WO2017214922A1 - 切换设备 - Google Patents

切换设备 Download PDF

Info

Publication number
WO2017214922A1
WO2017214922A1 PCT/CN2016/085981 CN2016085981W WO2017214922A1 WO 2017214922 A1 WO2017214922 A1 WO 2017214922A1 CN 2016085981 W CN2016085981 W CN 2016085981W WO 2017214922 A1 WO2017214922 A1 WO 2017214922A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
terminal
diode
reverse
polarity
Prior art date
Application number
PCT/CN2016/085981
Other languages
English (en)
French (fr)
Inventor
张强
贾鑫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16905038.2A priority Critical patent/EP3451581B1/en
Priority to PCT/CN2016/085981 priority patent/WO2017214922A1/zh
Publication of WO2017214922A1 publication Critical patent/WO2017214922A1/zh
Priority to US16/220,891 priority patent/US20190123919A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2869Operational details of access network equipments
    • H04L12/2898Subscriber equipments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M19/00Current supply arrangements for telephone systems
    • H04M19/02Current supply arrangements for telephone systems providing ringing current or supervisory tones, e.g. dialling tone or busy tone
    • H04M19/04Current supply arrangements for telephone systems providing ringing current or supervisory tones, e.g. dialling tone or busy tone the ringing-current being generated at the substations

