34 and the drive shaft 36 constitute a sub valve combined body 38 as a whole.
 副弁34は、例えば弁軸方向DRaの一方側が閉じた有底円筒形状を成している。そして、副弁34は、副弁周壁部341と一端部342とを有している。これらの副弁周壁部341と一端部342は一体的に構成されている。 The secondary valve 34 has, for example, a bottomed cylindrical shape in which one side in the valve axial direction DRa is closed. The auxiliary valve 34 has an auxiliary valve peripheral wall 341 and one end 342. The auxiliary valve peripheral wall portion 341 and the one end portion 342 are integrally formed.
 副弁周壁部341は、弁軸心CLvを中心とした円筒形状を成している。そして、副弁周壁部341は、主弁周壁部321の内周側でその主弁周壁部321に沿うように形成されている。従って、副弁34が弁軸心CLvまわりに主弁32に対し相対的に回転すると、副弁周壁部341は、主弁周壁部321に沿って弁軸心CLvまわりに回転する。 The auxiliary valve peripheral wall part 341 has a cylindrical shape centered on the valve axis CLv. The auxiliary valve peripheral wall 341 is formed along the main valve peripheral wall 321 on the inner peripheral side of the main valve peripheral wall 321. Accordingly, when the auxiliary valve 34 rotates relative to the main valve 32 around the valve axis CLv, the auxiliary valve peripheral wall part 341 rotates around the valve axis CLv along the main valve peripheral wall part 321.
 また、弁本体30に形成された軸方向孔307aの開口端307bは、この副弁周壁部341よりも弁径方向DRrにおいて内側に配置されている。 Further, the open end 307b of the axial hole 307a formed in the valve body 30 is disposed on the inner side in the valve radial direction DRr than the auxiliary valve peripheral wall portion 341.
 副弁34には副弁貫通孔341aが形成されている。詳細には、副弁貫通孔341aは、副弁34のうち副弁周壁部341を弁径方向DRrに貫通して形成されている。そして、副弁貫通孔341aは、その副弁貫通孔341aのうち弁径方向DRrの外側に一端341bを有し、弁径方向DRrの内側に他端341cを有している。 The sub-valve 34 has a sub-valve through hole 341a. Specifically, the auxiliary valve through hole 341a is formed through the auxiliary valve peripheral wall portion 341 of the auxiliary valve 34 in the valve radial direction DRr. The sub-valve through hole 341a has one end 341b outside the sub-valve through hole 341a in the valve radial direction DRr and the other end 341c inside the valve radial direction DRr.
 その副弁貫通孔341aは円形孔であってもよいが、本実施形態では、弁周方向DRcに拡がった孔形状となっている。具体的には、副弁貫通孔341aは、弁軸方向DRaの孔幅Whが弁周方向DRcの一方側ほど狭くなる部位を、副弁貫通孔341aの中で弁周方向DRcの一方側に有している。それと共に、副弁貫通孔341aは、弁軸方向DRaの孔幅Whが弁周方向DRcの他方側ほど狭くなる部位を、副弁貫通孔341aの中で弁周方向DRcの他方側に有している。 The sub-valve through hole 341a may be a circular hole, but in this embodiment, has a hole shape that expands in the valve circumferential direction DRc. Specifically, the sub valve through hole 341a has a portion where the hole width Wh in the valve axial direction DRa becomes narrower toward one side in the valve circumferential direction DRc on the one side in the valve circumferential direction DRc in the sub valve through hole 341a. Have. At the same time, the auxiliary valve through hole 341a has a portion on the other side of the valve circumferential direction DRc in the auxiliary valve through hole 341a where the hole width Wh in the valve axial direction DRa becomes narrower toward the other side in the valve circumferential direction DRc. ing.
 例えば、副弁貫通孔341aは複数の孔部341d、341e、341fが互いに連結した複合形状を成している。すなわち、副弁貫通孔341aは、中央孔部341dと一方側孔部341eと他方側孔部341fとから構成されている。その中央孔部341dは円形孔形状を成している。また、一方側孔部341eは中央孔部341dから弁周方向DRcの一方側へ拡がるように形成されている。その一方側孔部341eの弁軸方向DRaの孔幅Whは弁周方向DRcの一方側ほど狭くなっている。また、他方側孔部341fは中央孔部341dから弁周方向DRcの他方側へ拡がるように形成されている。その他方側孔部341fの弁軸方向DRaの孔幅Whは弁周方向DRcの他方側ほど狭くなっている。 For example, the sub-valve through hole 341a has a composite shape in which a plurality of holes 341d, 341e, 341f are connected to each other. That is, the sub-valve through-hole 341a is composed of a central hole 341d, one side hole 341e, and the other side hole 341f. The central hole portion 341d has a circular hole shape. Further, the one side hole 341e is formed so as to expand from the center hole 341d to one side in the valve circumferential direction DRc. The hole width Wh in the valve shaft direction DRa of the one side hole 341e is narrower toward one side in the valve circumferential direction DRc. The other side hole 341f is formed so as to extend from the central hole 341d to the other side in the valve circumferential direction DRc. The hole width Wh in the valve axial direction DRa of the other side hole 341f is narrower toward the other side in the valve circumferential direction DRc.
 このような副弁貫通孔341aの構成では、中央孔部341dのうちの弁周方向DRcの一方側半分と一方側孔部341eとが、副弁貫通孔341aのうち弁軸方向DRaの孔幅Whが弁周方向DRcの一方側ほど狭くなる部位に相当する。また、中央孔部341dのうちの弁周方向DRcの他方側半分と他方側孔部341fとが、副弁貫通孔341aのうち弁軸方向DRaの孔幅Whが弁周方向DRcの他方側ほど狭くなる部位に相当する。 In such a configuration of the auxiliary valve through hole 341a, one half of the valve circumferential direction DRc and one side hole 341e of the central hole 341d are the hole width of the auxiliary valve through hole 341a in the valve axial direction DRa. This corresponds to a portion where Wh becomes narrower toward one side in the valve circumferential direction DRc. Further, the other half of the valve circumferential direction DRc and the other hole 341f in the central hole portion 341d have a hole width Wh in the valve axial direction DRa of the auxiliary valve through-hole 341a that is closer to the other side in the valve circumferential direction DRc. Corresponds to a narrowed part.
 このような副弁貫通孔341aが形成されているので、図6に示すように、副弁34は、その副弁34の回転に伴って主弁貫通孔321aの他端321cの少なくとも一部を副弁周壁部341で覆う。この図6は、弁周方向DRcを紙面横方向として副弁周壁部341の外周面341gを展開した展開図である。また、図6では、主弁貫通孔321aの他端321cが二点鎖線で表示されている。 Since the sub-valve through hole 341a is formed, as shown in FIG. 6, the sub-valve 34 moves at least part of the other end 321c of the main valve through-hole 321a as the sub-valve 34 rotates. Cover with the auxiliary valve peripheral wall 341. FIG. 6 is a development view in which the outer peripheral surface 341g of the sub-valve peripheral wall portion 341 is developed with the valve circumferential direction DRc as the horizontal direction on the paper surface. In FIG. 6, the other end 321c of the main valve through hole 321a is indicated by a two-dot chain line.
 詳細には、図3および図6に示すように、副弁34は、主弁貫通孔321aの他端321cを覆う面積を、弁軸心CLvまわりに回転することにより増減する。例えば、副弁34は、主弁貫通孔321aの他端321cに重なる副弁貫通孔341aの面積Ahを副弁34の回転に伴って増やすことにより、副弁周壁部341が主弁貫通孔321aの他端321cを覆う面積を減らす。なお、図6において、上記主弁貫通孔321aの他端321cに重なる副弁貫通孔341aの面積Ahは、ハッチングを施された部分の面積として表されている。 Specifically, as shown in FIGS. 3 and 6, the auxiliary valve 34 increases or decreases the area covering the other end 321 c of the main valve through-hole 321 a by rotating around the valve axis CLv. For example, the auxiliary valve 34 increases the area Ah of the auxiliary valve through-hole 341a overlapping the other end 321c of the main valve through-hole 321a with the rotation of the auxiliary valve 34, so that the auxiliary valve peripheral wall portion 341 is connected to the main valve through-hole 321a. The area covering the other end 321c is reduced. In FIG. 6, the area Ah of the sub-valve through hole 341a that overlaps the other end 321c of the main valve through hole 321a is expressed as the area of the hatched portion.
 図2および図5に示すように、副弁34の一端部342は、副弁周壁部341に対する弁軸方向DRaの一方側にて副弁周壁部341の一端に接合されている。そして、副弁34の一端部342は、例えば弁軸方向DRaを厚み方向とした板状を成しており、副弁周壁部341の内側空間に対する弁軸方向DRaの一方側にてその内側空間を覆っている。また、駆動軸36は、副弁34のうち、この一端部342に連結されている。 2 and 5, the one end 342 of the sub valve 34 is joined to one end of the sub valve peripheral wall 341 on one side in the valve axial direction DRa with respect to the sub valve peripheral wall 341. The one end portion 342 of the auxiliary valve 34 has a plate shape whose thickness direction is, for example, the valve shaft direction DRa, and the inner space on one side of the valve shaft direction DRa with respect to the inner space of the auxiliary valve peripheral wall portion 341. Covering. The drive shaft 36 is connected to the one end 342 of the auxiliary valve 34.
 第1シール部材40および第2シール部材42は、例えばゴム等の弾性体で構成されている。すなわち、第1シール部材40および第2シール部材42は弾力性を有している。また、第1シール部材40および第2シール部材42は、弁本体30に対して回転不能に設けられている。すなわち、第1シール部材40および第2シール部材42も、弁本体30と同様に非回転部である。 The first seal member 40 and the second seal member 42 are made of an elastic body such as rubber, for example. That is, the first seal member 40 and the second seal member 42 have elasticity. The first seal member 40 and the second seal member 42 are provided so as not to rotate with respect to the valve body 30. That is, the first seal member 40 and the second seal member 42 are also non-rotating parts, like the valve body 30.
 図2および図3に示すように、第1シール部材40は、弁室周壁部302の内側で、第1径方向孔305aの開口端305bが設けられた箇所に配置されている。また、第2シール部材42は、弁室周壁部302の内側で、第2径方向孔306aの開口端306bが設けられた箇所に配置されている。 2 and 3, the first seal member 40 is disposed inside the valve chamber peripheral wall portion 302 at a location where the opening end 305b of the first radial hole 305a is provided. Further, the second seal member 42 is disposed inside the valve chamber peripheral wall portion 302 at a location where the open end 306b of the second radial hole 306a is provided.
 具体的に、第1シール部材40には、第1シール部材40を弁径方向DRrに貫通した第1シール孔40aが形成されている。また、第1シール部材40は、その第1シール孔40aの中心が第1径方向孔305aの開口端305bの中心に合うよう配置されている。また、第1シール孔40aの孔径は、第1径方向孔305aの開口端305bの孔径よりも僅かに大きくなっている。 Specifically, the first seal member 40 is formed with a first seal hole 40a penetrating the first seal member 40 in the valve diameter direction DRr. The first seal member 40 is arranged such that the center of the first seal hole 40a is aligned with the center of the opening end 305b of the first radial hole 305a. Further, the hole diameter of the first seal hole 40a is slightly larger than the hole diameter of the opening end 305b of the first radial hole 305a.
 例えば、主弁32が第1回転位置に位置決めされた場合には、弁本体30の第1径方向孔305aは、第1シール孔40aと主弁貫通孔321aと副弁貫通孔341aとを順に介して弁本体30の軸方向孔307aに連通する。 For example, when the main valve 32 is positioned at the first rotation position, the first radial hole 305a of the valve body 30 is formed by sequentially connecting the first seal hole 40a, the main valve through hole 321a, and the sub valve through hole 341a. The valve body 30 communicates with the axial hole 307a.
 第1シール部材40は、その第1シール孔40aを環状に取り巻いて形成する第1シール部401を有している。すなわち、第1シール部401は、その第1シール部401の内側に第1シール孔40aを形成している。 The first seal member 40 has a first seal portion 401 formed by surrounding the first seal hole 40a in an annular shape. In other words, the first seal portion 401 has a first seal hole 40 a formed inside the first seal portion 401.
 上述したように第1シール部材40が弾力性を有しているので、この第1シール部401も弾力性を有している。また、上記の第1シール孔40aの配置から判るように、第1シール部401は、弁径方向DRrの内側を向いた第1径方向孔305aの開口端305bをその全周にわたって取り巻くように形成されている。 Since the first seal member 40 has elasticity as described above, the first seal portion 401 also has elasticity. Further, as can be seen from the arrangement of the first seal hole 40a, the first seal portion 401 surrounds the open end 305b of the first radial hole 305a facing the inside in the valve radial direction DRr over the entire circumference. Is formed.
