WO2017215520A1 - 一种激光扫描装置及该激光扫描装置的应用方法 - Google Patents

一种激光扫描装置及该激光扫描装置的应用方法 Download PDF

Info

Publication number
WO2017215520A1
WO2017215520A1 PCT/CN2017/087693 CN2017087693W WO2017215520A1 WO 2017215520 A1 WO2017215520 A1 WO 2017215520A1 CN 2017087693 W CN2017087693 W CN 2017087693W WO 2017215520 A1 WO2017215520 A1 WO 2017215520A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
scanning device
module
laser scanning
laser beam
Prior art date
Application number
PCT/CN2017/087693
Other languages
English (en)
French (fr)
Inventor
张瓯
汪永平
Original Assignee
杭州欧镭激光技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州欧镭激光技术有限公司 filed Critical 杭州欧镭激光技术有限公司
Publication of WO2017215520A1 publication Critical patent/WO2017215520A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces

Definitions

  • the present invention relates to the field of laser devices, and in particular, to a laser scanning device and an application method of the laser scanning device.
  • the present invention provides a fast, efficient, reliable and intuitive method and tool for measuring the flatness and improving the quality and efficiency of the flatness measurement work of the plane.
  • an object of the present invention is to provide a laser scanning device and an application method of the laser scanning device, which can simplify the process of flatness measurement and more intuitively display the flatness of the plane.
  • the present invention discloses a laser scanning device comprising: a laser source module that emits a laser beam; a scanning galvanometer module that receives the laser beam and reflects the laser beam to a target object, the target object The laser beam is reflected back to the scanning galvanometer module to form a reflected laser beam; the light detecting module receives the reflected laser light and converts the reflected laser light into an electrical signal; and the data processing module is connected to the light detecting module to receive the The electrical signal is calculated and the distance data of the target object is calculated.
  • the scanning galvanometer module comprises: a biaxial electromechanical unit, a mirror disposed in the biaxial electromechanical unit, wherein the mirror rotates around the horizontal axis and the vertical axis in the biaxial electromechanical unit .
  • the scanning galvanometer module further comprises: a mirror MEMS and a driving circuit disposed in the mirror MEMS for controlling the direction of the mirror MEMS.
  • the drive circuit varies the voltage, current, frequency or waveform that drives the mirror MEMS.
  • the laser source module comprises at least one laser diode, each laser diode having the same or a different wavelength.
  • the light detecting module and the data processing module are disposed in an embedded unit.
  • the laser scanning device further comprises: a laser modulation module for modulating the laser intensity and the emission time of the laser source module.
  • the laser scanning device further comprises: a lens module that changes a laser beam path and shape of the laser source module.
  • the laser scanning device further comprises: a communication module that is in interactive communication with a mobile device.
  • the laser scanning device further comprises: a human-computer interaction module, and the human-computer interaction module comprises a user interface and a display.
  • the laser scanning device further comprises: a power module, the power module being provided by one of a disposable battery pack, a rechargeable battery or an external regulated power supply.
  • the invention also discloses a method for applying the above laser scanning device, comprising: the laser scanning device projecting a laser beam to an area to scan the area line by line; the laser scanning device detects the reflected light of the area And calculating a distance from the laser scanning device to each detection point of the region; the laser scanning device calculates the flatness of the region according to the shape of the region and the distance of the detection point.
  • the laser beam is in a contour map projected onto the region; the laser scanning device displays the flatness using the height of the contour map.
  • the laser beam is in a pseudo color map, and the regions are given different colors according to the flatness Color to show the flatness.
  • FIG. 1 is a schematic structural view of a system of a laser scanning device in accordance with a preferred embodiment of the present invention
  • FIG. 2 is a schematic structural view of a scanning galvanometer module in a laser scanning device according to a preferred embodiment of the present invention
  • FIG. 3 is a schematic view of a scanning area of a laser scanning device in accordance with a preferred embodiment of the present invention.
  • 4a is a scanning area projection view of a laser scanning device having a contour map in accordance with a preferred embodiment of the present invention
  • Figure 4b is a scanning area projection view of a laser scanning device having a pseudo color map in accordance with a preferred embodiment of the present invention.
  • the laser scanning device includes the following devices:
  • the laser source module is disposed inside the laser scanning device to emit a laser beam outward.
  • the laser beam Provided on the light exiting port of the laser beam emitted by the laser source module or the emission path of the laser beam, receiving the laser beam, and reflecting the received laser beam until being reflected to the laser scanning device A target object placed outside.
  • the galvanometer module will also receive the reflected laser beam to form a reflected laser. Since the scanning galvanometer module receives both the source laser beam emitted by the laser source module and the reflected laser reflected from the target object, the scanning galvanometer module can analyze the source laser beam and the reflected laser beam to analyze the surface of the target object. .
  • the scanning galvanometer module After the scanning galvanometer module receives the reflected laser light, the reflected laser light is reflected to the light detecting module. After receiving the reflected laser light, the light detecting module converts the reflected laser light into an electrical signal, and further processes the electrical signal.
  • the electrical signal may include the frequency, phase, intensity, etc. of the laser beam emitted by the laser source module, as well as the frequency, phase, intensity, etc. of the reflected laser light.
  • the device is connected to the light detecting module, receives the electrical signal converted by the light detecting module and the information of the laser beam carried in the electrical signal, and processes the information to calculate the distance data between the target object and the laser source. Specifically, after the electrical signal is transmitted by the light detecting module to the data processing module, the data processing module extracts the information of the laser beam from the electrical signal, and calculates the cause of the phase difference according to the corresponding principle, that is, the target object. Distance data.
