WO2017217052A1 - Resin-molded-component machining apparatus and resin-molded-component machining method - Google Patents

Resin-molded-component machining apparatus and resin-molded-component machining method Download PDF

Info

Publication number
WO2017217052A1
WO2017217052A1 PCT/JP2017/010603 JP2017010603W WO2017217052A1 WO 2017217052 A1 WO2017217052 A1 WO 2017217052A1 JP 2017010603 W JP2017010603 W JP 2017010603W WO 2017217052 A1 WO2017217052 A1 WO 2017217052A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin molded
molded product
wide portion
planned
line
Prior art date
Application number
PCT/JP2017/010603
Other languages
French (fr)
Japanese (ja)
Inventor
竹己 松野
Original Assignee
株式会社仲田コーティング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社仲田コーティング filed Critical 株式会社仲田コーティング
Priority to JP2017538001A priority Critical patent/JP6242551B1/en
Publication of WO2017217052A1 publication Critical patent/WO2017217052A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D3/00Cutting work characterised by the nature of the cut made; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D3/00Cutting work characterised by the nature of the cut made; Apparatus therefor
    • B26D3/08Making a superficial cut in the surface of the work without removal of material, e.g. scoring, incising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/38Cutting-out; Stamping-out
    • B26F1/40Cutting-out; Stamping-out using a press, e.g. of the ram type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/38Cutting-out; Stamping-out
    • B26F1/44Cutters therefor; Dies therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/20Arrangements for storing inflatable members in their non-use or deflated condition; Arrangement or mounting of air bag modules or components
    • B60R21/215Arrangements for storing inflatable members in their non-use or deflated condition; Arrangement or mounting of air bag modules or components characterised by the covers for the inflatable member
    • B60R21/2165Arrangements for storing inflatable members in their non-use or deflated condition; Arrangement or mounting of air bag modules or components characterised by the covers for the inflatable member characterised by a tear line for defining a deployment opening

