WO2017215561A1 - 指纹传感器及电子装置 - Google Patents

指纹传感器及电子装置 Download PDF

Info

Publication number
WO2017215561A1
WO2017215561A1 PCT/CN2017/087919 CN2017087919W WO2017215561A1 WO 2017215561 A1 WO2017215561 A1 WO 2017215561A1 CN 2017087919 W CN2017087919 W CN 2017087919W WO 2017215561 A1 WO2017215561 A1 WO 2017215561A1
Authority
WO
WIPO (PCT)
Prior art keywords
pad
electrodes
semiconductor die
fingerprint sensor
sensor array
Prior art date
Application number
PCT/CN2017/087919
Other languages
English (en)
French (fr)
Inventor
田浦延
Original Assignee
深圳信炜科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳信炜科技有限公司 filed Critical 深圳信炜科技有限公司
Publication of WO2017215561A1 publication Critical patent/WO2017215561A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements

Definitions

  • the present invention relates to the field of fingerprint recognition, and more particularly to a fingerprint sensor and an electronic device.
  • the fingerprint sensor has special requirements on the sensing area. In theory, the larger the sensing area, the better the recognition rate will be, but the contradiction is that the larger the sensing area, the higher the cost of the fingerprint sensor.
  • the fingerprint sensor based on the silicon process includes a sensor array and a control circuit.
  • the physical area of the required silicon wafer is 23 square millimeters, and such physical area accounts for More than 70% of the entire fingerprint sensor.
  • the current silicon sensor-based fingerprint sensor has a high cost, which is not conducive to large-scale application of the fingerprint sensor.
  • embodiments of the present invention aim to at least solve one of the technical problems existing in the prior art. To this end, embodiments of the present invention need to provide a fingerprint sensor and an electronic device.
  • a fingerprint sensor includes a substrate, a sensor array and a control chip.
  • the sensor array and the control chip are spaced apart on the substrate, and the control chip is connected to the sensor array by a connection line formed by a wire bonding process.
  • the sensor array and the control chip are disposed on the substrate and connected by the connection line, different methods can be used to manufacture the sensor array and the control chip, which can significantly reduce the cost of the fingerprint sensor and facilitate the fingerprint sensor. Large-scale application.
  • control chip includes a first semiconductor die and a second semiconductor bare
  • the sensor array, the first semiconductor die, and the second semiconductor die are spaced apart on the same surface of the substrate;
  • connection line includes a first connection line and a second connection line, the first connection line connecting the first semiconductor die and the sensor array, the second connection line connecting the second semiconductor die and the sensor array;
  • the first semiconductor die is for providing an excitation signal to the sensor array for performing fingerprint sensing
  • the second semiconductor die is for receiving a fingerprint sensing signal from the sensor array output.
  • control chip includes a first semiconductor die and a second semiconductor die, the first semiconductor die and the second semiconductor die are spaced apart on a same surface of the substrate, and the sensor array is embedded in the In the substrate;
  • connection line includes a first connection line and a second connection line, the first connection line connecting the first semiconductor die and the sensor array, the second connection line connecting the second semiconductor die and the sensor array;
  • the first semiconductor die is for providing an excitation signal to the sensor array for performing fingerprint sensing
  • the second semiconductor die is for receiving a fingerprint sensing signal from the sensor array output.
  • the height of the first connecting line and the height of the second connecting line are both less than a set value.
  • the sensor array includes a plurality of first electrodes and a plurality of second electrodes, the plurality of first electrodes are arranged along a first direction, extending along a second direction, and the plurality of second electrodes are along the second Arranging in a direction of the first direction, the first direction is different from the second direction, and the plurality of first electrodes and the plurality of second electrodes are insulated from each other to form a mutual capacitance; the first connection line is connected to the a first semiconductor chip and the first electrode, the second connection line connecting the second semiconductor die and the second electrode.
  • the first semiconductor die is disposed along a direction in which the plurality of first electrodes are arranged, and the second semiconductor die is disposed in a direction in which the plurality of second electrodes are arranged.
  • the first direction is perpendicular to the second direction.
  • the substrate includes a first surface opposite to the second surface, the sensor array is disposed on the first surface, and the control chip is disposed on the second surface .
  • the sensor array is a mutual capacitance sensor array
  • the control chip A method for providing an excitation signal to the sensor array for performing fingerprint sensing, and for receiving a fingerprint sensing signal from the sensor array output.
  • the sensor array includes a plurality of first electrodes and a plurality of second electrodes, the plurality of first electrodes are arranged along a first direction, extending along a second direction, and the plurality of second electrodes are along the second Arranging in a direction, extending in the first direction, the first direction is different from the second direction, and the plurality of first electrodes and the plurality of second electrodes are insulated and intersect to form a mutual capacitance;
  • the plurality of first electrodes are configured to receive an excitation signal output from the control chip, and the control chip is further configured to receive a fingerprint sensing signal output from the plurality of second electrodes.
  • connection line includes a first connection line, a second connection line, and a third connection line, where the first surface is provided with a first pad, a second pad, the first connection line, and the first a second connecting line, the second surface is provided with a third pad and the third connecting line;
  • the first pad is connected to the first electrode through the first connecting line, and the second pad is connected to the second electrode through the second connecting line;
  • the third pad is connected to the control chip through the third connection line, and is further connected to the first pad and the second pad.
  • the substrate includes a first surface and a second surface opposite the second surface, the control chip is disposed on the second surface, and the sensor array is embedded in the substrate.
  • the sensor array includes a plurality of first electrodes and a plurality of second electrodes, the plurality of first electrodes are arranged along a first direction, extending along a second direction, and the plurality of second electrodes are along the second Arranging in a direction, extending in the first direction, the first direction is different from the second direction, and the plurality of first electrodes and the plurality of second electrodes are insulated and intersect to form a mutual capacitance;
  • the plurality of first electrodes are configured to receive an excitation signal output from the control chip, and the control chip is further configured to receive a fingerprint sensing signal output from the plurality of second electrodes.
  • connection line includes a first connection line, a second connection line, and a third connection line, where the first surface is provided with a first pad, a second pad, a third pad, and a fourth solder a first pad and the second connecting line, the second surface is provided with a fifth pad and the third connecting line;
  • the first pad is connected to the third pad through the first connection line, the third pad is connected to the first electrode, and the second pad is connected to the fourth pad through the second connection line, the fourth a pad connecting the second electrode;
  • the fifth pad is connected to the control chip through the third connection line, and is further connected to the first pad and the second pad.
  • control chip is a chip packaged by an injection molding process.
  • the substrate is a printed circuit board.
  • An electronic device comprising the fingerprint sensor of any of the above embodiments.
  • the sensor array and the control chip are disposed on the substrate and connected by the connection line, different methods can be used to manufacture the sensor array and the control chip, which can significantly reduce the cost of the fingerprint sensor and facilitate the fingerprint sensor. Large-scale application.
  • FIG. 1 is a schematic structural view of an embodiment of a fingerprint sensor of the present invention
  • FIG. 2 is a schematic structural view of still another embodiment of the fingerprint sensor of the present invention.
  • Figure 3 is a cross-sectional structural view of the fingerprint sensor of Figure 2 taken along line III-III;
  • FIG. 4 is a schematic structural view of another embodiment of a fingerprint sensor of the present invention.
  • Figure 5 is a schematic rear view of the fingerprint sensor shown in Figure 4.
  • FIG. 6 is a schematic structural view of still another embodiment of a fingerprint sensor of the present invention.
  • Figure 7 is a schematic rear view of the fingerprint sensor shown in Figure 6;
  • Figure 8 is a cross-sectional structural view of the fingerprint sensor of Figure 6 taken along line VIII-VIII;
  • FIG. 9 is a schematic structural view of an embodiment of an electronic device of the present invention.
