WO2017213482A1 - Nano-pattern forming apparatus and nano-pattern forming method - Google Patents

Nano-pattern forming apparatus and nano-pattern forming method Download PDF

Info

Publication number
WO2017213482A1
WO2017213482A1 PCT/KR2017/006088 KR2017006088W WO2017213482A1 WO 2017213482 A1 WO2017213482 A1 WO 2017213482A1 KR 2017006088 W KR2017006088 W KR 2017006088W WO 2017213482 A1 WO2017213482 A1 WO 2017213482A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal nanoparticles
water
pattern
nitrate
substrate
Prior art date
Application number
PCT/KR2017/006088
Other languages
French (fr)
Korean (ko)
Inventor
변정훈
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Publication of WO2017213482A1 publication Critical patent/WO2017213482A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0004Apparatus specially adapted for the manufacture or treatment of nanostructural devices or systems or methods for manufacturing the same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • B82B3/0038Manufacturing processes for forming specific nanostructures not provided for in groups B82B3/0014 - B82B3/0033
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present application relates to a nanopattern forming apparatus and a forming method.
  • Precious metal nanoparticles with inherent physicochemical properties have significant potential for the application of optoelectronic devices, including data storage devices that require fine patterning of metal nanoparticles on desired substrates.
  • optoelectronic devices including data storage devices that require fine patterning of metal nanoparticles on desired substrates.
  • spatial control must also be taken into account, so that direct positioning of the particles is very complicated.
  • Nano-fabrication through nano-patterning of conductors and dielectrics on substrates by conventional lithography has been previously reported.
  • lithography is expensive, complex, and time consuming. Therefore, a method for overcoming these limitations is being sought through the synthesis and sequential patterning of a wide range of materials in pretreated substrates and templates.
  • Electroless Deposition is known as a representative metal layer production method for forming thin films and fine patterns due to the low cost and simplicity of the process.
  • Pattern formation through electroless plating requires pretreatment for site selective plating to increase its applicability.
  • direct patterning of the catalyst / seed as an initiator and electroless plating as an initiator is required since the dielectric surface must be pretreated with precious metal particles prior to electroless plating. Complementary, this leads to regioselective growth of the metal layer.
  • Representative pretreatment methods for most electroless plating are wet single or double composed Sn-sensitization and palladium-activation processes. However, the degradation of the purity of the metal layer through additional wet chemical steps and the environmental hazards of the process still remain challenges.
  • the present application provides a nanopattern forming apparatus and method for forming a nanopattern in a polygonal shape at low cost, short time, and environmentally friendly without using a template on a substrate.
  • the present application relates to a nano pattern forming apparatus.
  • a target metal pattern is formed, thereby making it possible to realize low cost, short time, and eco-friendliness without using a template on the substrate.
  • a target metal pattern is formed, thereby making it possible to realize low cost, short time, and eco-friendliness without using a template on the substrate.
  • nano may mean a size in nanometers (nm), for example, may mean a size of 1 to 1,000 nm, but is not limited thereto.
  • nanoparticle in the present specification may mean a particle having an average particle diameter of the nanometer (nm) unit, for example, may mean a particle having an average particle diameter of 1 to 1,000 nm, It is not limited.
  • nano pattern in the present specification may mean a pattern having a width or height in the unit of nanometers (nm), for example, may mean a pattern having a width or height of 1 to 1,000 nm. However, the present invention is not limited thereto.
  • FIG. 1 is a diagram showing the structure of a nano-pattern forming apparatus according to an embodiment of the present application by way of example.
  • the nanopattern forming apparatus of the present application includes a discharge part 100 and a spray part 200.
  • the discharge unit 100 includes a pair of conductive rods 110 and a power supply unit 120 for applying a voltage to the pair of conductive rods, respectively.
  • the pair of conductive rods 110 are spaced apart from each other at predetermined intervals, whereby the pair of conductive rods may form a gap.
  • the term "gap" or “gap” means a gap between two moving or fixed parts, for example, the gap means a gap between a pair of conductive rods that are spaced apart from each other.
  • the material constituting the conductive rod 110 is not particularly limited as long as it is a rod-shaped object through which electricity can flow.
  • the conductive rod 110 may include palladium, platinum, gold, silver, copper, One or more catalytic metals selected from the group consisting of ruthenium, rhodium, iridium, rhenium and osmium, preferably the conductive rod may be a palladium rod, but is not limited thereto.