Definitions

  • the present invention relates to a machining apparatus for a resin molded product or the like, which is an automobile interior material, and a method for machining a resin molded product using the same.
  • a machine for a resin molded product that does not affect the measurement of the depth of a planned fracture line formed on a resin molded product, and that produces little residual stress in the resin molded product and provides excellent invisibility.
  • the present invention relates to a processing apparatus and a method of machining a resin molded product using the processing apparatus.
  • an air bag breaking line (which may be referred to as an airbag tear line or a tear line) that is broken in a short time with high accuracy when the airbag is deployed is formed.
  • An air bag fracture line forming apparatus has been proposed (see Patent Document 1). More specifically, at a low cost, a thin-wall processing base that can be set by turning over the skin that forms the grid portion of the airbag to set the planned airbag breaking line, and the thin-wall processing base are set.
  • a planned airbag break line comprising: a guide body arranged above the formed skin; and a cutting tool capable of cutting the skin along a guide groove for cleavage line processing formed in the guide body. Forming device.
  • Patent Document 2 a formation method for efficiently forming the planned tearing portion (airbag fracture line) during vacuum forming of the skin. More specifically, when vacuum forming the skin for the compartment side member having the airbag door, the skin sheet is shaped by heating and softening and sucking it into the vacuum forming die. This is a method of forming a groove-shaped pre-scheduled portion by pressing the surface-scheduled part forming position of the skin with respect to the airbag door with a processing blade in a state where the sheet for use is sucked and held.
  • the applicant of the present invention has proposed a method for manufacturing an interior member for a vehicle having an invisible type airbag door portion in which a planned fracture line that cannot be recognized from the front side is formed (see Patent Document 3). ). More specifically, in order to facilitate measurement of depth and the like, when pressed onto a stage provided with a predetermined rib and curved so that the back surface of the skin is convex, it is substantially V-shaped. And a depth of the planned fracture line or a thickness of the remaining portion is measured in a state where the cut line of the planned fracture line is opened.
  • the present invention is a resin molded product machine that has less residual stress in the resin molded product and has excellent invisibility without affecting the depth measurement of the planned fracture line formed in the resin molded product. It aims at providing the processing apparatus and the machining method of the resin molded product using the same.
  • a machining apparatus for forming a planned fracture line that does not reach the surface of a resin molded product, a machine tool that forms the planned fracture line for the resin molded product, and the resin molded product.
  • a linear rib for convexly bending the resin molded product on the support base.
  • the linear rib has a relatively narrow width portion and a relative width.
  • the machine for processing a resin molded product of the present invention when the linear molded rib is used, when the resin molded product is pressed against the linear rib, at least the narrow portion is supported. Since it is curved in a convex shape at the position, the occurrence of residual stress in the resin molded product corresponding to the position of the narrow portion can be reduced. As a result, even when viewed from the back side of the resin molded product, that is, the side where the planned fracture line is not formed, the formation site of the planned fracture line is not seen through, and excellent invisibility is obtained. Can do.
  • the planned fracture line formed in the resin molded product also has a conventional curve because the planned fracture line is appropriately curved in a convex shape. It is possible to measure quickly and accurately using an optical measuring device. In addition, since the linear ribs of a predetermined form are used, the degree of bending of the resin molded product can be easily adjusted. As a result, the replacement work of the resin molded product can be accelerated, and the formation speed of the planned fracture line can be increased. In addition, it is possible to increase the forming accuracy, and to extend the life of the machine tool that forms the planned fracture line.
  • the wide portion has at least the first wide portion and the second wide portion, and between the first wide portion and the second wide portion, It is preferable to have the first narrow portion as the narrow portion, and the first wide portion, the first narrow portion, and the second wide portion are arranged linearly.
  • the third wide portion and the fourth wide portion are provided at each of the end portions of the first wide portion that diverges and expands in a fan shape or a T shape.
  • the second narrow portion is provided between the end of the first wide portion and the third wide portion, and the other branched portion, It is preferable that a third narrow portion is provided between the end portion of the first wide portion and the fourth wide portion.
  • the end portion of the first wide portion opposite to the end portion where the first narrow portion is provided branches and expands in a fan shape or a T shape, and the branched first portion
  • One of the plurality of end portions of the wide portion is provided with a third wide portion via the second narrow portion, and another one of the plurality of end portions of the branched first wide portion.
  • the fourth wide portion is provided via the third narrow portion.
  • the 3rd wide part and the 4th wide part are provided in the edge part of the 1st wide part, and it has a narrow part between them, a resin molded product is deform
  • the depth of the planned fracture line formed in the resin molded product can be measured quickly and accurately at a plurality of locations by using a conventional optical measuring device.
  • the fifth wide portion and the sixth wide portion are provided at each of the end portions of the second wide portion that diverges into a fan shape or a T shape.
  • a fourth narrow portion is provided between the end of the second wide portion and the fifth wide portion, and the other branched portion, It is preferable that a fifth narrow portion is provided between the end of the second wide portion and the sixth wide portion.
  • the end portion of the second wide portion opposite to the end portion where the first narrow portion is provided is branched and widened in a fan shape or a T shape, and the branched second portion
  • One of the plurality of end portions of the wide portion is provided with a fifth wide portion through the fourth narrow portion, and another one of the plurality of end portions of the branched second wide portion.
  • the sixth wide portion is provided via the fifth narrow portion.
  • the 5th wide part and the 6th wide part are provided in the edge part of the 2nd wide part, and it has a narrow part between them, a resin molded product is deform
  • the depth of the planned fracture line formed in the resin molded product can be measured quickly and accurately at a plurality of locations by using a conventional optical measuring device.
  • the width (W1) of the narrow portion constituting the linear rib is set to a value within the range of 1 to 10 mm
  • the width (W2) of the wide portion is set to the range of 20 to 100 mm. It is preferable to set the value within the range.
  • a plurality of suction ports connected to the suction device are provided on the support base, and the number of suction ports per unit area provided around the narrow portion It is preferable to increase the number of suction ports per unit area provided around the wide portion.
  • the resin molded product is an automobile interior member
  • the machine tool is a cold cutter
  • the planned break line is a planned break line for an airbag.
  • Another aspect of the present invention is a machining method for forming a planned fracture line that does not reach the surface of a resin molded product with a machine tool, and includes the following steps (1) to (3): Is a machining method characterized by (1) A step of placing a resin molded product on a support base provided with a linear rib for curving convexly. (2) A resin molded product is pressed onto the linear rib by a suction device to form a convex shape. Step of bending (3) Step of forming a planned fracture line for a resin molded product curved in a convex shape on a linear rib by a machine tool.
  • the Machining apparatus provided with linear ribs of a predetermined shape in this way
  • the planned fracture line can be formed without excessively deforming the resin molded product. Therefore, it is possible to reduce the occurrence of residual stress and excessive adhesion at a position corresponding to the narrow portion of the resin molded product. Therefore, even when a planned fracture line is formed in a resin molded product, a resin molded product having excellent invisible properties can be efficiently obtained, and the depth of the planned fracture line formed in the resin molded product can be obtained. It can be said that there is no influence on the measurement.
  • FIG. 1 is a perspective view for explaining a support base provided with linear ribs.
  • FIGS. 2A and 2B are a plan view and a side view for explaining a support base provided with linear ribs.
  • FIG. 3 is a plan view and a side view for explaining an arrangement example of suction ports in the support base.
  • 4 (a) to 4 (b) are views for explaining a state in which a resin molded product is pressed against the linear rib of the present invention and the conventional linear rib, respectively.
  • FIG. 5 is a schematic view provided for explaining a machining device (airbag break planned line forming device).
  • FIGS. 6A and 6B are views for explaining the modes of two types of airbag devices.
  • First Embodiment is a machining apparatus which forms the planned fracture line which does not reach the surface with respect to a resin molded product, Comprising: The machine tool which forms a planned fracture line with respect to a resin molded product, and resin molding And a linear rib that curves the resin molded product in a convex shape, and the linear rib has a relatively narrow narrow part and a relatively wide wide part. Each of which has a portion, and when the resin molded product is pressed against the linear rib by the suction device, it is curved at least at a position corresponding to the narrow portion. It is a machining device.
  • an airbag break planned line forming apparatus for forming an airbag break planned line (tear line) with respect to an automobile interior member which is a resin molded product as a machining apparatus.
  • the support stand 10 provided with the linear rib 13 of a predetermined shape which is a characteristic configuration of the machining apparatus 100 of the first embodiment, will be mainly described with reference to the drawings as appropriate.
  • the configuration includes predetermined break planned line forming means 131 and 133 and can form a planned break line.
  • a cutting device a polishing device, a cutting device, a punching device, and the like.
  • a combination of these planned fracture line forming means and an inspection device, vapor deposition device, coating device, heating device, or the like as another machining device may be used.
  • examples of the cutting device include a cold cutter, an end mill, a vibration cutting device (including an ultrasonic vibration cutting device, an elliptical vibration cutting device, and the like), a rotary shaft cutting device, and the like.
  • the resin molded product is an interior member for an automobile and the planned break line is a planned break line for an air bag (a break line for an airbag), that is, the machining device is an airbag break planned line forming device.
  • the machining device is an airbag break planned line forming device.
  • the processing state of the resin molded product (depth of the planned fracture line, etc.) is monitored online using a laser displacement meter (for example, LKG5000 series, manufactured by Keyence Corporation) as a sensor, and feedback control is performed on the resin molding.
  • the depth of the planned fracture line formed at a predetermined location of the product can be accurately adjusted to a value within a predetermined range. Therefore, even when the air bag planned break line is formed by a machine tool such as a cold cutter, it can be formed quickly and accurately.
  • An air bag door member 40 that has a resin molded product 15 having a predetermined thickness (t1) as the expected breaking line 15d and that has little residual stress and is excellent in invisibility is inexpensive and It can be manufactured efficiently.
  • the thickness of the resin molded product before the planned fracture line 15d is formed is represented by the symbol t2.
  • the bag door member 41 ′ can be manufactured.
  • the resin molded product 15 has a three-layer structure including a hard base material 15d ′, an intermediate layer (foamed layer) 15e ′, and a skin 15f ′, two-stage machining is used.
  • the airbag door member 41 ′ having the primary break planned line 15 g ′ and the secondary break planned line 15 h ′ can be manufactured extremely inexpensively and efficiently.
  • the depth of the planned fracture line (secondary fracture line) 15h' formed on the skin 15f ' is represented by the symbol t3.
  • the 1st processing blade detection means and the 2nd processing blade detection means which are attached to these are each provided in the back side of the mounting surface although not shown.
  • these 1st processing blade detection means and the 2nd processing blade detection means are optical measuring devices, such as a laser displacement meter, when measuring from the front side of a resin molded product normally, and resin molded products When measuring from the back side, it is preferable to use an electromagnetic induction type measuring device such as an eddy current type film pressure gauge.
  • the airbag break planned line forming apparatus 100 includes a control unit (for accurately positioning and processing operations of various primary fracture planned line forming means and secondary break planned line forming means, and further detecting operation and the like) It is preferable to have a computer control unit 116.
  • the airbag break planned line forming apparatus 100 supports the vehicle interior member placed and fixed when forming the airbag broken planned line.
  • a stand 10 is provided.
  • the mounting surface of the support base 10 is a linear rib (projection) 13 that curves the resin molded product in a convex shape, and the linear rib 13 is relatively
  • a narrow portion 11 having a narrow width and a wide portion 12 having a relatively wide width are provided.
  • the linear rib 13 has first to sixth wide portions 12a to 12f as the wide portion 12, and these first to sixth Between the wide portions 12a to 12f, the narrow portion 11 includes first to fifth narrow portions 11a to 11e.
  • predetermined linear ribs 13 are provided in the horizontal direction on the base 18b and the smoothed surface 18a of the support base 10.
  • a plurality of suction ports 14 are provided on the mounting surface of the support base 10, and the interior of the vehicle as a resin molded product 15 mounted on the mounting surface.
  • a suction device (not shown) for sucking and fixing the member through the suction port 14 is provided.
  • the diameter of the suction port 14 is usually preferably a value in the range of 0.1 to 8 mm, more preferably a value in the range of 0.3 to 5 mm, and 0.5 to 3 mm. More preferably, the value is within the range.
  • the number of suction ports 14 per unit area provided around the narrow portion 11 is set to the per unit area provided around the wide portion 12. It is preferable to increase the number of suction ports 14. The reason for this is that by changing the number of suction ports 14 in this way, the pressing force against the narrow portion 11 of the resin molded product 15 increases, and the accuracy of the depth of the planned fracture line and the measurement accuracy are further increased. It is because it can do. Therefore, more specifically, a support base 10 having a predetermined suction port 14 is prepared, and the number of suction ports 14 provided around the narrow portion 11 is determined per unit area (for example, 100 cm 2 ). It is preferable that the value is in the range of 10 to 50, and similarly, the number of suction ports 14 provided around the wide portion 12 is in the range of 1 to 8.
  • a suction device As a suction device, a vacuum pump etc. can be used, for example.
  • a suction device By providing such a suction device, even an interior member for automobiles having a complicated shape or a large interior member for automobiles can be easily fixed on the support base. Therefore, it is possible to prevent the positional deviation of the automotive interior member when forming the planned airbag break line and the variation in the thickness of the remaining portion of the planned airbag break line, and to accurately form the planned airbag break line.
  • a vacuum pump or the like unlike the mechanical fixing means, whether or not the automobile interior member is fixed can be easily switched by turning on / off the operation of the suction device, and the work can be performed quickly.
  • an annular groove 17 having a predetermined width is formed along the four sides around the support base 10, and an elastic groove is formed there. It is preferable to partially embed a member, for example, an O-ring. That is, after an automobile interior member, which is a relatively large resin molded product 15, is placed at a predetermined location on the support base 10, for example, in an annular groove 17 having a width of 0.5 to 10 mm, O A state where the ring is partially embedded, that is, a part of the O-ring protrudes from the surface of the support base 10 can be arranged.
  • a member for example, an O-ring. That is, after an automobile interior member, which is a relatively large resin molded product 15, is placed at a predetermined location on the support base 10, for example, in an annular groove 17 having a width of 0.5 to 10 mm, O A state where the ring is partially embedded, that is, a part of the O-ring protrudes from the surface of the support base 10 can be arranged.
  • the sealing performance between the automotive interior member as the resin molded product 15 and the support base 10 is remarkably improved by the deformation of the O-ring, and the suction effect can be remarkably enhanced.
  • a constituent material of the O-ring at least one of urethane rubber, silicone rubber, acrylic rubber, olefin rubber, natural rubber, and the like can be given.
  • the linear rib 13 provided horizontally on the support table 10 on which the resin molded product 15 is placed is moderately convex when the resin molded product 15 is pressed on the support table 10. Has a function of bending. As shown in FIG. 1, the linear rib 13 has a narrow portion 11 having a relatively narrow width and a wide portion 12 having a relatively wide width.
  • the resin molded product 15 is excessively curved in a convex shape.
  • the resin molded product 15 is pressed against the linear rib 13 ′ (narrow portion 11 ′)
  • the resin molded product is affected by the narrow portion 11 ′.
  • 15 will be excessively curved in a convex shape.
  • the occurrence of residual stress in the resin molded product 15 increases at a position corresponding to the narrow portion 11 ′ constituting the linear rib 13 ′ as a whole. That is, when the planned fracture line 15d is formed on the resin molded product 15 using the conventional linear rib 13 ', the planned fracture line 15d may be seen from the back side depending on the viewing angle due to the residual stress generated. It will show through.
  • the shape of the wide portion 12 in the linear rib 13 as shown in FIG. 1 is not particularly limited, that is, a polygon such as a triangle, a quadrangle, a pentagon, a hexagon, an octagon, a circle, or an ellipse. , Donut shape, or variant.
  • the shape of the narrow portion 11 in the linear rib 13 as shown in FIG. 1 is not particularly limited as long as it is at least one of a straight line, a wavy line, a zigzag line, etc. Furthermore, it may be at least one of a straight line, a wavy line, a zigzag line and the like having different widths at the tip or the intermediate position.
  • the shape of the narrow portion is not necessarily a single line, and may be a double line or a triple line.
  • the wide portion 12 in the linear rib has at least a first wide portion 12a and a second wide portion 12b, and the first wide portion 12a.
  • the second wide portion 12b, the first narrow portion 11a, the first wide portion 12a, the first narrow portion 11a, and the second wide portion 12b are respectively horizontal and It is preferable that they are arranged in a straight line. The reason for this is that, by using the linear rib 13 having a predetermined shape in this way, it is possible to quickly and accurately form a predetermined fracture line of a predetermined length simply by moving the machining blade linearly. is there.
  • the first narrow portion 11a is provided between the first wide portion 12a and the second wide portion 12b, the residual stress at the position corresponding to the first narrow portion 11a of the resin molded product 15 is provided. Can also be reduced. In addition, the depth of the planned fracture line formed in the resin molded product 15 can also be measured quickly and accurately using the conventional optical measuring device.
  • the shapes of the first wide portion 12a and the second wide portion 12b are not particularly limited as described above. However, the shape is not limited between the resin molded product 15 and the first narrow portion 11a. In order to prevent excessive adhesion and effectively utilize the entire support base 10, as illustrated in FIG. 1, the first narrow portion 11 a may have a symmetry relationship around the first narrow portion 11 a. preferable. On the other hand, the shape of the first narrow portion 11a is not particularly limited as described above, but may be a single straight line or the like as illustrated in FIG.
  • the end portion of the first wide portion 12a in the linear rib 13 has a third wide portion 12c and a fourth wide portion 12d in a fan shape or a T shape, respectively. It is preferable.
  • the 3rd wide part 12c and the 4th wide part 12d in each of the end part of the 1st wide part 12a which branched and expanded in the shape of a fan or T character in this way, and
  • the second narrow portion 11b is provided between the end of the first wide portion 12a and the third wide portion 12c, and the other branched first portion It is preferable that a third narrow portion 11c is provided between the end of one wide portion 12a and the fourth wide portion 12d.
  • the reason for this is that, by using the linear rib 13 having a predetermined shape in this way, the entire support base 10 can be effectively utilized, and resin molded products of various shapes and sizes can be handled. .
  • the 3rd wide part 12c and the 4th wide part 12d are provided in the end of the 1st wide part 12a which branched and expanded in the shape of a fan or T character, and between them, Since it has the 2nd narrow part 11b and the 3rd narrow part 11c, the fracture
  • the depth of the planned fracture line 15d formed in the resin molded product 15 can be quickly and accurately determined at a plurality of locations using a conventional optical measuring device. Can be measured.
  • the shapes of the third wide portion 12c and the fourth wide portion 12d are not particularly limited as described above, but the second wide portion 12b is exemplified as shown in FIG. Assuming imaginary lines that cross the first wide part 12a in the horizontal direction, the two shapes obtained by cutting along the imaginary line may be in a symmetrical relationship with each other. More preferred. Furthermore, when assuming a virtual line passing from the first wide part 12a through the second narrow part 11b toward the third wide part 12c, cut along the virtual line. More preferably, the two obtained shapes are in a symmetrical relationship with each other.
  • the two shapes to be obtained are in a symmetrical relationship with each other. That is, if the linear ribs 13 are in such a symmetrical relationship, the entire support base 10 can be used effectively, the planned fracture line 15d can be formed with high accuracy, and more Excellent invisible properties can be obtained.
  • the shapes of the second narrow portion 11b and the third narrow portion 11c are not particularly limited as described above. However, as illustrated in FIG. There may be two straight lines.
  • the support 10 can be effectively used as a whole by adopting the form of linear ribs of a predetermined shape as described above, and can be applied to resin molded products 15 of various shapes and sizes.
  • the planned fracture line 15d having a predetermined length and shape can be formed quickly and accurately.
  • a fifth wide portion 12e and a sixth wide portion 12f are provided at the end of the second wide portion 12b, and the fourth narrow portion 11d is formed as a narrow portion between them. And since it has the 5th narrow part 11e, the fracture
  • the depth of the planned fracture line 15d formed in the resin molded product 15 can also be measured quickly and accurately at a plurality of locations by using a conventional optical measuring device.
  • the shapes of the fifth wide portion 12e and the sixth wide portion 12f are not particularly limited as described above, but as illustrated in FIG. 1, the first wide portion 12a. Assuming imaginary lines crossing these in the horizontal direction from the second wide part 12b, the two shapes obtained by cutting along the imaginary line are in a symmetrical relationship with each other. Is more preferable. Furthermore, if a virtual line extending from the second wide portion 12b through the fourth narrow portion 11d toward the fifth wide portion 12e is assumed, cut along the virtual line. More preferably, the two obtained shapes are in a symmetrical relationship with each other.
  • the two shapes are symmetrical with each other. That is, with such a linear rib 13, the entire support base 10 can be effectively utilized, and excellent invisibility can be obtained. Moreover, in the case of the linear rib 13 having such a configuration, the depth of the planned fracture line 15d formed in the resin molded product 15 can be quickly and at a plurality of locations using a conventional optical measuring device. It is also possible to measure with high accuracy.
  • the shapes of the fourth narrow portion 11d and the fifth narrow portion 11e are not particularly limited as described above. However, as illustrated in FIG. Or it may be two straight lines.
  • the width (W1) of the narrow portion 11 (11a to 11e) constituting a part of the linear rib 13 is set to a value within the range of 1 to 10 mm, and the wide portion 12 (12a It is preferable to set the width (W2) of ⁇ 12f) to a value within the range of 20 to 100 mm.
  • the reason for this is that, by limiting the dimensions in this way, the pressing force of the narrow portion 11 against the resin molded product 15 is further increased, and the portion corresponding to the narrow portion 11 is mainly curved in a convex shape.
  • the planned fracture line 15d can be formed with high accuracy, and the accuracy of the depth of the planned fracture line 15d can be further increased.
  • the planned fracture line 15 d is opened in a V shape and the depth thereof is accurately measured using a measuring device such as a laser. There is also an advantage of being able to.
  • the width (W1) of the narrow portion 11 constituting the linear rib 13 is more preferably set to a value within the range of 2 to 8 mm.
  • the wide portion 12 constituting a part of the linear rib 13 is used.
  • the width (W2) is more preferably in the range of 22 to 80 mm. Note that the widths of the first to fifth narrow portions 11a to 11e and the widths of the second to sixth wide portions 12a to 12f are the same in the shape of one or two straight lines described above. It may be present or different.
  • the height of the narrow portion 11 (11a to 11e) constituting a part of the linear rib 13 from the surface of the support base 10 is within a range of 0.1 to 5 mm.
  • the height of the wide portion 12 (12a to 12f) is preferably set to a value within the range of 0.1 to 5 mm. The reason for this is that by restricting the height of the linear rib 13 in this way, the pressing force of the narrow portion 11 against the resin molded product 15 is further increased, and the portion corresponding to the narrow portion 11 is mainly convex.
  • the planned fracture line 15d can be formed with high accuracy, and further, the accuracy of the depth of the planned fracture line 15d can be further increased. Moreover, if the width of the narrow portion 11 and the height of the wide portion 12 are such, even after the resin molded product 15 is pressed, the occurrence of residual stress is further reduced and the invisibility is improved. Because. Therefore, the height of the narrow portion 11 constituting a part of the linear rib 13, that is, the height from the surface of the support base 10 is more preferably set to a value in the range of 0.5 to 5 mm. More preferably, the value is in the range of 8 to 3 mm.
  • the height of the wide portion 12 constituting a part of the linear rib 13 is more preferably set to a value within a range of 0.5 to 5 mm, and a value within a range of 0.8 to 3 mm. Is more preferable.
  • the height of the narrow part 11 which comprises the linear rib 13, and the height of the wide part 12 may be the same, and may be different height.
  • the heights of the narrow portions 11 and the wide portions 12 constituting the linear ribs 13 may be average values, and the linear ribs 13 are matched to the shape of the resin molded product 15. It is also preferable to change the height and incline along the length direction and the width direction.
  • the chamfer width of the pressing surface of the linear rib 13 with the resin molded product 15 is preferably set to a value within a range of 0.01 to 1.0 mm, and a value within a range of 0.05 to 0.5 mm. It is more preferable to set the value within a range of 0.1 to 0.3 mm.
  • the cross-sectional shape of the linear rib 13 is trapezoidal in this way, even if the chamfering described above is omitted, the residual stress generated when the resin molded product 15 is pressed can be reduced. This is because it can.
  • the upper side has a value in the range of 1.0 to 1.8 mm, and the lower side has a value in the range of 1.9 to 3 mm.
  • the height is preferably in the range of 0.3 to 1.8 mm.
  • suction part around the linear rib It is preferable that a plurality of suction ports 14 connected to a suction device (not shown) are provided on the support base 10 and around the assumed position of the linear rib 13. And the number per unit area of the suction ports 14 provided around the narrow portion 11 may be made larger than the number of the suction ports 14 per unit area provided around the wide portion 12. preferable. The reason for this is that, by carrying out in this way, the pressing force of the resin molded product 15 against the narrow portion 11 can be increased, and the accuracy of the depth of the planned fracture line can be further increased. This is because the planned fracture line formed in (1) can be opened in a V shape and the depth thereof can be accurately measured.
  • the number of suction ports 14 provided around the narrow portion 11 is set to a value within the range of 10 to 50 per unit area (100 cm 2 ), and similarly, The number of suction ports 14 provided around the portion 12 is preferably set to a value in the range of 1 to 8.
  • each planned break line forming unit 131, 133 is provided with at least one machine tool (such as a machining blade).
  • a machine tool for example, at least one processing blade such as an end mill, a thermal melting blade, an ultrasonic cutter, or a laser cutter, a processing member, or the like can be preferably used. That is, with these machine tools, Joule heat is efficiently removed by the air (high-speed air) blown from the air outlet of the air blowing device even if the temperature becomes high due to long-term use or the like. Because it can.
  • the primary fracture intended line forming means 131 forms the planned fracture line 15d in the case of a vehicle interior member (airbag door portion) made of only the resin molded product 15. It becomes the processing means for doing. That is, a processing means for forming a planned fracture line 15d having a predetermined thickness (t1) that is partially cut from the back side of the resin molded product 15 having a predetermined thickness (t2) but does not reach the surface side ( Primary fracture intended line forming means).
  • the predetermined thickness (t2) of the resin molded product 15 is usually in the range of 1.0 to 2.5 mm, and the predetermined thickness (t1) of the remaining resin molded product that does not reach the surface side is usually
  • the value is in the range of 0.1 to 0.8 mm, more preferably in the range of 0.2 to 0.7 mm, and the value in the range of 0.3 to 0.6 mm. Is more preferable.
  • the resin molded product 15 has a three-layer structure formed of a hard base material 15d ', an intermediate layer (foamed layer) 15e', and a skin 15f '.
  • the product 15 ′ it is a processing means for forming a planned primary fracture line that penetrates the hard base material 15 d ′ from the hard base material 15 d ′ side but does not reach the skin 15 f ′.
  • the predetermined thickness (t3) of the remaining skin 15f ′ that does not reach the surface side is usually in the range of 0.1 to 0.8 mm, but a value in the range of 0.2 to 0.7 mm. It is more preferable to set the value within the range of 0.3 to 0.6 mm.
  • a primary fracture planned line formation means an end mill, a hot-melting blade, an ultrasonic cutter, a laser cutter, etc. can be used conveniently.
  • the airbag breaking planned line forming apparatus 100 shown in FIG. 5 allows a machine tool (sometimes referred to as a machining blade) 113 to enter the secondary breaking line reaching the skin 15f ′ through the primary breaking planned line.
  • a machine tool sometimes referred to as a machining blade
  • the secondary fracture planned line forming means 133 is provided. Therefore, the machine tool (for example, a laser cutter, an ultrasonic cutter, etc.) 113 included in the secondary break planned line forming unit 133 is formed in an elongated plate shape as a whole, and is included in the primary break planned line forming unit 131. It is made possible to enter the inside of the planned primary fracture line formed by a machine tool (for example, an end mill).
  • the primary break planned line forming means 131 and the secondary break planned line forming means 133 are both fixed to a fixing portion 163 a of the planned break line forming means in the movement control robot 163. . Accordingly, when forming the planned primary fracture line, the movement control robot 163 operates to perform a predetermined cutting operation while positioning the hard base material 15d ′ in a state where it can be cut by the primary fracture planned line forming means 131. Do. Next, when forming the planned secondary fracture line, a predetermined cutting operation is performed in a state where the skin 15 f ′ can be cut by the secondary fracture planned line forming means 133.
  • the depth of the groove to be formed is controlled by controlling the position of the cutting edge by the machine tool 131a constituting a part of the primary fracture planned line forming unit 131. That is, in order to adjust the thickness of the remaining part of the resin molded product (base material), an optical measuring device (laser reflection type laser displacement meter, etc.) for measuring the depth of the primary fracture line on-time. Is preferably provided.
  • a first working blade detecting means and a second working blade for detecting the position of the cutting edge of a machine tool constituting a part of the secondary fracture planned line forming means 133 below the support base 10.
  • the first processing blade detection unit and the second processing blade detection unit are arranged inside the support base 10 and configured to detect the presence / absence of a machine tool at a predetermined specific detection position. ing. And as such 1st processing blade detection means 167 and 2nd processing blade detection means 169, for example, a metal detector is suitable, and, thereby, the metal machine tool passed the detection position. Sometimes the presence or absence of a machine tool can be detected.
  • the cutting edge state detection unit 129 is a unit for detecting the state of wear or damage of the cutting edge or cutting part of a machine tool (processing blade or the like). Therefore, when the state of the cutting edge of the processing blade is measured and a state damaged by wear or the like is detected, the operation of the apparatus is stopped and the processing blade or the like can be replaced. That is, by using the blade edge state detecting means, the machine tool can be maintained in a predetermined state, and the thickness of the remaining portion of the planned airbag break line to be formed can be adjusted with higher accuracy.
  • the cutting edge state detection means is configured using a laser displacement meter, an infrared measurement device, or the like, and detects the cutting edge state of the machining blade while maintaining the tip of the movement control robot 163 at a predetermined height. Detecting the degree of damage due to wear or the like by measuring the difference in the height position of the blade edge before and after the formation of the airbag rupture line and the difference in the shape of the shadow, arranged at the detection position of the means 129 Can do.
  • the distance between the blade edge of the machining blade and the mounting surface of the support base 10 can be kept constant in consideration of the blade surface state of the machining blade. Even when the type, thickness, etc. of the air bag change, it is possible to accurately and quickly form a planned airbag break line in which the remaining thickness is uniform throughout.
  • the configuration type of the resin molded product 15 is not particularly limited.
  • the second embodiment is a machining method for forming a planned fracture line that does not reach the surface with a machine tool on a resin molded product as a resin molded product, and includes the following steps (1) to (3): It is the machining method characterized by having. (1) A step of placing the resin molded product on a support base provided with a linear rib that curves the resin molded product in a convex shape. (2) The resin molded product is placed on the linear rib by a suction device.
  • Step of pressing and bending in a convex shape (3) Step of forming a planned fracture line for a resin molded product curved in a convex shape on a linear rib by a machine tool
  • a machine tool As an example, a machining method for a resin molded product according to the second embodiment will be described.
  • Step (1) is a step of placing the resin molded product in a substantially horizontal state on a support base provided with predetermined linear ribs.
  • the resin molded product may be partially curved in a convex shape due to the influence of the linear rib having a predetermined height.
  • the resin molded product can substantially maintain a horizontal state.
  • Step (2) the resin molded product 15 is pressed against the linear rib 13 protruding in a fixed state on the support base 10 by a suction device, and curved into a convex shape as a predetermined shape. It is a process to make. That is, a suction operation is performed by the suction port 14 provided at a predetermined position on the support base 10 or a suction device connected thereto, whereby the resin molded product 15 is fixed on the support base 10.
  • This is a step that can be pressed onto the protruding linear rib 13 and, consequently, curved into a convex shape.
  • the linear rib 13 When the linear rib 13 is configured to move up and down in the support base 10, first, the linear rib 13 rises from the support base 10 to a predetermined position protruding from the surface of the support base 10. To perform the operation. Next, after the operation is completed or in the middle of the operation, the resin molded product 15 is pushed down by the suction device and pressed against the linear rib 13 to be curved into a convex shape as a predetermined shape. It will be.
  • the step (3) is a step of forming a predetermined planned fracture line 15d on the linear rib 13 by using a cold cutter or the like on the resin molded product 15 curved in a convex shape.
  • a plurality of suction ports 14 connected to the suction device are provided on the support 10, and the suction ports 14 per unit area provided around the narrow portion 11.
  • the number is preferably larger than the number of suction ports 14 per unit area provided around the wide portion 12. The reason for this is that, by carrying out in this way, the pressing force of the resin molded product 15 against the narrow portion 11 can be increased, and the accuracy of the depth of the planned fracture line 15d can be further increased. This is because the planned fracture line 15d formed on the resin molded product 15 corresponding to 11 can be opened in a V shape and the depth thereof can be measured with high accuracy.
  • the support base 10 having the linear ribs 13 is used, the width (W1) of the formation in the narrow portion 11 is set to a value within the range of 1 to 10 mm, and the width (W2) of the wide portion. ) Is preferably in the range of 20 to 100 mm.
  • the reason for this is that by configuring the width of the linear rib 13 in this way, the pressing force of the resin molded product 15 against the narrow portion 11 is increased, and the accuracy of the depth of the planned fracture line 15d can be further increased.
  • the planned fracture line 15d formed in the resin molded product 15 for the narrow portion 11 can be opened in a V shape, and the depth thereof can be measured with high accuracy.
  • the height of the linear ribs 13 (the narrow portion 11 and the wide portion 12) is set to the surface of the support base as described in the first embodiment. Therefore, the value is preferably in the range of 0.1 to 5 mm, more preferably in the range of 0.5 to 5 mm, and further preferably in the range of 0.8 to 3 mm. preferable.
  • Step (4) it is preferable to provide a step of measuring the depth of the planned fracture line 15d in the resin molded product 15 by the processing blade using a predetermined sensor. That is, this is a step of measuring the depth of the planned fracture line 15d on the back surface of the resin molded product 15 or the thickness of the remaining portion.
  • the thickness of the remaining portion of the planned fracture line 15d is not particularly limited. For example, a laser light measurement system, an infrared measurement system, or an eddy current method is adopted. Is preferred.
  • the depth (or remaining thickness) of the planned fracture line 15d at least at two or more locations by using reflection of laser light or eddy current, and measurement at three or more locations. More preferably.
  • the reason for this is that, by measuring the film thickness at a plurality of locations in this way, an averaged numerical value can be obtained even when the thickness of the molded skin is somewhat uneven. Therefore, it is possible to form a planned break line having a uniform film thickness as a whole, and therefore, when an airbag deployment force is generated, the airbag door can be reliably opened along the planned break line. .
  • the thickness of the molded skin before forming the planned fracture line on the skin is, measure the film thickness before and after forming the planned fracture line.
  • the reason for this is that by measuring the film thickness before and after the formation of the planned fracture line, it is possible to form the planned fracture line with a more uniform film thickness as a whole, and the deployment force of the airbag is reduced. This is because, when it occurs, the airbag door can be more reliably opened along the planned fracture line.
  • the silicone resin is pressed in a state where the resin molded product 15 is pressed against the linear rib 13 having a predetermined shape and opened and closed in a V shape. Fluorine resin, olefin resin or the like is preferably sprayed. If it does so, the fusion
  • Example 1 Formation of a scheduled break line for an airbag
  • the airbag breaks, which is a machining apparatus (machine tool: cold cutter) having a support base 10 provided with the linear ribs 13 shown in FIGS.
  • the planned line forming apparatus 100 was prepared. Next, continuous operation is performed for 1 to 300 hours, and a thermoplastic elastomer resin molded product (width: 1.2 mm, length: 40 cm, thickness: 2) constituting the airbag apparatus as shown in FIG. 6 (a). 0.0 mm) 15, a predetermined depth (air bag breakage planned line 15 d) was formed, and the following evaluation was performed.
  • the depth (remaining film thickness) of the expected airbag break line formed on the back side of the resin molded product after continuous operation for 12 hours is measured with a laser displacement meter.
  • the machining accuracy was evaluated according to the following criteria.
  • the appearance of the air bag planned break line was observed using an optical microscope (after 12 hours of operation), in the case of evaluation, a sharp cutting shape was accurately formed on the back surface of the resin molded product. I also confirmed.
  • Double-circle The depth of the airbag break planned line formed after continuous operation for 12 hours is a value within the range of 1.2 mm ⁇ 0.2 mm.
  • The depth of the planned airbag break line formed after 12 hours of continuous operation is a value within the range of 1.5 mm ⁇ 0.2 mm.
  • delta The depth of the airbag break planned line formed after 12-hour continuous operation is a value within the range of 1.5 mm +/- 0.5mm.
  • X The value of the planned airbag break line formed after continuous operation for 12 hours exceeds 1.5 mm ⁇ 0.5 mm.
  • Comparative Example 1 a conventional airbag break planned line forming apparatus (machine tool) provided with a support base having linear linear ribs having a width of 2 mm and linear ribs having Y-shaped branches at both ends. : Cold cutter).
  • a conventional airbag break planned line forming apparatus machine tool
  • a support base having linear linear ribs having a width of 2 mm and linear ribs having Y-shaped branches at both ends.
  • Cold cutter As a result, the invisible property, the processing accuracy, the exchangeability, and the durability of the cold cutter were evaluated in the same manner as in Example 1 except that the planned break line for the airbag was formed.
  • a machine tool for forming a planned fracture line, a support base on which the resin molded product is placed, and the resin molded product on the support base are convex.
  • a linear rib that is curved, and the linear rib has a narrow part having a relatively narrow width and a wide part having a relatively wide width, and by a suction device, When the resin molded product is pressed against the linear rib, it is curved in a convex shape mainly at a location corresponding to the narrow portion, thereby suppressing the occurrence of residual stress in the narrow portion of the resin molded product, As a result, excellent invisible properties can be obtained.
  • the depth of the planned fracture line formed in the resin molded product can also be measured quickly and accurately using a conventional optical measurement device at a location corresponding to the narrow portion. That is, by using a linear rib having a certain shape to form a planned fracture line for a resin molded product, the planned fracture line is sufficiently open in a V shape for measurement. It does not affect the depth measurement of the planned fracture line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Air Bags (AREA)

Abstract

The present invention provides a machining apparatus with which a resin molded component provided with a predetermined breaking line having good invisibility and the like is obtained and provides a machining method using the same. The machining apparatus or the like for forming, in a resin molded component, a predetermined breaking line that does not reach a surface includes a machine tool that forms the predetermined breaking line in the resin molded component, a support table on which the resin molded component is loaded, and a linear rib that curves the resin molded component in a convex shape on the support table. The linear rib has a small-width section where the width is relatively small and a large-width section where the width is relatively large. When the resin molded component is pressed against the linear rib by means of a suction device, at least a portion of the resin molded component corresponding to the small-width section is curved in a convex shape.