  • first and second are used only for the description. The purpose is not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first” or “second” may include one or more of the described features either explicitly or implicitly. In the description of the present invention, the meaning of "a plurality" is two or more unless specifically and specifically defined otherwise.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; may be mechanically connected, or may be electrically connected or may communicate with each other; may be directly connected or indirectly connected through an intermediate medium, may be internal communication of two elements or interaction of two elements relationship. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • FIG. 1 is a schematic structural diagram of a fingerprint sensor 100 according to an embodiment of the present invention.
  • the fingerprint sensor 100 includes a substrate 102, a sensor array 104, and a control chip 106.
  • the sensor array 104 and the control chip 106 are disposed on the same surface of the substrate 102.
  • the sensor array 104 and the control chip 106 are spaced apart from each other on the substrate 102.
  • the control chip 106 is connected to the sensor array 104 by a bonding line 108 formed by a bonding process.
  • the sensor array 104 and the control chip 106 are spaced apart from each other on the substrate 102 and connected by the connection line 108, the sensor array 104 and the control chip 106 can be manufactured by different methods, which can significantly reduce the fingerprint sensor 100. Cost, good for Large-scale application of the grain sensor 100.
  • the substrate 102 is an insulating substrate.
  • the insulating substrate is, for example, a glass substrate, a printed circuit board, or the like.
  • the sensor array 104 can be produced without the silicon process and formed on the substrate 102, which can significantly reduce the cost of the fingerprint sensor 100.
  • the sensor array 104 is formed on the substrate 102 by, for example, a Thin Film Transistor (TFT) process, so that the manufacturing cost of the fingerprint sensor 100 can be significantly reduced.
  • TFT Thin Film Transistor
  • the control chip 106 is fabricated using a silicon process and bonded to the substrate 102, such as by a flip chip process.
  • the control chip 106 is bonded to the substrate 102 by, for example, a chip on glass (COG).
  • COG chip on glass
  • the process of forming the sensor array 104 on the printed circuit board is also relatively mature and reliable, thereby reducing the cost of the fingerprint sensor 100.
  • control chip 106 includes a first semiconductor die 110 and a second semiconductor die 112.
  • the sensor array 104, the first semiconductor die 110, and the second semiconductor die 112 are spaced apart from each other on the same surface of the substrate 102. on.
  • the connecting line 108 includes a first connecting line 114 and a second connecting line 116.
  • the first connecting line 114 connects the first semiconductor die 110 and the sensor array 104
  • the second connecting line 116 connects the second semiconductor die 112 and the sensor array 104.
  • the first semiconductor die 110 is used to provide an excitation signal to the sensor array 104 for fingerprint sensing
  • the second semiconductor die 112 is for receiving fingerprint sensing signals from the sensor array 104 output.
  • the sensor array 104 includes a first electrode 124 and a second electrode 126.
  • the number of the first electrodes 124 is plural, and the plurality of first electrodes 124 are disposed in parallel with each other, and are arranged along the first direction X and extend in the second direction Y.
  • the number of the second electrodes 126 is plural, and the plurality of second electrodes 126 are disposed in parallel with each other, and are arranged along the second direction Y to extend in the first direction X.
  • the plurality of first electrodes 124 and the plurality of second electrodes 126 are insulated and arranged to form a plurality of mutual capacitances.
  • the first direction X is the row direction
  • the second direction Y is the column direction, that is, the first direction X is perpendicular to the second direction Y.
  • the first connecting line 114 is connected to the first semiconductor die 110 and the first electrode 124
  • the second connecting line 116 is connected to the second semiconductor die 112 and the second electrode 126.
  • the sensor array 104 employs a mutual capacitance sensing structure in a row and column, compared to a plurality of rectangular sensing electrodes.
  • a self-capacitance sensing structure is connected between each sensing electrode and the control chip, and the structure of the sensor array 104 of the present invention can greatly reduce the number of the connecting lines 108 and further reduce the cost of the fingerprint sensor 100.
  • the substrate can be a glass substrate.
  • the first semiconductor die 110 can function as a TX die (transmitting die), the first electrode 124 correspondingly as a transmitting electrode, the second semiconductor die 112 can serve as an RX die (receiving die), and the second electrode 126 Corresponding as a receiving electrode.
  • the first semiconductor die 110 transmits an excitation signal to the first electrode 124, and the second electrode 126 transmits the sensed fingerprint sensing signal to the second semiconductor die 112, thereby implementing fingerprint detection.
  • the first semiconductor die 110 can select a high voltage process to achieve high voltage driving to improve the signal to noise ratio of the fingerprint sensor 100.
  • the voltage range of the high voltage process is 10 volts to 20 volts.
  • the second semiconductor die 112 can be implemented by an advanced silicon process, which can significantly reduce the power consumption and area of the fingerprint sensor 100.
  • the characteristic line width of the second semiconductor die 112 is smaller than the characteristic line width of the first semiconductor die 110.
  • a first pad (Pad) 118 is disposed on the first semiconductor die 110.
  • a second pad 120 is disposed on the second semiconductor die 112.
  • the first connection line 114 is connected between the first pad 118 and the first electrode 124.
  • the second connection line 116 is connected between the second pad 120 and the second electrode 126.
  • the arrangement of the first pad 118 and the second pad 120 facilitates rapid positioning of the connection line 108 and ensures connection strength.
  • the sensor array 104, the first semiconductor die 110, and the second semiconductor die 112 may be first connected together by a wire bonding process, and then the packaging of the fingerprint sensor 100 may be implemented by a molding process.
  • the wire bonding process and the injection molding process are mature and low in cost, and the yield and cost of the fingerprint sensor 100 can be well controlled.
  • the height of the first connecting line 114 and the height of the second connecting line 116 are both less than a set value. In this way, the fingerprint sensor 100 can realize electrical connection between the devices by using a low arc, which is advantageous for reducing the thickness of the fingerprint sensor 100 and realizing the miniaturized fingerprint sensor 100.
  • the set value can be determined according to the application of the fingerprint sensor 100, and the yield of the fingerprint sensor 100 can be ensured while keeping the fingerprint sensor 100 small.
  • the set value is, for example, 60 ⁇ m.
  • the set value is less than 60 microns.
  • the height of the connecting line refers to the maximum distance of the connecting line with respect to the surface of the substrate.
  • the positions of the first semiconductor die 110 and the second semiconductor die 112 can be sufficiently utilized by the surface space of the substrate 102, the surface space utilization of the substrate 102 can be maximized, and the size of the fingerprint sensor 100 can be reduced.
  • other devices such as resistors, capacitors, and the like may be disposed in the intersection region 122 formed by the direction in which the first semiconductor die 110 is disposed and the direction in which the second semiconductor die 112 is disposed to further utilize the surface space of the substrate 102.
  • the fingerprint sensor 100 may be formed with a package (not shown) on a side of the substrate 102 on which the first semiconductor die 110 and the second semiconductor die 112 are disposed, and the package is, for example, a ring.
  • An oxy-resin material is formed by an injection molding process for protecting the fingerprint sensor 100.
  • the fingerprint sensor 100 becomes a packaged chip.
  • the positions of the plurality of first electrodes 124 and the plurality of second electrodes 126 are also interchangeable, and correspondingly, the positions of the first semiconductor die 110 and the second semiconductor die 112 correspond to each other. change.
  • the plurality of first electrodes 124 and the plurality of second electrodes 126 may not be arranged regularly.
  • first semiconductor die 110 and the second semiconductor die 112 may also be a chip after the Molding.
  • FIG. 2 is a schematic structural diagram of still another embodiment of the fingerprint sensor 400 of the present invention.
  • FIG. 3 is a schematic cross-sectional view of the fingerprint sensor 400 of FIG.
  • the main difference between the fingerprint sensor 400 of the present embodiment and the fingerprint sensor 100 is that first, the sensor array 404 is embedded in the substrate 402. Second, the surface of the substrate 402 is provided with a third pad 428 and a fourth pad 430.
  • substrate 402 can be a printed circuit board.
  • the first connection line 414 is connected to the first electrode 424 of the sensor array 404 through the third pad 428, and the second connection line 416 is connected to the second electrode 426 of the sensor array 404 through the fourth pad 430.
  • the third pad 428 can be electrically connected to the first electrode 424 through a first via (not shown), and the fourth pad 430 can be electrically connected to the second electrode 426 through the second via 432.
  • the fingerprint sensor 400 can be formed on one side of the substrate 402 on which the first semiconductor die 110 (see FIGS. 1 and 2) and the second semiconductor die 112 (see FIGS. 1 and 2) are disposed. There is a package (not shown), such as an epoxy material, formed by an injection molding process for protecting the fingerprint sensor 400. Thus, the fingerprint sensor 400 becomes a packaged chip (Chip).