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a switching device in the field of communications.
  • the engineer needs to disconnect the central office equipment from the terminal equipment.
  • the outdoor integrated equipment is connected with the terminal equipment, so that it is necessary to coordinate the time and users of the engineers to the site. Time, so that customer satisfaction is reduced, and will make the high engineering complex, expensive labor costs.
  • the switching device provided by the embodiment of the invention can realize automatic switching, reduce engineering complexity and reduce labor costs.
  • a switching device in a first aspect, includes: a reverse voltage conducting module for turning on a first voltage provided by the terminal device; and a switching circuit for conducting through the reverse voltage conducting module The first voltage switches the device connected to the terminal device from the source device to the target device, so that the terminal device supplies power to the target device in reverse, where the switching device connects the device connected to the terminal device from the source device Before switching to the target device, the source device supplies power to the terminal device in a forward direction; wherein an output end of the reverse voltage conducting module is connected to an input end of the switching circuit, and an output end of the switching circuit and the target device The input is connected.
  • the switching circuit is based on the first voltage.
  • the connection between the terminal device and the source device is switched to the connection between the terminal device and the target device, which can automatically switch from the source device to the target device, which can reduce engineering complexity and reduce labor costs.
  • the first voltage may be provided by the user to the target device
  • the source device may be a central office device
  • the target device may be an outdoor integrated device
  • the reverse voltage conducting module may receive the first voltage provided by the user's residence. Then, the switching circuit switches the central office equipment to the outdoor integrated equipment according to the first voltage, the central office equipment supports the POTS and the ADSL service, and the outdoor integrated equipment supports the VDSL service or the G.fast service, so that the POTS and the ADSL service are upgraded. In the process, manual switching is avoided and labor costs are reduced.
  • the switching device further includes: a reverse power conversion module, connected between the target device and the reverse voltage conducting module, for the power conducting module After the first voltage is turned on, the first voltage is converted into a second voltage required by the target device.
  • the first voltage may not be the voltage required by the target device, and therefore the reverse power conversion module is required to convert the first voltage into a second required by the target device.
  • the voltage for example, the reverse power conversion module can convert a first voltage having a high voltage value to a second voltage having a relatively low voltage value.
  • the reverse power conversion module is connected between the switching circuit and the reverse voltage conducting module, the second The voltage provides power to the switching circuit.
  • the reverse power conversion module is connected between the switching circuit and the target device, and the first voltage is the switching The circuit provides electrical energy.
  • the electrical energy of the switching circuit may be the first voltage before the reverse power conversion module is converted, or may be the second voltage converted by the reverse power conversion module, according to the connection relationship of the reverse power conversion module.
  • the power of the switching circuit when the reverse power conversion module is connected between the reverse voltage conducting module and the switching circuit, the power of the switching circuit is provided by a second voltage converted by the reverse power conversion module, the second voltage
  • the power is also supplied to the target device; when the reverse power conversion module is connected between the switching circuit and the target device, the power of the switching circuit is provided by the first voltage before the conversion of the reverse power conversion module, and the second voltage is the target device.
  • the switching circuit includes: a switching controller, configured to: when the reverse voltage conducting module is turned on At the first voltage, the relay is controlled to switch the source device connected to the terminal device to the target device; and the relay is configured to switch the source device connected to the terminal device to the target device according to the control of the switching controller
  • the output end of the reverse voltage conducting module is connected to the input end of the switching controller, the output end of the switching controller is connected to the input end of the relay, and the output end of the relay is connected to the target device.
  • the switching device further includes: a diode group connected to the source device by using the first terminal and the second terminal, The three terminals and the fourth terminal are connected to the switching circuit for causing the polarity of the third voltage of the first terminal to the second terminal output by the source device to be the first polarity.
  • the polarity of the third voltage of the first terminal to the second terminal output by the source device is uncertain, it is required to determine the polarity of the third voltage of the first terminal to the second terminal through the diode group.
  • the polarity of the first voltage may be opposite to the polarity of the third voltage, so that the reverse voltage conducting module can only turn on the first voltage and avoid turning on the third voltage, so that the first voltage is provided for the switching circuit. Electrical energy.
  • the diode group includes: a first diode, the anode of the first diode passes through the first terminal The source device is connected, the cathode of the first diode is connected to the switching circuit through the third terminal, and is configured to turn on the third voltage in the forward direction of the first terminal to the second terminal; the second diode a second diode negative electrode is connected to the source device through the second terminal, and a positive pole of the second diode is connected to the switching circuit through the fourth terminal, for conducting the first terminal to the first The third voltage of the positive of the two terminals.
  • the third voltage of the first terminal to the second terminal when the third voltage of the first terminal to the second terminal is a positive voltage, the anode of the first diode is connected to the source device through the first terminal, and the cathode of the second diode passes the The two terminals are connected to the source device, such that after the third voltage outputted by the source device passes through the first diode and the second diode, the voltage of the third terminal to the fourth terminal is a determined positive third voltage.
  • the second polarity of the first voltage may be a negative pole, such that the reverse power supply conducting module conducts only the first voltage in the negative direction.
  • the diode group further includes: a third diode, the anode of the third diode passing through the first terminal Connected to the source device, the anode of the third diode is connected to the switching circuit through the fourth terminal, and is configured to turn on the third voltage in the negative direction of the first terminal to the second terminal; Pole tube, The anode of the fourth diode is connected to the source device through the second terminal, and the cathode of the fourth diode is connected to the switching circuit through the third terminal for conducting the first terminal to the second terminal The third voltage of the terminal in the negative direction.
  • the first diode, the second diode, and the first The third diode and the fourth diode are such that the third terminal to the fourth terminal output a positive third voltage.
  • the anode of the third diode is connected to the source device through the first terminal, the anode of the third diode passes through the fourth terminal and the switching circuit, and the anode of the fourth diode is connected to the source device through the second terminal, fourth The anode of the diode is connected to the switching circuit through the third terminal, and when the voltage of the first terminal to the second terminal is the third voltage in the negative direction, the third terminal to the fourth terminal can also ensure the output of the third voltage in the forward direction.
  • the polarity of the first voltage may be opposite to the polarity of the third voltage, and the second polarity of the first voltage may be a negative pole, such that the reverse power supply conducting module may conduct the first voltage in the negative direction.
  • the anode of the first diode is connected to the source device through the first terminal, the first diode The positive pole is connected to the switching circuit through the third terminal for conducting the third voltage in the negative direction of the first terminal to the second terminal; the second diode positive electrode passes through the second terminal and the source The device is connected, and the cathode of the second diode is connected to the switching circuit through the fourth terminal for conducting the third voltage in the negative direction of the first terminal to the second terminal.
  • the negative pole of the third diode is connected to the source device through the first terminal
  • the fourth The anode of the diode is connected to the source device through the second terminal, such that after the third voltage outputted by the source device passes through the third diode and the fourth diode, the voltage of the third terminal to the fourth terminal is determined.
  • the negative third voltage, the second polarity of the first voltage can be a forward voltage, such that the reverse power supply conducting module only turns on the positive first voltage.
  • the anode of the third diode is connected to the source device through the first terminal, the third diode
  • the negative pole is connected to the switching circuit through the fourth terminal for conducting the third voltage in the forward direction of the first terminal to the second terminal; the negative pole of the fourth diode passes through the second terminal
  • the source device is connected, and the anode of the fourth diode is connected to the switching circuit through the third terminal for conducting the third voltage in the forward direction of the first terminal to the second terminal.
  • the first terminal to the second terminal outputted by the source device are forward.
  • the third voltage or the third voltage in the negative direction can pass through the first diode, the second diode, the third diode, and the fourth diode, so that the third terminal to the fourth terminal output negative direction The third voltage.
  • the anode of the third diode is connected to the source device through the first terminal, the cathode of the third diode passes through the fourth terminal and the switching circuit, and the cathode of the fourth diode is connected to the source device through the second terminal, fourth
  • the anode of the diode is connected to the switching circuit through the third terminal, and when the voltage of the first terminal to the second terminal is the third voltage of the forward direction, the third terminal to the fourth terminal can also ensure the output of the negative third voltage.
  • the second polarity of the first voltage can be a forward voltage, such that the reverse power-on module only turns on the positive first voltage.
  • the source device supports a traditional telephony service POTS and an asymmetric digital subscriber line ADSL service
  • the switching device further includes: a low pass filter connected between the diode group and the source device for turning on a signal of the POTS; a high pass filter connected between the source device and the switching circuit for turning on an asymmetric digital user Line ADSL service.
  • the high-pass filter is directly connected between the source device and the switching circuit. Since the source device supports the POTS service and the ADSL service, the POTS service belongs to the low-frequency DC signal, and the ADSL service belongs to the high-frequency AC signal, and the POTS can be The terminal device provides a DC voltage, so the POTS service and the ADSL service need to be separated by a high-pass filter and a first low-pass filter to prevent the diode group from affecting the ADSL AC signal.
  • the switching device may not include the first low pass filter and the high pass filter, that is, the first low pass filter in the embodiment of the present invention is for the POTS service.
  • the first low pass filter and the high pass filter may not be needed.
  • the switching device further includes: a matching load, connected between the diode group and the switching circuit, for The ringing signal of the POTS is adjusted before the reverse voltage conducting module turns on the first voltage.
  • the diode group affects the ringing signal of the POTA, in order to enable the source device to communicate normally with the terminal device, it is necessary to balance the load to further ensure the stability of the signal.
  • the switching device further includes: a reverse power supply module, the reverse power supply module and the reverse power
  • the voltage conducting module is connected through the fifth terminal and the sixth terminal, the reverse power supply module is configured to: make a polarity of the first voltage of the fifth terminal to the sixth terminal a second polarity; to the reverse voltage
  • the conducting module outputs the first voltage of the second polarity, the second polarity is opposite to the first polarity; the reverse voltage conducting module is further configured to receive the first voltage before the turning on the first voltage The first voltage of the first polarity.
  • the switching device includes a reverse power supply module, and the reverse power supply module is configured to output a first voltage of a second polarity, the second polarity being opposite to a first polarity of the third voltage, such that The reverse voltage conducting module can only turn on the first voltage of the second polarity.
  • the reverse voltage conducting module includes: a fifth diode, when the second polarity is a negative pole
  • the fifth diode is configured to negatively conduct the first voltage
  • the cathode of the fifth diode is connected to the reverse power supply module through the fifth terminal, the anode of the fifth diode and the switching circuit Connecting, or when the second polarity is positive, the fifth diode is used to forward the first voltage, and the anode of the fifth diode is connected to the reverse power supply module through the fifth terminal,
  • the negative electrode of the fifth diode is connected to the switching circuit.
  • the fifth diode included in the reverse voltage conducting module determines a conduction direction according to a second polarity of the first voltage, and when the second polarity is a positive polarity, the fifth diode is used for forward conduction The first voltage; when the second polarity is the negative electrode, the fifth diode is used to negatively conduct the first voltage.
  • the reverse voltage conducting module further includes: a sixth diode, when the second polarity is a negative The sixth diode is configured to forward the first voltage, and the anode of the sixth diode is connected to the reverse power supply module through the sixth terminal, and the negative pole of the sixth diode is switched Circuit connection, or when the second polarity is positive, the sixth diode is used to negatively conduct the first voltage, and the negative pole of the sixth diode is connected to the reverse power supply module through the sixth terminal The anode of the sixth diode is connected to the switching circuit.
  • the sixth diode included in the reverse voltage conducting module can further ensure that the first voltage of the second polarity can be turned on, for example, when the fifth diode is broken down, The sixth diode turns on the first voltage of the second polarity.
  • the reverse power supply module includes: a voltage current detector, configured to detect the fifth terminal to the sixth terminal The first polarity of the third voltage is sent to the first voltage output controller; the first voltage output controller is configured to: receive the first polarity, according to the first polarity Controlling the output of the first voltage of the second polarity.
  • the first voltage output controller controls the first voltage of the output negative pole, and the first polarity detected by the voltage current detector is At the negative pole, the first voltage output controller controls the first voltage of the output positive pole.
  • the first voltage output controller is specifically configured to: when the voltage value of the third voltage is zero, output a pulse sequence; the voltage current detector is further configured to: detect a polarity of the pulse sequence; the reverse voltage conduction module is configured to turn on the pulse sequence; the first voltage output controller is further configured to: when the reverse When the voltage conducting module turns on the pulse sequence, the polarity of the pulse sequence is the second polarity.
  • the first voltage output controller controls the output pulse sequence
  • the voltage current detector is used for detecting The polarity of the pulse sequence is sent to the first voltage output controller, and the polarity of the pulse sequence is determined to be the second polarity.
  • the reverse power supply module further includes: a first connector, a second connector, a third connector, and a reverse To the power supply, the first connector is connected between the reverse power supply and the third connector, and the third connector is connected between the first connector and the reverse voltage conducting module, the first The second connector is connected to the reverse power supply.
  • the first connector is opposite to the second connector. When the first polarity is the same as the second polarity, the first connector is disconnected from the first connector.
  • the connection of the third connector connects the second connector with the third connector.
  • the reverse power supply module may further include an indicator light. If the indicator light normally outputs the first voltage, the first connector and the third connector are normally connected. When the indicator is abnormal, the first connector and the third connector are The connector connection is abnormal, so the user needs to manually disconnect the first connector and the third connector, and manually connect the first connector and the second connector.
  • the difference between the voltage value of the first voltage and the voltage value of the third voltage is greater than a preset threshold, The voltage value of a voltage is greater than the voltage value of the third voltage.
  • the first voltage may be turned on by the voltage value, that is, when the first voltage is a high voltage and the third voltage is a low voltage, the reverse voltage conducting module may turn on the first voltage.
  • the switching device further includes: a second voltage output controller, the second voltage output control The output end of the device is connected to the reverse voltage conducting module for controlling the output of the first voltage;
  • the reverse voltage conducting module further comprises: a high voltage switch connected to the second voltage output controller and the Between the switching circuits, for turning on the first voltage; a voltage converter connected between the high voltage switch and the switching circuit, after the high voltage conductive device turns on the first voltage, The first voltage is subjected to a step-down conversion process to obtain the first voltage after the step-down; the switching circuit is specifically configured to: switch the source device to the target device by the stepped down voltage.
  • the switching device may further include a second voltage output controller, configured to control a first voltage outputting the first voltage value, where the voltage value of the third voltage is a second voltage value, and the first voltage value is decreased.
  • the result of going to the second voltage value is greater than a preset threshold, so that the high voltage switch can turn on the first voltage of the first voltage value, and the voltage converter steps down the first voltage of the first voltage value, and steps down The latter first voltage supplies power to the switching circuit to switch the source device to the target device.
  • the switching device further includes: a second low-pass filter connected to the reverse voltage conducting module and the The reverse power supply module is configured to block at least one of the ADSL service, the ultra high speed digital subscriber line VDSL service, and the G.fast service.
  • a second low-pass filter is added to block the ADSL service and the ultra-high-speed digital subscriber line VDSL service.
  • G.fast service to avoid reverse voltage conduction module affects ADSL service, ultra-high-speed digital subscriber line VDSL service and G.fast service.
  • the switching device further includes: a third low-pass filter connected to the reverse power conversion module and the switching Between the circuits, after the first voltage is turned on, the ADSL service, the ultra-high-speed digital subscriber line VDSL service and the G.fast service are blocked, and the reverse power conversion module is prevented from affecting the normal ADSL service and the ultra-high-speed digital subscriber line VDSL. Business and G.fast business.
  • the switching device further includes: a fourth low-pass filter connected to the reverse voltage conducting module and the Between the voltage and current detectors, it is used to block the ADSL service, the ultra-high-speed digital subscriber line VDSL service and the G.fast service, and avoid the voltage and current detector and the second voltage output controller affecting the ADSL service and the ultra-high-speed digital subscriber line VDSL service. And G.fast business.
  • a fourth low-pass filter connected to the reverse voltage conducting module and the Between the voltage and current detectors, it is used to block the ADSL service, the ultra-high-speed digital subscriber line VDSL service and the G.fast service, and avoid the voltage and current detector and the second voltage output controller affecting the ADSL service and the ultra-high-speed digital subscriber line VDSL service. And G.fast business.
  • a reverse power supply device comprising: a voltage current detector and a first voltage output controller, the voltage current detector is configured to: detect the first of the third voltage Polarity, and outputting the first polarity to the voltage current detector, the third voltage corresponding to the first service; the first voltage output controller is configured to: receive the first polarity input by the voltage current detector, And controlling, according to the first polarity, outputting a first voltage of the second polarity, so that the switching circuit switches the source device connected to the terminal device to the target device according to the first voltage of the second polarity, the first The polarity is opposite to the second polarity.
  • the first voltage output controller is specifically configured to: when the first polarity is a negative pole, control the first voltage of the output positive pole, or when the first pole When the polarity is positive, the first voltage of the output negative electrode is controlled.
  • the first voltage output controller is specifically configured to: when the voltage value of the third voltage is zero, control output a pulse sequence; the voltage current detector is specifically configured to: detect a polarity of the pulse sequence; when the power conduction device turns on the pulse sequence, determine a polarity of the pulse sequence as a polarity of the third voltage.
  • the first service is a traditional telephone service POTS.
  • the reverse power supply device further includes: a fourth low-pass filter connected to the reverse voltage conducting module and the Between the voltage and current detectors, for blocking at least one of the ADSL service, the ultra-high speed digital subscriber line VDSL service, and the G.fast service, the low pass filter being the fourth low pass filter in the first aspect .
  • a reverse power supply device comprising: a first connector, a second connector, a third connector, and a reverse power supply, the first connector being connected in the reverse Between the power supply and the third connector, the third connector is connected between the first connector and the reverse voltage conducting module, the second connector is connected to the reverse power supply, the first connection The connecting direction of the second connector is opposite to that of the second connector, when the first polarity is the same as the second polarity, disconnecting the first connector from the third connector, the second connector is The third connector is connected.
