WO2017215325A1 - 类人机器人智能电机装置 - Google Patents
类人机器人智能电机装置 Download PDFInfo
- Publication number
- WO2017215325A1 WO2017215325A1 PCT/CN2017/079517 CN2017079517W WO2017215325A1 WO 2017215325 A1 WO2017215325 A1 WO 2017215325A1 CN 2017079517 W CN2017079517 W CN 2017079517W WO 2017215325 A1 WO2017215325 A1 WO 2017215325A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- gear set
- reduction gear
- drive motor
- output shaft
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
- B25J9/12—Programme-controlled manipulators characterised by positioning means for manipulator elements electric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
- B25J9/12—Programme-controlled manipulators characterised by positioning means for manipulator elements electric
- B25J9/126—Rotary actuators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J17/00—Joints
- B25J17/02—Wrist joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J17/00—Joints
- B25J17/02—Wrist joints
- B25J17/0258—Two-dimensional joints
- B25J17/0266—Two-dimensional joints comprising more than two actuating or connecting rods
Definitions
- the invention relates to the field of electric machines, in particular to a humanoid robot intelligent motor device, wherein an output angle of two directions is controlled by an internally arranged control circuit board and an angle sensor, so that the robot intelligent motor device has two degrees of freedom.
- a humanoid robot intelligent motor device wherein an output angle of two directions is controlled by an internally arranged control circuit board and an angle sensor, so that the robot intelligent motor device has two degrees of freedom.
- Humanoid robots are intelligent robots with human shape and mobility. Humanoid robots can use the two-legged walking mode to accomplish some simple functions through the coordination of the arm and the body, and generally communicate with humans through simple language. Humanoid robots have significant advantages over traditional robots.
- the technical problem to be solved by the present invention is to provide a humanoid robot intelligent motor device in which an output angle of two directions is respectively controlled by an internally provided control circuit board and an angle sensor, so that The robotic intelligent motor unit has the ability to provide two degrees of freedom.
- the present invention provides a human robot intelligent motor device, comprising: a tail cover, a housing, a first drive motor and a reduction gear set, a second drive motor and a reduction gear set, a first angle sensor, and a second An angle sensor and a control circuit; wherein the first drive motor and the reduction gear set comprise a first motor and a first reduction mechanism, wherein the first motor is engaged with an input gear of the first reduction mechanism, and the output shaft output of the first reduction mechanism is a rotary power, the first angle sensor is disposed on the first drive motor and the reduction gear set a first rotational power for sensing an output shaft output of the first drive motor and the reduction gear set at the output shaft; and the second drive motor and the reduction gear set include a second motor and a second reduction mechanism, wherein the second The motor is engaged with an input gear of the second reduction mechanism, the output shaft of the second reduction mechanism outputs a second rotational power, and the second angle sensor is disposed at an output shaft of the second drive motor and the reduction gear set for
- the axis of the moving direction of the first rotational power output by the output shaft of the first reduction mechanism is orthogonal to the axis of the moving direction of the second rotational power outputted by the output shaft of the second reduction mechanism.
- the first drive motor and the reduction gear set are a longitudinally rotating output drive motor and a reduction gear set
- the second drive motor and the reduction gear set are a laterally rotating output drive motor and a reduction gear set.
- the output shaft envelope of the first drive motor and the first reduction mechanism of the reduction gear set and the reduction gear of the second drive motor and the second reduction mechanism of the reduction gear set are rigidly connected.
- the output shaft envelope of the second drive motor and the second reduction mechanism of the reduction gear set is rigidly coupled to the reduction gears of the first drive motor and the first reduction mechanism of the reduction gear set.
- the axis of the gear in the first reduction mechanism is orthogonal to the axis of the gear in the second reduction mechanism.
- the second reduction mechanism includes a plurality of gears whose axes are parallel to each other.
- the first reduction mechanism includes a plurality of gears whose axes are parallel to each other.
- the first drive motor and the reduction gear set, the second drive motor and the reduction gear set, the first angle sensor and the second angle sensor are disposed in a chamber surrounded by the tail cover and the housing.
- control circuit is configured to control the first motor and the second motor according to the first rotational power and the second rotational power sensed by the first angle sensor and the second angle sensor.