  • the light detecting module and the data processing module can be placed in an embedded unit to facilitate programming by the user, and the laser scanning device can be handheld.
  • the scanning galvanometer module specifically includes a biaxial electromechanical unit 1 and a mirror 2 disposed in the biaxial electromechanical unit 1.
  • the biaxial electromechanical unit 1 includes an X-plane and a rotating shaft rotatable about an X-axis such that a component disposed on the X-plane can rotate as the X-plane rotates about the X-axis.
  • the biaxial electromechanical The unit 1 further includes a Y plane and a rotation axis rotatable about the Y axis, and the member disposed on the Y plane is rotatable as the Y plane rotates about the Y axis.
  • both ends of the rotation axis of the Y plane are rotatably connected to the inside of the X plane.
  • the middle of the X plane is hollowed out to form a space reserved for the Y plane, and the rotation axis of the Y plane is connected to the side of the space, that is, the X plane.
  • the mirror is placed on the Y plane so that it can rotate on the X and Y axes. Referring to Figure 3, it is precisely because of the arbitrary rotation and arbitrary positional positioning in the two-dimensional plane of the mirror 2 that the laser beam reflected by the mirror 2 is in a "pyramid" space defined by the rotation limits of the two axes.
  • the inside can be projected in any direction. When the mirror 2 is in a state of high speed rotation, the reflected laser beam can fill the space of the entire quadrangular pyramid.
  • the scanning galvanometer module further comprises a mirror MEMS and a drive circuit.
  • Reflector MEMS Micro-Electro-Mechanical System
  • the drive circuit is coupled to the mirror MEMS and sends drive commands thereto to adjust the voltage, current, frequency or waveform of the mirror MEMS.
  • the command of the driving circuit can be generated by the user.
  • the laser scanning device is hand-held, and has an interface for the user to operate.
  • the user inputs the desired shape and frequency of the laser beam according to the desired one, thereby driving the mirror MEMS. .
  • the laser source module can adopt a laser source formed by a single laser diode or a laser source group composed of a plurality of laser diodes.
  • the laser source module has a laser diode and has a single wavelength, and the distance information of the color of the laser diode can be used; or a plurality of laser diodes having different wavelengths in the laser source module can be utilized.
  • the colors present more rich distance information.
  • the laser scanning device further comprises a laser modulation module that can select different modulation modes for the wrong measurement requirements. For example, when the measured value is calculated based on the time difference of the laser emission reception, the pulse modulation mode can be selected, and when the measured value is calculated based on the phase difference received by the laser emission, the sinusoidal waveform mode can be selected. Therefore, for different modes of demand, the laser modulation module can adjust the laser beam emitted by the laser source module to be converted into a desired form.
  • a lens module is also disposed on the light exiting port or the light exiting path of the laser source module, and the laser beam path and shape of the laser source module can be changed, and directly or indirectly directed to the scanning galvanometer module to guide the function.
  • the laser scanning device of the present invention further includes a communication module or a human-machine interaction module for further convenience of the user's operation.
  • the communication module can communicate with the mobile device, and the mobile device can be installed with application software, and the user can switch to indirectly through the communication module to the drive circuit through operation of the application software.
  • the human-computer interaction module can provide an operation interface to a user who does not have a mobile device, and includes a user interface and a display, and the user can directly input an instruction in the user interface.
  • the laser scanning device can be a combination of a separate device with the mobile device or a separate option from the mobile device.
  • the human-computer interaction module can be placed inside the laser scanning device or in an external fixed position. This embodiment does not limit the locations of the communication module, the mobile device, and the human-machine interaction module.
  • the power supply of the laser scanning device can be provided by the power module.
  • the power module can be a disposable battery pack and manually replaced by a user; or a rechargeable battery, such as a lithium battery, can be connected to an external power supply; or directly connected An external regulated power supply is an alternative.
  • the flatness detection can be performed according to the characteristics thereof, and the specific operation is as follows:
  • the laser scanning device is turned on such that the laser or laser beam it emits is projected onto a target area, which is the area where the user desires to know the flatness.
  • a target area which is the area where the user desires to know the flatness.
  • the area is scanned line by line, and the scanned portion may be slightly larger than the target area.
  • the target area will reflect the laser beam to form reflected light, which will return to the laser scanning device.
  • the laser scanning device calculates its own distance to each detection point in the region. Finally, the flatness of the area is calculated according to the shape of the area and the distance from each detection point to the laser scanning device, and the final calculation result is displayed to the user.
  • the driving circuit drives the light reflected by the mirror MEMS to be a contour map.
  • the portions in the target region have the same or similar height or depth, they are represented by a same contour line.
  • the driving circuit drives the mirror MEMS to reflect light in a pseudo-color map, emitting different colors, and using different colors to represent different heights or depths, for example, using red to indicate that the target area exceeds The height of the expected value, in blue, the height of the target area below the expected value, and the like.
  • the expression is not limited to the above modes and colors, and the number and color of appropriate laser diodes can be selected according to required accuracy and personal preference.
  • the present invention provides a laser scanning device and an application method combining two-dimensional laser scanning and laser ranging technology, which can directly display the flatness of a measurement target by using a graphic.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种激光扫描装置,包括:激光源模块,发出激光束;扫描振镜模块,接收激光束,并将激光束反射至一目标物体,目标物体将激光束反射回扫描振镜模块形成反射激光;光检测模块,接收反射激光,并将反射激光转换为电信号;数据处理模块,与光检测模块连接,接收电信号并计算目标物体的距离数据。采用该激光扫描装置后,利用快速、高效、可靠且直观的方法和工具来完成平整度的测量,提高对平面的平整度测量工作的质量和效率。

