WO2017216968A1 - Humidification element, humidification device, air conditioner, and ventilation device - Google Patents

Humidification element, humidification device, air conditioner, and ventilation device Download PDF

Info

Publication number
WO2017216968A1
WO2017216968A1 PCT/JP2016/068166 JP2016068166W WO2017216968A1 WO 2017216968 A1 WO2017216968 A1 WO 2017216968A1 JP 2016068166 W JP2016068166 W JP 2016068166W WO 2017216968 A1 WO2017216968 A1 WO 2017216968A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
storage tank
water storage
humidifying
humidifying element
Prior art date
Application number
PCT/JP2016/068166
Other languages
French (fr)
Japanese (ja)
Inventor
秀和 平井
亀石 圭司
勝 高田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/068166 priority Critical patent/WO2017216968A1/en
Priority to JP2018523155A priority patent/JP6636148B2/en
Priority to CN201680085448.5A priority patent/CN109312943B/en
Publication of WO2017216968A1 publication Critical patent/WO2017216968A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/04Air-humidification, e.g. cooling by humidification by evaporation of water in the air using stationary unheated wet elements

Definitions

  • the present invention relates to a humidifying element, a humidifier, an air conditioner, and a ventilator that generate humidified air.
  • Equipment that generates humidified air includes natural evaporation, electric heating, water spray, and ultrasonic.
  • the natural evaporation type tends to have a smaller humidifying capacity than other types.
  • the electric heating type tends to have a higher running cost than other methods.
  • the water spray type has a lower humidification efficiency than other methods and tends to be large in size.
  • the ultrasonic type tends to have a higher initial cost than other types.
  • the life of the device is short, and the bacteria in water and the fine powder of calcium carbonate tend to scatter.
  • the natural evaporation type humidifier is useful for use in a place that is operated for a long time because it can easily reduce the running cost as compared with other methods. Moreover, improvement is also progressing about the humidification capability mentioned above as a problem.
  • the humidifier As a humidifier using a drip-type humidification system, the humidifier is an evaporation member that absorbs and evaporates water, and a water storage tank provided above the humidifier, and water is supplied to the humidifier from the bottom of the water tank.
  • Patent Document 1 discloses a humidifying element that drops water.
  • the present invention has been made in view of the above, and provides a humidifying element capable of maintaining humidification performance and suppressing scattering of water into a room even when arranged at an inclination. With the goal.
  • the present invention is provided above a humidifier and a plurality of humidifiers arranged along the first direction so as to provide a gap between them.
  • a water storage tank that stores water and a flow path that is provided above the humidifier and that allows water to pass therethrough.
  • a plurality of water injection holes for dripping water are formed on the bottom surface of the water storage tank, and the flow path includes an inflow port communicating with the inside of the water storage tank, and an outflow port for discharging water passing through the flow path.
  • the inflow port and the outflow port are spaced apart from each other in the first direction, and the outflow port is formed at a position lower than the inflow port in a state where the water storage tank is horizontally disposed.
  • the humidifying element according to the present invention has an effect that it is possible to maintain the humidifying performance and suppress the scattering of water into the room even when it is disposed at an inclination.
  • FIG. 7 is a cross-sectional view of the humidifying element shown in FIG. 6 taken along the line ZZ and is an enlarged view of the water storage tank.
  • FIG. 11 is a diagram showing the periphery of the water storage tank in the first embodiment in a cross section along the line WW shown in FIG.
  • FIG. 10 shows a state where the water storage tank is installed at an inclination.
  • the figure which shows the other example of the water tank shown in FIG. The figure which expanded the water storage tank of the sectional view along the ZZ line shown in FIG.
  • Schematic diagram of the water tank shown in FIG. The top view which looked at the water storage tank in Embodiment 2 of this invention from the upper direction Sectional view along the VV line of the water storage tank shown in FIG.
  • FIG. 7 is an enlarged cross-sectional view of a water storage tank portion of a humidifying element according to Embodiment 3 of the present invention, corresponding to a cross-sectional view taken along the line ZZ shown in FIG. FIG.
  • FIG. 10 is a cross-sectional view of a humidifying element according to Embodiment 3, corresponding to a cross-sectional view taken along the line WW shown in FIG.
  • FIG. 7 is an enlarged cross-sectional view of a water storage tank portion of a humidifying element according to Embodiment 4 of the present invention, corresponding to a cross-sectional view along the line ZZ shown in FIG. Sectional drawing of the water storage tank in the modification of Embodiment 4
  • FIG. 10 is a cross-sectional view of a water storage tank portion of a humidifying element according to a fifth embodiment of the present invention, corresponding to a cross-sectional view taken along the line ZZ shown in FIG. The figure which shows the water storage tank concerning the modification of Embodiment 5.
  • FIG. 1 is a configuration diagram of a humidifying device 1 according to a first embodiment of the present invention.
  • a humidifying element 2 is incorporated in the humidifying device 1.
  • a blower 5 is incorporated on the upper side or lower side of the humidifying element 2 to send indoor air into the humidifying element 1 and blow it out into the room again.
  • the humidifying device 1 is connected to a humidifying element 2, a water supply pipe 3 that is connected to a water supply source such as a water supply facility and supplies humidifying water to the humidifying element 2, and water remaining without being humidified by the humidifying element 2 to the outside.
  • a drain pipe 4 to be discharged and a blower 5 that allows the air flow to pass through the humidifying element 2 are provided.
  • the humidifying device 1 includes a control device 6 that operates the blower 5 and a water supply valve 3a that is an electromagnetic valve of a water supply system, and a drain pan 7 that receives drainage and drains it to the outside.
  • FIG. 2 is an enlarged view of the humidifying element 2 provided in the humidifying apparatus 1 according to the first embodiment.
  • One or more humidifying elements 2 are directly installed on the drain pan 7.
  • the ridge corners on both sides of the top structure of each humidifying element 2 are detachably held by guide rails (not shown) mounted on the partition wall and the front inner wall surface of the main body box.
  • the humidifying element 2 is connected to a water supply system having a water supply valve 3 a for supplying and shutting off water for humidification, and a drain pipe 4 is connected to the drain pan 7.
  • the water supply system for supplying humidifying water to the humidifying element 2 includes a water supply valve 3a for adjusting the pressure and flow rate of water supplied to the humidifying element 2, a strainer for preventing dust from entering the water supply system, and water supply for water supply. It is configured as a water channel including the pipe 3. It is desirable that all connection portions of the water supply system except for the connection portion with the water supply source side are concentrated in the drain pan 7.
  • FIG. 3 is a perspective view of the humidifying element 2 in the first embodiment.
  • FIG. 4 is an exploded perspective view of the humidifying element 2 in the first embodiment.
  • FIG. 5 is a front view of the humidifying element 2 in the first embodiment.
  • 6 is a cross-sectional view of the humidifying element shown in FIG. 5 taken along line XX.
  • the humidifying element 2 includes a large number of plate-like humidifiers 20 arranged along a first direction which is a direction indicated by an arrow Y in FIGS. 4 and 5 so as to provide a gap between them.
  • a diffusion member 30 is in contact with the upper portion of the humidifying body 20.
  • the diffusion member 30 is formed so as to extend along the first direction, and the plurality of humidifiers 20 come into contact with the single diffusion member 30 together.
  • the humidifying body 20 there are a water storage tank 12 for storing water to be supplied to the humidifying body 20 and a water supply port 11 for injecting water from the water supply pipe 3 into the water storage tank 12. Further, below the humidifying body 20, there are a drainage section 13 and a drain outlet 13a for receiving and draining water remaining from the humidifying body 20 without being humidified.
  • the humidifier 20 is housed and fixed inside the casing 10.
  • the water supply port 11 and the drainage part 13 are formed in the casing 10.
  • the casing 10 is formed with a structural wall 14 that connects a water storage tank 12 as an upper structure and a drainage section 13 as a lower structure.
  • the casing 10 is formed by injection molding using a thermoplastic plastic including ABS resin, PS resin, and PP resin.
  • the casing 10 is divided into two parts, a casing 10a and a casing 10b.
  • the humidifier 20 is sandwiched between the casing 10a and the casing 10b, and the engaging portion 15 of the casing 10a and the casing 10b is combined so that the casing 10a and the casing 10b are integrated.
  • the casing 10a and the casing 10b are respectively provided with a portion serving as a drain port 13a and an opening 10c for introducing humidified air into the humidifying body 20. Further, the casing 10 b is provided with a water supply port 11 for supplying water to the water storage tank 12. A storage space for storing the humidifying body 20 is provided inside the casing 10.
  • a portion of the casing 10 that comes into contact with the humidifying body 20 is provided with a positioning projection 10d for regulating the position of the humidifying body 20. Since the humidifying body 20 softens when it contains water and deforms due to the weight of the water, the flow between the humidifying bodies 20 is restricted by regulating the position of the humidifying body 20 at the outer peripheral portion of the humidifying body 20 in contact with the casing 10. The dimension of the path can be secured and air can flow uniformly.
  • the water supply port 11 is provided above the humidifying element 2 and on the upper surface side of the humidifying body 20 in order to supply water to the water storage tank 12.
  • the shape of the water supply port 11 may be a shape that matches the water supply pipe 3, and may be formed with a convex band or tied with a hose band so that it does not easily come off.
  • the position of the water supply port 11 is not limited as long as it is a structure that can supply water from the upper part of the humidifying body 20, but considering the case where water leaks from the joint between the water supply pipe 3 and the water supply port 11, It is desirable to arrange on the windward side.
  • the water leaked from the joint between the water supply pipe 3 and the water supply port 11 rides on the airflow, is guided to the leeward side, that is, the humidifying element 2 side, and is absorbed by the humidifying element 20.
  • the scattering of water to the leeward side of 2 can be reduced.
  • the water supply port 11 is provided with a mechanism for reducing the amount of water. It is desirable to adjust the flow rate.
  • a mechanism for reducing the amount of water is, for example, the orifice section 40 shown in FIG.
  • the orifice portion 40 only needs to be capable of adjusting the flow rate, and there is no functional problem even if the amount of water is adjusted using a metal mesh or a porous material.
  • the water tank 12 is provided above the diffusion member 30.
  • a plurality of water injection holes 12 a for dropping water to the diffusion member 30 are formed on the bottom surface of the water storage tank 12.
  • the water storage tank 12 and the diffusion member 30 are combined as an integral part, and the integral part is sandwiched and held between the casing 10a and the casing 10b.
  • a water level detection sensor 8 that detects the water level of the water storage tank 12 may be installed in the water storage tank 12. The detected water level may be fed back to control the opening / closing of the water supply valve 3a by the control device 6 shown in FIG.
  • the diffusion member 30 is formed of a porous plate material.
  • the surface of the material is more hydrophilic as much as possible, so that the permeability is good and the flow rate through which the water can flow increases.
  • the diffusing member 30 is always in contact with water, it is desirable that the diffusing member 30 be formed of a material that is not easily deteriorated by water.
  • the diffusion member 30 formed of a material that is not easily deteriorated by water includes a porous plate made of polyester such as PET resin, PP resin, or cellulose, and is made of titanium, copper, or stainless steel. A porous plate obtained. Further, in order to increase the hydrophilicity of the material surface, the diffusing member 30 may be subjected to a hydrophilic treatment.
  • the humidifier 20 is formed of a porous plate material like the diffusion member 30. Suitable conditions are the same as those of the diffusing member 30, and the same material as that of the diffusing member 30 may be used. However, if a material having better water absorption than the diffusing member 30 is used for the humidifying body 20, the humidifying body 20 absorbs water before the diffusing member 30 absorbs water and the water is sufficiently diffused therein. The uniformity of water supply to the camera may be reduced. In such a case, measures can be taken by increasing the vertical dimension of the diffusing member 30. In addition, when there is a dimensional restriction in the height direction of the entire humidifying element 2, a restriction is imposed on the vertical dimension of the diffusing member 30. Thus, it is desirable that the size of the diffusing member 30 in the vertical direction can be reduced.
  • a convex part 21 is provided on the surface of the humidifier 20.
  • the convex portion 21 can maintain the interval between the humidifying bodies 20.
  • the convex portion 21 is formed by pressing a jig or the like against the humidifying body 20 and plastically deforming the portion.
  • the humidification body 20 should just keep the space
  • a structure in which the interval is maintained may be used, or a structure in which the interval is maintained by stacking the humidified bodies 20 formed in a wave shape in a honeycomb shape may be employed.
  • the lower end of the diffusing member 30 and the upper end of the humidifying body 20 are partly in contact with each other. If the diffusing member 30 and the humidifying body 20 are in contact with each other, water flows down due to the action of the capillary force of the humidifying body 20, but taking into account variations during assembly and the effects of vibration during transportation, You may connect so that a lower end and the upper end of the humidification body 20 may be inserted mutually.
  • the diffusion member 30 uniformly distributes water dripping from the water storage tank 12 positioned above in the first direction, that is, uniformly to the plurality of humidifiers 20 arranged side by side in the first direction. Is provided to supply. Therefore, when the plurality of humidifiers 20 are integrated and water can be diffused in the first direction between the plurality of humidifiers 20, the humidifier 20 itself has the same water diffusion function as the diffusion member 30. Will have. In this case, a configuration in which water is dropped directly from the water storage tank 12 to the humidifier 20 without using the diffusion member 30 may be used.
  • FIG. 7 is a cross-sectional view of the humidifying element 2 shown in FIG. 6 taken along the line ZZ, and is an enlarged view of the water storage tank 12.
  • a plurality of water injection holes 12 a are formed on the bottom surface of the water storage tank 12.
  • the plurality of water injection holes 12a are in the same plane, and are formed so that all the water injection holes 12a are arranged horizontally when the humidifying device 1 and the humidifying element 2 are installed horizontally.
  • a cylindrical wall surface 12 b extending downward from the water injection hole 12 a is formed on the outside of the water storage tank 12.
  • the tip end of the cylindrical wall surface 12 b contacts the diffusing member 30.
  • a space corresponding to the height of the cylindrical wall surface 12 b is provided between the upper surface of the diffusion member 30 and the outside of the water storage tank 12.
  • FIG. 8 is an enlarged view of the water injection hole 12a portion of the water storage tank 12 according to Embodiment 1, and is a view of the water storage tank 12 viewed from below.
  • a notch 12c is formed at the tip of the cylindrical wall surface 12b.
  • FIG. 9 is a perspective view of the peripheral portion of the water storage tank 12 in the first embodiment.
  • a communication flow path 100 that is two flow paths extending from the water storage tank 12 is formed.
  • Each communication channel 100 is formed with an inflow port 101 that communicates with the inside of the water storage tank 12 and an outflow port 102 that allows water that passes through the communication channel 100 to flow out.
  • the water storage tank 12 and the communication channel 100 are integrally formed of, for example, resin.
  • the communication channel 100 is a channel for guiding water overflowing from the water storage tank 12 to the diffusion member 30.
  • the flow channel structure of the communication flow channel 100 will be described. Attention is paid to one communication channel 100 formed on the back side of the water storage tank 12 shown in FIG.
  • the outflow port 102 is formed at a position opposite to the inflow port 101 across the water storage tank 12. Further, the outlet 102 is formed at a position below the inlet 101 in a state where the water storage tank 12 is horizontally disposed.
  • the communication channel 100 is inclined from the inlet 101 toward the outlet 102 in the state where the water storage tank 12 is horizontally disposed. Accordingly, the outlet 102 formed on the right side in FIG. 9 is connected to the communication channel 100 formed on the back side of the water storage tank 12 and the inlet 101 formed on the left side.
  • the inflow port 101 formed on the right side is connected to the communication channel 100 formed on the front side of the water storage tank 12 and the outflow port 102 hidden behind the water storage tank 12 on the left side.
  • the outlet 102 formed on the right side in FIG. 9 is not connected to the inlet 101 formed on the right side, but is a separate communication channel 100.
  • the cross-sectional shape of the communication channel 100 shown in FIG. 7 is formed by a U-shaped opening having an open top.
  • the communication channel 100 only needs to be able to flow water, and may be formed in a cylindrical shape.
  • opening there is an advantage that the flow path is easy to mold and the water in the flow path is easy to dry and excellent in hygiene.
  • the degree of freedom of the piping path is high and the flow rate can be easily adjusted by changing the inner diameter of the pipe.
  • the cross-sectional shape may be a trapezoidal shape or a semicircular shape instead of the U shape.
  • the width of the communication channel 100 is widened to obtain the same cross-sectional area.
  • the trapezoidal or semicircular communication channel 100 can have a shorter wetting edge length than the U-shaped communication channel 100 under the same cross-sectional area. Thereby, the flow resistance in the communication channel 100 can be reduced.
  • the cross-sectional area of the flow path portion between the inflow port 101 and the outflow port 102 is such that the water flowing in from the inflow port 101 can flow without leaking out of the flow path. It is formed larger than.
  • the communication channel 100 is formed outside the outer wall of the water storage tank 12.
  • the communication channel 100 only needs to allow water to flow, and may be formed inside the outer wall of the water storage tank 12 or may be formed at a position away from the outer wall of the water storage tank 12.
  • FIG. 10 is a top view of the water storage tank 12 according to the first embodiment as viewed from above.
  • FIG. 11 is a cross-sectional view taken along the line WW of the water tank 12 shown in FIG.
  • the broken-line arrows shown in the drawing represent a flow path when water flows in the communication channel 100.
  • the communication channel 100 from the inflow port 101 to the outflow port 102 is formed with a smooth slope having a constant slope. If there are irregularities in the middle of the flow path, it is not preferable because water accumulates and there is a risk that bacteria and mold will adhere and grow.
  • the gradient ⁇ [°] of the communication channel 100 in a state where the water storage tank 12 is horizontally disposed is relative to the maximum allowable inclination angle (maximum allowable gradient) ⁇ MAX [°] in design of the water storage tank 12.
  • the inflow port 101 is positioned lower than the upper end of the outer wall of the water storage tank 12 and from the upper end of the communication flow path 100 so that water overflowing from the water storage tank 12 is introduced into the communication flow path 100. Is also formed at a lower position. Further, in the water tank 12 in a state where the water tank 12 is horizontally installed at a position higher than the upper end of the water injection hole 12a so that water does not flow into the communication channel 100 until the water overflows from the water tank 12. When a specified amount of water is supplied to the water tank 12, it is provided above the water level where the dropping flow rate of the water injection hole 12 a and the supply flow rate to the water storage tank 12 are balanced and balanced. The water level in which the dropping flow rate and the supply flow rate are balanced and balanced will be described later.
  • an opening may be provided at a position lower than the outer wall of the water tank 12, and this opening may be used as the inlet 101.
  • the inflow port 101 needs to be sufficiently wide so that the water overflowing from the water storage tank 12 can be reliably guided into the communication channel 100. It is desirable to make it at least larger than the diameter of the water injection hole 12a.
  • the inflow port 101 is provided at a location that is susceptible to a change in the water level accumulated in the water tank 12 when the water tank 12 is inclined.
  • the shape when the water storage tank 12 is viewed from above, the shape has a longitudinal direction and a short side direction, for example, a rectangular shape, and is perpendicular to the longitudinal direction of the outer wall of the water storage tank 12. It is attached to a flat surface.
  • the longitudinal direction matches the first direction.
  • the outlet 102 is located immediately above the diffusion member 30.
  • the outflow port 102 only needs to be able to supply the water flowing through the communication channel 100 to the diffusion member 30, and may be configured to be located on the side surface of the diffusion member 30 and supply water from the side.
  • the outlet 102 is provided on the end side in the longitudinal direction of the diffusing member 30. By forming the position of the outlet 102 with respect to the diffusing member 30 in this way, when the diffusing member 30 is inclined, the water flowing out from the outlet 102 can be supplied above the inclination of the diffusing member 30.
  • the cross-sectional area of the outlet 102 is formed larger than that of the communication channel 100 so that water flowing through the inlet 101 and the communication channel 100 can flow without leaking out of the communication channel 100.
  • two communication channels 100 are formed in the water tank 12 shown in FIG. Therefore, two inlets 101 and two outlets 102 are provided.
  • the two inlets 101 provided in the water storage tank 12 are separately arranged at positions separating the water storage tank 12 with respect to the first direction.
  • the two inflow ports 101 are provided at the same height from the bottom surface of the water storage tank 12.
  • two communication channels 100 extending in the longitudinal direction of the water storage tank 12 are provided, but communication channels extending in the short direction of the water storage tank 12 may be provided.
  • the number of the communication channels 100 may be one, or three or more.
  • FIG. 12 is a cross-sectional view showing an example of the peripheral portion of the water storage tank 12 in the first embodiment.
  • the water that has flowed into the water storage tank 12 drops from a plurality of water injection holes 12 a on the bottom surface of the water storage tank 12, travels through the cylindrical wall surface 12 b having the notches 12 c, and is absorbed by the diffusion member 30.
  • the water absorbed by the diffusion member 30 flows down while spreading inside the diffusion member 30 and reaches the lower end of the diffusion member 30.
  • the water that has flowed down is transmitted to the humidifying body 20 from the contact portion by the action of the capillary force of the humidifying body 20 and flows down.
  • Water spreads inside the humidifying body 20 penetrates the entire humidifying body 20, flows down, and drops from the lower end of the humidifying body 20.
  • Excess water that has not evaporated in the humidifier 20 flows out of the casing 10 from the lower drainage 13.
  • moisture is taken away from the surface of the humidifying body 20 by the air ventilated between the humidifying bodies 20 and is exhausted from the humidifying element 2 as humidified air.
  • the flow rate dripped and drained from the lower end of the humidifier 20 is the amount of water obtained by subtracting the amount of water taken from the humidifier 20 as humidified air from the amount of water supplied from the water supply port 11.
  • Ci Ci ⁇ Ai ⁇ ⁇ (2 ⁇ Pi / ⁇ ) (2)
  • Ci is a coefficient depending on the shape or the like of the water injection hole
  • Ai is the cross-sectional area of the water injection hole
  • is the density of water
  • i is a subscript representing the number when there are a plurality of water injection holes.
  • the coefficient C depending on the shape of the water injection hole 12a, the cross-sectional area A of the water injection hole, and the inlet of the water injection hole 12a so that all the water supply flow rate Qin supplied from the water supply port 11 to the water storage tank 12 can be dripped from the water injection hole 12a.
  • stop of the humidification operation when humidification becomes unnecessary such as at night will be explained.
  • the humidifying operation of the humidifying device 1 may be stopped.
  • bacteria and mold in the air adhere to the wet part and grow, there is a concern that when the humidification operation is restarted, the bacteria and mold spores are transported by the air passing through the surface of the humidifying element 2 and released into the room. is there.
  • As a method for suppressing the growth of such bacteria and molds it is effective to dry the humidifying element 2 as soon as possible.
  • the bottom surface inside the water storage tank 12 shown in FIG. 12 is inclined so as to be lowest at the water injection hole 12a. Therefore, after the water supply valve 3a is closed, the water in the water tank 12 continues to drip due to the water head pressure Pi applied to the inlet of the water injection hole 12a. Further, when the water head pressure Pi applied to the inlet of the water injection hole 12a is as close to zero as possible, the water in the water storage tank 12 is smoothly absorbed by the capillary force of the diffusion member 30 brought into contact with the water injection hole 12a. Therefore, the water in the water tank 12 flows out through the diffusion member 30 and can be quickly dried in the water tank 12.
  • the secular change of the water tank 12 will be described.
  • the water injection hole cross-sectional area Ai in the above formula (2) becomes small. If the water supply flow rate to the water storage tank 12 is constant, the water head pressure Pi applied to the inlet of the water injection hole 12a increases. That is, the water level in the water tank 12 rises. In this case, since all the water supply can be dripped from the water injection hole 12a up to the upper limit of the outer wall of the water storage tank 12, it is desirable that the water storage tank 12 be a container as deep as possible. However, an upper limit value exists in the allowable amount of increase in the water level, that is, the depth of the water storage tank 12 due to restrictions on the dimensions of the water storage tank 12 and the casing 10.
  • the water level in the water storage tank 12 rises as described above. Since the inflow port 101 is located at a position lower than the outer wall of the water storage tank 12, when the water level rises and the water is about to overflow inside the water storage tank 12, the water flows into the inflow port 101. The water that has flowed into the inflow port 101 flows through the communication channel 100 and flows down from the outflow port 102 to the diffusion member 30. That is, the communication channel 100 functions as an auxiliary channel when the water injection hole 12a becomes difficult to pass water.
  • the humidifier when the humidifier 1 is installed using metal fittings on anchor bolts embedded in the ceiling, the humidifier may be installed slightly inclined from the horizontal. Further, when the humidifying element 2 is removed by inspection or the like, it may be attached with a slight inclination when it is installed again. Therefore, even when the humidifying device 1 and the humidifying element 2 are installed in an inclined state, it is desirable that water is uniformly diffused in the humidifying body 20 so that there is no difference between the humidifying performance at the time of horizontal and at the time of inclination. .
  • FIG. 13 is a view showing the periphery of the water storage tank 12 in the first embodiment in a cross section along the line ZZ shown in FIG.
  • the water storage tank 12 is inclined by ⁇ [°] so that the right side in the figure becomes lower.
  • the state just before water overflows from the water storage tank 12 is represented.
  • the water overflowing from the water storage tank 12 tries to flow into the inflow port 101.
  • FIG. 14 is a view showing the periphery of the water storage tank 12 in Embodiment 1 in a cross section along the line WW shown in FIG. 10, and is a view showing a state in which the water storage tank 12 is installed inclined. .
  • FIG. 14 is inclined by ⁇ [°] so that the right side in the figure becomes lower, as in FIG. 13.
  • FIG. 14 illustrates a state in which water (broken arrows in the figure) flowing in from the inflow port 101 flows through the communication channel 100, the diffusion member 30, and the humidifier 20. Since the gradient ⁇ satisfies the relationship expressed by the above formula (1), the water flowing into the communication channel 100 from the inflow port 101 flows toward the outflow port 102 along the inclination of the communication channel 100. By tilting the water storage tank 12, water is supplied to the diffusion member 30 from the outlet 102 at a high position.
  • the outlet 102 is provided on the end side in the longitudinal direction of the diffusion member 30. Water permeates above the slope of the diffusing member 30. The water that has permeated the diffusing member 30 flows downward in the diffusing member 30 along the inclination, and thereby permeates the humidifying body 20 in order from the higher position side to the lower position.
  • the water overflowing from the low position of the water storage tank 12 can be supplied to the high position of the diffusion member 30, and water is supplied to the entire humidifying body 20. can do.
  • the overflowing water is supplied to the low position of the diffusion member 30.
  • the water that has permeated the low position of the diffusing member 30 is less likely to spread to a high position due to the influence of gravity. Therefore, the water supplied to the diffusing member 30 is concentrated and transmitted to the humidifying body 20 immediately below the portion where the diffusing member 30 is at a low position.
  • the water floats on the surface of the humidifiers 20, and the water rides on the wind and scatters and may leak out of the product.
  • water since water is not sufficiently supplied to the humidifying body 20 at a high position, the humidifying performance is deteriorated.
  • the water overflowing from the low position of the water storage tank 12 can be supplied to the portion where the diffusion member 30 is at a high position in the communication channel 100.
  • the supply of water to the entire humidifier 20 can be made uniform using gravity.
  • FIG. 15 is a diagram showing another example of the water tank 12 shown in FIG.
  • the inflow port 101 only needs to be able to guide water into the communication channel 100.
  • the inflow port 101 may be provided on the end side of the surface parallel to the longitudinal direction on the outer wall of the water storage tank 12. In this case, the inflow port 101 may be provided close to a surface perpendicular to the longitudinal direction of the outer wall of the water storage tank 12.
  • the water head pressure P applied to the inlet of the water injection hole 12a is different for each water injection hole 12a. That is, the flow rate flowing out from the water injection hole 12a positioned on the highest side compared to the other water injection holes 12a due to the inclination is higher than the flow rate flowing out from the water injection hole 12a positioned relatively lower than the water injection hole 12a. Less. For example, when the head pressure at the inlet of the water injection hole 12a is 1 ⁇ 2 of the original, the flow rate is reduced to about 70%. As described above, when the flow rate dropped from the water injection hole 12a is uneven due to the inclination, the flow rate flowing through the diffusion member 30 and the humidifying body 20 provided downstream is also uneven.
  • FIG. 16 is an enlarged view of the water storage tank 12 in a cross-sectional view taken along the line ZZ shown in FIG.
  • the flow rate supplied from the water supply port 11 to the water storage tank 12 is controlled to be constant by the water supply valve 3a, and the flow rate at that time is Q0.
  • the supplied flow rate and the flow rate dropped from the water injection hole 12a are balanced, and the water storage tank 12 is maintained at a constant water level.
  • the balance line of the water level when the water storage tank 12 is horizontal at this time is represented by a straight line A in the figure, and the balance of the water level when the right side in the figure is inclined at the maximum allowable gradient ⁇ MAX [°] so as to be lowered.
  • the line is represented by a straight line B.
  • FIG. 17 is a schematic diagram of the water tank 12 shown in FIG. A straight line A (broken line) in FIG. 17 represents a horizontal balance line of the water level as in FIG. Moreover, while the straight line B in FIG. 16 represents a case where only the right side in the figure is inclined, the broken line B (two-dot chain line) in FIG. It represents the maximum balanced water level when it is inclined at the maximum allowable gradient ⁇ MAX [°]. It is assumed that the flow rate supplied to the water storage tank 12 is controlled to be constant at the flow rate Q0, as in FIG.
  • the inlet 101 is provided below the straight line A in FIG. In such an arrangement, even when the designed flow rate Q0 is supplied and the humidifying device 1 or the humidifying element 2 is installed horizontally, water flows through the inflow port 101 to the communication channel 100. That is, since the flow rate that should be able to be dropped uniformly from the water injection hole 12a flows to the communication channel 100, the arrangement of the inlet 101 is not preferable.
  • the inlet 101 is provided above the straight line A and below the broken line B. If the designed flow rate Q0 is supplied to the water storage tank 12, water drops only from the water injection hole when horizontal. On the other hand, when the humidifying device 1 or the humidifying element 2 is installed with an inclination equal to or less than the maximum allowable gradient, depending on the position of the inflow port 101, water can be allowed to flow through the communication channel 100. When water flows through the communication channel 100, the water can be supplied to a portion at a high position of the inclined diffusion member 30.
  • the inflow port 101 is inclined to a portion at a high position of the diffusion member 30 where the dripping amount of the water injection hole 12a is relatively reduced due to the inclination.
  • Water can be directly supplied by using the communication channel 100 through which water flows only.
  • the inlet 101 is provided above the polygonal line B. If the flow rate Q0 is supplied to the water storage tank 12 and the inclination of the humidifying device 1 or the humidifying element 2 is equal to or less than the maximum allowable gradient, water does not flow into the communication channel 100. However, as described above, when the water injection hole 12 a is blocked due to aging, the water level in the water storage tank 12 rises, and the water flows through the inlet 101 to the communication channel 100. Therefore, when the inflow port 101 is arranged in this way, the communication channel 100 can be used as an emergency flow rate securing means such as blocking the water injection hole 12a.
  • the inflow port 101 is provided above the straight line A as described above. That is, the inflow port 101 is always positioned above the water level balance position when the water storage tank 12 is installed horizontally and water is dripping from the water injection hole 12a. By arranging the inflow port 101 in this way, only the water overflowing from the water storage tank 12 can be flowed to the communication channel 100 without impairing the flow rate dropped from the water injection port 12a.
  • FIG. FIG. 18 is a top view of the water storage tank 12 according to the second embodiment of the present invention as viewed from above.
  • FIG. 19 is a cross-sectional view taken along line VV of the water storage tank 12 shown in FIG. Since the second embodiment has the same configuration as that of the first embodiment except that the shape of the communication channel 100 is different, the description of the part having the same configuration is omitted.
  • a plurality of outlets 103 are provided on the bottom surface of the communication channel 100.
  • water can be dripped at the diffusing member 30 from a plurality of locations. Therefore, the distribution of the flow rate supplied to the diffusing member 30 can be adjusted more precisely than in the first embodiment.
  • the hole diameter, number, and position of the outlet 103 the flow rate of water dripped from the outlets 102 and 103 onto the diffusion member 30 can be finely controlled.
  • FIG. 20 is an enlarged cross-sectional view of the water storage tank 12 portion of the humidifying element 2 according to Embodiment 3 of the present invention, corresponding to the cross-sectional view taken along the line ZZ shown in FIG. It inclines so that the right side in a figure may become low.
  • FIG. 21 is a cross-sectional view of humidifying element 2 according to Embodiment 3, and corresponds to a cross-sectional view taken along the line WW shown in FIG. It inclines so that the right side in a figure may become low. Since the third embodiment has the same configuration as that of the first embodiment except that the shape of the communication channel 100 is different, the description of the part having the same configuration is omitted.
  • in one communication channel 100 in addition to the inlet 101 provided at the end, a plurality of inlets 104 are provided.
  • the inflow port 104 which consists of two circular (dotted line) openings provided in the water storage tank 12 shown in the drawing schematically represents the inflow port 101 located on the near side of the drawing.
  • the water that flows from the water storage tank 12 to the inlet 101 flows into the communication channel 100 shown in FIG. 21, flows out of the outlet 102, and is absorbed by the diffusion member 30.
  • FIG. FIG. 22 is an enlarged cross-sectional view of the water storage tank 12 portion of the humidifying element 2 according to Embodiment 4 of the present invention, and corresponds to a cross-sectional view along the line ZZ shown in FIG.
  • the configuration is the same as that of the first embodiment except that the shape of the water storage tank 12 is different. Therefore, the description of the same configuration is omitted.
  • FIG. 22 has shown the water tank 12 inclined so that the right side in a figure may become low.
  • a pipe which is a communication channel 100 is provided inside the water storage tank 12 of the fourth embodiment.
  • the communication channel 100 is formed of a bent pipe having a convex curve upward.
  • the communication channel 100 is made of a material having water resistance and anticorrosion properties such as a silicon tube and a metal tube subjected to anticorrosion treatment.
  • the inlet 101 which is one end of the communication channel 100 is located at a position higher than the upper end of the water injection hole 12a and a position lower than the upper end of the outer wall of the water storage tank 12 when the water storage tank 12 is installed horizontally. Is formed. Further, it is arranged near the bottom surface of the water tank 12.
  • the outlet 102 that is the other end of the communication channel 100 is provided on the bottom surface of the water storage tank 12 and immediately above the diffusion member 30.
  • the outflow port 102 may be located on the side surface of the diffusion member 30 as long as it can supply the water flowing through the communication channel 100 to the diffusion member 30. In the state where the water storage tank 12 is horizontally disposed, the inflow port 101 and the outflow port 102 are disposed at different heights. More specifically, the inflow port 101 is disposed at a higher position than the outflow port 102.
  • the flow of water in the communication channel 100 will be described.
  • the water level in the water storage tank 12 is balanced at the water level J by balancing the flow rate supplied to the water storage tank 12 and the flow rate dropped from the water injection hole 12a.
  • the water that has flowed in from the inlet 101 is filled in the communication channel 100 to a position slightly lower than the water level J.
  • the water level in the water tank 12 at this moment is the water level K.
  • the water flowing in the communication channel 100 exits from the outlet 102 and is absorbed by the diffusion member 30.
  • the water level in the water storage tank 12 falls by water flowing out.
  • the rising water level is intermittently supplied from the water storage tank 12 to the diffusing member 30 using the siphon principle, and the diffusing member 30 and the humidifier 20 are flushed. it can.
  • the communication channel 100 By configuring the communication channel 100 as described above, the water supplied to the diffusion member 30 through the communication channel 100 can be converted into a pulsating flow.
  • the evaporation residue and dust attached to the diffusion member 30 and the humidifying body 20 can be washed away instantaneously at a large flow rate, and the humidification performance is reduced due to the adhesion of the evaporation residue and dust. Can be suppressed, and the improved humidification performance can be improved.
  • the flow rate flowing through the communication channel 100 needs to be regulated to a certain flow rate or less.
  • the flow rate that flows in the communication channel 100 is the vertical distance from the height of the top of the bent portion of the communication channel 100 to the higher one of the inlet 101 or the outlet 102, and the communication channel. 100 can be adjusted by the wettability of the material constituting 100, the pipe inner diameter of the communication channel 100, and the like.
  • the flow rate flowing through the communication channel 100 becomes larger. Become more. Moreover, the larger the pipe inner diameter of the communication channel 100, the greater the flow rate flowing through the communication channel 100.
  • FIG. 23 is a cross-sectional view of a water storage tank in a modification of the fourth embodiment.
  • Two communication channels 100 are provided in the water storage tank 12.
  • at least two of the communication channels 100 may be provided at positions where the outlets 102 face each other with respect to the first direction.
  • the position where the pipe of the communication channel 100 is bent so as to protrude upward may be provided at a position facing the outlet 102 of the communication channel 100 with respect to the first direction.
  • FIG. 24 is a cross-sectional view of the water storage tank 12 portion of the humidifying element 2 according to the fifth embodiment of the present invention, and corresponds to a cross-sectional view along the line ZZ shown in FIG.
  • the configuration is the same as that of the first embodiment except that the shape of the water storage tank 12 is different. Therefore, the description of the same configuration is omitted.
  • FIG. 24 shows the water storage tank 12 inclined so that the right side in the figure is lowered.
  • a communication channel 100 is formed outside the outer wall of the water storage tank 12.
  • An inlet 101 is formed on the wall surface of the water tank 12.
  • the inflow port 101 is located at a position higher than the upper end of the water injection hole 12 a and a position lower than the upper end of the outer wall of the water storage tank 12 in a state where the water storage tank 12 is installed horizontally.
  • the outflow port 102 is provided outside the water storage tank 12 and is located immediately above the diffusion member 30.
  • the water storage tank 12 is formed with a flow path switching member 110 for switching the communication flow path 100 through which water flows.
  • One flow path switching member 110 is provided at each end of the water storage tank 12 in the longitudinal direction.
  • the flow path switching member 110 is located on the inner side of the water storage tank 12 with respect to the inlet 101, and is formed of a valve body that opens only to the inner side of the water tank with the support portion 111 as a fulcrum.
  • the flow path switching member 110 is formed of a plate larger than the opening of the inflow port 101 and can cover the inflow port 101.
  • the channel switching member 110 functions as a channel opening / closing unit that opens and closes the inflow port 101.
  • the flow path switching member 110 has waterproofness and corrosion resistance, and is formed of a material having a specific gravity greater than that of water.
  • the flow path switching member 110 at a lower position due to the inclination is held in contact with the outer wall of the water storage tank 12 by the action of gravity.
  • the flow path switching member 110 at a high position due to the inclination is opened and held inside the water storage tank 12 by the action of gravity. Therefore, the inflow port 101 at the relatively low position is closed by the flow path switching member 110, and the inflow port 101 at the high position is in an open state.
  • Embodiment 1 to Embodiment 4 when the humidifying device 1 or the humidifying element 2 is inclined, the inlet 101 is used as a measure for supplying the water overflowing from the water storage tank 12 to the upper side of the inclination of the diffusing member 30. And the outlet 102 are formed at positions opposite to each other across the water storage tank 12.
  • the inflow port 101 and the outflow port 102 are formed on the same side with respect to the water storage tank 12. Therefore, the communication channel 100 can be shortened. Thereby, size reduction of the upper structure of the humidification element 2 including the water storage tank 12 and the communication flow path 100 can be achieved.
  • the communication channel 100 is constituted by a pipe, but it is sufficient if water can be flowed, and it may be constituted by an open channel. Further, one or more communication channels 100 may be provided.
  • FIG. 25 is a diagram showing a water storage tank according to a modification of the fifth embodiment.
  • a sphere is used for the flow path switching member 110.
  • FIG. 25 has shown the water storage tank 12 inclined so that the right side in the figure may become low.
  • the flow path switching member 110 is made of a material such as a resin having a specific gravity greater than that of water and having waterproofness and corrosion resistance, and a metal such as aluminum.
  • the flow path switching member 110 is formed as a sphere that is larger than the opening of the inflow port 101 and smaller than the water storage tank 12. Therefore, the inlet 101 can be closed by fitting the flow path switching member 110 to the inlet 101.
  • the water storage tank 12 is provided with a support portion 111 for limiting the amount of movement of the flow path switching member 110.
  • the support unit 111 has a spherical channel switching member 110 mounted thereon, and thus a mounting unit 111a that positions the channel switching member 110 at the same height as the inflow port 101, and upward from the mounting unit 111a. And a wall portion 111 b that extends and faces the inflow port 101.
  • the flow path switching member 110 is disposed between the inflow port 101 and the wall portion 111b, so that the drop from the placement portion 111a is prevented.
  • the wall portion 111b may be formed on the near side and the far side in FIG. 25 in order for the flow path switching member 110 to restrict movement toward the near side or the far side in FIG.
  • a top surface portion facing the mounting portion 111a is formed to more reliably prevent the flow path switching member 110 from dropping from the mounting portion 111a. You may comprise so that it can do.
  • the flow path switching member 110 receives the action of gravity and moves to a lower position due to the inclination. At this time, the flow path switching member 110 located at a low position due to the inclination moves to the inlet 101 side, and the inlet 101 is closed. That is, water does not flow into the inlet 101 located at a low position due to the inclination.
  • the flow path switching member 110 at a high position due to the inclination moves toward the wall portion 111b of the support portion 111 and is held in contact with the wall portion 111b.
  • a gap is formed between the flow path switching member 110 and the inflow port 101 at a high position due to the inclination, and when the water level reaches the water level O in the figure, the water passes through the gap and the high position due to the inclination.
  • the water is absorbed by the diffusion member 30 through the outflow port 102.
  • the flow path switching member 110 is movable when the humidifying device 1 or the humidifying element 2 is inclined, and the position is relatively low.
  • the inflow port 101 at the upper position may be closed and the inflow port 101 at a relatively high position may be opened. Therefore, the flow path switching member 110 may be a mass body that moves in the direction of gravity, and may be a member such as a linear motion bearing that operates in the linear direction.
  • the flow path switching member 110 made of a material having a specific gravity greater than that of water is used.
  • the flow path switching member 110 is configured to supply water to the upper side of the inclination of the diffusing member 30 by moving or deforming the humidifying device 1 or the humidifying element 2 as compared with the horizontal state when the humidifying device 1 or the humidifying element 2 is inclined. Good.
  • a material having a specific gravity smaller than that of water may be used for the flow path switching member 110, and the flow path switching member 110 may be operated by its own buoyancy to switch the communication flow path 100 through which water flows.
  • the air supplied from the air conditioner or the ventilator to the room can be humidified.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Humidification (AREA)