- the present invention provides a human robot intelligent motor device in which an output angle of two directions is controlled by an internally provided control circuit board and an angle sensor, so that the robot intelligent motor device is provided with two degrees of freedom. ability.
- the humanoid robot intelligent motor device of the invention has the characteristics of small volume and strong driving capability.
- FIG. 1 is a cross-sectional structural view of a humanoid robot intelligent motor device in accordance with a preferred embodiment of the present invention.
- FIG. 2 is a schematic diagram of a first drive motor and a reduction gear set as a longitudinally rotating three-dimensional structure in a humanoid robot intelligent motor device in accordance with a preferred embodiment of the present invention.
- FIG. 3 is a schematic diagram of a second drive motor and a reduction gear set as a laterally rotating three-dimensional structure in a humanoid robot intelligent motor device in accordance with a preferred embodiment of the present invention.
- FIG. 1 is a schematic cross-sectional view of a humanoid robot intelligent motor device in accordance with a preferred embodiment of the present invention.
- a humanoid robot intelligent motor device includes a tail cover 10, a housing 20, a first drive motor and a reduction gear set 30, a second drive motor, and a reduction gear set 40, An angle sensor 50, a second angle sensor 60, and a control circuit 70.
- the first drive motor and reduction gear set 30, the second drive motor and reduction gear set 40, the first angle sensor 50, and the second angle sensor 60 are disposed in a chamber surrounded by the tail cover 10 and the housing 20.
- the control circuit 70 may be disposed within a chamber enclosed by the tail cap 10 and the housing 20, or may be disposed outside of the chamber surrounded by the tail cap 10 and the housing 20.
- the first drive motor and reduction gear set 30 includes a first motor 31 and a first reduction mechanism, wherein the first motor 31 is engaged with the input gear 32 of the first reduction mechanism, and the output shaft 33 of the first reduction mechanism The first rotational power is output.
- the first angle sensor 50 is disposed at an output shaft of the first drive motor and the reduction gear set 30 for sensing a first rotation of the output shaft output of the first drive motor and the reduction gear set 30. power.
- the second drive motor and reduction gear set 40 includes a second motor 41 and a second reduction mechanism, wherein the second motor 41 is engaged with the input gear 42 of the second reduction mechanism, and the second reduction mechanism
- the output shaft 43 outputs a second rotational power.
- the second reduction mechanism may include a plurality of gears whose axes are parallel to each other.
- the first reduction mechanism may also include a plurality of gears whose axes are parallel to each other.
- the axis of the gear in the first reduction mechanism is orthogonal to the axis of the gear in the second reduction mechanism.
- the second angle sensor 60 is disposed at the output shaft of the second drive motor and the reduction gear set 40 for sensing the second rotation of the output shaft output of the second drive motor and the reduction gear set 40. power.
- the first drive motor and the reduction gear train 30 are drive motors and reduction gear sets that are longitudinally rotated output.
- the second drive motor and the reduction gear set 40 are drive motors and reduction gear sets that are laterally rotated output.
- the output shaft envelope of the first drive motor and the reduction gear set 30 and the reduction gear rigidity of the second drive mechanism of the second drive motor and the reduction gear set 40 connection Preferably, as shown in FIG. 1, the output shaft envelope of the second drive motor and the second reduction mechanism of the reduction gear set 40 and the reduction gear rigidity of the first drive motor and the first reduction mechanism of the reduction gear set 30 connection.
- control circuit 70 can adaptively control the first motor and the second motor according to the first rotational power and the second rotational power sensed by the first angle sensor 50 and the second angle sensor 60, thereby thereby adaptively controlling the first motor and the second motor, thereby The output angles of the two intersecting directions are controlled separately.
- the humanoid robot intelligent motor device of the present invention can simultaneously output closed loop rotational motion in two orthogonal directions.
- the invention has two motors built in the same casing, and the power is simultaneously outputted in two orthogonal directions through a gear reduction mechanism built in the casing; the output of the two directions can be respectively output through the built-in control circuit board and the angle sensor The angle is controlled such that a robotic intelligent motor device has the ability to provide two degrees of freedom in different directions.
- the invention has the advantages that the two-direction orthogonal rotary motion is simultaneously outputted in the size space of the original single-output motor, thereby improving the degree of freedom of the humanoid robot.