 更に、第1シール部401は、弁本体30と主弁32との間で挟圧されている。詳しく言えば、その第1シール部401は、弁本体30の弁室周壁部302と主弁32の主弁周壁部321との間で弁径方向DRrに挟圧されている。このような構成により、第1シール部401は、弁室301aにおいて第1径方向孔305aの開口端305b周りをシールする。 Furthermore, the first seal portion 401 is clamped between the valve body 30 and the main valve 32. Specifically, the first seal portion 401 is sandwiched between the valve chamber peripheral wall portion 302 of the valve body 30 and the main valve peripheral wall portion 321 of the main valve 32 in the valve radial direction DRr. With such a configuration, the first seal portion 401 seals around the open end 305b of the first radial hole 305a in the valve chamber 301a.
 また、第1シール部401は、環状の第1シール面401aを、弁径方向DRrの内側に設けられた端部として有している。その第1シール面401aは、主弁周壁部321の外周面321dに対して接触しており、主弁32の回転に伴って摺動する。 Moreover, the 1st seal | sticker part 401 has the cyclic | annular 1st seal | sticker surface 401a as an edge part provided inside the valve radial direction DRr. The first seal surface 401 a is in contact with the outer peripheral surface 321 d of the main valve peripheral wall portion 321, and slides as the main valve 32 rotates.
 第2シール部材42は、その配置を除き第1シール部材40と同様の構成である。すなわち、第2シール部材42には、第2シール部材42を弁径方向DRrに貫通した第2シール孔42aが形成されている。また、第2シール部材42は、その第2シール孔42aの中心が第2径方向孔306aの開口端306bの中心に合うよう配置されている。また、第2シール孔42aの孔径は、第2径方向孔306aの開口端306bの孔径よりも僅かに大きくなっている。 The second seal member 42 has the same configuration as the first seal member 40 except for its arrangement. That is, the second seal member 42 is formed with a second seal hole 42a penetrating the second seal member 42 in the valve diameter direction DRr. The second seal member 42 is disposed such that the center of the second seal hole 42a is aligned with the center of the open end 306b of the second radial hole 306a. The hole diameter of the second seal hole 42a is slightly larger than the hole diameter of the opening end 306b of the second radial hole 306a.
 例えば、主弁32が第2回転位置に位置決めされた場合には、弁本体30の第2径方向孔306aは、第2シール孔42aと主弁貫通孔321aと副弁貫通孔341aとを順に介して弁本体30の軸方向孔307aに連通する。 For example, when the main valve 32 is positioned at the second rotational position, the second radial hole 306a of the valve body 30 is connected to the second seal hole 42a, the main valve through hole 321a, and the sub valve through hole 341a in order. The valve body 30 communicates with the axial hole 307a.
 第2シール部材42は第2シール部421を有している。その第2シール部421は、その第2シール部421の内側に第2シール孔42aを形成している。そして、第2シール部421は、第1シール部401と同様に弾力性を有している。また、第2シール部421は環状を成し、弁径方向DRrの内側を向いた第2径方向孔306aの開口端306bをその全周にわたって取り巻くように形成されている。 The second seal member 42 has a second seal portion 421. The second seal portion 421 has a second seal hole 42 a formed inside the second seal portion 421. The second seal portion 421 has elasticity like the first seal portion 401. The second seal portion 421 has an annular shape and is formed so as to surround the open end 306b of the second radial hole 306a facing the inside in the valve radial direction DRr over the entire circumference.
 また、第2シール部421は、弁本体30と主弁32との間で挟圧されている。詳しく言えば、第1シール部401と同様に、第2シール部421も、弁本体30の弁室周壁部302と主弁32の主弁周壁部321との間で弁径方向DRrに挟圧されている。このような構成により、第2シール部421は、弁室301aにおいて第2径方向孔306aの開口端306b周りをシールする。 Further, the second seal portion 421 is pinched between the valve body 30 and the main valve 32. More specifically, like the first seal portion 401, the second seal portion 421 is also pinched in the valve radial direction DRr between the valve chamber peripheral wall portion 302 of the valve body 30 and the main valve peripheral wall portion 321 of the main valve 32. Has been. With such a configuration, the second seal portion 421 seals around the open end 306b of the second radial hole 306a in the valve chamber 301a.
 また、第2シール部421は、環状の第2シール面421aを、弁径方向DRrの内側に設けられた端部として有している。その第2シール面421aは、主弁周壁部321の外周面321dに対して接触しており、主弁32の回転に伴って摺動する。 Also, the second seal portion 421 has an annular second seal surface 421a as an end portion provided inside the valve radial direction DRr. The second seal surface 421a is in contact with the outer peripheral surface 321d of the main valve peripheral wall portion 321 and slides as the main valve 32 rotates.
 また、図3および図7に示すように、第1シール孔40aの孔径は、主弁貫通孔321aの一端321bの孔径に対して僅かに大きくなっている。そのため、主弁32が第1回転位置に位置決めされた場合には、主弁貫通孔321aの一端321bは、第1シール孔40aをその第1シール孔40aの軸方向へ投影して得られる範囲内に収まる。すなわち、その主弁貫通孔321aの一端321bの周縁は、第1シール孔40aの主弁32側の周縁を形成する第1シール面401aとは交差せず、その主弁貫通孔321aの一端321bはその第1シール面401aの内周側に収まる。 As shown in FIGS. 3 and 7, the diameter of the first seal hole 40a is slightly larger than the diameter of the one end 321b of the main valve through-hole 321a. Therefore, when the main valve 32 is positioned at the first rotation position, one end 321b of the main valve through hole 321a is a range obtained by projecting the first seal hole 40a in the axial direction of the first seal hole 40a. Fits within. That is, the peripheral edge of one end 321b of the main valve through hole 321a does not intersect the first seal surface 401a that forms the peripheral edge of the first seal hole 40a on the main valve 32 side, and one end 321b of the main valve through hole 321a. Fits on the inner peripheral side of the first seal surface 401a.
 これと同様に、第2シール孔42aの孔径も、主弁貫通孔321aの一端321bの孔径に対して僅かに大きくなっている。そのため、主弁32が第2回転位置に位置決めされた場合には、主弁貫通孔321aの一端321bは、第2シール孔42aをその第2シール孔42aの軸方向へ投影して得られる範囲内に収まる。すなわち、その主弁貫通孔321aの一端321bの周縁は、第2シール孔42aの主弁32側の周縁を形成する第2シール面421aとは交差せず、その主弁貫通孔321aの一端321bはその第2シール面421aの内周側に収まる。 Similarly, the diameter of the second seal hole 42a is slightly larger than the diameter of the one end 321b of the main valve through hole 321a. Therefore, when the main valve 32 is positioned at the second rotation position, one end 321b of the main valve through hole 321a is obtained by projecting the second seal hole 42a in the axial direction of the second seal hole 42a. Fits within. That is, the peripheral edge of one end 321b of the main valve through hole 321a does not intersect the second seal surface 421a that forms the peripheral edge of the second seal hole 42a on the main valve 32 side, and one end 321b of the main valve through hole 321a. Fits on the inner peripheral side of the second seal surface 421a.
 なお、図7では、第1シール部材40と第2シール部材42は二点鎖線で表示されている。また、図7では、主弁32が第1回転位置にあるときの主弁周壁部321の外周面321dに対して第1シール部材40が重ねて表示されている。それと共に、図7では、主弁32が第2回転位置にあるときの主弁周壁部321の外周面321dに対して第2シール部材42が重ねて表示されている。 In FIG. 7, the first seal member 40 and the second seal member 42 are indicated by a two-dot chain line. In FIG. 7, the first seal member 40 is displayed so as to overlap the outer peripheral surface 321d of the main valve peripheral wall 321 when the main valve 32 is in the first rotation position. In addition, in FIG. 7, the second seal member 42 is displayed so as to overlap the outer peripheral surface 321d of the main valve peripheral wall 321 when the main valve 32 is in the second rotational position.
 図2および図8に示すように、主弁32は、副弁34を介して間接的に駆動装置44によって回転駆動される。すなわち、主弁32は、駆動装置44に駆動される副弁34と共にその副弁34に従って回転する従動弁である。そのように主弁32を副弁34に従って回転させるために、入口側三方弁18は、主弁32と副弁34との間でのトルク伝達を断接するリンク機構としての回転断接部46を備えている。 2 and FIG. 8, the main valve 32 is rotationally driven by a drive device 44 indirectly via a sub valve 34. In other words, the main valve 32 is a driven valve that rotates along with the sub valve 34 driven by the drive device 44. In order to rotate the main valve 32 according to the sub-valve 34 as described above, the inlet side three-way valve 18 has a rotation connecting / disconnecting portion 46 as a link mechanism for connecting / disconnecting torque transmission between the main valve 32 and the sub-valve 34. I have.
 この回転断接部46は、副弁34が所定の第1回転動作で回転させられる場合には、主弁32をその副弁34と共に回転させる。その一方で、回転断接部46は、副弁34が所定の第2回転動作で回転させられる場合には、副弁34が主弁32に対して相対回転することを許容する。その第1回転動作および第2回転動作は何れも、回転断接部46の構造によって決まる副弁34の機械的な回転動作であり、第2回転動作は、第1回転動作とは異なる回転動作である。 The rotation connecting / disconnecting portion 46 rotates the main valve 32 together with the sub valve 34 when the sub valve 34 is rotated by a predetermined first rotation operation. On the other hand, the rotation connecting / disconnecting portion 46 allows the sub valve 34 to rotate relative to the main valve 32 when the sub valve 34 is rotated by a predetermined second rotation operation. The first rotation operation and the second rotation operation are both mechanical rotation operations of the auxiliary valve 34 determined by the structure of the rotation connecting / disconnecting portion 46, and the second rotation operation is a rotation operation different from the first rotation operation. It is.
 具体的には図2、図8、および図9に示すように、回転断接部46は、主弁32に含まれる溝形成部461と、副弁34に含まれる突起462とから構成されている。 Specifically, as shown in FIGS. 2, 8, and 9, the rotation connecting / disconnecting portion 46 includes a groove forming portion 461 included in the main valve 32 and a protrusion 462 included in the auxiliary valve 34. Yes.
 その溝形成部461は、弁周方向DRcに延びる溝461aを形成している。溝形成部461は、主弁32のうちで、詳細には一端部322に含まれている。また、その溝形成部461の溝461aは、例えばC字状を成すように延びており、弁軸方向DRaの他方側すなわち副弁34側に開いている。 The groove forming portion 461 forms a groove 461a extending in the valve circumferential direction DRc. The groove forming portion 461 is included in the end portion 322 in detail in the main valve 32. Further, the groove 461a of the groove forming portion 461 extends, for example, in a C shape, and is open to the other side in the valve axial direction DRa, that is, the sub valve 34 side.
 更に、その溝461aは、弁周方向DRcにおいて一端461bと他端461cとを有している。すなわち、溝形成部461は、その溝461aの一端461bを形成する一端形成部461dと、その溝461aの他端461cを形成する他端形成部461eとを有している。また、溝461aの一端461bは溝461aのうち弁周方向DRcの一方側に設けられ、溝461aの他端461cは溝461aのうち弁周方向DRcの他方側に設けられている。 Furthermore, the groove 461a has one end 461b and the other end 461c in the valve circumferential direction DRc. That is, the groove forming portion 461 has an end forming portion 461d that forms one end 461b of the groove 461a and an other end forming portion 461e that forms the other end 461c of the groove 461a. One end 461b of the groove 461a is provided on one side of the groove 461a in the valve circumferential direction DRc, and the other end 461c of the groove 461a is provided on the other side of the groove 461a in the valve circumferential direction DRc.
 回転断接部46の突起462は、副弁34の一端部342にて弁軸方向DRaの一方側へ突き出るように形成されている。そして、その突起462は、回転断接部46の溝461aに挿入されている。 The protrusion 462 of the rotation connecting / disconnecting portion 46 is formed so as to protrude to one side in the valve axial direction DRa at one end 342 of the sub valve 34. The protrusion 462 is inserted into the groove 461 a of the rotation connecting / disconnecting portion 46.
 また、突起462は、一端462aを弁周方向DRcの一方側に有し、他端462bを弁周方向DRcの他方側に有している。従って、その突起462の一端462aは、副弁34が弁周方向DRcの一方側へ回転させられることにより、一端形成部461dに突き当たる。また、突起462の他端462bは、副弁34が弁周方向DRcの他方側へ回転させられることにより、他端形成部461eに突き当たる。 The protrusion 462 has one end 462a on one side in the valve circumferential direction DRc, and the other end 462b on the other side in the valve circumferential direction DRc. Accordingly, one end 462a of the projection 462 abuts on the one end forming portion 461d when the sub valve 34 is rotated to one side in the valve circumferential direction DRc. Further, the other end 462b of the protrusion 462 abuts against the other end forming portion 461e when the sub valve 34 is rotated to the other side in the valve circumferential direction DRc.