  • a package such as an epoxy material
  • FIG. 4 is a schematic structural diagram of another embodiment of the fingerprint sensor 200 of the present invention.
  • FIG. 5 is a schematic view showing the structure of the back surface of the fingerprint sensor 200 shown in FIG. 4.
  • the main difference between the fingerprint sensor 200 of the present embodiment and the fingerprint sensor 100 is that: first, the sensor array 204 and the control chip 206 of the fingerprint sensor 200 are respectively disposed on opposite surfaces of the substrate 202; second, the control chip 206 is Single chip.
  • the substrate 202 of the present embodiment is a printed circuit board.
  • the substrate 202 includes a first surface 228 and a second surface 230, the first surface 228 being opposite the second surface 230.
  • the sensor array 204 is disposed on the first surface 228 and the control chip 206 is disposed on the second surface 230.
  • the sensor array 204 and the control chip 206 are respectively disposed on the opposite surfaces of the substrate 202, which reduces the lateral size of the fingerprint sensor 200, and can make the application of the fingerprint sensor 200 wider.
  • the sensor array 204 can be disposed at an intermediate position of the first surface 228, and the control chip 206 can be disposed at an intermediate position of the second surface 230.
  • Such an arrangement can more fully utilize the surface space of the substrate 202 to make the surface of the substrate 202 Maximize space utilization.
  • the control chip 206 can be disposed on the second surface 230, for example, by a double-sided sticker.
  • the sensor array 204 is a mutual capacitance sensor array
  • the control chip 206 is used to provide an excitation signal to the sensor array 204 to perform fingerprint sensing, and is also used to receive the fingerprint sensing signal output from the sensor array 204.
  • the sensor array 204 and the control chip 206 can be first connected together by a wire bonding process, and then the packaging of the fingerprint sensor 200 can be realized by a molding process.
  • the wire bonding process and the injection molding process are mature, and the cost is low, and the yield and cost of the fingerprint sensor 200 can be well controlled.
  • connection line 208 includes a first connection line 214 and a second connection line 216.
  • the first surface 228 is provided with a first pad 236, a second pad 238, a first connection line 214, and a second connection line. 216.
  • the first pad 236 is connected to the first electrode 224 (emitter electrode) through the first connection line 214, and the second pad 238 is connected to the second electrode 226 (receiving electrode) through the second connection line 216.
  • connection line 208 further includes a third connection line 209 disposed on the second surface 230.
  • a third pad 239 is further disposed on the second surface 230.
  • the third pad 239 is connected to the control chip 206 through the third connection line 209 and further to the first pad 236 and the second pad 238 connection.
  • the third pad 239 connects the first pad 236 and the second pad 238 through a substrate via or a blind via.
  • the connection of the pads is realized by the substrate via holes or the blind holes, the process is simple, and the yield of the fingerprint sensor 200 is improved.
  • the vias penetrating the first surface 228 and the second surface 230 of the substrate may be formed at predetermined positions on the substrate 202 by etching, and then formed on the hole walls of the via holes.
  • a conductive layer, and then a first pad 236 and a second pad 238 are formed on the first opening formed by the via hole on the first surface 228, so that the first pad 236 and the second pad 238 are connected to the conductive layer.
  • the via hole forms a third pad 239 on the second opening formed by the second surface 230, and the third pad 239 is connected to the conductive layer, thereby implementing the first pad 236, the second pad 238 corresponding to the third solder.
  • the purpose of the disk 239 connection is not limited to
  • the second surface 130 is further provided with a fourth pad 240, the fourth pad 240 is connected to the third pad 239, the fingerprint sensor 200 includes a flexible circuit board 242, and the flexible circuit board 242 is connected to the fourth pad 240.
  • the flexible circuit board 242 realizes the connection of the fingerprint sensor 200 to the external device, and at the same time, the flexible circuit board 242 can effectively utilize the space of the device to which the fingerprint sensor 200 is applied, thereby improving space utilization.
  • the fourth pad 240 may be connected to the third pad 239 through a conductive wiring layer (not shown) on the second surface 230.
  • the fourth pad 240 is disposed on the edge region 244 of the second surface 230, and the distance between the fourth pad 240 and the control chip 206 is greater than the distance between the third pad 239 and the control chip 206.
  • the length of the connection line of the control chip 206 and the third pad 239 can be shortened, which reduces the cost reduction of the fingerprint sensor 200 and the manufacturing difficulty of the fingerprint sensor 200.
  • the fourth pad 240 is located at the edge region 244 of the second surface 230, the length of the flexible circuit board 242 overlapping the substrate 202 can be reduced, further reducing the cost of the fingerprint sensor 200.
  • control chip 206 is a chip packaged by a molding process.
  • Control chip 206 can include, for example, a single die, but can also include multiple dies.
  • a single die is integrated with, for example, a driver circuit and a receiving circuit.
  • the driving circuit is configured to be coupled to the first electrode 224 of the sensor array 204 to transmit an excitation signal to the first electrode 224.
  • the receiving circuit is for connecting with the second electrode 226 of the sensor array 204 for receiving the fingerprint sensing signal output from the second electrode 226, thereby implementing fingerprint sensing.
  • control chip 206 includes a plurality of dies, for example, a TX die and an RX die are included.
  • the TX die is connected to the first electrode 224.
  • the RX die is connected to the second electrode 226.
  • the fingerprint sensor 200 can further include a package (not shown) for packaging the sensor array 204 and the control chip 206.
  • a package for packaging the sensor array 204 and the control chip 206.
  • the fingerprint sensor 200 becomes a packaged chip.
  • the package is, for example, an epoxy resin, formed by an injection molding process for protecting the fingerprint sensor 200.
  • FIG. 6 is a schematic structural diagram of still another embodiment of the fingerprint sensor 500 of the present invention.
  • FIG. 7 is a schematic view showing the structure of the back surface of the fingerprint sensor 500 shown in FIG. 6.
  • FIG. 8 is a cross-sectional structural view of the fingerprint sensor 500 shown in FIG. 6.
  • the main difference between the fingerprint sensor 500 and the fingerprint sensor 200 of the present embodiment is that: first, the sensor array 504 is embedded in the substrate 502; second, the first surface 528 of the substrate 502 is provided with a third pad 532 and a fourth solder. Disk 534.
  • the first pad 536 is connected to the third pad 532 through the first connection line 514, the third pad 532 is connected to the first electrode 524, and the second pad 538 is connected to the fourth pad 534 through the second connection line 516, the fourth soldering The disk 534 is connected to the second electrode 526.
  • the fifth pad 539 is connected to the control chip 506 through the third connection line 509 and further connected to the first pad 536 and the second pad 538.
  • substrate 502 can be a printed circuit board.
  • the third pad 532 can electrically connect the first electrode 524 through a first via (not shown), and the fourth pad 534 can electrically connect the second electrode 526 through the second via 540.
  • the fingerprint sensor 500 may be formed with a package (not shown) on a side of the substrate 502 on which the control chip 506 is disposed.
  • the fingerprint sensor 500 becomes a packaged chip.
  • the package is, for example, an epoxy resin, formed by an injection molding process for protecting the fingerprint sensor 500.
  • FIG. 9 is a schematic structural diagram of an embodiment of an electronic device 300 according to the present invention.
  • the electronic device 300 includes the fingerprint sensor 100, 200, 400 or 500 of any of the above embodiments.
  • the sensor array and the control chip are disposed on the substrate and connected by the connection line, the sensor array and the control chip can be manufactured by different methods, which can significantly reduce the fingerprint sensor 100 (200, 400, The cost of 500) facilitates large-scale application of fingerprint sensor 100 (200, 400, 500).
  • the electronic device 300 is a portable electronic product or a home-based electronic product.
  • portable electronic products are various types of mobile terminals, such as mobile phones, tablet computers, notebook computers, and wearable products; and home-based electronic products such as smart door locks, televisions, refrigerators, A variety of suitable electronic products such as desktop computers.
  • the fingerprint sensor 100 is applied to the electronic device 300 as an example for description.
  • the fingerprint sensor 100 When the fingerprint sensor 100 is applied to the electronic device 300, for example, the fingerprint sensor 100 may be disposed on the panel 302 of the electronic device 300, such as a back panel or a front panel. In one example of the present invention, the fingerprint sensor 100 is disposed on an inner surface of the back panel 302 of the electronic device 300.
  • the panel 302 of the electronic device 300 can be provided with a window 304 for collecting fingerprints for the fingerprint sensor 100 to collect finger fingerprints.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Input (AREA)