- the present invention provides a human robot intelligent motor device in which an output angle of two directions is controlled by an internally provided control circuit board and an angle sensor, so that the robot intelligent motor device is provided with two degrees of freedom. ability.
- the humanoid robot intelligent motor device of the invention has the characteristics of small volume and strong driving capability.
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
- Toys (AREA)
Abstract
一种类人机器人智能电机装置,包括:尾盖(10)、壳体(20)、第一驱动电机及减速齿轮组(30)、第二驱动电机及减速齿轮组(40)、第一角度传感器(50)、第二角度传感器(60)及控制电路(70);第一驱动电机及减速齿轮组(30)包括第一电机(31)和第一减速机构,第一电机(31)与第一减速机构的输入齿轮(32)接合,第一减速机构的输出轴(33)输出第一旋转动力,第一角度传感器(50)布置在第一驱动电机及减速齿轮组(30)的输出轴处,用于感测相应输出轴(33)输出的第一旋转动力;第二驱动电机及减速齿轮组(40)包括第二电机(41)和第二减速机构,其中第二电机(41)与第二减速机构的输入齿轮(42)接合,第二减速机构的输出轴(43)输出第二旋转动力,第二角度传感器(60)布置在第二驱动电机及减速齿轮组(40)的输出轴处,用于感测相应输出轴(43)输出的第二旋转动力。所述电机装置具有提供两个自由度的能力。
Description
本发明涉及电机领域,具体涉及一种类人机器人智能电机装置,其中通过内部设置的控制电路板和角度传感器来分别对两个方向的输出角度进行控制,使得机器人智能电机装置具备提供两个自由度的能力。
类人机器人是具备人类的外形特征和行动能力的智能机器人。类人机器人可以采用双腿行走方式,通过手臂和身体的协调完成一些简单的功能,并且一般可以通过简单的语言和人类交流。与传统的机器人相比,类人机器人具有显著的优势。
类人机器人的出现是控制科学、传感器技术、人工智能、材料科学等学科的技术进步,以及机器人使用范围的扩大和人类日常生活需要的产物。类人机器人以与人近似的形态出现,对人类来说就不会感到特别的陌生,也不会产生排斥心理,更容易被人类所接受,所以类人机器人将是未来的日常应用中最重要的智能机器人。
现有的机器人在行走时存在较重的机器形态,其动作没有人类姿态的流畅和优雅,因此。增加类人机器人的自由度成为趋势。但是,随着机器人自由度的增加,伺服电机的数量也增加,这样机器人的结构就不能像人类一样匀称合理。因此,此时面临的问题是,必须研究尺寸小、输出自由度多的智能电机装置。
然而,目前的智能电机装置都是单自由度输出的。
因此,本领域的技术人员致力于开发一种能够提供两个自由度的类人机器人智能电机装置。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是提供一种类人机器人智能电机装置,其中通过内部设置的控制电路板和角度传感器来分别对两个方向的输出角度进行控制,使得机器人智能电机装置具备提供两个自由度的能力。
为实现上述目的,本发明提供了一种类人机器人智能电机装置,包括:尾盖、壳体、第一驱动电机及减速齿轮组、第二驱动电机及减速齿轮组、第一角度传感器、第二角度传感器、以及控制电路;其中,第一驱动电机及减速齿轮组包括第一电机和第一减速机构,其中第一电机与第一减速机构的输入齿轮接合,第一减速机构的输出轴输出第一旋转动力,第一角度传感器布置在第一驱动电机及减速齿轮组
的输出轴处,用于感测第一驱动电机及减速齿轮组的输出轴输出的第一旋转动力;而且,第二驱动电机及减速齿轮组包括第二电机和第二减速机构,其中第二电机与第二减速机构的输入齿轮接合,第二减速机构的输出轴输出第二旋转动力,第二角度传感器布置在第二驱动电机及减速齿轮组的输出轴处,用于感测第二驱动电机及减速齿轮组的输出轴输出的第二旋转动力。
优选地,第一减速机构的输出轴输出的第一旋转动力的运动方向的轴线与第二减速机构的输出轴输出的第二旋转动力的运动方向的轴线相互正交。
优选地,第一驱动电机及减速齿轮组是纵向旋转输出的驱动电机和减速齿轮组,第二驱动电机及减速齿轮组是横向旋转输出的驱动电机和减速齿轮组。
优选地,第一驱动电机及减速齿轮组的第一减速机构的输出轴包络壳和第二驱动电机及减速齿轮组的第二减速机构的减速齿轮刚性连接。
优选地,第二驱动电机及减速齿轮组的第二减速机构的输出轴包络壳和第一驱动电机及减速齿轮组的第一减速机构的减速齿轮刚性连接。
优选地,第一减速机构中的齿轮的轴线与第二减速机构中的齿轮的轴线相互正交。