 回転断接部46は、このような溝形成部461と突起462とを有しているので、副弁34が突起462を一端形成部461dに押し当てつつ駆動装置44によって回転させられる場合には、主弁32を弁周方向DRcの一方側へ副弁34と共に回転させる。それとは逆に、回転断接部46は、副弁34が突起462を他端形成部461eに押し当てつつ駆動装置44によって回転させられる場合には、主弁32を弁周方向DRcの他方側へ副弁34と共に回転させる。このことから、突起462が一端形成部461dまたは他端形成部461eに押し当てられつつ副弁34が回転させられることが、上記の第1回転動作に該当する。 Since the rotation connecting / disconnecting portion 46 has such a groove forming portion 461 and a protrusion 462, when the auxiliary valve 34 is rotated by the driving device 44 while pressing the protrusion 462 against the one end forming portion 461d. The main valve 32 is rotated together with the sub valve 34 to one side in the valve circumferential direction DRc. On the other hand, when the sub-valve 34 is rotated by the drive device 44 while pressing the protrusion 462 against the other end forming portion 461e, the rotation connecting / disconnecting portion 46 moves the main valve 32 to the other side in the valve circumferential direction DRc. The auxiliary valve 34 is rotated together. Therefore, the rotation of the auxiliary valve 34 while the protrusion 462 is pressed against the one end forming portion 461d or the other end forming portion 461e corresponds to the first rotating operation.
 また、回転断接部46は、突起462が溝461a内で一端形成部461dおよび他端形成部461eから離れて副弁34が回転させられる場合には、副弁34が主弁32に対して相対回転することを許容する。要するに、その場合には、突起462が溝461a内を弁周方向DRcに移動するだけである。例えば、図8に示された状態では、副弁34が主弁32に対して矢印AR1のように弁周方向DRcの他方側へ回転することが許容される。このことから、突起462が溝461a内で一端形成部461dおよび他端形成部461eから離れて副弁34が回転させられることが、上記の第2回転動作に該当する。 In addition, the rotation connecting / disconnecting portion 46 is configured such that when the auxiliary valve 34 is rotated with the protrusion 462 away from the one end forming portion 461d and the other end forming portion 461e within the groove 461a, the auxiliary valve 34 is in relation to the main valve 32. Allow relative rotation. In short, in that case, the protrusion 462 only moves in the groove circumferential direction DRc in the groove 461a. For example, in the state shown in FIG. 8, the sub valve 34 is allowed to rotate to the other side in the valve circumferential direction DRc with respect to the main valve 32 as indicated by an arrow AR1. Accordingly, the fact that the protrusion 462 moves away from the one end forming portion 461d and the other end forming portion 461e within the groove 461a and the auxiliary valve 34 is rotated corresponds to the second rotating operation.
 例えば本実施形態では、その副弁34が主弁32に対して相対回転することが許容される副弁34の回転角度AGp(図8参照)は、弁軸心CLvを中心として副弁貫通孔341aが弁周方向DRcに拡がる角度AGh(図3参照)よりも大きくなっている。その副弁34が主弁32に対して相対回転することが許容される副弁34の回転角度AGpとは、言い換えれば、突起462が一端形成部461dに当接した状態から他端形成部461eに当接するまでに弁軸心CLvまわりに回転する角度AGpである。 For example, in the present embodiment, the rotation angle AGp (see FIG. 8) of the auxiliary valve 34 that allows the auxiliary valve 34 to rotate relative to the main valve 32 is the auxiliary valve through-hole about the valve axis CLv. 341a is larger than the angle AGh (see FIG. 3) that extends in the valve circumferential direction DRc. The rotation angle AGp of the sub-valve 34 that allows the sub-valve 34 to rotate relative to the main valve 32 is, in other words, from the state in which the protrusion 462 contacts the one end forming portion 461d. Is an angle AGp that rotates around the valve axis CLv until it comes into contact with.
 ここで、本実施形態と比較される比較例の三方弁90について説明する。比較例の三方弁90のうち本実施形態の入口側三方弁18と同一または均等な部分については省略または簡略化して説明する。 Here, the three-way valve 90 of the comparative example compared with this embodiment is demonstrated. Of the three-way valve 90 of the comparative example, the same or equivalent parts as those of the inlet-side three-way valve 18 of the present embodiment will be described by omitting or simplifying them.
 図10に示す比較例の三方弁90は、本実施形態の入口側三方弁18と同様に切替流調弁として機能する。この比較例の三方弁90は主弁92を備えているが、本実施形態の入口側三方弁18とは異なり、副弁34を備えていない。 The three-way valve 90 of the comparative example shown in FIG. 10 functions as a switching flow control valve, similarly to the inlet-side three-way valve 18 of the present embodiment. The three-way valve 90 of this comparative example includes a main valve 92, but does not include the auxiliary valve 34, unlike the inlet-side three-way valve 18 of the present embodiment.
 従って、比較例の三方弁90では、駆動軸36は主弁92に連結されている。そのため、その主弁92は、図11の矢印AR2のように弁軸心CLvまわりに回転させられる。そして、その主弁92に形成された主弁貫通孔921aは、円形孔ではなく、図11に示すように、弁周方向DRcに拡がった孔形状となっている。これらの点以外では、比較例の三方弁90が有する主弁92は、本実施形態の入口側三方弁18が有する主弁32と同様である。 Therefore, in the three-way valve 90 of the comparative example, the drive shaft 36 is connected to the main valve 92. Therefore, the main valve 92 is rotated around the valve axis CLv as indicated by an arrow AR2 in FIG. And the main valve through-hole 921a formed in the main valve 92 is not a circular hole but has a hole shape extending in the valve circumferential direction DRc as shown in FIG. Except for these points, the main valve 92 included in the three-way valve 90 of the comparative example is the same as the main valve 32 included in the inlet-side three-way valve 18 of the present embodiment.
 なお、比較例の三方弁90では、第1シール部材40および第2シール部材42は、図12に示すように、それぞれ本実施形態の入口側三方弁18のものと同様である。また、その第1シール部材40と第2シール部材42は互いに同様の構成であるので、共通の図である図12にて示されている。 In the three-way valve 90 of the comparative example, the first seal member 40 and the second seal member 42 are the same as those of the inlet-side three-way valve 18 of this embodiment as shown in FIG. Further, since the first seal member 40 and the second seal member 42 have the same configuration, they are shown in FIG. 12, which is a common view.
 このような比較例の三方弁90において、第1径方向孔305aを通過する流体(例えば冷水)の流量調整が行われる流量調整時には、図10~13に示すように、第1シール孔40aに重なり合う主弁貫通孔921aの面積によって流体の流量が定まる。そのため、その流量調整時には、主弁貫通孔921aが、第1シール孔40aの主弁92側の周縁を形成する第1シール面401aに対して跨る。このことは、第2径方向孔306aに対する流量調整時においても同様である。なお、図13では、主弁貫通孔921aがシール面401a、421aに対して跨る箇所は、二点鎖線CR1、CR2で囲んで示されている。 In the three-way valve 90 of such a comparative example, when adjusting the flow rate of the fluid (for example, cold water) that passes through the first radial hole 305a, as shown in FIGS. The flow rate of the fluid is determined by the area of the overlapping main valve through hole 921a. Therefore, when adjusting the flow rate, the main valve through-hole 921a straddles the first seal surface 401a that forms the peripheral edge of the first seal hole 40a on the main valve 92 side. The same applies to the flow rate adjustment for the second radial hole 306a. In FIG. 13, the portion where the main valve through hole 921a straddles the seal surfaces 401a and 421a is indicated by being surrounded by two-dot chain lines CR1 and CR2.
 例えば図14および図15に示すように、第2径方向孔306aに対する流量調整時すなわち温水通水時には、第2シール面421aに主弁貫通孔921aが重複している。そのため、第2シール部材42が主弁貫通孔921a内へ膨張する。例えば図15において第2シール部材42のうちのB1部分が、その膨張部分である。 For example, as shown in FIGS. 14 and 15, the main valve through hole 921a overlaps the second seal surface 421a when the flow rate is adjusted with respect to the second radial hole 306a, that is, when warm water is passed. Therefore, the second seal member 42 expands into the main valve through hole 921a. For example, in FIG. 15, the B1 portion of the second seal member 42 is the expanded portion.
 そして、第2シール面421aに主弁貫通孔921aが重複した状態が或る程度の時間にわたって維持されると、第2シール面421aが主弁貫通孔921a内へ次第に食い込み、その第2シール面421aに段差が生じる。 When the state where the main valve through hole 921a overlaps the second seal surface 421a is maintained for a certain period of time, the second seal surface 421a gradually bites into the main valve through hole 921a, and the second seal surface A step occurs in 421a.
 そのように第2シール面421aに段差が生じた状態で、例えば矢印ARrtのように主弁92が回転させられると、第2シール孔42aが閉じられ且つ第1シール孔40aが開かれる。そして、第1径方向孔305aから弁室301aへ冷水が流入する。そうなると、温水により膨張させられていた第2シール部材42がその冷水によって硬化する。なお、図14では弁室301aの外側の図示は省略されており、このことは後述の図16でも同様である。 Thus, when the main valve 92 is rotated as indicated by the arrow ARrt, for example, with the step formed on the second seal surface 421a, the second seal hole 42a is closed and the first seal hole 40a is opened. Then, cold water flows from the first radial hole 305a into the valve chamber 301a. Then, the second seal member 42 that has been expanded by the hot water is cured by the cold water. In FIG. 14, illustration of the outside of the valve chamber 301a is omitted, and this also applies to FIG.
 その結果、図16および図17に示すように、第2シール面421aに段差が残ったままとなり、第2シール面421aの主弁92に対するシール性が悪化する。そのように第2シール面421aのシール性が悪化すると、例えば冷水が矢印FLesのように第2シール面421aと主弁92との間を通って弁室301aから第2径方向孔306aへと漏れ出ることになる。 As a result, as shown in FIGS. 16 and 17, a step remains on the second seal surface 421a, and the sealing performance of the second seal surface 421a with respect to the main valve 92 is deteriorated. When the sealing performance of the second seal surface 421a is deteriorated in such a manner, for example, cold water passes between the second seal surface 421a and the main valve 92 as indicated by an arrow FLes and from the valve chamber 301a to the second radial hole 306a. It will leak out.
 なお、比較例の三方弁90において、上述したような流体漏れの原因になるシール面401a、421aの段差は、三方弁90に流通する複数の流体に温度差がある場合に顕著に生じやすいと考えられるが、三方弁90に流通する流体に温度差がなくても生じ得る。 In the three-way valve 90 of the comparative example, the steps of the seal surfaces 401a and 421a that cause fluid leakage as described above are likely to occur significantly when there are temperature differences in the plurality of fluids flowing through the three-way valve 90. Though conceivable, it may occur even if there is no temperature difference in the fluid flowing through the three-way valve 90.
 上述したような比較例に対し本実施形態によれば、図2および図3に示すように、各シール部401、421に対し直接には接触していない副弁34が、主弁貫通孔321aの他端321cを覆う面積を、弁軸心CLvまわりに回転することにより増減する。そのため、その副弁34の回転により、入口側三方弁18は、入口側三方弁18を通過する流体の流量調整を行うことができる。 In contrast to the comparative example as described above, according to the present embodiment, as shown in FIGS. 2 and 3, the sub-valve 34 that is not in direct contact with the seal portions 401 and 421 is connected to the main valve through hole 321a. The area covering the other end 321c of the valve is increased or decreased by rotating around the valve axis CLv. Therefore, the inlet side three-way valve 18 can adjust the flow rate of the fluid passing through the inlet side three-way valve 18 by the rotation of the sub valve 34.
 従って、入口側三方弁18の主弁32はその流体の流量調整を行う必要がなく、第1径方向孔305aと第2径方向孔306aとを択一的に開閉すれば足りる。すなわち、その流体の流量調整が行われる際に、主弁貫通孔321aの一端321bの周縁が各シール部401、421のシール面401a、421aに対し交差した状態が継続されずに済む。その結果として、各シール部401、421のシール面401a、421aに段差が残りにくく各シール部401、421のシール性を良好に保つことが可能である。要するに、各シール部401、421のシール性を悪化させないように流体の流量調整を行うことが可能である。 Therefore, the main valve 32 of the inlet side three-way valve 18 does not need to adjust the flow rate of the fluid, and it is sufficient to selectively open and close the first radial hole 305a and the second radial hole 306a. That is, when the flow rate of the fluid is adjusted, the state in which the peripheral edge of the one end 321b of the main valve through hole 321a intersects the seal surfaces 401a and 421a of the seal portions 401 and 421 is not continued. As a result, it is difficult for steps to remain on the seal surfaces 401a and 421a of the seal portions 401 and 421, and the sealability of the seal portions 401 and 421 can be kept good. In short, it is possible to adjust the flow rate of the fluid so as not to deteriorate the sealing performance of the seal portions 401 and 421.