Abstract

A humidification element, provided with a plurality of humidifiers arranged along a first direction so that gaps are provided therebetween, a water storage tank (12) which is provided above the humidifiers and which stores water, and a channel (100) provided above the humidifiers so as to enable passage of water. A plurality of water injection holes for dripping water are formed on the bottom surface of the water storage tank (12). The channel (100) has inlets (101) communicating to the interior of the water storage tank (12), and outlets (102) for draining water passing through the channel (100). The inlets (101) and the outlets (102) are provided so as to be set away from each other in the first direction. The outlets (102) are formed at positions lower than the inlets (101) when the water storage tank (12) is disposed horizontally.

Description

加湿素子、加湿装置、空気調和機および換気装置Humidifier, humidifier, air conditioner and ventilator
 本発明は、加湿空気を生成する加湿素子、加湿装置、空気調和機および換気装置に関する。 The present invention relates to a humidifying element, a humidifier, an air conditioner, and a ventilator that generate humidified air.
 加湿空気を生成する機器には、自然蒸発式、電熱式、水スプレー式、超音波式などがある。自然蒸発式のものは、他の方式に比べて加湿能力が小さくなる傾向にある。電熱式のものは、他の方式に比べてランニングコストが嵩む傾向にある。水スプレー式のものは、他の方式に比べて加湿効率が低く装置が大型になる傾向にある。超音波式のものは、他の方式に比べてイニシャルコストが高くなる傾向にある。また、機器の寿命が短く、水中の雑菌および炭酸カルシウムの微粉末が飛散しやすい傾向にある。 Equipment that generates humidified air includes natural evaporation, electric heating, water spray, and ultrasonic. The natural evaporation type tends to have a smaller humidifying capacity than other types. The electric heating type tends to have a higher running cost than other methods. The water spray type has a lower humidification efficiency than other methods and tends to be large in size. The ultrasonic type tends to have a higher initial cost than other types. In addition, the life of the device is short, and the bacteria in water and the fine powder of calcium carbonate tend to scatter.
 こうした中で、自然蒸発式の加湿器は、他の方式に比べてランニングコストを抑えやすいことから、特に長時間運転される場所での使用に有用である。また、問題点として上述した加湿能力についても改善が進んでいる。 In such circumstances, the natural evaporation type humidifier is useful for use in a place that is operated for a long time because it can easily reduce the running cost as compared with other methods. Moreover, improvement is also progressing about the humidification capability mentioned above as a problem.
 自然蒸発式の加湿器には様々な形態がある。その中で、経時的な加湿能力の変化が少なく、長時間の使用に適した加湿方式としては「滴下式」があり、滴下式の加湿器は空気調和機などの業務用の加湿装置に使用される傾向がある。 There are various forms of natural evaporating humidifiers. Among them, there is little change in the humidifying capacity over time, and there is a “drip-type” humidifier suitable for long-term use. The drop-type humidifier is used for commercial humidifiers such as air conditioners. Tend to be.
 滴下式の加湿方式を用いた加湿装置として、水を吸水して蒸発させる蒸発部材である加湿体と、加湿体の上方に設けられた貯水槽とを備え、貯水槽の底面から加湿体に水を滴下させる加湿素子を有するものが特許文献1に開示されている。 As a humidifier using a drip-type humidification system, the humidifier is an evaporation member that absorbs and evaporates water, and a water storage tank provided above the humidifier, and water is supplied to the humidifier from the bottom of the water tank. Patent Document 1 discloses a humidifying element that drops water.
特許第5485791号公報Japanese Patent No. 5485791
 特許文献1に開示された構成では、貯水槽の底面に傾斜を設けることで、加湿素子自体が傾斜して設けられた場合にも、均等に加湿体への水の供給が図られている。しかしながら、各加湿体に供給された水は重力の影響を受け、より低い方へと流れていく。すなわち、傾斜によって高い位置にある加湿体を流れる水の量は、傾斜によって低い位置にある加湿体を流れる水の量に比べて少なくなる。 In the configuration disclosed in Patent Document 1, by providing an inclination on the bottom surface of the water storage tank, even when the humidifying element itself is inclined, water is evenly supplied to the humidifier. However, the water supplied to each humidifier is affected by gravity and flows downward. That is, the amount of water flowing through the humidifying body at a high position due to the inclination is smaller than the amount of water flowing through the humidifying body at a low position due to the inclination.
 この場合、各加湿体からの蒸発量には限界があるため、低い位置にある加湿体に余分に流れた水は、蒸発せずに加湿体から流れ落ちてしまう。また、高い位置にある加湿体では、流れる水の量が少なくなることで、加湿量が低下する。したがって、加湿素子が傾斜して設けられた場合に、加湿素子の加湿性能が低下してしまうという問題があった。 In this case, since the amount of evaporation from each humidifying body is limited, water that has flowed excessively to the humidifying body at a low position flows down from the humidifying body without evaporating. Moreover, in the humidifier in a high position, the amount of flowing water decreases, so that the humidification amount decreases. Therefore, when the humidifying element is provided at an inclination, there is a problem that the humidifying performance of the humidifying element is deteriorated.
 また、傾斜が低い位置にある加湿体で蒸発しなかった水が、加湿体の表面から吹き飛ばされて、室内に飛散するおそれがある。 In addition, there is a possibility that water that has not evaporated by the humidifier at a low slope is blown off from the surface of the humidifier and scattered in the room.
 本発明は、上記に鑑みてなされたものであって、傾斜して配置された場合であっても、加湿性能の維持および室内への水の飛散の抑制を図ることができる加湿素子を得ることを目的とする。 The present invention has been made in view of the above, and provides a humidifying element capable of maintaining humidification performance and suppressing scattering of water into a room even when arranged at an inclination. With the goal.
 上述した課題を解決し、目的を達成するために、本発明は、互いの間に隙間を設けるように第1の方向に沿って並べられた複数の加湿体と、加湿体の上方に設けられて水を溜める貯水槽と、加湿体の上方に設けられて水を通過可能とされた流路と、を備える。貯水槽の底面には、水を滴下するための複数の注水孔が形成され、流路は、貯水槽の内部に連通する流入口と、流路を通過する水を流出させる流出口と、を有し、流入口と流出口は、第1の方向に互いに離間して設けられ、貯水槽が水平に配置された状態で、流出口は流入口よりも低い位置に形成されている。 In order to solve the above-described problems and achieve the object, the present invention is provided above a humidifier and a plurality of humidifiers arranged along the first direction so as to provide a gap between them. A water storage tank that stores water and a flow path that is provided above the humidifier and that allows water to pass therethrough. A plurality of water injection holes for dripping water are formed on the bottom surface of the water storage tank, and the flow path includes an inflow port communicating with the inside of the water storage tank, and an outflow port for discharging water passing through the flow path. The inflow port and the outflow port are spaced apart from each other in the first direction, and the outflow port is formed at a position lower than the inflow port in a state where the water storage tank is horizontally disposed.
 本発明にかかる加湿素子は、傾斜して配置された場合であっても、加湿性能の維持および室内への水の飛散の抑制を図ることができるという効果を奏する。 The humidifying element according to the present invention has an effect that it is possible to maintain the humidifying performance and suppress the scattering of water into the room even when it is disposed at an inclination.
本発明の実施の形態1にかかる加湿装置の構成図The block diagram of the humidification apparatus concerning Embodiment 1 of this invention. 実施の形態1にかかる加湿装置が備える加湿素子を拡大した図The figure which expanded the humidification element with which the humidification apparatus concerning Embodiment 1 is provided. 実施の形態1における加湿素子の斜視図The perspective view of the humidification element in Embodiment 1 実施の形態1における加湿素子の分解斜視図The disassembled perspective view of the humidification element in Embodiment 1 実施の形態1における加湿素子の正面図Front view of the humidifying element in the first embodiment 図5に示す加湿素子のX-X線に沿った断面図Sectional view along the line XX of the humidifying element shown in FIG. 図6に示す加湿素子のZ-Z線に沿った断面図であって、貯水槽を拡大した図FIG. 7 is a cross-sectional view of the humidifying element shown in FIG. 6 taken along the line ZZ and is an enlarged view of the water storage tank. 実施の形態1における貯水槽の注水孔部分を拡大した図であって、貯水槽を下方から見た図It is the figure which expanded the water injection hole part of the water storage tank in Embodiment 1, Comprising: The figure which looked at the water storage tank from the downward direction 実施の形態1における貯水槽の周辺部分の斜視図The perspective view of the peripheral part of the water storage tank in Embodiment 1 実施の形態1における貯水槽を上方から見た上面図The top view which looked at the water storage tank in Embodiment 1 from upper direction 図10に示す貯水槽のW-W線に沿った断面図Sectional view along the line WW of the water tank shown in FIG. 実施の形態1における貯水槽の周辺部の一例を示す断面図Sectional drawing which shows an example of the peripheral part of the water storage tank in Embodiment 1 実施の形態1における貯水槽周辺を、図6に示すZ-Z線に沿った断面で示す図The figure which shows the water storage tank periphery in Embodiment 1 in the cross section along the ZZ line shown in FIG. 実施の形態1における貯水槽周辺を、図10に示すW-W線に沿った断面で示す図であって、貯水槽が傾斜して設置された状態を示す図FIG. 11 is a diagram showing the periphery of the water storage tank in the first embodiment in a cross section along the line WW shown in FIG. 10, and shows a state where the water storage tank is installed at an inclination. 図10に示す貯水槽の他の例を示す図The figure which shows the other example of the water tank shown in FIG. 図6に示すZ-Z線に沿った断面図の貯水槽を拡大した図The figure which expanded the water storage tank of the sectional view along the ZZ line shown in FIG. 図16に示す貯水槽の模式図Schematic diagram of the water tank shown in FIG. 本発明の実施の形態2における貯水槽を上方から見た上面図The top view which looked at the water storage tank in Embodiment 2 of this invention from the upper direction 図18に示す貯水槽のV-V線に沿った断面図Sectional view along the VV line of the water storage tank shown in FIG. 本発明の実施の形態3における加湿素子の貯水槽部分を拡大した断面図であって、図6に示すZ-Z線に沿った断面図に相当する図FIG. 7 is an enlarged cross-sectional view of a water storage tank portion of a humidifying element according to Embodiment 3 of the present invention, corresponding to a cross-sectional view taken along the line ZZ shown in FIG. 実施の形態3における加湿素子の断面図であって、図10に示すW-W線に沿った断面図に相当する図FIG. 10 is a cross-sectional view of a humidifying element according to Embodiment 3, corresponding to a cross-sectional view taken along the line WW shown in FIG. 本発明の実施の形態4における加湿素子の貯水槽部分を拡大した断面図であって、図6に示すZ-Z線に沿った断面図に相当する図FIG. 7 is an enlarged cross-sectional view of a water storage tank portion of a humidifying element according to Embodiment 4 of the present invention, corresponding to a cross-sectional view along the line ZZ shown in FIG. 実施の形態4の変形例における貯水槽の断面図Sectional drawing of the water storage tank in the modification of Embodiment 4 本発明の実施の形態5にかかる加湿素子の貯水槽部分の断面図であって、図6に示すZ-Z線に沿った断面図に相当する図FIG. 10 is a cross-sectional view of a water storage tank portion of a humidifying element according to a fifth embodiment of the present invention, corresponding to a cross-sectional view taken along the line ZZ shown in FIG. 実施の形態5の変形例にかかる貯水槽を示す図The figure which shows the water storage tank concerning the modification of Embodiment 5.
 以下に、本発明の実施の形態にかかる加湿素子、加湿装置、空気調和機および換気装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a humidifying element, a humidifier, an air conditioner, and a ventilator according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1にかかる加湿装置1の構成図である。この加湿装置1には加湿素子2が組み込まれている。加湿素子2の通風風上側もしくは通風風下側に、加湿素子1へ室内の空気を送り込み、再び室内へ吹出すための送風機5が組み込まれている。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a humidifying device 1 according to a first embodiment of the present invention. A humidifying element 2 is incorporated in the humidifying device 1. A blower 5 is incorporated on the upper side or lower side of the humidifying element 2 to send indoor air into the humidifying element 1 and blow it out into the room again.
 加湿装置1は、加湿素子2と、水道設備等の給水源に接続されて加湿素子2に加湿用の水を送水する給水管3と、加湿素子2で加湿されずに残った水を外部に排出する排水管4と、加湿素子2に空気流を通過させる送風機5と、を備える。また、加湿装置1は、送風機5および給水系の電磁弁である給水弁3aの操作などを行う制御装置6と、排水等を受容し外部に排水するドレンパン7と、を備える。 The humidifying device 1 is connected to a humidifying element 2, a water supply pipe 3 that is connected to a water supply source such as a water supply facility and supplies humidifying water to the humidifying element 2, and water remaining without being humidified by the humidifying element 2 to the outside. A drain pipe 4 to be discharged and a blower 5 that allows the air flow to pass through the humidifying element 2 are provided. Further, the humidifying device 1 includes a control device 6 that operates the blower 5 and a water supply valve 3a that is an electromagnetic valve of a water supply system, and a drain pan 7 that receives drainage and drains it to the outside.
 図2は、実施の形態1にかかる加湿装置1が備える加湿素子2を拡大した図である。加湿素子2は、ドレンパン7上に一個または複数個が直接設置される。各加湿素子2の天部構造の両側の稜角部は、仕切壁と本体箱体の正面側内壁面とに装架されたガイドレール(図示しない)等により抜き差し可能に保持されている。加湿素子2には加湿用の水を供給したり、遮断したりする給水弁3aを備えた給水系がつながれており、ドレンパン7には排水管4が接続されている。 FIG. 2 is an enlarged view of the humidifying element 2 provided in the humidifying apparatus 1 according to the first embodiment. One or more humidifying elements 2 are directly installed on the drain pan 7. The ridge corners on both sides of the top structure of each humidifying element 2 are detachably held by guide rails (not shown) mounted on the partition wall and the front inner wall surface of the main body box. The humidifying element 2 is connected to a water supply system having a water supply valve 3 a for supplying and shutting off water for humidification, and a drain pipe 4 is connected to the drain pan 7.
 加湿素子2に加湿用の水を送水する給水系は、加湿素子2に給水する水の圧力と流量を調整する給水弁3aのほか、給水系への塵の侵入を防ぐストレーナおよび送水用の給水管3を含む水路として構成されている。給水源側との接続部を除く給水系の各接続部分は全てドレンパン7内に集約されていることが望ましい。 The water supply system for supplying humidifying water to the humidifying element 2 includes a water supply valve 3a for adjusting the pressure and flow rate of water supplied to the humidifying element 2, a strainer for preventing dust from entering the water supply system, and water supply for water supply. It is configured as a water channel including the pipe 3. It is desirable that all connection portions of the water supply system except for the connection portion with the water supply source side are concentrated in the drain pan 7.
 図3は、実施の形態1における加湿素子2の斜視図である。図4は、実施の形態1における加湿素子2の分解斜視図である。図5は、実施の形態1における加湿素子2の正面図である。図6は、図5に示す加湿素子のX-X線に沿った断面図である。加湿素子2は、互いの間に隙間を設けるように図4および図5において矢印Yで示す方向である第1の方向に沿って並べられた多数の平板状の加湿体20を備える。図6に示すように、加湿体20の上部には、拡散部材30が接触されている。拡散部材30は、第1の方向に沿って延びるように形成され、1つの拡散部材30に複数の加湿体20がまとめて接触する。 FIG. 3 is a perspective view of the humidifying element 2 in the first embodiment. FIG. 4 is an exploded perspective view of the humidifying element 2 in the first embodiment. FIG. 5 is a front view of the humidifying element 2 in the first embodiment. 6 is a cross-sectional view of the humidifying element shown in FIG. 5 taken along line XX. The humidifying element 2 includes a large number of plate-like humidifiers 20 arranged along a first direction which is a direction indicated by an arrow Y in FIGS. 4 and 5 so as to provide a gap between them. As shown in FIG. 6, a diffusion member 30 is in contact with the upper portion of the humidifying body 20. The diffusion member 30 is formed so as to extend along the first direction, and the plurality of humidifiers 20 come into contact with the single diffusion member 30 together.
 図6に示すように、加湿体20の上方には、加湿体20に供給するための水を蓄える貯水槽12、給水管3から水を貯水槽12へ注入する給水口11がある。また、加湿体20の下方には加湿体20から加湿されずに残った水を受けて排水するための排水部13、および排水口13aがある。加湿体20は、ケーシング10の内部に収納されて固定される。 As shown in FIG. 6, above the humidifying body 20, there are a water storage tank 12 for storing water to be supplied to the humidifying body 20 and a water supply port 11 for injecting water from the water supply pipe 3 into the water storage tank 12. Further, below the humidifying body 20, there are a drainage section 13 and a drain outlet 13a for receiving and draining water remaining from the humidifying body 20 without being humidified. The humidifier 20 is housed and fixed inside the casing 10.
 図4に示すように、給水口11、排水部13は、ケーシング10に形成される。ケーシング10には、上部構造としての貯水槽12と下部構造としての排水部13とを接続する構造壁14が形成される。 As shown in FIG. 4, the water supply port 11 and the drainage part 13 are formed in the casing 10. The casing 10 is formed with a structural wall 14 that connects a water storage tank 12 as an upper structure and a drainage section 13 as a lower structure.
 ケーシング10は、ABS樹脂、PS樹脂やPP樹脂を含む熱可塑性のプラスチックによる射出成型等で形成されている。ケーシング10は、2つの部品であるケーシング10aとケーシング10bとに分かれている。加湿体20を、ケーシング10a、ケーシング10bで挟み込み、ケーシング10aおよびケーシング10bの係合部15を合わせることにより、ケーシング10aとケーシング10bとが一体化する構造となっている。 The casing 10 is formed by injection molding using a thermoplastic plastic including ABS resin, PS resin, and PP resin. The casing 10 is divided into two parts, a casing 10a and a casing 10b. The humidifier 20 is sandwiched between the casing 10a and the casing 10b, and the engaging portion 15 of the casing 10a and the casing 10b is combined so that the casing 10a and the casing 10b are integrated.
 ケーシング10a、ケーシング10bにはそれぞれ、排水口13aとなる部分、加湿体20へ被加湿空気を導入する開口部10cが設けられている。また、ケーシング10bには貯水槽12へ水を供給するための給水口11が設けられている。ケーシング10の内側には、加湿体20を収納する収納空間が設けられている。 The casing 10a and the casing 10b are respectively provided with a portion serving as a drain port 13a and an opening 10c for introducing humidified air into the humidifying body 20. Further, the casing 10 b is provided with a water supply port 11 for supplying water to the water storage tank 12. A storage space for storing the humidifying body 20 is provided inside the casing 10.
 ケーシング10のうち加湿体20と接触する部分には、加湿体20の位置を規制するための位置決め用の突起10dが設けられている。加湿体20は含水時に軟化し、水の重さで変形するものもあるため、ケーシング10と接触する加湿体20の外周部分で加湿体20の位置を規制することによって、加湿体20間の流路の寸法を確保し、均一に空気が流れるようにすることができる。 A portion of the casing 10 that comes into contact with the humidifying body 20 is provided with a positioning projection 10d for regulating the position of the humidifying body 20. Since the humidifying body 20 softens when it contains water and deforms due to the weight of the water, the flow between the humidifying bodies 20 is restricted by regulating the position of the humidifying body 20 at the outer peripheral portion of the humidifying body 20 in contact with the casing 10. The dimension of the path can be secured and air can flow uniformly.
 それにより、加湿素子2の圧力損失の低下が抑えられ、加湿体20の全面が有効に加湿面として使用されるので、加湿体20が歪んだ場合に比べて加湿量が増加する効果が期待できる。 Thereby, a decrease in the pressure loss of the humidifying element 2 is suppressed, and the entire surface of the humidifying body 20 is effectively used as a humidifying surface. Therefore, an effect of increasing the amount of humidification can be expected as compared with the case where the humidifying body 20 is distorted. .
 給水口11は、貯水槽12へ水を供給するため、加湿素子2の上方、加湿体20より上面側に設けられる。給水口11の形状は給水管3に合わせた形状とし、容易に抜けないように凸状の帯(かえし)を形成したり、ホースバンドで縛ったりしてもよい。給水口11は加湿体20の上部から水を供給できる構造であれば位置等に制約はないが、給水管3と給水口11とのつなぎ目から水漏れが発生した場合を考慮すると、空気流の風上側に配置することが望ましい。このようにすることで、給水管3と給水口11とのつなぎ目から漏れた水は、気流に乗り、風下側、すなわち加湿素子2側へ導かれて加湿体20に吸収されるため、加湿素子2の風下側への水の飛散を少なくすることができる。 The water supply port 11 is provided above the humidifying element 2 and on the upper surface side of the humidifying body 20 in order to supply water to the water storage tank 12. The shape of the water supply port 11 may be a shape that matches the water supply pipe 3, and may be formed with a convex band or tied with a hose band so that it does not easily come off. The position of the water supply port 11 is not limited as long as it is a structure that can supply water from the upper part of the humidifying body 20, but considering the case where water leaks from the joint between the water supply pipe 3 and the water supply port 11, It is desirable to arrange on the windward side. By doing in this way, the water leaked from the joint between the water supply pipe 3 and the water supply port 11 rides on the airflow, is guided to the leeward side, that is, the humidifying element 2 side, and is absorbed by the humidifying element 20. The scattering of water to the leeward side of 2 can be reduced.