  • a reverse power supply device in a fourth aspect, includes: a second voltage output controller, wherein an output end of the second voltage output controller is connected to a reverse voltage conduction module in the switching device, And controlling the outputting the first voltage, the difference between the voltage value of the first voltage and the voltage value of the third voltage output by the source device is greater than a preset threshold, and the voltage value of the first voltage is greater than the voltage value of the third voltage.
  • a switching device comprising: a high voltage switch, a voltage converter and a switching circuit, wherein the high voltage switch is connected between the second voltage output controller and the switching circuit for guiding a first voltage; a voltage converter connected between the high voltage switch and the switching circuit, configured to perform a step-down conversion process on the first voltage after the high voltage conductive device turns on the first voltage The first voltage after the step-down, the switching circuit is connected between the target device and the voltage converter, and is configured to switch the source device to the target device by the stepped down voltage.
  • FIG. 1 is a schematic block diagram of an application scenario according to an embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of a switching device according to an embodiment of the present invention.
  • FIG. 3 is a schematic block diagram of a reverse power supply device according to an embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of another reverse power supply device according to an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of another reverse power supply device according to an embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of another switching device according to an embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of still another switching device according to an embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of another method for switching a device according to an embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of still another switching device according to an embodiment of the present invention.
  • FIG. 10 is a schematic block diagram of still another switching device according to an embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of still another switching device according to an embodiment of the present invention.
  • FIG. 12 is a schematic block diagram of still another switching device according to an embodiment of the present invention.
  • FIG. 13 is a schematic block diagram of still another switching device according to an embodiment of the present invention.
  • POTS service and ADSL service are upgraded to VDSL service, or POTS service and ADSL service are upgraded to G.fast.
  • Source device supports POTS service and ADSL service.
  • Target device supports VDSL service and G.fast service, as shown in Figure 1, before upgrade.
  • the central office device 110 performs data communication with the terminal device 130, and after the upgrade, the outdoor integrated device 120 performs data communication with the terminal device 130. Before the upgrade, the terminal device supports the POTS service and the ADSL service. After the upgrade, the terminal device is also upgraded to a terminal device that supports the VDSL service of the POTS voice or the G.fast service.
  • the outdoor integrated device 120 may be a Distribution Point Unit ("DPU") in a wired network.
  • DPU Distribution Point Unit
  • the central office device supports the POTS service and the ADSL service
  • the outdoor integrated device 120 supports the VDSL service or the G.fast service.
  • the outdoor integrated device 120 needs the terminal device 130 to perform reverse power supply, and therefore the switching device 200 is required.
  • the central office device 110 connected to the terminal device 130 is switched to the outdoor integrated device 120.
  • the embodiment of the present invention is mainly described for the switching device 200.
  • FIG. 2 shows a switching device 200 according to an embodiment of the present invention.
  • the switching device 200 includes:
  • a reverse voltage conducting module 210 configured to turn on a first voltage provided by the terminal device
  • the switching circuit 220 is configured to switch the device connected to the terminal device from the source device to the target device by using the first voltage that is turned on by the reverse voltage conducting module, so that the terminal device supplies power to the target device in reverse. Before the switching circuit 220 switches the device connected to the terminal device from the source device to the target device, the source device supplies power to the terminal device in a forward direction;
  • the output end of the reverse voltage conducting module is connected to the input end of the switching circuit, and the output end of the switching circuit is connected to the input end of the target device.
  • the forward power supply may be the source device powering the terminal device
  • the reverse power supply is the terminal device powering the target device.
  • the central office device 110 supplies power to the terminal device 730.
  • the terminal device 130 supplies power to the outdoor integrated device 120 for reverse power supply.
  • the switching circuit switches the source device connected to the terminal device to the target device according to the first voltage, and can automatically switch from the source device to the target device, thereby reducing engineering.
  • the reverse voltage conducting module 210 may be the fifth diode D5 as shown in FIGS. 7 to 11 and FIG. 13 or the sixth diode D6 in FIGS. 7 to 11 and FIG.
  • the fifth diode D5 and the sixth diode D6 in FIG. 7 to FIG. 11 and FIG. 13 may be the high voltage switch and the like in FIG. 12, and the embodiment of the present invention is not limited thereto.
  • the switching circuit 220 may be the switching controller and the relay K1 of FIGS. 7 to 13.
  • the first voltage may be a reverse voltage provided by the user's home to the target device
  • the source device may be a central office device
  • the target device may be an outdoor integrated device
  • the reverse voltage conducting module may receive the user's home providing The first voltage
  • the switching circuit switches the central office device to the outdoor integrated device according to the first voltage
  • the central office device supports the POTS and ADSL services
  • the outdoor integrated device supports the VDSL service or the G.fast service, thus, in the POTS
  • manual switching is avoided, and labor costs are reduced.
  • the central office equipment mentioned in the embodiment of the present invention supports the POTS and the ADSL service for convenience of description.
  • the central office equipment can also support only the POTS service, which is not limited by the embodiment of the present invention.
  • the switching device 200 further includes: a reverse power conversion module, connected between the target device and the reverse voltage conducting module, after the power conducting module turns on the first voltage, The first voltage is converted to a second voltage required by the target device.
  • a reverse power conversion module connected between the target device and the reverse voltage conducting module, after the power conducting module turns on the first voltage, The first voltage is converted to a second voltage required by the target device.
  • the first voltage may not be the voltage required by the target device, and therefore the reverse power conversion module is required to convert the first voltage into a second required by the target device.
  • the voltage for example, the reverse power conversion module can convert the first voltage having a high voltage value into a second voltage having a relatively low voltage value, for example, the reverse power conversion module can be the reverse power source in FIGS. 7 to 13 Conversion module.
  • the reverse power conversion module is connected between the switching circuit and the reverse voltage conducting module, and the second voltage provides power to the switching circuit.
  • the reverse power conversion module may be as shown in FIG. 7
  • the reverse power conversion module of Figures 10 and 13 is shown.
  • the reverse power conversion module is connected between the switching circuit and the target device, and the first voltage provides power to the switching circuit.
  • the reverse power conversion module may be the one in FIG. 11 and FIG. Reverse power conversion module.
  • the electrical energy of the switching circuit may be the first voltage before the reverse power conversion module is converted, or the second voltage after the reverse power conversion module is converted, and the switching circuit is the switching circuit according to the connection relationship of the reverse power conversion module.
  • Providing electrical energy when the reverse power conversion module is connected between the reverse voltage conducting module and the switching circuit, the power of the switching circuit is provided by a second voltage converted by the reverse power conversion module, and the second voltage is also targeted
  • the device provides electrical energy; when the reverse power conversion module is connected between the switching circuit and the target device, the electrical energy of the switching circuit is provided by a first voltage before the reverse power conversion module converts, and the second voltage supplies power to the target device.
  • the switching circuit includes: a switching controller, configured to: when the reverse voltage conducting module turns on the first voltage, control the relay to switch the source device connected to the terminal device to the target device; a relay, configured to switch the source device connected to the terminal device to the target device according to the control of the switching controller; wherein an output end of the reverse voltage conducting module is connected to an input end of the switching controller, The output of the switching controller is connected to the input end of the relay, the output end of the relay is connected to the target device, and the switching controller may be the switching controller in FIG. 7 to FIG. 13, and the relay may be in FIG. 7 to FIG. Relay K1.
  • the switching device 200 further includes: a diode group connected to the source device through the first terminal and the second terminal, and connected to the switching circuit through the third terminal and the fourth terminal, for outputting the source device
  • the polarity of the third voltage of the first terminal to the second terminal is a first polarity.
  • the diode group may be the diode diodes of the first diode D1 and the second diode of FIG. 7 to FIG. 11 and FIG.
  • the pole tube D2, the third diode D3, and the fourth diode D4 may also be the D2 diode group including only the first diode D1 and the second diode in FIGS. 7 to 11 and FIG. The embodiment of the invention does not limit this.
  • the first voltage The polarity may be opposite to the polarity of the third voltage, such that the reverse voltage conducting module can only turn on the first voltage and avoid turning on the third voltage such that the first voltage provides power to the switching circuit.
  • the diode group includes: a first diode, a positive pole of the first diode is connected to the source device through the first terminal, and a cathode of the first diode passes through the third terminal a circuit connection for conducting the third voltage in the forward direction of the first terminal to the second terminal; a second diode, the second diode negative electrode being connected to the source device through the second terminal, The positive pole of the second diode is connected to the switching circuit through the fourth terminal, and is configured to turn on the third voltage in the forward direction of the first terminal to the second terminal, and the first diode may be as shown in FIG. 7 And the first diode D1 of 8 and the second diode may be the second diode D2 as in FIGS. 7 and 8.
  • the third voltage of the first terminal to the second terminal is a positive third voltage
  • the anode of the first diode is connected to the source device through the first terminal, and the cathode of the second diode Connected to the source device through the second terminal, such that after the third voltage outputted by the source device passes through the first diode and the second diode, the voltage of the third terminal to the fourth terminal is determined to be positive
  • the second polarity of the first voltage can be the negative pole, so that the reverse power supply conducting module only conducts the negative direction A voltage; in the actual application process, the voltage output from the first terminal to the second terminal may be a positive third voltage by an engineering staff wiring or the like.
  • the diode group further includes: a third diode, wherein a cathode of the third diode is connected to the source device through the first terminal, and a positive pole of the third diode passes through the fourth terminal a switching circuit connection for conducting the third voltage in a negative direction of the first terminal to the second terminal; a fourth diode, the anode of the fourth diode being connected to the source device through the second terminal
  • the negative electrode of the fourth diode is connected to the switching circuit through the third terminal for conducting the third voltage in the negative direction of the first terminal to the second terminal, for example, the third diode can
  • the fourth diode may be the fourth diode D4 in FIGS. 7 and 8.
  • the first diode, the second diode, and the first The third diode and the fourth diode are such that the third terminal to the fourth terminal output a positive third voltage.
  • the anode of the third diode is connected to the source device through the first terminal, the anode of the third diode passes through the fourth terminal and the switching circuit, and the anode of the fourth diode is connected to the source device through the second terminal, fourth The anode of the diode is connected to the switching circuit through the third terminal, and when the voltage of the first terminal to the second terminal is the third voltage in the negative direction, the third terminal to the fourth terminal can also ensure the output of the third voltage in the forward direction.
  • the polarity of the first voltage may be opposite to the polarity of the third voltage, and the second polarity of the first voltage may be a negative pole, such that the reverse power supply conducting module may conduct the first voltage in the negative direction.
  • a cathode of the first diode is connected to the source device through the first terminal, and a cathode of the first diode is connected to the switching circuit through the third terminal, for conducting the first terminal
  • the second diode positive electrode is connected to the source device through the second terminal, and the negative electrode of the second diode is connected to the switching circuit through the fourth terminal a third voltage for turning on the negative direction of the first terminal to the second terminal
  • the first diode may be the first diode D1 as shown in FIGS. 9 and 10
  • the second diode may be It is the second diode D2 in FIGS. 9 and 10.
  • the cathode of the third diode is connected to the source device through the first terminal, the fourth diode
  • the positive pole is connected to the source device through the second terminal, such that after the third voltage outputted by the source device passes through the third diode and the fourth diode, the voltage of the third terminal to the fourth terminal is a determined negative direction
  • the third voltage, the second polarity of the first voltage can be a forward voltage, so that the reverse power supply conduction module only Turning on the positive first voltage.
  • the anode of the third diode is connected to the source device through the first terminal, and the cathode of the third diode is connected to the switching circuit through the fourth terminal, for conducting the first terminal a third voltage to the positive direction of the second terminal; a cathode of the fourth diode is connected to the source device through the second terminal, and a positive terminal of the fourth diode passes through the third terminal and the switching circuit Connecting, the third voltage for turning on the positive direction of the first terminal to the second terminal, for example, the third diode may be the third diode D3 in FIG. 9 and FIG. 10, the fourth The diode can be the fourth diode D4 in Figures 9 and 10.
  • the first diode, the second diode, and the third diode may pass through.
  • the tube and the fourth diode are such that the third terminal to the fourth terminal output a negative third voltage.
  • the anode of the third diode is connected to the source device through the first terminal, the cathode of the third diode passes through the fourth terminal and the switching circuit, and the cathode of the fourth diode is connected to the source device through the second terminal, fourth
  • the anode of the diode is connected to the switching circuit through the third terminal, and when the voltage of the first terminal to the second terminal is the third voltage of the forward direction, the third terminal to the fourth terminal can also ensure the output of the negative third voltage.
  • the second polarity of the first voltage can be a forward voltage, such that the reverse power-on module only turns on the positive first voltage.
  • the source device supports a traditional telephony service POTS and an asymmetric digital subscriber line ADSL service
  • the switching device further includes: a first low pass filter connected between the diode group and the source device for conducting a signal of the POTS; a high-pass filter connected between the source device and the switching circuit for turning on an asymmetric digital subscriber line ADSL service, for example, the first low-pass filter may be as shown in FIG. 7 to FIG. 11 and V2 in Fig. 13; the high pass filter may be V1 in Figs. 7 to 11 and Fig. 13.
  • the high-pass filter is directly connected between the source device and the switching circuit. Since the source device supports the POTS service and the ADSL service, the POTS service belongs to the low-frequency DC signal, and the ADSL service belongs to the high-frequency AC signal, and the POTS can provide the terminal device. DC voltage, therefore, the POTS service and the ADSL service need to be separated by a high-pass filter and a first low-pass filter to prevent the diode group from affecting the ADSL AC signal.
  • the switching device further includes: a matching load, connected between the diode group and the switching circuit, for adjusting a ringing signal of the POTS before the reverse voltage conducting module turns on the first voltage
  • the matching load may be the matching load in FIGS. 7 to 11 and FIG.
  • the diode group affects the ringing signal of the POTA, in order to make the source device and the end The end device communicates normally, so it needs to balance the load to further ensure the stability of the signal.
  • the switching device further includes: a reverse power supply module, wherein the reverse power supply module is connected to the reverse voltage conduction module through a fifth terminal and a sixth terminal, wherein the reverse power supply module is configured to: The polarity of the first voltage of the terminal to the sixth terminal is a second polarity; the first voltage of the second polarity is output to the reverse voltage conducting module, the second polarity and the first polarity
  • the reverse voltage conducting module is further configured to: receive the first voltage of the first polarity before the turning on the first voltage
  • the reverse power supply module may include FIG. 8, FIG. 10 and The first voltage output controller and the voltage current detector in 11
  • the reverse power supply module may also include the PSE in FIG. 8 , FIG. 10 and FIG. 11
  • the reverse power supply module may further include the PSE in FIG. 13 . a connector, a second connector, and a third connector.
  • the reverse voltage conducting module includes: a fifth diode, wherein when the second polarity is a negative pole, the fifth diode is configured to negatively conduct the first voltage, the fifth diode a cathode of the tube is connected to the reverse power supply module through the fifth terminal, and a positive pole of the fifth diode is connected to the switching circuit, and the fifth diode may be the fifth in FIG. 7, FIG. 8 and FIG. Diode D5.
  • the fifth diode when the second polarity is positive, the fifth diode is used to forward the first voltage, and the anode of the fifth diode is connected to the reverse power supply module through the fifth terminal.
  • the negative electrode of the fifth diode is connected to the switching circuit, and the fifth diode may be the fifth diode D5 in FIGS. 9, 10 and 11.
  • the fifth diode included in the reverse voltage conducting module determines a conduction direction according to a second polarity of the first voltage, and when the second polarity is a positive polarity, the fifth diode is used for forward conduction The first voltage; when the second polarity is the negative electrode, the fifth diode is used to negatively conduct the first voltage.
  • the reverse voltage conducting module further includes: a sixth diode, wherein when the second polarity is a negative pole, the sixth diode is used to forward the first voltage, the sixth The anode of the pole tube is connected to the reverse power supply module through the sixth terminal, and the cathode of the sixth diode is connected to the switching circuit, and the sixth diode may be the first in FIG. 7, FIG. 8 and FIG. Six diodes D6.
  • the sixth diode when the second polarity is positive, the sixth diode is used to negatively conduct the first voltage, and the negative pole of the sixth diode is connected to the reverse power supply module through the sixth terminal.
  • the anode of the sixth diode is connected to the switching circuit, and the sixth diode may be the sixth diode D6 in FIGS. 9, 10 and 11.
  • the sixth diode included in the reverse voltage conducting module can further ensure continuity
  • the first voltage of the second polarity for example, when the fifth diode is broken down, may employ a sixth diode to conduct the first voltage of the second polarity.
  • the reverse power supply module includes: a voltage current detector, configured to detect the first polarity of the third voltage from the fifth terminal to the sixth terminal, and send the first polarity to the a first voltage output controller; the first voltage output controller is configured to: receive the first polarity, and output the first voltage of the second polarity according to the first polarity, the voltage current detector may be The voltage and current detectors of FIGS. 10 and 11 have a first voltage output control that can be the first voltage output controller of FIGS. 8, 10, and 11.
  • the first voltage output controller controls the first voltage of the output negative pole
  • the first A voltage output controller controls the first voltage of the output positive pole
  • the first voltage output controller is specifically configured to: when the voltage value of the third voltage is zero, output a pulse sequence; the voltage current detector is further configured to: detect a polarity of the pulse sequence; The voltage conducting module is configured to turn on the pulse sequence; the first voltage output controller is further configured to: when the reverse voltage conducting module turns on the pulse sequence, make the polarity of the pulse sequence be the second polarity.
  • the first voltage output controller controls the output pulse sequence
  • the voltage current detector is used to detect the pole of the pulse sequence. And transmitting the polarity of the pulse sequence to the first voltage output controller, and determining the polarity of the pulse sequence as the second polarity.
  • the reverse power supply module further includes: a first connector, a second connector, a third connector, and a reverse power supply, wherein the first connector is connected to the reverse power supply and the third connector
  • the third connector is connected between the first connector and the reverse voltage conducting module, the second connector is connected to the reverse power supply, the first connector and the second connector Connecting in opposite directions, when the first polarity is the same as the second polarity, disconnecting the first connector from the third connector, and connecting the second connector to the third connector
  • the first connector, the second connector, and the third connector may be the first connector, the second connector, and the third connector in FIG.