 また、本実施形態によれば、図2および図3に示すように、主弁周壁部321は、副弁34をその全周にわたって弁軸心CLvまわりに取り囲んでいる。そして、主弁貫通孔321aは、その主弁周壁部321を弁径方向DRrに貫通して形成されている。従って、副弁34が弁径方向DRrにおける主弁周壁部321の内側に配置されるので、主弁32と副弁34との全体が占める体積を抑えることが容易である。 Further, according to the present embodiment, as shown in FIGS. 2 and 3, the main valve peripheral wall portion 321 surrounds the auxiliary valve 34 around the valve axis CLv over the entire periphery thereof. The main valve through hole 321a is formed so as to penetrate the main valve peripheral wall portion 321 in the valve radial direction DRr. Therefore, since the auxiliary valve 34 is disposed inside the main valve peripheral wall 321 in the valve radial direction DRr, it is easy to suppress the volume occupied by the entire main valve 32 and the auxiliary valve 34.
 また、本実施形態によれば、図2に示すように、弁本体30に形成された軸方向孔307aの開口端307bは、副弁周壁部341よりも弁径方向DRrにおいて内側に配置されている。すなわち、主弁周壁部321は副弁周壁部341よりも弁径方向DRrにおいて外側に配置されているので、軸方向孔307aの開口端307bは、その主弁周壁部321よりも弁径方向DRrにおいて内側に配置されている。従って、その軸方向孔307aが弁室301aへ開放された状態を、主弁32の回転位置に関わらず維持することが可能である。 Further, according to the present embodiment, as shown in FIG. 2, the opening end 307 b of the axial hole 307 a formed in the valve body 30 is disposed on the inner side in the valve radial direction DRr than the auxiliary valve peripheral wall portion 341. Yes. That is, since the main valve peripheral wall portion 321 is disposed outside the sub valve peripheral wall portion 341 in the valve radial direction DRr, the opening end 307b of the axial hole 307a is positioned in the valve radial direction DRr rather than the main valve peripheral wall portion 321. Is arranged inside. Therefore, it is possible to maintain the state in which the axial hole 307a is opened to the valve chamber 301a regardless of the rotational position of the main valve 32.
 また、本実施形態によれば、図5および図6に示すように、副弁貫通孔341aは、弁軸方向DRaの孔幅Whが弁周方向DRcの一方側ほど狭くなる部位を、副弁貫通孔341aの中で弁周方向DRcの一方側に有している。そして、副弁34は、例えば、主弁貫通孔321aの他端321cに重なる副弁貫通孔341aの面積Ahを副弁34の回転に伴って増やすことにより、副弁周壁部341が主弁貫通孔321aの他端321cを覆う面積を減らす。従って、その副弁貫通孔341aの形状を定めることにより、副弁34の回転と主弁貫通孔321aの開度変化との関係を容易に定めることが可能である。 Further, according to the present embodiment, as shown in FIGS. 5 and 6, the auxiliary valve through-hole 341 a has a portion where the hole width Wh in the valve axial direction DRa becomes narrower toward one side in the valve circumferential direction DRc. The through hole 341a has one side in the valve circumferential direction DRc. For example, the auxiliary valve 34 increases the area Ah of the auxiliary valve through hole 341a that overlaps the other end 321c of the main valve through hole 321a with the rotation of the auxiliary valve 34, so that the auxiliary valve peripheral wall 341 passes through the main valve. The area covering the other end 321c of the hole 321a is reduced. Therefore, by defining the shape of the sub valve through hole 341a, it is possible to easily determine the relationship between the rotation of the sub valve 34 and the change in the opening of the main valve through hole 321a.
 また、本実施形態によれば、図2および図8に示すように、回転断接部46は、副弁34が所定の第1回転動作で回転させられる場合には、主弁32をその副弁34と共に回転させる。その一方で、回転断接部46は、副弁34が所定の第2回転動作で回転させられる場合には、副弁34が主弁32に対して相対回転することを許容する。従って、本実施形態のように駆動装置44は副弁34に連結されていれば、主弁32に連結されていなくても回転断接部46を介して主弁32を回転させることができるので、駆動装置44を簡潔に構成することが可能である。 Further, according to the present embodiment, as shown in FIGS. 2 and 8, the rotation connecting / disconnecting portion 46 allows the main valve 32 to be connected to the auxiliary valve 34 when the auxiliary valve 34 is rotated by a predetermined first rotation operation. Rotate with valve 34. On the other hand, the rotation connecting / disconnecting portion 46 allows the sub valve 34 to rotate relative to the main valve 32 when the sub valve 34 is rotated by a predetermined second rotation operation. Therefore, as long as the drive device 44 is connected to the sub valve 34 as in the present embodiment, the main valve 32 can be rotated via the rotation connecting / disconnecting portion 46 without being connected to the main valve 32. The drive device 44 can be configured simply.
 例えば、駆動装置44は、副弁34を第1回転動作で回転させることにより主弁32を任意の回転位置に位置決めした後に、副弁34を第2回転動作で回転させて元の回転位置に戻せば、副弁34の回転位置を変えずに主弁32を任意の回転位置に位置決めすることが可能である。 For example, the driving device 44 positions the main valve 32 in an arbitrary rotation position by rotating the sub valve 34 in the first rotation operation, and then rotates the sub valve 34 in the second rotation operation to return to the original rotation position. If it returns, it is possible to position the main valve 32 at an arbitrary rotational position without changing the rotational position of the auxiliary valve 34.
 すなわち、駆動装置44は、副弁34を第1回転動作で回転させることにより、主弁32を第1回転位置と第2回転位置とのそれぞれに位置決めすることができる。また、駆動装置44は、副弁34を第2回転動作で回転させることにより、主弁32を回転させずに主弁貫通孔321aの開度調整すなわち流体の流量調整を行うことができる。 That is, the drive device 44 can position the main valve 32 at each of the first rotation position and the second rotation position by rotating the sub valve 34 in the first rotation operation. Further, the driving device 44 can adjust the opening degree of the main valve through-hole 321a, that is, the fluid flow rate without rotating the main valve 32 by rotating the sub valve 34 by the second rotation operation.
 また、本実施形態によれば、図2および図8に示すように、回転断接部46は、主弁32に含まれる溝形成部461と、副弁34に含まれる突起462とから構成されている。従って、主弁32および副弁34とは別個に回転断接部46を設ける必要がないので、入口側三方弁18の小型化を図るのが容易である。 Further, according to the present embodiment, as shown in FIGS. 2 and 8, the rotation connecting / disconnecting portion 46 includes a groove forming portion 461 included in the main valve 32 and a protrusion 462 included in the sub valve 34. ing. Therefore, since it is not necessary to provide the rotation connecting / disconnecting portion 46 separately from the main valve 32 and the sub valve 34, it is easy to reduce the size of the inlet side three-way valve 18.
 また、本実施形態によれば、図2に示すように、副弁34は、入口側三方弁18が有する複数の回転弁32、34のうち駆動装置44に駆動される駆動弁である。従って、駆動装置44は回転断接部46を介さずに副弁34を回転させ、それにより流体の流量調整を行うことが可能である。これにより例えば、流体の流量調整時において流量の微調整を精度良く行うことが可能である。 Further, according to the present embodiment, as shown in FIG. 2, the auxiliary valve 34 is a drive valve that is driven by the drive device 44 among the plurality of rotary valves 32, 34 included in the inlet side three-way valve 18. Therefore, the drive device 44 can rotate the auxiliary valve 34 without the rotation connecting / disconnecting portion 46, thereby adjusting the flow rate of the fluid. Thereby, for example, fine adjustment of the flow rate can be performed with high accuracy when adjusting the flow rate of the fluid.
 また、本実施形態によれば、図1および図2に示すように、主弁32により第1径方向孔305aが開放され且つ第2径方向孔306aが閉じられた第1の場合には、第1径方向孔305aと軸方向孔307aとの間で弁室301aを介して冷水が流通する。また、主弁32により第1径方向孔305aが閉じられ且つ第2径方向孔306aが開放された第2の場合には、上記第1の場合に比して高温の温水が第2径方向孔306aと軸方向孔307aとの間で弁室301aを介して流通する。従って、流体(例えば温水と冷水)の温度に応じて第1シール部401および第2シール部421が膨張と硬化とを繰り返す環境下で、それらのシール部401、421のシール性を良好に保つことが可能である。 Further, according to the present embodiment, as shown in FIGS. 1 and 2, in the first case where the first radial hole 305a is opened by the main valve 32 and the second radial hole 306a is closed, Cold water flows through the valve chamber 301a between the first radial hole 305a and the axial hole 307a. In the second case where the first radial hole 305a is closed and the second radial hole 306a is opened by the main valve 32, hot water having a temperature higher than that in the first case is in the second radial direction. It flows through the valve chamber 301a between the hole 306a and the axial hole 307a. Therefore, in an environment where the first seal portion 401 and the second seal portion 421 are repeatedly expanded and cured in accordance with the temperature of the fluid (for example, hot water and cold water), the sealing performance of the seal portions 401 and 421 is kept good. It is possible.
 例えば仮に入口側三方弁18の第1シール部401または第2シール部421で漏れが生じると、統合熱マネージメントシステム10で流通する温水と冷水とが僅かながら混合してしまう。そうなると、所望の温度の温水または冷水が得られ難くなるので、冷凍サイクル装置12の圧縮機121が余分に仕事をしなければならず、その圧縮機121の消費動力が大きくなる。従って、入口側三方弁18の内部シール性能は、統合熱マネージメントシステム10が搭載される自動車の燃費に大きく影響する重要な機能である。 For example, if a leak occurs in the first seal portion 401 or the second seal portion 421 of the inlet side three-way valve 18, warm water and cold water circulated in the integrated heat management system 10 are slightly mixed. Then, since it becomes difficult to obtain hot or cold water at a desired temperature, the compressor 121 of the refrigeration cycle apparatus 12 must perform extra work, and the power consumption of the compressor 121 increases. Therefore, the internal sealing performance of the inlet side three-way valve 18 is an important function that greatly affects the fuel consumption of an automobile in which the integrated heat management system 10 is mounted.
 また、第1の機器11aへの熱負荷調整のためには、例えば入口側三方弁18は、流体の流量調整を行うことを目的として頻繁に作動する。このとき、その流量調整を行うために回転動作する副弁34は各シール部401、421と直接摺動しないので、各シール部401、421の摩耗を抑制することが可能である。すなわち、入口側三方弁18の耐久性を向上させることが可能である。 For adjusting the heat load on the first device 11a, for example, the inlet side three-way valve 18 operates frequently for the purpose of adjusting the flow rate of the fluid. At this time, since the auxiliary valve 34 that rotates to adjust the flow rate does not slide directly with the seal portions 401 and 421, wear of the seal portions 401 and 421 can be suppressed. That is, the durability of the inlet side three-way valve 18 can be improved.
 また、本実施形態によれば、図2および図3に示すように、各径方向孔305a、306aを開閉する機能は主弁32が担っている。そのため、例えば比較例の三方弁90のように1つの弁で各径方向孔305a、306aの開閉と流量調整とが為される場合と比較して、弁軸心CLvを中心として副弁貫通孔341aが弁周方向DRcに拡がる角度AGhを大きく確保することが容易である。従って、副弁34の回転による流体の流量調整の精度を容易に向上させることが可能である。 Further, according to the present embodiment, as shown in FIGS. 2 and 3, the main valve 32 is responsible for opening and closing the radial holes 305a and 306a. Therefore, for example, as compared to the case where the radial holes 305a, 306a are opened and closed and the flow rate is adjusted with one valve, such as the three-way valve 90 of the comparative example, the auxiliary valve through hole is centered on the valve axis CLv. It is easy to ensure a large angle AGh at which 341a extends in the valve circumferential direction DRc. Therefore, it is possible to easily improve the accuracy of the fluid flow rate adjustment by the rotation of the auxiliary valve 34.
 (第2実施形態)
 次に、第2実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。また、前述の第1実施形態と同一または均等な部分については省略または簡略化して説明する。このことは後述の第3実施形態でも同様である。
(Second Embodiment)
Next, a second embodiment will be described. In the present embodiment, differences from the first embodiment will be mainly described. The same or equivalent parts as those in the first embodiment will be omitted or simplified for explanation. The same applies to a third embodiment described later.
 図18に示すように、本実施形態の入口側三方弁18では、主弁貫通孔321aと副弁貫通孔341aとがそれぞれ弁軸方向DRaに貫通している。要するに、本実施形態の入口側三方弁18は所謂スラスト弁である。本実施形態の入口側三方弁18は、主としてこの点において第1実施形態の入口側三方弁18と異なっている。なお、図18では、第1実施形態に対する本実施形態の差異を判りやすく表示するために、弁本体30は二点鎖線で表示され、第1シール部材40と第2シール部材42と駆動装置44と回転断接部46とが省略されて図示されている。 As shown in FIG. 18, in the inlet-side three-way valve 18 of the present embodiment, the main valve through hole 321a and the sub valve through hole 341a pass through the valve axial direction DRa, respectively. In short, the inlet side three-way valve 18 of the present embodiment is a so-called thrust valve. The inlet side three-way valve 18 of the present embodiment differs from the inlet side three-way valve 18 of the first embodiment mainly in this respect. In FIG. 18, the valve main body 30 is indicated by a two-dot chain line in order to display the difference of the present embodiment with respect to the first embodiment in an easily understandable manner, and the first seal member 40, the second seal member 42, and the drive device 44. And the rotation connecting / disconnecting portion 46 are omitted.