 加湿量に対して給水量が過剰な場合、加湿されずに排水部13から流れてゆく量が多くなり、無駄な水量が増大するため、給水口11には、水量を絞るための機構を設けて、流量を調整することが望ましい。水量を絞るための機構は、例えば図6で示すオリフィス部40である。流量調整の際には、その加湿素子2の最大加湿量より多い流量を供給できるようにする必要がある。なお、オリフィス部40は、流量調節が可能であればよく、金属メッシュや多孔質材料を用いて水量を調整するものでも機能上問題ない。 When the amount of water supply is excessive with respect to the humidification amount, the amount that flows from the drainage part 13 without being humidified increases and the amount of useless water increases, so the water supply port 11 is provided with a mechanism for reducing the amount of water. It is desirable to adjust the flow rate. A mechanism for reducing the amount of water is, for example, the orifice section 40 shown in FIG. When adjusting the flow rate, it is necessary to supply a flow rate larger than the maximum humidification amount of the humidifying element 2. The orifice portion 40 only needs to be capable of adjusting the flow rate, and there is no functional problem even if the amount of water is adjusted using a metal mesh or a porous material.
 図6に示すように、貯水槽12は拡散部材30の上方に設けられる。貯水槽12の底面には拡散部材30へ水を滴下するための複数の注水孔12aが形成されている。貯水槽12と拡散部材30とは一体部品として組み合わされ、その一体部品がケーシング10aとケーシング10bの間に挟まれて保持されている。また、貯水槽12内に貯水槽12の水位を検知する水位検知センサー8を設置してもよい。検知された水位をフィードバックして、図1に示す制御装置6によって給水弁3aの開閉を制御してもよい。 As shown in FIG. 6, the water tank 12 is provided above the diffusion member 30. A plurality of water injection holes 12 a for dropping water to the diffusion member 30 are formed on the bottom surface of the water storage tank 12. The water storage tank 12 and the diffusion member 30 are combined as an integral part, and the integral part is sandwiched and held between the casing 10a and the casing 10b. Further, a water level detection sensor 8 that detects the water level of the water storage tank 12 may be installed in the water storage tank 12. The detected water level may be fed back to control the opening / closing of the water supply valve 3a by the control device 6 shown in FIG.
 拡散部材30は、多孔質の板材で形成される。貯水槽12から滴下した水を吸収し、加湿体20へ水を送るため、素材の表面は極力親水性であるほうが、浸透性が良好になり通水できる流量が増加する。また、拡散部材30は常に水に触れるため、水によって劣化しにくい材料で形成されることが望ましい。水によって劣化しにくい材料で形成された拡散部材30には、樹脂であるPET樹脂等のポリエステルやPP樹脂、セルロースで作られた多孔質板が挙げられ、金属であるチタン、銅、ステンレスで作られた多孔質板が挙げられる。また、素材表面の親水度を増すため、拡散部材30に親水化処理を施してもよい。 The diffusion member 30 is formed of a porous plate material. In order to absorb the water dripped from the water storage tank 12 and send the water to the humidifier 20, the surface of the material is more hydrophilic as much as possible, so that the permeability is good and the flow rate through which the water can flow increases. Moreover, since the diffusing member 30 is always in contact with water, it is desirable that the diffusing member 30 be formed of a material that is not easily deteriorated by water. The diffusion member 30 formed of a material that is not easily deteriorated by water includes a porous plate made of polyester such as PET resin, PP resin, or cellulose, and is made of titanium, copper, or stainless steel. A porous plate obtained. Further, in order to increase the hydrophilicity of the material surface, the diffusing member 30 may be subjected to a hydrophilic treatment.
 加湿体20は拡散部材30と同様に多孔質の板材で形成される。好適な条件は拡散部材30と同一であり、拡散部材30と同一の素材を用いてもよい。ただし、拡散部材30より吸水性のよい素材を加湿体20に用いると、拡散部材30が吸水して内部に十分水が拡散する前に加湿体20が水を吸ってしまうため、各加湿体20への水の供給の均一度が落ちることがある。その場合は、拡散部材30の鉛直方向の寸法を大きくすること等で対策できる。なお、加湿素子2全体の高さ方向に寸法の制約がある場合、拡散部材30の鉛直方向への寸法にも制約が加わるので、拡散部材30より吸水性が低い素材を加湿体20に使用して、拡散部材30の鉛直方向への寸法を小さくできるようにすることが望ましい。 The humidifier 20 is formed of a porous plate material like the diffusion member 30. Suitable conditions are the same as those of the diffusing member 30, and the same material as that of the diffusing member 30 may be used. However, if a material having better water absorption than the diffusing member 30 is used for the humidifying body 20, the humidifying body 20 absorbs water before the diffusing member 30 absorbs water and the water is sufficiently diffused therein. The uniformity of water supply to the camera may be reduced. In such a case, measures can be taken by increasing the vertical dimension of the diffusing member 30. In addition, when there is a dimensional restriction in the height direction of the entire humidifying element 2, a restriction is imposed on the vertical dimension of the diffusing member 30. Thus, it is desirable that the size of the diffusing member 30 in the vertical direction can be reduced.
 加湿体20の表面には、凸部21が設けられている。凸部21によって、加湿体20同士の間隔の保持が図られる。凸部21は、加湿体20に冶具等を押し当てる等を行い、その部分を塑性変形させて形成する。加湿体20上の凸部21の配列位置が異なる2種類の加湿体20を交互に配列することで、加湿体20の間隔を一定に保つ機能を有する。なお、加湿体20は第1の方向に沿って、間隔が一定に保たれていれば良く、一定間隔に加湿体20の板厚分の切り欠きが入った櫛を加湿体20に噛み合わせて間隔を保持したものでもよいし、波状に成形した加湿体20をハニカム状に積層することで間隔を保持する構造であってもよい。 A convex part 21 is provided on the surface of the humidifier 20. The convex portion 21 can maintain the interval between the humidifying bodies 20. The convex portion 21 is formed by pressing a jig or the like against the humidifying body 20 and plastically deforming the portion. By alternately arranging two types of humidifying bodies 20 having different arrangement positions of the convex portions 21 on the humidifying body 20, there is a function of keeping the interval between the humidifying bodies 20 constant. In addition, the humidification body 20 should just keep the space | interval constant along a 1st direction, and meshes the humidification body 20 with the comb which the notch for the plate | board thickness of the humidification body 20 entered in the regular space | interval. A structure in which the interval is maintained may be used, or a structure in which the interval is maintained by stacking the humidified bodies 20 formed in a wave shape in a honeycomb shape may be employed.
 拡散部材30の下端と加湿体20の上端は、一部が接触して設置されている。拡散部材30と加湿体20が接触していれば、加湿体20の毛細管力の作用により水が淀みなく流下するが、組立て時のばらつき、輸送中の振動の影響を加味し、拡散部材30の下端と加湿体20の上端を互いに差込むようにして連結してもよい。 The lower end of the diffusing member 30 and the upper end of the humidifying body 20 are partly in contact with each other. If the diffusing member 30 and the humidifying body 20 are in contact with each other, water flows down due to the action of the capillary force of the humidifying body 20, but taking into account variations during assembly and the effects of vibration during transportation, You may connect so that a lower end and the upper end of the humidification body 20 may be inserted mutually.
 なお、拡散部材30は、上方に位置する貯水槽12から滴下する水を、第1の方向に均等に拡散するため、すなわち第1の方向に並べて配置された複数の加湿体20に均一に水を供給するために設けられている。したがって、複数の加湿体20が一体化されて、複数の加湿体20同士の間で第1の方向に水を拡散できる場合には、加湿体20自体が拡散部材30と同様の水の拡散機能を有することになる。この場合には、拡散部材30を用いずに、貯水槽12から直接加湿体20に水を滴下させる構成であってもよい。 Note that the diffusion member 30 uniformly distributes water dripping from the water storage tank 12 positioned above in the first direction, that is, uniformly to the plurality of humidifiers 20 arranged side by side in the first direction. Is provided to supply. Therefore, when the plurality of humidifiers 20 are integrated and water can be diffused in the first direction between the plurality of humidifiers 20, the humidifier 20 itself has the same water diffusion function as the diffusion member 30. Will have. In this case, a configuration in which water is dropped directly from the water storage tank 12 to the humidifier 20 without using the diffusion member 30 may be used.
 次に、貯水槽12の構造について詳しく説明する。図7は、図6に示す加湿素子2のZ-Z線に沿った断面図であって、貯水槽12を拡大した図である。貯水槽12の底面には複数の注水孔12aが形成されている。複数の注水孔12aは、同一平面状にあり、かつ、加湿装置1、および加湿素子2を水平に設置した場合に、全ての注水孔12aが水平に並ぶように形成されている。貯水槽12の外側には、注水孔12a部分から下方に伸びる筒状壁面12bが形成されている。筒状壁面12bの先端は、拡散部材30に接触する。拡散部材30の上面と貯水槽12の外側との間には、筒状壁面12bの高さ分の空間が設けられている。 Next, the structure of the water storage tank 12 will be described in detail. FIG. 7 is a cross-sectional view of the humidifying element 2 shown in FIG. 6 taken along the line ZZ, and is an enlarged view of the water storage tank 12. A plurality of water injection holes 12 a are formed on the bottom surface of the water storage tank 12. The plurality of water injection holes 12a are in the same plane, and are formed so that all the water injection holes 12a are arranged horizontally when the humidifying device 1 and the humidifying element 2 are installed horizontally. A cylindrical wall surface 12 b extending downward from the water injection hole 12 a is formed on the outside of the water storage tank 12. The tip end of the cylindrical wall surface 12 b contacts the diffusing member 30. A space corresponding to the height of the cylindrical wall surface 12 b is provided between the upper surface of the diffusion member 30 and the outside of the water storage tank 12.
 図8は、実施の形態1における貯水槽12の注水孔12a部分を拡大した図であって、貯水槽12を下方から見た図である。筒状壁面12bの先端には、切欠12cが形成されている。 FIG. 8 is an enlarged view of the water injection hole 12a portion of the water storage tank 12 according to Embodiment 1, and is a view of the water storage tank 12 viewed from below. A notch 12c is formed at the tip of the cylindrical wall surface 12b.
 図9は、実施の形態1における貯水槽12の周辺部分の斜視図である。貯水槽12の外壁には、貯水槽12から伸びる2本の流路である連通流路100が形成されている。それぞれの連通流路100には、貯水槽12の内部に連通する流入口101と、連通流路100上を通過する水を流出させる流出口102とが形成されている。貯水槽12と連通流路100は、例えば樹脂で一体に形成されている。連通流路100は、貯水槽12から溢れた水を、拡散部材30に誘導するための流路である。 FIG. 9 is a perspective view of the peripheral portion of the water storage tank 12 in the first embodiment. On the outer wall of the water storage tank 12, a communication flow path 100 that is two flow paths extending from the water storage tank 12 is formed. Each communication channel 100 is formed with an inflow port 101 that communicates with the inside of the water storage tank 12 and an outflow port 102 that allows water that passes through the communication channel 100 to flow out. The water storage tank 12 and the communication channel 100 are integrally formed of, for example, resin. The communication channel 100 is a channel for guiding water overflowing from the water storage tank 12 to the diffusion member 30.
 連通流路100の流路構造について説明する。図9に示す貯水槽12の奥側に形成された1本の連通流路100に着目する。流出口102は、貯水槽12を挟んで流入口101の反対側となる位置に形成されている。また、流出口102は、貯水槽12が水平に配置された状態において、流入口101よりも下方となる位置に形成されている。連通流路100は、貯水槽12が水平に配置された状態において、流入口101から流出口102に向かって流路は傾斜している。したがって、図9において右側に形成されている流出口102は、貯水槽12の奥側に形成されている連通流路100および左側に形成されている流入口101と繋がっている。図9において右側に形成されている流入口101は、貯水槽12の手前側に形成されている連通流路100および左側で貯水槽12の陰に隠れた流出口102と繋がっている。 The flow channel structure of the communication flow channel 100 will be described. Attention is paid to one communication channel 100 formed on the back side of the water storage tank 12 shown in FIG. The outflow port 102 is formed at a position opposite to the inflow port 101 across the water storage tank 12. Further, the outlet 102 is formed at a position below the inlet 101 in a state where the water storage tank 12 is horizontally disposed. The communication channel 100 is inclined from the inlet 101 toward the outlet 102 in the state where the water storage tank 12 is horizontally disposed. Accordingly, the outlet 102 formed on the right side in FIG. 9 is connected to the communication channel 100 formed on the back side of the water storage tank 12 and the inlet 101 formed on the left side. In FIG. 9, the inflow port 101 formed on the right side is connected to the communication channel 100 formed on the front side of the water storage tank 12 and the outflow port 102 hidden behind the water storage tank 12 on the left side.
 言い換えると、図9において右側に形成されている流出口102は、同じく右側に形成されている流入口101とは繋がっておらず、別々の連通流路100である。図7を例にとると、図7の右側で上下に並べて形成された流入口101と流出口102とは繋がっておらず、別々の連通流路100である。 In other words, the outlet 102 formed on the right side in FIG. 9 is not connected to the inlet 101 formed on the right side, but is a separate communication channel 100. Taking FIG. 7 as an example, the inflow port 101 and the outflow port 102 that are formed side by side on the right side of FIG.
 図7に示す連通流路100の断面形状は、上方が開放されたコの字型の開渠で形成されている。連通流路100は水を流すことができればよく、筒状に形成されていてもよい。開渠の場合は流路の成型が容易であり、また、流路内の水が乾燥しやすく衛生性に優れるという利点がある。筒状に形成した管の場合は、配管経路の自由度が高く、また、管の内径の変更により流量を調整しやすいという利点がある。 The cross-sectional shape of the communication channel 100 shown in FIG. 7 is formed by a U-shaped opening having an open top. The communication channel 100 only needs to be able to flow water, and may be formed in a cylindrical shape. In the case of opening, there is an advantage that the flow path is easy to mold and the water in the flow path is easy to dry and excellent in hygiene. In the case of a pipe formed in a cylindrical shape, there are advantages that the degree of freedom of the piping path is high and the flow rate can be easily adjusted by changing the inner diameter of the pipe.
 連通流路100を開渠で形成する場合、断面形状はコの字型ではなく、台形型や半円型でもよい。台形型や半円型は、同じ断面積を得ようとすると、連通流路100の幅が広くなる。台形型や半円型の連通流路100は、断面積が同一の条件であれば、コの字型の連通流路100よりもぬれ縁長さを短くできる。これにより、連通流路100での流動抵抗を減少させることができる。また、流入口101と流出口102の間の流路部分の断面積は、流入口101から流入した水を流路の外に漏らさず流せるように、流入口101での流路部分の断面積よりも大きく形成されている。 When the communication channel 100 is formed by opening, the cross-sectional shape may be a trapezoidal shape or a semicircular shape instead of the U shape. In the trapezoidal shape and the semicircular shape, the width of the communication channel 100 is widened to obtain the same cross-sectional area. The trapezoidal or semicircular communication channel 100 can have a shorter wetting edge length than the U-shaped communication channel 100 under the same cross-sectional area. Thereby, the flow resistance in the communication channel 100 can be reduced. The cross-sectional area of the flow path portion between the inflow port 101 and the outflow port 102 is such that the water flowing in from the inflow port 101 can flow without leaking out of the flow path. It is formed larger than.
 図7に示すように連通流路100は、貯水槽12の外壁の外側に形成されている。連通流路100は水を流すことができればよく、貯水槽12の外壁の内側に形成してもよいし、貯水槽12の外壁から離れた位置に形成してもよい。 As shown in FIG. 7, the communication channel 100 is formed outside the outer wall of the water storage tank 12. The communication channel 100 only needs to allow water to flow, and may be formed inside the outer wall of the water storage tank 12 or may be formed at a position away from the outer wall of the water storage tank 12.
 図10は、実施の形態1における貯水槽12を上方から見た上面図である。図11は、図10に示す貯水槽12のW-W線に沿った断面図である。図中に示した破線の矢印は、連通流路100内を水が流れた場合の流れの経路を表す。流入口101から流出口102に至るまでの連通流路100は、一定勾配の滑らかな斜面で形成されている。流路の途中に凹凸があると、水が溜まり、細菌やカビが付着して増殖する恐れがあるため好ましくない。貯水槽12が水平に配置された状態での連通流路100の勾配α[°]は、貯水槽12の設計上の許容される最大の傾き角度(最大許容勾配)βMAX[°]に対して以下の関係が成立する。
α>βMAX     (1)
FIG. 10 is a top view of the water storage tank 12 according to the first embodiment as viewed from above. FIG. 11 is a cross-sectional view taken along the line WW of the water tank 12 shown in FIG. The broken-line arrows shown in the drawing represent a flow path when water flows in the communication channel 100. The communication channel 100 from the inflow port 101 to the outflow port 102 is formed with a smooth slope having a constant slope. If there are irregularities in the middle of the flow path, it is not preferable because water accumulates and there is a risk that bacteria and mold will adhere and grow. The gradient α [°] of the communication channel 100 in a state where the water storage tank 12 is horizontally disposed is relative to the maximum allowable inclination angle (maximum allowable gradient) β MAX [°] in design of the water storage tank 12. The following relationship is established.
α> β MAX (1)
 図7に示すように、流入口101は、貯水槽12から溢れる水が連通流路100に導入されるよう、貯水槽12の外壁の上端よりも低い位置、かつ、連通流路100の上端よりも低い位置に形成されている。また、貯水槽12から水が溢れるまでは連通流路100に水が流れないよう、注水孔12aの上端よりも高い位置、且つ、貯水槽12が水平に設置された状態で、貯水槽12内に規定量の水が供給されたときに、注水孔12aの滴下流量と貯水槽12への供給流量が平衡して釣り合う水位よりも上方に設けられている。なお、滴下流量と供給流量が平衡して釣り合う水位については後述する。 As shown in FIG. 7, the inflow port 101 is positioned lower than the upper end of the outer wall of the water storage tank 12 and from the upper end of the communication flow path 100 so that water overflowing from the water storage tank 12 is introduced into the communication flow path 100. Is also formed at a lower position. Further, in the water tank 12 in a state where the water tank 12 is horizontally installed at a position higher than the upper end of the water injection hole 12a so that water does not flow into the communication channel 100 until the water overflows from the water tank 12. When a specified amount of water is supplied to the water tank 12, it is provided above the water level where the dropping flow rate of the water injection hole 12 a and the supply flow rate to the water storage tank 12 are balanced and balanced. The water level in which the dropping flow rate and the supply flow rate are balanced and balanced will be described later.
 流入口101を貯水槽12の外壁の上面に設けられない場合は、貯水槽12の外壁よりも低い位置に開口を設けて、この開口を流入口101とすればよい。流入口101は、貯水槽12から溢れる水を連通流路100内に確実に導くことができるよう、十分広くする必要がある。少なくとも、注水孔12aの穴径よりも大きくすることが望ましい。 When the inlet 101 cannot be provided on the upper surface of the outer wall of the water tank 12, an opening may be provided at a position lower than the outer wall of the water tank 12, and this opening may be used as the inlet 101. The inflow port 101 needs to be sufficiently wide so that the water overflowing from the water storage tank 12 can be reliably guided into the communication channel 100. It is desirable to make it at least larger than the diameter of the water injection hole 12a.
 図10に示すように、流入口101は、貯水槽12が傾斜した場合に貯水槽12内に溜まった水位の変化を受けやすい箇所に設けられている。本実施の形態1のように、貯水槽12が上方から見た場合に長手方向と短手方向を有する形状、例えば長方形のような場合には、貯水槽12の外壁のうち、長手方向に垂直な面に取り付けられている。本実施の形態1では、長手方向と第1の方向とが一致している。 As shown in FIG. 10, the inflow port 101 is provided at a location that is susceptible to a change in the water level accumulated in the water tank 12 when the water tank 12 is inclined. As in the first embodiment, when the water storage tank 12 is viewed from above, the shape has a longitudinal direction and a short side direction, for example, a rectangular shape, and is perpendicular to the longitudinal direction of the outer wall of the water storage tank 12. It is attached to a flat surface. In the first embodiment, the longitudinal direction matches the first direction.
 図7に示すように、流出口102は、拡散部材30の直上に位置する。流出口102は、連通流路100を流れる水を拡散部材30に供給できればよく、拡散部材30の側面に位置し、横から水を供給する構造であってもよい。流出口102は拡散部材30の長手方向の端部側に設けられている。拡散部材30に対する流出口102の位置をこのように形成することで、拡散部材30が傾斜した際に、流出口102から流出する水を拡散部材30の傾斜の上方に供給することができる。流出口102の断面積は、流入口101および連通流路100を流れる水を連通流路100の外に漏らさず流せるよう、連通流路100よりも大きく形成されている。 As shown in FIG. 7, the outlet 102 is located immediately above the diffusion member 30. The outflow port 102 only needs to be able to supply the water flowing through the communication channel 100 to the diffusion member 30, and may be configured to be located on the side surface of the diffusion member 30 and supply water from the side. The outlet 102 is provided on the end side in the longitudinal direction of the diffusing member 30. By forming the position of the outlet 102 with respect to the diffusing member 30 in this way, when the diffusing member 30 is inclined, the water flowing out from the outlet 102 can be supplied above the inclination of the diffusing member 30. The cross-sectional area of the outlet 102 is formed larger than that of the communication channel 100 so that water flowing through the inlet 101 and the communication channel 100 can flow without leaking out of the communication channel 100.