Abstract

一种指纹传感器(100,200,400,500)及电子装置(300),指纹传感器(100,200,400,500)包括基板(102,202,402,502)、传感器阵列(104,204,404,504)及控制芯片(106,206,506),该传感器阵列(104,204,404,504)及该控制芯片(106,206,506)间隔设置在该基板(102,202,402,502)上,该控制芯片(106,206,506)通过打线接合工艺所形成的连接线(108,214,216,414,416,514,516)连接该传感器阵列(104,204,404,504)。上述指纹传感器(100,200,400,500)中,由于传感器阵列(104,204,404,504)与控制芯片(106,206,506)间隔设置在基板(102,202,402,502)上并由连接线(108,214,216,414,416,514,516)连接,因此,可采用不同的方法制造传感器阵列(104,204,404,504)及控制芯片(106,206,506),这样可降低指纹传感器(100,200,400,500)的成本,有利于指纹传感器(100,200,400,500)的大规模应用。

Description

指纹传感器及电子装置
本申请要求2016年6月15日提交中国专利局、申请号为201610421574.5、发明名称为“指纹传感器及电子装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及指纹识别领域,更具体而言,涉及一种指纹传感器及电子装置。
背景技术
随着指纹传感器在智能移动终端的普及,指纹传感器的需求量越来越大。指纹传感器对感测面积是有特殊要求的,理论上感测面积越大识别率会越好,但矛盾的是感测面积越大,指纹传感器的成本也越高。
在相关技术中,基于硅工艺的指纹传感器包括传感器阵列及控制电路,以分辨率为508dpi、96*96的传感器阵列为例,需要的硅晶片的物理面积是23平方毫米,这样的物理面积占到整个指纹传感器的70%以上。
但是,目前的基于硅工艺的指纹传感器的成本较高,不利于指纹传感器的大规模应用。
发明内容
本发明实施方式旨在至少解决现有技术中存在的技术问题之一。为此,本发明实施方式需要提供一种指纹传感器及电子装置。
一种指纹传感器,包括基板、传感器阵列及控制芯片,该传感器阵列及该控制芯片间隔设置在该基板上,该控制芯片通过打线接合工艺所形成的连接线连接该传感器阵列。
上述指纹传感器中,由于传感器阵列与控制芯片间隔设置在基板上并由连接线连接,因此,可采用不同的方法制造传感器阵列及控制芯片,这样可显著降低指纹传感器的成本,有利于指纹传感器的大规模应用。
在一些实施方式中,该控制芯片包括第一半导体裸片及第二半导体裸 片,该传感器阵列、该第一半导体裸片、该第二半导体裸片间隔设置在该基板的同一表面上;
该连接线包括第一连接线及第二连接线,该第一连接线连接该第一半导体裸片及该传感器阵列,该第二连接线连接该第二半导体裸片及该传感器阵列;
该第一半导体裸片用于提供激励信号给该传感器阵列执行指纹感测,该第二半导体裸片用于接收来自该传感器阵列输出的指纹感测信号。
在一些实施方式中,该控制芯片包括第一半导体裸片及第二半导体裸片,该第一半导体裸片及该第二半导体裸片间隔设置在该基板的同一表面上,该传感器阵列埋设在该基板中;
该连接线包括第一连接线及第二连接线,该第一连接线连接该第一半导体裸片及该传感器阵列,该第二连接线连接该第二半导体裸片及该传感器阵列;
该第一半导体裸片用于提供激励信号给该传感器阵列执行指纹感测,该第二半导体裸片用于接收来自该传感器阵列输出的指纹感测信号。
在一些实施方式中,该第一连接线的高度及该第二连接线的高度均小于设定值。
在一些实施方式中,该传感器阵列包括多个第一电极及多个第二电极,该多个第一电极沿第一方向排列,沿第二方向延伸,该多个第二电极沿该第二方向排列,沿该第一方向延伸,该第一方向与该第二方向不同,该多个第一电极与该多个第二电极之间绝缘交叉,形成互电容;该第一连接线连接该第一半导体祼片及该第一电极,该第二连接线连接该第二半导体裸片及该第二电极。
在一些实施方式中,该第一半导体裸片沿该多个第一电极排列的方向设置,该第二半导体裸片沿该多个第二电极排列的方向设置。
在一些实施方式中,该第一方向与该第二方向垂直。
在一些实施方式中,该基板包括第一表面及第二表面,该第一表面与该第二表面相背,该传感器阵列设置在该第一表面上,该控制芯片设置在该第二表面上。
在一些实施方式中,该传感器阵列为互电容式传感器阵列,该控制芯片 用于提供激励信号给该传感器阵列执行指纹感测,还用于接收来自该传感器阵列输出的指纹感测信号。
在一些实施方式中,该传感器阵列包括多个第一电极及多个第二电极,该多个第一电极沿第一方向排列,沿第二方向延伸,该多个第二电极沿该第二方向排列,沿该第一方向延伸,该第一方向与该第二方向不同,该多个第一电极与该多个第二电极之间绝缘交叉,形成互电容;
其中,该多个第一电极用于接收来自该控制芯片输出的激励信号,该控制芯片进一步用于接收来自该多个第二电极输出的指纹感测信号。
在一些实施方式中,该连接线包括第一连接线、第二连接线及第三连接线,该第一表面上设置有第一焊盘、第二焊盘、该第一连接线和该第二连接线,该第二表面上设置有第三焊盘和该第三连接线;
该第一焊盘通过该第一连接线连接该第一电极,该第二焊盘通过该第二连接线连接该第二电极;
该第三焊盘通过该第三连接线与该控制芯片连接,并进一步与该第一焊盘和该第二焊盘连接。
在一些实施方式中,该基板包括第一表面及第二表面,该第一表面与该第二表面相背,该控制芯片设置在该第二表面上,该传感器阵列埋设在该基板中。
在一些实施方式中,该传感器阵列包括多个第一电极及多个第二电极,该多个第一电极沿第一方向排列,沿第二方向延伸,该多个第二电极沿该第二方向排列,沿该第一方向延伸,该第一方向与该第二方向不同,该多个第一电极与该多个第二电极之间绝缘交叉,形成互电容;
其中,该多个第一电极用于接收来自该控制芯片输出的激励信号,该控制芯片进一步用于接收来自该多个第二电极输出的指纹感测信号。
在一些实施方式中,该连接线包括第一连接线、第二连接线及第三连接线,该第一表面上设置有第一焊盘、第二焊盘、第三焊盘、第四焊盘、该第一连接线和该第二连接线,该第二表面上设置有第五焊盘和该第三连接线;
该第一焊盘通过该第一连接线连接该第三焊盘,该第三焊盘连接该第一电极,该第二焊盘通过该第二连接线连接该第四焊盘,该第四焊盘连接该第二电极;
该第五焊盘通过该第三连接线与该控制芯片连接,并进一步与该第一焊盘和该第二焊盘连接。
在一些实施方式中,该控制芯片为一经注塑工艺封装后的芯片。
在一些实施方式中,该基板为印刷电路板。
一种电子装置,包括如上任一实施方式所述的指纹传感器。
上述电子装置中,由于传感器阵列与控制芯片间隔设置在基板上并由连接线连接,因此,可采用不同的方法制造传感器阵列及控制芯片,这样可显著降低指纹传感器的成本,有利于指纹传感器的大规模应用。
本发明实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明实施方式的实践了解到。
附图说明
本发明实施方式的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明指纹传感器的一实施方式的结构示意图;
图2是本发明指纹传感器的又一实施方式的结构示意图;
图3是图2所示指纹传感器沿III-III线的剖面结构示意图;
图4是本发明指纹传感器的另一实施方式的结构示意图;
图5是图4所示指纹传感器的背面结构示意图;
图6是本发明指纹传感器的再一实施方式的结构示意图;
图7是图6所示指纹传感器的背面结构示意图;
图8是图6所示指纹传感器沿VIII-VIII线的剖面结构示意图;