优选地,第二减速机构包括轴线相互平行的多个齿轮。
优选地,第一减速机构包括轴线相互平行的多个齿轮。
优选地,第一驱动电机及减速齿轮组、第二驱动电机及减速齿轮组、第一角度传感器和第二角度传感器布置在由尾盖和壳体围成的腔室内。
优选地,控制电路用于根据第一角度传感器和第二角度传感器感测到的第一旋转动力和第二旋转动力来控制第一电机和第二电机。
由此,本发明提供了一种类人机器人智能电机装置,其中通过内部设置的控制电路板和角度传感器来分别对两个方向的输出角度进行控制,使得机器人智能电机装置具备提供两个自由度的能力。而且,本发明的类人机器人智能电机装置同时具有体积小,驱动能力强等特点。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
图1是根据本发明优选实施例的类人机器人智能电机装置的剖面结构示意图。
图2是根据本发明优选实施例的类人机器人智能电机装置中的作为纵向旋转立体结构的第一驱动电机及减速齿轮组的示意图。
图3是根据本发明优选实施例的类人机器人智能电机装置中的作为横向旋转立体结构的第二驱动电机及减速齿轮组的示意图。
需要说明的是,附图用于说明本发明,而非限制本发明。注意,表示结构的附
图可能并非按比例绘制。并且,附图中,相同或者类似的元件标有相同或者类似的标号。
图1是根据本发明优选实施例的类人机器人智能电机装置的截面结构示意图。
如图1所示,根据本发明优选实施例的类人机器人智能电机装置包括:尾盖10、壳体20、第一驱动电机及减速齿轮组30、第二驱动电机及减速齿轮组40、第一角度传感器50、第二角度传感器60、以及控制电路70。
其中,第一驱动电机及减速齿轮组30、第二驱动电机及减速齿轮组40、第一角度传感器50和第二角度传感器60布置在由尾盖10和壳体20围成的腔室内。
控制电路70可布置在由尾盖10和壳体20围成的腔室内,也可布置在由尾盖10和壳体20围成的腔室外。
如图2所示,第一驱动电机及减速齿轮组30包括第一电机31和第一减速机构,其中第一电机31与第一减速机构的输入齿轮32接合,第一减速机构的输出轴33输出第一旋转动力。
而且,如图1所示,第一角度传感器50布置在第一驱动电机及减速齿轮组30的输出轴处,用于感测第一驱动电机及减速齿轮组30的输出轴输出的第一旋转动力。
同样地,如图3所示,第二驱动电机及减速齿轮组40包括第二电机41和第二减速机构,其中第二电机41与第二减速机构的输入齿轮42接合,第二减速机构的输出轴43输出第二旋转动力。
而且,如图3所示,在具体实现时,第二减速机构可包括轴线相互平行的多个齿轮。而且实际上,同样地,第一减速机构也可包括轴线相互平行的多个齿轮。但是,第一减速机构中的齿轮的轴线与第二减速机构中的齿轮的轴线相互正交。
而且,如图1所示,第二角度传感器60布置在第二驱动电机及减速齿轮组40的输出轴处,用于感测第二驱动电机及减速齿轮组40的输出轴输出的第二旋转动力。
而且其中,第一减速机构的输出轴33输出的第一旋转动力的运动方向的轴线与第二减速机构的输出轴43输出的第二旋转动力的运动方向的轴线相互正交,如图1的两个旋转箭头所示。
例如,如图2的旋转箭头所示,第一驱动电机及减速齿轮组30是纵向旋转输出的驱动电机和减速齿轮组。例如,如图3的旋转箭头所示,第二驱动电机及减速齿轮组40是横向旋转输出的驱动电机和减速齿轮组。
其中,优选地,如图1所示,第一驱动电机及减速齿轮组30的第一减速机构的输出轴包络壳和第二驱动电机及减速齿轮组40的第二减速机构的减速齿轮刚性
连接。或者可替换地,在其它实现方式中,第二驱动电机及减速齿轮组40的第二减速机构的输出轴包络壳和第一驱动电机及减速齿轮组30的第一减速机构的减速齿轮刚性连接。
根据上述机械及电路布置,控制电路70可根据第一角度传感器50和第二角度传感器60感测到的第一旋转动力和第二旋转动力来适应性地控制第一电机和第二电机,从而分别对两个相交方向的输出角度进行控制。
由此,在根据本发明优选实施例的类人机器人智能电机装置中,存在两个相互独立电机正交分布通过装置壳体中齿轮减速机构,输出两个方向的旋转运动,且旋转运动的轴线相互正交。因此,本发明的类人机器人智能电机装置可以向两个正交方向同时输出闭环旋转运动。
本发明通过在同一壳体内置两个电机,通过壳体中内置的齿轮减速机构,将动力向两个正交方向同时输出;通过内置的控制电路板和角度传感器可分别对两个方向的输出角度进行控制,使得一种机器人智能电机装置有提供两个不同方向自由度的能力。
本发明的优势在于,在原有单输出电机的尺寸空间内,同时输出2向正交的旋转运动,提升了类人机器人的自由度。
由此,本发明提供了一种类人机器人智能电机装置,其中通过内部设置的控制电路板和角度传感器来分别对两个方向的输出角度进行控制,使得机器人智能电机装置具备提供两个自由度的能力。而且,本发明的类人机器人智能电机装置同时具有体积小,驱动能力强等特点。
上述说明示出并描述了本发明的优选实施例,如前所述,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述发明构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。
Claims (10)