Description

一种激光扫描装置及该激光扫描装置的应用方法 技术领域
本发明涉及激光设备领域,尤其涉及一种激光扫描装置及该激光扫描装置的应用方法。
背景技术
生活中或工程测量中,在许多应用中都需要进行平整度的测量,例如,在进行房屋的内部装修时需要检查墙面,地板或天花板的平整度,在公路建筑中也需要平整度测量等等。目前测量平面的平整度时,主要是使用直尺或单束激光进行测量,这些方法主要依赖于手动操作,通常都很耗费时间,得到的测量结果也不够精确。
因此,基于上述技术问题,本发明提供了一种快速、高效、可靠且直观的方法和工具来完成平整度的测量,提高对平面的平整度测量工作的质量和效率。
发明内容
为了克服上述技术缺陷,本发明的目的在于提供一种激光扫描装置及该激光扫描装置的应用方法,可简化平整度测量的过程,更直观地显示平面的平整度。
本发明公开了一种激光扫描装置,包括:激光源模块,发出激光束;扫描振镜模块,接收所述激光束,并将所述激光束反射至一目标物体,所述目标物体将所述激光束反射回所述扫描振镜模块形成反射激光;光检测模块,接收所述反射激光,并将所述反射激光转换为电信号;数据处理模块,与所述光检测模块连接,接收所述电信号并计算所述目标物体的距离数据。
优选地,所述扫描振镜模块包括:双轴电子机械单元、设于所述双轴电子机械单元内的反射镜,其中反射镜于所述双轴电子机械单元内绕横轴及竖轴旋转。
优选地,所述扫描振镜模块还包括:反光镜MEMS及设于所述反光镜MEMS内的驱动电路,用于控制所述反光镜MEMS的方向。
优选地,所述驱动电路改变驱动所述反光镜MEMS的电压、电流、频率或波形。
优选地,所述激光源模块包括至少一个激光二极管,每一激光二极管具有相同或不同的波长。
优选地,所述光检测模块及数据处理模块置于一嵌入式单元内。
优选地,所述激光扫描装置还包括:激光调制模块,用于调制所述激光源模块的激光强度和发射时间。
优选地,所述激光扫描装置还包括:透镜模块,改变所述激光源模块的激光束路径和形状。
优选地,所述激光扫描装置还包括:通信模块,与一移动设备交互通信。
优选地,所述激光扫描装置还包括:人机交互模块,所述人机交互模块包括有用户界面、显示器。
优选地,所述激光扫描装置还包括:电源模块,所述电源模块由一次性电池包、可充电电池或外部稳压电源之一提供。
本发明还公开了一种上述激光扫描装置的应用方法,包括:所述激光扫描装置将激光束投射至一区域,以逐行扫描所述区域;所述激光扫描装置检测所述区域的反射光,并计算所述激光扫描装置至所述区域的每一检测点的距离;所述激光扫描装置根据所述区域的形状及所述检测点的距离,计算所述区域的平整度。
优选地,所述激光束呈等高线图,投射至所述区域上;所述激光扫描装置利用所述等高线图的高度显示所述平整度。
优选地,所述激光束呈伪彩色图,根据所述平整度赋予所述区域不同颜 色,以显示所述平整度。
采用了上述技术方案后,与现有技术相比,具有以下有益效果:
1.使用者无需手动操作,激光扫描装置将直接完成测距工作;
2.测量结果准确、测量过程快速;
3.直观地显示测量结果,节省使用者的操作流程。
附图说明
图1为符合本发明一优选实施例中激光扫描装置的系统结构示意图;
图2为符合本发明一优选实施例的激光扫描装置中扫描振镜模块的结构示意图;
图3为符合本发明一优选实施例中激光扫描装置的扫描区域的示意图;
图4a为符合本发明一优选实施例中激光扫描装置的具有等高线图的扫描区域投射图;
图4b为符合本发明一优选实施例中激光扫描装置的具有伪彩色图的扫描区域投射图。