Description

樹脂成形品の機械加工装置及び樹脂成形品の機械加工方法Resin molded product machining apparatus and resin molded product machining method
 本発明は、自動車内装材である樹脂成形品等の機械加工装置及びそれを用いた樹脂成形品の機械加工方法に関する。
 特に、樹脂成形品等に形成される破断予定線の深さ測定に影響を及ぼすことがなく、かつ、樹脂成形品における残留応力の発生が少なく、優れたインビジブル性が得られる樹脂成形品の機械加工装置、及びそれを用いた樹脂成形品の機械加工方法に関する。
The present invention relates to a machining apparatus for a resin molded product or the like, which is an automobile interior material, and a method for machining a resin molded product using the same.
In particular, a machine for a resin molded product that does not affect the measurement of the depth of a planned fracture line formed on a resin molded product, and that produces little residual stress in the resin molded product and provides excellent invisibility. The present invention relates to a processing apparatus and a method of machining a resin molded product using the processing apparatus.
 従来、機械加工装置の一種として、短時間で、精度良くエアバッグの展開時に破断されるエアバッグ破断予定線(エアバッグ用開裂線や、ティアラインと称する場合がある。)を形成するためのエアバッグ破断予定線形成装置が提案されている(特許文献1参照)。
 より具体的には、低コストで、エアバッグ破断予定線を形成すべく、エアバッグのグリッド部を構成する表皮を裏返してセット可能な薄肉加工用受台と、該薄肉加工用受台にセットされた表皮の上方に配置されるガイド体と、該ガイド体に形成された開裂線加工用ガイド溝に沿って表皮を切削可能な切削工具とを備えたことを特徴とするエアバッグ破断予定線形成装置である。
2. Description of the Related Art Conventionally, as a type of machining apparatus, an air bag breaking line (which may be referred to as an airbag tear line or a tear line) that is broken in a short time with high accuracy when the airbag is deployed is formed. An air bag fracture line forming apparatus has been proposed (see Patent Document 1).
More specifically, at a low cost, a thin-wall processing base that can be set by turning over the skin that forms the grid portion of the airbag to set the planned airbag breaking line, and the thin-wall processing base are set. A planned airbag break line comprising: a guide body arranged above the formed skin; and a cutting tool capable of cutting the skin along a guide groove for cleavage line processing formed in the guide body. Forming device.
 また、表皮の真空成形時において、開裂予定部(エアバッグ破断予定線)を効率良く形成するための形成方法が提案されている(特許文献2参照)。
 より具体的には、エアバッグドアを有する車室側部材のための表皮を真空成形する際、表皮用シートを加熱軟化させて真空成形型に吸引することによって賦形し、真空成形型に表皮用シートを吸引保持した状態で、当該表皮用シートのエアバッグドアに対する表皮の開裂予定部形成位置を加工刃で押圧し、溝状の開裂予定部を形成する方法である。
In addition, a formation method for efficiently forming the planned tearing portion (airbag fracture line) during vacuum forming of the skin has been proposed (see Patent Document 2).
More specifically, when vacuum forming the skin for the compartment side member having the airbag door, the skin sheet is shaped by heating and softening and sucking it into the vacuum forming die. This is a method of forming a groove-shaped pre-scheduled portion by pressing the surface-scheduled part forming position of the skin with respect to the airbag door with a processing blade in a state where the sheet for use is sucked and held.
 一方、本発明の出願人は、表面側からは認識することができない破断予定線を形成したインビジブルタイプのエアバッグドア部を有する車両用内装部材の製造方法を提案している(特許文献3参照)。
 より具体的には、深さ等の測定が容易であるべく、所定リブが設けたステージ上に押圧し、表皮の裏面が凸状になるように湾曲させた場合に、実質的にV字状になる破断予定線を形成するとともに、破断予定線の切り口を開いた状態で、当該破断予定線の深さまたは残部の厚さを測定する形成方法である。
On the other hand, the applicant of the present invention has proposed a method for manufacturing an interior member for a vehicle having an invisible type airbag door portion in which a planned fracture line that cannot be recognized from the front side is formed (see Patent Document 3). ).
More specifically, in order to facilitate measurement of depth and the like, when pressed onto a stage provided with a predetermined rib and curved so that the back surface of the skin is convex, it is substantially V-shaped. And a depth of the planned fracture line or a thickness of the remaining portion is measured in a state where the cut line of the planned fracture line is opened.
特開2000-351355号(特許請求の範囲)JP 2000-351355 (Claims) 特開2000-159047号公報(特許請求の範囲等)JP 2000-159047 A (Claims etc.) WO2004/045921号公報(特許請求の範囲等)WO2004 / 045921 (Claims etc.)
 しかしながら、特許文献1に記載されたエアバッグ破断予定線形成装置にあっては、薄肉加工用受台によって、表皮の裏面が凹状になるように湾曲させる必要があった。
 そのため、破断予定線(エアバッグ用開裂線)を形成した後に表皮を平坦化すると、破断予定線を含む表皮の裏面に大きな凹凸が形成されていることから、発泡層等と一緒に切断すると、均一に形成することが困難であるという問題が見られた。
 また、切断後に、同様に表皮を平坦化すると、破断予定線が形成された部分が開かれた状態が一部維持されるため、表皮の表面側から眺めた場合に、形成箇所が認識できる、すなわち、インビジブル性(非視認性)に劣るという問題も見られた。
However, in the airbag fracture planned line forming apparatus described in Patent Document 1, it has been necessary to bend so that the back surface of the skin becomes concave by the pedestal for thin processing.
Therefore, when the skin is flattened after forming the planned fracture line (airbag tearing line), since large irregularities are formed on the back surface of the skin including the planned fracture line, cutting with the foam layer, etc. There was a problem that it was difficult to form uniformly.
In addition, when the skin is flattened in the same manner after cutting, the state where the portion where the planned fracture line is formed is partially maintained, so that the formation location can be recognized when viewed from the surface side of the skin, That is, the problem that it is inferior to invisible property (non-visibility) was also seen.
 また、特許文献2に記載されたに記載された開裂予定部の形成方法にあっては、真空成形型に吸引保持した状態で、表皮用シートのエアバッグドアに対する表皮の開裂予定部の形成位置を作成する必要があった。
 したがって、切断時に、表皮用シートにおける形成位置がずれることは少ないものの、表皮用シートが加熱軟化しているため、室温に戻すと、位置ずれしており、結果として、開裂予定部の形成位置を正確に制御することは困難であった。
 また、開裂予定部を形成した後に表皮を平坦化すると、開裂予定部を含む表皮の裏面に大きな凹凸が形成されていることから、表皮の表面側から眺めた場合に、形成箇所が認識できる状態、すなわち、インビジブル性に劣るという問題が見られた。
Further, in the method of forming the planned tear portion described in Patent Document 2, the formation position of the planned tear portion of the skin with respect to the airbag door of the skin sheet in the state of being sucked and held in the vacuum forming die There was a need to create.
Therefore, although the formation position in the skin sheet is less likely to shift during cutting, the skin sheet is heated and softened, so when it is returned to room temperature, it is misaligned. It was difficult to control accurately.
In addition, when the epidermis is flattened after forming the planned cleavage part, a large unevenness is formed on the back surface of the epidermis including the planned cleavage part, so that the formation location can be recognized when viewed from the front side of the epidermis That is, there was a problem that it was inferior in invisibility.
 一方、特許文献3に記載された所定リブを用いたエアバッグ形成方法によれば、特許文献1や2に比較して、格段に、インビジブル性が向上することが判明している。
 しかしながら、用いるリブの線幅が、いずれの箇所においても実質的に同一であることから、樹脂成形品を、リブに対して押圧する際に、一部塑性変形し、それによって残留応力が発生する場合が見られた。
 したがって、樹脂成形品の背面側、すなわち、破断予定線を形成していない側から眺めた場合に、視覚角度によって、破断予定線の形成箇所が透けて見える場合があった。すなわち、さらなるインビジブル性の改良が望まれていたと言える。
On the other hand, according to the airbag forming method using the predetermined rib described in Patent Document 3, it has been found that invisibility is remarkably improved as compared with Patent Documents 1 and 2.
However, since the line width of the rib to be used is substantially the same at any location, when the resin molded product is pressed against the rib, it is partially plastically deformed, thereby generating residual stress. A case was seen.
Therefore, when viewed from the back side of the resin molded product, that is, from the side where the planned fracture line is not formed, the portion where the planned fracture line is formed may be seen through depending on the visual angle. That is, it can be said that further improvement of invisibility has been desired.
 そこで、発明者は鋭意検討し、線幅が異なる、所定形態の線状リブを用いることによって、樹脂成形品である樹脂成形品に形成される破断予定線の深さを正確に測定できるとともに、線状リブの押圧による塑性変形や、それに基づく残留応力の発生を抑制できることを見出し、本発明を完成させたものである。
 すなわち、本発明は、樹脂成形品に形成される破断予定線の深さ測定に影響を及ぼすことなく、樹脂成形品における残留応力の発生が少なく、優れたインビジブル性が得られる樹脂成形品の機械加工装置、及びそれを用いた樹脂成形品の機械加工方法を提供することを目的とする。
Therefore, the inventor diligently studied, and by using linear ribs of different shapes with different line widths, the depth of the expected fracture line formed in the resin molded product that is a resin molded product can be accurately measured, The present invention has been completed by finding out that plastic deformation due to pressing of linear ribs and generation of residual stress based thereon can be suppressed.
That is, the present invention is a resin molded product machine that has less residual stress in the resin molded product and has excellent invisibility without affecting the depth measurement of the planned fracture line formed in the resin molded product. It aims at providing the processing apparatus and the machining method of the resin molded product using the same.
 本発明によれば、樹脂成形品に対して、表面まで至らない破断予定線を形成する機械加工装置であって、樹脂成形品に対して、破断予定線を形成する機械工具と、樹脂成形品を載置する支持台と、支持台上で、樹脂成形品を凸状に湾曲させる線状リブと、を備えており、当該線状リブが、相対的に幅が狭い幅狭部および相対的に幅が広い幅広部をそれぞれ有しており、かつ、吸引装置によって、樹脂成形品を、線状リブに対して押圧した場合に、少なくとも幅狭部に対応した位置で、凸状に湾曲することを特徴とする樹脂成形品の機械加工装置が提供され、上述した問題点を解決することができる。
 すなわち、本発明の樹脂成形品の機械加工装置によれば、所定形態の線状リブを用いることによって、樹脂成形品を、線状リブに対して押圧した場合に、少なくとも幅狭部に対応した位置で、凸状に適度に湾曲することから、幅狭部の位置に対応した樹脂成形品における残留応力の発生が少なくすることができる。
 ひいては、樹脂成形品の背面側、すなわち、破断予定線を形成していない側から眺めた場合であっても、破断予定線の形成箇所が透けて見えることがなく、優れたインビジブル性を得ることができる。
 また、本発明の樹脂成形品の機械加工装置によれば、樹脂成形品に形成される破断予定線の深さについても、破断予定線が、凸状に適度に湾曲することから、従来どおりの光学測定装置を用いて、迅速かつ精度良く測定することができる。
 その上、所定形態の線状リブを用いていることから、樹脂成形品の湾曲の程度を容易に調整することができ、ひいては、樹脂成形品の交換作業を早めたり、破断予定線の形成速度や形成精度を高めたり、さらには、破断予定線を形成する機械工具の寿命を延ばすことも可能である。
According to the present invention, there is provided a machining apparatus for forming a planned fracture line that does not reach the surface of a resin molded product, a machine tool that forms the planned fracture line for the resin molded product, and the resin molded product. And a linear rib for convexly bending the resin molded product on the support base. The linear rib has a relatively narrow width portion and a relative width. When the resin molded product is pressed against the linear rib by the suction device, it is curved in a convex shape at least at a position corresponding to the narrow portion. A machined apparatus for a resin molded product is provided, which can solve the above-described problems.
That is, according to the machine for processing a resin molded product of the present invention, when the linear molded rib is used, when the resin molded product is pressed against the linear rib, at least the narrow portion is supported. Since it is curved in a convex shape at the position, the occurrence of residual stress in the resin molded product corresponding to the position of the narrow portion can be reduced.
As a result, even when viewed from the back side of the resin molded product, that is, the side where the planned fracture line is not formed, the formation site of the planned fracture line is not seen through, and excellent invisibility is obtained. Can do.
Further, according to the machine for processing a resin molded product of the present invention, the planned fracture line formed in the resin molded product also has a conventional curve because the planned fracture line is appropriately curved in a convex shape. It is possible to measure quickly and accurately using an optical measuring device.
In addition, since the linear ribs of a predetermined form are used, the degree of bending of the resin molded product can be easily adjusted. As a result, the replacement work of the resin molded product can be accelerated, and the formation speed of the planned fracture line can be increased. In addition, it is possible to increase the forming accuracy, and to extend the life of the machine tool that forms the planned fracture line.
 また、本発明の機械加工装置によれば、幅広部が、少なくとも第1の幅広部および第2の幅広部を有しており、当該第1の幅広部および第2の幅広部の間に、幅狭部として第1の幅狭部を有するとともに、第1の幅広部、第1の幅狭部、および第2の幅広部が、それぞれ直線状に配置されていることが好ましい。
 このように所定形状の線状リブを設けることにより、支持台を有効利用することができ、ひいては、機械工具を直線的に移動するだけで、所定長さの破断予定線を、迅速かつ正確に形成することができる。
 また、第1の幅広部および第2の幅広部の間に、幅狭部を有することから、樹脂成形品を過度に変形させない状態で、破断予定線を形成することができる。したがって、樹脂成形品の幅狭部に対応した位置における残留応力の発生や、過度の密着を少なくすることができる。
Moreover, according to the machining apparatus of the present invention, the wide portion has at least the first wide portion and the second wide portion, and between the first wide portion and the second wide portion, It is preferable to have the first narrow portion as the narrow portion, and the first wide portion, the first narrow portion, and the second wide portion are arranged linearly.
By providing linear ribs with a predetermined shape in this way, it is possible to effectively use the support base. As a result, by simply moving the machine tool in a straight line, it is possible to quickly and accurately set the planned break line of a predetermined length. Can be formed.
Moreover, since it has a narrow part between the 1st wide part and the 2nd wide part, a fracture expected line can be formed in the state which does not deform | transform a resin molded product excessively. Therefore, it is possible to reduce the occurrence of residual stress and excessive adhesion at a position corresponding to the narrow portion of the resin molded product.
 また、本発明の機械加工装置によれば、扇状またはT字状に分岐して広がった、第1の幅広部の端部のそれぞれに、第3の幅広部および第4の幅広部を有しており、かつ、分岐した一方の、第1の幅広部の端部と、第3の幅広部との間に、第2の幅狭部が設けてあり、さらには、分岐したもう一方の、第1の幅広部の端部と、第4の幅広部との間に、第3の幅狭部が設けてあることが好ましい。
 すなわち、第1の幅広部における、第1の幅狭部が設けてある端部とは反対側の端部が、扇状またはT字状に分岐して広がっており、かつ、分岐した第1の幅広部の複数の端部の一つに、第2の幅狭部を介して、第3の幅広部が設けてあり、さらに、分岐した第1の幅広部の複数の端部の別の一つに、第3の幅狭部を介して、第4の幅広部が設けてあることが好ましい。
 このように所定形状の線状リブを設けることにより、支持台を全体的に有効利用することができ、各種形状や大きさの樹脂成形品に対応することができ、ひいては、所定長さおよび所定形状の破断予定線を、迅速かつ正確に形成することができる。
 また、第1の幅広部の端部に、第3の幅広部および第4の幅広部が設けてあり、かつ、それらの間に、幅狭部を有することから、樹脂成形品を過度に変形させない状態で、破断予定線を形成することができる。したがって、樹脂成形品の幅狭部に対応した位置における残留応力の発生や、過度の密着を少なくすることができる。
 その上、樹脂成形品に形成される破断予定線の深さについても、従来どおりの光学測定装置を用いて、複数個所において、迅速かつ精度良く測定することができる。
In addition, according to the machining apparatus of the present invention, the third wide portion and the fourth wide portion are provided at each of the end portions of the first wide portion that diverges and expands in a fan shape or a T shape. And the second narrow portion is provided between the end of the first wide portion and the third wide portion, and the other branched portion, It is preferable that a third narrow portion is provided between the end portion of the first wide portion and the fourth wide portion.
That is, the end portion of the first wide portion opposite to the end portion where the first narrow portion is provided branches and expands in a fan shape or a T shape, and the branched first portion One of the plurality of end portions of the wide portion is provided with a third wide portion via the second narrow portion, and another one of the plurality of end portions of the branched first wide portion. In addition, it is preferable that the fourth wide portion is provided via the third narrow portion.
By providing the linear ribs having a predetermined shape in this way, the support base can be effectively used as a whole, and can be applied to resin molded products of various shapes and sizes. The planned fracture line can be formed quickly and accurately.
Moreover, since the 3rd wide part and the 4th wide part are provided in the edge part of the 1st wide part, and it has a narrow part between them, a resin molded product is deform | transformed excessively In such a state, the expected fracture line can be formed. Therefore, it is possible to reduce the occurrence of residual stress and excessive adhesion at a position corresponding to the narrow portion of the resin molded product.
In addition, the depth of the planned fracture line formed in the resin molded product can be measured quickly and accurately at a plurality of locations by using a conventional optical measuring device.
 また、本発明の機械加工装置によれば、扇状またはT字状に分岐して広がった、第2の幅広部の端部のそれぞれに、第5の幅広部および第6の幅広部を有しており、かつ、分岐した一方の、第2の幅広部の端部と、第5の幅広部との間に、第4の幅狭部が設けてあり、さらには、分岐したもう一方の、第2の幅広部の端部と、第6の幅広部との間に、第5の幅狭部が設けてあることが好ましい。
 すなわち、第2の幅広部における、第1の幅狭部が設けてある端部とは反対側の端部が、扇状またはT字状に分岐して広がっており、かつ、分岐した第2の幅広部の複数の端部の一つに、第4の幅狭部を介して、第5の幅広部が設けてあり、さらに、分岐した第2の幅広部の複数の端部の別の一つに、第5の幅狭部を介して、第6の幅広部が設けてあることが好ましい。
 このように所定形状の線状リブを設けることにより、支持台を全体的に有効利用することができ、各種形状や大きさの樹脂成形品に対応することができ、ひいては、所定長さおよび所定形状の破断予定線を、迅速かつ正確に形成することができる。
 また、第2の幅広部の端部に、第5の幅広部および第6の幅広部が設けてあり、かつ、それらの間に、幅狭部を有することから、樹脂成形品を過度に変形させない状態で、破断予定線を形成することができる。したがって、樹脂成形品の幅狭部に対応した位置における残留応力の発生や、過度の密着を少なくすることができる。
 その上、樹脂成形品に形成される破断予定線の深さについても、従来どおりの光学測定装置を用いて、複数個所において、迅速かつ精度良く測定することができる。
In addition, according to the machining apparatus of the present invention, the fifth wide portion and the sixth wide portion are provided at each of the end portions of the second wide portion that diverges into a fan shape or a T shape. And a fourth narrow portion is provided between the end of the second wide portion and the fifth wide portion, and the other branched portion, It is preferable that a fifth narrow portion is provided between the end of the second wide portion and the sixth wide portion.
That is, the end portion of the second wide portion opposite to the end portion where the first narrow portion is provided is branched and widened in a fan shape or a T shape, and the branched second portion One of the plurality of end portions of the wide portion is provided with a fifth wide portion through the fourth narrow portion, and another one of the plurality of end portions of the branched second wide portion. In addition, it is preferable that the sixth wide portion is provided via the fifth narrow portion.
By providing the linear ribs having a predetermined shape in this way, the support base can be effectively used as a whole, and can be applied to resin molded products of various shapes and sizes. The planned fracture line can be formed quickly and accurately.
Moreover, since the 5th wide part and the 6th wide part are provided in the edge part of the 2nd wide part, and it has a narrow part between them, a resin molded product is deform | transformed excessively. In such a state, the expected fracture line can be formed. Therefore, it is possible to reduce the occurrence of residual stress and excessive adhesion at a position corresponding to the narrow portion of the resin molded product.
In addition, the depth of the planned fracture line formed in the resin molded product can be measured quickly and accurately at a plurality of locations by using a conventional optical measuring device.
 また、本発明の機械加工装置によれば、線状リブを構成する幅狭部の幅(W1)を1~10mmの範囲内の値とし、幅広部の幅(W2)を20~100mmの範囲内の値とすることが好ましい。
 このように寸法を制限して構成することにより、樹脂成形品に対する幅狭部の押圧力が高まって、幅狭部に対応した箇所を主として、凸状に適度に湾曲させることができ、ひいては、破断予定線を精度良く形成したり、さらには、破断予定線の深さの精度をより高めたりすることができる。
According to the machining apparatus of the present invention, the width (W1) of the narrow portion constituting the linear rib is set to a value within the range of 1 to 10 mm, and the width (W2) of the wide portion is set to the range of 20 to 100 mm. It is preferable to set the value within the range.
By limiting the dimensions in this way, the pressing force of the narrow portion against the resin molded product is increased, and the portion corresponding to the narrow portion can be mainly curved in a convex shape, and as a result, The planned fracture line can be formed with high accuracy, and further, the accuracy of the depth of the planned fracture line can be further increased.
 また、本発明の機械加工装置によれば、支持台上に、吸引装置に連結する吸引口が複数設けてあり、幅狭部の周囲に設けてある、単位面積あたりの吸引口の数を、幅広部の周囲に設けてある、単位面積あたりの吸引口の数よりも多くすることが好ましい。
 このように構成することにより、樹脂成形品に対する幅狭部の押圧力を適度の範囲に調整し、破断予定線の深さの精度や、測定精度をより高めることができる。
Further, according to the machining device of the present invention, a plurality of suction ports connected to the suction device are provided on the support base, and the number of suction ports per unit area provided around the narrow portion It is preferable to increase the number of suction ports per unit area provided around the wide portion.
By comprising in this way, the pressing force of the narrow part with respect to a resin molded product can be adjusted to an appropriate range, and the precision of the depth of a planned fracture line and a measurement precision can be improved more.
 また、本発明の機械加工装置によれば、樹脂成形品が、自動車用内装部材であり、機械工具が、コールドカッターであり、かつ、破断予定線が、エアバッグ用破断予定線であるこが好ましい。
 このようにエアバッグ装置を収容する箇所を備えた自動車用内装部材を構成することにより、自動車用内装部材の所定場所に対して、インビジブル性に優れた、破断予定線を精度良く形成することができる。
Further, according to the machining apparatus of the present invention, it is preferable that the resin molded product is an automobile interior member, the machine tool is a cold cutter, and the planned break line is a planned break line for an airbag. .
By configuring the automobile interior member having the location for accommodating the airbag device in this manner, it is possible to accurately form a planned fracture line with excellent invisibility for a predetermined location of the automobile interior member. it can.
 また、本発明の別の態様は、樹脂成形品に対して、機械工具により、表面まで至らない破断予定線を形成する機械加工方法であって、下記工程(1)~(3)を有することを特徴とする機械加工方法である。
(1)樹脂成形品を凸状に湾曲させる線状リブが設けてある支持台上に載置する工程
(2)樹脂成形品を、吸引装置によって、線状リブ上に押圧させ、凸状に湾曲させる工程
(3)機械工具により、線状リブ上で凸状に湾曲した、樹脂成形品に対して、破断予定線を形成する工程
 このように所定形状の線状リブを備えた機械加工装置を用いて、樹脂成形品を、線状リブに対して押圧した場合に、樹脂成形品を過度に変形させない状態で、破断予定線を形成することができる。したがって、樹脂成形品の幅狭部に対応した位置における残留応力の発生や、過度の密着を少なくすることができる。
 したがって、樹脂成形品に破断予定線を形成した場合であっても、優れたインビジブル性を有する樹脂成形品を効率的に得ることができ、しかも、樹脂成形品に形成される破断予定線の深さ測定に対する影響も無いと言える。
Another aspect of the present invention is a machining method for forming a planned fracture line that does not reach the surface of a resin molded product with a machine tool, and includes the following steps (1) to (3): Is a machining method characterized by
(1) A step of placing a resin molded product on a support base provided with a linear rib for curving convexly. (2) A resin molded product is pressed onto the linear rib by a suction device to form a convex shape. Step of bending (3) Step of forming a planned fracture line for a resin molded product curved in a convex shape on a linear rib by a machine tool. Machining apparatus provided with linear ribs of a predetermined shape in this way When the resin molded product is pressed against the linear ribs, the planned fracture line can be formed without excessively deforming the resin molded product. Therefore, it is possible to reduce the occurrence of residual stress and excessive adhesion at a position corresponding to the narrow portion of the resin molded product.
Therefore, even when a planned fracture line is formed in a resin molded product, a resin molded product having excellent invisible properties can be efficiently obtained, and the depth of the planned fracture line formed in the resin molded product can be obtained. It can be said that there is no influence on the measurement.
図1は、線状リブを備えた支持台を説明するために供する斜視図である。FIG. 1 is a perspective view for explaining a support base provided with linear ribs. 図2(a)~(b)は、線状リブを備えた支持台を説明するために供する平面図および側面図である。FIGS. 2A and 2B are a plan view and a side view for explaining a support base provided with linear ribs. 図3は、支持台にける吸引口の配置例を説明するために供する平面図および側面図である。FIG. 3 is a plan view and a side view for explaining an arrangement example of suction ports in the support base. 図4(a)~(b)は、それぞれ、本発明の線状リブおよび従来の線状リブに対して、樹脂成形品を押圧させた状態を説明するために供する図である。4 (a) to 4 (b) are views for explaining a state in which a resin molded product is pressed against the linear rib of the present invention and the conventional linear rib, respectively. 図5は、機械加工装置(エアバッグ破断予定線形成装置)を説明するために供する概略図である。FIG. 5 is a schematic view provided for explaining a machining device (airbag break planned line forming device). 図6(a)~(b)は、2種類のエアバッグ装置の態様を説明するために供する図である。FIGS. 6A and 6B are views for explaining the modes of two types of airbag devices.
[第1の実施形態]
 第1の実施形態は、樹脂成形品に対して、表面まで至らない破断予定線を形成する機械加工装置であって、樹脂成形品に対して、破断予定線を形成する機械工具と、樹脂成形品を載置する支持台と、樹脂成形品を凸状に湾曲させる線状リブと、を備えており、線状リブが、相対的に幅が狭い幅狭部および相対的に幅が広い幅広部をそれぞれ有しており、かつ、吸引装置によって、樹脂成形品を、線状リブに対して押圧した場合に、少なくとも幅狭部に対応した位置で、凸状に湾曲することを特徴とする機械加工装置である。
 以下、機械加工装置として、主に、樹脂成形品である自動車用内装部材に対して、エアバッグ破断予定線(ティアライン)を形成するエアバッグ破断予定線形成装置を想定し、説明する。
 なお、第1の実施形態の機械加工装置100の特徴的構成である、所定形状の線状リブ13を備えた支持台10等を、適宜図面を参照しながら、中心に説明する。
[First Embodiment]