 具体的に本実施形態では、第1実施形態の第1径方向孔305aに相当する第1開閉流通孔301bと、第1実施形態の第2径方向孔306aに相当する第2開閉流通孔301cは各々、弁室形成部301の他端部304にて弁室301aへ開口している。また、第1実施形態の軸方向孔307aに相当する開口流通孔301dは、弁室周壁部302にて弁室301aへ開口している。 Specifically, in the present embodiment, a first opening / closing circulation hole 301b corresponding to the first radial hole 305a of the first embodiment and a second opening / closing circulation hole 301c corresponding to the second radial hole 306a of the first embodiment. Each open to the valve chamber 301 a at the other end 304 of the valve chamber forming portion 301. In addition, an opening circulation hole 301 d corresponding to the axial hole 307 a of the first embodiment opens to the valve chamber 301 a at the valve chamber peripheral wall portion 302.
 また、図18に示すように、主弁32および副弁34は弁室301a内に収容されている。主弁32は、弁軸心CLvを中心とした円板形状を成しており、矢印AR3のように弁軸心CLvまわりに回転する。そして、主弁32は、弁軸心CLvまわりに回転することにより、第1開閉流通孔301bと第2開閉流通孔301cとを択一的に開閉する。 Moreover, as shown in FIG. 18, the main valve 32 and the subvalve 34 are accommodated in the valve chamber 301a. The main valve 32 has a disc shape centered on the valve axis CLv, and rotates around the valve axis CLv as indicated by an arrow AR3. The main valve 32 selectively opens and closes the first opening / closing circulation hole 301b and the second opening / closing circulation hole 301c by rotating around the valve axis CLv.
 副弁34は、弁軸心CLvを中心とした円板形状を成しており、矢印AR3のように弁軸心CLvまわりに回転する。本実施形態の副弁貫通孔341aも第1実施形態と同様に、弁周方向DRcに拡がった孔形状となっているが、弁軸方向DRaに貫通しているという点で第1実施形態とは異なる。 The auxiliary valve 34 has a disc shape centered on the valve axis CLv, and rotates around the valve axis CLv as indicated by an arrow AR3. Similarly to the first embodiment, the sub-valve through hole 341a of the present embodiment has a hole shape extending in the valve circumferential direction DRc, but is different from the first embodiment in that it penetrates in the valve axial direction DRa. Is different.
 そして、本実施形態の副弁34は、弁軸方向DRaにおいて、第1開閉流通孔301bおよび第2開閉流通孔301cに対し主弁32を挟んだ反対側に配置されている。このような配置から、副弁34は、主弁貫通孔321aの他端321cを覆う面積を、弁軸心CLvまわりに回転することにより増減する。 And the subvalve 34 of this embodiment is arrange | positioned on the other side on both sides of the main valve 32 with respect to the 1st on-off flow hole 301b and the 2nd on-off flow hole 301c in the valve-axis direction DRa. From such an arrangement, the sub valve 34 increases or decreases the area covering the other end 321c of the main valve through-hole 321a by rotating around the valve axis CLv.
 例えば、主弁32は、主弁貫通孔321aが第1開閉流通孔301bに対し弁軸方向DRaに直列に配置される回転位置すなわち第1回転位置に位置決めされた場合には、主弁貫通孔321aの一端321bを第1開閉流通孔301bの開口端301eに相対向させる。これにより、主弁32はその第1開閉流通孔301bの開口端301eを開放させる。そのとき同時に、主弁32は第2開閉流通孔301cの開口端301fを塞ぐ。 For example, when the main valve 32 is positioned at the rotational position where the main valve through hole 321a is arranged in series in the valve axial direction DRa with respect to the first opening / closing flow hole 301b, that is, the first rotational position, One end 321b of 321a is opposed to the opening end 301e of the first opening / closing circulation hole 301b. Thereby, the main valve 32 opens the opening end 301e of the first opening / closing circulation hole 301b. At the same time, the main valve 32 closes the open end 301f of the second opening / closing flow hole 301c.
 また、主弁32は、主弁貫通孔321aが第2開閉流通孔301cに対し弁軸方向DRaに直列に配置される回転位置すなわち第2回転位置に位置決めされた場合には、主弁貫通孔321aの一端321bを第2開閉流通孔301cの開口端301fに相対向させる。これにより、主弁32はその第2開閉流通孔301cの開口端301fを開放させる。そのとき同時に、主弁32は第1開閉流通孔301bの開口端301eを塞ぐ。 When the main valve 32 is positioned at the rotational position where the main valve through-hole 321a is arranged in series in the valve axial direction DRa with respect to the second opening / closing flow hole 301c, that is, the second rotational position, One end 321b of 321a is opposed to the opening end 301f of the second opening / closing circulation hole 301c. Thereby, the main valve 32 opens the opening end 301f of the second opening / closing flow hole 301c. At the same time, the main valve 32 closes the opening end 301e of the first opening / closing circulation hole 301b.
 本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。 In this embodiment, it is possible to obtain the same effects as those of the first embodiment, which are obtained from the configuration common to the first embodiment.
 (第3実施形態)
 次に、第3実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。
(Third embodiment)
Next, a third embodiment will be described. In the present embodiment, differences from the first embodiment will be mainly described.
 図19に示すように、本実施形態の入口側三方弁18は、主弁32と副弁34との間に設けられた2つのシール部材50、52を備えている。本実施形態は、この点において第1実施形態と異なっている。 As shown in FIG. 19, the inlet side three-way valve 18 of this embodiment includes two seal members 50 and 52 provided between the main valve 32 and the sub valve 34. This embodiment is different from the first embodiment in this point.
 具体的に本実施形態では、2つのシール部材50、52は何れも、ゴム等の弾性体で構成されている。2つのシール部材50、52は例えばOリングであり、弁軸心CLvまわりに環状に形成されている。 Specifically, in this embodiment, the two seal members 50 and 52 are both made of an elastic body such as rubber. The two seal members 50 and 52 are, for example, O-rings, and are formed in an annular shape around the valve axis CLv.
 図19に示すように、2つのシール部材50、52は何れも主弁周壁部321と副弁周壁部341との間に挟まれて配置されている。そして、その2つのシール部材50、52は、主弁周壁部321と副弁周壁部341とによって弁径方向DRrに圧縮され、弾性変形させられている。 As shown in FIG. 19, the two seal members 50 and 52 are both disposed between the main valve peripheral wall portion 321 and the sub valve peripheral wall portion 341. The two seal members 50 and 52 are compressed and elastically deformed in the valve radial direction DRr by the main valve peripheral wall portion 321 and the sub valve peripheral wall portion 341.
 また、2つのシール部材50、52のうちの一方である一方側シール部材50は、主弁貫通孔321aと副弁貫通孔341aとの何れに対しても弁軸方向DRaでの一方側に配置されている。また、2つのシール部材50、52のうちの他方である他方側シール部材52は、主弁貫通孔321aと副弁貫通孔341aとの何れに対しても弁軸方向DRaでの他方側に配置されている。 Further, the one-side seal member 50 that is one of the two seal members 50 and 52 is disposed on one side in the valve axial direction DRa with respect to both the main valve through-hole 321a and the sub-valve through-hole 341a. Has been. The other seal member 52, which is the other of the two seal members 50, 52, is disposed on the other side in the valve axial direction DRa with respect to both the main valve through hole 321a and the sub valve through hole 341a. Has been.
 このように2つのシール部材50、52が設けられているので、矢印AR4のように流体が主弁貫通孔321aから副弁貫通孔341aへ流れる際に主弁周壁部321と副弁周壁部341との間を通る流体流れが塞き止められる。すなわち、矢印AR5のように流れる流体流れが塞き止められる。その結果、副弁貫通孔341aを経ずに軸方向孔307aへ流れる流体の流量を抑制することが可能である。従って、副弁34による流体の流量調整の精度を高めることが可能である。 Since the two seal members 50 and 52 are thus provided, when the fluid flows from the main valve through hole 321a to the sub valve through hole 341a as indicated by an arrow AR4, the main valve peripheral wall 321 and the sub valve peripheral wall 341 are provided. The fluid flow passing between is blocked. That is, the fluid flow flowing as indicated by the arrow AR5 is blocked. As a result, it is possible to suppress the flow rate of the fluid flowing into the axial hole 307a without passing through the sub valve through hole 341a. Therefore, it is possible to improve the accuracy of the flow rate adjustment of the fluid by the auxiliary valve 34.
 なお、本実施形態は第1実施形態に基づいた変形例であるが、本実施形態を前述の第2実施形態と組み合わせることも可能である。 In addition, although this embodiment is a modification based on 1st Embodiment, it is also possible to combine this embodiment with the above-mentioned 2nd Embodiment.
 (他の実施形態)
 (1)上述の第1実施形態に示された切替流調弁は入口側三方弁18であるので、接続ポートを合計3つ有する三方弁であるが、その切替流調弁が有する接続ポートの数に限定はない。例えば、その切替流調弁は、接続ポートの数が2つである二方弁であってもよい。このことは、第2実施形態および第3実施形態についても同様である。
(Other embodiments)
(1) Since the switching flow regulating valve shown in the first embodiment described above is the inlet side three-way valve 18, the switching flow regulating valve is a three-way valve having a total of three connection ports. There is no limit to the number. For example, the switching flow regulating valve may be a two-way valve having two connection ports. The same applies to the second embodiment and the third embodiment.
 切替流調弁がそのような二方弁であるとすれば、その切替流調弁は、流体が流れる流路の開閉を行うと共に流体の流量を調整する。そして、切替流調弁が二方弁である場合には、例えば図2の軸方向孔307aは設けられるが、径方向孔305a、306aの数は1つである。 If the switching flow regulating valve is such a two-way valve, the switching flow regulating valve opens and closes the flow path through which the fluid flows and adjusts the flow rate of the fluid. When the switching flow regulating valve is a two-way valve, for example, the axial hole 307a in FIG. 2 is provided, but the number of the radial holes 305a and 306a is one.
 (2)上述の各実施形態において、図1に示す入口側三方弁18は、流体が流れる流路の切替えを行う流路切替機能に加え流量調整機能も備えているが、出口側三方弁19は、その流路切替機能を備えてはいるものの流量調整機能を備えていない。しかしながら、これは一例であり、逆に、入口側三方弁18が流路切替機能を備えてはいるものの流量調整機能を備えておらず、出口側三方弁19が流路切替機能と流量調整機能との両方を備えていても差し支えない。要するに、図1の統合熱マネージメントシステム10では、入口側三方弁18と出口側三方弁19とのうちの一方が流量調整機能を備えていればよい。 (2) In each of the above-described embodiments, the inlet-side three-way valve 18 shown in FIG. 1 has a flow rate switching function in addition to a flow-path switching function for switching the flow path through which the fluid flows. Is provided with the flow path switching function but not the flow rate adjustment function. However, this is merely an example, and conversely, although the inlet side three-way valve 18 has a flow path switching function, it does not have a flow rate adjustment function, and the outlet side three-way valve 19 has a flow path switching function and a flow rate adjustment function. It does not matter if both are provided. In short, in the integrated heat management system 10 of FIG. 1, one of the inlet side three-way valve 18 and the outlet side three-way valve 19 only needs to have a flow rate adjusting function.
 (3)上述の第1実施形態において、副弁貫通孔341aは、中央孔部341dと一方側孔部341eと他方側孔部341fとから構成されているが、これは一例である。例えば、副弁貫通孔341aは、それらの孔部341d、341e、341fのうちの何れかを有していなくても差し支えない。 (3) In the above-described first embodiment, the sub-valve through hole 341a is composed of the central hole portion 341d, the one side hole portion 341e, and the other side hole portion 341f, but this is an example. For example, the sub-valve through hole 341a may not have any of those holes 341d, 341e, and 341f.
 要するに、副弁貫通孔341aは、弁軸方向DRaの孔幅Whが弁周方向DRcの一方側ほど狭くなる部位を、副弁貫通孔341aの中で少なくとも弁周方向DRcの一方側に有しているのが好ましい。或いは、副弁貫通孔341aは、弁軸方向DRaの孔幅Whが弁周方向DRcの他方側ほど狭くなる部位を、副弁貫通孔341aの中で少なくとも弁周方向DRcの他方側に有しているのが好ましい。 In short, the auxiliary valve through hole 341a has a portion where the hole width Wh in the valve axial direction DRa becomes narrower toward one side in the valve circumferential direction DRc on at least one side in the valve circumferential direction DRc in the auxiliary valve through hole 341a. It is preferable. Alternatively, the auxiliary valve through hole 341a has a portion where the hole width Wh in the valve axial direction DRa is narrower toward the other side in the valve circumferential direction DRc on at least the other side in the valve circumferential direction DRc in the auxiliary valve through hole 341a. It is preferable.