- 一种类人机器人智能电机装置,其特征在于包括:尾盖、壳体、第一驱动电机及减速齿轮组、第二驱动电机及减速齿轮组、第一角度传感器、第二角度传感器、以及控制电路;其中,第一驱动电机及减速齿轮组包括第一电机和第一减速机构,其中第一电机与第一减速机构的输入齿轮接合,第一减速机构的输出轴输出第一旋转动力,第一角度传感器布置在第一驱动电机及减速齿轮组的输出轴处,用于感测第一驱动电机及减速齿轮组的输出轴输出的第一旋转动力;而且,第二驱动电机及减速齿轮组包括第二电机和第二减速机构,其中第二电机与第二减速机构的输入齿轮接合,第二减速机构的输出轴输出第二旋转动力,第二角度传感器布置在第二驱动电机及减速齿轮组的输出轴处,用于感测第二驱动电机及减速齿轮组的输出轴输出的第二旋转动力。
- 如权利要求1所述的类人机器人智能电机装置,其特征在于,第一减速机构的输出轴输出的第一旋转动力的运动方向的轴线与第二减速机构的输出轴输出的第二旋转动力的运动方向的轴线相互正交。
- 如权利要求2所述的类人机器人智能电机装置,其特征在于,第一驱动电机及减速齿轮组是纵向旋转输出的驱动电机和减速齿轮组,第二驱动电机及减速齿轮组是横向旋转输出的驱动电机和减速齿轮组。
- 如权利要求1至3之一所述的类人机器人智能电机装置,其特征在于,第一驱动电机及减速齿轮组的第一减速机构的输出轴包络壳和第二驱动电机及减速齿轮组的第二减速机构的减速齿轮刚性连接。
- 如权利要求1至3之一所述的类人机器人智能电机装置,其特征在于,第二驱动电机及减速齿轮组的第二减速机构的输出轴包络壳和第一驱动电机及减速齿轮组的第一减速机构的减速齿轮刚性连接。
- 如权利要求1至3之一所述的类人机器人智能电机装置,其特征在于,第一减速机构中的齿轮的轴线与第二减速机构中的齿轮的轴线相互正交。
- 如权利要求1至3之一所述的类人机器人智能电机装置,其特征在于,第二减速机构包括轴线相互平行的多个齿轮。
- 如权利要求1至3之一所述的类人机器人智能电机装置,其特征在于,第一减速机构包括轴线相互平行的多个齿轮。
- 如权利要求1至3之一所述的类人机器人智能电机装置,其特征在于,第一驱动电机及减速齿轮组、第二驱动电机及减速齿轮组、第一角度传感器和第二角度传感器布置在由尾盖和壳体围成的腔室内。
- 如权利要求1至3之一所述的类人机器人智能电机装置,其特征在于,控制 电路用于根据第一角度传感器和第二角度传感器感测到的第一旋转动力和第二旋转动力来控制第一电机和第二电机。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610424511.5 | 2016-06-15 | ||
CN201610424511.5A CN106003008A (zh) | 2016-06-15 | 2016-06-15 | 类人机器人智能电机装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017215325A1 true WO2017215325A1 (zh) | 2017-12-21 |
Family
ID=57087848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/079517 WO2017215325A1 (zh) | 2016-06-15 | 2017-04-06 | 类人机器人智能电机装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106003008A (zh) |
WO (1) | WO2017215325A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106003008A (zh) * | 2016-06-15 | 2016-10-12 | 上海未来伙伴机器人有限公司 | 类人机器人智能电机装置 |
CN106335055A (zh) * | 2016-10-31 | 2017-01-18 | 上海未来伙伴机器人有限公司 | 一种机器人舵机组件及机器人 |
CN106863347B (zh) * | 2017-03-07 | 2023-08-18 | 壹利特机器人科技(常州)有限公司 | 一种模块化两自由度机器人关节 |
CN108115668B (zh) * | 2017-12-30 | 2023-06-30 | 东莞市超业精密设备有限公司 | 一种翻转式机械手 |
CN108982258A (zh) * | 2018-09-26 | 2018-12-11 | 东莞市丰易仪器有限公司 | 一种自动绕曲测试仪 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101659058A (zh) * | 2009-09-22 | 2010-03-03 | 陈宁 | 两个自由度的机械臂关节模块 |
JP2010228028A (ja) * | 2009-03-26 | 2010-10-14 | Nec Corp | ロボットアーム、ロボットアームの接触検知方法、及び、ロボットアームを備えた装置 |
CN104440869A (zh) * | 2014-09-24 | 2015-03-25 | 哈尔滨工业大学 | 三自由度并联差分式机器人关节 |