1st Embodiment is a machining apparatus which forms the planned fracture line which does not reach the surface with respect to a resin molded product, Comprising: The machine tool which forms a planned fracture line with respect to a resin molded product, and resin molding And a linear rib that curves the resin molded product in a convex shape, and the linear rib has a relatively narrow narrow part and a relatively wide wide part. Each of which has a portion, and when the resin molded product is pressed against the linear rib by the suction device, it is curved at least at a position corresponding to the narrow portion. It is a machining device.
Hereinafter, an explanation will be given assuming that an airbag break planned line forming apparatus for forming an airbag break planned line (tear line) with respect to an automobile interior member which is a resin molded product as a machining apparatus.
In addition, the support stand 10 provided with the linear rib 13 of a predetermined shape, which is a characteristic configuration of the machining apparatus 100 of the first embodiment, will be mainly described with reference to the drawings as appropriate.
1.機械加工装置
(1)種類
 図5に例示する機械加工装置(機械工具を含む)100の態様としては、所定の破断予定線形成手段131、133を備え、破断予定線を形成できる構成であれば、特に制限されるものではないが、例えば、切削装置、研磨装置、切断装置、穿孔装置等の少なくとも一種を備えることが好ましい。
 また、これらの破断予定線形成手段と、他の機械加工装置としての検査装置、蒸着装置、塗装装置、加熱装置等との組み合わせであっても良い。
1. Types of Machining Device (1) As an aspect of the machining device (including machine tool) 100 illustrated in FIG. 5, the configuration includes predetermined break planned line forming means 131 and 133 and can form a planned break line. Although not particularly limited, for example, it is preferable to include at least one of a cutting device, a polishing device, a cutting device, a punching device, and the like.
Also, a combination of these planned fracture line forming means and an inspection device, vapor deposition device, coating device, heating device, or the like as another machining device may be used.
 ここで、切削装置としては、コールドカッター、エンドミル、振動切削装置(超音波振動切削装置、楕円振動切削装置等を含む)、回転軸切削装置等が挙げられる。
 特に、樹脂成形品が、自動車用内装部材であり、破断予定線が、エアバッグ用破断予定線(エアバッグ用開裂線)である場合、すなわち、機械加工装置がエアバッグ破断予定線形成装置の場合には、機械工具としては、迅速に、かつ精度良く破断予定線が形成でき、その上、廃棄物の発生もほとんど少ないことより、コールドカッターであることが、より好ましい。
Here, examples of the cutting device include a cold cutter, an end mill, a vibration cutting device (including an ultrasonic vibration cutting device, an elliptical vibration cutting device, and the like), a rotary shaft cutting device, and the like.
In particular, when the resin molded product is an interior member for an automobile and the planned break line is a planned break line for an air bag (a break line for an airbag), that is, the machining device is an airbag break planned line forming device. In this case, it is more preferable to use a cold cutter as the machine tool because it is possible to quickly and accurately form a planned fracture line, and to generate little waste.
 そして、樹脂成形品の加工状態(破断予定線の深さ等)を、センサとして、レーザー変位計(例えば、キーエンス社製、LKG5000シリーズ)でオンラインモニターし、それをフィードバック制御することによって、樹脂成形品の所定場所に形成した破断予定線の深さを、所定範囲内の値に、正確に調整することができる。
 よって、このようにコールドカッター等の機械工具によって、エアバッグ用破断予定線を形成する場合であっても、迅速に、かつ精度良く形成することができる。
Then, the processing state of the resin molded product (depth of the planned fracture line, etc.) is monitored online using a laser displacement meter (for example, LKG5000 series, manufactured by Keyence Corporation) as a sensor, and feedback control is performed on the resin molding. The depth of the planned fracture line formed at a predetermined location of the product can be accurately adjusted to a value within a predetermined range.
Therefore, even when the air bag planned break line is formed by a machine tool such as a cold cutter, it can be formed quickly and accurately.
 その結果、図5に示される機械加工装置100によれば、図6(a)に示されるように、エアバッグ15cと、複数リブ15a、15bの間に形成されるエアバッグ収容部15eと、破断予定線15dの深さとして、所定厚さ(t1)を有する樹脂成形品15と、を備えてなる、残留応力の発生が少なく、インビジブル性に優れたエアバッグドア部材40を、極めて安価かつ効率的に製造することができる。
 なお、かかるエアバッグドア部材40において、破断予定線15dを形成する前の、樹脂成形品の厚さを、記号t2で表している。
As a result, according to the machining apparatus 100 shown in FIG. 5, as shown in FIG. 6 (a), the airbag 15c and the airbag accommodating portion 15e formed between the plurality of ribs 15a and 15b, An air bag door member 40 that has a resin molded product 15 having a predetermined thickness (t1) as the expected breaking line 15d and that has little residual stress and is excellent in invisibility is inexpensive and It can be manufactured efficiently.
In the airbag door member 40, the thickness of the resin molded product before the planned fracture line 15d is formed is represented by the symbol t2.
 さらに、図5に示される機械加工装置100によれば、図6(b)に示される、別のエアバッグドア部材41´であっても、残留応力の発生が少なく、インビジブル性に優れたエアバッグドア部材41´として、製造することができる。
 すまわち、樹脂成形品15が、硬質基材15d´と、中間層(発泡層)15e´と、表皮15f´と、から構成される三層構造であっても、二段階の機械加工によって、一次破断予定線15g´、および二次破断予定線15h´を有するエアバッグドア部材41´として、極めて安価かつ効率的に製造することができる。
 なお、かかるエアバッグドア部材41´において、表皮15f´に形成した破断予定線(二次破断予定線)15h´の深さを、記号t3で表している。
Furthermore, according to the machining apparatus 100 shown in FIG. 5, even with the other airbag door member 41 ′ shown in FIG. 6 (b), there is little occurrence of residual stress, and air with excellent invisibility. The bag door member 41 ′ can be manufactured.
In other words, even if the resin molded product 15 has a three-layer structure including a hard base material 15d ′, an intermediate layer (foamed layer) 15e ′, and a skin 15f ′, two-stage machining is used. The airbag door member 41 ′ having the primary break planned line 15 g ′ and the secondary break planned line 15 h ′ can be manufactured extremely inexpensively and efficiently.
In this airbag door member 41 ', the depth of the planned fracture line (secondary fracture line) 15h' formed on the skin 15f 'is represented by the symbol t3.
(2)エアバッグ破断予定線形成装置
(2)-1 基本的態様
 また、機械加工装置が、図5に示すように、エアバッグ破断予定線形成装置100である場合、基本的態様として、樹脂成形品である自動車用内装部材が載置される支持台10を備えている。
 そして、この支持台10上に載置された自動車用内装部材に対して、一次破断予定線、例えば、所定幅および所定深さを有する破断予定線を形成するための一次破断予定線形成手段131と、一次破断予定線と異なる破断予定線、すなわち、二次破断予定線として、例えば、所定深さを有するスリット線を形成するための二次破断予定線形成手段133と、が設けてあることが好ましい。
(2) Airbag fracture planned line forming device (2) -1 Basic mode Further, when the machining device is an airbag fracture planned line forming device 100 as shown in FIG. A support base 10 on which an automobile interior member that is a molded product is placed is provided.
Then, a primary planned break line forming means 131 for forming a planned primary break line, for example, a planned break line having a predetermined width and a predetermined depth, with respect to the automobile interior member placed on the support 10. And, as a planned fracture line different from the planned primary fracture line, that is, as a secondary fracture planned line, for example, a secondary fracture planned line forming means 133 for forming a slit line having a predetermined depth is provided. Is preferred.
 したがって、これらに取り付けてある第1の加工刃検知手段及び第2の加工刃検知手段が、図示しないものの、載置面の裏側に、それぞれ設けてある。
 そして、これらの第1の加工刃検知手段及び第2の加工刃検知手段は、通常、樹脂成形品の表側から測定する場合には、レーザー変位計等の光学式測定装置であり、樹脂成形品の裏側から測定する場合には、渦電流方式膜圧計等の電磁誘導式測定装置であることが好ましい。
 さらに、エアバッグ破断予定線形成装置100は、各種一次破断予定線形成手段および二次破断予定線形成手段の位置合わせや加工処理動作、さらには、検知動作等を精度良く行うための制御部(コンピュータ制御部)116を有することが好ましい。
Therefore, the 1st processing blade detection means and the 2nd processing blade detection means which are attached to these are each provided in the back side of the mounting surface although not shown.
And these 1st processing blade detection means and the 2nd processing blade detection means are optical measuring devices, such as a laser displacement meter, when measuring from the front side of a resin molded product normally, and resin molded products When measuring from the back side, it is preferable to use an electromagnetic induction type measuring device such as an eddy current type film pressure gauge.
Further, the airbag break planned line forming apparatus 100 includes a control unit (for accurately positioning and processing operations of various primary fracture planned line forming means and secondary break planned line forming means, and further detecting operation and the like) It is preferable to have a computer control unit 116.
(2)-2 支持台
 また、図5に示すように、エアバッグ破断予定線形成装置100は、エアバッグ破断予定線を形成する際に、自動車用内装部材が載置され、固定される支持台10を備えている。
 そして、図1に示すように、支持台10の載置面には、樹脂成形品を凸状に湾曲させる線状リブ(突起物)13であって、当該線状リブ13が、相対的に幅が狭い幅狭部11、および相対的に幅が広い幅広部12をそれぞれ有していることを特徴としている。
 また、図2(a)の平面図に示すように、線状リブ13は、幅広部12として、第1~第6の幅広部12a~12fを有しており、これら第1~第6の幅広部12a~12fの間に、幅狭部11として、第1~第5の幅狭部11a~11eを有している。
 さらに、図2(b)の側面図に示すように、支持台10の基台18bおよび平滑処理面18aの上に、所定の線状リブ13が、水平方向に設けてある。
(2) -2 Supporting Base As shown in FIG. 5, the airbag break planned line forming apparatus 100 supports the vehicle interior member placed and fixed when forming the airbag broken planned line. A stand 10 is provided.
As shown in FIG. 1, the mounting surface of the support base 10 is a linear rib (projection) 13 that curves the resin molded product in a convex shape, and the linear rib 13 is relatively A narrow portion 11 having a narrow width and a wide portion 12 having a relatively wide width are provided.
Further, as shown in the plan view of FIG. 2A, the linear rib 13 has first to sixth wide portions 12a to 12f as the wide portion 12, and these first to sixth Between the wide portions 12a to 12f, the narrow portion 11 includes first to fifth narrow portions 11a to 11e.
Furthermore, as shown in the side view of FIG. 2B, predetermined linear ribs 13 are provided in the horizontal direction on the base 18b and the smoothed surface 18a of the support base 10.
 また、図1等に示されるように、支持台10の載置面には、複数の吸引口14が設けられるとともに、載置面上に載置される、樹脂成形品15としての自動車用内装部材を、当該吸引口14を介して吸引固定するための吸引装置(図示せず)が備えられている。
 なお、吸引口14の直径を、通常、0.1~8mmの範囲内の値とすることが好ましく、0.3~5mmの範囲内の値とすることがより好ましく、0.5~3mmの範囲内の値とすることがさらに好ましい。
Further, as shown in FIG. 1 and the like, a plurality of suction ports 14 are provided on the mounting surface of the support base 10, and the interior of the vehicle as a resin molded product 15 mounted on the mounting surface. A suction device (not shown) for sucking and fixing the member through the suction port 14 is provided.
The diameter of the suction port 14 is usually preferably a value in the range of 0.1 to 8 mm, more preferably a value in the range of 0.3 to 5 mm, and 0.5 to 3 mm. More preferably, the value is within the range.
 そして、図3に示すように、かかる吸引口14に関して、幅狭部11の周囲に設けてある、単位面積あたりの吸引口14の数を、幅広部12の周囲に設けてある、単位面積あたりの吸引口14の数よりも多くすることが好ましい。
 この理由は、このように吸引口14の数を変更することにより、樹脂成形品15の幅狭部11に対する押圧力が高まって、破断予定線の深さの精度や、測定精度をより高めることができるためである。
 したがって、より具体的には、所定の吸引口14を有する支持台10を準備し、幅狭部11の周囲に設けてある吸引口14の数を、単位面積(例えば、100cm2)あたりに、10~50個の範囲内の値とし、同様に、幅広部12の周囲に設けてある吸引口14の数を1~8個の範囲内の値とすることが好ましい。
Then, as shown in FIG. 3, regarding the suction port 14, the number of suction ports 14 per unit area provided around the narrow portion 11 is set to the per unit area provided around the wide portion 12. It is preferable to increase the number of suction ports 14.
The reason for this is that by changing the number of suction ports 14 in this way, the pressing force against the narrow portion 11 of the resin molded product 15 increases, and the accuracy of the depth of the planned fracture line and the measurement accuracy are further increased. It is because it can do.
Therefore, more specifically, a support base 10 having a predetermined suction port 14 is prepared, and the number of suction ports 14 provided around the narrow portion 11 is determined per unit area (for example, 100 cm 2 ). It is preferable that the value is in the range of 10 to 50, and similarly, the number of suction ports 14 provided around the wide portion 12 is in the range of 1 to 8.
 また、吸引装置としては、例えば真空ポンプ等を使用することができる。このような吸引装置を備えることにより、複雑な形状の自動車用内装部材や大型の自動車用内装部材であっても支持台の上に容易に固定させることができる。
 したがって、エアバッグ破断予定線を形成する際の自動車用内装部材の位置ずれやエアバッグ破断予定線の残部の厚さのばらつきを防いで、エアバッグ破断予定線を精度良く形成することができる。
 さらに、真空ポンプ等であれば、機械的固定手段と異なり、吸引装置の作動のオンオフによって自動車用内装部材の固定の有無を容易に切換えることができ、迅速に作業を行うことができる。
Moreover, as a suction device, a vacuum pump etc. can be used, for example. By providing such a suction device, even an interior member for automobiles having a complicated shape or a large interior member for automobiles can be easily fixed on the support base.
Therefore, it is possible to prevent the positional deviation of the automotive interior member when forming the planned airbag break line and the variation in the thickness of the remaining portion of the planned airbag break line, and to accurately form the planned airbag break line.
Further, in the case of a vacuum pump or the like, unlike the mechanical fixing means, whether or not the automobile interior member is fixed can be easily switched by turning on / off the operation of the suction device, and the work can be performed quickly.
 その他、吸引装置による吸引効果を高めるために、図1に示すように、支持台10が四角形の場合、その周辺の4辺に沿って、所定幅の環状溝17を形成し、そこに、弾性部材、例えば、Oリングを部分的に埋設することが好ましい。
 すなわち、比較的大型の樹脂成形品15である自動車用内装部材を、支持台10の所定場所に載置した後、例えば、幅0.5~10mmの環状溝17の中に、このようにOリングを部分的に埋設した状態、すなわち、Oリングの一部を、支持台10の表面から突き出た状態で配置することができる。
 次いで、吸引装置によって吸引すれば、Oリングの変形によって、樹脂成形品15である自動車用内装部材と、支持台10とのシール性が格段に向上し、ひいては、吸引効果を著しく高めることができる。
 なお、Oリングの構成材料としては、ウレタンゴム、シリコーンゴム、アクリルゴム、オレフィンゴム、天然ゴム等の少なくとも一種が挙げられる。
In addition, in order to enhance the suction effect of the suction device, as shown in FIG. 1, when the support base 10 is a square, an annular groove 17 having a predetermined width is formed along the four sides around the support base 10, and an elastic groove is formed there. It is preferable to partially embed a member, for example, an O-ring.
That is, after an automobile interior member, which is a relatively large resin molded product 15, is placed at a predetermined location on the support base 10, for example, in an annular groove 17 having a width of 0.5 to 10 mm, O A state where the ring is partially embedded, that is, a part of the O-ring protrudes from the surface of the support base 10 can be arranged.
Next, if suction is performed by the suction device, the sealing performance between the automotive interior member as the resin molded product 15 and the support base 10 is remarkably improved by the deformation of the O-ring, and the suction effect can be remarkably enhanced. .
In addition, as a constituent material of the O-ring, at least one of urethane rubber, silicone rubber, acrylic rubber, olefin rubber, natural rubber, and the like can be given.
(2)-3 線状リブ
(幅狭部および幅広部)
 樹脂成形品15を載置する支持台10の上に、水平的に設けてなる線状リブ13は、支持台10の上で、樹脂成形品15を押し付けた場合に、それを凸状に適度に湾曲させる機能を有している。
 そして、かかる線状リブ13が、図1に示すように、相対的に幅が狭い幅狭部11、および相対的に幅が広い幅広部12をそれぞれ有していることを特徴とする。
(2) -3 Linear ribs (narrow and wide)
The linear rib 13 provided horizontally on the support table 10 on which the resin molded product 15 is placed is moderately convex when the resin molded product 15 is pressed on the support table 10. Has a function of bending.
As shown in FIG. 1, the linear rib 13 has a narrow portion 11 having a relatively narrow width and a wide portion 12 having a relatively wide width.
 すなわち、図1に示すような線状リブ13を用いることによって、樹脂成形品15を、主として幅狭部11に対して押圧した場合に、少なくとも幅狭部11に対応した位置で、比較的わずかに凸状に湾曲するだけであることから、幅狭部11の位置に対応した樹脂成形品15における残留応力(内部応力と称する場合もある。)の発生が少なくすることができるためである。
 より具体的には、図1に示すような線状リブ13を用いて、破断予定線15dを形成した場合には、樹脂成形品15の背面側、すなわち、破断予定線15dを形成していない側から眺めた場合に、見る角度によらず、破断予定線15dの形成箇所が透けて見えないと言える。
 そして、このような線状リブ13であれば、樹脂成形品15を、線状リブ13に対して押圧した場合に、少なくとも幅狭部11に対応した位置で、主として、凸状にそれなりには湾曲することから、それを利用して、従来どおりの光学測定装置を用いて、破断予定線15dの深さ(形成深さ)を迅速かつ精度良く測定することもできる。
 なお、残留応力の発生が少なくなるメカニズムを、図4(a)に概略的に示してある。
That is, by using the linear rib 13 as shown in FIG. 1, when the resin molded product 15 is mainly pressed against the narrow portion 11, at least a position corresponding to the narrow portion 11 is relatively small. This is because the generation of residual stress (sometimes referred to as internal stress) in the resin molded product 15 corresponding to the position of the narrow portion 11 can be reduced.
More specifically, when the planned fracture line 15d is formed using the linear rib 13 as shown in FIG. 1, the rear side of the resin molded product 15, that is, the planned fracture line 15d is not formed. When viewed from the side, it can be said that the portion where the planned fracture line 15d is formed cannot be seen through regardless of the viewing angle.
And if it is such a linear rib 13, when the resin molded product 15 is pressed against the linear rib 13, at least a position corresponding to the narrow portion 11 is mainly convex. Since it bends, the depth (formation depth) of the planned fracture line 15d can be measured quickly and accurately using the conventional optical measuring device.
The mechanism for reducing the occurrence of residual stress is schematically shown in FIG.
 一方、従来の線状リブ13´が、全体として、1~2mm程度の等幅の幅狭部11´のみによって構成されている場合、樹脂成形品15を、凸状に過剰に湾曲させることになる。
 すなわち、図4(b)に示すように、樹脂成形品15を、線状リブ13´(幅狭部11´)に対して、押圧した場合、幅狭部11´の影響で、樹脂成形品15が、凸状に過剰に湾曲することになる。
 とすると、線状リブ13´を全体的に構成する幅狭部11´に対応した位置において、樹脂成形品15における残留応力の発生が大きくなる。
 すなわち、従来の線状リブ13´を用いて、樹脂成形品15に破断予定線15dを形成した場合に、発生した残留応力の関係で、見る角度によっては、背面側から、破断予定線15dが透けて見えることになる。
On the other hand, when the conventional linear rib 13 'is constituted only by the narrow portion 11' having an equal width of about 1 to 2 mm as a whole, the resin molded product 15 is excessively curved in a convex shape. Become.
That is, as shown in FIG. 4B, when the resin molded product 15 is pressed against the linear rib 13 ′ (narrow portion 11 ′), the resin molded product is affected by the narrow portion 11 ′. 15 will be excessively curved in a convex shape.
As a result, the occurrence of residual stress in the resin molded product 15 increases at a position corresponding to the narrow portion 11 ′ constituting the linear rib 13 ′ as a whole.
That is, when the planned fracture line 15d is formed on the resin molded product 15 using the conventional linear rib 13 ', the planned fracture line 15d may be seen from the back side depending on the viewing angle due to the residual stress generated. It will show through.
 なお、図1に示すような線状リブ13における幅広部12の形状は、特に制限されるものでなく、すなわち、三角形、四角形、五角形、六角形、八角形等の多角形、円形、楕円形、ドーナツ形、あるいは異形であっても良い。
 一方、図1に示すような線状リブ13における幅狭部11の形状についても、特に制限されるものでなく、すなわち、等幅の直線、波線、ジグザグ線等の少なくとも一つであれば良く、さらには、先端や中間位置で、幅が異なる直線、波線、ジグザグ線等の少なくとも一つであっても良い。その上、幅狭部の形状として、必ずしも一本線でなくとも良く、二本線や三本線であっても良い。
The shape of the wide portion 12 in the linear rib 13 as shown in FIG. 1 is not particularly limited, that is, a polygon such as a triangle, a quadrangle, a pentagon, a hexagon, an octagon, a circle, or an ellipse. , Donut shape, or variant.
On the other hand, the shape of the narrow portion 11 in the linear rib 13 as shown in FIG. 1 is not particularly limited as long as it is at least one of a straight line, a wavy line, a zigzag line, etc. Furthermore, it may be at least one of a straight line, a wavy line, a zigzag line and the like having different widths at the tip or the intermediate position. In addition, the shape of the narrow portion is not necessarily a single line, and may be a double line or a triple line.
(第1~第2の幅広部および第1の幅狭部)
 また、図1等に示すように、具体的に、線状リブにおける幅広部12が、少なくとも第1の幅広部12aおよび第2の幅広部12bを有しており、当該第1の幅広部12aおよび第2の幅広部12bの間に、第1の幅狭部11aを有するとともに、第1の幅広部12a、第1の幅狭部11a、および第2の幅広部12bが、それぞれ、水平かつ直線状に配置されていることが好ましい。
 この理由は、このように所定形状の線状リブ13とすることにより、加工刃を直線的に移動するだけで、所定長さの破断予定線を、迅速かつ正確に形成することができるためである。
 また、第1の幅広部12aおよび第2の幅広部12bの間に、第1の幅狭部11aを有することから、樹脂成形品15の第1の幅狭部11aに対応した位置における残留応力の発生を少なくすることもできる。
 その上、樹脂成形品15に形成される破断予定線の深さについても、従来どおりの光学測定装置を用いて、迅速かつ精度良く測定することができる。
(First to second wide portions and first narrow portions)
Further, as shown in FIG. 1 and the like, specifically, the wide portion 12 in the linear rib has at least a first wide portion 12a and a second wide portion 12b, and the first wide portion 12a. And the second wide portion 12b, the first narrow portion 11a, the first wide portion 12a, the first narrow portion 11a, and the second wide portion 12b are respectively horizontal and It is preferable that they are arranged in a straight line.
The reason for this is that, by using the linear rib 13 having a predetermined shape in this way, it is possible to quickly and accurately form a predetermined fracture line of a predetermined length simply by moving the machining blade linearly. is there.
Further, since the first narrow portion 11a is provided between the first wide portion 12a and the second wide portion 12b, the residual stress at the position corresponding to the first narrow portion 11a of the resin molded product 15 is provided. Can also be reduced.
In addition, the depth of the planned fracture line formed in the resin molded product 15 can also be measured quickly and accurately using the conventional optical measuring device.
 なお、第1の幅広部12aおよび第2の幅広部12bの形状は、上述したように、それぞれ特に制限されるものではないが、樹脂成形品15と、第1の幅狭部11aとの間の過度の密着を防止し、かつ、支持台10の全体を有効活用するため、図1に例示されるように、第1の幅狭部11aを中心として、それぞれシンメトリーの関係にあることがより好ましい。
 一方、第1の幅狭部11aの形状についても、上述したように、特に制限されるものではないが、図1に例示されるように、一本の直線等であって良い。
The shapes of the first wide portion 12a and the second wide portion 12b are not particularly limited as described above. However, the shape is not limited between the resin molded product 15 and the first narrow portion 11a. In order to prevent excessive adhesion and effectively utilize the entire support base 10, as illustrated in FIG. 1, the first narrow portion 11 a may have a symmetry relationship around the first narrow portion 11 a. preferable.
On the other hand, the shape of the first narrow portion 11a is not particularly limited as described above, but may be a single straight line or the like as illustrated in FIG.
(第3~第4の幅広部および第2~第3の幅狭部)
 また、図2等に示すように、線状リブ13における第1の幅広部12aの端部に、第3の幅広部12cおよび第4の幅広部12dを、それぞれ扇状またはT字状に有していることが好ましい。
 そして、このように扇状またはT字状に分岐して広がった、第1の幅広部12aの端部のそれぞれに、第3の幅広部12cおよび第4の幅広部12dを有しており、かつ、分岐した一方の、第1の幅広部12aの端部と、第3の幅広部12cとの間に、第2の幅狭部11bが設けてあり、さらには、分岐したもう一方の、第1の幅広部12aの端部と、第4の幅広部12dの間に、第3の幅狭部11cが設けてあることが好ましい。
(Third to fourth wide portions and second to third narrow portions)
Further, as shown in FIG. 2 and the like, the end portion of the first wide portion 12a in the linear rib 13 has a third wide portion 12c and a fourth wide portion 12d in a fan shape or a T shape, respectively. It is preferable.
And it has the 3rd wide part 12c and the 4th wide part 12d in each of the end part of the 1st wide part 12a which branched and expanded in the shape of a fan or T character in this way, and The second narrow portion 11b is provided between the end of the first wide portion 12a and the third wide portion 12c, and the other branched first portion It is preferable that a third narrow portion 11c is provided between the end of one wide portion 12a and the fourth wide portion 12d.
 この理由は、このように所定形状の線状リブ13とすることにより、支持台10の全体を有効活用することができ、各種形状や大きさの樹脂成形品に対応することができるためである。
 そして、扇状またはT字状に分岐して広がった、第1の幅広部12aの端部に、第3の幅広部12cおよび第4の幅広部12dが設けてあり、かつ、それらの間に、第2の幅狭部11bおよび第3の幅狭部11cを有することから、樹脂成形品15を過度に変形させない状態で、破断予定線15dを形成することができる。
 したがって、樹脂成形品15の幅狭部11に対応した位置における残留応力の発生や、過度の密着を少なくすることができ、ひいては、優れたインビジブル性を得ることができる。
 その上、このような線状リブ13であれば、樹脂成形品15に形成される破断予定線15dの深さについても、従来どおりの光学測定装置を用いて、複数個所において、迅速かつ精度良く測定することができる。
The reason for this is that, by using the linear rib 13 having a predetermined shape in this way, the entire support base 10 can be effectively utilized, and resin molded products of various shapes and sizes can be handled. .
And the 3rd wide part 12c and the 4th wide part 12d are provided in the end of the 1st wide part 12a which branched and expanded in the shape of a fan or T character, and between them, Since it has the 2nd narrow part 11b and the 3rd narrow part 11c, the fracture | rupture planned line 15d can be formed in the state which does not deform | transform the resin molded product 15 too much.
Therefore, it is possible to reduce the occurrence of residual stress and excessive adhesion at a position corresponding to the narrow portion 11 of the resin molded product 15, and thus excellent invisibility can be obtained.
Moreover, with such a linear rib 13, the depth of the planned fracture line 15d formed in the resin molded product 15 can be quickly and accurately determined at a plurality of locations using a conventional optical measuring device. Can be measured.