 また、副弁貫通孔341aは、弁軸方向DRaの孔幅Whが弁周方向DRcの位置に応じて変化していれば、どのような孔形状であっても構わない。例えば、副弁貫通孔341aは、弁軸方向DRaの孔幅Whが弁周方向DRcの一方側ほど狭くなる三角孔形状を成していてもよい。副弁貫通孔341aがそのような三角孔形状であれば、副弁貫通孔341aは、弁軸方向DRaの孔幅Whが弁周方向DRcの一方側ほど狭くなる孔形状を、副弁貫通孔341aの中で弁周方向DRcの全体にわたって備えることになる。 Further, the sub valve through hole 341a may have any hole shape as long as the hole width Wh in the valve axial direction DRa changes according to the position in the valve circumferential direction DRc. For example, the sub-valve through hole 341a may have a triangular hole shape in which the hole width Wh in the valve axial direction DRa becomes narrower toward one side in the valve circumferential direction DRc. If the sub valve through hole 341a has such a triangular hole shape, the sub valve through hole 341a has a hole shape in which the hole width Wh in the valve axial direction DRa becomes narrower toward one side in the valve circumferential direction DRc. 341a is provided over the entire valve circumferential direction DRc.
 (4)上述の各実施形態において、副弁34には副弁貫通孔341aが形成されているが、これは一例である。すなわち、副弁34が主弁貫通孔321aの他端321cを覆う面積が副弁34の回転に応じて増減されれば、副弁34に副弁貫通孔341aが設けられている必要はない。 (4) In each of the embodiments described above, the auxiliary valve 34 is formed with the auxiliary valve through hole 341a, but this is an example. That is, if the area where the sub valve 34 covers the other end 321c of the main valve through hole 321a is increased or decreased according to the rotation of the sub valve 34, it is not necessary to provide the sub valve through hole 341a in the sub valve 34.
 (5)上述の第1実施形態において、副弁34は、その副弁34の回転に伴って主弁貫通孔321aの他端321cの少なくとも一部を覆うが、その主弁貫通孔321aの他端321cの全部を覆うことがあってもよいし、なくてもよい。例えば副弁34の回転に伴って副弁貫通孔341aの全部が主弁貫通孔321aの他端321cから外れれば、副弁34は、主弁貫通孔321aの他端321cの全部を副弁周壁部341で覆うことになる。 (5) In the first embodiment described above, the sub-valve 34 covers at least a part of the other end 321c of the main valve through-hole 321a as the sub-valve 34 rotates, but other than the main valve through-hole 321a. The entire end 321c may or may not be covered. For example, if all of the sub-valve through hole 341a is detached from the other end 321c of the main valve through-hole 321a with the rotation of the sub-valve 34, the sub-valve 34 removes all of the other end 321c of the main valve through-hole 321a from the sub-valve peripheral wall. It will be covered with a part 341.
 (6)上述の第1実施形態において図2に示すように、弁本体30に形成された軸方向孔307aの開口端307bは、弁径方向DRrにおいて副弁周壁部341よりも内側に配置されているが、これは一例である。例えば、その軸方向孔307aの開口端307bの全体が、副弁周壁部341よりも内側に配置されてはおらず、主弁周壁部321よりも内側に配置されているだけであってもよい。 (6) As shown in FIG. 2 in the first embodiment described above, the opening end 307b of the axial hole 307a formed in the valve body 30 is disposed on the inner side of the auxiliary valve peripheral wall portion 341 in the valve radial direction DRr. This is just an example. For example, the entire opening end 307b of the axial hole 307a may not be disposed on the inner side of the auxiliary valve peripheral wall portion 341 but only on the inner side of the main valve peripheral wall portion 321.
 (7)上述の各実施形態において図2に示すように、主弁32が回転断接部46の溝形成部461を有し、副弁34が回転断接部46の突起462を有しているが、これは一例である。例えば逆に、主弁32が突起462を有し、副弁34が溝形成部461を有していても差し支えない。 (7) In each of the above-described embodiments, as shown in FIG. 2, the main valve 32 has the groove forming portion 461 of the rotation connecting / disconnecting portion 46, and the sub valve 34 has the projection 462 of the rotation connecting / disconnecting portion 46. This is an example. For example, conversely, the main valve 32 may have the protrusion 462 and the sub valve 34 may have the groove forming portion 461.
 (8)上述の各実施形態において、入口側三方弁18は回転断接部46を備えているが、その回転断接部46は必須ではない。例えば、副弁34に連結された駆動装置44とは別に、主弁32に連結された駆動装置が設けられていれば、回転断接部46は無くてもよい。 (8) In each of the above-described embodiments, the inlet-side three-way valve 18 includes the rotation connecting / disconnecting portion 46, but the rotation connecting / disconnecting portion 46 is not essential. For example, if the driving device connected to the main valve 32 is provided separately from the driving device 44 connected to the sub valve 34, the rotation connecting / disconnecting portion 46 may not be provided.
 (9)上述の各実施形態において図2および図8に示すように、副弁34は、駆動装置44に駆動される駆動弁であり、主弁32は、その駆動弁に従って回転する従動弁であるが、逆に、主弁32が駆動弁であって且つ副弁34が従動弁であってもよい。そのようにした場合、駆動装置44は、主弁32を第1回転動作で回転させることにより、その主弁32を第1回転位置と第2回転位置との間で回転させることができる。 (9) As shown in FIGS. 2 and 8 in each of the above-described embodiments, the sub valve 34 is a drive valve that is driven by the drive device 44, and the main valve 32 is a driven valve that rotates according to the drive valve. However, conversely, the main valve 32 may be a drive valve and the sub valve 34 may be a driven valve. In such a case, the drive device 44 can rotate the main valve 32 between the first rotation position and the second rotation position by rotating the main valve 32 in the first rotation operation.
 また、主弁32が例えば第1回転位置に位置決めされた状態で流体の流量調整が行われる際には、先ず、駆動装置44は、主弁32を第1回転動作で回転させることにより副弁34を任意の回転位置に位置決めする。次に、駆動装置44は、主弁32を第2回転動作で回転させて第1回転位置に戻す。これにより、副弁34を任意の回転位置に位置決めすることができるので、主弁32の回転位置を第1回転位置として、流体の流量調整を行うことができる。このことは、主弁32の回転位置が第1回転位置から第2回転位置に置き換わっても同様である。 When the flow rate of the fluid is adjusted in a state where the main valve 32 is positioned at the first rotation position, for example, the drive device 44 first rotates the main valve 32 by the first rotation operation to thereby rotate the sub valve. 34 is positioned at an arbitrary rotational position. Next, the drive device 44 rotates the main valve 32 in the second rotation operation to return to the first rotation position. As a result, the sub valve 34 can be positioned at an arbitrary rotational position, so that the flow rate of the fluid can be adjusted with the rotational position of the main valve 32 as the first rotational position. This is the same even if the rotation position of the main valve 32 is replaced from the first rotation position to the second rotation position.
 (10)上述の第1実施形態において図2に示すように、軸方向孔307aは、弁室形成部301の他端部304にて弁室301aに対して開口しているが、その軸方向孔307aが設けられている場所に限定はない。 (10) As shown in FIG. 2 in the first embodiment, the axial hole 307a is open to the valve chamber 301a at the other end 304 of the valve chamber forming portion 301. There is no limitation on the location where the hole 307a is provided.
 (11)上述の各実施形態において、弁本体30と第1シール部材40と第2シール部材42は各々別個の部品として構成されているが、一体構成物になっていても差し支えない。 (11) In each of the above-described embodiments, the valve body 30, the first seal member 40, and the second seal member 42 are each configured as separate parts, but may be an integral component.
 (12)上述の第1実施形態では、主弁周壁部321の外周面321dの直径は、弁軸方向DRaの何れの位置でも一様であるが、例えば、その外周面321dは、図20に示すように球面形状を成していても差し支えない。その場合、第1シール部401および第2シール部421は、その球面形状の外周面321dに合った形状とされる。 (12) In the first embodiment described above, the diameter of the outer peripheral surface 321d of the main valve peripheral wall portion 321 is uniform at any position in the valve axial direction DRa. For example, the outer peripheral surface 321d is shown in FIG. As shown, it may have a spherical shape. In this case, the first seal portion 401 and the second seal portion 421 are shaped to match the spherical outer peripheral surface 321d.
 (13)上述の各実施形態において図2および図8に示すように、回転断接部46は、主弁32に含まれる溝形成部461と、副弁34に含まれる突起462とから構成されているが、これは一例である。例えば、その回転断接部46は、その溝形成部461および突起462に替えて、主弁32と副弁34との間に設けられたワンウェイクラッチで構成されていても差し支えない。 (13) In each of the above-described embodiments, as shown in FIGS. 2 and 8, the rotation connecting / disconnecting portion 46 includes a groove forming portion 461 included in the main valve 32 and a protrusion 462 included in the sub valve 34. This is just an example. For example, the rotation connecting / disconnecting portion 46 may be configured by a one-way clutch provided between the main valve 32 and the sub valve 34 instead of the groove forming portion 461 and the protrusion 462.
 そのように回転断接部46がワンウェイクラッチで構成されている場合、駆動装置44は、そのワンウェイクラッチを係合させる係合方向に副弁34を回転させることにより、副弁34の回転方向と同じ方向へ副弁34と共に主弁32も回転させることができる。これにより、入口側三方弁18は流路の切替えを行うことができる。 When the rotation connecting / disconnecting portion 46 is configured by a one-way clutch, the drive device 44 rotates the sub-valve 34 in the engaging direction for engaging the one-way clutch, thereby rotating the sub-valve 34 in the rotation direction. The main valve 32 can be rotated together with the sub valve 34 in the same direction. Thereby, the inlet-side three-way valve 18 can switch the flow path.
 また、これとは逆に、駆動装置44は、ワンウェイクラッチを解放させる解放方向(すなわち、上記係合方向とは逆の回転方向)に副弁34を回転させることにより、主弁32を回転させることなく副弁34を回転させることができる。これにより、入口側三方弁18は流体の流量調整を行うことができる。 On the other hand, the driving device 44 rotates the main valve 32 by rotating the sub valve 34 in the releasing direction for releasing the one-way clutch (that is, the rotating direction opposite to the engaging direction). The auxiliary valve 34 can be rotated without any trouble. Thereby, the inlet side three-way valve 18 can adjust the flow rate of the fluid.
 この回転断接部46がワンウェイクラッチで構成されている例では、副弁34がワンウェイクラッチの係合方向に回転させられることが、上記の第1回転動作に該当する。そして、副弁34がワンウェイクラッチの解放方向に回転させられることが、上記の第2回転動作に該当する。 In the example in which the rotation connecting / disconnecting portion 46 is constituted by a one-way clutch, the rotation of the auxiliary valve 34 in the engagement direction of the one-way clutch corresponds to the first rotation operation. Then, the rotation of the sub valve 34 in the one-way clutch release direction corresponds to the second rotation operation.
 また、別の例として、回転断接部46は、溝形成部461および突起462に替えて、駆動軸36まわりに渦巻状に巻回された帯状の帯状部材で構成されていてもよい。そのように回転断接部46が帯状部材で構成されている場合、その帯状部材は可撓性を有している。また、その帯状部材は、上記渦巻状の内周側に一端を有し、その渦巻状の外周側に他端を有している。更に、その帯状部材の一端は駆動軸36の外周面の一部分に固定され、帯状部材の他端は主弁32に固定されている。 As another example, the rotation connecting / disconnecting portion 46 may be formed of a belt-like belt-like member wound around the drive shaft 36 in a spiral shape instead of the groove forming portion 461 and the protrusion 462. When the rotation connecting / disconnecting portion 46 is formed of a strip-like member, the strip-like member has flexibility. The belt-shaped member has one end on the spiral inner peripheral side and the other end on the spiral outer peripheral side. Further, one end of the belt-like member is fixed to a part of the outer peripheral surface of the drive shaft 36, and the other end of the belt-like member is fixed to the main valve 32.
 そして、駆動軸36に連結された駆動装置44は、その帯状部材が巻き締まる向きに駆動軸36および副弁34を回転させることにより、その帯状部材に張力を生じさせ、副弁34の回転方向と同じ方向へ副弁34と共に主弁32も回転させることができる。これにより、入口側三方弁18は流路の切替えを行うことができる。 Then, the drive device 44 connected to the drive shaft 36 rotates the drive shaft 36 and the sub valve 34 in the direction in which the belt member is wound, thereby generating tension in the belt member, and the rotation direction of the sub valve 34. The main valve 32 can be rotated together with the sub valve 34 in the same direction. Thereby, the inlet-side three-way valve 18 can switch the flow path.