图9是本发明电子装置的一实施方式的结构示意图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描 述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设定进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设定之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
进一步地,所描述的特征、结构可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本发明的实施方式的充分理解。然而,本领域技术人员应意识到,没有所述特定细节中的一个或更多,或者采用其它的结构、组元等,也可以实践本发明的技术方案。在其它情况下,不详细示出或描述公知结构或者操作以避免模糊本发明。
请参阅图1,图1为本发明实施方式的指纹传感器100的结构示意图。指纹传感器100包括基板102、传感器阵列104及控制芯片106。
传感器阵列104与控制芯片106设置在基板102的同一表面上。
传感器阵列104及控制芯片106间隔设置在基板102上,控制芯片106通过打线接合(bonding)工艺所形成的连接线108连接传感器阵列104。
上述指纹传感器100中,由于传感器阵列104与控制芯片106间隔设置在基板102上并由连接线108连接,因此,可采用不同的方法制造传感器阵列104及控制芯片106,这样可显著降低指纹传感器100的成本,有利于指 纹传感器100的大规模应用。
具体地,例如,基板102为绝缘基板。绝缘基板例如为玻璃基板、印刷电路板等等。传感器阵列104就可以不采用硅工艺来生产,而形成在基板102上,这样可以显著降低指纹传感器100的成本。
比如,当基板102为玻璃基板时,传感器阵列104例如采用薄膜晶体管(Thin Film Transistor,TFT)工艺来形成在基板102上,从而可以显著降低指纹传感器100的制造成本。
控制芯片106采用硅工艺来制作,并例如通过覆晶工艺绑定在基板102上。当基板102为玻璃基板时,控制芯片106例如通过玻璃上芯片(Chip On Glass,COG)的方式绑定在基板102上。当基板102为印刷电路板时,传感器阵列104形成在印刷电路板上的工艺也较成熟可靠,从而降低指纹传感器100的成本。
在本发明实施方式中,控制芯片106包括第一半导体裸片110及第二半导体裸片112,传感器阵列104、第一半导体裸片110、第二半导体裸片112间隔设置在基板102的同一表面上。
连接线108包括第一连接线114及第二连接线116,第一连接线114连接第一半导体裸片110及传感器阵列104,第二连接线116连接第二半导体裸片112及传感器阵列104。第一半导体裸片110用于提供激励信号给传感器阵列104执行指纹感测,第二半导体裸片112用于接收来自传感器阵列104输出的指纹感测信号。
具体地,传感器阵列104包括第一电极124及第二电极126。在本实施方式中,第一电极124的数量为多个,多个第一电极124相互平行设置,沿第一方向X排列,沿第二方向Y延伸。第二电极126的数量为多个,多个第二电极126相互平行设置,沿第二方向Y排列,沿第一方向X延伸。多个第一电极124与多个第二电极126绝缘交叉排列,形成多个互电容。在本实施方式中,第一方向X为行方向,第二方向Y为列方向,也就是说,第一方向X与第二方向Y垂直。
第一连接线114连接第一半导体祼片110及第一电极124,第二连接线116连接第二半导体裸片112及第二电极126。
如此,传感器阵列104采用行列的互电容感测结构,相较于多个矩形感测电 极,每一感测电极与控制芯片之间连接有一连接线的自电容感测结构,本发明的传感器阵列104的结构可大大减少连接线108的数量,进一步降低指纹传感器100的成本。
具休地,基板可为玻璃基板。第一半导体裸片(die)110可作为TX裸片(发射裸片),第一电极124对应作为发射电极;第二半导体裸片112可作为RX裸片(接收裸片),第二电极126对应作为接收电极。在指纹检测过程中,第一半导体裸片110发送激励信号至第一电极124,第二电极126将感测到指纹感测信号发送给第二半导体裸片112,从而实现指纹检测。
较佳地,第一半导体裸片110可以选择高压工艺来实现高压驱动,以提高指纹传感器100的信噪比。其中,高压工艺的电压范围如为10伏至20伏。较佳地,第二半导体裸片112可以选择先进硅工艺来实现,这样可以显著减小指纹传感器100的功耗和面积。较佳地,第二半导体裸片112的特征线宽小于第一半导体裸片110的特征线宽。
更具体地,第一半导体裸片110上设置有第一焊盘(Pad)118。第二半导体裸片112上设置有第二焊盘120。第一连接线114连接在第一焊盘118与第一电极124之间。第二连接线116连接在第二焊盘120与第二电极126之间。
第一焊盘118及第二焊盘120的设置有利于连接线108的快速定位及保证连接强度。
传感器阵列104、第一半导体裸片110及第二半导体裸片112可先通过打线接合工艺连接在一起,然后采用注塑(Molding)工艺即可实现指纹传感器100的封装。打线接合工艺和注塑工艺成熟,成本低,可以很好地控制指纹传感器100的良率和成本。在一些实施方式中,第一连接线114的高度及第二连接线116的高度均小于设定值。如此,指纹传感器100可利用低弧线实现各器件间的电性连接,有利于减少指纹传感器100的厚度,实现小型化的指纹传感器100。
设定值可根据指纹传感器100所应用的场合来确定,在保持指纹传感器100小型化的同时,也能保证指纹传感器100的良率。设定值例如是60微米。较佳地,所述设定值小于60微米。
需要指出的是,本发明实施方式中,连接线的高度是指连接线相对于基板表面的最大距离。
在本实施方式中,第一半导体裸片110沿多个第一电极124排列的方向 设置,第二半导体裸片112沿多个第二电极126排列的方向设置。
如此,可充分利用基板102的表面空间进行配置第一半导体裸片110及第二半导体裸片112的位置,使基板102的表面空间利用率最大化,保证指纹传感器100的小型化。
进一步地,还可以在第一半导体裸片110的设置方向与第二半导体裸片112的设置方向所形成的交叉区域122设置其它器件,如电阻、电容等,以进一步利用基板102的表面空间。
在一些实施方式中,所述指纹传感器100在基板102设置有第一半导体裸片110和第二半导体裸片112的一侧可形成有封装体(图未示),所述封装体例如为环氧树脂材料,通过注塑工艺形成,用于保护指纹传感器100。从而,所述指纹传感器100成为一封装后的芯片(Chip)。
可变更地,在其它实施方式中,多个第一电极124和多个第二电极126的位置也可互换,相应地,第一半导体裸片110与第二半导体裸片112的位置对应互换。另外,多个第一电极124与多个第二电极126也可并非呈规则排列。
进一步地,第一半导体裸片110与第二半导体裸片112也可为封装(Molding)后的芯片(Chip)。
请一并参见图2及图3,图2为本发明指纹传感器400的又一实施方式的结构示意图。图3为图2所示指纹传感器400的剖面结构示意图。
本实施方式的指纹传感器400与指纹传感器100的主要区别在于:第一,传感器阵列404埋设在基板402中;第二,基板402的表面上设置有第三焊盘428及第四焊盘430。
较佳地,基板402可为印刷电路板。第一连接线414通过第三焊盘428连接传感器阵列404的第一电极424,第二连接线416通过第四焊盘430连接传感器阵列404的第二电极426。
第三焊盘428可通过第一过孔(图未示)电连接第一电极424,第四焊盘430可通过第二过孔432电连接第二电极426。
在一些实施方式中,所述指纹传感器400在基板402设置有第一半导体裸片110(见图1和图2)和第二半导体裸片112(见图1和图2)的一侧可形成有封装体(图未示),所述封装体例如为环氧树脂材料,通过注塑工艺形成,用于保护指纹传感器400。从而,所述指纹传感器400成为一封装后的芯片 (Chip)。