附图标记:
1-双轴电子机械单元、2-反射镜。
具体实施方式
以下结合附图与具体实施例进一步阐述本发明的优点。
参阅图1,本发明中,激光扫描装置包括有以下设备:
-激光源模块
作为激光扫描装置的核心设备,激光源模块设于激光扫描装置的内部,向外发出激光束。
-扫描振镜模块
设于所述激光源模块发出的激光束的出光口,或是激光束的发射路径上,接收所述激光束,并对接收的激光束进行反射,直至反射至激光扫描装 置的外部的一目标物体。当激光束射至目标物体表面时,由于目标物体表面通常具有不同高度或深度,使得目标物体表面上的不同处对激光束的反射效果不同,因此,当目标物体对激光束进行反射时,扫描振镜模块也将对上述反射激光束进行接收,以形成一反射激光。由于扫描振镜模块既接收激光源模块发出的源激光束,还接收目标物体反射回的反射激光,因此,扫描振镜模块可对源激光束和反射激光进行分析,以分析目标物体表面的情况。
-光检测模块
当扫描振镜模块接收反射激光后,将反射激光反射至光检测模块处,接收到反射激光后,光检测模块将反射激光转换为电信号,待后续对电信号进一步处理。电信号可包括激光源模块发出的激光束的频率、相位、强度等,以及反射激光的频率、相位、强度等。
-数据处理模块
与光检测模块连接,接收光检测模块所转换的电信号及电信号内所承载的激光束的信息,并对上述信息进行处理,以计算得出目标物体与激光源的距离数据。具体地,当电信号由光检测模块传输至数据处理模块后,数据处理模块自电信号中提取激光束的信息,并根据相应的原理,计算得出相位差导致的原因,也即目标物体的距离数据。
上述实施例中,光检测模块和数据处理模块可置于一嵌入式单元内,方便使用者对其编程,可实现将激光扫描装置手持化。
参阅图2,一优选实施例中,扫描振镜模块具体包括有双轴电子机械单元1及设于该双轴电子机械单元1内的反射镜2。该双轴电子机械单元1包括有可绕X轴旋转的一X平面及旋转轴,使得设置在X平面上的部件可随着X平面绕X轴旋转时而旋转,同样地,该双轴电子机械单元1还包括有可绕Y轴旋转的一Y平面及旋转轴,设置在Y平面上的部件可随着Y平面绕Y轴旋转时而旋转。且Y平面所具有的旋转轴的两端可旋转地与X平面的内部连接。具体地X平面的中部镂空,以形成一空间,该空间预留给Y平面设置,同时Y平面所具有的旋转轴连接在该空间侧边,也即X平面的 内侧边。反光镜置于Y平面上,从而可在X轴、Y轴这双轴上旋转。参阅图3,正是由于反射镜2的二维平面内的任意旋转和任意位置定位,使得由反射镜2反射而出的激光束在这两个轴的旋转限量所界定的一个“金字塔”空间内可被投射到任何方向。而当反射镜2处于高速旋转的状态下时,反射的激光束可充满整个四棱锥的空间。
优选或可选地,扫描振镜模块还包括反光镜MEMS及驱动电路。反光镜MEMS(微型电动-机械系统),利用其可编程化的特点,使得发出的激光束不再单一,可通过调整激光束的频率、强度、波形等变化其射出的形态,如根据计算的结果在目标物体表面投射等高线图,以显示目标物体表面上具有相同高度或深度的部分,再或者是根据计算的结果在目标物体表面投射伪彩色图,以对不同高度和深度部分进行标识。驱动电路与反光镜MEMS连接,向其发送驱动指令,进而调整反光镜MEMS的电压、电流、频率或波形。驱动电路的指令可由使用者生成,例如,激光扫描装置为手持式的,具有供使用者操作的界面,使用者根据自身的期望输入所希望得到的激光束形状及频率等,从而驱动反光镜MEMS。