 上述のように、図10に示す貯水槽12には、2本の連通流路100が形成されている。したがって、流入口101と流出口102はそれぞれ2箇所ずつ設けられている。貯水槽12に設けられた2箇所の流入口101は、第1の方向に対して貯水槽12を隔てる位置に、分かれて配置されている。二つの流入口101は、貯水槽12の底面から同じ高さに設けられている。 As described above, two communication channels 100 are formed in the water tank 12 shown in FIG. Therefore, two inlets 101 and two outlets 102 are provided. The two inlets 101 provided in the water storage tank 12 are separately arranged at positions separating the water storage tank 12 with respect to the first direction. The two inflow ports 101 are provided at the same height from the bottom surface of the water storage tank 12.
 本実施の形態1では、貯水槽12の長手方向に延びる2本の連通流路100が設けられているが、貯水槽12の短手方向に延びる連通流路が設けられていてもよい。連通流路100の本数は、1本であってもよいし、3本以上であってもよい。 In the first embodiment, two communication channels 100 extending in the longitudinal direction of the water storage tank 12 are provided, but communication channels extending in the short direction of the water storage tank 12 may be provided. The number of the communication channels 100 may be one, or three or more.
 次に、給水口11から加湿体20に至る一連の水の流れについて説明する。給水口11には、給水弁3aで制御された一定流量の水が供給される。給水口11から流入した水は、貯水槽12に流れる。図12は、実施の形態1における貯水槽12の周辺部の一例を示す断面図である。貯水槽12に流入した水は貯水槽12の底面の複数の注水孔12aから滴下し、切欠12cを有する筒状壁面12bを伝わって拡散部材30に吸水される。拡散部材30に吸水された水は、拡散部材30の内部に広がりながら流下し、拡散部材30の下端に到達する。 Next, a series of water flows from the water supply port 11 to the humidifier 20 will be described. A constant flow rate of water controlled by the water supply valve 3a is supplied to the water supply port 11. The water flowing in from the water supply port 11 flows into the water storage tank 12. FIG. 12 is a cross-sectional view showing an example of the peripheral portion of the water storage tank 12 in the first embodiment. The water that has flowed into the water storage tank 12 drops from a plurality of water injection holes 12 a on the bottom surface of the water storage tank 12, travels through the cylindrical wall surface 12 b having the notches 12 c, and is absorbed by the diffusion member 30. The water absorbed by the diffusion member 30 flows down while spreading inside the diffusion member 30 and reaches the lower end of the diffusion member 30.
 拡散部材30の下端と加湿体20の上端は接触しているため、流下した水は加湿体20の毛細管力の作用でこの接触部から加湿体20に伝わり流下する。水は加湿体20の内部に広がりながら加湿体20全体に浸透して流下し、加湿体20の下端から滴下する。加湿体20で蒸発しなかった過剰な水は下部の排水部13からケーシング10の外部に流れ出ていく。この際、加湿体20の間に通風される空気によって、加湿体20の表面から水分が奪われて、加湿された空気として加湿素子2から排気される。このため、加湿体20の下端から滴下排水される流量は、給水口11から供給される水量から加湿空気として加湿体20から奪われる水量を差し引いた水量となる。 Since the lower end of the diffusion member 30 and the upper end of the humidifying body 20 are in contact with each other, the water that has flowed down is transmitted to the humidifying body 20 from the contact portion by the action of the capillary force of the humidifying body 20 and flows down. Water spreads inside the humidifying body 20, penetrates the entire humidifying body 20, flows down, and drops from the lower end of the humidifying body 20. Excess water that has not evaporated in the humidifier 20 flows out of the casing 10 from the lower drainage 13. At this time, moisture is taken away from the surface of the humidifying body 20 by the air ventilated between the humidifying bodies 20 and is exhausted from the humidifying element 2 as humidified air. For this reason, the flow rate dripped and drained from the lower end of the humidifier 20 is the amount of water obtained by subtracting the amount of water taken from the humidifier 20 as humidified air from the amount of water supplied from the water supply port 11.
 この一連の流れにおいて、貯水槽12に貯水される水位と注水孔12aとの関係について説明する。注水孔12aには通水される際に流動抵抗が存在する。ある一つの注水孔12aの入口にかかる水頭圧Pi(注水孔12aの入口から水位の高さまでのヘッド差)と、その注水孔12aを通過する流量Qiとの間には以下の関係がある。
 Qi=Ci×Ai×√(2×Pi/ρ)    (2)
 上式において、Ciは注水孔の形状等による係数、Aiは注水孔断面積、ρは水の密度、iは複数の注水孔がある場合の番号を表す添え字である。
In this series of flows, the relationship between the water level stored in the water storage tank 12 and the water injection hole 12a will be described. There is a flow resistance when water is passed through the water injection hole 12a. There is the following relationship between the water head pressure Pi applied to the inlet of one water injection hole 12a (the head difference from the inlet of the water injection hole 12a to the height of the water level) and the flow rate Qi passing through the water injection hole 12a.
Qi = Ci × Ai × √ (2 × Pi / ρ) (2)
In the above equation, Ci is a coefficient depending on the shape or the like of the water injection hole, Ai is the cross-sectional area of the water injection hole, ρ is the density of water, and i is a subscript representing the number when there are a plurality of water injection holes.
 簡単には、注水孔12aの形状が一定であれば、貯水槽12に貯水される水位が高いほど、注水孔12aの入口にかかる水頭圧Piが増加し、その平方根に比例して注水孔12aを流れる流量Qiが増加する。貯水槽12にN個の注水孔12aが設けられている場合は、注水孔12aから滴下する流量の合計Qoutは下式となる。
 Qout=Q1+Q2+Q3+・・・Qi+・・・+Qn   (3)
Briefly, if the shape of the water injection hole 12a is constant, the higher the water level stored in the water storage tank 12, the higher the water head pressure Pi applied to the inlet of the water injection hole 12a, and the water injection hole 12a in proportion to the square root thereof. The flow rate Qi flowing through increases. When N water injection holes 12a are provided in the water storage tank 12, the total Qout of the flow rate dropped from the water injection hole 12a is expressed by the following equation.
Qout = Q1 + Q2 + Q3 + ... Qi + ... + Qn (3)
 つまり、給水口11から貯水槽12に供給される給水流量Qinを全て注水孔12aから滴下できるように、注水孔12aの形状等による係数C、および注水孔断面積A、および注水孔12aの入口にかかる水頭圧P、および注水孔12aの個数を決定することにより、貯水槽12に供給した水を貯水槽12から溢れさせることなく、注水孔12aから拡散部材30へと滴下させることができる。 That is, the coefficient C depending on the shape of the water injection hole 12a, the cross-sectional area A of the water injection hole, and the inlet of the water injection hole 12a so that all the water supply flow rate Qin supplied from the water supply port 11 to the water storage tank 12 can be dripped from the water injection hole 12a. By determining the water head pressure P and the number of water injection holes 12a, the water supplied to the water storage tank 12 can be dripped from the water injection hole 12a to the diffusion member 30 without overflowing the water storage tank 12.
 加湿装置1、および加湿素子2を水平に設置した場合に、全ての注水孔12aは水平に並ぶよう形成されている。この状態を、貯水槽12が水平に配置された状態ともいう。加湿装置1、および加湿素子2が水平に設置されている場合、貯水槽12内の水位は注水孔12aと平行になり、上記式(2)における注水孔12aの入口にかかる水頭圧Piは全ての注水孔12aで等しくなる。つまり、注水孔12aから滴下する流量Qiは全ての注水孔12aで均一となり、拡散部材30、および加湿体20を流れる供給水を第1の方向に対して均一に流すことができる。 When the humidifying device 1 and the humidifying element 2 are installed horizontally, all the water injection holes 12a are formed so as to be arranged horizontally. This state is also referred to as a state where the water storage tank 12 is disposed horizontally. When the humidifier 1 and the humidifying element 2 are installed horizontally, the water level in the water storage tank 12 is parallel to the water injection hole 12a, and the water head pressure Pi applied to the inlet of the water injection hole 12a in the above formula (2) is all. The water injection holes 12a are equal. That is, the flow rate Qi dropped from the water injection hole 12a is uniform in all the water injection holes 12a, and the supply water flowing through the diffusion member 30 and the humidifying body 20 can be made to flow uniformly in the first direction.
 次に、夜間など加湿が不要になった場合の加湿運転の停止について説明する。例えば夜間など居室が無人となり加湿が不要な場合には、加湿装置1の加湿運転が停止される場合がある。ここで、加湿素子2を湿潤状態で長時間放置することは衛生上好ましくない。空気中の細菌、カビが湿潤部分に付着して増殖した場合、加湿運転を再開した際に加湿素子2の表面を通過する通風に細菌やカビ胞子が搬送されて居室内に放出される懸念がある。このような細菌、カビ類の増殖抑制方法としては、できるだけ早く加湿素子2を乾燥させることが有効である。 Next, stop of the humidification operation when humidification becomes unnecessary such as at night will be explained. For example, when the living room is unattended and humidification is unnecessary, such as at night, the humidifying operation of the humidifying device 1 may be stopped. Here, it is not preferable for hygiene to leave the humidifying element 2 in a wet state for a long time. When bacteria and mold in the air adhere to the wet part and grow, there is a concern that when the humidification operation is restarted, the bacteria and mold spores are transported by the air passing through the surface of the humidifying element 2 and released into the room. is there. As a method for suppressing the growth of such bacteria and molds, it is effective to dry the humidifying element 2 as soon as possible.
 このような観点から、加湿装置1を停止する際は、制御装置6からの制御で給水弁3aを閉止後に送風機5を運転させて、加湿素子2を乾燥させる制御を行うことが好ましい。ここで、加湿素子2の乾燥時間を短縮させるためには、貯水槽12内を早期に乾燥させる必要がある。しかしながら、貯水槽12は凹形状のため通風乾燥させにくい。そこで、給水弁3aが閉止された後は、貯水槽12内の水を素早く拡散部材30の方に流出させることが重要である。 From this point of view, when the humidifier 1 is stopped, it is preferable to perform control to dry the humidifying element 2 by operating the blower 5 after closing the water supply valve 3a under the control of the control device 6. Here, in order to shorten the drying time of the humidifying element 2, it is necessary to dry the inside of the water storage tank 12 at an early stage. However, the water storage tank 12 is difficult to ventilate and dry because of its concave shape. Therefore, after the water supply valve 3a is closed, it is important that the water in the water storage tank 12 quickly flows out toward the diffusion member 30.
 図12に示す貯水槽12の内部の底面は、注水孔12a部分で最下位となるように傾斜している。そのため、給水弁3aが閉止された後は、注水孔12aの入口にかかる水頭圧Piにより貯水槽12内の水は滴下を続ける。また、注水孔12aの入口にかかる水頭圧Piが限りなくゼロに近くなると、注水孔12aに接触させた拡散部材30の毛細管力により、貯水槽12内の水は円滑に吸収される。したがって、貯水槽12内の水は、拡散部材30を通して外部に流出し、貯水槽12内の早期乾燥を図ることができる。 The bottom surface inside the water storage tank 12 shown in FIG. 12 is inclined so as to be lowest at the water injection hole 12a. Therefore, after the water supply valve 3a is closed, the water in the water tank 12 continues to drip due to the water head pressure Pi applied to the inlet of the water injection hole 12a. Further, when the water head pressure Pi applied to the inlet of the water injection hole 12a is as close to zero as possible, the water in the water storage tank 12 is smoothly absorbed by the capillary force of the diffusion member 30 brought into contact with the water injection hole 12a. Therefore, the water in the water tank 12 flows out through the diffusion member 30 and can be quickly dried in the water tank 12.
 このように、貯水槽12に上部が解放された容器を用いることで、加湿素子2を長期間使用しない場合の水槽内部の衛生性を確保することができる。また、注水孔12aを密閉容器で形成して水を滴下させる給水方式に比べて、シール部材などが不要な上、構造が簡素化でき、安価で長期信頼性の高い加湿素子2を提供することができる。 Thus, by using a container having an open top for the water storage tank 12, it is possible to ensure hygiene inside the water tank when the humidifying element 2 is not used for a long period of time. Further, compared to a water supply method in which the water injection hole 12a is formed by a closed container and water is dropped, a sealing member or the like is unnecessary, the structure can be simplified, and the humidifying element 2 that is inexpensive and has high long-term reliability is provided. Can do.
 次に、貯水槽12の経年変化について説明する。給水中の硬度成分およびシリカ、鉄さびなどの蒸発残渣が経時的に注水孔12aに堆積した場合は、上記式(2)における注水孔断面積Aiが小さくなる。貯水槽12への給水流量が一定であれば、注水孔12aの入口にかかる水頭圧Piは大きくなる。すなわち、貯水槽12内の水位は上昇する。この場合、貯水槽12の外壁の上限までは、給水を全て注水孔12aから滴下させることができるため、貯水槽12はできるだけ深い容器であることが望ましい。しかしながら、貯水槽12やケーシング10の寸法の制約から、許容できる水位上昇量、すなわち貯水槽12の深さには上限値が存在する。 Next, the secular change of the water tank 12 will be described. When hardness components in the water supply and evaporation residues such as silica and iron rust accumulate over time in the water injection hole 12a, the water injection hole cross-sectional area Ai in the above formula (2) becomes small. If the water supply flow rate to the water storage tank 12 is constant, the water head pressure Pi applied to the inlet of the water injection hole 12a increases. That is, the water level in the water tank 12 rises. In this case, since all the water supply can be dripped from the water injection hole 12a up to the upper limit of the outer wall of the water storage tank 12, it is desirable that the water storage tank 12 be a container as deep as possible. However, an upper limit value exists in the allowable amount of increase in the water level, that is, the depth of the water storage tank 12 due to restrictions on the dimensions of the water storage tank 12 and the casing 10.
 注水孔12aに蒸発残渣やゴミが侵入した場合、上述したように、貯水槽12内の水位は上昇する。流入口101は貯水槽12の外壁よりも低い位置にあるため、水位が上昇して貯水槽12内を水が溢れそうになると、水は流入口101に流入する。流入口101に流入した水は、連通流路100を流れ、流出口102から拡散部材30に流下する。つまり連通流路100は、注水孔12aが水を通しにくくなった場合の補助流路として機能する。 When the evaporation residue or dust enters the water injection hole 12a, the water level in the water storage tank 12 rises as described above. Since the inflow port 101 is located at a position lower than the outer wall of the water storage tank 12, when the water level rises and the water is about to overflow inside the water storage tank 12, the water flows into the inflow port 101. The water that has flowed into the inflow port 101 flows through the communication channel 100 and flows down from the outflow port 102 to the diffusion member 30. That is, the communication channel 100 functions as an auxiliary channel when the water injection hole 12a becomes difficult to pass water.
 次に、加湿装置1または加湿素子2が傾斜して設置された場合について説明する。上記の構造によれば、加湿装置1、および加湿素子2が水平に設置されている場合、注水孔12aから滴下する流量は全ての注水孔12aで均一となる。しかしながら、実際には必ずしも水平に設置されるわけではない。 Next, a case where the humidifying device 1 or the humidifying element 2 is installed at an inclination will be described. According to said structure, when the humidification apparatus 1 and the humidification element 2 are installed horizontally, the flow volume dripped from the water injection hole 12a becomes uniform in all the water injection holes 12a. However, in reality, it is not necessarily installed horizontally.
 例えば、天井埋め込み形の加湿装置においては、天井に埋め込まれたアンカーボルトに金具を用いて加湿装置1を設置する際に、水平から若干傾いて設置される場合がある。また、加湿素子2を点検するなどして取り外した場合、再び設置する際に若干傾いて取り付けられる場合がある。したがって、加湿装置1や加湿素子2は、傾斜して設置された場合であっても加湿体20に均一に水が拡散され、水平時と傾斜時の加湿性能の間に差がないことが望ましい。 For example, in a ceiling-embedded humidifier, when the humidifier 1 is installed using metal fittings on anchor bolts embedded in the ceiling, the humidifier may be installed slightly inclined from the horizontal. Further, when the humidifying element 2 is removed by inspection or the like, it may be attached with a slight inclination when it is installed again. Therefore, even when the humidifying device 1 and the humidifying element 2 are installed in an inclined state, it is desirable that water is uniformly diffused in the humidifying body 20 so that there is no difference between the humidifying performance at the time of horizontal and at the time of inclination. .
 次に、加湿装置1や加湿素子2が傾斜して配置された場合の連通流路100内の詳しい水の流れについて詳細に説明する。 Next, a detailed flow of water in the communication channel 100 when the humidifying device 1 and the humidifying element 2 are arranged to be inclined will be described in detail.
 図13は、実施の形態1における貯水槽12周辺を、図6に示すZ-Z線に沿った断面で示す図である。貯水槽12は、図中の右側が低くなるようβ[°]傾斜している。また、貯水槽12から水が溢れる直前の状態を表している。この場合、貯水槽12から溢れた水は流入口101に流れ込もうとするが、2箇所設けられた流入口101のうち、傾斜により低い側に位置する流入口101、すなわち図中の右側に位置する流入口101へと流れ込む。 FIG. 13 is a view showing the periphery of the water storage tank 12 in the first embodiment in a cross section along the line ZZ shown in FIG. The water storage tank 12 is inclined by β [°] so that the right side in the figure becomes lower. Moreover, the state just before water overflows from the water storage tank 12 is represented. In this case, the water overflowing from the water storage tank 12 tries to flow into the inflow port 101. Of the two inflow ports 101, the inflow port 101 located on the lower side due to the inclination, that is, on the right side in the drawing. It flows into the inflow port 101 located.
 図14は、実施の形態1における貯水槽12周辺を、図10に示すW-W線に沿った断面で示す図であって、貯水槽12が傾斜して設置された状態を示す図である。図14は、図13と同様に、図中の右側が低くなるようβ[°]傾斜している。図14は、流入口101から流入した水(図中の破線の矢印)が連通流路100、拡散部材30、加湿体20を流れる様子を表している。勾配αは上記式(1)に示す関係を満たしているため、流入口101から連通流路100に流入した水は、連通流路100の傾斜に沿って流出口102に向かって流れる。貯水槽12が傾斜することにより、高い位置にある流出口102から、拡散部材30へと水が供給される。 14 is a view showing the periphery of the water storage tank 12 in Embodiment 1 in a cross section along the line WW shown in FIG. 10, and is a view showing a state in which the water storage tank 12 is installed inclined. . FIG. 14 is inclined by β [°] so that the right side in the figure becomes lower, as in FIG. 13. FIG. 14 illustrates a state in which water (broken arrows in the figure) flowing in from the inflow port 101 flows through the communication channel 100, the diffusion member 30, and the humidifier 20. Since the gradient α satisfies the relationship expressed by the above formula (1), the water flowing into the communication channel 100 from the inflow port 101 flows toward the outflow port 102 along the inclination of the communication channel 100. By tilting the water storage tank 12, water is supplied to the diffusion member 30 from the outlet 102 at a high position.
 図14に示すように、流出口102は拡散部材30の長手方向の端側に設けられている。水は、拡散部材30の傾斜の上方側に浸透する。拡散部材30に浸透した水は、拡散部材30内を傾斜に沿って下方に流れることで、高い位置側から低い位置へと順に加湿体20に浸透する。 As shown in FIG. 14, the outlet 102 is provided on the end side in the longitudinal direction of the diffusion member 30. Water permeates above the slope of the diffusing member 30. The water that has permeated the diffusing member 30 flows downward in the diffusing member 30 along the inclination, and thereby permeates the humidifying body 20 in order from the higher position side to the lower position.
 つまり、加湿装置1または加湿素子2が傾斜している場合でも、貯水槽12の低い位置から溢れた水を拡散部材30の高い位置に供給することができ、加湿体20の全体に水を供給することができる。 That is, even when the humidifying device 1 or the humidifying element 2 is inclined, the water overflowing from the low position of the water storage tank 12 can be supplied to the high position of the diffusion member 30, and water is supplied to the entire humidifying body 20. can do.
 例えば、傾斜した貯水槽12の低い位置から溢れた水を、そのまま下方に流した場合には、溢れた水が拡散部材30の低い位置に供給される。この場合、重力の影響によって、拡散部材30の低い位置に浸透した水は、高い位置に広がりにくくなる。そのため、拡散部材30に供給された水は、拡散部材30の低い位置となる部分の直下の加湿体20に集中して伝わる。一部の加湿体20に集中して水が伝わることで、加湿体20の表面に水が浮いて、その水が風に乗じて飛散し、製品外に漏れるおそれがある。また、高い位置にある加湿体20に水が十分に供給されにくいため、加湿性能が低下する。 For example, when the water overflowing from the low position of the inclined water storage tank 12 flows downward as it is, the overflowing water is supplied to the low position of the diffusion member 30. In this case, the water that has permeated the low position of the diffusing member 30 is less likely to spread to a high position due to the influence of gravity. Therefore, the water supplied to the diffusing member 30 is concentrated and transmitted to the humidifying body 20 immediately below the portion where the diffusing member 30 is at a low position. When water is concentrated on some of the humidifiers 20, the water floats on the surface of the humidifiers 20, and the water rides on the wind and scatters and may leak out of the product. Moreover, since water is not sufficiently supplied to the humidifying body 20 at a high position, the humidifying performance is deteriorated.