 なお、第3の幅広部12cおよび第4の幅広部12dの形状についても、上述したように、それぞれ特に制限されるものではないが、図1に例示されるように、第2の幅広部12bから、第1の幅広部12aに向かって、これらを水平方向に横切る仮想線を想定した場合、その仮想線に沿って切断して得られる二つの形状が、相互にシンメトリーの関係にあることがより好ましい。
 さらに言えば、第1の幅広部12aから、第2の幅狭部11bを通過して、第3の幅広部12cに向かってなる仮想線を想定した場合、その仮想線に沿って切断して得られる二つの形状が、相互にシンメトリーの関係にあることがより好ましい。
The shapes of the third wide portion 12c and the fourth wide portion 12d are not particularly limited as described above, but the second wide portion 12b is exemplified as shown in FIG. Assuming imaginary lines that cross the first wide part 12a in the horizontal direction, the two shapes obtained by cutting along the imaginary line may be in a symmetrical relationship with each other. More preferred.
Furthermore, when assuming a virtual line passing from the first wide part 12a through the second narrow part 11b toward the third wide part 12c, cut along the virtual line. More preferably, the two obtained shapes are in a symmetrical relationship with each other.
 同様に、第1の幅広部12aから、第3の幅狭部11cを通過して、第4の幅広部12dに向かってなる仮想線を想定した場合、その仮想線に沿って切断して得られる二つの形状が、相互にシンメトリーの関係にあることがより好ましい。
 すなわち、このようにシンメトリーの関係にある線状リブ13であれば、支持台10の全体を有効活用することができ、また、破断予定線15dを精度良く形成することができ、さらには、より優れたインビジブル性を得ることができる。
Similarly, when an imaginary line passing from the first wide portion 12a to the fourth wide portion 12d through the third narrow portion 11c is assumed, cutting is performed along the imaginary line. More preferably, the two shapes to be obtained are in a symmetrical relationship with each other.
That is, if the linear ribs 13 are in such a symmetrical relationship, the entire support base 10 can be used effectively, the planned fracture line 15d can be formed with high accuracy, and more Excellent invisible properties can be obtained.
 その他、第2の幅狭部11bおよび第3の幅狭部11cの形状についても、上述したように、特に制限されるものではないが、図1に例示されるように、シンプルに1本または2本の直線等であって良い。 In addition, the shapes of the second narrow portion 11b and the third narrow portion 11c are not particularly limited as described above. However, as illustrated in FIG. There may be two straight lines.
(第5~第6の幅広部および第4~第5の幅狭部)
 また、図2等に示すように、第2の幅広部12bの端部に、第5の幅広部12eおよび第6の幅広部12fをそれぞれ扇状またはT字状に有していることが好ましい。
 そして、このように扇状またはT字状に分岐して広がった、第2の幅広部12bの端部のそれぞれに、第5の幅広部12eおよび第6の幅広部12fを有しており、かつ、分岐した一方の、第2の幅広部12bの端部と、第5の幅広部12eとの間に、第4の幅狭部11dが設けてあり、さらには、分岐したもう一方の、第2の幅広部12bの端部と、第6の幅広部12fとの間に、第5の幅狭部11eが設けてあることが好ましい。
(Fifth to sixth wide portions and fourth to fifth narrow portions)
Moreover, as shown in FIG. 2 etc., it is preferable to have the 5th wide part 12e and the 6th wide part 12f at the edge part of the 2nd wide part 12b in fan shape or T shape, respectively.
And it has the 5th wide part 12e and the 6th wide part 12f in each of the end part of the 2nd wide part 12b which branched and expanded in the shape of a fan or T character in this way, and The fourth narrow portion 11d is provided between the end of the second wide portion 12b and the fifth wide portion 12e, and the other branched second portion The fifth narrow portion 11e is preferably provided between the end of the second wide portion 12b and the sixth wide portion 12f.
 この理由は、このように所定形状の線状リブの態様とすることにより、支持台10を全体的に有効利用することができ、各種形状や大きさの樹脂成形品15に対応することができ、ひいては、所定長さおよび所定形状の破断予定線15dを、迅速かつ正確に形成することができるためである。
 また、第2の幅広部12bの端部に、第5の幅広部12eおよび第6の幅広部12fが設けてあり、かつ、それらの間に、幅狭部として、第4の幅狭部11dおよび第5の幅狭部11eを有することから、樹脂成形品15を過度に変形させない状態で、破断予定線15dを形成することができる。したがって、樹脂成形品15の幅狭部11に対応した位置における残留応力の発生や、過度の密着を少なくすることができる。
 その上、樹脂成形品15に形成される破断予定線15dの深さについても、従来どおりの光学測定装置を用いて、複数個所において、迅速かつ精度良く測定することができる。
The reason for this is that the support 10 can be effectively used as a whole by adopting the form of linear ribs of a predetermined shape as described above, and can be applied to resin molded products 15 of various shapes and sizes. As a result, the planned fracture line 15d having a predetermined length and shape can be formed quickly and accurately.
Further, a fifth wide portion 12e and a sixth wide portion 12f are provided at the end of the second wide portion 12b, and the fourth narrow portion 11d is formed as a narrow portion between them. And since it has the 5th narrow part 11e, the fracture | rupture planned line 15d can be formed in the state which does not deform | transform the resin molded product 15 excessively. Accordingly, it is possible to reduce the occurrence of residual stress and excessive adhesion at a position corresponding to the narrow portion 11 of the resin molded product 15.
In addition, the depth of the planned fracture line 15d formed in the resin molded product 15 can also be measured quickly and accurately at a plurality of locations by using a conventional optical measuring device.
 なお、第5の幅広部12eおよび第6の幅広部12fの形状についても、上述したように、それぞれ特に制限されるものではないが、図1に例示されるように、第1の幅広部12aから、第2の幅広部12bに向かって、これらを水平方向に横切る仮想線を想定した場合、その仮想線に沿って切断して得られた二つの形状が、相互にシンメトリーの関係にあることがより好ましい。
 さらに言えば、第2の幅広部12bから、第4の幅狭部11dを通過して、第5の幅広部12eに向かってなる仮想線を想定した場合、その仮想線に沿って切断して得られた二つの形状が、相互にシンメトリーの関係にあることがより好ましい。
The shapes of the fifth wide portion 12e and the sixth wide portion 12f are not particularly limited as described above, but as illustrated in FIG. 1, the first wide portion 12a. Assuming imaginary lines crossing these in the horizontal direction from the second wide part 12b, the two shapes obtained by cutting along the imaginary line are in a symmetrical relationship with each other. Is more preferable.
Furthermore, if a virtual line extending from the second wide portion 12b through the fourth narrow portion 11d toward the fifth wide portion 12e is assumed, cut along the virtual line. More preferably, the two obtained shapes are in a symmetrical relationship with each other.
 同様に、第2の幅広部12bから、第5の幅狭部11eを通過して、第6の幅広部12fに向かってなる仮想線を想定した場合、その仮想線に沿って切断して得られた二つの形状が、相互にシンメトリーの関係にあることがより好ましい。
 すなわち、このような線状リブ13であれば、支持台10の全体を有効活用することができ、また、優れたインビジブル性を得ることができる。
 その上、このような形態の線状リブ13であれば、樹脂成形品15に形成される破断予定線15dの深さについても、従来どおりの光学測定装置を用いて、複数個所において、迅速かつ精度良く測定することもできる。
Similarly, when an imaginary line passing from the second wide part 12b through the fifth narrow part 11e toward the sixth wide part 12f is assumed, it is obtained by cutting along the virtual line. More preferably, the two shapes are symmetrical with each other.
That is, with such a linear rib 13, the entire support base 10 can be effectively utilized, and excellent invisibility can be obtained.
Moreover, in the case of the linear rib 13 having such a configuration, the depth of the planned fracture line 15d formed in the resin molded product 15 can be quickly and at a plurality of locations using a conventional optical measuring device. It is also possible to measure with high accuracy.
 その他、第4の幅狭部11dおよび第5の幅狭部11eの形状についても、上述したように、それぞれ特に制限されるものではないが、図1に例示されるように、シンプルに1本または2本の直線等であって良い。 In addition, the shapes of the fourth narrow portion 11d and the fifth narrow portion 11e are not particularly limited as described above. However, as illustrated in FIG. Or it may be two straight lines.
(幅狭部の幅および幅広部の幅)
 また、図2等に示すように、線状リブ13の一部を構成する幅狭部11(11a~11e)の幅(W1)を1~10mmの範囲内の値とし、幅広部12(12a~12f)の幅(W2)を20~100mmの範囲内の値とすることが好ましい。
 この理由は、このように寸法を制限して構成することにより、樹脂成形品15に対する幅狭部11の押圧力がより高まって、幅狭部11に対応した箇所を主として、凸状に湾曲させることができ、ひいては、破断予定線15dを精度良く形成したり、さらには、破断予定線15dの深さの精度をより高めたりすることができるためである。
 その上、このような幅狭部11に対する樹脂成形品15の所定箇所において、破断予定線15dをV字状に開いて、レーザー等の測定装置を用いて、その深さを精度良く測定することができるという利点もある。
(Width of narrow part and width of wide part)
Further, as shown in FIG. 2 and the like, the width (W1) of the narrow portion 11 (11a to 11e) constituting a part of the linear rib 13 is set to a value within the range of 1 to 10 mm, and the wide portion 12 (12a It is preferable to set the width (W2) of ˜12f) to a value within the range of 20 to 100 mm.
The reason for this is that, by limiting the dimensions in this way, the pressing force of the narrow portion 11 against the resin molded product 15 is further increased, and the portion corresponding to the narrow portion 11 is mainly curved in a convex shape. This is because the planned fracture line 15d can be formed with high accuracy, and the accuracy of the depth of the planned fracture line 15d can be further increased.
In addition, at a predetermined location of the resin molded product 15 with respect to such a narrow portion 11, the planned fracture line 15 d is opened in a V shape and the depth thereof is accurately measured using a measuring device such as a laser. There is also an advantage of being able to.
 したがって、線状リブ13を構成する幅狭部11の幅(W1)を2~8mmの範囲内の値とすることがより好ましく、同様に、線状リブ13の一部を構成する幅広部12の幅(W2)を22~80mmの範囲内の値とすることがより好ましい。
 なお、第1~第5の幅狭部11a~11eの幅や、第2~第6の幅広部12a~12fの幅に関して、それぞれ上述した1本または2本の直線等の形状において、同一であっても良く、あるいは、異なっていても良い。
Therefore, the width (W1) of the narrow portion 11 constituting the linear rib 13 is more preferably set to a value within the range of 2 to 8 mm. Similarly, the wide portion 12 constituting a part of the linear rib 13 is used. The width (W2) is more preferably in the range of 22 to 80 mm.
Note that the widths of the first to fifth narrow portions 11a to 11e and the widths of the second to sixth wide portions 12a to 12f are the same in the shape of one or two straight lines described above. It may be present or different.
(幅狭部の高さおよび幅広部の高さ)
 また、図2等に示すように、線状リブ13の一部を構成する幅狭部11(11a~11e)の、支持台10における表面からの高さを0.1~5mmの範囲内の値とし、同様に、幅広部12(12a~12f)の高さを0.1~5mmの範囲内の値とすることが好ましい。
 この理由は、このように線状リブ13の高さを制限することにより、樹脂成形品15に対する幅狭部11の押圧力がより高まって、幅狭部11に対応した箇所を主として、凸状に湾曲させることができ、ひいては、破断予定線15dを精度良く形成したり、さらには、破断予定線15dの深さの精度をより高めたりすることができるためである。
 その上、このような幅狭部11の高さおよび幅広部12の高さであれば、樹脂成形品15を押しつけた後でも、残留応力の発生が、より少なくなって、インビジブル性が向上するためである。
 したがって、線状リブ13の一部を構成する幅狭部11の高さ、すなわち、支持台10の表面からの高さを0.5~5mmの範囲内の値とすることがより好ましく、0.8~3mmの範囲内の値とすることがさらに好ましい。
 同様に、線状リブ13の一部を構成する幅広部12の高さを0.5~5mmの範囲内の値とすることがより好ましく、0.8~3mmの範囲内の値とすることがさらに好ましい。
 なお、線状リブ13を構成する幅狭部11の高さと、幅広部12の高さは、同一であっても良く、あるいは、異なる高さであっても良い。
 その上、線状リブ13を構成する幅狭部11の高さと、幅広部12の高さは、それぞれ平均値を問題にすれば良く、樹脂成形品15の形態に合わせて、線状リブ13の長さ方向や、幅方向に沿って、高さを変えて、傾斜させることも好ましい。
(Height of narrow part and height of wide part)
Further, as shown in FIG. 2 and the like, the height of the narrow portion 11 (11a to 11e) constituting a part of the linear rib 13 from the surface of the support base 10 is within a range of 0.1 to 5 mm. Similarly, the height of the wide portion 12 (12a to 12f) is preferably set to a value within the range of 0.1 to 5 mm.
The reason for this is that by restricting the height of the linear rib 13 in this way, the pressing force of the narrow portion 11 against the resin molded product 15 is further increased, and the portion corresponding to the narrow portion 11 is mainly convex. This is because the planned fracture line 15d can be formed with high accuracy, and further, the accuracy of the depth of the planned fracture line 15d can be further increased.
Moreover, if the width of the narrow portion 11 and the height of the wide portion 12 are such, even after the resin molded product 15 is pressed, the occurrence of residual stress is further reduced and the invisibility is improved. Because.
Therefore, the height of the narrow portion 11 constituting a part of the linear rib 13, that is, the height from the surface of the support base 10 is more preferably set to a value in the range of 0.5 to 5 mm. More preferably, the value is in the range of 8 to 3 mm.
Similarly, the height of the wide portion 12 constituting a part of the linear rib 13 is more preferably set to a value within a range of 0.5 to 5 mm, and a value within a range of 0.8 to 3 mm. Is more preferable.
In addition, the height of the narrow part 11 which comprises the linear rib 13, and the height of the wide part 12 may be the same, and may be different height.
In addition, the heights of the narrow portions 11 and the wide portions 12 constituting the linear ribs 13 may be average values, and the linear ribs 13 are matched to the shape of the resin molded product 15. It is also preferable to change the height and incline along the length direction and the width direction.
(幅狭部および幅広部の面取り)
 また、図示しないものの、線状リブ13における樹脂成形品15との押圧面の面取りをすることが好ましい。
 この理由は、このように線状リブ13における樹脂成形品15との押圧面の面取りをすることにより、樹脂成形品15に対する幅狭部11の押圧力がより高まって、幅狭部11に対応した箇所を主として、凸状に湾曲させることができ、ひいては、破断予定線15dを精度良く形成したり、さらには、破断予定線15dの深さの精度をより高めたりすることができるためである。
 その上、このような面取りを備えることにより、樹脂成形品15を押しつけた場合において、残留応力の発生が、より少なくなって、インビジブル性が向上するためである。
 したがって、線状リブ13における樹脂成形品15との押圧面の面取り幅を0.01~1.0mmの範囲内の値とすることが好ましく、0.05~0.5mmの範囲内の値とすることがより好ましく、0.1~0.3mmの範囲内の値とすることがさらに好ましい。
(Chamfer of narrow part and wide part)
Although not shown, it is preferable to chamfer the pressing surface of the linear rib 13 with the resin molded product 15.
The reason for this is that, by chamfering the pressing surface of the linear rib 13 with the resin molded product 15, the pressing force of the narrow portion 11 against the resin molded product 15 is further increased and corresponds to the narrow portion 11. This is because the portion that has been cut can be bent mainly in a convex shape, and as a result, the planned fracture line 15d can be formed with high accuracy, and further, the accuracy of the depth of the planned fracture line 15d can be further increased. .
In addition, by providing such a chamfer, when the resin molded product 15 is pressed, the occurrence of residual stress is reduced and the invisibility is improved.
Therefore, the chamfer width of the pressing surface of the linear rib 13 with the resin molded product 15 is preferably set to a value within a range of 0.01 to 1.0 mm, and a value within a range of 0.05 to 0.5 mm. It is more preferable to set the value within a range of 0.1 to 0.3 mm.
(線状リブの断面形状)
 また、図示しないものの、支持台10の上の線状リブ13を水平配置して、重力方向に切断した場合において、その断面方向を、横方向から眺めた場合の断面形状を、三角形、四角形、五角形、台形、楕円形、異形等の各種形状とすることができるが、台形あるいは楕円とすることがより好ましい。
 この理由は、かかる台形あるいは楕円であれば、樹脂成形品15を押しつけた場合において、残留応力の発生が、より少なくなって、インビジブル性が向上するためである。
 また、このように線状リブ13の断面形状が台形であれば、上述した面取りを省略した場合であっても、樹脂成形品15を押しつけた場合に発生する残留応力を、より少なくすることができるためである。
 なお、支持台10の上で、上に凸の台形の断面形状とした場合、一例として、上辺を1.0~1.8mmの範囲内の値とし、下辺を1.9~3mmの範囲内の値とし、かつ、高さを0.3~1.8mmの範囲内の値とすることが好ましい。
(Cross sectional shape of linear rib)
Although not shown, when the linear ribs 13 on the support base 10 are horizontally arranged and cut in the direction of gravity, the cross-sectional shape when viewed from the lateral direction is triangular, quadrilateral, Various shapes such as a pentagon, a trapezoid, an ellipse, and an irregular shape can be used, but a trapezoid or an ellipse is more preferable.
This is because if such a trapezoid or ellipse is used, the residual stress is reduced when the resin molded product 15 is pressed, and the invisibility is improved.
Moreover, if the cross-sectional shape of the linear rib 13 is trapezoidal in this way, even if the chamfering described above is omitted, the residual stress generated when the resin molded product 15 is pressed can be reduced. This is because it can.
In the case of a trapezoidal cross-sectional shape that is convex upward on the support base 10, as an example, the upper side has a value in the range of 1.0 to 1.8 mm, and the lower side has a value in the range of 1.9 to 3 mm. And the height is preferably in the range of 0.3 to 1.8 mm.
(線状リブの周囲の吸引部)
 支持台10の上であって、かつ、線状リブ13の想定位置の周囲に、吸引装置(図示せず)に連結する吸引口14が複数設けてあることが好ましい。
 そして、幅狭部11の周囲に設けてある、吸引口14の単位面積あたりの数を、幅広部12の周囲に設けてある、の単位面積あたりの吸引口14の数よりも多くすることが好ましい。
 この理由は、このように実施することにより、幅狭部11に対する樹脂成形品15の押圧力が高まって、破断予定線の深さの精度をより高めることができ、さらには、樹脂成形品15に形成した破断予定線をV字状に開いて、その深さを精度良く測定することができるためである。
 したがって、より具体的には、幅狭部11の周囲に設けてある、吸引口14の数を、単位面積(100cm2)あたりに、10~50個の範囲内の値とし、同様に、幅広部12の周囲に設けてある吸引口14の数を1~8個の範囲内の値とすることが好ましい。
(Suction part around the linear rib)
It is preferable that a plurality of suction ports 14 connected to a suction device (not shown) are provided on the support base 10 and around the assumed position of the linear rib 13.
And the number per unit area of the suction ports 14 provided around the narrow portion 11 may be made larger than the number of the suction ports 14 per unit area provided around the wide portion 12. preferable.
The reason for this is that, by carrying out in this way, the pressing force of the resin molded product 15 against the narrow portion 11 can be increased, and the accuracy of the depth of the planned fracture line can be further increased. This is because the planned fracture line formed in (1) can be opened in a V shape and the depth thereof can be accurately measured.
Therefore, more specifically, the number of suction ports 14 provided around the narrow portion 11 is set to a value within the range of 10 to 50 per unit area (100 cm 2 ), and similarly, The number of suction ports 14 provided around the portion 12 is preferably set to a value in the range of 1 to 8.
(2)-4 破断予定線形成手段
 また、図5に示すように、破断予定線形成手段131、133は、それぞれ少なくとも一つの機械工具(加工刃等)を設けることを特徴とする。
 このような機械工具としては、例えば、エンドミル、熱溶融刃、超音波カッター、レーザーカッター等の少なくとも一つの加工刃や加工部材等を好適に使用することができる。
 すなわち、これらの機械工具であれば、長時間使用等に寄って、高温になったとしても、エアー吹出装置のエアー吹出口から吹き付けられるエアー(高速エアー)によって、ジュール熱を効率的に除去することができるためである。
(2) -4 Scheduled Break Line Forming Unit Further, as shown in FIG. 5, each planned break line forming unit 131, 133 is provided with at least one machine tool (such as a machining blade).
As such a machine tool, for example, at least one processing blade such as an end mill, a thermal melting blade, an ultrasonic cutter, or a laser cutter, a processing member, or the like can be preferably used.
That is, with these machine tools, Joule heat is efficiently removed by the air (high-speed air) blown from the air outlet of the air blowing device even if the temperature becomes high due to long-term use or the like. Because it can.
 また、図5に示すように、破断予定線形成手段として、一次破断予定線形成手段131及び二次破断予定線形成手段133を、それぞれ設けることも好ましい。
 ここで、一次破断予定線形成手段131は、図6(a)に示すように、樹脂成形品15のみからなる車両用内装部材(エアバッグドア部)の場合には、破断予定線15dを形成するための加工手段となる。
 すなわち、所定厚さ(t2)を有する樹脂成形品15の裏側から、一部を切削するものの、表面側までは至らない所定厚さ(t1)の破断予定線15dを形成するための加工手段(一次破断予定線形成手段)となる。
 かかる樹脂成形品15の所定厚さ(t2)は、通常、1.0~2.5mmの範囲であり、表面側までは至らない残った樹脂成形品の所定厚さ(t1)は、通常、0.1~0.8mmの範囲内の値であるが、0.2~0.7mmの範囲内の値とすることがより好ましく、0.3~0.6mmの範囲内の値とすることがさらに好ましい。
Moreover, as shown in FIG. 5, it is also preferable to provide a primary fracture planned line forming means 131 and a secondary fracture planned line forming means 133, respectively, as the planned fracture line forming means.
Here, as shown in FIG. 6A, the primary fracture intended line forming means 131 forms the planned fracture line 15d in the case of a vehicle interior member (airbag door portion) made of only the resin molded product 15. It becomes the processing means for doing.
That is, a processing means for forming a planned fracture line 15d having a predetermined thickness (t1) that is partially cut from the back side of the resin molded product 15 having a predetermined thickness (t2) but does not reach the surface side ( Primary fracture intended line forming means).
The predetermined thickness (t2) of the resin molded product 15 is usually in the range of 1.0 to 2.5 mm, and the predetermined thickness (t1) of the remaining resin molded product that does not reach the surface side is usually The value is in the range of 0.1 to 0.8 mm, more preferably in the range of 0.2 to 0.7 mm, and the value in the range of 0.3 to 0.6 mm. Is more preferable.
 一方、樹脂成形品15が、図6(b)に示すように、硬質基材15d´と、中間層(発泡層)15e´と、表皮15f´と、から構成される三層構造の樹脂成形品15´の場合、硬質基材15d´の側から、当該硬質基材15d´を貫通する一方、表皮15f´までは至らない深さの一次破断予定線を形成するための加工手段である。
 かかる表面側までは至らない、残った表皮15f´の所定厚さ(t3)は、通常、0.1~0.8mmの範囲であるが、0.2~0.7mmの範囲内の値とすることがより好ましく、0.3~0.6mmの範囲内の値とすることがさらに好ましい。
 そして、このような一次破断予定線形成手段としては、エンドミル、熱溶融刃、超音波カッター、レーザーカッター等を好適に使用することができる。
On the other hand, as shown in FIG. 6 (b), the resin molded product 15 has a three-layer structure formed of a hard base material 15d ', an intermediate layer (foamed layer) 15e', and a skin 15f '. In the case of the product 15 ′, it is a processing means for forming a planned primary fracture line that penetrates the hard base material 15 d ′ from the hard base material 15 d ′ side but does not reach the skin 15 f ′.
The predetermined thickness (t3) of the remaining skin 15f ′ that does not reach the surface side is usually in the range of 0.1 to 0.8 mm, but a value in the range of 0.2 to 0.7 mm. It is more preferable to set the value within the range of 0.3 to 0.6 mm.
And as such a primary fracture planned line formation means, an end mill, a hot-melting blade, an ultrasonic cutter, a laser cutter, etc. can be used conveniently.
 一方、図5に示すエアバッグ破断予定線形成装置100は、一次破断予定線内を介して機械工具(加工刃と称する場合がある。)113を進入させて、表皮15f´に至る二次破断予定線(厚さt3)を形成するための加工手段として、二次破断予定線形成手段133を備えていることが好ましい。
 したがって、二次破断予定線形成手段133に含まれる機械工具(例えば、レーザーカッターや超音波カッター等)113は、全体として細長い板状に形成されており、一次破断予定線形成手段131に含まれる機械工具(例えば、エンドミル等)によって形成された一次破断予定線の内部に進入できるようにされている。
On the other hand, the airbag breaking planned line forming apparatus 100 shown in FIG. 5 allows a machine tool (sometimes referred to as a machining blade) 113 to enter the secondary breaking line reaching the skin 15f ′ through the primary breaking planned line. As a processing means for forming the planned line (thickness t3), it is preferable that the secondary fracture planned line forming means 133 is provided.
Therefore, the machine tool (for example, a laser cutter, an ultrasonic cutter, etc.) 113 included in the secondary break planned line forming unit 133 is formed in an elongated plate shape as a whole, and is included in the primary break planned line forming unit 131. It is made possible to enter the inside of the planned primary fracture line formed by a machine tool (for example, an end mill).
 そして、エアバッグ破断予定線形成装置100において、一次破断予定線形成手段131及び二次破断予定線形成手段133は、ともに移動制御ロボット163における破断予定線形成手段の固定部163aに固定されている。
 したがって、一次破断予定線を形成する際には、移動制御ロボット163が動作して、一次破断予定線形成手段131によって硬質基材15d´を切断できる状態に位置きめしつつ、所定の切断動作を行う。
 次いで、二次破断予定線を形成する際には、二次破断予定線形成手段133によって表皮15f´を切断できる状態において、所定の切断動作を行う。
In the airbag break planned line forming apparatus 100, the primary break planned line forming means 131 and the secondary break planned line forming means 133 are both fixed to a fixing portion 163 a of the planned break line forming means in the movement control robot 163. .
Accordingly, when forming the planned primary fracture line, the movement control robot 163 operates to perform a predetermined cutting operation while positioning the hard base material 15d ′ in a state where it can be cut by the primary fracture planned line forming means 131. Do.
Next, when forming the planned secondary fracture line, a predetermined cutting operation is performed in a state where the skin 15 f ′ can be cut by the secondary fracture planned line forming means 133.
(2)-5 加工刃検知手段
 また、エアバッグ破断予定線形成装置100では、一次破断予定線形成手段131の一部を構成する機械工具131aによる刃先位置を制御して、形成する溝の深さ、すなわち、樹脂成形品(基材)における残部の厚さを調整するために、一次破断予定線の深さをオンタイムで実測するための光学測定装置(レーザー反射方式のレーザー変位計等)を設けることが好ましい。
 一方、図示しないものの、支持台10の下方に、二次破断予定線形成手段133の一部を構成する機械工具の刃先位置を検知するための第1の加工刃検知手段及び第2の加工刃検知手段をそれぞれ備えることが好ましい。
 かかる第1の加工刃検知手段及び第2の加工刃検知手段は、支持台10の内部に配置され、あらかじめ設定された特定の検出位置において機械工具の存在の有無が検知されるように構成されている。
 そして、このような第1の加工刃検知手段167及び第2の加工刃検知手段169としては、例えば、金属探知機が好適であって、それにより、金属製の機械工具が検出位置を通過したときに、機械工具の存在の有無を検知することができる。
(2) -5 Cutting Edge Detection Unit In the airbag break planned line forming device 100, the depth of the groove to be formed is controlled by controlling the position of the cutting edge by the machine tool 131a constituting a part of the primary fracture planned line forming unit 131. That is, in order to adjust the thickness of the remaining part of the resin molded product (base material), an optical measuring device (laser reflection type laser displacement meter, etc.) for measuring the depth of the primary fracture line on-time. Is preferably provided.
On the other hand, although not shown, a first working blade detecting means and a second working blade for detecting the position of the cutting edge of a machine tool constituting a part of the secondary fracture planned line forming means 133 below the support base 10. It is preferable to provide each of the detection means.
The first processing blade detection unit and the second processing blade detection unit are arranged inside the support base 10 and configured to detect the presence / absence of a machine tool at a predetermined specific detection position. ing.