针对不同的工况要求,激光源模块可采用单个激光二极管形成的激光源,或是多个激光二极管组成的激光源组。具体地,激光源模块内具有一个激光二极管,及具有单一的波长,可使用该激光二极管所具有的颜色显示距离信息;或是激光源模块内具有有着不同波长的多个激光二极管,可利用多个颜色呈现更加丰富的距离信息。
优选地或可选地,激光扫描装置还包括有激光调制模块,可针对不对的测量要求选择不同的调制模式。如,当以激光发射接收的时间差为基础计算测量值时,可选择脉冲调制模式,当以激光发射接收的相位差为基础计算测量值时,可选择正弦曲线波形模式。因此,针对不同需要的模式,激光调制模块可将激光源模块发出的激光束进行调整,以转化为期望的形式。
在激光源模块的出光口或出光路径上,还设有透镜模块,可改变激光源模块的激光束路径和形状,直接或间接射向扫描振镜模块,以起到引导作用。
鉴于本发明中的激光扫描装置可手持化,为进一步方便使用者的操作,激光扫描装置还包括通信模块或人机交互模块。如为了与使用者的智能设备进行互联,通信模块可与移动设备交互通信,移动设备内可安装有应用软件,使用者可通过对应用软件的操作,转换为间接地通过通信模块转发至驱动电路的操作。而人机交互模块可以向不具有移动设备的使用者提供操作界面,其包括有用户界面和显示器,使用者可直接在用户界面输入指令,可以理解的是,即便是使用者使用智能设备的情况下,激光扫描装置可以是和移动设备结合成单独装置的选择,亦或是与移动设备独立的选择。而人机交互模块可置于激光扫描装置的内部,亦或是外部固定位置的设置。本实施例并未对通信模块、移动设备和人机交互模块的位置进行限定。
而实施例中激光扫描装置的供电可由电源模块提供,电源模块可以是一次性电池包,由使用者人工替换;或是可充电电池,如锂电池等,接外部电源供电;亦或是直接外接一外部稳压电源,均是可选择的方式。
具有上述任一实施例的激光扫描装置后,可根据其所具有的特性进行平整度检测,具体操作为:
开启激光扫描装置,使得其发出的激光或激光束投射至一目标区域,该区域为使用者期望了解平整度的区域。激光束射出后,对区域进行逐行扫描,扫描的部分可略大于目标区域。目标区域将反射激光束形成反射光,反射光将返回至激光扫描装置,接收到反射光后,激光扫描装置计算其本身至区域内每一检测点的距离。最后,根据区域形状及每一检测点至激光扫描装置的距离,计算区域的平整度,并将最终计算结果向使用者显示。
由于扫描振镜模块内反光镜MEMS的使用,使得显示计算结果的方式具有了多样性。参阅图4a及图4b,如,驱动电路驱动反光镜MEMS反射的光呈等高线图,当目标区域内的部分具有相同或相近似的高度或深度时,以一相同的等高线表示,从而使得使用者直观地了解到目标区域的平整情况。如驱动电路驱动反光镜MEMS反射的光呈伪彩色图,发出不同的颜色,并使用不同的颜色代表不同的高度或深度,例如,使用红色表示目标区域超过 期望值的高度,用蓝色表示目标区域低于期望值的高度等。表达方式不限定于上述方式和颜色,可根据要求精度和个人喜好选择适当的激光二极管的数量和颜色。
因此,基于前述的实施例及实施方式,本发明提供了一种结合二维激光扫描和激光测距技术的激光扫描装置及应用方法,可利用图形直接显示出测量目标的平整度。
应当注意的是,本发明的实施例有较佳的实施性,且并非对本发明作任何形式的限制,任何熟悉该领域的技术人员可能利用上述揭示的技术内容变更或修饰为等同的有效实施例,但凡未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改或等同变化及修饰,均仍属于本发明技术方案的范围内。