 一方、本実施の形態1によれば、貯水槽12の低い位置から溢れる水を、連通流路100で拡散部材30の高い位置となる部分に供給することができる。これにより、重力を利用して加湿体20全体への水の供給の均一化を図ることができる。また、一部の加湿体20に水が集中することによる水の飛散の抑制と加湿性能の低下の抑制を図ることができる。流入口101と流出口102とが、第1の方向に互いに離間して形成されていれば、図13等に示す方向に貯水槽12が傾斜した時に、溢れた水を高い位置に誘導することができる。 On the other hand, according to the first embodiment, the water overflowing from the low position of the water storage tank 12 can be supplied to the portion where the diffusion member 30 is at a high position in the communication channel 100. Thereby, the supply of water to the entire humidifier 20 can be made uniform using gravity. In addition, it is possible to suppress the scattering of water and the decrease in the humidification performance due to the concentration of water on some humidifiers 20. If the inflow port 101 and the outflow port 102 are formed apart from each other in the first direction, when the water storage tank 12 is inclined in the direction shown in FIG. Can do.
 図15は、図10に示す貯水槽12の他の例を示す図である。流入口101は連通流路100内に水を導くことができればよい。貯水槽12の短手方向長さ(貯水槽12の幅)が短い場合、流入口101は、貯水槽12の外壁のうち、長手方向と平行な面の端側に設けてもよい。この場合、流入口101は、貯水槽12の外壁のうち、長手方向に垂直な面に近接して設けるとよい。 FIG. 15 is a diagram showing another example of the water tank 12 shown in FIG. The inflow port 101 only needs to be able to guide water into the communication channel 100. When the lateral length of the water storage tank 12 (width of the water storage tank 12) is short, the inflow port 101 may be provided on the end side of the surface parallel to the longitudinal direction on the outer wall of the water storage tank 12. In this case, the inflow port 101 may be provided close to a surface perpendicular to the longitudinal direction of the outer wall of the water storage tank 12.
 次に、流入口101の設置位置が、注水孔12aを流れる流量に及ぼす影響について詳しく述べる。まず、加湿装置1または加湿素子2が傾斜して設置された場合に注水孔12aを流れる水の流れについて説明する。 Next, the effect of the installation position of the inlet 101 on the flow rate flowing through the water injection hole 12a will be described in detail. First, the flow of water flowing through the water injection hole 12a when the humidifier 1 or the humidifying element 2 is installed at an inclination will be described.
 加湿装置1または加湿素子2が傾斜して設置された場合、注水孔12aの入口にかかる水頭圧Pは注水孔12aごとで異なる。つまり、傾斜により他の注水孔12aに比べて最も高い側に位置する注水孔12aから流出する流量は、その注水孔12aよりも相対的に低い側に位置する注水孔12aから流出する流量よりも少なくなる。例えば、注水孔12aの入口の水頭圧が元の1/2になると、流量は約7割に減少する。このように傾斜により注水孔12aから滴下する流量に偏りが発生すると、下流に備えられた拡散部材30や加湿体20を流れる流量にも偏りが発生する。 When the humidifying device 1 or the humidifying element 2 is installed with an inclination, the water head pressure P applied to the inlet of the water injection hole 12a is different for each water injection hole 12a. That is, the flow rate flowing out from the water injection hole 12a positioned on the highest side compared to the other water injection holes 12a due to the inclination is higher than the flow rate flowing out from the water injection hole 12a positioned relatively lower than the water injection hole 12a. Less. For example, when the head pressure at the inlet of the water injection hole 12a is ½ of the original, the flow rate is reduced to about 70%. As described above, when the flow rate dropped from the water injection hole 12a is uneven due to the inclination, the flow rate flowing through the diffusion member 30 and the humidifying body 20 provided downstream is also uneven.
 図16は、図6に示すZ-Z線に沿った断面図の貯水槽12を拡大した図である。給水口11から貯水槽12へ供給される流量は給水弁3aにより一定に制御されており、そのときの流量をQ0とする。供給される流量と、注水孔12aから滴下する流量は平衡し、貯水槽12内は一定の水位で保たれている。このときの、貯水槽12の水平時の水位の釣り合い線を図中の直線Aで表し、図中の右側が低くなるよう最大許容勾配βMAX[°]で傾斜している場合の水位の釣り合い線を直線Bで表す。 FIG. 16 is an enlarged view of the water storage tank 12 in a cross-sectional view taken along the line ZZ shown in FIG. The flow rate supplied from the water supply port 11 to the water storage tank 12 is controlled to be constant by the water supply valve 3a, and the flow rate at that time is Q0. The supplied flow rate and the flow rate dropped from the water injection hole 12a are balanced, and the water storage tank 12 is maintained at a constant water level. The balance line of the water level when the water storage tank 12 is horizontal at this time is represented by a straight line A in the figure, and the balance of the water level when the right side in the figure is inclined at the maximum allowable gradient β MAX [°] so as to be lowered. The line is represented by a straight line B.
 図17は、図16に示す貯水槽12の模式図である。図17中の直線A(破線)は図16と同じく、水平時の水位の釣り合い線を表す。また、図16中の直線Bは図中の右側だけが低くなるように傾斜した場合を表しているのに対し、図17中の折れ線B(2点鎖線)は、貯水槽12が左右両方に最大許容勾配βMAX[°]で傾斜した場合の、最大の釣り合い水位を表している。貯水槽12に供給される流量は図16と同じく、流量Q0で一定に制御されているとする。 FIG. 17 is a schematic diagram of the water tank 12 shown in FIG. A straight line A (broken line) in FIG. 17 represents a horizontal balance line of the water level as in FIG. Moreover, while the straight line B in FIG. 16 represents a case where only the right side in the figure is inclined, the broken line B (two-dot chain line) in FIG. It represents the maximum balanced water level when it is inclined at the maximum allowable gradient β MAX [°]. It is assumed that the flow rate supplied to the water storage tank 12 is controlled to be constant at the flow rate Q0, as in FIG.
 図17において、流入口101を直線Aよりも下方に設けた場合を考える。このような配置では、設計通りの流量Q0が供給され、且つ、加湿装置1もしくは加湿素子2が水平に設置された場合でも、水は流入口101を通り連通流路100に流れてしまう。つまり、本来注水孔12aから均一に滴下できるはずの流量を、連通流路100に流してしまうため、流入口101の配置としては好ましくない。 Suppose that the inlet 101 is provided below the straight line A in FIG. In such an arrangement, even when the designed flow rate Q0 is supplied and the humidifying device 1 or the humidifying element 2 is installed horizontally, water flows through the inflow port 101 to the communication channel 100. That is, since the flow rate that should be able to be dropped uniformly from the water injection hole 12a flows to the communication channel 100, the arrangement of the inlet 101 is not preferable.
 次に、流入口101を、直線Aよりも上方、かつ折れ線Bよりも下方に設けた場合を考える。設計通りの流量Q0が貯水槽12に供給されていれば、水平時には注水孔のみから水が滴下する。一方で、加湿装置1もしくは加湿素子2が最大許容勾配以下で傾斜して設置された場合は、流入口101の位置によっては、水を連通流路100に流すことができる。連通流路100に水が流れると、傾斜している拡散部材30の高い位置にある部分に水を供給することができる。したがって、直線Aよりも上方、かつ折れ線Bよりも下方に流入口101を配置することで、傾斜により注水孔12aの滴下量が相対的に少なくなる拡散部材30の高い位置にある部分に、傾斜時のみ水が流れ込む連通流路100を利用して、直接水を供給できる。 Next, consider a case where the inlet 101 is provided above the straight line A and below the broken line B. If the designed flow rate Q0 is supplied to the water storage tank 12, water drops only from the water injection hole when horizontal. On the other hand, when the humidifying device 1 or the humidifying element 2 is installed with an inclination equal to or less than the maximum allowable gradient, depending on the position of the inflow port 101, water can be allowed to flow through the communication channel 100. When water flows through the communication channel 100, the water can be supplied to a portion at a high position of the inclined diffusion member 30. Therefore, by arranging the inflow port 101 above the straight line A and below the broken line B, it is inclined to a portion at a high position of the diffusion member 30 where the dripping amount of the water injection hole 12a is relatively reduced due to the inclination. Water can be directly supplied by using the communication channel 100 through which water flows only.
 次に、流入口101を、折れ線Bよりも上方に設けた場合を考える。流量Q0が貯水槽12に供給されており、かつ、加湿装置1または加湿素子2の傾きが最大許容勾配以下であれば、水は連通流路100に流れることはない。ただし、上述したように、経年的な影響で注水孔12aが塞がると、貯水槽12内の水位が上昇し、水は流入口101を通り連通流路100に流れる。そのため、このように流入口101を配置した場合は、注水孔12aが塞がるなどの非常用の流量確保手段として、連通流路100を利用することができる。 Next, consider a case where the inlet 101 is provided above the polygonal line B. If the flow rate Q0 is supplied to the water storage tank 12 and the inclination of the humidifying device 1 or the humidifying element 2 is equal to or less than the maximum allowable gradient, water does not flow into the communication channel 100. However, as described above, when the water injection hole 12 a is blocked due to aging, the water level in the water storage tank 12 rises, and the water flows through the inlet 101 to the communication channel 100. Therefore, when the inflow port 101 is arranged in this way, the communication channel 100 can be used as an emergency flow rate securing means such as blocking the water injection hole 12a.
 本実施の形態1では、上述したように、流入口101は、直線Aよりも上方に設けられている。すなわち、貯水槽12が水平に設置され、かつ、注水孔12aから水が滴下している場合の水位の釣り合い位置に対し、流入口101は、常に上方に位置している。このように流入口101を配置することにより、注水口12aから滴下される流量を損なうことなく、貯水槽12から溢れる水だけを連通流路100に流すことができる。 In the first embodiment, the inflow port 101 is provided above the straight line A as described above. That is, the inflow port 101 is always positioned above the water level balance position when the water storage tank 12 is installed horizontally and water is dripping from the water injection hole 12a. By arranging the inflow port 101 in this way, only the water overflowing from the water storage tank 12 can be flowed to the communication channel 100 without impairing the flow rate dropped from the water injection port 12a.
実施の形態2. 
 図18は、本発明の実施の形態2における貯水槽12を上方から見た上面図である。図19は、図18に示す貯水槽12のV-V線に沿った断面図である。実施の形態2では、連通流路100の形状が異なるほかは実施の形態1と同様の構成であるため、同様の構成である部分の記述は省略する。
Embodiment 2. FIG.
FIG. 18 is a top view of the water storage tank 12 according to the second embodiment of the present invention as viewed from above. FIG. 19 is a cross-sectional view taken along line VV of the water storage tank 12 shown in FIG. Since the second embodiment has the same configuration as that of the first embodiment except that the shape of the communication channel 100 is different, the description of the part having the same configuration is omitted.
 図18、図19に示す連通流路100では、末端に設けられた流出口102に加えて、連通流路100の底面に複数の流出口103が設けられている。これにより、複数箇所から拡散部材30に水を滴下させることができる。したがって、実施の形態1よりも緻密に、拡散部材30に供給する流量の分布を調整することができる。流出口103の穴径、数、および位置を変えることで、流出口102,103から拡散部材30に滴下する水の流量を細かく制御することができる。 18 and 19, in addition to the outlet 102 provided at the end, a plurality of outlets 103 are provided on the bottom surface of the communication channel 100. Thereby, water can be dripped at the diffusing member 30 from a plurality of locations. Therefore, the distribution of the flow rate supplied to the diffusing member 30 can be adjusted more precisely than in the first embodiment. By changing the hole diameter, number, and position of the outlet 103, the flow rate of water dripped from the outlets 102 and 103 onto the diffusion member 30 can be finely controlled.
実施の形態3.
 図20は、本発明の実施の形態3における加湿素子2の貯水槽12部分を拡大した断面図であって、図6に示すZ-Z線に沿った断面図に相当する図である。図中の右側が低くなるよう傾斜している。図21は、実施の形態3における加湿素子2の断面図であって、図10に示すW-W線に沿った断面図に相当する図である。図中の右側が低くなるよう傾斜している。実施の形態3では連通流路100の形状が異なるほかは実施の形態1と同様の構成であるため、同様の構成である部分の記述は省略する。
Embodiment 3 FIG.
FIG. 20 is an enlarged cross-sectional view of the water storage tank 12 portion of the humidifying element 2 according to Embodiment 3 of the present invention, corresponding to the cross-sectional view taken along the line ZZ shown in FIG. It inclines so that the right side in a figure may become low. FIG. 21 is a cross-sectional view of humidifying element 2 according to Embodiment 3, and corresponds to a cross-sectional view taken along the line WW shown in FIG. It inclines so that the right side in a figure may become low. Since the third embodiment has the same configuration as that of the first embodiment except that the shape of the communication channel 100 is different, the description of the part having the same configuration is omitted.
 図20に示すように、一本の連通流路100では、末端に設けられた流入口101に加えて、複数の流入口104が設けられている。なお、図中に示す貯水槽12内に設けた二つの円形(点線)の開口からなる流入口104は、図の手前側に位置する流入口101を模式的に表したものである。貯水槽12から流入口101に流れた水は、図21に示す連通流路100内に流れ込み、流出口102から流出し、拡散部材30に吸収される。このように流入口104を複数設けることで、上記式(2)を用いて、注水孔12aを流れる流量と、連通流路100を流れる流量の割合を細かく制御することができる。 As shown in FIG. 20, in one communication channel 100, in addition to the inlet 101 provided at the end, a plurality of inlets 104 are provided. In addition, the inflow port 104 which consists of two circular (dotted line) openings provided in the water storage tank 12 shown in the drawing schematically represents the inflow port 101 located on the near side of the drawing. The water that flows from the water storage tank 12 to the inlet 101 flows into the communication channel 100 shown in FIG. 21, flows out of the outlet 102, and is absorbed by the diffusion member 30. By providing a plurality of inflow ports 104 in this way, the ratio of the flow rate flowing through the water injection hole 12a and the flow rate flowing through the communication channel 100 can be finely controlled using the above equation (2).
 流入口104を複数設ける場合は、少なくとも1個以上の流入口104においては、流量を絞る必要がある。流入口104の穴径を必要以上に大きくして流量を絞らない場合、一つの流入口104に全ての水が集中して連通流路100を流れる流量を調整できなくなるため、流入口104を複数設けるメリットが小さくなる。 When a plurality of inlets 104 are provided, it is necessary to reduce the flow rate in at least one inlet 104. If the hole diameter of the inflow port 104 is increased more than necessary and the flow rate is not reduced, all the water concentrates on one inflow port 104 and the flow rate flowing through the communication channel 100 cannot be adjusted. The merit to provide becomes small.
実施の形態4.
 図22は、本発明の実施の形態4における加湿素子2の貯水槽12部分を拡大した断面図であって、図6に示すZ-Z線に沿った断面図に相当する図である。実施の形態4では、貯水槽12の形状が異なるほかは実施の形態1と同様の構成であるため、同様の構成である部分の記述は省略する。なお、図22は、図中の右側が低くなるよう傾斜した貯水槽12を示している。
Embodiment 4 FIG.
FIG. 22 is an enlarged cross-sectional view of the water storage tank 12 portion of the humidifying element 2 according to Embodiment 4 of the present invention, and corresponds to a cross-sectional view along the line ZZ shown in FIG. In the fourth embodiment, the configuration is the same as that of the first embodiment except that the shape of the water storage tank 12 is different. Therefore, the description of the same configuration is omitted. In addition, FIG. 22 has shown the water tank 12 inclined so that the right side in a figure may become low.
 実施の形態4の貯水槽12の内部には、連通流路100である管が設けられている。連通流路100は上に凸のカーブを有する、曲がり管で形成される。連通流路100は、シリコンチューブ、防食処理の施された金属管など、耐水性と防食性を有する材料からなる。 A pipe which is a communication channel 100 is provided inside the water storage tank 12 of the fourth embodiment. The communication channel 100 is formed of a bent pipe having a convex curve upward. The communication channel 100 is made of a material having water resistance and anticorrosion properties such as a silicon tube and a metal tube subjected to anticorrosion treatment.
 連通流路100の一端部である流入口101は、貯水槽12が水平に設置された状態において、注水孔12aの上端よりも高い位置、かつ、貯水槽12の外壁の上端よりも低い位置に形成されている。また、貯水槽12の底面付近に配置されている。連通流路100の他端部である流出口102は、貯水槽12の底面で、かつ、拡散部材30の直上に設けられている。流出口102は、連通流路100内を流れる水を拡散部材30に供給できればよく、拡散部材30の側面に位置していてもかまわない。貯水槽12が水平に配置された状態で、流入口101と流出口102とは異なる高さに配置される。より具体的には、流入口101のほうが流出口102よりも高い位置に配置される。 The inlet 101 which is one end of the communication channel 100 is located at a position higher than the upper end of the water injection hole 12a and a position lower than the upper end of the outer wall of the water storage tank 12 when the water storage tank 12 is installed horizontally. Is formed. Further, it is arranged near the bottom surface of the water tank 12. The outlet 102 that is the other end of the communication channel 100 is provided on the bottom surface of the water storage tank 12 and immediately above the diffusion member 30. The outflow port 102 may be located on the side surface of the diffusion member 30 as long as it can supply the water flowing through the communication channel 100 to the diffusion member 30. In the state where the water storage tank 12 is horizontally disposed, the inflow port 101 and the outflow port 102 are disposed at different heights. More specifically, the inflow port 101 is disposed at a higher position than the outflow port 102.
 連通流路100内の水の流れについて説明する。図22に示すように、貯水槽12に供給される流量と、注水孔12aから滴下する流量が釣り合うことで、貯水槽12内の水位は水位Jで釣り合う。このとき、連通流路100内には、流入口101から流入した水が水位Jよりもやや低い位置まで満たされる。このとき、連通流路100内の水の流動を妨げる方向に働く表面張力Fと、連通流路100に水を流そうとする水圧による力F´には、以下の関係がある。
 F>F´      (4)
The flow of water in the communication channel 100 will be described. As shown in FIG. 22, the water level in the water storage tank 12 is balanced at the water level J by balancing the flow rate supplied to the water storage tank 12 and the flow rate dropped from the water injection hole 12a. At this time, the water that has flowed in from the inlet 101 is filled in the communication channel 100 to a position slightly lower than the water level J. At this time, there is the following relationship between the surface tension F that works in a direction that hinders the flow of water in the communication channel 100 and the force F ′ caused by the water pressure that causes water to flow through the communication channel 100.
F> F ′ (4)
 ここで、注水孔12aの周囲に水中の硬度成分やごみが経年的に堆積し、注水孔12aの流動抵抗が増した場合を考える。貯水槽12内の水位は水位Jの位置から次第に上昇する。しかし、連通流路100は上に凸の管で形成されているため、管内の水は、少なくとも曲がり部の頂点を越えるまでは流出口102から流れ出ない。 Here, a case is considered where hardness components and dust in water accumulate around the water injection hole 12a over time and the flow resistance of the water injection hole 12a increases. The water level in the water storage tank 12 gradually rises from the position of the water level J. However, since the communication flow path 100 is formed by an upwardly convex pipe, the water in the pipe does not flow out from the outlet 102 at least until it exceeds the apex of the bent portion.
 次に、連通流路100内の液面に作用する力が以下の関係になると、その瞬間、サイフォンの原理より連通流路100内を水が流れ始める。
 F<F´       (5)
Next, when the force acting on the liquid surface in the communication channel 100 has the following relationship, at that moment, water starts to flow in the communication channel 100 by the siphon principle.
F <F '(5)
 この瞬間の貯水槽12内の水位を水位Kとする。連通流路100内を流れる水は、流出口102から出て、拡散部材30に吸収される。また、水が流出することで貯水槽12内の水位は低下していく。 Suppose that the water level in the water tank 12 at this moment is the water level K. The water flowing in the communication channel 100 exits from the outlet 102 and is absorbed by the diffusion member 30. Moreover, the water level in the water storage tank 12 falls by water flowing out.
 次に、連通流路100内の液面に作用する力が再び上記式(4)の状態になると、連通流路100内の水は流れなくなる。この瞬間の水位を水位Lとする。この状態では貯水槽12内の水は流出しないため、再び貯水槽12内に水が溜まっていき、貯水槽12内の水位は上昇する。水位が水位Kに至ると、再び連通流路100内を水が流れ始める。以降は、水位Lと水位Kの間で水位が変動し、連通流路100を断続的に水が流れる。 Next, when the force acting on the liquid level in the communication channel 100 is again in the state of the above equation (4), the water in the communication channel 100 stops flowing. Let the water level at this moment be the water level L. In this state, since the water in the water tank 12 does not flow out, the water is again accumulated in the water tank 12, and the water level in the water tank 12 rises. When the water level reaches the water level K, water begins to flow through the communication channel 100 again. Thereafter, the water level fluctuates between the water level L and the water level K, and water flows intermittently through the communication channel 100.