And as such 1st processing blade detection means 167 and 2nd processing blade detection means 169, for example, a metal detector is suitable, and, thereby, the metal machine tool passed the detection position. Sometimes the presence or absence of a machine tool can be detected.
(2)-6 刃先状態検知手段
 また、刃先状態検知手段129は、機械工具(加工刃等)の刃先や切削部の磨耗や損傷等の状態を検知するための手段である。
 したがって、加工刃の刃先等の状態を測定し、磨耗等により損傷している状態が検知された場合には、装置の稼動を停止するとともに、加工刃等を交換することもできる。
 すなわち、刃先状態検知手段を用いることにより、機械工具を所定状態を維持し、形成するエアバッグ破断予定線の残部の厚さを、さらに精度よく調節することができる。
(2) -6 Cutting Edge State Detection Unit The cutting edge state detection unit 129 is a unit for detecting the state of wear or damage of the cutting edge or cutting part of a machine tool (processing blade or the like).
Therefore, when the state of the cutting edge of the processing blade is measured and a state damaged by wear or the like is detected, the operation of the apparatus is stopped and the processing blade or the like can be replaced.
That is, by using the blade edge state detecting means, the machine tool can be maintained in a predetermined state, and the thickness of the remaining portion of the planned airbag break line to be formed can be adjusted with higher accuracy.
 具体的には、刃先状態検知手段は、レーザー変位計や赤外線測定装置等を用いて構成され、移動制御ロボット163の先端をあらかじめ規定した所定の高さに維持したまま、加工刃を刃先状態検知手段129の検知位置に配置し、エアバッグ破断予定線の形成前と形成後との刃先の高さ位置の差異や、陰影の形状差を測定することにより、磨耗等による損傷度合いを検知することができる。
 このような刃先状態検知手段129を備えることにより、加工刃の刃面状態を考慮して、加工刃の刃先と支持台10の載置面との距離を一定状態に保持することができ、表皮の種類や厚さ等が変化した場合であっても、残部の厚さが全体的に均一であるエアバッグ破断予定線を、精度良くかつ迅速に形成することができる。
Specifically, the cutting edge state detection means is configured using a laser displacement meter, an infrared measurement device, or the like, and detects the cutting edge state of the machining blade while maintaining the tip of the movement control robot 163 at a predetermined height. Detecting the degree of damage due to wear or the like by measuring the difference in the height position of the blade edge before and after the formation of the airbag rupture line and the difference in the shape of the shadow, arranged at the detection position of the means 129 Can do.
By providing such a blade edge state detecting means 129, the distance between the blade edge of the machining blade and the mounting surface of the support base 10 can be kept constant in consideration of the blade surface state of the machining blade. Even when the type, thickness, etc. of the air bag change, it is possible to accurately and quickly form a planned airbag break line in which the remaining thickness is uniform throughout.
(3)樹脂成形品
 また、樹脂成形品15の構成種類についても特に制限されるものではないが、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリ塩化ビニル樹脂、ポリスルホン樹脂等の合成樹脂、金、銀、銅、プラチナ、ニッケル、チタン、アルミニウム、亜鉛、鉄、鉛、カドミウム、タングステン、インジウム、モリブテン等の金属(合金を含む)、酸化銀、酸化銅、酸化ケイ素、酸化ニッケル、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化鉄、酸化鉛、酸化カドミウム、酸化タングステン、酸化インジウム、酸化モリブテン、ガラス、セラミック等の酸化物、水酸化アルミニウム等の水酸化物、セラミック材料、およびこれらの複合物や混合物からなる立体的成形品やフィルム等が挙げられる。
(3) Resin molded product The configuration type of the resin molded product 15 is not particularly limited. For example, polyethylene resin, polypropylene resin, polystyrene resin, polyester resin, polycarbonate resin, polyurethane resin, polyamide resin, poly Synthetic resins such as vinyl chloride resin and polysulfone resin, gold, silver, copper, platinum, nickel, titanium, aluminum, zinc, iron, lead, cadmium, tungsten, indium, molybdenum and other metals (including alloys), silver oxide, Copper oxide, silicon oxide, nickel oxide, titanium oxide, aluminum oxide, zinc oxide, iron oxide, lead oxide, cadmium oxide, tungsten oxide, indium oxide, molybdenum oxide, glass, ceramic and other oxides, water such as aluminum hydroxide Oxides, ceramic materials, and this Examples thereof include three-dimensional molded articles and films made of these composites and mixtures.
[第2の実施形態]
 第2の実施形態は、樹脂成形品としての樹脂成形品に対して、機械工具により、表面まで至らない破断予定線を形成する機械加工方法であって、下記工程(1)~(3)を有することを特徴とする機械加工方法である。
(1)樹脂成形品を、当該樹脂成形品を凸状に湾曲させる線状リブが設けてある支持台上に載置する工程
(2)樹脂成形品を、吸引装置によって、線状リブ上に押圧させ、凸状に湾曲させる工程
(3)機械工具により、線状リブ上で凸状に湾曲した、樹脂成形品に対して、破断予定線を形成する工程
 以下、エアバッグ破断予定線形成方法を例にとって、第2の実施形態の樹脂成形品の機械加工方法について説明する。
[Second Embodiment]
The second embodiment is a machining method for forming a planned fracture line that does not reach the surface with a machine tool on a resin molded product as a resin molded product, and includes the following steps (1) to (3): It is the machining method characterized by having.
(1) A step of placing the resin molded product on a support base provided with a linear rib that curves the resin molded product in a convex shape. (2) The resin molded product is placed on the linear rib by a suction device. Step of pressing and bending in a convex shape (3) Step of forming a planned fracture line for a resin molded product curved in a convex shape on a linear rib by a machine tool As an example, a machining method for a resin molded product according to the second embodiment will be described.
1.工程(1)
 工程(1)は、樹脂成形品を、所定の線状リブが設けてある支持台上に実質的に水平状態に載置する工程である。
 但し、線状リブが、支持台に対して、あらかじめ固定してある場合には、所定高さの線状リブの影響で、当該樹脂成形品が凸状に一部湾曲する場合がある。
 一方、線状リブが上下方向に可動する構成の場合、線状リブが支持台の内部に位置することから、当該樹脂成形品は、実質的に水平状態を保持することができる。
1. Process (1)
Step (1) is a step of placing the resin molded product in a substantially horizontal state on a support base provided with predetermined linear ribs.
However, when the linear rib is fixed to the support base in advance, the resin molded product may be partially curved in a convex shape due to the influence of the linear rib having a predetermined height.
On the other hand, in the case where the linear rib is configured to move in the vertical direction, since the linear rib is located inside the support base, the resin molded product can substantially maintain a horizontal state.
2.工程(2)
 次いで、工程(2)は、樹脂成形品15を、吸引装置によって、支持台10の上に、固定された状態で突出した線状リブ13に対して押圧させ、所定形状としての凸状に湾曲させる工程である。
 すなわち、支持台10の上の所定位置に設けてある吸引口14、あるいはそれに連なる吸引装置によって、吸引動作を行い、それにより、樹脂成形品15を、支持台10の上に固定された状態で突出してなる線状リブ13上に、押圧させることができ、ひいては、凸状に湾曲させる工程である。
2. Step (2)
Next, in the step (2), the resin molded product 15 is pressed against the linear rib 13 protruding in a fixed state on the support base 10 by a suction device, and curved into a convex shape as a predetermined shape. It is a process to make.
That is, a suction operation is performed by the suction port 14 provided at a predetermined position on the support base 10 or a suction device connected thereto, whereby the resin molded product 15 is fixed on the support base 10. This is a step that can be pressed onto the protruding linear rib 13 and, consequently, curved into a convex shape.
 なお、線状リブ13が、支持台10の内部を上下方向に可動する構成の場合、まずは、線状リブ13が支持台10の内部から、支持台10の表面よりも突き出た所定位置に上昇する動作を行う。
 次いで、その動作が終了したのち、あるいは、その動作の途中で、吸引装置によって、樹脂成形品15を下方に押し下げて、線状リブ13に対して押圧し、所定形状としての凸状に湾曲させることになる。
When the linear rib 13 is configured to move up and down in the support base 10, first, the linear rib 13 rises from the support base 10 to a predetermined position protruding from the surface of the support base 10. To perform the operation.
Next, after the operation is completed or in the middle of the operation, the resin molded product 15 is pushed down by the suction device and pressed against the linear rib 13 to be curved into a convex shape as a predetermined shape. It will be.
3.工程(3)
 次いで、工程(3)は、線状リブ13上で、凸状に湾曲した、樹脂成形品15に対して、コールドカッター等を用いて、所定の破断予定線15dを形成する工程である。
 その際、一部上述したように、支持台10の上に、吸引装置に連結する吸引口14が複数設けてあり、幅狭部11の周囲に設けてある、単位面積あたりの吸引口14の数を、幅広部12の周囲に設けてある、単位面積あたりの吸引口14の数よりも多くすることが好ましい。
 この理由は、このように実施することにより、幅狭部11に対する樹脂成形品15の押圧力が高まって、破断予定線15dの深さの精度をより高めることができ、さらには、幅狭部11に対する樹脂成形品15に形成した破断予定線15dをV字状に開いて、その深さを精度良く測定することができるためである。
3. Process (3)
Next, the step (3) is a step of forming a predetermined planned fracture line 15d on the linear rib 13 by using a cold cutter or the like on the resin molded product 15 curved in a convex shape.
At this time, as described above in part, a plurality of suction ports 14 connected to the suction device are provided on the support 10, and the suction ports 14 per unit area provided around the narrow portion 11. The number is preferably larger than the number of suction ports 14 per unit area provided around the wide portion 12.
The reason for this is that, by carrying out in this way, the pressing force of the resin molded product 15 against the narrow portion 11 can be increased, and the accuracy of the depth of the planned fracture line 15d can be further increased. This is because the planned fracture line 15d formed on the resin molded product 15 corresponding to 11 can be opened in a V shape and the depth thereof can be measured with high accuracy.
 そして、工程(3)の実施にあたり、線状リブ13を有する支持台10を用い、幅狭部11において形成の幅(W1)を1~10mmの範囲内の値とし、幅広部の幅(W2)を20~100mmの範囲内の値とすることが好ましい。
 この理由は、このように線状リブ13の幅を構成することにより、幅狭部11に対する樹脂成形品15の押圧力が高まって、破断予定線15dの深さの精度をより高めることができ、さらには、幅狭部11に対する樹脂成形品15に形成した破断予定線15dをV字状に開いて、その深さを精度良く測定することができる。
In carrying out the step (3), the support base 10 having the linear ribs 13 is used, the width (W1) of the formation in the narrow portion 11 is set to a value within the range of 1 to 10 mm, and the width (W2) of the wide portion. ) Is preferably in the range of 20 to 100 mm.
The reason for this is that by configuring the width of the linear rib 13 in this way, the pressing force of the resin molded product 15 against the narrow portion 11 is increased, and the accuracy of the depth of the planned fracture line 15d can be further increased. Furthermore, the planned fracture line 15d formed in the resin molded product 15 for the narrow portion 11 can be opened in a V shape, and the depth thereof can be measured with high accuracy.
 なお、線状リブ13を有する支持台10を用いるに際して、当該線状リブ13(幅狭部11および幅広部12)の高さを、それぞれ第1の実施形態で述べたように、支持台表面から、0.1~5mmの範囲内の値とすることが好ましく、0.5~5mmの範囲内の値とすることがより好ましく、0.8~3mmの範囲内の値とすることがさらに好ましい。 When using the support base 10 having the linear ribs 13, the height of the linear ribs 13 (the narrow portion 11 and the wide portion 12) is set to the surface of the support base as described in the first embodiment. Therefore, the value is preferably in the range of 0.1 to 5 mm, more preferably in the range of 0.5 to 5 mm, and further preferably in the range of 0.8 to 3 mm. preferable.
4.工程(4)
 最後に、工程(4)として、所定のセンサによって、加工刃による樹脂成形品15における、破断予定線15dの深さを測定する工程を設けることが好ましい。
 すなわち、樹脂成形品15の裏面における破断予定線15dの深さまたは残部の厚さを測定する工程である。
 ここで、破断予定線15dの残部の厚さ、すなわち、深さの測定方法については特に制限されるものではないが、例えば、レーザー光測定システム、赤外線測定システム、あるいは渦電流方式を採用することが好ましい。
4). Step (4)
Finally, as the step (4), it is preferable to provide a step of measuring the depth of the planned fracture line 15d in the resin molded product 15 by the processing blade using a predetermined sensor.
That is, this is a step of measuring the depth of the planned fracture line 15d on the back surface of the resin molded product 15 or the thickness of the remaining portion.
Here, the thickness of the remaining portion of the planned fracture line 15d, that is, the depth measurement method is not particularly limited. For example, a laser light measurement system, an infrared measurement system, or an eddy current method is adopted. Is preferred.
 より具体的には、レーザー光等の反射や渦電流を用いて、破断予定線15dの深さ(または残部の厚さ)を、少なくとも2箇所以上で測定することが好ましく、3箇所以上で測定することがより好ましい。
 この理由は、このように複数箇所で膜厚を測定することにより、成形加工された表皮の厚さが多少不均一な場合であっても、平均化した数値が得られるためである。
 したがって、全体的に均一な膜厚の破断予定線を形成することができ、そのため、エアバッグの展開力が発生した場合に、破断予定線に沿って、エアバッグドアを確実に開くことができる。
 なお、樹脂成形品としての表皮に破断予定線を形成する前に、成形加工された表皮の厚さを測定する、すなわち、破断予定線を形成する前後の膜厚を測定することが好ましい。
 この理由は、このように破断予定線を形成する前後の膜厚を測定しておくことにより、全体的にさらに均一な膜厚の破断予定線を形成することができ、エアバッグの展開力が発生した場合に、破断予定線に沿って、エアバッグドアをさらに確実に開くことができるためである。
More specifically, it is preferable to measure the depth (or remaining thickness) of the planned fracture line 15d at least at two or more locations by using reflection of laser light or eddy current, and measurement at three or more locations. More preferably.
The reason for this is that, by measuring the film thickness at a plurality of locations in this way, an averaged numerical value can be obtained even when the thickness of the molded skin is somewhat uneven.
Therefore, it is possible to form a planned break line having a uniform film thickness as a whole, and therefore, when an airbag deployment force is generated, the airbag door can be reliably opened along the planned break line. .
It is preferable to measure the thickness of the molded skin before forming the planned fracture line on the skin as a resin molded product, that is, measure the film thickness before and after forming the planned fracture line.
The reason for this is that by measuring the film thickness before and after the formation of the planned fracture line, it is possible to form the planned fracture line with a more uniform film thickness as a whole, and the deployment force of the airbag is reduced. This is because, when it occurs, the airbag door can be more reliably opened along the planned fracture line.
5.他の工程
 形成した破断予定線(溝)15bが瞬時に融着する場合があるため、樹脂成形品15を所定形態の線状リブ13に押圧し、V字状に開閉した状態で、シリコーン樹脂、フッ素樹脂、あるいはオレフィン樹脂等を吹き付け処理することが好ましい。
 そうすると、形成した破断予定線(溝)15bの融着を防止でき、ひいては、破断予定線(溝)15b等を精度良く測定することができる。
5). Other Steps Since the formed planned fracture line (groove) 15b may be instantaneously fused, the silicone resin is pressed in a state where the resin molded product 15 is pressed against the linear rib 13 having a predetermined shape and opened and closed in a V shape. Fluorine resin, olefin resin or the like is preferably sprayed.
If it does so, the fusion | bonding of the formed planned fracture line (groove) 15b can be prevented, and by extension, the planned fracture line (groove) 15b etc. can be measured accurately.
[実施例1]
1.エアバッグ用破断予定線の形成
 図1~図2に示す線状リブ13を備えた支持台10を有する機械加工装置(機械工具:コールドカッター)である、図5に示すような、エアバッグ破断予定線形成装置100を準備した。
 次いで、1~300時間の連続運転を行い、図6(a)に示すような、エアバッグ装置を構成する熱可塑エラストマー樹脂成形品(横幅:1.2mm、縦幅:40cm、厚さ:2.0mm)15の背面側に、所定深さ(のエアバッグ破断予定線15dを形成し、下記評価を実施した。
[Example 1]
1. Formation of a scheduled break line for an airbag As shown in FIG. 5, the airbag breaks, which is a machining apparatus (machine tool: cold cutter) having a support base 10 provided with the linear ribs 13 shown in FIGS. The planned line forming apparatus 100 was prepared.
Next, continuous operation is performed for 1 to 300 hours, and a thermoplastic elastomer resin molded product (width: 1.2 mm, length: 40 cm, thickness: 2) constituting the airbag apparatus as shown in FIG. 6 (a). 0.0 mm) 15, a predetermined depth (air bag breakage planned line 15 d) was formed, and the following evaluation was performed.
2.評価
(1)インビジブル性
 得られたエアバッグ装置の樹脂成形品を目視観察し、下記基準にて、インビジブル性を評価した。
◎:樹脂成形品の表面側から、その法線方向に対して、-80~80°の範囲で、エアバッグ破断予定線を認識することができない。
○:樹脂成形品の表面側から、その法線方向に対して、-60~60°の範囲で、エアバッグ破断予定線を認識することができない。
△:樹脂成形品の表面側から、その法線方向に対して、-40~40°の範囲で、エアバッグ破断予定線を認識することができない。
×:樹脂成形品の表面側から、その法線方向に対して、-40~40°の範囲で、エアバッグ破断予定線を認識することができる。
2. Evaluation (1) Invisible property The resin molded product of the obtained airbag apparatus was visually observed, and the invisible property was evaluated according to the following criteria.
A: From the surface side of the resin molded product, the airbag expected break line cannot be recognized in the range of −80 to 80 ° with respect to the normal direction.
◯: The airbag expected break line cannot be recognized in the range of −60 to 60 ° with respect to the normal direction from the surface side of the resin molded product.
Δ: The airbag expected break line cannot be recognized in the range of −40 to 40 ° with respect to the normal direction from the surface side of the resin molded product.
×: From the surface side of the resin molded product, the expected airbag break line can be recognized in the range of −40 to 40 ° with respect to the normal direction.
(2)加工精度
 エアバッグ破断予定線の形成につき、12時間の連続運転後に、樹脂成形品の背面側に形成したエアバッグ破断予定線の深さ(残膜の厚さ)を、レーザー変位計を用いて測定し、下記基準にて、加工精度を評価した。
 なお、エアバッグ破断予定線の外観につき、光学式顕微鏡を用いて観察したところ(12時間運転後)、◎評価の場合、樹脂成形品の背面に、シャープな切削形状が、精度良く形成されていることも確認した。
◎:12時間連続運転後に形成したエアバッグ破断予定線の深さが1.2mm±0.2mmの範囲内の値である。
○:12時間連続運転後に形成したエアバッグ破断予定線の深さが1.5mm±0.2mmの範囲内の値である。
△:12時間連続運転後に形成したエアバッグ破断予定線の深さが1.5mm±0.5mmの範囲内の値である。
×:12時間連続運転後に形成したエアバッグ破断予定線の深さが1.5mm±0.5mmを超えた値である。
(2) Processing accuracy For the formation of the expected airbag break line, the depth (remaining film thickness) of the expected airbag break line formed on the back side of the resin molded product after continuous operation for 12 hours is measured with a laser displacement meter. The machining accuracy was evaluated according to the following criteria.
In addition, when the appearance of the air bag planned break line was observed using an optical microscope (after 12 hours of operation), in the case of evaluation, a sharp cutting shape was accurately formed on the back surface of the resin molded product. I also confirmed.
(Double-circle): The depth of the airbag break planned line formed after continuous operation for 12 hours is a value within the range of 1.2 mm ± 0.2 mm.
◯: The depth of the planned airbag break line formed after 12 hours of continuous operation is a value within the range of 1.5 mm ± 0.2 mm.
(Triangle | delta): The depth of the airbag break planned line formed after 12-hour continuous operation is a value within the range of 1.5 mm +/- 0.5mm.
X: The value of the planned airbag break line formed after continuous operation for 12 hours exceeds 1.5 mm ± 0.5 mm.
(3)樹脂成形品の取り換え性
 エアバッグ破断予定線の形成につき、1~12時間の連続運転を行い、1時間ごとに、樹脂成形品を新規の樹脂成形品に交換し、下記基準に沿って、樹脂成形品の取り換え性を評価した。
◎:樹脂成形品が、支持台から容易に離脱でき、15秒以内で、取り替えることができる。
○:樹脂成形品が、支持台に若干張り付いているが、20秒以内で、取り替えることができる。
△:樹脂成形品が、支持台に比較的強く張り付いており、30秒以内で、取り替えることができない。
×:樹脂成形品が、支持台に強く張り付いており、1分以内で、取り替えることができない。
(3) Resin molded product exchangeability For the formation of the expected airbag rupture line, continuous operation is performed for 1 to 12 hours, and the resin molded product is replaced with a new resin molded product every hour. Thus, the replaceability of the resin molded product was evaluated.
A: The resin molded product can be easily detached from the support base and can be replaced within 15 seconds.
○: The resin molded product is slightly stuck to the support base, but can be replaced within 20 seconds.
(Triangle | delta): The resin molded product has adhered to the support stand comparatively strongly, and cannot be replaced within 30 seconds.
X: The resin molded product is firmly attached to the support base and cannot be replaced within one minute.
(4)コールドカッターの耐久性
 エアバッグ破断予定線の形成につき、1~300時間の連続運転を行い、所定時間後に、樹脂成形品の背面側に形成した破断予定線の深さ(残膜の厚さ)を、レーザー変位計を用いて測定し、下記基準に沿って、コールドカッターの耐久性を評価した。
◎:300時間連続運転後であっても、破断予定線の深さが1.2mm±0.2mmの範囲内の値である。
○:100時間連続運転後であっても、破断予定線の深さが1.2mm±0.2mmの範囲内の値である。
△:12時間連続運転後であれば、破断予定線の深さが1.2mm±0.2mmの範囲内の値である。
×:1時間連続運転後に、破断予定線の深さが1.2mm±0.2mmを超えた値である。
(4) Durability of the cold cutter For the formation of the planned airbag break line, continuous operation is performed for 1 to 300 hours, and after a predetermined time, the depth of the planned break line formed on the back side of the resin molded product (the remaining film Thickness) was measured using a laser displacement meter, and the durability of the cold cutter was evaluated according to the following criteria.
A: Even after 300 hours of continuous operation, the depth of the planned fracture line is a value within the range of 1.2 mm ± 0.2 mm.
○: Even after 100 hours of continuous operation, the depth of the planned fracture line is a value within the range of 1.2 mm ± 0.2 mm.
(Triangle | delta): If it is after a continuous operation for 12 hours, the depth of a planned fracture line is a value within the range of 1.2 mm +/- 0.2 mm.
X: After continuous operation for 1 hour, the depth of the planned fracture line exceeds 1.2 mm ± 0.2 mm.
[比較例1]
 比較例1では、幅2mmの直線状の線状リブであって、両端にYの字の分岐を有する線状リブを有する支持台を備えた、従来のエアバッグ破断予定線形成装置(機械工具:コールドカッター)を準備した。
 それにより、エアバッグ用破断予定線を形成したほかは、実施例1と同様に、インビジブル性、加工精度、交換性、およびコールドカッターの耐久性の評価をそれぞれ行った。
[Comparative Example 1]
In Comparative Example 1, a conventional airbag break planned line forming apparatus (machine tool) provided with a support base having linear linear ribs having a width of 2 mm and linear ribs having Y-shaped branches at both ends. : Cold cutter).
As a result, the invisible property, the processing accuracy, the exchangeability, and the durability of the cold cutter were evaluated in the same manner as in Example 1 except that the planned break line for the airbag was formed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の機械加工装置によれば、樹脂成形品に対して、破断予定線を形成する機械工具と、樹脂成形品を載置する支持台と、支持台上で、樹脂成形品を凸状に湾曲させる線状リブと、を備えており、かつ、線状リブが、相対的に幅が狭い幅狭部および相対的に幅が広い幅広部をそれぞれ有しており、かつ、吸引装置によって、樹脂成形品を、線状リブに対して押圧した場合に、主として幅狭部に対応した場所で、凸状に湾曲することから、樹脂成形品の幅狭部における残留応力の発生を抑制し、ひいては、優れたインビジブル性を得ることができる。 According to the machining apparatus of the present invention, a machine tool for forming a planned fracture line, a support base on which the resin molded product is placed, and the resin molded product on the support base are convex. A linear rib that is curved, and the linear rib has a narrow part having a relatively narrow width and a wide part having a relatively wide width, and by a suction device, When the resin molded product is pressed against the linear rib, it is curved in a convex shape mainly at a location corresponding to the narrow portion, thereby suppressing the occurrence of residual stress in the narrow portion of the resin molded product, As a result, excellent invisible properties can be obtained.
 また、樹脂成形品に形成される破断予定線の深さについても、幅狭部に対応した場所で、従来どおりの光学測定装置を用いて、迅速かつ精度良く測定することができる。
 すなわち、所的形状の線状リブを用いて、樹脂成形品に対して、破断予定線を形成することにより、測定上は、破断予定線が十分にV字状に開いていることから、かかる破断予定線の深さ測定に影響を及ぼすこともない。
Further, the depth of the planned fracture line formed in the resin molded product can also be measured quickly and accurately using a conventional optical measurement device at a location corresponding to the narrow portion.
That is, by using a linear rib having a certain shape to form a planned fracture line for a resin molded product, the planned fracture line is sufficiently open in a V shape for measurement. It does not affect the depth measurement of the planned fracture line.
 その上、線状リブの形態に起因すると思われるが、その幅狭部が、樹脂成形品と適度に密着することから、破断予定線を形成した後の樹脂成形品の交換も短時間で可能になった。
 さらには、所的形状の線状リブを備えた機械加工装置を用いた場合、凸状に適度に湾曲し、比較的平坦な箇所を加工刃(コールドカッター)が、迅速に切断して、破断予定線を形成するためと思われるが、加工刃の耐久性まで、著しく向上するようになった。
In addition, it seems to be due to the shape of the linear ribs, but since the narrow part is in close contact with the resin molded product, it is possible to replace the resin molded product after forming the planned fracture line in a short time Became.
Furthermore, when using a machining device with linear ribs of a specific shape, the processing blade (cold cutter) can be cut quickly and broken at a relatively flat point, with a moderately curved convex shape. Although it seems to form the planned line, the durability of the machining blade has been remarkably improved.
10:支持台
11(11a~11e):幅狭部
11´:従来の線状リブの幅狭部
12(12a~12f):幅広部
13:線状リブ
13´:従来の線状リブ
14:吸引口
15、15´:樹脂成形品(基材)
15a、15a´:
15b、15b´:
15c、15c´:
15d:破断予定線(エアバッグ破断予定線)
15d´:硬質基材
15e´:中間層
15f´:表皮
16:固定孔
17:環状溝
40:エアバッグドア部材
41´:別のエアバッグドア部材
100:機械加工装置(エアバッグ破断予定線形成装置)
113:機械工具(加工刃)
116:移動制御部
129:状態検知手段
131:一次破断予定線形成手段
133:二次破断予定線形成手段
163:移動制御ロボット
10: Support base 11 (11a to 11e): Narrow part 11 ': Narrow part 12 (12a to 12f) of conventional linear rib: Wide part 13: Linear rib 13': Conventional linear rib 14: Suction port 15, 15 ': Resin molded product (base material)
15a, 15a ':
15b, 15b ′:
15c, 15c ′:
15d: planned break line (airbag break planned line)
15d ': hard base material 15e': intermediate layer 15f ': skin 16: fixing hole 17: annular groove 40: air bag door member 41': another air bag door member 100: machining apparatus (formation of a planned break line of an air bag) apparatus)
113: Machine tool (machining blade)
116: Movement control unit 129: State detection means 131: Primary break planned line forming means 133: Secondary break planned line forming means 163: Movement control robot