Claims (14)

  1. 一种激光扫描装置,其特征在于,包括:
    激光源模块,发出激光束;
    扫描振镜模块,接收所述激光束,并将所述激光束反射至一目标物体,所述目标物体将所述激光束反射回所述扫描振镜模块形成反射激光;
    光检测模块,接收所述反射激光,并将所述反射激光转换为电信号;
    数据处理模块,与所述光检测模块连接,接收所述电信号并计算所述目标物体的距离数据。
  2. 如权利要求1所述的激光扫描装置,其特征在于,
    所述扫描振镜模块包括:
    双轴电子机械单元、设于所述双轴电子机械单元内的反射镜,其中反射镜于所述双轴电子机械单元内绕横轴及竖轴旋转。
  3. 如权利要求2所述的激光扫描装置,其特征在于,
    所述扫描振镜模块还包括:
    反光镜MEMS及设于所述反光镜MEMS内的驱动电路,用于控制所述反光镜MEMS的方向。
  4. 如权利要求3所述的激光扫描装置,其特征在于,
    所述驱动电路改变驱动所述反光镜MEMS的电压、电流、频率或波形。
  5. 如权利要求1所述的激光扫描装置,其特征在于,
    所述激光源模块包括至少一个激光二极管,每一激光二极管具有相同或不同的波长。
  6. 如权利要求1所述的激光扫描装置,其特征在于,
    所述光检测模块及数据处理模块置于一嵌入式单元内。
  7. 如权利要求1所述的激光扫描装置,其特征在于,
    所述激光扫描装置还包括:激光调制模块,用于调制所述激光源模块的激光强度和发射时间。
  8. 如权利要求1所述的激光扫描装置,其特征在于,
    所述激光扫描装置还包括:透镜模块,改变所述激光源模块的激光束路径和形状。
  9. 如权利要求1所述的激光扫描装置,其特征在于,
    所述激光扫描装置还包括:通信模块,与一移动设备交互通信。
  10. 如权利要求1所述的激光扫描装置,其特征在于,
    所述激光扫描装置还包括:人机交互模块,所述人机交互模块包括有用户界面、显示器。
  11. 如权利要求1所述的激光扫描装置,其特征在于,
    所述激光扫描装置还包括:电源模块,所述电源模块由一次性电池包、可充电电池或外部稳压电源之一提供。
  12. 一种如权利要求1-11所述的激光扫描装置的应用方法,包括:
    所述激光扫描装置将激光束投射至一区域,以逐行扫描所述区域;
    所述激光扫描装置检测所述区域的反射光,并计算所述激光扫描装置至所述区域的每一检测点的距离;
    所述激光扫描装置根据所述区域的形状及所述检测点的距离,计算所述区域的平整度。
  13. 如权利要求12所述的应用方法,其特征在于,
    所述激光束呈等高线图,投射至所述区域上;
    所述激光扫描装置利用所述等高线图的高度显示所述平整度。
  14. 如权利要求12所述的应用方法,其特征在于,
    所述激光束呈伪彩色图,根据所述平整度赋予所述区域不同颜色,以显示所述平整度。
PCT/CN2017/087693 2016-06-15 2017-06-09 一种激光扫描装置及该激光扫描装置的应用方法 WO2017215520A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610432127.XA CN106403849B (zh) 2016-06-15 2016-06-15 一种激光扫描装置及该激光扫描装置的应用方法
CN201610432127.X 2016-06-15