 本実施の形態4によれば、水位の上昇分の水をサイフォンの原理を用いて貯水槽12から断続的に拡散部材30に供給し、拡散部材30と加湿体20のフラッシング洗浄を行なうことができる。連通流路100をこのような構成にすることで、連通流路100を通して拡散部材30に供給する水を、脈動流にすることができる。実施の形態1に示した定常流に比べて、拡散部材30や加湿体20に付着した蒸発残渣やゴミを瞬間的に大きな流量で洗い流すことができ、蒸発残渣やゴミの付着による加湿性能の低下の抑制、および低下した加湿性能の改善を図ることができる。 According to the fourth embodiment, the rising water level is intermittently supplied from the water storage tank 12 to the diffusing member 30 using the siphon principle, and the diffusing member 30 and the humidifier 20 are flushed. it can. By configuring the communication channel 100 as described above, the water supplied to the diffusion member 30 through the communication channel 100 can be converted into a pulsating flow. Compared to the steady flow shown in the first embodiment, the evaporation residue and dust attached to the diffusion member 30 and the humidifying body 20 can be washed away instantaneously at a large flow rate, and the humidification performance is reduced due to the adhesion of the evaporation residue and dust. Can be suppressed, and the improved humidification performance can be improved.
 一方、連通流路100を流れる瞬間的な流量があまりに多い場合、加湿体20の表面に浮いた水が風に乗じて飛散し、製品外に飛散するおそれがある。したがって、連通流路100内を流れる流量は、一定流量以下に規制する必要がある。連通流路100内に流す流量は、連通流路100の曲がり部の頂点の高さから流入口101又は流出口102のどちらか高い方の高さまでの間の鉛直方向距離、および、連通流路100を構成する材料の濡れ性、連通流路100の管内径等で調整することができる。詳しくは、連通流路100の曲がり部の頂点の高さから流入口101又は流出口102のどちらか高い方の高さまでの間の鉛直方向距離が長いほど、連通流路100内を流れる流量は多くなる。また、連通流路100の管内径が大きいほど、連通流路100内を流れる流量は多くなる。 On the other hand, if the instantaneous flow rate flowing through the communication channel 100 is too large, the water floating on the surface of the humidifying body 20 may fly on the wind and splash outside the product. Therefore, the flow rate flowing through the communication channel 100 needs to be regulated to a certain flow rate or less. The flow rate that flows in the communication channel 100 is the vertical distance from the height of the top of the bent portion of the communication channel 100 to the higher one of the inlet 101 or the outlet 102, and the communication channel. 100 can be adjusted by the wettability of the material constituting 100, the pipe inner diameter of the communication channel 100, and the like. Specifically, as the vertical distance from the height of the apex of the bent portion of the communication channel 100 to the height of the inlet 101 or the outlet 102, whichever is higher, the flow rate flowing through the communication channel 100 becomes larger. Become more. Moreover, the larger the pipe inner diameter of the communication channel 100, the greater the flow rate flowing through the communication channel 100.
 なお、連通流路100の管内径があまりに大きい場合、連通流路100内の水の流れはサイフォンの原理によるものではなく、開渠流れとなる。つまり、水位が連通流路100の曲がり部の底面の高さ(水位M)を越えると連通流路100内を定常的に水が流れるようになる。そのため、本実施の形態4においては、連通流路100の内径の設定に留意する必要がある。 In addition, when the pipe | tube internal diameter of the communication flow path 100 is too large, the flow of the water in the communication flow path 100 is not based on the principle of a siphon, but becomes an open flow. That is, when the water level exceeds the height (water level M) of the bottom of the bent portion of the communication channel 100, the water constantly flows in the communication channel 100. Therefore, in the fourth embodiment, it is necessary to pay attention to the setting of the inner diameter of the communication channel 100.
 連通流路100は、2本以上設置してもよい。図23は、実施の形態4の変形例における貯水槽の断面図である。貯水槽12内に、2本の連通流路100が設けられている。2本以上の連通流路100を設ける場合、少なくとも2本は、流出口102を第1の方向に対して互いに正対する位置に設けるとよい。またこの場合、連通流路100の管が上に凸となるように曲げられた位置は、第1の方向に対して、その連通流路100の流出口102と正対する位置に設けるとよい。これにより、貯水槽12がどちらか一方に傾いて設置された場合でも、傾斜の高い側に流出口102を有する連通流路100内だけに水が流れるようになり、貯水槽12内の水を拡散部材30の傾斜の上方側に導くことができる。 Two or more communication channels 100 may be installed. FIG. 23 is a cross-sectional view of a water storage tank in a modification of the fourth embodiment. Two communication channels 100 are provided in the water storage tank 12. When two or more communication channels 100 are provided, at least two of the communication channels 100 may be provided at positions where the outlets 102 face each other with respect to the first direction. In this case, the position where the pipe of the communication channel 100 is bent so as to protrude upward may be provided at a position facing the outlet 102 of the communication channel 100 with respect to the first direction. Thereby, even when the water storage tank 12 is installed to be inclined to one of the sides, the water flows only in the communication channel 100 having the outlet 102 on the high inclination side, and the water in the water storage tank 12 is drained. The diffusion member 30 can be guided to the upper side of the inclination.
 なお、本実施の形態4の連通流路100は貯水槽12の内側に形成されているが、サイフォン効果を利用したものであれば良く、連通流路100が貯水槽12の外壁の外側や、貯水槽12の外壁から離れた位置に形成してもよい。 In addition, although the communication flow path 100 of this Embodiment 4 is formed inside the water storage tank 12, what is necessary is just the thing using the siphon effect, and the communication flow path 100 is outside the outer wall of the water storage tank 12, You may form in the position away from the outer wall of the water storage tank 12. FIG.
実施の形態5. 
 図24は、本発明の実施の形態5にかかる加湿素子2の貯水槽12部分の断面図であって、図6に示すZ-Z線に沿った断面図に相当する図である。実施の形態5では、貯水槽12の形状が異なるほかは実施の形態1と同様の構成であるため、同様の構成である部分の記述は省略する。図24は、図中右側が低くなるよう傾斜した貯水槽12を示している。
Embodiment 5 FIG.
FIG. 24 is a cross-sectional view of the water storage tank 12 portion of the humidifying element 2 according to the fifth embodiment of the present invention, and corresponds to a cross-sectional view along the line ZZ shown in FIG. In the fifth embodiment, the configuration is the same as that of the first embodiment except that the shape of the water storage tank 12 is different. Therefore, the description of the same configuration is omitted. FIG. 24 shows the water storage tank 12 inclined so that the right side in the figure is lowered.
 貯水槽12の外壁の外側には連通流路100が形成されている。貯水槽12の壁面には流入口101が形成されている。流入口101は、貯水槽12が水平に設置された状態において、注水孔12aの上端よりも高い位置、かつ、貯水槽12の外壁の上端よりも低い位置に位置している。流出口102は貯水槽12の外側に設けられ、拡散部材30の直上に位置している。 A communication channel 100 is formed outside the outer wall of the water storage tank 12. An inlet 101 is formed on the wall surface of the water tank 12. The inflow port 101 is located at a position higher than the upper end of the water injection hole 12 a and a position lower than the upper end of the outer wall of the water storage tank 12 in a state where the water storage tank 12 is installed horizontally. The outflow port 102 is provided outside the water storage tank 12 and is located immediately above the diffusion member 30.
 貯水槽12には、水が流れる連通流路100を切り替えるための流路切替部材110が形成されている。流路切替部材110は、貯水槽12の長手方向の両端に、それぞれ一つずつ設けられている。流路切替部材110は、流入口101よりも貯水槽12の内側に位置し、支持部111を支点として水槽の内側のみに開く弁体で形成されている。また、流路切替部材110は、流入口101の開口部よりも大きな板で形成されており、流入口101を覆うことができる。流路切替部材110は、流入口101を開閉させる流路開閉部として機能する。流路切替部材110は、防水性と耐食性を有し、水よりも比重の大きい素材で形成されている。 The water storage tank 12 is formed with a flow path switching member 110 for switching the communication flow path 100 through which water flows. One flow path switching member 110 is provided at each end of the water storage tank 12 in the longitudinal direction. The flow path switching member 110 is located on the inner side of the water storage tank 12 with respect to the inlet 101, and is formed of a valve body that opens only to the inner side of the water tank with the support portion 111 as a fulcrum. The flow path switching member 110 is formed of a plate larger than the opening of the inflow port 101 and can cover the inflow port 101. The channel switching member 110 functions as a channel opening / closing unit that opens and closes the inflow port 101. The flow path switching member 110 has waterproofness and corrosion resistance, and is formed of a material having a specific gravity greater than that of water.
 貯水槽12が傾斜して設置された場合、傾斜によって低い位置にある流路切替部材110は、重力の作用により貯水槽12の外壁と接して保持される。一方、傾斜によって高い位置にある流路切替部材110は、重力の作用により貯水槽12の内側に開いて保持される。したがって、相対的に低い位置にある流入口101は、流路切替部材110によって閉じられ、高い位置にある流入口101は、入口が開いた状態となる。 When the water storage tank 12 is installed at an inclination, the flow path switching member 110 at a lower position due to the inclination is held in contact with the outer wall of the water storage tank 12 by the action of gravity. On the other hand, the flow path switching member 110 at a high position due to the inclination is opened and held inside the water storage tank 12 by the action of gravity. Therefore, the inflow port 101 at the relatively low position is closed by the flow path switching member 110, and the inflow port 101 at the high position is in an open state.
 加湿装置1や加湿素子2が傾斜して設置された場合の連通流路100内の水の流れについて説明する。注水孔12aの周囲に水中の硬度成分やごみが経年的に堆積し、注水孔12aの流動抵抗が増した状態を想定する。注水孔12aの流れが悪くなることで、前述の通り、貯水槽12内の水位は上昇する。 The flow of water in the communication channel 100 when the humidifier 1 and the humidifying element 2 are installed at an inclination will be described. It is assumed that hardness components and dust in the water have accumulated over time around the water injection hole 12a and the flow resistance of the water injection hole 12a has increased. As the flow of the water injection hole 12a becomes worse, the water level in the water storage tank 12 rises as described above.
 このとき、図24に示すように、傾斜の低い側に位置する流路切替部材110と流入口101の間には隙間がなく、水は流出しない。一方、傾斜の高い側に位置する流路切替部材110と流入口101の間には隙間ができる。水位が図中の水位Nまで達すると、水は傾斜の高い側に位置する流路切替部材110と流入口101の隙間を通り、連通流路100に流入する。水は流出口102から流出し、拡散部材30の傾斜の高い側に吸収され、加湿体20に流下する。 24. At this time, as shown in FIG. 24, there is no gap between the flow path switching member 110 located on the low slope side and the inflow port 101, and water does not flow out. On the other hand, a gap is formed between the flow path switching member 110 and the inflow port 101 that are located on the higher slope side. When the water level reaches the water level N in the figure, the water flows into the communication channel 100 through the gap between the channel switching member 110 and the inflow port 101 located on the higher slope side. The water flows out from the outflow port 102, is absorbed by the higher inclined side of the diffusion member 30, and flows down to the humidifier 20.
 実施の形態1から実施の形態4では、加湿装置1や加湿素子2が傾斜した場合に、貯水槽12から溢れる水を拡散部材30の傾斜の上方側に供給するための方策として、流入口101と流出口102とが貯水槽12を挟んだ反対側となる位置に形成されていた。一方、本実施の形態5では、流路切替部材110を使用することで、貯水槽12に対して同じ側に流入口101と流出口102とが形成される。そのため、連通流路100の短縮化を図ることができる。これにより、貯水槽12と連通流路100を含めた加湿素子2の上部構造の小型化を図ることができる。したがって、貯水槽12やケーシング10に寸法制約がある場合に好適である。なお、図24では連通流路100は管で構成されているが、水を流すことができればよく、開渠状の流路で構成されていてもよい。また、連通流路100は、1本またはそれ以上設けられていてもよい。 In Embodiment 1 to Embodiment 4, when the humidifying device 1 or the humidifying element 2 is inclined, the inlet 101 is used as a measure for supplying the water overflowing from the water storage tank 12 to the upper side of the inclination of the diffusing member 30. And the outlet 102 are formed at positions opposite to each other across the water storage tank 12. On the other hand, in the fifth embodiment, by using the flow path switching member 110, the inflow port 101 and the outflow port 102 are formed on the same side with respect to the water storage tank 12. Therefore, the communication channel 100 can be shortened. Thereby, size reduction of the upper structure of the humidification element 2 including the water storage tank 12 and the communication flow path 100 can be achieved. Therefore, it is suitable when the water storage tank 12 and the casing 10 have dimensional restrictions. In FIG. 24, the communication channel 100 is constituted by a pipe, but it is sufficient if water can be flowed, and it may be constituted by an open channel. Further, one or more communication channels 100 may be provided.
 図25は、実施の形態5の変形例にかかる貯水槽を示す図である。実施の形態5の変形例では、流路切替部材110に球体を使用している。なお、図25は、図中右側が低くなるよう傾斜した貯水槽12を示している。 FIG. 25 is a diagram showing a water storage tank according to a modification of the fifth embodiment. In the modification of the fifth embodiment, a sphere is used for the flow path switching member 110. In addition, FIG. 25 has shown the water storage tank 12 inclined so that the right side in the figure may become low.
 流路切替部材110は、水よりも比重が重く、且つ、防水性と耐食性を有する樹脂やアルミ等の金属などの素材で構成される。流路切替部材110は流入口101の開口部分よりも大きく、貯水槽12よりも小さい球体で形成されている。したがって流路切替部材110を流入口101に勘合することで、流入口101を塞ぐことができる。また、貯水槽12には、流路切替部材110の移動量を制限するための支持部111が設けられている。 The flow path switching member 110 is made of a material such as a resin having a specific gravity greater than that of water and having waterproofness and corrosion resistance, and a metal such as aluminum. The flow path switching member 110 is formed as a sphere that is larger than the opening of the inflow port 101 and smaller than the water storage tank 12. Therefore, the inlet 101 can be closed by fitting the flow path switching member 110 to the inlet 101. Further, the water storage tank 12 is provided with a support portion 111 for limiting the amount of movement of the flow path switching member 110.
 支持部111は、球体の流路切替部材110が載置されることで、流路切替部材110を流入口101と同じ高さに位置させる載置部111aと、載置部111aから上方に向けて延びて流入口101と対向する壁部111bとを有する。流路切替部材110は、流入口101と壁部111bとの間に配置されることで、載置部111aからの落下が防止される。なお、壁部111bは、流路切替部材110が図25における手前側または奥側への移動を規制するために、図25のおける手前側および奥側に形成されていてもよい。また、流路切替部材110の上方への移動を規制するために、載置部111aと対向する天面部を形成して、流路切替部材110の載置部111aからの落下をより確実に防止できるように構成してもよい。 The support unit 111 has a spherical channel switching member 110 mounted thereon, and thus a mounting unit 111a that positions the channel switching member 110 at the same height as the inflow port 101, and upward from the mounting unit 111a. And a wall portion 111 b that extends and faces the inflow port 101. The flow path switching member 110 is disposed between the inflow port 101 and the wall portion 111b, so that the drop from the placement portion 111a is prevented. Note that the wall portion 111b may be formed on the near side and the far side in FIG. 25 in order for the flow path switching member 110 to restrict movement toward the near side or the far side in FIG. In addition, in order to restrict the upward movement of the flow path switching member 110, a top surface portion facing the mounting portion 111a is formed to more reliably prevent the flow path switching member 110 from dropping from the mounting portion 111a. You may comprise so that it can do.
 加湿装置1または加湿素子2が傾斜して設置された場合の連通流路100内の水の流れについて説明する。図25に示すように、流路切替部材110は重力の作用を受け、傾斜によって低い位置へ移動する。このとき、傾斜によって低い位置にある流路切替部材110は流入口101側に移動し、流入口101は塞がれる。つまり、傾斜によって低い位置にある流入口101に水は流入しない。 The flow of water in the communication channel 100 when the humidifier 1 or the humidifying element 2 is installed at an inclination will be described. As shown in FIG. 25, the flow path switching member 110 receives the action of gravity and moves to a lower position due to the inclination. At this time, the flow path switching member 110 located at a low position due to the inclination moves to the inlet 101 side, and the inlet 101 is closed. That is, water does not flow into the inlet 101 located at a low position due to the inclination.
 一方、傾斜によって高い位置にある流路切替部材110は支持部111の壁部111bに向けて移動し、壁部111bに接触して保持される。これにより、流路切替部材110と、傾斜によって高い位置にある流入口101との間に隙間が形成され、水位が図中の水位Oまで達すると、水はその隙間を通り、傾斜によって高い位置にある連通流路100に流入し、流出口102を通過して拡散部材30に水が吸収される。 On the other hand, the flow path switching member 110 at a high position due to the inclination moves toward the wall portion 111b of the support portion 111 and is held in contact with the wall portion 111b. As a result, a gap is formed between the flow path switching member 110 and the inflow port 101 at a high position due to the inclination, and when the water level reaches the water level O in the figure, the water passes through the gap and the high position due to the inclination. The water is absorbed by the diffusion member 30 through the outflow port 102.
 なお、実施の形態5の変形例では流路切替部材110に球体を用いているが、流路切替部材110は、加湿装置1または加湿素子2が傾斜することによって可動し、相対的に低い位置にある流入口101が閉じられるとともに、相対的に高い位置にある流入口101は開かれる構成であればよい。したがって、流路切替部材110は、重力方向に移動する質量体であればよく、直線方向に稼動する直線運動軸受けなどの部材を用いてもよい。 In addition, although the spherical body is used for the flow path switching member 110 in the modification of the fifth embodiment, the flow path switching member 110 is movable when the humidifying device 1 or the humidifying element 2 is inclined, and the position is relatively low. The inflow port 101 at the upper position may be closed and the inflow port 101 at a relatively high position may be opened. Therefore, the flow path switching member 110 may be a mass body that moves in the direction of gravity, and may be a member such as a linear motion bearing that operates in the linear direction.
 また、本実施の形態5では、水よりも比重の大きい素材からなる流路切替部材110を使用している。一方、流路切替部材110は、加湿装置1または加湿素子2が傾斜することにより、水平時に比べて可動又は変形することで、拡散部材30の傾斜の上方側に水を供給する構成であればよい。流路切替部材110に水よりも比重の小さい素材を使用し、流路切替部材110はそれ自体の浮力により作動して、水が流れる連通流路100を切り替えるものであってもよい。 In the fifth embodiment, the flow path switching member 110 made of a material having a specific gravity greater than that of water is used. On the other hand, the flow path switching member 110 is configured to supply water to the upper side of the inclination of the diffusing member 30 by moving or deforming the humidifying device 1 or the humidifying element 2 as compared with the horizontal state when the humidifying device 1 or the humidifying element 2 is inclined. Good. A material having a specific gravity smaller than that of water may be used for the flow path switching member 110, and the flow path switching member 110 may be operated by its own buoyancy to switch the communication flow path 100 through which water flows.
 上記実施の形態1から5で説明した加湿装置1を、空気調和機または換気装置に設けることで、空気調和機または換気装置から室内に供給される空気を加湿させることができる。 By providing the humidifier 1 described in Embodiments 1 to 5 in the air conditioner or the ventilator, the air supplied from the air conditioner or the ventilator to the room can be humidified.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 加湿装置、2 加湿素子、3 給水管、3a 給水弁、4 排水管、5 送風機、6 制御装置、7 ドレンパン、8 水位検知センサー、10, 10a, 10b ケーシング、10c 開口部、10d 突起、11 給水口、12 貯水槽、12a 注水孔、13 排水部、13a 排水口、14 構造壁、15 係合部、20 加湿体、 21 凸部、30 拡散部材、40 オリフィス部、100 連通流路、101,104 流入口、102,103 流出口、110 流路切替部材、111 支持部、111a 載置部、111b 壁部。 1 humidifier, 2 humidifier, 3 water supply pipe, 3a water supply valve, 4 drain pipe, 5 blower, 6 control device, 7 drain pan, 8 water level detection sensor, 10, 10a, 10b casing, 10c opening, 10d protrusion, 11 Water supply port, 12 Water tank, 12a Water injection hole, 13 Drainage part, 13a Drainage port, 14 Structural wall, 15 Engagement part, 20 Humidifier, 21 Convex part, 30 Diffusion member, 40 Orifice part, 100 Communication channel, 101 , 104 inlet, 102, 103 outlet, 110 flow path switching member, 111 support part, 111a mounting part, 111b wall part.