  • the reverse power supply module may further include an indicator light. If the indicator light normally outputs the first voltage, the first connector and the third connector are normally connected. When the indicator is abnormal, the first connector and the third connector are The connector connection is abnormal, so the user needs to manually disconnect the first connector and the third connector, and manually connect the first connector and the second connector.
  • the difference between the voltage value of the first voltage and the voltage value of the third voltage is greater than a preset threshold, and the voltage value of the first voltage is greater than the voltage value of the third voltage.
  • the switching device further includes: a second voltage output controller, an output of the second voltage output controller is connected to the reverse voltage conducting module, configured to control the outputting the first voltage;
  • the voltage conducting module further includes: a high voltage switch connected between the second voltage output controller and the switching circuit for turning on the first voltage; a voltage converter connected to the high voltage switch and the Between the switching circuits, after the high voltage conductive device turns on the first voltage, performing a step-down conversion process on the first voltage to obtain the first voltage after the step-down; the switching circuit is specifically configured to: pass the The first voltage after the step-down switches the source device to the target device, for example, the second voltage output controller, the high voltage switch, and the high voltage converter may be the second voltage output controller in FIG. 12, and the high voltage is turned on. And high voltage converter.
  • the switching device may further include a second voltage output controller, configured to control a first voltage outputting the first voltage value, the voltage value of the third voltage is a second voltage value, and the first voltage value is subtracted from the second voltage
  • the result of the value is greater than a preset threshold, such that the high voltage switch can turn on the first voltage of the first voltage value, and the voltage converter steps down the first voltage of the first voltage value, and the first step after the step-down
  • the voltage supplies power to the switching circuit to switch the source device to the target device.
  • the switching device further includes: a second low-pass filter connected between the reverse voltage conducting module and the reverse power supply module, configured to block the ADSL service and the ultra-high speed digital subscriber line VDSL service.
  • a second low-pass filter connected between the reverse voltage conducting module and the reverse power supply module, configured to block the ADSL service and the ultra-high speed digital subscriber line VDSL service.
  • the second low pass filter may be V3 in FIGS. 7 to 13.
  • a second low-pass filter is added to block the ADSL service and the ultra-high-speed digital subscriber line VDSL service.
  • G.fast service to avoid reverse voltage conduction module affects ADSL service, ultra-high-speed digital subscriber line VDSL service and G.fast service.
  • the switching device further includes: a third low-pass filter connected between the reverse power conversion module and the switching circuit, configured to block the ADSL service and the ultra-high-speed digital user after the first voltage is turned on Line VDSL service and G.fast service, to avoid reverse power conversion module affecting normal ADSL service, ultra-high speed digital subscriber line VDSL service and G.fast service, the third low-pass filter can be as shown in Figure 11 and Figure 12 V5.
  • a third low-pass filter connected between the reverse power conversion module and the switching circuit, configured to block the ADSL service and the ultra-high-speed digital user after the first voltage is turned on Line VDSL service and G.fast service, to avoid reverse power conversion module affecting normal ADSL service, ultra-high speed digital subscriber line VDSL service and G.fast service
  • the third low-pass filter can be as shown in Figure 11 and Figure 12 V5.
  • the switching device further includes: a fourth low pass filter connected between the reverse voltage conducting module and the voltage current detector for blocking the ADSL service and the ultra high speed digital subscriber line VDSL
  • the service and the G.fast service prevent the voltage current detector and the second voltage output controller from affecting the ADSL service, the ultra-high speed digital subscriber line VDSL service, and the G.fast service.
  • the fourth low pass filter may be as shown in FIG. V4 in Figs. 10 to 13.
  • the first terminal, the second terminal, the third terminal, and the fourth terminal mentioned in the foregoing embodiments may respectively be 1, 2, 3, 4, and 5, which are labeled in FIG. 7 to FIG. 11 and FIG.
  • the terminal and the sixth terminal may be 5, 6 as noted in FIGS. 10 to 13 and 8 respectively.
  • the third voltage may be a DC voltage corresponding to the POTS service, where the third voltage provides power to the terminal device, and the first voltage is a reverse direction provided by the PSE in the terminal device to the outdoor integrated device. DC voltage.
  • FIG. 3 shows a reverse power supply device 300 according to an embodiment of the present invention.
  • the reverse power supply device 300 includes:
  • the voltage current detector 310 is configured to: detect a first polarity of the third voltage, and output the first polarity to the voltage current detector 310, The third voltage corresponds to the first service;
  • the first voltage output controller 320 is configured to: receive the first polarity input by the voltage current detector, and control to output the first polarity of the second polarity according to the first polarity And a voltage, so that the switching circuit switches the source device connected to the terminal device to the target device according to the first voltage of the second polarity, the first polarity being opposite to the second polarity.
  • connection relationship between the voltage current detector 310 and the first voltage output controller 310 is not limited.
  • the output of the voltage current detector is connected to the input end of the first voltage output controller.
  • the voltage current detector 310 can be the voltage current detector of FIGS. 8, 10, and 11, and the first voltage output controller 320 can be the first voltage output controller of FIGS. 8, 10, and 11. .
  • the first voltage output controller 320 is specifically configured to: when the first polarity is a negative pole, control the first voltage of the output positive pole, or when the first polarity is a positive pole, control the output negative pole The first voltage.
  • the first voltage output controller 320 is configured to: when the voltage value of the third voltage is zero, control an output pulse sequence; the voltage current detector is specifically configured to: detect a polarity of the pulse sequence; When the power conducting device turns on the pulse sequence, the polarity of the pulse sequence is determined as the polarity of the third voltage.
  • the first service is a traditional telephone service POTS.
  • the reverse power supply device 300 further includes: a fourth low pass filter connected between the reverse voltage conducting module and the voltage current detector for blocking the ADSL service and the ultra high speed digital user At least one of a line VDSL service and a G.fast service, the low pass filter being the fourth low pass filter in the first aspect.
  • the fourth low pass filter may be the fourth low pass filter V4 of FIGS. 8 and 10 to 12.
  • FIG. 4 shows a directional power supply device 400 according to an embodiment of the present invention.
  • the reverse power supply device 400 includes a first connector 410, a second connector 420, a third connector 430, and a reverse power supply 440.
  • a connector 410 is connected between the reverse power supply and the third connector 430.
  • the third connector 430 is connected between the first connector 410 and the reverse voltage conducting module.
  • the second connection The device 420 is connected to the reverse power supply.
  • the first connector 410 is opposite to the second connector 410. When the first polarity is the same as the second polarity, the first connector 410 is disconnected.
  • the second connector 420 is connected to the third connector 430 by the connection with the third connector 430.
  • the reverse power supply 440 can be the PSE in FIG. 13
  • the first connector 410 can be the first connector in FIG. 13
  • the second connector 420 can be the second connector in FIG.
  • the connector 430 can be the third connector in FIG.
  • FIG. 5 shows a reverse power supply device 500 according to an embodiment of the present invention.
  • the reverse power supply device 500 includes a second voltage output controller 510, and an output of the second voltage output controller 510 and the switching device 200.
  • the reverse voltage conducting module is connected to control the outputting the first voltage, the difference between the voltage value of the first voltage and the voltage value of the third voltage output by the source device is greater than a preset threshold, and the voltage value of the first voltage A voltage value greater than the third voltage.
  • the second voltage output controller 510 can be the second voltage output controller of FIG. 12, the output of which is coupled to the high voltage regulator.
  • the switching device 600 includes a high voltage switch 610, a voltage converter 620 and a switching circuit 630.
  • the high voltage switch 610 is connected to the second voltage output controller.
  • the switching circuit 630 is configured to turn on the first voltage; the voltage converter 620 is connected between the high voltage switch and the switching circuit, after the high voltage conductive device turns on the first voltage Performing a step-down conversion process on the first voltage to obtain the first voltage after the step-down, and the switching circuit 630 is connected between the target device and the voltage converter 620 for passing the first voltage after the step-down
  • the source device switches to the target device, for example, the switching device 600 can be the switching device 200 of FIG.
  • the high voltage switch 610 can be the high voltage switch in FIG. 12, and the voltage converter can Considering the voltage converter in FIG. 12, the switching circuit 630 can be the switching controller and the relay K1 shown in FIG.
  • the source device is the central office device and the target device is an outdoor integrated device.
  • the central office device supports the POTS service and the ADSL service.
  • the outdoor integrated device supports VDSL.
  • the connection relationship between each module in FIG. 7 to FIG. 13 is not limited in the embodiment of the present invention.
  • the POTS signal is a low frequency signal
  • the ADSL signal is a high frequency signal.
  • 1, 2, 3, 4, 5, and 6 in FIG. 7 respectively represent a first terminal and a second terminal.
  • the POTS service and the ADSL service flowing out from the central office equipment pass the High Pass Filter (“HPF”) V1 to turn on the ADSL signal to block the POTS signal, and the first low pass filter (Low Pass Filter, referred to as "LPF” ") V2 turns on the POTS service to block the ADSL service, so that the POTS signal passes through the diode group (D1/D2/D3/D4) as shown in Figure 7, and the voltage from the third terminal 3 to the fourth terminal 4 of the POTS signal of V2 It is a positive voltage, and the fourth terminal 4 to the third terminal 3 are negative voltages.
  • HPF High Pass Filter
  • LPF Low Pass Filter
  • the reverse power supply module includes a voltage current detector and a first voltage output controller, and the voltage current detector detects the fifth terminal 5 to sixth.
  • the inverter controls the reverse voltage to output the first voltage of the fifth terminal 5 to the sixth terminal 6 in the negative direction, and the reverse power supply conducting device may be the fifth diode D5 in FIG.
  • the cathode of the fifth diode D5 is connected to the voltage current detector through the fifth terminal; if the voltage current detector detects that the voltage of the fifth terminal 5 to the sixth terminal 6 is a negative voltage, the fifth terminal 5 is illustrated
  • the sixth terminal 6 is connected to the lower line, and the sixth terminal 6 is connected to the upper line. At this time, the voltage output controller controls the output of the fifth terminal 5 to the sixth terminal 6.
  • the fifth diode D5 can also be turned on, when the diode When D5 is turned on, the reverse power conversion module converts the first voltage that is turned on by the diode D5 into a second voltage required by VDSL or G.fast, and the switching circuit includes: a switching controller and a relay K1, and the switching controller also adopts the first Two-voltage DC control relay K1 from the first
  • the three terminals 3 and the fourth terminal 4 are electrically connected to the outdoor integrated device 720.
  • the terminal device is a VDSL or G.fast terminal supporting POTS voice, that is, after the POTS service and the ADSL service are upgraded, the corresponding terminal device is also performed. Upgraded.
  • the diode group in FIGS. 7 and 8 includes a connection of a first diode D1, a second diode D2, a third diode D3, and a fourth diode D4, D1, D2, D3, and D4.
  • the relationship is: the anode of D1 is connected to the central office device 710 through the first terminal 1, the cathode of D1 is connected to the switching circuit through the third terminal 3; the cathode of D2 is connected to the central office device 710 through the second terminal 2, and the anode of D2 passes.
  • the fourth terminal 4 is connected to the switching circuit; the negative pole of D3 is connected to the central office device 710 through the first terminal 1, the positive pole of D3 is connected to the switching circuit through the fourth terminal 4; the positive pole of D4 is passed through the second terminal 2 and the central office device 710. Connected, the negative pole of D4 is connected to the switching circuit through the third terminal 3, so that the voltage of the third terminal to the fourth terminal can be made regardless of whether the voltage of the first terminal to the second terminal outputted by the central office device 710 is positive or negative. positive electrode.
  • the diode group may not include the third diode D3 and the fourth diode D4, and only includes the first diode D1 and the second diode D2, in engineering
  • the voltage of the first terminal 1 to the second terminal 2 is a positive third voltage, so that the voltage of the third terminal 3 to the fourth terminal 4 is positive during switching.
  • the third voltage to the direction.
  • the diode group and the matching load of the switching device in FIG. 7 and FIG. 8 can also be removed, and the voltage of the first terminal 1 to the second terminal 2 is ensured to be a positive third voltage by the engineering personnel during the wiring process.
  • the sixth diode may be added, and the conducting direction of the sixth diode D6 is opposite to the conducting direction of the fifth diode D5, that is, when the fifth two When the pole tube D5 is broken down, D6 can be selected to turn on the first voltage of the negative pole.
  • the polarity of the third voltage from the third terminal 3 to the fourth terminal 4 output from the central office device is positive by the diode group, and the first voltage output controller outputs the fifth terminal 5 to sixth.
  • the first voltage in the negative direction of the terminal 6 is turned on by the fifth diode D5, and the reverse power conversion module converts the first voltage into a second voltage required by the outdoor integrated device, and the switching controller utilizes the second voltage Switching the relay to the outdoor integrated device 720 completes the automatic switching from the central office device 710 to the outdoor integrated device 720, reducing labor costs and reducing engineering complexity.
  • FIG. 9 is different from FIG. 7 in that the direction of the diode group and the fifth diode are different; the functions of the same module in FIG. 10 and FIG. 8 are not described herein again, as shown in FIG. 10 and FIG.
  • the difference between the diode group and the fifth diode is different.
  • the output first voltage from the fifth terminal 5 to the sixth terminal 6 is a negative pole, so the fifth diode D5 is negatively conductive, and the negative pole of the fifth diode D5 is connected to the fifth terminal 5, and the central office device of FIG.
  • the voltage of the third terminal 3 to the fourth terminal 4 after the third voltage outputted by the 710 passes through the diode group is a negative pole, and the first voltage output from the fifth terminal 5 to the sixth terminal 6 of the first voltage output controller is a positive pole, so
  • the fifth diode D5 is forward-conducting, and the anode of the fifth diode D5 is connected to the fifth terminal.
  • the diode group in FIGS. 9 and 10 includes a connection of a first diode D1, a second diode D2, a third diode D3, and a fourth diode D4, D1, D2, D3, and D4.
  • the relationship is: the negative pole of D1 is connected to the central office device 710 through the first terminal 1, the positive pole of D1 is connected to the switching circuit through the third terminal 3; the positive pole of D2 is connected to the central office device 710 through the second terminal 2, and the negative pole of D2 passes The fourth terminal 4 is connected to the switching circuit; the anode of D3 is connected to the central office device 710 through the first terminal 1, the cathode of D3 is connected to the switching circuit through the fourth terminal 4; the cathode of D4 is passed through the second terminal 2 and the central office device 710.
  • the positive pole of D4 is connected to the switching circuit through the third terminal 3, so that the voltage of the third terminal to the fourth terminal can be made regardless of whether the voltage of the first terminal to the second terminal outputted by the central office device 710 is positive or negative. negative electrode.
  • the diode group may not include the third diode D3 and the fourth diode D4, and only includes the first diode D1 and the second diode D2, in engineering
  • the voltage of the first terminal 1 to the second terminal 2 is a negative third voltage, so that the voltage of the third terminal 3 to the fourth terminal 4 is negative at the time of switching.
  • the third voltage to the direction.
  • the diode group and the matching load of the switching device in FIG. 9 and FIG. 10 can also be removed, and the voltage of the first terminal 1 to the second terminal 2 is ensured to be a negative third voltage during the wiring process by the engineering personnel. .
  • the sixth diode D6 may be added, and the conduction direction of the sixth diode D6 is opposite to the conduction direction of the fifth diode D5, that is, when the fifth two When the pole tube D5 is broken down, D6 can be selected to conduct the first voltage of the positive pole.
  • the role of the second low-pass filter V3 in FIG. 7 and FIG. 9 is to block the VDSL service, the ADSL service, or the G.fast service, and prevent the reverse power conversion module from affecting the VDSL service.
  • ADSL service or G.fast service the fourth low-pass filter V4 in FIG. 8 and FIG. 10 also functions to block VDSL service, ADSL service or G.fast service, avoiding voltage current detector and first voltage output controller Affect VDSL service, ADSL service or G.fast service.
  • the polarity of the third voltage from the third terminal 3 to the fourth terminal 4 output from the central office device is the negative electrode by the diode group
  • the first voltage output controller outputs the fifth terminal 5 to the sixth
  • the first voltage of the positive pole of the terminal 6 is turned on by the fifth diode D5
  • the reverse power conversion module converts the first voltage into a second voltage required by the outdoor integrated device
  • the switching controller utilizes the second voltage Switching the relay to the outdoor integrated device 720 completes the automatic switching from the central office device 710 to the outdoor integrated device 720, reducing labor costs and reducing engineering complexity.
  • the switching control is directly connected to the reverse voltage conducting module, and the reverse voltage conducting module includes a fifth diode D5.
  • the switching circuit includes a switching controller and a fifth two.
  • the pole tube D5 is directly connected, and the reverse power conversion module is directly connected to the outdoor integrated device 720, so that the power of the switching controller can be provided by the first voltage instead of the second voltage after the conversion of the reverse power conversion module.
  • connection relationship of the reverse power conversion module in FIG. 7 to FIG. 10 may be a connection relationship as shown in FIG. 11 , which is not limited by the embodiment of the present invention.
  • the switching device 740 may further include a second voltage output controller including a high voltage switch and a high voltage converter, before the switching device 740 switches,
  • the terminal device 730 is directly connected to the central office device 710, and the third voltage output by the central office device 710 is usually 10V to 60V, and the second voltage output controller can control the first voltage outputting the high voltage value, for example, the voltage value of the first voltage. It can be 150V, so that the high voltage switch can conduct the first voltage of the high voltage value, and then the high voltage converter turns on the first voltage after the first voltage is turned on, the high voltage converter performs the stepping process of the first voltage to obtain the voltage required by the switching circuit.
  • the switching circuit can be switched from the central office device 710 to the outdoor integrated device 720 by the stepped first voltage.
  • the PSE can normally provide power to the outdoor integrated device 720, that is, shown in FIG.
  • the second voltage output controller, the high voltage switch, and the high voltage converter are provided to switch the circuit to provide the electrical energy required for switching.
  • the reverse power supply module may include a first connector, a second connector, and a third connector, and the connection direction of the second connector is opposite to the connection direction of the first connector.
  • the indication of the indicator light for example, can be set as the opposite
  • the indicator light is normal, and when the PSE outputs the first voltage of the fifth terminal 5 to the sixth terminal 6, the indication is If the lamp is abnormal, the user can manually disconnect the first connector from the third connector and connect the second connector to the third connector.
  • connection relationship of the diode groups shown in FIG. 13 may be the connection relationship of the diodes shown in FIG. 10, such that the third voltage of the third terminal 3 to the fourth terminal 4 is a negative voltage, and the reverse power supply can be set.
  • the (PSE) outputs the first forward voltage of the fifth terminal 5 to the sixth terminal 6, the indicator light is normal, and when the PSE outputs the first voltage of the fifth terminal 5 to the sixth terminal 6 in the negative direction, the indicator light is abnormal.
  • the user can manually disconnect the first connector from the third connector and connect the second connector with the third connector.
  • the first low pass filter V2 and the high pass filter V1 are added in FIG. 7 to FIG. 11 and FIG. 13 in order to prevent the diode group from affecting the VDSL service.
  • the first low-pass filter V2 and the high-pass filter V1 may not be added in the actual application process, which is not limited in this embodiment of the present invention.
  • the central office device may only support the POTS service, and the switching device in FIG. 7 to FIG. 11 and FIG. 13 may not include the first low pass filter V2 and the high pass filter V1, that is, in the embodiment of the present invention.
  • the first low pass filter is to separate the POTS service from the ADSL service.
  • the source device only supports the POTS service, the first low pass filter and the high pass filter may not be needed.
  • the central office device 710 mentioned in FIG. 7 to FIG. 13 above may be the central office device 110 in FIG. 1
  • the outdoor integrated device 720 in FIG. 7 to FIG. 13 may be the outdoor integrated device in FIG. 120
  • the terminal device 730 in FIG. 7 to FIG. 13 may be the terminal device 130 in FIG. 1
  • the switching device 740 in FIGS. 7 to 13 may be the switching device 200 in FIG.
  • the disclosed devices, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another device, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a mobile hard disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a disk or a CD.
  • ROM Read-Only Memory
  • RAM Random Access Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种切换设备,该切换设备包括:反向电压导通模块,用于接收第一电压;该反向电压导通模块还用于:在接收该第一电压之后,导通该第一电压;切换电路,用于通过该反向电压导通模块导通的该第一电压将与该终端设备连接的设备从源设备切换到目标设备,以达到该终端设备给该目标设备反向供电,在该切换电路将与该终端设备连接的设备从该源设备切换到该目标设备之前,该源设备给该终端设备正向供电;该反向电压导通模块的输出端与该切换电路的输入端连接,该切换电路的输出端与该目标设备的输入端连接,能够降低工程的复杂度,减少人工费用。