CN104552226A (zh) * | 2013-10-18 | 2015-04-29 | 苏茂 | 微型力反馈检测驱动装置 |
CN104669265A (zh) * | 2013-11-27 | 2015-06-03 | 苏茂 | 互为垂直双轴联动反馈控制伺服装置 |
CN106003008A (zh) * | 2016-06-15 | 2016-10-12 | 上海未来伙伴机器人有限公司 | 类人机器人智能电机装置 |
CN205766159U (zh) * | 2016-06-15 | 2016-12-07 | 上海未来伙伴机器人有限公司 | 类人机器人智能电机装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2512727A1 (fr) * | 1981-09-15 | 1983-03-18 | Renault | Poignet orientable a trois axes de rotation pour robot industriel |
JPH06297377A (ja) * | 1993-02-10 | 1994-10-25 | Fanuc Ltd | ロボットの手首装置 |
CN2458613Y (zh) * | 2000-11-30 | 2001-11-07 | 于光 | 一种取样装置 |
CN100544903C (zh) * | 2007-08-29 | 2009-09-30 | 哈尔滨工业大学 | 空间机械臂平行式模块化关节 |
FR2929875B1 (fr) * | 2008-04-09 | 2012-01-13 | Aldebaran Robotics | Articulation motorisee a deux liaisons pivots et robots humanoide mettant en oeuvre l'articulation |
CN201803069U (zh) * | 2010-07-20 | 2011-04-20 | 周惠兴 | 一种两自由度云台机构 |
JP6111562B2 (ja) * | 2012-08-31 | 2017-04-12 | セイコーエプソン株式会社 | ロボット |
CN102862164A (zh) * | 2012-09-25 | 2013-01-09 | 杭州电子科技大学 | 双自由度机器人髋关节舵机 |
CN102862167A (zh) * | 2012-09-25 | 2013-01-09 | 杭州电子科技大学 | 双自由度机器人踝关节舵机 |
US9044865B2 (en) * | 2013-03-07 | 2015-06-02 | Engineering Services Inc. | Two joint module |
CN104227734A (zh) * | 2013-06-09 | 2014-12-24 | 曹林 | 一种机械手安全功能保险器 |
CN104552313A (zh) * | 2013-10-18 | 2015-04-29 | 苏茂 | 人手上臂旋转运动检测装置 |
CN105643653A (zh) * | 2014-11-26 | 2016-06-08 | 苏茂 | 具有离合装置的垂直双轴联动伺服装置 |
-
2016
- 2016-06-15 CN CN201610424511.5A patent/CN106003008A/zh active Pending
-
2017
- 2017-04-06 WO PCT/CN2017/079517 patent/WO2017215325A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010228028A (ja) * | 2009-03-26 | 2010-10-14 | Nec Corp | ロボットアーム、ロボットアームの接触検知方法、及び、ロボットアームを備えた装置 |
CN101659058A (zh) * | 2009-09-22 | 2010-03-03 | 陈宁 | 两个自由度的机械臂关节模块 |
CN104552226A (zh) * | 2013-10-18 | 2015-04-29 | 苏茂 | 微型力反馈检测驱动装置 |
CN104669265A (zh) * | 2013-11-27 | 2015-06-03 | 苏茂 | 互为垂直双轴联动反馈控制伺服装置 |
CN104440869A (zh) * | 2014-09-24 | 2015-03-25 | 哈尔滨工业大学 | 三自由度并联差分式机器人关节 |
CN106003008A (zh) * | 2016-06-15 | 2016-10-12 | 上海未来伙伴机器人有限公司 | 类人机器人智能电机装置 |
CN205766159U (zh) * | 2016-06-15 | 2016-12-07 | 上海未来伙伴机器人有限公司 | 类人机器人智能电机装置 |
Also Published As
Publication number | Publication date |
---|---|
CN106003008A (zh) | 2016-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017215325A1 (zh) | 类人机器人智能电机装置 | |
US20170095935A1 (en) | Apparatus for converting a plurality of linear movement into two degree of freedom movement | |
Bhojak et al. | Gesture controlled mobile robotic arm using accelerometer | |
Hoshino et al. | Pinching with finger tips in humanoid robot hand | |
Procter et al. | Design of a biomimetic BLDC driven robotic arm for teleoperation & biomedical applications | |
Che et al. | A dexterous and self-adaptive humanoid robot hand: GCUA hand | |
Malinowski et al. | Control of articulated manipulator model using ATMEGA16 | |
Zhu et al. | Development of a low-cost data glove using flex sensors for the robot hand teleoperation | |
Barua et al. | Motion analysis of a mobile robot with three omni-directional wheels | |
JP2023500382A (ja) | ロボット用の3つの自由度を有する関節体及び対応する制御方法 | |
US20200100856A1 (en) | Information input apparatus and medical system | |
Aliff et al. | Development of a low-cost bio-inspired swimming robot (SRob) with IoT | |
Zhang et al. | Development of gesture-changeable under-actuated humanoid robotic finger | |
Pattnaik et al. | Robotic arm control through human arm movement using accelerometers | |
Cao et al. | Development of HIT humanoid robot | |
Sharma et al. | Shadow hand | |
Moses et al. | Origami rotors: Imparting continuous rotation to a moving platform using compliant flexure hinges | |
CN205766159U (zh) | 类人机器人智能电机装置 | |
Liu et al. | HIT-ARM I high speed dexterous robot arm | |
Wang et al. | Design of a underactuated robotic hand with three articulated fingers | |
Hoshino et al. | Stable pinching with fingertips in humanoid robot hand | |
Dey et al. | Humanoid Robotic Arm for Tactual Interaction with Industrial Environment by using Mobile | |
JP2016159423A (ja) | 2足歩行ロボット胴体旋回装置 | |
Zhang et al. | A dexterous and self-adaptive humanoid robot hand: gesture-changeable under-actuated hand | |
WO2018097251A1 (ja) | ロボットの関節構造体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17812437 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.04.2019) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17812437 Country of ref document: EP Kind code of ref document: A1 |