请一并参见图4及图5,图4为本发明指纹传感器200的另一实施方式的结构示意图。图5为图4所示指纹传感器200的背面结构示意图。本实施方式的指纹传感器200与指纹传感器100的主要区别在于:第一,指纹传感器200的传感器阵列204与控制芯片206分别设置在基板202的相背的二表面上;第二,控制芯片206为单一芯片。
较佳地,本实施方式的基板202为印刷电路板。
具体地,基板202包括第一表面228及第二表面230,第一表面228与第二表面230相背。在本实施方式中,传感器阵列204设置在第一表面228上,控制芯片206设置在第二表面230上。
如此,在基板202相背的两个表面上分别设置传感器阵列204及控制芯片206,减少了指纹传感器200的横向尺寸,可使指纹传感器200的应用场合更广。
进一步地,传感器阵列204可设置在第一表面228的中间位置,控制芯片206可设置在第二表面230的中间位置,这样的设置方式可更充分利用基板202的表面空间,使基板202的表面空间利用率最大化。控制芯片206例如可通过双面贴设置在第二表面230上。
在本发明实施方式中,传感器阵列204为互电容式传感器阵列,控制芯片206用于提供激励信号给传感器阵列204执行指纹感测,还用于接收来自传感器阵列204输出的指纹感测信号。
传感器阵列204及控制芯片206可先通过打线接合工艺连接在一起,然后采用注塑(Molding)工艺即可实现指纹传感器200的封装。打线接合工艺和注塑工艺成熟,成本低,可以很好地控制指纹传感器200的良率和成本。
在一些实施方式中,连接线208包括第一连接线214和第二连接线216,第一表面228上设置第一焊盘236、第二焊盘238、第一连接线214和第二连接线216。第一焊盘236通过第一连接线214连接第一电极224(发射电极),第二焊盘238通过第二连接线216连接第二电极226(接收电极)。
连接线208进一步包括第三连接线209,第三连接线209设置在第二表面230上。第二表面230上进一步设置第三焊盘239。第三焊盘239通过第三连接线209与控制芯片206连接,并进一步与第一焊盘236和第二焊盘238 连接。
具体地,第三焊盘239通过基板过孔或盲孔的方式连接第一焊盘236和第二焊盘238。如此,以基板过孔或盲孔的方式实现焊盘的连接,工艺简单,提高了指纹传感器200的良率。
具体地,以下以基板过孔的方式为例进行说明。在利用印刷电路板工艺制作基板202时,可通过蚀刻的方式在基板202预设位置上形成贯穿基板的第一表面228及第二表面230的过孔,之后,在过孔的孔壁上形成导电层,然后,在过孔在第一表面228所形成的第一开口上形成第一焊盘236和第二焊盘238,使第一焊盘236、第二焊盘238连接导电层,在过孔在第二表面230所形成的第二开口上形成第三焊盘239,使第三焊盘239连接导电层,进而实现了第一焊盘236、第二焊盘238对应与第三焊盘239连接的目的。
需要说明的是,上述工艺的制作参数及条件等,本领域技术人员可参考相关的现有技术,在此不再详细展开。
在一些实施方式中,第二表面130进一步设置有第四焊盘240,第四焊盘240连接第三焊盘239,指纹传感器200包括柔性电路板242,柔性电路板242连接第四焊盘240。
如此,柔性电路板242实现了指纹传感器200与外部装置的连接,同时,柔性电路板242可有效利用指纹传感器200所应用的装置的空间,提高了空间利用率。
第四焊盘240可通过位于第二表面230上的导电线路层(图未示)连接第三焊盘239。
在一些实施方式中,第四焊盘240设置在第二表面230的边缘区域244,第四焊盘240与控制芯片206的距离大于第三焊盘239与控制芯片206的距离。
如此,可缩短控制芯片206与第三焊盘239的连接线的长度,这样降低了指纹传感器200的成本降低及指纹传感器200的制造难度。同时,由于第四焊盘240位于第二表面230的边缘区域244,这样可减少与基板202重叠的柔性电路板242的长度,进一步降低了指纹传感器200的成本。
较佳地,控制芯片206为经过注塑(Molding)工艺封装后的芯片。控制芯片206例如可包括单一裸片,也可包括多颗裸片。当控制芯片206包括单 一裸片时,单一裸片例如集成有驱动电路和接收电路。其中,驱动电路用于与传感器阵列204的第一电极224相连接,发送激励信号至第一电极224。接收电路用于与传感器阵列204的第二电极226相连接,用于接收来自第二电极226输出的指纹感测信号,从而实现指纹感测。
当控制芯片206包括多颗裸片时,例如包括TX裸片与RX裸片。其中,TX裸片与第一电极224连接。RX裸片与第二电极226连接。
在一些实施方式中,所述指纹传感器200可进一步包括封装体(图未示),用于封装所述传感器阵列204和所述控制芯片206。从而,所述指纹传感器200成为一封装后的芯片(Chip)。所述封装体例如为环氧树脂,通过注塑工艺形成,用于保护指纹传感器200。
请一并参见图6、图7及图8,图6为本发明指纹传感器500的再一实施方式的结构示意图。图7是图6所示指纹传感器500的背面结构示意图。图8为图6所示指纹传感器500的剖面结构示意图。
本实施方式的指纹传感器500与指纹传感器200的主要区别在于:第一,传感器阵列504埋设在基板502中;第二,基板502的第一表面528上设置有第三焊盘532及第四焊盘534。
第一焊盘536通过第一连接线514连接第三焊盘532,第三焊盘532连接第一电极524,第二焊盘538通过第二连接线516连接第四焊盘534,第四焊盘534连接第二电极526。
第五焊盘539通过第三连接线509与控制芯片506连接,并进一步与第一焊盘536和第二焊盘538连接。
较佳地,基板502可为印刷电路板。
具体地,第三焊盘532可通过第一过孔(图未示)电连接第一电极524,第四焊盘534可通过第二过孔540电连接第二电极526。
在一些实施方式中,所述指纹传感器500在基板502设置有所述控制芯片506的一侧可形成有封装体(图未示)。从而,所述指纹传感器500成为一封装后的芯片(Chip)。所述封装体例如为环氧树脂,通过注塑工艺形成,用于保护指纹传感器500。
请参阅图9,图9为本发明电子装置300的一实施方式的结构示意图。电子装置300包括上述任一实施方式的指纹传感器100、200、400或500。
因此,上述电子装置中,由于传感器阵列与控制芯片间隔设置在基板上并由连接线连接,因此,可采用不同的方法制造传感器阵列及控制芯片,这样可显著降低指纹传感器100(200、400、500)的成本,有利于指纹传感器100(200、400、500)的大规模应用。
具体地,电子装置300如为可携式电子产品或家居式电子产品。其中,可携式电子产品如为各种移动终端,例如,手机、平板电脑、笔记本电脑、以及穿戴式产品等各类合适的电子产品;家居式电子产品如为智能门锁、电视、冰箱、台式电脑等各类合适的电子产品。
以下以指纹传感器100应用在电子装置300上为例进行说明。
在指纹传感器100应用于电子装置300时,例如,可将指纹传感器100设置在电子装置300的面板302上,如背面板或前面板等合适的位置上。在本发明的一个示例中,指纹传感器100设置在电子装置300的背面板302的内表面上。
电子装置300的面板302可开设有采集指纹的窗口304以供指纹传感器100采集手指指纹。
在本说明书的描述中,参考术语“一个实施方式”、“某些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
尽管上面已经示出和描述了本发明的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施方式进行变化、修改、替换和变型。