Publications (1)

Publication Number Publication Date
WO2017215520A1 true WO2017215520A1 (zh) 2017-12-21

Family

ID=58006695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087693 WO2017215520A1 (zh) 2016-06-15 2017-06-09 一种激光扫描装置及该激光扫描装置的应用方法

Country Status (2)

Country Link
CN (1) CN106403849B (zh)
WO (1) WO2017215520A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112304256A (zh) * 2020-09-10 2021-02-02 中铁建设集团有限公司 一种用于钢筋混凝土结构面层检测仪
CN112945150A (zh) * 2021-02-02 2021-06-11 上海勘察设计研究院(集团)有限公司 一种基于三维激光扫描技术的大型构筑物平整度检测方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106403849B (zh) * 2016-06-15 2020-03-13 杭州欧镭激光技术有限公司 一种激光扫描装置及该激光扫描装置的应用方法
CN108007365B (zh) * 2017-11-21 2020-02-11 大族激光科技产业集团股份有限公司 三维测量系统及使用方法
CN109822619B (zh) * 2017-11-23 2021-12-17 沈阳新松机器人自动化股份有限公司 一种柔性机器人应力检测机构
CN109827517B (zh) * 2017-11-23 2020-07-31 沈阳新松机器人自动化股份有限公司 一种铸件内腔机器人检测机构
CN109471124A (zh) * 2018-12-06 2019-03-15 熵智科技(深圳)有限公司 基于线激光旋转扫描的室内全局定位系统和方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101118314A (zh) * 2007-07-31 2008-02-06 北京汇冠新技术有限公司 一种使用mems微镜检测触摸物坐标的光路系统
US7821693B1 (en) * 2006-12-06 2010-10-26 Advanced Numicro Systems, Inc. MEMS mirror with rotation amplification and electromagnetic drive
CN103399402A (zh) * 2013-08-13 2013-11-20 国家纳米科学中心 一种电磁驱动微型二维扫描镜装置
CN203768775U (zh) * 2014-03-21 2014-08-13 昆明理工大学 一种基于激光衍射的路面平整度网格检测装置
CN104296698A (zh) * 2014-10-27 2015-01-21 广州飞拓优视光电科技有限公司 一种超高精度的光学表面平整度测量方法
CN205844627U (zh) * 2016-06-15 2016-12-28 张瓯 一种激光扫描装置
CN106403849A (zh) * 2016-06-15 2017-02-15 张瓯 一种激光扫描装置及该激光扫描装置的应用方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3054243B2 (ja) * 1991-07-12 2000-06-19 株式会社リコー 表面検査装置
KR100793968B1 (ko) * 2006-01-20 2008-01-16 삼성전자주식회사 광 주사 장치
KR101084231B1 (ko) * 2009-10-05 2011-11-16 삼성모바일디스플레이주식회사 레이저 조사 시스템 및 레이저 조사 방법
CN102022977B (zh) * 2010-10-26 2012-05-30 中国航天科工集团第三研究院第八三五八研究所 双轴mems扫描的外差干涉系统及方法
CN103777362A (zh) * 2013-12-31 2014-05-07 苏州佳世达光电有限公司 激光投影设备
CN205002748U (zh) * 2015-09-14 2016-01-27 巩玉丽 一种混凝土墙体平整度检测装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7821693B1 (en) * 2006-12-06 2010-10-26 Advanced Numicro Systems, Inc. MEMS mirror with rotation amplification and electromagnetic drive
CN101118314A (zh) * 2007-07-31 2008-02-06 北京汇冠新技术有限公司 一种使用mems微镜检测触摸物坐标的光路系统
CN103399402A (zh) * 2013-08-13 2013-11-20 国家纳米科学中心 一种电磁驱动微型二维扫描镜装置
CN203768775U (zh) * 2014-03-21 2014-08-13 昆明理工大学 一种基于激光衍射的路面平整度网格检测装置
CN104296698A (zh) * 2014-10-27 2015-01-21 广州飞拓优视光电科技有限公司 一种超高精度的光学表面平整度测量方法
CN205844627U (zh) * 2016-06-15 2016-12-28 张瓯 一种激光扫描装置
CN106403849A (zh) * 2016-06-15 2017-02-15 张瓯 一种激光扫描装置及该激光扫描装置的应用方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112304256A (zh) * 2020-09-10 2021-02-02 中铁建设集团有限公司 一种用于钢筋混凝土结构面层检测仪
CN112945150A (zh) * 2021-02-02 2021-06-11 上海勘察设计研究院(集团)有限公司 一种基于三维激光扫描技术的大型构筑物平整度检测方法