Claims (8)

  1.  樹脂成形品である樹脂成形品に対して、表面まで至らない破断予定線を形成する機械加工装置であって、
     前記樹脂成形品に対して、前記破断予定線を形成する機械工具と、
     前記樹脂成形品を載置する支持台と、
     前記支持台上で、前記樹脂成形品を凸状に湾曲させる線状リブと、
     を備えており、
     前記線状リブが、相対的に幅が狭い幅狭部および相対的に幅が広い幅広部をそれぞれ有しており、
     かつ、吸引装置によって、前記樹脂成形品を、前記線状リブに押圧した場合に、少なくとも幅狭部に対応した樹脂成形品の箇所が、凸状に湾曲することを特徴とする機械加工装置。
    For a resin molded product that is a resin molded product, a machining device that forms a planned fracture line that does not reach the surface,
    A machine tool for forming the planned fracture line for the resin molded product,
    A support table on which the resin molded product is placed;
    On the support base, linear ribs that curve the resin molded product in a convex shape,
    With
    The linear ribs each have a relatively narrow width portion and a relatively wide width portion;
    In addition, when the resin molded product is pressed against the linear rib by a suction device, at least a portion of the resin molded product corresponding to the narrow portion is curved in a convex shape.
  2.  前記幅広部が少なくとも第1の幅広部および第2の幅広部を有しており、当該第1の幅広部および第2の幅広部の間に、前記幅狭部を有するとともに、前記第1の幅広部、前記幅狭部、および前記第2の幅広部が、それぞれ直線状に配置されていることを特徴とする請求項1に記載の機械加工装置。 The wide portion has at least a first wide portion and a second wide portion, and has the narrow portion between the first wide portion and the second wide portion, and the first wide portion The machining apparatus according to claim 1, wherein the wide portion, the narrow portion, and the second wide portion are arranged linearly.
  3.  扇状またはT字状に分岐して広がった、前記第1の幅広部の端部のそれぞれに、第3の幅広部および第4の幅広部を有しており、かつ、分岐した一方の、前記第1の幅広部の端部と、前記第3の幅広部との間に、第2の幅狭部が設けてあり、さらには、分岐したもう一方の、前記第1の幅広部の端部と、前記第4の幅広部との間に、第3の幅狭部が設けてあることを特徴とする請求項2に記載の機械加工装置。 Each of the end portions of the first wide portion that branches and expands in a fan shape or a T shape has a third wide portion and a fourth wide portion, and one of the branched portions, A second narrow portion is provided between the end of the first wide portion and the third wide portion, and the other end of the first wide portion branched. 3. The machining apparatus according to claim 2, wherein a third narrow portion is provided between the fourth wide portion and the fourth wide portion.
  4.  扇状またはT字状に分岐して広がった、前記第2の幅広部の端部のそれぞれに、第5の幅広部および第6の幅広部を有しており、かつ、分岐した一方の、前記第2の幅広部の端部と、前記第5の幅広部との間に、第4の幅狭部が設けてあり、さらには、分岐したもう一方の、前記第2の幅広部の端部と、前記第6の幅広部との間に、第5の幅狭部が設けてあることを特徴とする請求項2または3に記載の機械加工装置。 Each of the end portions of the second wide portion that is branched and widened in a fan shape or a T shape has a fifth wide portion and a sixth wide portion, and one of the branched portions, A fourth narrow portion is provided between the end of the second wide portion and the fifth wide portion, and the other end of the second wide portion branched. The machining apparatus according to claim 2, wherein a fifth narrow portion is provided between the sixth wide portion and the sixth wide portion.
  5.  前記幅狭部の幅(W1)を1~10mmの範囲内の値とし、前記幅広部の幅(W2)を20~100mmの範囲内の値とすることを特徴とする請求の範囲1~4のいずれか一項に記載の機械加工装置。 The width (W1) of the narrow portion is set to a value within a range of 1 to 10 mm, and the width (W2) of the wide portion is set to a value within a range of 20 to 100 mm. The machining apparatus according to any one of the above.
  6.  前記支持台上に、前記吸引装置に連結する吸引口が複数設けてあり、前記幅狭部の周囲に設けてある吸引口の数を、前記幅広部の周囲に設けてある吸引口の数よりも多くすることを特徴とする請求の範囲1~5のいずれか一項に記載の機械加工装置。 A plurality of suction ports connected to the suction device are provided on the support base, and the number of suction ports provided around the narrow portion is determined by the number of suction ports provided around the wide portion. The machining apparatus according to any one of claims 1 to 5, wherein the number of the machining apparatuses is also increased.
  7.  前記樹脂成形品が、自動車用内装部材であり、前記機械工具が、コールドカッターであり、かつ、前記破断予定線が、エアバッグ用破断予定線であることを特徴とする請求の範囲1~6のいずれか一項に記載の機械加工装置。 The resin molded product is an automobile interior member, the machine tool is a cold cutter, and the planned break line is a planned break line for an airbag. The machining apparatus according to any one of the above.
  8.  樹脂成形品である樹脂成形品に対して、機械工具により、表面まで至らない破断予定線を形成する機械加工方法であって、下記工程(1)~(3)を有することを特徴とする機械加工方法。
    (1)前記樹脂成形品を、当該樹脂成形品を凸状に湾曲させる線状リブが設けてある支持台上に載置する工程
    (2)前記樹脂成形品を、吸引装置によって、前記線状リブ上に押圧させ、少なくとも幅狭部に対応した樹脂成形品の箇所を、凸状に湾曲させる工程
    (3)前記機械工具により、前記線状リブ上で凸状に湾曲した、前記樹脂成形品に対して、前記破断予定線を形成する工程
    A machine processing method for forming a planned fracture line that does not reach the surface with a machine tool on a resin molded product that is a resin molded product, comprising the following steps (1) to (3): Processing method.
    (1) A step of placing the resin molded product on a support base provided with linear ribs for curving the resin molded product in a convex shape. (2) The resin molded product is formed into the linear shape by a suction device. The step of pressing the rib onto the resin molded product corresponding to at least the narrow portion in a convex shape (3) The resin molded product curved in a convex shape on the linear rib by the machine tool For forming the planned fracture line
PCT/JP2017/010603 2016-06-16 2017-03-16 Resin-molded-component machining apparatus and resin-molded-component machining method WO2017217052A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017538001A JP6242551B1 (en) 2016-06-16 2017-03-16 Resin molded product machining apparatus and resin molded product machining method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016120031 2016-06-16
JP2016-120031 2016-06-16