Claims (16)

  1.  互いの間に隙間を設けるように第1の方向に沿って並べられた複数の加湿体と、
     前記加湿体の上方に設けられて水を溜める貯水槽と、
     前記加湿体の上方に設けられて水を通過可能とされた流路と、を備え、
     前記貯水槽の底面には、水を滴下するための複数の注水孔が形成され、
     前記流路は、前記貯水槽の内部に連通する流入口と、前記流路を通過する水を流出させる流出口と、を有し、
     前記流入口と前記流出口は、前記第1の方向に互いに離間して設けられ、
     前記貯水槽が水平に配置された状態で、前記流出口は前記流入口よりも低い位置に形成されていることを特徴とする加湿素子。
    A plurality of humidifiers arranged along the first direction so as to provide a gap between each other;
    A water storage tank provided above the humidifying body for storing water;
    A flow path provided above the humidifying body and capable of passing water;
    A plurality of water injection holes for dripping water are formed on the bottom surface of the water storage tank,
    The flow path has an inflow port communicating with the inside of the water storage tank, and an outflow port through which water passing through the flow path flows out,
    The inflow port and the outflow port are provided apart from each other in the first direction;
    The humidifying element, wherein the outlet is formed at a position lower than the inlet while the water storage tank is horizontally disposed.
  2.  前記第1の方向に沿って延びるとともに、前記貯水槽の下方に設けられて前記複数の加湿体に接触する拡散部材をさらに備え、
     前記流路の流出口は、前記拡散部材の上方に設けられることを特徴とする請求項1に記載の加湿素子。
    A diffusion member that extends along the first direction and that is provided below the water storage tank and contacts the plurality of humidifiers;
    The humidifying element according to claim 1, wherein the outlet of the flow path is provided above the diffusion member.
  3.  前記流路が複数設けられていることを特徴とする請求項1に記載の加湿素子。 The humidifying element according to claim 1, wherein a plurality of the flow paths are provided.
  4.  複数の前記流路の流入口のうち少なくとも2つは、前記貯水槽を挟んで配置されていることを特徴とする請求項3に記載の加湿素子。 4. The humidifying element according to claim 3, wherein at least two of the plurality of inflow ports of the flow paths are arranged with the water storage tank interposed therebetween.
  5.  前記流路の流出口は、前記貯水槽を挟んで当該流路の流入口と反対となる位置に配置されていることを特徴とする請求項4に記載の加湿素子。 The humidifying element according to claim 4, wherein the outlet of the channel is arranged at a position opposite to the inlet of the channel with the water tank interposed therebetween.
  6.  前記貯水槽が水平に配置された状態での前記流路の勾配をαとし、
     前記貯水槽の設計上の許容される最大の傾き角度をβMAXとした場合に、
     α>βMAXの関係が成立することを特徴とする請求項5に記載の加湿素子。
    The gradient of the flow path in a state where the water tank is horizontally disposed is α,
    When the maximum allowable tilt angle in the design of the water tank is β MAX ,
    The humidifying element according to claim 5, wherein a relationship of α> β MAX is established.
  7.  前記流路の流入口は、前記貯水槽が水平に配置され、前記貯水槽に設計上の流量で水が供給され、かつ前記注水孔から設計上の流量で水が流出している場合の前記貯水槽内の水位よりも上方に位置することを特徴とする請求項1から6のいずれか1つに記載の加湿素子。 The inlet of the flow path is the case where the water storage tank is disposed horizontally, water is supplied to the water storage tank at a designed flow rate, and water flows out from the water injection hole at a designed flow rate. The humidifying element according to any one of claims 1 to 6, wherein the humidifying element is located above a water level in the water storage tank.
  8.  1本の前記流路に複数の前記流出口が設けられていることを特徴とする請求項1に記載の加湿素子。 The humidifying element according to claim 1, wherein a plurality of the outlets are provided in one of the flow paths.
  9.  1本の前記流路に複数の前記流入口が設けられていることを特徴とする請求項1に記載の加湿素子。 The humidifying element according to claim 1, wherein a plurality of the inlets are provided in one of the flow paths.
  10.  複数の前記流路の流入口を開閉させる流路開閉部をさらに備え、
     前記流路開閉部は、前記貯水槽の姿勢に応じて、相対的に低い位置にある前記流入口を閉じ、相対的に高い位置にある前記流入口を開くことを特徴とする請求項1に記載の加湿素子。
    A flow path opening / closing section that opens and closes the plurality of flow paths;
    The flow path opening / closing part closes the inflow port at a relatively low position and opens the inflow port at a relatively high position according to the posture of the water storage tank. The humidifying element as described.
  11.  前記流路開閉部は、水よりも比重の小さい材料で形成されていることを特徴とする請求項10に記載の加湿素子。 The humidifying element according to claim 10, wherein the flow path opening / closing part is formed of a material having a specific gravity smaller than that of water.
  12.  前記流路と前記貯水槽とが樹脂で一体に形成されていることを特徴とする請求項1に記載の加湿素子。 The humidifying element according to claim 1, wherein the flow path and the water storage tank are integrally formed of resin.
  13.  互いの間に隙間を設けるように第1の方向に沿って並べられた複数の加湿体と、
     前記加湿体の上方に設けられて水を溜める貯水槽と、
     前記加湿体の上方に設けられて水を通過可能とされた流路と、を備え、
     前記貯水槽の底面には、水を滴下するための複数の注水孔が形成され、
     前記流路は、前記貯水槽の内部に配置されて上に凸のカーブを有する管であり、一端部である流入口と他端部である流出口とが高さを異ならせて配置されることを特徴とする加湿素子。
    A plurality of humidifiers arranged along the first direction so as to provide a gap between each other;
    A water storage tank provided above the humidifying body for storing water;
    A flow path provided above the humidifying body and capable of passing water;
    A plurality of water injection holes for dripping water are formed on the bottom surface of the water storage tank,
    The flow path is a pipe having an upward convex curve that is disposed inside the water storage tank, and an inflow port that is one end and an outflow port that is the other end are disposed at different heights. A humidifying element characterized by that.
  14.  請求項1から13のいずれか1つに記載された加湿素子と、
     前記加湿素子に風を送る送風機と、を備える加湿装置。
    A humidifying element according to any one of claims 1 to 13,
    A humidifier comprising: a blower that sends wind to the humidifying element.
  15.  請求項14に記載の加湿装置を備える空気調和機。 An air conditioner comprising the humidifying device according to claim 14.
  16.  請求項14に記載の加湿装置を備える換気装置。 A ventilation device comprising the humidification device according to claim 14.
PCT/JP2016/068166 2016-06-17 2016-06-17 Humidification element, humidification device, air conditioner, and ventilation device WO2017216968A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/068166 WO2017216968A1 (en) 2016-06-17 2016-06-17 Humidification element, humidification device, air conditioner, and ventilation device
JP2018523155A JP6636148B2 (en) 2016-06-17 2016-06-17 Humidifier, humidifier, air conditioner and ventilator
CN201680085448.5A CN109312943B (en) 2016-06-17 2016-06-17 Humidifying element, humidifying device, air conditioner, and ventilator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/068166 WO2017216968A1 (en) 2016-06-17 2016-06-17 Humidification element, humidification device, air conditioner, and ventilation device