Claims (20)

  1. 一种指纹传感器,其特征在于,包括基板、传感器阵列及控制芯片,该传感器阵列及该控制芯片间隔设置在该基板上,该控制芯片通过打线接合工艺所形成的连接线连接该传感器阵列。
  2. 如权利要求1所述的指纹传感器,其特征在于,该控制芯片包括第一半导体裸片及第二半导体裸片,该传感器阵列、该第一半导体裸片、该第二半导体裸片间隔设置在该基板的同一表面上;
    该连接线包括第一连接线及第二连接线,该第一连接线连接该第一半导体裸片及该传感器阵列,该第二连接线连接该第二半导体裸片及该传感器阵列;
    该第一半导体裸片用于提供激励信号给该传感器阵列执行指纹感测,该第二半导体裸片用于接收来自该传感器阵列输出的指纹感测信号。
  3. 如权利要求1所述的指纹传感器,其特征在于,该控制芯片包括第一半导体裸片及第二半导体裸片,该第一半导体裸片及该第二半导体裸片间隔设置在该基板的同一表面上,该传感器阵列埋设在该基板中;
    该连接线包括第一连接线及第二连接线,该第一连接线连接该第一半导体裸片及该传感器阵列,该第二连接线连接该第二半导体裸片及该传感器阵列;
    该第一半导体裸片用于提供激励信号给该传感器阵列执行指纹感测,该第二半导体裸片用于接收来自该传感器阵列输出的指纹感测信号。
  4. 如权利要求2或3所述的指纹传感器,其特征在于,该第一连接线的高度及该第二连接线的高度均小于设定值。
  5. 如权利要求2或3所述的指纹传感器,其特征在于,该传感器阵列包括多个第一电极及多个第二电极,该多个第一电极沿第一方向排列,沿第二方向延伸,该多个第二电极沿该第二方向排列,沿该第一方向延伸,该第 一方向与该第二方向不同,该多个第一电极与该多个第二电极之间绝缘交叉,形成互电容;该第一连接线连接该第一半导体祼片及该第一电极,该第二连接线连接该第二半导体裸片及该第二电极。
  6. 如权利要求5所述的指纹传感器,其特征在于,该第一半导体裸片沿该多个第一电极排列的方向设置,该第二半导体裸片沿该多个第二电极排列的方向设置。
  7. 如权利要求5所述的指纹传感器,其特征在于,该第一方向与该第二方向垂直。
  8. 如权利要求1所述的指纹传感器,其特征在于,该基板包括第一表面及第二表面,该第一表面与该第二表面相背,该传感器阵列设置在该第一表面上,该控制芯片设置在该第二表面上。
  9. 如权利要求8所述的指纹传感器,其特征在于,该传感器阵列为互电容式传感器阵列,该控制芯片用于提供激励信号给该传感器阵列执行指纹感测,还用于接收来自该传感器阵列输出的指纹感测信号。
  10. 如权利要求9所述的指纹传感器,其特征在于,该传感器阵列包括多个第一电极及多个第二电极,该多个第一电极沿第一方向排列,沿第二方向延伸,该多个第二电极沿该第二方向排列,沿该第一方向延伸,该第一方向与该第二方向不同,该多个第一电极与该多个第二电极之间绝缘交叉,形成互电容;
    其中,该多个第一电极用于接收来自该控制芯片输出的激励信号,该控制芯片进一步用于接收来自该多个第二电极输出的指纹感测信号。
  11. 如权利要求10所述的指纹传感器,其特征在于,该连接线包括第一连接线、第二连接线及第三连接线,该第一表面上设置有第一焊盘、第二焊盘、该第一连接线和该第二连接线,该第二表面上设置有第三焊盘和该第 三连接线;
    该第一焊盘通过该第一连接线连接该第一电极,该第二焊盘通过该第二连接线连接该第二电极;
    该第三焊盘通过该第三连接线与该控制芯片连接,并进一步与该第一焊盘和该第二焊盘连接。
  12. 如权利要求1所述的指纹传感器,其特征在于,该基板包括第一表面及第二表面,该第一表面与该第二表面相背,该控制芯片设置在该第二表面上,该传感器阵列埋设在该基板中。
  13. 如权利要求12所述的指纹传感器,其特征在于,该传感器阵列包括多个第一电极及多个第二电极,该多个第一电极沿第一方向排列,沿第二方向延伸,该多个第二电极沿该第二方向排列,沿该第一方向延伸,该第一方向与该第二方向不同,该多个第一电极与该多个第二电极之间绝缘交叉,形成互电容;
    其中,该多个第一电极用于接收来自该控制芯片输出的激励信号,该控制芯片进一步用于接收来自该多个第二电极输出的指纹感测信号。
  14. 如权利要求13所述的指纹传感器,其特征在于,该连接线包括第一连接线、第二连接线及第三连接线,该第一表面上设置有第一焊盘、第二焊盘、第三焊盘、第四焊盘、该第一连接线和该第二连接线,该第二表面上设置有第五焊盘和该第三连接线;
    该第一焊盘通过该第一连接线连接该第三焊盘,该第三焊盘连接该第一电极,该第二焊盘通过该第二连接线连接该第四焊盘,该第四焊盘连接该第二电极;
    该第五焊盘通过该第三连接线与该控制芯片连接,并进一步与该第一焊盘和该第二焊盘连接。
  15. 如权利要求8或12所述的指纹传感器,其特征在于,该控制芯片为一经注塑工艺封装后的芯片或为一裸片。
  16. 如权利要求3或12所述的指纹传感器,其特征在于,该基板为印刷电路板。
  17. 如权利要求2或3所述的指纹传感器,其特征在于,所述指纹传感器在基板设置有第一半导体裸片和第二半导体裸片的一侧形成有封装体。
  18. 如权利要求11-12中任意一项所述的指纹传感器,其特征在于,所述指纹传感器在基板设置有所述控制芯片的一侧形成有封装体。
  19. 如权利要求8-11中任意一项所述的指纹传感器,其特征在于,所述指纹传感器进一步包括封装体,用于封装所述传感器阵列和所述控制芯片。
  20. 一种电子装置,其特征在于,包括如权利要求1-19中任一项所述的指纹传感器。
PCT/CN2017/087919 2016-06-15 2017-06-12 指纹传感器及电子装置 WO2017215561A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610421574.5A CN106022312B (zh) 2016-06-15 2016-06-15 指纹传感器及电子装置
CN201610421574.5 2016-06-15