Publications (1)

Publication Number Publication Date
WO2017217052A1 true WO2017217052A1 (en) 2017-12-21

Family

ID=60663181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010603 WO2017217052A1 (en) 2016-06-16 2017-03-16 Resin-molded-component machining apparatus and resin-molded-component machining method

Country Status (1)

Country Link
WO (1) WO2017217052A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110883821A (en) * 2019-12-05 2020-03-17 杭州阳枫商贸有限公司 Spectacle frame manufacturing equipment with cutting force interfering clamping force

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073794A (en) * 2006-09-20 2008-04-03 Toyota Motor Corp Method and apparatus for forming tear line
JP2008284653A (en) * 2007-05-18 2008-11-27 Nakata Coating Co Ltd Device for forming airbag breaking groove and manufacturing method for upholstery member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073794A (en) * 2006-09-20 2008-04-03 Toyota Motor Corp Method and apparatus for forming tear line
JP2008284653A (en) * 2007-05-18 2008-11-27 Nakata Coating Co Ltd Device for forming airbag breaking groove and manufacturing method for upholstery member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110883821A (en) * 2019-12-05 2020-03-17 杭州阳枫商贸有限公司 Spectacle frame manufacturing equipment with cutting force interfering clamping force

Similar Documents

Publication Publication Date Title
CN105682853A (en) Machining device and workpiece machining method
US9090021B2 (en) Ultrasonic sealing of packages
KR20160107227A (en) Methods and apparatus for free-shape cutting of flexible thin glass
KR102428499B1 (en) Method for manufacturing micro-hollow protrusions
JP6316056B2 (en) Thin plate die and method for manufacturing the same
WO2017217052A1 (en) Resin-molded-component machining apparatus and resin-molded-component machining method
JP4834607B2 (en) Airbag fracture groove forming apparatus and interior member manufacturing method
JP6242551B1 (en) Resin molded product machining apparatus and resin molded product machining method
JP6540276B2 (en) Film cutting cutter and film cutting equipment
WO2004045921A1 (en) Vehicle upholstery member having air bag door, and method and device for producing the same
CN111285598B (en) Glass element with cut edge and method of making same
JP2006102907A (en) Cutting machine and regular size sheet manufacturing device
US9902082B2 (en) Vehicular interior member manufacturing method and airbag rupturing groove manufacturing method
TW201544468A (en) Abrasive jet forming laminated glass structures
JP6589380B2 (en) Method for forming vertical crack in brittle material substrate and method for dividing brittle material substrate
EP2448728B1 (en) Chamfer cutting device
JP2013125044A5 (en)
JP4726656B2 (en) Apparatus for manufacturing vehicle interior member having airbag door and method for manufacturing vehicle interior member having airbag door
JP6544149B2 (en) Method of forming inclined cracks in brittle material substrate and method of dividing brittle material substrate
JP2014073539A (en) Cutter
JP2011167826A (en) Device and method for ensuring groove depth
JP6316055B2 (en) Rotary cutter and manufacturing method thereof
JP2001233164A (en) Manufacturing device for air bag door skin material
US20190240942A1 (en) Cutting and ejection method for a cardboard blank and ejection strip for such a method
TWI598172B (en) Cutting method for deformation prevention and cutting piece

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017538001

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17812958

Country of ref document: EP

Kind code of ref document: A1