Description

切换设备 技术领域
本发明实施例涉及通信领域,尤其涉及通信领域中的切换设备。
背景技术
有线网络的业务升级过程中,需要将中心局设备提供的传统电话业务(Plain Old Telephone Service,简称“POTS”)和非对称数字用户线(Asymmetric Digital Subscriber Line,简称“ADSL”)业务升级为超高速数字用户线(Very-high-data-rate Digital Subscriber Line简称“VDSL”)业务或在100米的铜缆距离内提供上下行总和为1Gbps接入速率的下一代数字用户线(G.fast)的业务,需要用户住宅的反向供电设备(Power Supply Equipment,简称“PSE”)给VDSL业务或G.fast业务提供直流电,反向PSE给VDSL业务或G.fast业务供电时,反向PSE提供的直流电与中心局设备的POTS直流电存在冲突,会导致电源异常,为了解决用户住宅的反向PSE提供的直流电与POTS直流电冲突的问题,工程人员需要断开中心局设备与终端设备的连接,将室外一体化设备与终端设备连接起来,这样,需要协调工程人员到现场的时间和用户的时间,使得客户满意度降低,并且会使得工程复杂度高,人工费用昂贵。
发明内容
本发明实施例提供的切换设备,可以实现自动切换,降低工程的复杂度,减少人工费用。
第一方面,提供了一种切换设备,该切换设备包括:反向电压导通模块,用于导通终端设备提供的第一电压;切换电路,用于通过该反向电压导通模块导通的该第一电压将与该终端设备连接的设备从源设备切换到目标设备,以达到该终端设备给该目标设备反向供电,在该切换电路将与该终端设备连接的设备从该源设备切换到该目标设备之前,该源设备给该终端设备正向供电;其中,该反向电压导通模块的输出端与该切换电路的输入端连接,该切换电路的输出端与该目标设备的输入端连接。
这样,反向电压导通模块导通第一电压之后,切换电路根据该第一电压 将终端设备与源设备连接切换到终端设备与目标设备连接,能实现从源设备到目标设备的自动切换,能够降低工程的复杂度,减少人工费用。
可选地,第一电压可以是用户向目标设备提供的,该源设备可以是中心局设备,该目标设备可以是室外一体化设备,反向电压导通模块可以接收用户住宅提供的第一电压,然后切换电路根据该第一电压将中心局设备切换到室外一体化设备,中心局设备支持POTS和ADSL业务,室外一体化设备支持VDSL业务或G.fast业务,这样,在POTS和ADSL业务升级的过程中,避免了人工进行切换,减少人工费用。
在第一方面的第一种可能的实现方式中,该切换设备还包括:反向电源转换模块,连接在该目标设备与该反向电压导通模块之间,用于在该电源导通模块导通该第一电压之后,将该第一电压转换成该目标设备需要的第二电压。
具体地,在反向电源导通模块导通该第一电压后,该第一电压可能不是目标设备需要的电压,因此需要反向电源转换模块该将第一电压转换成目标设备需要的第二电压,例如,该反向电源转换模块可以将电压值高的第一电压转换为电压值相对较低的第二电压。
结合第一方面的上述可能的实现方式,在第一方面的第二种可能的实现方式中,该反向电源转换模块连接在该切换电路与该反向电压导通模块之间,该第二电压为该切换电路提供电能。
结合第一方面的上述可能的实现方式,在第一方面的第三种可能的实现方式中,该反向电源转换模块连接在该切换电路与该目标设备之间,该第一电压为该切换电路提供电能。
在本发明实施例中,切换电路的电能可以是反向电源转换模块转换前的第一电压,也可以是该反向电源转换模块转换后的第二电压,根据反向电源转换模块的连接关系为切换电路提供电能,当反向电源转换模块连接在反向电压导通模块与切换电路之间时,该切换电路的电能由反向电源转换模块转换后的第二电压提供,该第二电压也为目标设备提供电能;当反向电源转换模块连接在切换电路与目标设备之间时,该切换电路的电能由反向电源转换模块转换前的第一电压提供,该第二电压为目标设备提供电能。
结合第一方面的上述可能的实现方式,在第一方面的第四种可能的实现方式中,该切换电路包括:切换控制器,用于当该反向电压导通模块导通该 第一电压时,控制该继电器将与该终端设备连接的该源设备切换到该目标设备;继电器,用于根据该切换控制器的控制将与该终端设备连接的该源设备切换到该目标设备;其中,该反向电压导通模块的输出端与该切换控制器的输入端连接,该切换控制器的输出端与该继电器的输入端连接,该继电器的输出端与该目标设备连接。
结合第一方面的上述可能的实现方式,在第一方面的第五种可能的实现方式中,该切换设备还包括:二极管组,通过第一端子和第二端子与该源设备连接,通过第三端子与第四端子与该切换电路连接,用于使得该源设备输出的该第一端子到该第二端子的第三电压的极性为第一极性。
在本发明实施例中,由于源设备输出的第一端子到第二端子的第三电压的极性不确定,所以需要通过二极管组使得第一端子到第二端子的第三电压的极性确定,第一电压的极性可能与第三电压的极性相反,这样,反向电压导通模块就可以只导通第一电压,而避免导通第三电压,使得第一电压为切换电路提供电能。
结合第一方面的上述可能的实现方式,在第一方面的第六种可能的实现方式中,该二极管组包括:第一二极管,该第一二极管的正极通过该第一端子与该源设备连接,该第一二极管的负极通过该第三端子与该切换电路连接,用于导通该第一端子到该第二端子的正向的该第三电压;第二二极管,该第二二极管负极通过该第二端子与该源设备连接,该第二二极管的正极通过该第四端子与该切换电路连接,用于导通该第一端子到该第二端子的正向的该第三电压。
在本发明实施例中,当第一端子到第二端子的第三电压是正电压时,该第一二极管的正极通过第一端子与源设备连接,该第二二极管的负极通过第二端子与该源设备连接,这样,源设备输出的第三电压通过第一二极管和第二二极管之后,第三端子到第四端子的电压就为确定的正向的第三电压,第一电压的第二极性就可以为负极,这样,反向电源导通模块只导通负向的第一电压。
结合第一方面的上述可能的实现方式,在第一方面的第七种可能的实现方式中,该二极管组还包括:第三二极管,该第三二极管的负极通过该第一端子与该源设备连接,该第三二极管的正极通过该第四端子与该切换电路连接,用于导通该第一端子到该第二端子的负向的该第三电压;第四二极管, 该第四二极管的正极通过该第二端子与该源设备连接,该第四二极管的负极通过该第三端子与该切换电路连接,用于导通该第一端子到该第二端子的负向的该第三电压。
在本发明实施例中,不管源设备输出的第一端子到第二端子的是正向的第三电压还是负向的第三电压,都可以通过第一二极管、第二二极管、第三二极管和第四二极管,使得第三端子到第四端子输出正向的第三电压。第三二极管的负极通过该第一端子与源设备连接,第三二级管的正极通过第四端子与切换电路,第四二极管的正极通过第二端子与源设备连接,第四二级管的负极通过第三端子与切换电路连接,当第一端子到第二端子的电压是负向的第三电压时,也能确保第三端子到第四端子输出正向的第三电压,第一电压的极性可以与第三电压的极性相反,第一电压的第二极性可以为负极,这样反向电源导通模块可以导通负向的第一电压。
结合第一方面的上述可能的实现方式,在第一方面的第八种可能的实现方式中,该第一二极管的负极通过该第一端子与该源设备连接,该第一二极管的正极通过该第三端子与该切换电路连接,用于导通该第一端子到该第二端子的负向的该第三电压;该第二二极管正极通过该第二端子与该源设备连接,该第二二极管的负极通过该第四端子与该切换电路连接,用于导通该第一端子到该第二端子的负向的该第三电压。
在本发明实施例中,当源设备输出的第一端子到第二端子的电压是负向的第一电压时,该第三二极管的负极通过第一端子与源设备连接,该第四二极管的正极通过第二端子与该源设备连接,这样,源设备输出的第三电压通过第三二极管和第四二极管之后,第三端子到第四端子的电压就为确定的负向的第三电压,第一电压的第二极性就可以为正向电压,这样,反向电源导通模块只导通正向的第一电压。
结合第一方面的上述可能的实现方式,在第一方面的第九种可能的实现方式中,该第三二极管的正极通过该第一端子与该源设备连接,该第三二极管的负极通过该第四端子与该切换电路连接,用于导通该第一端子到该第二端子的正向的该第三电压;该第四二极管的负极通过该第二端子与该源设备连接,该第四二极管的正极通过该第三端子与该切换电路连接,用于导通该第一端子到该第二端子的正向的该第三电压。
在本发明实施例中,不管源设备输出的第一端子到第二端子的是正向的 第三电压还是负向的第三电压,都可以通过第一二极管、第二二极管、第三二极管和第四二极管,使得第三端子到第四端子输出负向的第三电压。第三二极管的正极通过该第一端子与源设备连接,第三二级管的负极通过第四端子与切换电路,第四二极管的负极通过第二端子与源设备连接,第四二级管的正极通过第三端子与切换电路连接,当第一端子到第二端子的电压是正向的第三电压时,也能确保第三端子到第四端子输出负向的第三电压,第一电压的第二极性就可以为正向电压,这样,反向电源导通模块只导通正向的第一电压。
结合第一方面的上述可能的实现方式,在第一方面的第十种可能的实现方式中,该源设备支持传统电话业务POTS和非对称数字用户线ADSL业务,该切换设备还包括:第一低通滤波器,连接在该二极管组与该源设备之间,用于导通该POTS的信号;高通滤波器,连接在该源设备与该切换电路之间,用于导通非对称数字用户线ADSL业务。
在本发明实施例中,高通滤波器直接连接在源设备和切换电路之间,由于源设备支持POTS业务和ADSL业务,POTS业务属于低频直流电信号,ADSL业务属于高频交流电信号,POTS可以为终端设备提供直流电压,因此需要通过高通滤波器和第一低通滤波器将POTS业务和ADSL业务分开,避免二极管组影响ADSL交流电信号。
可选地,当该源设备仅支持POTS业务时,该切换设备可以不包括第一低通滤波器和高通滤波器,即在本发明实施例中的第一低通滤波器是为了将POTS业务和ADSL业务分开,当源设备仅支持POTS业务时,则可以不需要第一低通滤波器和高通滤波器。
结合第一方面的上述可能的实现方式,在第一方面的第十一种可能的实现方式中,该切换设备还包括:匹配负载,连接在该二极管组与该切换电路之间,用于在该反向电压导通模块导通该第一电压之前,调整该POTS的振铃信号。
具体地,由于二极管组会影响POTA的振铃信号,为了使得源设备与终端设备正常的进行通信,因此需要匹配负载进行平衡,进一步保证信号的稳定性。
结合第一方面的上述可能的实现方式,在第一方面的第十二种可能的实现方式中,该切换设备还包括:反向供电模块,该反向供电模块与该反向电 压导通模块通过第五端子和第六端子连接,该反向供电模块用于:使得该第五端子到该第六端子的第一电压的极性为第二极性;向该反向电压导通模块输出该第二极性的该第一电压,该第二极性与该第一极性相反;该反向电压导通模块还用于:在该导通第一电压之前,接收该第一极性的该第一电压。
在本发明实施例中,该切换设备包括反向供电模块,该反向供电模块用于输出第二极性的第一电压,该第二极性与第三电压的第一极性相反,这样,反向电压导通模块可以只导通第二极性的第一电压。
结合第一方面的上述可能的实现方式,在第一方面的第十三种可能的实现方式中,该反向电压导通模块包括:第五二极管,当该第二极性为负极时,该第五二极管用于负向导通该第一电压,该第五二极管的负极通过该第五端子与该反向供电模块连接,该第五二极管的正极与该切换电路连接,或当该第二极性为正极时,该第五二极管用于正向导通该第一电压,该第五二极管的正极通过该第五端子与该反向供电模块连接,该第五二极管的负极与该切换电路连接。
具体地,该反向电压导通模块包括的第五二极管根据第一电压的第二极性确定导通方向,当第二极性为正极时,第五二极管用于正向导通第一电压;当第二极性为负极时,第五二极管用于负向导通第一电压。
结合第一方面的上述可能的实现方式,在第一方面的第十四种可能的实现方式中,该反向电压导通模块还包括:第六二极管,当该第二极性为负极时,该第六二极管用于正向导通该第一电压,该第六二极管的正极通过该第六端子与该反向供电模块连接,该第六二极管的负极与该切换电路连接,或当该第二极性为正极时,该第六二极管用于负向导通该第一电压,该第六二极管的负极通过该第六端子与该反向供电模块连接,该第六二极管的正极与该切换电路连接。
在本发明实施例中,反向电压导通模块包括的第六二极管可以进一步确保能够导通第二极性的第一电压,例如,当第五二极管被击穿时,可以采用第六二极管来导通第二极性的第一电压。
结合第一方面的上述可能的实现方式,在第一方面的第十五种可能的实现方式中,该反向供电模块包括:电压电流检测器,用于检测该第五端子到该第六端子该第三电压的该第一极性,并将该第一极性发送给该第一电压输出控制器;该第一电压输出控制器用于:接收该第一极性,根据该第一极性 控制输出第二极性的该第一电压。
在本发明实施例中,当电压电流检测器检测到第一极性为正极时,第一电压输出控制器会控制输出负极的第一电压,当电压电流检测器检测到的第一极性为负极时,第一电压输出控制器会控制输出正极的第一电压。
结合第一方面的上述可能的实现方式,在第一方面的第十六种可能的实现方式中,该第一电压输出控制器具体用于:当该第三电压的电压值为零时,输出脉冲序列;该电压电流检测器还用于:检测该脉冲序列的极性;该反向电压导通模块用于导通该脉冲序列;该第一电压输出控制器还用于:当该反向电压导通模块导通该脉冲序列时,使得该脉冲序列的极性为该第二极性。
在本发明实施例中,当第三电压的电压值为0时,则第一电压输出控制器控制输出脉冲序列,当反向电压导通模块导通该脉冲序列时,电压电流检测器用于检测脉冲序列的极性,并将脉冲序列的极性发送给第一电压输出控制器,将该脉冲序列的极性确定为第二极性。
结合第一方面的上述可能的实现方式,在第一方面的第十七种可能的实现方式中,该反向供电模块还包括:第一连接器、第二连接器、第三连接器和反向供电电源,该第一连接器连接在该反向供电电源与该第三连接器之间,该第三连接器连接在该第一连接器和该反向电压导通模块之间,该第二连接器与该反向供电电源连接,该第一连接器与该第二连接器的连接方向相反,当该第一极性与该第二极性相同时,断开该第一连接器与该第三连接器的连接,将该第二连接器与该第三连接器连接。
进一步地,反向供电模块还可以包括指示灯,如果指示灯正常输出第一电压,则说明第一连接器与第三连接器连接正常,当指示灯异常时,说明第一连接器与第三连接器连接异常,因此,需要用户手动的将第一连接器和第三连接器断开,手动的将第一连接器和第二连接器相连。
结合第一方面的上述可能的实现方式,在第一方面的第十八种可能的实现方式中,该第一电压的电压值与该第三电压的电压值之差大于预设阈值,该第一电压的电压值大于该第三电压的电压值。
在本发明实施例中,可以通过电压值的高低来导通第一电压,即当第一电压是高压,第三电压是低压时,反向电压导通模块可以导通第一电压。
结合第一方面的上述可能的实现方式,在第一方面的第十九种可能的实现方式中,该切换设备还包括:第二电压输出控制器,该第二电压输出控制 器的输出端与该反向电压导通模块连接,用于控制该输出该第一电压;该反向电压导通模块还包括:高压导通器,连接在该第二电压输出控制器与该切换电路之间,用于导通该第一电压;电压转换器,连接在该高压导通器与该切换电路之间,用于在该高压导通器导通该第一电压之后,对该第一电压进行降压转换处理得到降压后的该第一电压;该切换电路具体用于:通过该降压后的该第一电压将源设备切换到目标设备。
在本发明实施例中,该切换设备还可以包括第二电压输出控制器,用于控制输出第一电压值的第一电压,第三电压的电压值为第二电压值,第一电压值减去第二电压值的结果大于预设阈值,这样,高压导通器就可以导通第一电压值的第一电压,电压转换器将第一电压值的第一电压进行降压转换,降压后的第一电压为切换电路提供电能将源设备切换到目标设备。
结合第一方面的上述可能的实现方式,在第一方面的第二十种可能的实现方式中,该切换设备还包括:第二低通滤波器,连接在该反向电压导通模块与该反向供电模块之间,用于阻断该ADSL业务、超高速数字用户线VDSL业务和G.fast业务中的至少一种。
在本发明实施例中,为了避免切换设备影响正常的ADSL业务、超高速数字用户线VDSL业务和G.fast业务,增加第二低通滤波器来阻断ADSL业务、超高速数字用户线VDSL业务和G.fast业务,避免反向电压导通模块影响ADSL业务、超高速数字用户线VDSL业务和G.fast业务。
结合第一方面的上述可能的实现方式,在第一方面的第二十一种可能的实现方式中,该切换设备还包括:第三低通滤波器,连接在反向电源转换模块和该切换电路之间,用于在导通第一电压之后,阻断ADSL业务、超高速数字用户线VDSL业务和G.fast业务,避免反向电源转换模块影响正常的ADSL业务、超高速数字用户线VDSL业务和G.fast业务。
结合第一方面的上述可能的实现方式,在第一方面的第二十二种可能的实现方式中,该切换设备还包括:第四低通滤波器,连接在反向电压导通模块和该电压电流检测器之间,用于阻断ADSL业务、超高速数字用户线VDSL业务和G.fast业务,避免电压电流检测器和第二电压输出控制器影响ADSL业务、超高速数字用户线VDSL业务和G.fast业务。
第二方面,提供了一种反向供电设备,反向供电设备包括:电压电流检测器和第一电压输出控制器,该电压电流检测器用于:检测第三电压的第一 极性,并将该第一极性输出给该电压电流检测器,该第三电压对应第一业务;该第一电压输出控制器用于:接收该电压电流检测器输入的该第一极性,并根据该第一极性,控制输出第二极性的第一电压,以便于切换电路根据该第二极性的该第一电压将与终端设备连接的源设备切换到目标设备,该第一极性与该第二极性相反。
在第二方面的第一种可能的实现方式中,该第一电压输出控制器具体用于:当该第一极性为负极时,控制输出正极的该第一电压,或当该第一极性为正极时,控制输出负极的该第一电压。
结合第二方面的上述可能的实现方式,在第二方面的第二种可能的实现方式中,该第一电压输出控制器具体用于:当该第三电压的电压值为零时,控制输出脉冲序列;该电压电流检测器具体用于:检测该脉冲序列的极性;当电源导通设备导通该脉冲序列时,将该脉冲序列的极性确定为该第三电压的极性。
结合第二方面的上述可能的实现方式,在第二方面的第三种可能的实现方式中,该第一业务为传统电话业务POTS。
结合第一方面的上述可能的实现方式,在第一方面的第四种可能的实现方式中,该反向供电设备还包括:第四低通滤波器,连接在反向电压导通模块与该电压电流检测器之间,用于阻断该ADSL业务、超高速数字用户线VDSL业务和G.fast业务中的至少一种,该低通滤波器为第一方面中的第四低通滤波器。
第三方面,提供了一种反向供电设备,该反向供电设备包括:第一连接器、第二连接器、第三连接器和反向供电电源,该第一连接器连接在该反向供电电源与该第三连接器之间,该第三连接器连接在该第一连接器和反向电压导通模块之间,该第二连接器与该反向供电电源连接,该第一连接器与该第二连接器的连接方向相反,当该第一极性与该第二极性相同时,断开该第一连接器与该第三连接器的连接,将该第二连接器与该第三连接器连接。
第四方面,提供了一种反向供电设备,该反向供电设备包括:第二电压输出控制器,该第二电压输出控制器的输出端与切换设备中的反向电压导通模块连接,用于控制该输出该第一电压,该第一电压的电压值与源设备输出的第三电压的电压值之差大于预设阈值,第一电压的电压值大于第三电压的电压值。
第五方面,提供了一种切换设备,该切换设备包括:高压导通器,电压转换器和切换电路,高压导通器连接在第二电压输出控制器与该切换电路之间,用于导通第一电压;电压转换器,连接在该高压导通器与该切换电路之间,用于在该高压导通器导通该第一电压之后,对该第一电压进行降压转换处理得到降压后的该第一电压,切换电路,连接在目标设备与电压转换器之间,用于通过该降压后的该第一电压将该源设备切换到该目标设备。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的应用场景示意性框图。
图2是本发明实施例提供的切换设备的示意性框图。
图3是本发明实施例提供的反向供电设备的示意性框图。
图4是本发明实施例提供的另一反向供电设备示意性框图。
图5是本发明实施例提供的另一反向供电设备的示意性框图。
图6是本发明实施例提供的另一切换设备的示意性框图。
图7是本发明实施例提供的又一切换设备的示意性框图。
图8是本发明实施例提供的又一切换设备的方法的示意性框图。
图9是本发明实施例提供又一切换设备的示意性框图。
图10是本发明实施例提供的又一切换设备的示意性框图。
图11是本发明实施例提供的又一切换设备的示意性框图。
图12是本发明实施例提供的又一切换设备的示意性框图。
图13是本发明实施例提供的又一切换设备的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
POTS业务和ADSL业务升级到VDSL业务,或者POTS业务和ADSL业务升级G.fast,源设备支持POTS业务和ADSL业务,目标设备支持VDSL业务和G.fast业务,如图1所示,在升级之前中心局设备110与终端设备130进行数据通信,在升级之后室外一体化设备120与终端设备130进行数据通信。在升级之前终端设备支持POTS业务和ADSL业务,在升级之后终端设备也升级为支持POTS语音的VDSL业务或G.fast业务的终端设备。可选地,例如室外一体化设备120可以为有线网络中的分散点单元(Distribution Point Unit,简称“DPU”)。即该中心局设备支持POTS业务和ADSL业务,室外一体化设备120支持VDSL业务或G.fast业务,在升级之后,室外一体化设备120需要终端设备130进行反向供电,因此需要切换设备200将与终端设备130连接的中心局设备110切换到室外一体化设备120,本发明实施例主要针对切换设备200进行描述。
图2示出了本发明实施例提供的切换设备200,该切换设备200包括:
反向电压导通模块210,用于导通终端设备提供的第一电压;
切换电路220,用于通过该反向电压导通模块导通的该第一电压将与该终端设备连接的设备从源设备切换到目标设备,以达到该终端设备给该目标设备反向供电,在该切换电路220将与该终端设备连接的设备从该源设备切换到该目标设备之前,该源设备给该终端设备正向供电;
其中,该反向电压导通模块的输出端与该切换电路的输入端连接,该切换电路的输出端与该目标设备的输入端连接。
应理解,在本发明实施例中,正向供电可以为源设备为终端设备供电,反向供电为终端设备为目标设备供电,例如,在图1中,中心局设备110向终端设备730供电为正向供电,终端设备130向室外一体化设备120供电为反向供电。
这样,反向电压导通模块导通第一电压之后,切换电路根据该第一电压将与终端设备连接的源设备切换到目标设备,能实现从源设备到目标设备的自动切换,能够降低工程的复杂度,减少人工费用。
例如,反向电压导通模块210可以是如图7至图11以及图13中的第五二极管D5,也可以是图7至图11以及图13中的第六二极管D6,也可以是图7至图11以及图13中的第五二极管D5和第六二极管D6,也可以是图12中的高压导通器等等,本发明实施例不限于此。
又例如,切换电路220可以是图7至图13的切换控制器和继电器K1。
可选地,第一电压可以是用户住宅向目标设备提供的反向电压,该源设备可以是中心局设备,该目标设备可以是室外一体化设备,反向电压导通模块可以接收用户住宅提供的第一电压,然后切换电路根据该第一电压将中心局设备切换到室外一体化设备,中心局设备支持POTS和ADSL业务,室外一体化设备支持VDSL业务或G.fast业务,这样,在POTS和ADSL业务升级的过程中,避免了人工进行切换,减少人工费用。
在本发明实施例中提到的中心局设备支持POTS和ADSL业务是为了方便描述,当然中心局设备也可以仅支持POTS业务,本发明实施例对此不作限制。
可选地,该切换设备200还包括:反向电源转换模块,连接在该目标设备与该反向电压导通模块之间,用于在该电源导通模块导通该第一电压之后,将该第一电压转换成该目标设备需要的第二电压。
具体地,在反向电源导通模块导通该第一电压后,该第一电压可能不是目标设备需要的电压,因此需要反向电源转换模块该将第一电压转换成目标设备需要的第二电压,例如,该反向电源转换模块可以将电压值高的第一电压转换为电压值相对较低的第二电压,例如该反向电源转换模块可以为图7至图13中的反向电源转换模块。
可选地,该反向电源转换模块连接在该切换电路与该反向电压导通模块之间,该第二电压为该切换电路提供电能,例如,该反向电源转换模块可以为图7至图10以及图13中的反向电源转换模块。
可选地,该反向电源转换模块连接在该切换电路与该目标设备之间,该第一电压为该切换电路提供电能,例如,该反向电源转换模块可以为图11和图12中的反向电源转换模块。
具体而言,切换电路的电能可以是反向电源转换模块转换前的第一电压,也可以是该反向电源转换模块转换后的第二电压,根据反向电源转换模块的连接关系为切换电路提供电能,当反向电源转换模块连接在反向电压导通模块与切换电路之间时,该切换电路的电能由反向电源转换模块转换后的第二电压提供,该第二电压也为目标设备提供电能;当反向电源转换模块连接在切换电路与目标设备之间时,该切换电路的电能由反向电源转换模块转换前的第一电压提供,该第二电压为目标设备提供电能。
可选地,该切换电路包括:切换控制器,用于当该反向电压导通模块导通该第一电压时,控制该继电器将与该终端设备连接的该源设备切换到该目标设备;继电器,用于根据该切换控制器的控制将与该终端设备连接的该源设备切换到该目标设备;其中,该反向电压导通模块的输出端与该切换控制器的输入端连接,该切换控制器的输出端与该继电器的输入端连接,该继电器的输出端与该目标设备连接,切换控制器可以是图7至图13中的切换控制器,继电器可以是图7至图13中的继电器K1。
可选地,该切换设备200还包括:二极管组,通过第一端子和第二端子与该源设备连接,通过第三端子与第四端子与该切换电路连接,用于使得该源设备输出的该第一端子到该第二端子的第三电压的极性为第一极性,例如该二极管组可以是图7至图11和图13中的二极管组第一二极管D1、第二二极管D2、第三二极管D3和第四二极管D4,也可以为图7至图11和图13中只包括第第一二极管D1和第二二极管的D2二极管组,本发明实施例对此不作限制。
具体地,由于源设备输出的第一端子到第二端子的第三电压的极性不确定,所以需要通过二极管组使得第一端子到第二端子的第三电压的极性确定,第一电压的极性可能与第三电压的极性相反,这样,反向电压导通模块就可以只导通第一电压,而避免导通第三电压,使得第一电压为切换电路提供电能。
可选地,该二极管组包括:第一二极管,该第一二极管的正极通过该第一端子与该源设备连接,该第一二极管的负极通过该第三端子与该切换电路连接,用于导通该第一端子到该第二端子的正向的该第三电压;第二二极管,该第二二极管负极通过该第二端子与该源设备连接,该第二二极管的正极通过该第四端子与该切换电路连接,用于导通该第一端子到该第二端子的正向的该第三电压,第一二极管可以为如图7和8中的第一二极管D1,第二二极管可以为如图7和8中的第二二极管D2。