  • the power supply unit 120 is a part for applying a voltage to each of the conductive rods.
  • the voltage applied to the conductive rods from the power supply unit may be 0.5 to 20 kV, and the amount of current may be 0.005 to 100 mA.
  • the present invention is not limited thereto.
  • the power supply unit 120 may constantly adjust the voltage applied to the pair of conductive rods 110. Accordingly, by quantitatively supplying the metal nanoparticles, the metal nanoparticles can be manufactured with excellent supply stability.
  • the power supply unit 120 may include an electrical circuit for applying a high voltage to the conductive rod 110.
  • the electrical circuit has a constant high voltage source structure consisting of a high voltage source (HV), an external capacitor (C), and a resistor (R), and enables a high-speed switching of a plurality of resistors, a plurality of capacitors, and a circuit current. By using the size of the metal nanoparticles can be adjusted.
  • the nanopattern forming apparatus of the present application may include a gas supply device such as a carrier air supply system and a flow meter such as a mass flow controller (MFC).
  • a gas supply device such as a carrier air supply system
  • a flow meter such as a mass flow controller (MFC).
  • inert gas or nitrogen may be quantitatively supplied at intervals between the pair of conductive rods by the gas supply device and the flow meter.
  • the catalyst metal When a high voltage is applied to the conductive rod 110, the catalyst metal is vaporized and condensed by spark discharge, and then granulated through the spray metal according to the inert gas or nitrogen flow flowing through the gap between the rods. Can be delivered.
  • the catalyst metal when a voltage is applied to the conductive rod 110 of the discharge part 100, the catalyst metal is vaporized at an interval between the pair of conductive rods 110 of the discharge part 100, and an inert gas or The metal vaporized by moving along a carrier gas such as nitrogen is condensed as it goes out of the gap, thereby forming catalytic metal nanoparticles.
  • the gap between the conductive rods 110 for example, the electrode gap (the shortest distance between the conductive rods 110), the smaller the distance, the lower the ignition demand voltage, and the larger the distance is. High voltage is required.
  • narrower electrode gaps reduce the voltage required to generate sparks, but shorter sparks can deliver ignition minimum energy to the mixer and cause misfire, so it is necessary to set the appropriate distance by experiment.
  • the gap between the electrodes may be 0.1 to 10 mm, but is not limited thereto.
  • the particle diameter of the catalytic metal nanoparticles generated from the discharge part 100 may be controlled in a wide range from several nanometers to several hundred nanometers according to the flow rate or flow rate of the inert gas or nitrogen. For example, when the flow rate or flow rate of the supplied inert gas or nitrogen is increased, as the concentration of the catalyst metal nanoparticles is reduced, the aggregation phenomenon between the particles is also reduced, and through this process, the size of the catalyst metal nanoparticles is reduced. Can be reduced.
  • the particle diameter, shape, and density of the catalytic metal nanoparticles may include spark generation conditions such as an applied voltage, a frequency, a current, a resistance, and a capacitance value; Type and flow rate of the inert gas; Or by the shape of the spark electrode or the like.
  • the particle diameter of the catalytic metal nanoparticles generated from the conductive rod is not particularly limited, and for example, the particle diameter of the catalytic metal nanoparticles may be 5 nm to 20 nm, and may also be 7 nm to 18 nm and 9 nm to. 16 nm or 11 nm to 14 nm, but is not limited thereto.
  • Argon Ar
  • Ne nitrogen
  • He helium
  • the spray unit 200 is a portion for attaching the metal nanoparticles to the water-soluble salt molecules by spraying a solution containing a water-soluble salt to the catalyst metal nanoparticles. For example, injecting a water-soluble salt to the catalyst metal nanoparticles generated in the conductive rod 110, a collision occurs between the catalyst metal nanoparticles and the water-soluble salts, the catalyst metal nanoparticles are attached to the surface of the water-soluble salt molecules Can be. Accordingly, the water-soluble salt in the state where the catalyst metal nanoparticles are attached can be attached onto the substrate described later.
  • the water-soluble salt salts having a crystal form of a polygonal form can be used.
  • the water-soluble salt may be sodium nitrate (NaNO 3 ), potassium nitrate (KNO 3 ), or ammonium nitrate (NH 4 NO 3 ).
  • MG (NO 3 ) 2 barium nitrate (Ba (NO 3 ) 2 ), calcium nitrate (Ca (NO 3 ) 2 ), lead nitrate (Pb (NO 3 ) 2 ), silver nitrate (AgNO 3 )
  • the catalytic metal nanoparticles may act as a catalyst in the electroless plating, which will be described later, and thus, the target metal after the plating is completed.