Publications (1)

Publication Number Publication Date
WO2017215561A1 true WO2017215561A1 (zh) 2017-12-21

Family

ID=57088575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087919 WO2017215561A1 (zh) 2016-06-15 2017-06-12 指纹传感器及电子装置

Country Status (2)

Country Link
CN (1) CN106022312B (zh)
WO (1) WO2017215561A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106022312B (zh) * 2016-06-15 2019-09-27 深圳信炜科技有限公司 指纹传感器及电子装置
CN108021850B (zh) * 2016-11-03 2024-02-13 柳州梓博科技有限公司 指纹传感装置及电子设备
CN108629239A (zh) * 2017-03-21 2018-10-09 南昌欧菲生物识别技术有限公司 指纹识别传感器及指纹识别模组
SE1750836A1 (en) * 2017-06-28 2018-12-29 Fingerprint Cards Ab Fingerprint sensor module comprising antenna and method for manufacturing a fingerprint sensor module

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104182743A (zh) * 2013-05-23 2014-12-03 李美燕 发散式感测装置及其制造方法
CN104538385A (zh) * 2015-01-13 2015-04-22 深圳市亚耕电子科技有限公司 多芯片封装结构以及电子设备
CN104766053A (zh) * 2015-03-26 2015-07-08 业成光电(深圳)有限公司 指纹识别装置及其制造方法
CN204516746U (zh) * 2015-02-12 2015-07-29 江苏长电科技股份有限公司 可插拔fpc的指纹传感器封装结构
CN105138206A (zh) * 2015-09-23 2015-12-09 深圳信炜科技有限公司 电容式传感装置以及电子设备
WO2016085560A1 (en) * 2014-11-25 2016-06-02 Cypress Semiconductor Corporation Methods and sensors for multiphase scanning in the fingerprint and touch applications
CN106022312A (zh) * 2016-06-15 2016-10-12 深圳信炜科技有限公司 指纹传感器及电子装置
CN205983498U (zh) * 2016-06-15 2017-02-22 深圳信炜科技有限公司 指纹传感器及电子装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104182743A (zh) * 2013-05-23 2014-12-03 李美燕 发散式感测装置及其制造方法
WO2016085560A1 (en) * 2014-11-25 2016-06-02 Cypress Semiconductor Corporation Methods and sensors for multiphase scanning in the fingerprint and touch applications
CN104538385A (zh) * 2015-01-13 2015-04-22 深圳市亚耕电子科技有限公司 多芯片封装结构以及电子设备
CN204516746U (zh) * 2015-02-12 2015-07-29 江苏长电科技股份有限公司 可插拔fpc的指纹传感器封装结构
CN104766053A (zh) * 2015-03-26 2015-07-08 业成光电(深圳)有限公司 指纹识别装置及其制造方法
CN105138206A (zh) * 2015-09-23 2015-12-09 深圳信炜科技有限公司 电容式传感装置以及电子设备
CN106022312A (zh) * 2016-06-15 2016-10-12 深圳信炜科技有限公司 指纹传感器及电子装置
CN205983498U (zh) * 2016-06-15 2017-02-22 深圳信炜科技有限公司 指纹传感器及电子装置

Also Published As

Publication number Publication date
CN106022312A (zh) 2016-10-12
CN106022312B (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
JP7065094B2 (ja) 指紋感知モジュール及びその方法
WO2017215561A1 (zh) 指纹传感器及电子装置
US11907458B2 (en) Sensing device
CN110491872B (zh) 半导体裸片组合件、封装和系统以及操作方法
US9029984B2 (en) Semiconductor substrate assembly
US9319772B2 (en) Multi-floor type MEMS microphone
CN104423696A (zh) 具有触摸屏的显示装置
US9120668B2 (en) Microphone package and mounting structure thereof
WO2017071622A1 (zh) 触控基板、显示装置及其驱动方法
TWM522419U (zh) 指紋辨識感測器
WO2018027599A1 (zh) 生物信息传感装置和电子设备
US10620735B2 (en) Force touch module, manufacturing method thereof, display screen and display device
WO2018119572A1 (zh) 显示装置及电子装置及显示装置的制造方法
US20140117524A1 (en) Power semiconductor module and manufacturing method thereof
US9257418B2 (en) Semiconductor package having heat slug and passive device
TW201416991A (zh) 電容式指紋感測器及其製造方法
WO2021056713A1 (zh) 显示面板及显示装置
CN102024565B (zh) 电容结构
WO2017206425A1 (zh) 软性电路板、生物信息感测模组、和电子设备
US20140239434A1 (en) Semiconductor package
WO2016112780A1 (zh) 多芯片封装结构以及电子设备
CN205983498U (zh) 指纹传感器及电子装置
TWI702582B (zh) 顯示面板、顯示裝置及顯示面板的製造方法
TW202301006A (zh) 側邊觸控模組及其顯示器
US9741745B2 (en) Array substrate, method for manufacturing the same and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17812672

Country of ref document: EP

Kind code of ref document: A1