Publications (1)

Publication Number Publication Date
WO2017216968A1 true WO2017216968A1 (en) 2017-12-21

Family

ID=60664430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068166 WO2017216968A1 (en) 2016-06-17 2016-06-17 Humidification element, humidification device, air conditioner, and ventilation device

Country Status (3)

Country Link
JP (1) JP6636148B2 (en)
CN (1) CN109312943B (en)
WO (1) WO2017216968A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022010669A (en) * 2020-06-29 2022-01-17 三菱電機株式会社 Humidification element, humidifier, air conditioner, and ventilation device
WO2022019221A1 (en) * 2020-07-22 2022-01-27 シャープ株式会社 Humidifying filter holder, humidifying filter unit, and humidifying device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114562773A (en) * 2022-03-08 2022-05-31 深圳市台佳科技有限公司 Low-energy-consumption cooling fan capable of quantitatively feeding and supplementing water

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5485791B2 (en) * 2010-05-27 2014-05-07 株式会社ミクニ Humidifier water supply structure
WO2015182013A1 (en) * 2014-05-30 2015-12-03 三菱電機株式会社 Humidifying element and humidifier

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001254975A (en) * 2000-03-14 2001-09-21 Sanyo Electric Co Ltd Humidifier
CN202501590U (en) * 2012-03-09 2012-10-24 浙江师范大学 Circulation type air conditioning humidifier
CN105180328B (en) * 2015-10-12 2018-08-10 李铁超 A kind of flow guiding type humidifier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5485791B2 (en) * 2010-05-27 2014-05-07 株式会社ミクニ Humidifier water supply structure
WO2015182013A1 (en) * 2014-05-30 2015-12-03 三菱電機株式会社 Humidifying element and humidifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022010669A (en) * 2020-06-29 2022-01-17 三菱電機株式会社 Humidification element, humidifier, air conditioner, and ventilation device
JP7254048B2 (en) 2020-06-29 2023-04-07 三菱電機株式会社 Humidification elements, humidification devices, air conditioners and ventilators
WO2022019221A1 (en) * 2020-07-22 2022-01-27 シャープ株式会社 Humidifying filter holder, humidifying filter unit, and humidifying device

Also Published As

Publication number Publication date
CN109312943A (en) 2019-02-05
CN109312943B (en) 2021-06-08
JPWO2017216968A1 (en) 2018-11-08
JP6636148B2 (en) 2020-01-29

Similar Documents

Publication Publication Date Title
WO2017216968A1 (en) Humidification element, humidification device, air conditioner, and ventilation device
JP6615080B2 (en) Humidifier, ventilator and air conditioner
JP6038406B2 (en) Humidifier and humidifier
EP3128245B1 (en) Humidification element and humidifier
WO2018220769A1 (en) Humidification element, humidification device, air conditioner, and ventilation device
JP6169053B2 (en) Humidifier and humidifier
JP2015183991A (en) Humidifying element and humidifying device
JP6223285B2 (en) Humidifier and humidifier
JP2015183992A (en) Humidifying element and humidifying device
JP7186648B2 (en) Humidifying elements, humidifying devices, ventilators and air conditioners
JP7236877B2 (en) Humidifiers, ventilators and air conditioners
JP7254048B2 (en) Humidification elements, humidification devices, air conditioners and ventilators
JP2016176635A (en) Humidification element and humidification device
JP7236872B2 (en) Humidification elements, humidification devices, air conditioners and ventilators
JP6041757B2 (en) Humidification element and humidifier
WO2015182014A1 (en) Humidifying element and humidifier
WO2023021552A1 (en) Humidifying element, humidifying device, ventilating device, and air conditioner
JP2015183990A (en) Humidifying element and humidifying device
KR100594386B1 (en) Humidifying apparatus
JP2015183989A (en) Humidifying element and humidifying device
JP3045799U (en) Water distribution device for cooling tower
JPH02217732A (en) Humidifier
JP2015028399A (en) Humidifying element and humidifying device including the same
JPH01174836A (en) Spontaneous evaporation type humidifier

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018523155

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16905522

Country of ref document: EP

Kind code of ref document: A1