具体而言,当第一端子到第二端子的第三电压为正向的第三电压时,该第一二极管的正极通过第一端子与源设备连接,该第二二极管的负极通过第二端子与该源设备连接,这样,源设备输出的第三电压通过第一二极管和第二二极管之后,第三端子到第四端子的电压就为确定的正向的第三电压,第一电压的第二极性就可以为负极,这样,反向电源导通模块只导通负向的第 一电压;在实际应用过程中也可以通过工程人员布线等使得第一端子到第二端子输出的电压为正向的第三电压。
可选地,该二极管组还包括:第三二极管,该第三二极管的负极通过该第一端子与该源设备连接,该第三二极管的正极通过该第四端子与该切换电路连接,用于导通该第一端子到该第二端子的负向的该第三电压;第四二极管,该第四二极管的正极通过该第二端子与该源设备连接,该第四二极管的负极通过该第三端子与该切换电路连接,用于导通该第一端子到该第二端子的负向的该第三电压,例如该第三二极管可以为图7和图8中的第三二极管D3,该第四二极管可以为图7和图8中的第四二极管D4。
在本发明实施例中,不管源设备输出的第一端子到第二端子的是正向的第三电压还是负向的第三电压,都可以通过第一二极管、第二二极管、第三二极管和第四二极管,使得第三端子到第四端子输出正向的第三电压。第三二极管的负极通过该第一端子与源设备连接,第三二级管的正极通过第四端子与切换电路,第四二极管的正极通过第二端子与源设备连接,第四二级管的负极通过第三端子与切换电路连接,当第一端子到第二端子的电压是负向的第三电压时,也能确保第三端子到第四端子输出正向的第三电压,第一电压的极性可以与第三电压的极性相反,第一电压的第二极性可以为负极,这样反向电源导通模块可以导通负向的第一电压。
可选地,该第一二极管的负极通过该第一端子与该源设备连接,该第一二极管的正极通过该第三端子与该切换电路连接,用于导通该第一端子到该第二端子的负向的该第三电压;该第二二极管正极通过该第二端子与该源设备连接,该第二二极管的负极通过该第四端子与该切换电路连接,用于导通该第一端子到该第二端子的负向的该第三电压,第一二极管可以为如图9和10中的第一二极管D1,第二二极管可以为如图9和图10中的第二二极管D2。
具体而言,当源设备输出的第一端子到第二端子的电压是负向的第一电压时,该第三二极管的负极通过第一端子与源设备连接,该第四二极管的正极通过第二端子与该源设备连接,这样,源设备输出的第三电压通过第三二极管和第四二极管之后,第三端子到第四端子的电压就为确定的负向的第三电压,第一电压的第二极性就可以为正向电压,这样,反向电源导通模块只 导通正向的第一电压。
可选地,该第三二极管的正极通过该第一端子与该源设备连接,该第三二极管的负极通过该第四端子与该切换电路连接,用于导通该第一端子到该第二端子的正向的该第三电压;该第四二极管的负极通过该第二端子与该源设备连接,该第四二极管的正极通过该第三端子与该切换电路连接,用于导通该第一端子到该第二端子的正向的该第三电压,例如该第三二极管可以为图9和图10中的第三二极管D3,该第四二极管可以为图9和图10中的第四二极管D4。
具体而言,不管源设备输出的第一端子到第二端子的是正向的第三电压还是负向的第三电压,都可以通过第一二极管、第二二极管、第三二极管和第四二极管,使得第三端子到第四端子输出负向的第三电压。第三二极管的正极通过该第一端子与源设备连接,第三二级管的负极通过第四端子与切换电路,第四二极管的负极通过第二端子与源设备连接,第四二级管的正极通过第三端子与切换电路连接,当第一端子到第二端子的电压是正向的第三电压时,也能确保第三端子到第四端子输出负向的第三电压,第一电压的第二极性就可以为正向电压,这样,反向电源导通模块只导通正向的第一电压。
可选地,该源设备支持传统电话业务POTS和非对称数字用户线ADSL业务,该切换设备还包括:第一低通滤波器,连接在该二极管组与该源设备之间,用于导通该POTS的信号;高通滤波器,连接在该源设备与该切换电路之间,用于导通非对称数字用户线ADSL业务,例如,该第一低通滤波器可以为图7至图11以及图13中的V2;该高通滤波器可以为图7至图11以及图13中的V1。
具体而言,高通滤波器直接连接在源设备和切换电路之间,由于源设备支持POTS业务和ADSL业务,POTS业务属于低频直流电信号,ADSL业务属于高频交流电信号,POTS可以为终端设备提供直流电压,因此需要通过高通滤波器和第一低通滤波器将POTS业务和ADSL业务分开,避免二极管组影响ADSL交流电信号。
可选地,该切换设备还包括:匹配负载,连接在该二极管组与该切换电路之间,用于在该反向电压导通模块导通该第一电压之前,调整该POTS的振铃信号,例如,该匹配负载可以为图7至图11以及图13中的匹配负载。
具体地,由于二极管组会影响POTA的振铃信号,为了使得源设备与终 端设备正常的进行通信,因此需要匹配负载进行平衡,进一步保证信号的稳定性。
可选地,该切换设备还包括:反向供电模块,该反向供电模块与该反向电压导通模块通过第五端子和第六端子连接,该反向供电模块用于:使得该第五端子到该第六端子的第一电压的极性为第二极性;向该反向电压导通模块输出该第二极性的该第一电压,该第二极性与该第一极性相反;该反向电压导通模块还用于:在该导通第一电压之前,接收该第一极性的该第一电压,例如,该反向供电模块可以包括图8、图10和图11中的第一电压输出控制器和电压电流检测器,当然反向供电模块也可以包括图8、图10和图11中的PSE,该反向供电模块还可以包括图13中的PSE、第一连接器、第二连接器和第三连接器。
可选地,该反向电压导通模块包括:第五二极管,当该第二极性为负极时,该第五二极管用于负向导通该第一电压,该第五二极管的负极通过该第五端子与该反向供电模块连接,该第五二极管的正极与该切换电路连接,该第五二极管可以为图7、图8和图13中的第五二极管D5。
可选地,当该第二极性为正极时,该第五二极管用于正向导通该第一电压,该第五二极管的正极通过该第五端子与该反向供电模块连接,该第五二极管的负极与该切换电路连接,该第五二极管可以为图9、图10和图11中的第五二极管D5。
具体地,该反向电压导通模块包括的第五二极管根据第一电压的第二极性确定导通方向,当第二极性为正极时,第五二极管用于正向导通第一电压;当第二极性为负极时,第五二极管用于负向导通第一电压。
可选地,该反向电压导通模块还包括:第六二极管,当该第二极性为负极时,该第六二极管用于正向导通该第一电压,该第六二极管的正极通过该第六端子与该反向供电模块连接,该第六二极管的负极与该切换电路连接,该第六二极管可以为图7、图8和图13中的第六二极管D6。
可选地,当该第二极性为正极时,该第六二极管用于负向导通该第一电压,该第六二极管的负极通过该第六端子与该反向供电模块连接,该第六二极管的正极与该切换电路连接,该第六二极管可以为图9、图10和图11中的第六二极管D6。
具体地,反向电压导通模块包括的第六二极管可以进一步确保能够导通 第二极性的第一电压,例如,当第五二极管被击穿时,可以采用第六二极管来导通第二极性的第一电压。
可选地,该反向供电模块包括:电压电流检测器,用于检测该第五端子到该第六端子的该第三电压的该第一极性,并将该第一极性发送给该第一电压输出控制器;该第一电压输出控制器用于:接收该第一极性,根据该第一极性控制输出第二极性的该第一电压,该电压电流检测器可以为图8、图10、图11中的电压电流检测器,第一电压输出控制为可以为图8、图10、图11中的第一电压输出控制器。
具体地,当电压电流检测器检测到第一极性为正极时,第一电压输出控制器会控制输出负极的第一电压,当电压电流检测器检测到的第一极性为负极时,第一电压输出控制器会控制输出正极的第一电压。
可选地,该第一电压输出控制器具体用于:当该第三电压的电压值为零时,输出脉冲序列;该电压电流检测器还用于:检测该脉冲序列的极性;该反向电压导通模块用于导通该脉冲序列;该第一电压输出控制器还用于:当该反向电压导通模块导通该脉冲序列时,使得该脉冲序列的极性为该第二极性。
具体地,当第三电压的电压值为0时,则第一电压输出控制器控制输出脉冲序列,当反向电压导通模块导通该脉冲序列时,电压电流检测器用于检测脉冲序列的极性,并将脉冲序列的极性发送给第一电压输出控制器,将该脉冲序列的极性确定为第二极性。
可选地,该反向供电模块还包括:第一连接器、第二连接器、第三连接器和反向供电电源,该第一连接器连接在该反向供电电源与该第三连接器之间,该第三连接器连接在该第一连接器和该反向电压导通模块之间,该第二连接器与该反向供电电源连接,该第一连接器与该第二连接器的连接方向相反,当该第一极性与该第二极性相同时,断开该第一连接器与该第三连接器的连接,将该第二连接器与该第三连接器连接,第一连接器、第二连接器和第三连接器可以为图13中的第一连接器、第二连接器和第三连接器。
进一步地,反向供电模块还可以包括指示灯,如果指示灯正常输出第一电压,则说明第一连接器与第三连接器连接正常,当指示灯异常时,说明第一连接器与第三连接器连接异常,因此,需要用户手动的将第一连接器和第三连接器断开,手动的将第一连接器和第二连接器相连。
可选地,该第一电压的电压值与该第三电压的电压值之差大于预设阈值,该第一电压的电压值大于该第三电压的电压值。
可选地,该切换设备还包括:第二电压输出控制器,该第二电压输出控制器的输出端与该反向电压导通模块连接,用于控制该输出该第一电压;该反向电压导通模块还包括:高压导通器,连接在该第二电压输出控制器与该切换电路之间,用于导通该第一电压;电压转换器,连接在该高压导通器与该切换电路之间,用于在该高压导通器导通该第一电压之后,对该第一电压进行降压转换处理得到降压后的该第一电压;该切换电路具体用于:通过该降压后的该第一电压将该源设备切换到该目标设备,例如第二电压输出控制器、高压导通器、高压转换器可以为图12中的第二电压输出控制器、高压导通器和高压转换器。
具体地,该切换设备还可以包括第二电压输出控制器,用于控制输出第一电压值的第一电压,第三电压的电压值为第二电压值,第一电压值减去第二电压值的结果大于预设阈值,这样,高压导通器就可以导通第一电压值的第一电压,电压转换器将第一电压值的第一电压进行降压转换,降压后的第一电压为切换电路提供电能将源设备切换到目标设备。
可选地,该切换设备还包括:第二低通滤波器,连接在该反向电压导通模块与该反向供电模块之间,用于阻断该ADSL业务、超高速数字用户线VDSL业务和G.fast业务中的至少一种,例如该第二低通滤波器可以为图7至图13中的V3。
在本发明实施例中,为了避免切换设备影响正常的ADSL业务、超高速数字用户线VDSL业务和G.fast业务,增加第二低通滤波器来阻断ADSL业务、超高速数字用户线VDSL业务和G.fast业务,避免反向电压导通模块影响ADSL业务、超高速数字用户线VDSL业务和G.fast业务。
可选地,该切换设备还包括:第三低通滤波器,连接在反向电源转换模块和该切换电路之间,用于在导通第一电压之后,阻断ADSL业务、超高速数字用户线VDSL业务和G.fast业务,避免反向电源转换模块影响正常的ADSL业务、超高速数字用户线VDSL业务和G.fast业务,该第三低通滤波器可以为图11和图12中的V5。
可选地,该切换设备还包括:第四低通滤波器,连接在反向电压导通模块和该电压电流检测器之间,用于阻断ADSL业务、超高速数字用户线VDSL 业务和G.fast业务,避免电压电流检测器和第二电压输出控制器影响ADSL业务、超高速数字用户线VDSL业务和G.fast业务,例如,该第四低通滤波器可以为图8、图10至图13中的V4。
可选地,上述实施例中提到的第一端子、第二端子、第三端子和第四端子分别可以为图7至图11和图13中标注的1,2,3,4;第五端子和第六端子分别可以为图10至图13以及图8中标注的5,6。
应理解,在本发明实施例中,第三电压可以是POTS业务对应的直流电压,该第三电压为终端设备提供电源,第一电压是终端设备中的PSE向室外一体化设备提供的反向直流电压。
图3示出了本发明实施例提供的反向供电设备300,该反向供电设备300包括:
电压电流检测器310和第一电压输出控制器320,该电压电流检测器310用于:检测第三电压的第一极性,并将该第一极性输出给该电压电流检测器310,该第三电压对应第一业务;该第一电压输出控制器320用于:接收该电压电流检测器输入的该第一极性,并根据该第一极性,控制输出第二极性的第一电压,以便于切换电路根据该第二极性的该第一电压将与终端设备连接的源设备切换到目标设备,该第一极性与该第二极性相反。
可选地,该电压电流检测器310与第一电压输出控制器310的连接关系并不作限定,例如,该电压电流检测器的输出端与该第一电压输出控制器的输入端连接。
例如,该电压电流检测器310可以为图8、图10和图11中的电压电流检测器,第一电压输出控制器320可以为图8、图10和图11中的第一电压输出控制器。
可选地,该第一电压输出控制器320具体用于:当该第一极性为负极时,控制输出正极的该第一电压,或当该第一极性为正极时,控制输出负极的该第一电压。
可选地,该第一电压输出控制器320具体用于:当该第三电压的电压值为零时,控制输出脉冲序列;该电压电流检测器具体用于:检测该脉冲序列的极性;当电源导通设备导通该脉冲序列时,将该脉冲序列的极性确定为该第三电压的极性。
可选地,该第一业务为传统电话业务POTS。
可选地,该反向供电设备300还包括:第四低通滤波器,连接在该反向电压导通模块与该电压电流检测器之间,用于阻断该ADSL业务、超高速数字用户线VDSL业务和G.fast业务中的至少一种,该低通滤波器为第一方面中的第四低通滤波器。例如,该第四低通滤波器可以为图8、图10至图12中的第四低通滤波器V4。
图4示出了本发明实施例提供的方向供电设备400,该反向供电设备400包括:第一连接器410、第二连接器420、第三连接器430和反向供电电源440,该第一连接器410连接在该反向供电电源与该第三连接器430之间,该第三连接器430连接在该第一连接器410和该反向电压导通模块之间,该第二连接器420与反向供电电源连接,该第一连接器410与该第二连接器410的连接方向相反,当该第一极性与该第二极性相同时,断开该第一连接器410与该第三连接器430的连接,将该第二连接器420与该第三连接器430连接。
例如,该反向供电电源440可以为图13中的PSE,第一连接器410可以为图13中的第一连接器,第二连接器420可以为图13中的第二连接器,第三连接器430可以为图13中的第三连接器。
图5示出了根据本发明实施例提供的反向供电设备500,该反向供电设备500包括:第二电压输出控制器510,该第二电压输出控制器510的输出端与切换设备200中的反向电压导通模块连接,用于控制该输出该第一电压,该第一电压的电压值与源设备输出的第三电压的电压值之差大于预设阈值,第一电压的电压值大于第三电压的电压值。
例如,第二电压输出控制器510可以为图12中的第二电压输出控制器,该第二电压输出控制器的输出端与高压导通器连接。
图6示出了根据本发明实施例提供的切换设备600,该切换设备600包括:高压导通器610,电压转换器620和切换电路630,高压导通器610连接在第二电压输出控制器与该切换电路630之间,用于导通第一电压;电压转换器620,连接在该高压导通器与该切换电路之间,用于在该高压导通器导通该第一电压之后,对该第一电压进行降压转换处理得到降压后的该第一电压,切换电路630,连接在目标设备与电压转换器620之间,用于通过该降压后的该第一电压将源设备切换到目标设备,例如切换设备600可以为图1中的切换设备200。
例如,该高压导通器610可以为图12中的高压导通器,电压转换器可 以为图12中的电压转换器,切换电路630可以为图12所示的切换控制器和继电器K1。
下面对几个具体的实施例进行介绍,以源设备为中心局设备,目标设备为室外一体化设备为例进行说明,该中心局设备支持POTS业务和ADSL业务,该室外一体化设备支持VDSL业务或G.fast业务,本发明实施例中对图7至图13每个模块之间的连接关系并不作限定。
作为一个具体实施例,POTS信号是低频信号,ADSL信号是高频信号,如图7所示,图7中的1,2,3,4,5,6分别表示第一端子,第二端子,第三端子,第四端子,第五端子,第六端子,在切换设备740切换之前,中心局设备710通过切换设备740与终端设备730连接,继电器K1与第三端子3和第二端子4连接,从中心局设备流出的POTS业务和ADSL业务经过高通滤波器(High Pass Filter,简称“HPF”)V1导通ADSL信号阻断POTS信号,第一低通滤波器(Low Pass Filter,简称“LPF”)V2导通POTS业务阻断ADSL业务,使得POTS信号经过如图7所示的二极管组(D1/D2/D3/D4),通过V2的POTS信号第三端子3到第四端子4的电压是正电压,第四端子4到第三端子3是负电压,由于增加了二极管组之后会影响POTS振铃的不稳定,所以在二极管组与K1之间增加匹配负载,该匹配负载的作用是为了消除振铃的不稳定性,此时第三端子3到第四端子4的电压也是正电压,如图8所示,反向供电模块包括电压电流检测器和第一电压输出控制器,电压电流检测器检测第五端子5到第六端子6的电压,电压电流检测器将检测到的第五端子5到第六端子6的电压上报给电压输出控制器,若第五端子5到第六端子6的电压是正电压,则电压输出控制器控制反向PSE输出负向的第五端子5到第六端子6的第一电压,反向电源导通设备可以为图7中的第五二极管D5,第五二极管D5用于负向导通,第五二极管D5的负极通过第五端子与电压电流检测器连接;若电压电流检测器检测到第五端子5到第六端子6的电压是负电压,说明第五端子5与第六端子6接反了,即第五端子5接到下面的线,第六端子6接到上面的线了,此时,电压输出控制器控制输出第五端子5到第六端子6的正电压,第五二极管D5也可以导通,当二极管D5导通时,反向电源转换模块将二极管D5导通的第一电压转换成VDSL或G.fast需要的第二电压,切换电路包括:切换控制器和继电器K1,切换控制器也采用此第二电压的直流电控制继电器K1从第 三端子3和第四端子4导通到室外一体化设备720,此时终端设备是支持POTS语音的VDSL或G.fast的终端,即在POTS业务和ADSL业务升级之后,对应的终端设备也进行了升级。
具体地,图7和图8中的二极管组包括第一二极管D1、第二二极管D2、第三二极管D3和第四二极管D4,D1、D2、D3、D4的连接关系为:D1的正极通过第一端子1与中心局设备710连接,D1的负极通过第三端子3与切换电路连接;D2的负极通过第二端子2与中心局设备710连接,D2的正极通过第四端子4与切换电路连接;D3的负极通过第一端子1与中心局设备710连接,D3的正极通过第四端子4与切换电路连接;D4的正极通过第二端子2与中心局设备710连接,D4的负极通过第三端子3与切换电路连接,这样不管中心局设备710输出的第一端子到第二端子的电压为正极还是负极,都可以使得第三端子到第四端子的电压为正极。
作为一个具体的实施例,如图7所示,二极管组可以不包括第三二极管D3和第四二极管D4,只包括第一二极管D1和第二二极管D2,在工程人员安装室外一体化设备接线的过程中使得第一端子1到第二端子2的电压为正向的第三电压,这样,在切换时,使得第三端子3到第四端子4的电压为正向的第三电压。
可选地,也可以将图7和图8中切换设备的二极管组和匹配负载去掉,通过工程人员在布线的过程中保证第一端子1到第二端子2的电压是正向的第三电压。
可选地,如图7和图8所示,可以增加第六二极管,该第六二极管D6的导通方向与第五二极管D5的导通方向相反,即当第五二极管D5被击穿时,可以选择D6来导通负极的第一电压。
图7和图8中通过二极管组使得从中心局设备输出的从第三端子3到第四端子4的第三电压的极性为正极,第一电压输出控制器输出第五端子5到第六端子6负向的第一电压,通过第五二极管D5导通第一电压,反向电源转换模块将第一电压转换成室外一体化设备需要的第二电压,切换控制器利用第二电压将继电器切换到室外一体化设备720,这样就完成了从中心局设备710到室外一体化设备720的自动切换,降低人工费用,减少工程的复杂度。
作为一个具体实施例,图9与图7中相同的模块的功能在此不再赘述, 如图9与图7不同之处在于:二极管组的和第五二极管的方向不同;图10与图8中相同的模块的功能在此不再赘述,如图10与图8不同之处在于:二极管组的和第五二极管的方向不同,图8中心局设备710输出的第三电压经过二极管组后第三端子3到第四端子4的电压为正极,第一电压输出控制器输出的从第五端子5到第六端子6的第一电压为负极,因此第五二极管D5负向导通,第五二极管D5的负极与第五端子5连接,图10中心局设备710输出的第三电压经过二极管组后第三端子3到第四端子4的电压为负极,第一电压输出控制器输出的从第五端子5到第六端子6的第一电压为正极,因此,第五二极管D5正向导通,第五二极管D5的正极与第五端子连接。
具体地,图9和图10中的二极管组包括第一二极管D1、第二二极管D2、第三二极管D3和第四二极管D4,D1、D2、D3、D4的连接关系为:D1的负极通过第一端子1与中心局设备710连接,D1的正极通过第三端子3与切换电路连接;D2的正极通过第二端子2与中心局设备710连接,D2的负极通过第四端子4与切换电路连接;D3的正极通过第一端子1与中心局设备710连接,D3的负极通过第四端子4与切换电路连接;D4的负极通过第二端子2与中心局设备710连接,D4的正极通过第三端子3与切换电路连接,这样不管中心局设备710输出的第一端子到第二端子的电压为正极还是负极,都可以使得第三端子到第四端子的电压为负极。
作为一个具体的实施例,如图9所示,二极管组可以不包括第三二极管D3和第四二极管D4,只包括第一二极管D1和第二二极管D2,在工程人员安装室外一体化设备接线的过程中使得第一端子1到第二端子2的电压为负向的第三电压,这样,在切换时,使得第三端子3到第四端子4的电压为负向的第三电压。
可选地,也可以将图9和图10中切换设备的二极管组和匹配负载去掉,通过工程人员在布线的过程中保证第一端子1到第二端子2的电压是负向的第三电压。
可选地,如图9和10所示,可以增加第六二极管D6,该第六二极管D6的导通方向与第五二极管D5的导通方向相反,即当第五二极管D5被击穿时,可以选择D6来导通正极的第一电压。
需要说明的是,图7和图9中的第二低通滤波器V3的作用是阻断VDSL业务、ADSL业务或G.fast业务,避免反向电源转换模块影响VDSL业务、 ADSL业务或G.fast业务,图8和图10中的第四低通滤波器V4的作用也是阻断VDSL业务、ADSL业务或G.fast业务,避免电压电流检测器和第一电压输出控制器影响VDSL业务、ADSL业务或G.fast业务。
图9和图10中通过二极管组使得从中心局设备输出的从第三端子3到第四端子4的第三电压的极性为负极,第一电压输出控制器输出第五端子5到第六端子6的正极的第一电压,通过第五二极管D5导通第一电压,反向电源转换模块将第一电压转换成室外一体化设备需要的第二电压,切换控制器利用第二电压将继电器切换到室外一体化设备720,这样就完成了从中心局设备710到室外一体化设备720的自动切换,降低人工费用,减少工程的复杂度。
作为一个具体的实施例,切换控制与反向电压导通模块直接连接,反向电压导通模块包括第五二极管D5,如图11所示,切换电路包括的切换控制器与第五二极管D5直接连接,反向电源转换模块与室外一体化设备720直接连接,这样,切换控制器的电能就可以通过第一电压提供,而不是反向电源转换模块转换之后的第二电压提供。
可选地,图7至图10中的反向电源转换模块的连接关系都可以为如图11所示的连接关系,本发明实施例对此不作限制。
作为一个具体的实施例,如图12所示,该切换设备740还可以包括第二电压输出控制器,反向电压导通模块包括高压导通器和高压转换器,在切换设备740切换之前,终端设备730与中心局设备710直接连接,中心局设备710输出的第三电压通常为10V~60V,第二电压输出控制器可以控制输出高电压值的第一电压,例如第一电压的电压值可以为150V,这样,高压导通器可以导通高电压值的第一电压,然后高压导通器导通第一电压后,高压转换器将第一电压进行降压处理得到切换电路需要的电压,这样切换电路就可以通过降压后的第一电压从中心局设备710切换到室外一体化设备720,切换之后,PSE就可以正常的为室外一体化设备720提供电能,即在图12中示出的第二电压输出控制器、高压导通器以及高压转换器是为了切换电路提供切换所需要的电能的。
作为一个具体的实施例,如图13所示,反向供电模块可以包括第一连接器、第二连接器和第三连接器,第二连接器的连接方向与第一连接器的连接方向相反,可以通过指示灯的指示连接的正确与否,例如,可以设定当反 向电源(PSE)输出的第五端子5到第六端子6的负向的第一电压时,指示灯正常,当PSE输出第五端子5到第六端子6正向的第一电压时,指示灯异常,用户可以手动的将第一连接器与第三连接器断开,将第二连接器与第三连接器相连。
可选地,图13所示的二极管组的连接关系可以为图10所示的二极管的连接关系,这样第三端子3到第四端子4的第三电压为负极,可以设定当反向电源(PSE)输出的第五端子5到第六端子6的正向的第一电压时,指示灯正常,当PSE输出第五端子5到第六端子6负向的第一电压时,指示灯异常,用户可以手动的将第一连接器与第三连接器断开,将第二连接器与第三连接器相连。
可选地,当中心局设备既支持POTS业务又支持VDSL业务时,图7至图11以及图13中增加第一低通滤波器V2和高通滤波器V1是为了避免二极管组影响VDSL业务,在实际应用过程中也可以不增加第一低通滤波器V2和高通滤波器V1,本发明实施例对此不作限制。
可选地,中心局设备可以仅支持POTS业务,图7至图11以及图13中的该切换设备可以不包括第一低通滤波器V2和高通滤波器V1,即在本发明实施例中的第一低通滤波器是为了将POTS业务和ADSL业务分开,当源设备仅支持POTS业务时,则可以不需要第一低通滤波器和高通滤波器。
应理解,上述图7至图13中提到的中心局设备710可以为图1中的中心局设备110,图7至图13中的室外一体化设备720可以为图1中的室外一体化设备120,图7至图13中的终端设备730可以为图1中的终端设备130,图7至图13中的切换设备740可以为图1中的切换设备200。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的设备、设备和单元的具体工作过程,可以参考前述方法实施例中的对 应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备、设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、设备或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称为“ROM”)、随机存取存储器(Random Access Memory,简称为“RAM”)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (19)