 また、これとは逆に、駆動装置44は、その帯状部材の巻きを緩める向きに駆動軸36および副弁34を回転させることにより、主弁32を回転させることなく副弁34を回転させることができる。これにより、入口側三方弁18は流体の流量調整を行うことができる。 On the contrary, the drive device 44 rotates the sub-valve 34 without rotating the main valve 32 by rotating the drive shaft 36 and the sub-valve 34 in the direction of loosening the winding of the belt-shaped member. Can do. Thereby, the inlet side three-way valve 18 can adjust the flow rate of the fluid.
 この回転断接部46が帯状部材で構成されている例では、帯状部材が巻き締まる向きに既に帯状部材が巻き締まった状態で副弁34が回転させられることが、上記の第1回転動作に該当する。そして、帯状部材が巻き締まっていない緩んだ状態で副弁34が回転させられることが、上記の第2回転動作に該当する。 In the example in which the rotation connecting / disconnecting portion 46 is configured by a band-shaped member, the sub-valve 34 is rotated in a state where the band-shaped member is already wound and tightened in the direction in which the band-shaped member is wound. Applicable. And it is said 2nd rotation operation that the subvalve 34 is rotated in the loose state where the belt-shaped member is not tightened.
 (14)なお、本開示は上記した実施形態に限定されるものではない。本開示は、様々な変形例や均等範囲内の変形をも包含する。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 (14) Note that the present disclosure is not limited to the above-described embodiment. The present disclosure includes various modifications and modifications within the equivalent range. In addition, the above embodiments are not irrelevant to each other, and can be appropriately combined unless the combination is clearly impossible. In each of the above-described embodiments, it is needless to say that elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Yes.
 また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。 Further, in each of the above embodiments, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is clearly limited to a specific number when clearly indicated as essential and in principle. The number is not limited to the specific number except for the case. In each of the above embodiments, when referring to the material, shape, positional relationship, etc. of the constituent elements, etc., unless otherwise specified, or in principle limited to a specific material, shape, positional relationship, etc. The material, shape, positional relationship, etc. are not limited.
 (まとめ)
 上記各実施形態の一部または全部で示された第1の観点によれば、主弁は、その主弁の回転に伴って、主弁貫通孔の一端を開閉流通孔の開口端に相対向させることによりその開閉流通孔を開放する。そして、副弁は、その副弁の回転に伴って主弁貫通孔の他端の少なくとも一部を覆い、その主弁貫通孔の他端を覆う面積を一軸心まわりに回転することにより増減する。
(Summary)
According to the first aspect shown in a part or all of the above embodiments, the main valve opposes one end of the main valve through hole to the open end of the opening / closing flow hole as the main valve rotates. The opening and closing flow hole is opened. The sub valve covers at least a part of the other end of the main valve through hole as the sub valve rotates, and increases or decreases by rotating an area covering the other end of the main valve through hole around a single axis. To do.
 また、第2の観点によれば、主弁は、副弁を上記一軸心まわりに取り囲む主弁周壁部を有し、主弁貫通孔は、その主弁周壁部を上記一軸心の径方向に貫通して形成される。従って、副弁が上記径方向における主弁周壁部の内側に配置されるので、主弁と副弁との全体が占める体積を抑えることが容易である。 According to the second aspect, the main valve has a main valve peripheral wall portion surrounding the auxiliary valve around the uniaxial center, and the main valve through-hole has a diameter of the uniaxial center of the main valve peripheral wall portion. It is formed to penetrate in the direction. Therefore, since the auxiliary valve is disposed inside the main valve peripheral wall in the radial direction, it is easy to suppress the volume occupied by the entire main valve and auxiliary valve.
 また、第3の観点によれば、開口流通孔の開口端は、上記径方向において主弁周壁部よりも内側に配置されている。従って、開口流通孔が弁室へ開放された状態を、主弁の回転位置に関わらず維持することが可能である。 Further, according to the third aspect, the opening end of the opening circulation hole is arranged inside the main valve peripheral wall portion in the radial direction. Therefore, it is possible to maintain the state where the opening circulation hole is opened to the valve chamber regardless of the rotation position of the main valve.
 また、第4の観点によれば、副弁貫通孔は、上記一軸心の軸方向の孔幅が上記一軸心の周方向の一方側ほど狭くなる部位を、副弁貫通孔の中で少なくともその周方向の一方側に有する。そして、副弁は、主弁貫通孔の他端に重なる副弁貫通孔の面積を副弁の回転に伴って増やすことにより、副弁周壁部が主弁貫通孔の他端を覆う面積を減らす。従って、その副弁貫通孔の形状を定めることにより、副弁の回転と主弁貫通孔の開度変化との関係を容易に定めることが可能である。 Further, according to the fourth aspect, the auxiliary valve through-hole has a portion in which the axial hole width of the uniaxial center becomes narrower toward one side in the circumferential direction of the uniaxial center in the auxiliary valve through-hole. At least on one side in the circumferential direction. Then, the auxiliary valve increases the area of the auxiliary valve through hole that overlaps the other end of the main valve through hole with the rotation of the auxiliary valve, thereby reducing the area of the auxiliary valve peripheral wall covering the other end of the main valve through hole. . Therefore, by determining the shape of the sub valve through hole, it is possible to easily determine the relationship between the rotation of the sub valve and the change in the opening of the main valve through hole.
 また、第5の観点によれば、回転断接部は、主弁と副弁とのうちの一方である駆動弁が所定の第1回転動作で回転させられる場合には、主弁と副弁とのうちの他方である従動弁を駆動弁と共に回転させる。その一方で、回転断接部は、その第1回転動作とは異なる所定の第2回転動作で駆動弁が回転させられる場合には、駆動弁が従動弁に対して相対回転することを許容する。従って、駆動装置は駆動弁に連結されていれば、従動弁に連結されている必要はないので、駆動装置を簡潔に構成することが可能である。 Further, according to the fifth aspect, the rotation connecting / disconnecting portion is configured such that when the drive valve that is one of the main valve and the sub valve is rotated by a predetermined first rotation operation, the main valve and the sub valve The driven valve, which is the other of these, is rotated together with the drive valve. On the other hand, the rotation connecting / disconnecting portion allows the drive valve to rotate relative to the driven valve when the drive valve is rotated by a predetermined second rotation operation different from the first rotation operation. . Therefore, if the drive device is connected to the drive valve, it is not necessary to be connected to the driven valve, so that the drive device can be configured simply.
 例えば、駆動装置は、駆動弁を第1回転動作で回転させることにより従動弁を任意の回転位置に位置決めした後に、駆動弁を第2回転動作で回転させて元の回転位置に戻せば、駆動弁の回転位置を変えずに従動弁を任意の回転位置に位置決めすることが可能である。 For example, if the drive device rotates the drive valve in the first rotation operation and positions the driven valve at an arbitrary rotation position, then the drive device rotates the drive valve in the second rotation operation and returns to the original rotation position. It is possible to position the driven valve at an arbitrary rotational position without changing the rotational position of the valve.
 また、第6の観点によれば、駆動弁と従動弁とのうちの一方の弁は、上記一軸心の周方向に延びる溝を形成する溝形成部を有し、駆動弁と従動弁とのうちの他方の弁は、その溝に挿入された突起を有する。そして、回転断接部は、その溝形成部と突起とから構成されている。従って、駆動弁および従動弁とは別個に回転断接部を設ける必要がないので、切替流調弁の小型化を図るのが容易である。 According to the sixth aspect, one of the drive valve and the driven valve has a groove forming portion that forms a groove extending in the circumferential direction of the uniaxial center, and the drive valve and the driven valve The other valve has a protrusion inserted into its groove. And the rotation connection / disconnection part is comprised from the groove | channel formation part and protrusion. Therefore, it is not necessary to provide a rotation connecting / disconnecting part separately from the drive valve and the driven valve, and it is easy to reduce the size of the switching flow regulating valve.
 また、第7の観点によれば、上記駆動弁は副弁であるので、駆動装置は回転断接部を介さずに副弁を回転させ、それにより流体の流量調整を行うことが可能である。従って、流体の流量調整時において流量の微調整を精度良く行うことが可能である。 Further, according to the seventh aspect, since the drive valve is a sub-valve, the drive device can rotate the sub-valve without going through the rotation connecting / disconnecting portion, thereby adjusting the flow rate of the fluid. . Therefore, fine adjustment of the flow rate can be performed with high accuracy when adjusting the flow rate of the fluid.
 また、第8の観点によれば、切替流調弁は自動車に搭載される。 Further, according to the eighth aspect, the switching flow control valve is mounted on the automobile.
 また、第9の観点によれば、第1開閉流通孔が開放され且つ第2開閉流通孔が閉じられた第1の場合には、第1開閉流通孔と開口流通孔との間で弁室を介して流体が流通する。また、第1開閉流通孔が閉じられ且つ第2開閉流通孔が開放された第2の場合には、その第1の場合に比して高温の流体が第2開閉流通孔と開口流通孔との間で弁室を介して流通する。従って、流体の温度に応じて第1シール部および第2シール部が膨張と硬化とを繰り返す環境下で、シール部のシール性を良好に保つことが可能である。 According to the ninth aspect, in the first case where the first opening / closing circulation hole is opened and the second opening / closing circulation hole is closed, the valve chamber is provided between the first opening / closing circulation hole and the opening circulation hole. The fluid flows through. Further, in the second case where the first opening / closing circulation hole is closed and the second opening / closing circulation hole is opened, a fluid having a higher temperature than the first case causes the second opening / closing circulation hole, the opening circulation hole, Circulates through the valve chamber. Therefore, it is possible to keep the sealability of the seal part favorable in an environment where the first seal part and the second seal part repeat expansion and hardening according to the temperature of the fluid.

Claims (9)

  1.  流体が流れる流路の切替えまたは開閉を行うと共に流体の流量を調整する切替流調弁であって、
     弁室(301a)と該弁室に対して開口し流体が流通する開閉流通孔(301b、301c、305a、306a)および開口流通孔(301d、307a)とが形成された弁本体(30)と、
     前記弁室内に収容されると共に、一軸心(CLv)まわりに回転することにより前記開閉流通孔を開閉する主弁(32)と、
     前記弁室内に収容され、前記開閉流通孔に対し前記主弁を挟んだ反対側に配置され、前記一軸心まわりに回転する副弁(34)と、
     弾力性を有し、前記弁本体と前記主弁との間で挟圧され、前記開閉流通孔の弁室側の開口端(301e、301f、305b、306b)を取り巻くように形成され、前記弁室において該開閉流通孔の開口端周りをシールするシール部(401、421)とを備え、
     前記主弁には主弁貫通孔(321a)が形成され、
     該主弁は、該主弁の回転に伴って、前記主弁貫通孔の一端(321b)を前記開閉流通孔の開口端に相対向させることにより該開閉流通孔を開放し、
     前記副弁は、該副弁の回転に伴って前記主弁貫通孔の他端(321c)の少なくとも一部を覆い、該主弁貫通孔の他端を覆う面積を前記一軸心まわりに回転することにより増減する切替流調弁。
    A switching flow control valve that switches or opens and closes the flow path of the fluid and adjusts the flow rate of the fluid,
    A valve body (30) having a valve chamber (301a), an open / close flow hole (301b, 301c, 305a, 306a) and an open flow hole (301d, 307a) that are open to the valve chamber and through which fluid flows; ,
    A main valve (32) that is housed in the valve chamber and that opens and closes the open / close flow hole by rotating about a uniaxial center (CLv);
    A secondary valve (34) housed in the valve chamber, disposed on the opposite side of the main valve with respect to the open / close flow hole, and rotated about the uniaxial center;
    The valve body is elastically sandwiched between the valve body and the main valve, and is formed to surround the open end (301e, 301f, 305b, 306b) of the open / close flow hole on the valve chamber side; A seal portion (401, 421) for sealing around the opening end of the open / close flow hole in the chamber,
    A main valve through hole (321a) is formed in the main valve,
    As the main valve rotates, the main valve opens the open / close flow hole by making one end (321b) of the main valve through hole face the open end of the open / close flow hole,
    The sub-valve covers at least a part of the other end (321c) of the main valve through-hole as the sub-valve rotates, and the area covering the other end of the main valve through-hole rotates around the uniaxial center. Switching flow adjustment that increases or decreases by doing.
  2.  前記弁本体は、前記弁室を前記一軸心まわりに取り囲んで形成する弁室周壁部(302)を有し、
     前記開閉流通孔(305a、306a)の開口端(305b、306b)は該弁室周壁部に形成されており、
     前記主弁は、前記副弁を前記一軸心まわりに取り囲む主弁周壁部(321)を有し、
     前記主弁貫通孔は、該主弁周壁部を前記一軸心の径方向(DRr)に貫通して形成され、
     前記シール部は、前記弁室周壁部と前記主弁周壁部との間で挟圧されている請求項1に記載の切替流調弁。
    The valve body has a valve chamber peripheral wall (302) that surrounds and forms the valve chamber around the uniaxial center,
    The open ends (305b, 306b) of the open / close flow holes (305a, 306a) are formed in the valve chamber peripheral wall,
    The main valve has a main valve peripheral wall portion (321) surrounding the auxiliary valve around the uniaxial center,
    The main valve through hole is formed through the main valve peripheral wall portion in the radial direction (DRr) of the uniaxial center,
    The switching flow control valve according to claim 1, wherein the seal portion is sandwiched between the valve chamber peripheral wall portion and the main valve peripheral wall portion.