Also Published As

Publication number Publication date
CN106403849A (zh) 2017-02-15
CN106403849B (zh) 2020-03-13

Similar Documents

Publication Publication Date Title
WO2017215520A1 (zh) 一种激光扫描装置及该激光扫描装置的应用方法
CN109789526B (zh) 手持式工具系统
US11802764B2 (en) Point layout system using single laser transmitter
CN106231971B (zh) 清扫机器人及包含于此的远程控制器
EP3315937A1 (en) Gas detection device and gas detection method
WO2014068406A2 (en) Device for optically scanning and measuring an environment
CN104613874B (zh) 一种测距仪及测距方法
JP2008224516A (ja) 工事支援装置及び工事支援方法
US11820001B2 (en) Autonomous working system, method and computer readable recording medium
US20220103794A1 (en) Projection device for displaying construction plans
CN205844627U (zh) 一种激光扫描装置
JP2011522371A (ja) 照明システムを制御する制御情報
CN112798558A (zh) 一种自动调焦激光气体遥测装置
JP2017058141A (ja) 平坦度測定システム及び平坦度測定方法
WO2016158683A1 (ja) 地図作成装置、自律走行体、自律走行体システム、携帯端末、地図作成方法、地図作成プログラム及びコンピュータ読み取り可能な記録媒体
CN105973211A (zh) 一种激光扫描放样装置
CN205720649U (zh) 一种直驱小型旋转扫描测距装置
CN205898129U (zh) 一种激光扫描放样装置
CN207197514U (zh) 一种微镜扫平仪
US20240168163A1 (en) Optical sensor, method for controlling optical sensor, and control program for optical sensor
TWI484141B (zh) 可自動調整雷射光發射功率之測距方法
CN109828255B (zh) 一种扫描激光雷达装置和进行检测和角度同步的检测方法
US20190369380A1 (en) Surveying instrument
CN217845082U (zh) 非接触式距离测量装置
CN111380508A (zh) 一种室内装饰施工测量放样方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17812631

Country of ref document: EP

Kind code of ref document: A1