  1. 一种切换设备,其特征在于,所述切换设备包括:
    反向电压导通模块,用于导通终端设备提供的第一电压;
    切换电路,用于通过所述反向电压导通模块导通的所述第一电压将与所述终端设备连接的设备从源设备切换到目标设备,以达到所述终端设备给所述目标设备反向供电,在所述切换电路将与所述终端设备连接的设备从所述源设备切换到所述目标设备之前,所述源设备给所述终端设备正向供电;
    其中,所述反向电压导通模块的输出端与所述切换电路的输入端连接,所述切换电路的输出端与所述目标设备的输入端连接。
  2. 根据权利要求1所述的切换设备,其特征在于,所述切换设备还包括:
    反向电源转换模块,连接在所述目标设备与所述反向电压导通模块之间,用于在所述电源导通模块导通所述第一电压之后,用于将所述第一电压转换成所述目标设备需要的第二电压。
  3. 根据权利要求2所述的切换设备,其特征在于,所述反向电源转换模块连接在所述切换电路与所述反向电压导通模块之间,所述第二电压为所述切换电路提供电能。
  4. 根据权利要求2所述的切换设备,其特征在于,所述反向电源转换模块连接在所述切换电路与所述目标设备之间,所述第一电压为所述切换电路提供电能。
  5. 根据权利要求1至4中任一项所述的设备,其特征在于,所述切换电路包括:
    切换控制器,用于当所述反向电压导通模块导通所述第一电压时,控制所述继电器将与所述终端设备连接的所述源设备切换到所述目标设备;
    继电器,用于根据所述切换控制器的控制将与所述终端设备连接的所述源设备切换到所述目标设备;
    其中,所述反向电压导通模块的输出端与所述切换控制器的输入端连接,所述切换控制器的输出端与所述继电器的输入端连接,所述继电器的输出端与所述目标设备连接。
  6. 根据权利要求1至5中任一项所述的切换设备,其特征在于,所述切换设备还包括:
    二极管组,通过第一端子和第二端子与所述源设备连接,通过第三端子与第四端子与所述切换电路连接,用于使得所述源设备输出的所述第一端子到所述第二端子的第三电压的极性为第一极性。
  7. 根据权利要求6所述的切换设备,其特征在于,所述二极管组包括:
    第一二极管,所述第一二极管的正极通过所述第一端子与所述源设备连接,所述第一二极管的负极通过所述第三端子与所述切换电路连接,用于导通所述第一端子到所述第二端子的正向的所述第三电压;
    第二二极管,所述第二二极管负极通过所述第二端子与所述源设备连接,所述第二二极管的正极通过所述第四端子与所述切换电路连接,用于导通所述第一端子到所述第二端子的正向的所述第三电压。
  8. 根据权利要求6或7所述的切换设备,其特征在于,所述二极管组还包括:
    第三二极管,所述第三二极管的负极通过所述第一端子与所述源设备连接,所述第三二极管的正极通过所述第四端子与所述切换电路连接,用于导通所述第一端子到所述第二端子的负向的所述第三电压;
    第四二极管,所述第四二极管的正极通过所述第二端子与所述源设备连接,所述第四二极管的负极通过所述第三端子与所述切换电路连接,用于导通所述第一端子到所述第二端子的负向的所述第三电压。
  9. 根据权利要求6至8中任一项所述的切换设备,其特征在于,所述源设备支持传统电话业务POTS和非对称数字用户线ADSL业务,
    所述切换设备还包括:
    第一低通滤波器,连接在所述二极管组与所述源设备之间,用于导通所述POTS的信号;
    高通滤波器,连接在所述源设备与所述切换电路之间,用于导通非对称数字用户线ADSL业务。
  10. 根据权利要求6至9中任一项所述的切换设备,其特征在于,所述切换设备还包括:
    匹配负载,连接在所述二极管组与所述切换电路之间,用于在所述反向电压导通模块导通所述第一电压之前,调整所述POTS的振铃信号。
  11. 根据权利要求6至10中任一项所述的切换设备,其特征在于,所述切换设备还包括:反向供电模块,所述反向供电模块与所述反向电压导通 模块通过第五端子和第六端子连接,
    所述反向供电模块用于:
    使得所述第五端子到所述第六端子的第一电压的极性为第二极性;
    向所述反向电压导通模块输出所述第二极性的所述第一电压,所述第二极性与所述第一极性相反;
    所述反向电压导通模块还用于:在所述导通第一电压之前,接收所述第一极性的所述第一电压。
  12. 根据权利要求11所述的切换设备,其特征在于,所述反向电压导通模块包括:第五二极管,
    当所述第二极性为负极时,所述第五二极管用于负向导通所述第一电压,所述第五二极管的负极通过所述第五端子与所述反向供电模块连接,所述第五二极管的正极与所述切换电路连接,或
    当所述第二极性为正极时,所述第五二极管用于正向导通所述第一电压,所述第五二极管的正极通过所述第五端子与所述反向供电模块连接,所述第五二极管的负极与所述切换电路连接。
  13. 根据权利要求12所述的切换设备,其特征在于,所述反向电压导通模块还包括:第六二极管,
    当所述第二极性为负极时,所述第六二极管用于正向导通所述第一电压,所述第六二极管的正极通过所述第六端子与所述反向供电模块连接,所述第六二极管的负极与所述切换电路连接,或
    当所述第二极性为正极时,所述第六二极管用于负向导通所述第一电压,所述第六二极管的负极通过所述第六端子与所述反向供电模块连接,所述第六二极管的正极与所述切换电路连接。
  14. 根据权利要求11至13中任一项所述的切换设备,其特征在于,所述反向供电模块包括:
    电压电流检测器,用于检测所述第五端子到所述第六端子的所述第三电压的所述第一极性,并将所述第一极性发送给所述第一电压输出控制器;
    所述第一电压输出控制器用于:接收所述第一极性,根据所述第一极性控制输出第二极性的所述第一电压。
  15. 根据权利要求14所述的切换设备,其特征在于,所述第一电压输出控制器具体用于:
    当所述第三电压的电压值为零时,输出脉冲序列;
    所述电压电流检测器还用于:检测所述脉冲序列的极性;
    所述反向电压导通模块用于导通所述脉冲序列;
    所述第一电压输出控制器还用于:当所述反向电压导通模块导通所述脉冲序列时,使得所述脉冲序列的极性为所述第二极性。
  16. 根据权利要求11至13中任一项所述的切换设备,其特征在于,所述反向供电模块还包括:
    第一连接器、第二连接器、第三连接器和反向供电电源,所述第一连接器连接在所述反向供电电源与所述第三连接器之间,所述第三连接器连接在所述第一连接器和所述反向电压导通模块之间,所述第二连接器与所述反向供电电源连接,所述第一连接器与所述第二连接器的连接方向相反,
    当所述第一极性与所述第二极性相同时,断开所述第一连接器与所述第三连接器的连接,将所述第二连接器与所述第三连接器连接。
  17. 根据权利要求4或5所述的切换设备,其特征在于,所述第一电压的电压值与所述第三电压的电压值之差大于预设阈值,所述第一电压的电压值大于所述第三电压的电压值。
  18. 根据权利要求17所述的切换设备,其特征在于,所述切换设备还包括:
    第二电压输出控制器,所述第二电压输出控制器的输出端与所述反向电压导通模块连接,用于控制所述输出所述第一电压;
    所述反向电压导通模块还包括:
    高压导通器,连接在所述第二电压输出控制器与所述切换电路之间,用于导通所述第一电压;
    电压转换器,连接在所述高压导通器与所述切换电路之间,用于在所述高压导通器导通所述第一电压之后,对所述第一电压进行降压转换处理得到降压后的所述第一电压;
    所述切换电路具体用于:通过所述降压后的所述第一电压将所述源设备切换到所述目标设备。
  19. 根据权利要求11至18中任一项所述的切换设备,其特征在于,所述切换设备还包括:
    第二低通滤波器,连接在所述反向电压导通模块与所述反向供电模块之 间,用于阻断所述ADSL业务、超高速数字用户线VDSL业务和G.fast业务中的至少一种。
PCT/CN2016/085981 2016-06-16 2016-06-16 切换设备 WO2017214922A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16905038.2A EP3451581B1 (en) 2016-06-16 2016-06-16 Switching device
PCT/CN2016/085981 WO2017214922A1 (zh) 2016-06-16 2016-06-16 切换设备
US16/220,891 US20190123919A1 (en) 2016-06-16 2018-12-14 Switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/085981 WO2017214922A1 (zh) 2016-06-16 2016-06-16 切换设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/220,891 Continuation US20190123919A1 (en) 2016-06-16 2018-12-14 Switching device

Publications (1)

Publication Number Publication Date
WO2017214922A1 true WO2017214922A1 (zh) 2017-12-21

Family

ID=60662930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085981 WO2017214922A1 (zh) 2016-06-16 2016-06-16 切换设备

Country Status (3)

Country Link
US (1) US20190123919A1 (zh)
EP (1) EP3451581B1 (zh)
WO (1) WO2017214922A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3461062B1 (en) * 2017-09-22 2020-02-26 General Electric Technology GmbH Power delivery apparatus
CN111510308A (zh) * 2020-03-24 2020-08-07 普联技术有限公司 一种数据通信设备及功率共享系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8601289B1 (en) * 2011-02-21 2013-12-03 Adtran, Inc. Optical network unit with redundant reverse powering from customer premises equipment
CN103534657A (zh) * 2013-03-06 2014-01-22 华为技术有限公司 一种供电电路及供电面板
CN104041001A (zh) * 2014-04-11 2014-09-10 华为技术有限公司 一种数字用户线局端装置、终端装置和反向供电系统
CN105227326A (zh) * 2014-06-13 2016-01-06 中兴通讯股份有限公司 一种反向供电的方法及设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074998B (zh) * 2009-11-19 2013-03-20 国基电子(上海)有限公司 保护电路及以太网用电设备
ITAN20110029A1 (it) * 2011-03-01 2012-09-02 Stefano Marchetti Sistema integrato di tele-alimentazione per trasmissioni bidirezionali a larga banda
TWI439077B (zh) * 2011-07-25 2014-05-21 Wistron Corp 乙太網路受電電路與其靜電防護電路
EP2835934B1 (en) * 2013-08-07 2021-04-07 Alcatel Lucent Reverse powered remote node and method for reverse powering a remote node

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8601289B1 (en) * 2011-02-21 2013-12-03 Adtran, Inc. Optical network unit with redundant reverse powering from customer premises equipment
CN103534657A (zh) * 2013-03-06 2014-01-22 华为技术有限公司 一种供电电路及供电面板
CN104041001A (zh) * 2014-04-11 2014-09-10 华为技术有限公司 一种数字用户线局端装置、终端装置和反向供电系统
CN105227326A (zh) * 2014-06-13 2016-01-06 中兴通讯股份有限公司 一种反向供电的方法及设备

Also Published As

Publication number Publication date
EP3451581A4 (en) 2019-05-15
EP3451581B1 (en) 2020-08-05
US20190123919A1 (en) 2019-04-25
EP3451581A1 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
US9203628B2 (en) Method and apparatus for distributing power over communication cabling
US9531551B2 (en) Dynamically configurable power-over-ethernet apparatus and method
WO2021135834A1 (zh) 并网切换至离网的方法、系统及储能变流器
CN105577225B (zh) 一种通讯设备的功率切换装置及其方法
US8674546B1 (en) Redundant power over ethernet
CN104040666B (zh) 直流断路器和包括这样的直流断路器的电力系统
CN110289972B (zh) 一种基于以太网的网络设备及网络系统
EP3174172A1 (en) Power supply control device and method for communication network
WO2017214922A1 (zh) 切换设备
US9176555B2 (en) Power over ethernet power harvester
EP2950413A1 (en) Telecommunications equipment, power supply system, and power supply implementation method
RU2654514C2 (ru) Способ питания и питаемое устройство для автоматического регулирования уровня силовой нагрузки
US7324331B2 (en) System and method for providing and receiving electric power through telephone wire-pairs
EP3318022B1 (en) Switch device for use in gateway equipment and gateway equipment
CN110048859B (zh) 一种poe供电方法、设备及存储介质
CN103781258B (zh) 调光电路及使用该调光电路的照明控制装置
CN205304589U (zh) 电源控制电路
CN114899936A (zh) 一种配电电路、控制配电电路供电的方法和供电系统
EP3386148B1 (en) Power supply control method and apparatus for communication network
CN110571919A (zh) 一种双电源切换分配器
EP2802135A1 (en) DC/DC Converter and Subscriber Line Interface Circuit
CN209057224U (zh) 一种poe电源和适配器电源兼容供电电路
US11770480B2 (en) Apparatus for providing a connection to a wide area network for voice calls, a power management circuit, and a method for providing a connection to a wide area network for voice calls
CN216795340U (zh) 一种发光电路和电子设备
CN216489743U (zh) 过压保护电路、开关电路及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905038

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016905038

Country of ref document: EP

Effective date: 20181128

NENP Non-entry into the national phase

Ref country code: DE