  3.  前記開口流通孔(307a)は弁室側に開口端(307b)を有し、
     該開口流通孔の開口端は、前記径方向において前記主弁周壁部よりも内側に配置されている請求項2に記載の切替流調弁。
    The opening circulation hole (307a) has an opening end (307b) on the valve chamber side,
    The switching flow control valve according to claim 2, wherein an opening end of the opening circulation hole is disposed inside the main valve peripheral wall portion in the radial direction.
  4.  前記副弁は、前記主弁周壁部の内周側に沿うように形成された副弁周壁部(341)を有し、
     該副弁周壁部には、前記一軸心の周方向(DRc)に拡がった副弁貫通孔(341a)が形成され、
     該副弁貫通孔は、前記一軸心の軸方向(DRa)の孔幅(Wh)が前記周方向の一方側ほど狭くなる部位を、前記副弁貫通孔の中で少なくとも前記周方向の一方側に有し、
     前記副弁は、前記主弁貫通孔の他端に重なる前記副弁貫通孔の面積(Ah)を前記副弁の回転に伴って増やすことにより、前記副弁周壁部が前記主弁貫通孔の他端を覆う面積を減らす請求項2または3に記載の切替流調弁。
    The auxiliary valve has an auxiliary valve peripheral wall portion (341) formed along the inner peripheral side of the main valve peripheral wall portion,
    In the auxiliary valve peripheral wall portion, an auxiliary valve through hole (341a) extending in the circumferential direction (DRc) of the uniaxial center is formed,
    The sub-valve through hole is a region where the hole width (Wh) in the axial direction (DRa) of the uniaxial center becomes narrower toward one side in the circumferential direction. On the side,
    The sub-valve increases the area (Ah) of the sub-valve through hole that overlaps the other end of the main valve through-hole with the rotation of the sub-valve, so that the sub-valve peripheral wall portion of the main valve through-hole The switching flow regulating valve according to claim 2 or 3, wherein an area covering the other end is reduced.
  5.  前記主弁と前記副弁とのうちの一方である駆動弁に連結され、該駆動弁を回転させる駆動装置(44)と、
     該駆動弁が所定の第1回転動作で回転させられる場合には、前記主弁と前記副弁とのうちの他方である従動弁を前記駆動弁と共に回転させ、前記第1回転動作とは異なる所定の第2回転動作で前記駆動弁が回転させられる場合には、前記駆動弁が前記従動弁に対して相対回転することを許容する回転断接部(46)とを備えている請求項1ないし4のいずれか1つに記載の切替流調弁。
    A drive device (44) connected to a drive valve that is one of the main valve and the sub-valve and rotating the drive valve;
    When the drive valve is rotated by a predetermined first rotation operation, the driven valve that is the other of the main valve and the sub valve is rotated together with the drive valve, which is different from the first rotation operation. A rotation connecting / disconnecting portion (46) that allows the drive valve to rotate relative to the driven valve when the drive valve is rotated in a predetermined second rotation operation. 5. The switching flow control valve according to any one of 4 to 4.
  6.  前記主弁と前記副弁とのうちの一方である駆動弁に連結され、該駆動弁を回転させる駆動装置(44)と、
     前記主弁と前記副弁とのうちの他方である従動弁と前記駆動弁との間でのトルク伝達を断接する回転断接部(46)とを備え、
     前記駆動弁と前記従動弁とのうちの一方の弁は、前記一軸心の周方向(DRc)に延びる溝(461a)を形成する溝形成部(461)を有し、
     該溝は、前記周方向において一端(461b)と他端(461c)とを有し、
     前記溝形成部は、前記溝の一端を形成する一端形成部(461d)と該溝の他端を形成する他端形成部(461e)とを有し、
     前記駆動弁と前記従動弁とのうちの他方の弁は、前記溝に挿入された突起(462)を有し、
     前記回転断接部は、前記溝形成部と前記突起とから構成されており、
     該回転断接部は、前記駆動弁が前記突起を前記一端形成部または前記他端形成部に押し当てつつ回転させられる場合には、前記従動弁を前記駆動弁と共に回転させ、前記突起が前記溝内で前記一端形成部および前記他端形成部から離れて前記駆動弁が回転させられる場合には、前記駆動弁が前記従動弁に対して相対回転することを許容する請求項1ないし4のいずれか1つに記載の切替流調弁。
    A drive device (44) connected to a drive valve that is one of the main valve and the sub-valve and rotating the drive valve;
    A rotation connecting / disconnecting portion (46) for connecting / disconnecting torque transmission between the driven valve, which is the other of the main valve and the sub valve, and the drive valve;
    One of the drive valve and the driven valve has a groove forming portion (461) that forms a groove (461a) extending in the circumferential direction (DRc) of the uniaxial center,
    The groove has one end (461b) and the other end (461c) in the circumferential direction,
    The groove forming portion has one end forming portion (461d) that forms one end of the groove and the other end forming portion (461e) that forms the other end of the groove,
    The other of the drive valve and the driven valve has a protrusion (462) inserted into the groove,
    The rotation connecting / disconnecting portion is composed of the groove forming portion and the protrusion,
    When the driving valve is rotated while pressing the protrusion against the one end forming part or the other end forming part, the rotation connecting / disconnecting part rotates the driven valve together with the driving valve, and the protrusion is 5. The drive valve according to claim 1, wherein the drive valve is allowed to rotate relative to the driven valve when the drive valve is rotated away from the one end forming portion and the other end forming portion within the groove. The switching flow control valve according to any one of the above.
  7.  前記駆動弁は前記副弁である請求項5または6に記載の切替流調弁。 The switching flow control valve according to claim 5 or 6, wherein the drive valve is the sub valve.
  8.  自動車に搭載される請求項1ないし7のいずれか1つに記載の切替流調弁。 The switching flow regulating valve according to any one of claims 1 to 7, which is mounted on an automobile.
  9.  第1シール部(401)としての前記シール部のほかに、弾力性を有し前記弁本体と前記主弁との間で挟圧された第2シール部(421)を備え、
     前記弁本体には、第1開閉流通孔(301b、305a)としての前記開閉流通孔のほかに、前記弁室に対して開口し流体が流通する第2開閉流通孔(301c、306a)が形成されており、
     前記第2シール部は、前記第2開閉流通孔の弁室側の開口端(301f、306b)を取り巻くように形成され、前記弁室において前記第2開閉流通孔の開口端周りをシールし、
     前記主弁は、前記一軸心まわりに回転することにより前記第1開閉流通孔と前記第2開閉流通孔とを択一的に閉じ、前記主弁の回転に伴って前記主弁貫通孔の一端を前記第2開閉流通孔の開口端に相対向させることにより該第2開閉流通孔を開放し、
     前記副弁は、前記第2開閉流通孔に対しも前記主弁を挟んだ反対側に配置され、
     前記第1開閉流通孔が開放され且つ前記第2開閉流通孔が閉じられた第1の場合には、前記第1開閉流通孔と前記開口流通孔との間で前記弁室を介して流体が流通し、
     前記第1開閉流通孔が閉じられ且つ前記第2開閉流通孔が開放された第2の場合には、前記第1の場合に比して高温の流体が前記第2開閉流通孔と前記開口流通孔との間で前記弁室を介して流通する請求項1ないし8のいずれか1つに記載の切替流調弁。
    In addition to the seal part as the first seal part (401), the second seal part (421) having elasticity and sandwiched between the valve body and the main valve is provided,
    In addition to the open / close flow holes as the first open / close flow holes (301b, 305a), second open / close flow holes (301c, 306a) that open to the valve chamber and allow fluid to flow are formed in the valve body. Has been
    The second seal portion is formed so as to surround an opening end (301f, 306b) on the valve chamber side of the second opening / closing circulation hole, and seals around the opening end of the second opening / closing circulation hole in the valve chamber,
    The main valve selectively closes the first open / close flow hole and the second open / close flow hole by rotating around the uniaxial center, and the main valve through-hole is rotated along with the rotation of the main valve. Opening the second open / close flow hole by making one end face the open end of the second open / close flow hole;
    The sub-valve is disposed on the opposite side of the main valve with respect to the second opening / closing flow hole,
    In the first case where the first open / close flow hole is opened and the second open / close flow hole is closed, fluid flows between the first open / close flow hole and the open flow hole via the valve chamber. Circulate,
    In the second case where the first opening / closing circulation hole is closed and the second opening / closing circulation hole is opened, a fluid having a temperature higher than that in the first case causes the second opening / closing circulation hole and the opening circulation to flow. The switching flow control valve according to any one of claims 1 to 8, wherein the switching flow control valve flows through the valve chamber to and from a hole.
PCT/JP2017/015853 2016-06-15 2017-04-20 Switchable flow control valve WO2017217112A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-118527 2016-06-15
JP2016118527A JP2019135396A (en) 2016-06-15 2016-06-15 Changeover flow rate adjustment valve

Publications (1)

Publication Number Publication Date
WO2017217112A1 true WO2017217112A1 (en) 2017-12-21

Family

ID=60664334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015853 WO2017217112A1 (en) 2016-06-15 2017-04-20 Switchable flow control valve

Country Status (2)

Country Link
JP (1) JP2019135396A (en)
WO (1) WO2017217112A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI660135B (en) * 2018-05-14 2019-05-21 訊凱國際股份有限公司 Control valve
WO2019242727A1 (en) * 2018-06-21 2019-12-26 北京佰为深科技发展有限公司 Device for simulating environment of bloodstream and medical equipment having device for simulating environment of bloodstream
EP4116612A1 (en) * 2021-07-07 2023-01-11 Goodrich Corporation Valve assembly
US11746911B2 (en) 2018-11-08 2023-09-05 Audi Ag Fluid valve device and method for operating a fluid valve device
EP4325103A1 (en) * 2022-08-19 2024-02-21 TI Automotive Technology Center GmbH Rotary valve

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102490401B1 (en) * 2021-05-26 2023-01-25 동일기계공업 주식회사 Integrated valve for changing conduit and controlling flow rate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174766A (en) * 1982-04-05 1983-10-13 Taimei Kinzoku Kogyo Kk Flow adjusting ball valve
JPS6037471A (en) * 1983-08-11 1985-02-26 Hitachi Metals Ltd Three-way valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174766A (en) * 1982-04-05 1983-10-13 Taimei Kinzoku Kogyo Kk Flow adjusting ball valve
JPS6037471A (en) * 1983-08-11 1985-02-26 Hitachi Metals Ltd Three-way valve

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI660135B (en) * 2018-05-14 2019-05-21 訊凱國際股份有限公司 Control valve
WO2019242727A1 (en) * 2018-06-21 2019-12-26 北京佰为深科技发展有限公司 Device for simulating environment of bloodstream and medical equipment having device for simulating environment of bloodstream
US11746911B2 (en) 2018-11-08 2023-09-05 Audi Ag Fluid valve device and method for operating a fluid valve device
EP4116612A1 (en) * 2021-07-07 2023-01-11 Goodrich Corporation Valve assembly
US11796079B2 (en) 2021-07-07 2023-10-24 Goodrich Corporation Valve assembly
EP4325103A1 (en) * 2022-08-19 2024-02-21 TI Automotive Technology Center GmbH Rotary valve
WO2024037948A1 (en) * 2022-08-19 2024-02-22 Ti Automotive Technology Center Gmbh Rotary valve

Also Published As

Publication number Publication date
JP2019135396A (en) 2019-08-15

Similar Documents

Publication Publication Date Title
WO2017217112A1 (en) Switchable flow control valve
KR101526427B1 (en) Heat exchanger for vehicle
US10458562B2 (en) Control valve
JP6493300B2 (en) Flow path switching valve
US20200173566A1 (en) Control valve
JP6054627B2 (en) Vehicle heat exchanger
KR101703606B1 (en) Heat exchanger for vehicle
CN108005773B (en) Control valve
US9657861B2 (en) Flow passage switching unit
KR101339250B1 (en) Heat exchanger for vehicle
KR101283591B1 (en) Heat exchanger for vehicle
KR102276255B1 (en) Integrated Thermal Management Valve For Vehicle
KR20140053699A (en) Heat exchanger for vehicle
JP2013113579A (en) Vehicle heat exchanger
KR20130063345A (en) Heat exchanger for vehicle
JP6995835B2 (en) Control valve
JP6995833B2 (en) Control valve
JP6995832B2 (en) Control valve
WO2013069325A1 (en) Engine cooling control device
JP2006090226A (en) Control valve
KR20130011114A (en) Heat exchanger for vehicle
KR102478096B1 (en) Flow control valve
JP2021148244A (en) Control valve
JP2020159514A (en) Control valve
JP2006090225A (en) Flow control valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP