WO2017215323A1 - Appareil d'évitement d'obstacle pour robot volant, et procédé d'évitement d'obstacle pour robot volant - Google Patents

Appareil d'évitement d'obstacle pour robot volant, et procédé d'évitement d'obstacle pour robot volant Download PDF

Info

Publication number
WO2017215323A1
WO2017215323A1 PCT/CN2017/079512 CN2017079512W WO2017215323A1 WO 2017215323 A1 WO2017215323 A1 WO 2017215323A1 CN 2017079512 W CN2017079512 W CN 2017079512W WO 2017215323 A1 WO2017215323 A1 WO 2017215323A1
Authority
WO
WIPO (PCT)
Prior art keywords
flying robot
flying
obstacle avoidance
robot
flight
Prior art date
Application number
PCT/CN2017/079512
Other languages
English (en)
Chinese (zh)
Inventor
恽为民
邓寅喆
庞作伟
Original Assignee
上海未来伙伴机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海未来伙伴机器人有限公司 filed Critical 上海未来伙伴机器人有限公司
Publication of WO2017215323A1 publication Critical patent/WO2017215323A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft

Definitions

  • the invention relates to the field of flight robot design, and in particular relates to a flight robot obstacle avoidance device and a flight robot obstacle avoidance method.
  • the common small flying robots have the advantages of good maneuverability, small take-off and landing site, and can fly in the limited (line of sight) range, so they have a wide range of uses.
  • the flying robot can achieve low-altitude real-time monitoring and obtain high-resolution, clear images.
  • flying robots can be used for fire patrols and aerial photography in forest fields and cities. With the application of the flying robot system, it is necessary to fly indoors or in a complicated environment. Therefore, the flying robot needs to have the function of avoiding obstacles.
  • obstacle avoidance sensors carried by flying robots with obstacle avoidance functions are installed at the front of the flying robot. Therefore, since the sensor has a detection dead zone, it is often impossible to realize the 360 degree range of the arbitrary plane of the surrounding environment.
  • those skilled in the art are directed to developing a flying robot obstacle avoidance device and a flying robot obstacle avoidance method capable of realizing a 360 degree range of an arbitrary plane of the surrounding environment.
  • the technical problem to be solved by the present invention is to provide a flying robot obstacle avoidance device capable of realizing the 360 degree range of an arbitrary plane of the surrounding environment and a flying robot obstacle avoiding method.
  • the present invention provides a flying robot obstacle avoidance device comprising: a plurality of detectors mounted on an outer surface of a flying robot; and wherein detection of any two adjacent detectors of the plurality of detectors The regions overlap such that the flying robot obstacle avoidance device is capable of detecting an object approaching the flying robot in any direction within a predetermined distance range around the flying robot.
  • the plurality of detectors are mounted on the same mounting plane and are evenly spaced at regular angles on the mounting plane.
  • the plurality of detectors are equally spaced.
  • the detector is a laser ranging sensor ranging module based on the time-of-flight principle, an RGB-D camera, an infrared ranging module or an ultrasonic ranging sensor.
  • a method for obstacle avoidance of a flying robot comprising:
  • the first step using the detector to detect and determine whether there is an obstacle or threat in the direction around the flying robot in real time; if there are obstacles and/or threats, turn to the second step;
  • a second step establishing a flight no-fly zone corresponding to the obstacle or threat, and calculating a distance of the flying robot to the no-fly zone;
  • a third step determining whether the distance of the flying robot to the no-fly zone is less than a predetermined safety distance
  • the fourth step if the distance of the flying robot to the no-fly zone is less than the safety distance, the obstacle avoidance speed vector is calculated according to the position of the no-fly zone;
  • the fifth step calculating the attitude change angle of the flying robot according to the calculated obstacle avoidance speed vector, so that the flying robot performs the attitude change according to the attitude change angle, and then flying according to the obstacle avoidance speed vector, so that the distance from the flying robot to the no-fly area Not less than a safe distance.
  • the obstacle avoidance speed vector comprises a flight obstacle avoidance speed and an obstacle avoidance flight heading, wherein the flight robot obstacle avoidance flight heading is opposite to the direction of the flying robot relative to the no-fly zone.
  • the flying robot obstacle avoidance method further comprises a sixth step: if the first step does not detect any obstacles or threats, maintaining the original flight state of the flying robot
  • the method for avoiding obstacles of the flying robot further comprises: determining whether the flying robot completes the flying task, and if the flying task is not completed, turning to the first step.
  • the step of advancing the flying robot is further calculated according to the calculated obstacle avoiding speed vector in the fifth step; and further calculating according to the target position in the sixth step
  • the target guides the velocity vector and calculates the step size of the advance based on the target guided velocity vector.
  • FIG. 1 is a schematic diagram of the principle of a flight robot obstacle avoidance device in accordance with a preferred embodiment of the present invention.
  • FIG. 2 is a flow chart of a method of obstacle avoidance by a flying robot in accordance with a preferred embodiment of the present invention.
  • FIG. 1 is a schematic diagram of the principle of a flight robot obstacle avoidance device in accordance with a preferred embodiment of the present invention.
  • a flying robot obstacle avoiding device includes: a plurality of detectors mounted on an outer surface of the flying robot; and wherein any two of the plurality of detectors are adjacent to each other The detection areas overlap, so that the flying robot obstacle avoidance device can detect an object approaching the flying robot in any direction within a predetermined distance range around the flying robot.
  • the flying robot obstacle avoidance device includes a first detector 10, a second detector 20, a third detector 30, a fourth detector 40, and a fifth detector mounted on the outer surface 100 of the flying robot. 50.
  • the sixth detector 60 wherein the first detecting area 11 of the first detector 10 overlaps with the second detecting area 21 of the second detector 20; the second detecting area 21 and the third detecting of the second detector 20
  • the third detection area 31 of the device 30 overlaps; the third detection area 31 overlaps with the fourth detection area 41 of the fourth detector 40; the fourth detection area 41 of the fourth detector 40 and the fifth detection of the fifth detector 50
  • the area 51 overlaps; the fifth detection area 51 of the fifth detector 50 overlaps with the sixth detection area 61 of the sixth detector 60; the sixth detection area 61 of the sixth detector 60 and the first detection of the first detector 10 Area 11 overlaps.
  • the entire detection area covers 360 degrees of the surrounding spherical space.
  • Fig. 1 shows an illustration of a planar arrangement, in fact a stereoscopic arrangement network arranged on the outer surface of the entire flying robot can also be formed.
  • the plurality of detectors are mounted on the same mounting plane and are evenly spaced at regular angles on the mounting plane.
  • the plurality of detectors are equally spaced.
  • the detector is a distance measuring module based on the principle of time of flight (TOF), a distance measuring module of a laser ranging sensor, an RGB-D camera, an infrared ranging module, an ultrasonic ranging module, and the like.
  • TOF time of flight
  • a distance measuring module of a laser ranging sensor an RGB-D camera
  • an infrared ranging module an ultrasonic ranging module, and the like.
  • the flying robot obstacle avoidance device of the invention is installed on the outer surface of the drone, and can simultaneously detect objects close to 360 degrees in any dimension around the circumference, and can realize the obstacles in the 360 spheres around the body.
  • the flying robot obstacle avoidance device of the present invention can realize obstacle avoidance for obstacles approaching in any direction.
  • FIG. 2 is a flow chart of a method of obstacle avoidance by a flying robot in accordance with a preferred embodiment of the present invention.
  • the flying robot obstacle avoidance method according to the preferred embodiment of the present invention shown in FIG. 2 may employ the flying robot obstacle avoiding device according to the preferred embodiment of the present invention shown in FIG. 1.
  • the surrounding condition is detected by the detector, and the obstacles and sudden threats in the direction around the flying robot are detected and judged in real time; if present, the direction of the flying speed is restricted to prevent the flying robot from hitting the obstacle.
  • a flying robot obstacle avoidance method includes:
  • First step S1 using the detector to detect and determine whether there is an obstacle or threat in the direction around the flying robot in real time; if there is an obstacle and/or threat, go to the second step S2; otherwise, go to the sixth step S6;
  • a second step S2 establishing a flight no-fly zone corresponding to the obstacle or threat, and calculating a distance of the flying robot to the no-fly zone;
  • a third step S3 determining whether the distance of the flying robot to the no-fly zone is less than a predetermined safety distance
  • Fourth step S4 if the distance of the flying robot to the no-fly zone is less than the safety distance, according to the no-fly zone
  • the position is calculated as an obstacle avoidance speed vector; specifically, the obstacle avoidance speed vector includes a flight obstacle avoidance speed and an obstacle avoidance flight heading, wherein the flight obstacle avoidance flight heading is opposite to the flight robot in a direction opposite to the no-fly zone;
  • the obstacle avoidance process may not be performed temporarily.
  • a fifth step S5 calculating a posture change angle of the flying robot according to the calculated obstacle avoidance speed vector, so that the flying robot performs a posture change according to the attitude change angle, and then flying according to the obstacle avoidance speed vector, thereby causing the flying robot to fly to no fly
  • the distance of the zone is not less than the safety distance
  • the sixth step S6 if no obstacles or threats are detected, the original flight state of the flying robot is maintained;
  • the flight robot can be judged whether the flight task is completed in real time or periodically. If the flight task is not completed, the first step S1 can be continued to determine that there are obstacles and/or threats and the subsequent steps are performed; if the flight task is completed, the process can be ended.
  • the step size of the flying robot advance is further calculated according to the calculated obstacle avoiding speed vector in the fifth step S5; and further according to the target position in the sixth step S6
  • a target guiding speed vector is calculated, and a forward step is calculated based on the target guiding speed vector.
  • the flying robot obstacle avoidance method according to the preferred embodiment of the present invention can effectively perform obstacle avoidance processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)

Abstract

La présente invention concerne un appareil d'évitement d'obstacle pour un robot volant, et un procédé d'évitement d'obstacle pour un robot volant. L'appareil d'évitement d'obstacle pour un robot volant comprend une pluralité de détecteurs (10, 20, 30, 40, 50, 60) montés sur une surface extérieure (100) du robot volant. Les zones de détection (11, 21, 31, 41, 51, 61) adjacentes formées par la pluralité de détecteurs (10, 20, 30, 40, 50, 60) se chevauchent deux par deux, de sorte que l'appareil d'évitement d'obstacle pour un robot volant puisse détecter un objet s'approchant dudit robot volant dans n'importe quelle direction à l'intérieur d'une plage de distances prédéfinie autour de ce robot volant.
PCT/CN2017/079512 2016-06-15 2017-04-06 Appareil d'évitement d'obstacle pour robot volant, et procédé d'évitement d'obstacle pour robot volant WO2017215323A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610424513.4A CN105912026A (zh) 2016-06-15 2016-06-15 飞行机器人避障装置以及飞行机器人避障方法
CN201610424513.4 2016-06-15

Publications (1)

Publication Number Publication Date
WO2017215323A1 true WO2017215323A1 (fr) 2017-12-21

Family

ID=56751281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079512 WO2017215323A1 (fr) 2016-06-15 2017-04-06 Appareil d'évitement d'obstacle pour robot volant, et procédé d'évitement d'obstacle pour robot volant

Country Status (2)

Country Link
CN (1) CN105912026A (fr)
WO (1) WO2017215323A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110104178A (zh) * 2019-05-13 2019-08-09 滁州学院 一种山地地形探测器
CN112650300A (zh) * 2021-01-07 2021-04-13 深圳市君航品牌策划管理有限公司 一种无人机避障方法和装置
CN113376658A (zh) * 2021-05-08 2021-09-10 广东电网有限责任公司广州供电局 一种基于单线激光雷达的无人机自主避障方法及系统
CN113674606A (zh) * 2021-08-02 2021-11-19 南京瑟迪电子科技有限公司 一种教学用航模机器人及其控制系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105912026A (zh) * 2016-06-15 2016-08-31 上海未来伙伴机器人有限公司 飞行机器人避障装置以及飞行机器人避障方法
CN106647810B (zh) * 2017-01-10 2019-06-18 山东科技大学 一种基于负比例导引的无人机自动避撞方法
CN107544332A (zh) * 2017-09-14 2018-01-05 深圳市盛路物联通讯技术有限公司 数据处理方法及相关产品
CN109298386B (zh) * 2018-10-17 2020-10-23 中国航天系统科学与工程研究院 一种基于多智能体协同的三维未知区域快速探测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110029161A1 (en) * 2008-04-18 2011-02-03 Epfl-Sri Visual autopilot for near-obstacle flight
CN103116360A (zh) * 2013-01-31 2013-05-22 南京航空航天大学 一种无人机避障控制方法
CN103365299A (zh) * 2013-08-02 2013-10-23 中国科学院自动化研究所 一种无人机的避障方法及其装置
CN105159317A (zh) * 2015-09-14 2015-12-16 深圳一电科技有限公司 无人机及其控制方法
CN105589472A (zh) * 2016-03-03 2016-05-18 深圳市智美达科技股份有限公司 无人驾驶设备避免障碍的方法、装置及系统
CN105607642A (zh) * 2015-09-18 2016-05-25 广东中安金狮科创有限公司 无人机自动在三维空间测距避让和穿越飞行的方法
CN105912026A (zh) * 2016-06-15 2016-08-31 上海未来伙伴机器人有限公司 飞行机器人避障装置以及飞行机器人避障方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103135550B (zh) * 2013-01-31 2015-05-20 南京航空航天大学 用于电力巡线的无人机多重避障控制方法
CN204595611U (zh) * 2015-01-15 2015-08-26 中国计量学院 宠物四轴飞行器
CN104656665B (zh) * 2015-03-06 2017-07-28 云南电网有限责任公司电力科学研究院 一种新型无人机通用避障模块及步骤
CN104820429B (zh) * 2015-04-28 2017-05-03 南京航空航天大学 基于超声波距离检测的无人机避障系统及其控制方法
CN208283810U (zh) * 2016-06-15 2018-12-25 上海未来伙伴机器人有限公司 飞行机器人避障装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110029161A1 (en) * 2008-04-18 2011-02-03 Epfl-Sri Visual autopilot for near-obstacle flight
CN103116360A (zh) * 2013-01-31 2013-05-22 南京航空航天大学 一种无人机避障控制方法
CN103365299A (zh) * 2013-08-02 2013-10-23 中国科学院自动化研究所 一种无人机的避障方法及其装置
CN105159317A (zh) * 2015-09-14 2015-12-16 深圳一电科技有限公司 无人机及其控制方法
CN105607642A (zh) * 2015-09-18 2016-05-25 广东中安金狮科创有限公司 无人机自动在三维空间测距避让和穿越飞行的方法
CN105589472A (zh) * 2016-03-03 2016-05-18 深圳市智美达科技股份有限公司 无人驾驶设备避免障碍的方法、装置及系统
CN105912026A (zh) * 2016-06-15 2016-08-31 上海未来伙伴机器人有限公司 飞行机器人避障装置以及飞行机器人避障方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110104178A (zh) * 2019-05-13 2019-08-09 滁州学院 一种山地地形探测器
CN112650300A (zh) * 2021-01-07 2021-04-13 深圳市君航品牌策划管理有限公司 一种无人机避障方法和装置
CN112650300B (zh) * 2021-01-07 2024-05-24 深圳市智胜联合科技有限公司 一种无人机避障方法和装置
CN113376658A (zh) * 2021-05-08 2021-09-10 广东电网有限责任公司广州供电局 一种基于单线激光雷达的无人机自主避障方法及系统
CN113674606A (zh) * 2021-08-02 2021-11-19 南京瑟迪电子科技有限公司 一种教学用航模机器人及其控制系统

Also Published As

Publication number Publication date
CN105912026A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
WO2017215323A1 (fr) Appareil d'évitement d'obstacle pour robot volant, et procédé d'évitement d'obstacle pour robot volant
Özaslan et al. Autonomous navigation and mapping for inspection of penstocks and tunnels with MAVs
CN110612234B (zh) 用于校准交通工具传感器的系统和方法
CN104656663B (zh) 一种基于视觉的无人机编队感知与规避方法
Lee et al. Autonomous patrol and surveillance system using unmanned aerial vehicles
CN107531217B (zh) 识别或检测障碍物的设备和方法
Perez-Grau et al. Semi-autonomous teleoperation of UAVs in search and rescue scenarios
CN106774380B (zh) 一种动态不确定环境下无人飞行器平面自主避障方法
KR102300324B1 (ko) 충돌 방지 알고리즘에 기반한 군집 비행 제어 시스템 및 그 방법
WO2018137133A1 (fr) Systèmes et procédés de commande radar sur des plateformes mobiles sans pilote
JP6419986B2 (ja) 航空機の制御方法及び装置
CN104298248A (zh) 旋翼无人机精确视觉定位定向方法
Liu et al. The design of a fully autonomous robot system for urban search and rescue
Marinho et al. Guaranteed collision avoidance based on line-of-sight angle and time-to-collision
Kim Control laws to avoid collision with three dimensional obstacles using sensors
Mcfadyen et al. Rotorcraft collision avoidance using spherical image-based visual servoing and single point features
Gao et al. Obstacle avoidance for micro quadrotor based on optical flow
Niwa et al. A detection method using ultrasonic sensors for avoiding a wall collision of Quadrotors
McGuire et al. Towards autonomous navigation of multiple pocket-drones in real-world environments
McArthur et al. Pose-estimate-based target tracking for human-guided remote sensor mounting with a UAV
CN208283810U (zh) 飞行机器人避障装置
Cook et al. Unmanned aerial vehicle for hot-spot avoidance with stereo FLIR cameras
Sharma et al. Vision based mobile target geo-localization and target discrimination using Bayes detection theory
CN106354149A (zh) 一种无人机飞行控制方法和装置
Islam et al. Haptics and virtual reality based bilateral telemanipulation of miniature aerial vehicle over open communication network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 04/04/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17812435

Country of ref document: EP

Kind code of ref document: A1