  • Environmentally friendly patterning is possible without a separate cleaning or etching operation to remove other by-products, and due to the polygonal crystal structure of the water-soluble salt, an aspherical pattern can be easily formed without a separate template.
  • an exemplary nano pattern forming apparatus of the present application may further include an attachment part 300.
  • a water-soluble salt to which catalytic metal nanoparticles are attached may be attached onto the substrate 310.
  • the substrate 310 may be silicon, glass, metal, acrylic resin, polycarbonate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), polyamide (PA), polytetrafluoroethylene At least one selected from the group consisting of (PTFE), polyurethane (PU), polyarylate (PA), polyethersulfone (PES), fluorene polyester (FPE), cyclo olefin resin, epoxy resin and ester resin can do.
  • an exemplary nano pattern forming apparatus of the present application may further include a pattern forming unit.
  • the pattern forming unit as the substrate on which the water-soluble salt with the catalyst metal nanoparticles is attached is dried, the water-soluble salts are removed, thereby forming a pattern of the catalyst metal nanoparticles on the substrate.
  • the catalytic metal nanoparticles are patterned on the substrate in the form of the crystal structure of the water-soluble salt, for example, the catalyst metal nanoparticles of polygonal form on the substrate. Particle patterns can be formed.
  • the substrate to which the water-soluble salt is attached may be dried at 50 ° C. to 350 ° C., whereby the adhesion between the metal nanoparticles and the substrate may be increased, and the water-soluble salt may be removed.
  • the cross-sectional shape of the pattern of the catalytic metal nanoparticles formed on the substrate may be determined according to the crystal structure of the water-soluble salt.
  • the cross-section of the pattern of the catalytic metal nanoparticles formed on the substrate may be triangular, square, pentagonal and It may be one or more polygons selected from the group consisting of hexagons, but is not limited thereto.
  • the exemplary nano pattern forming apparatus of the present application may further include a reactor.
  • the reactor may be provided to impregnate a substrate in which a pattern of catalytic metal nanoparticles is formed in the solution.
  • the substrate in which the pattern of the catalytic metal nanoparticles is formed may be impregnated in a reaction tank in which a solution including the target metal is stored, and the target metal may be patterned through an electroless plating method.
  • the electroless plating method may be performed by impregnating the substrate on which the pattern of the catalytic metal nanoparticles is formed at room temperature in a reaction tank containing a solution containing the target metal for 1 to 60 minutes, preferably.
  • the substrate may be formed by impregnating the substrate on which the pattern of the catalytic metal nanoparticles is formed at room temperature for 5 to 20 minutes in a reaction vessel in which a solution containing the target metal is stored.
  • a reaction vessel in which a solution containing the target metal is stored.
  • the metal layer is formed along the pattern of the catalytic metal nanoparticles in which the solution containing the target metal is formed on the substrate.
  • the "target metal” means, for example, the target metal finally patterned when the patterning process is performed by an electroless plating method using the catalyst metal nanoparticles as a catalyst.
  • “Electroless Deposition (ELD)” is a self-catalytic catalyst of the primary target metal layer after the primary target metal layer is formed on the substrate by the reducing force of the catalytic metal particles without external electrical energy. In general, it means a method of producing the target metal layer on the surface of the substrate through the continuous reduction.
  • target metal examples include gold (Au), silver (Ag), platinum (Pt), copper (Cu), chromium (Cr), nickel (Ni), iron (Fe), cobalt (Co), and scandium ( Sc, Yttrium (Y), Hafnium (Hf), Rutherfordium (Rf), Titanium (Ti), Zirconium (Zr), Tantalum (Ta), Dubnium (Db), Vanadium (V), Niobium (Nb), Tungsten (W), Borborium (Sg), Chromium (Cr), Molybdenum (Mo), Rhenium (Re), Bolium (Bh), Manganese (Mn), Technetium (Tc), Osmium (Os), Hassium (Hs) ), Iron (Fe), Ruthenium (Ru), Iridium (Ir), Mitenerium (Mt), Rhodium (Rh), Darmium (Ds), Palladium (Pd), Rentenium (Rg), Mercury (Hg) ), At
  • the present application also relates to a method of forming a nanopattern.
  • the method of forming a nanopattern of the present application may be performed by the nanopattern forming apparatus described above, and thus, descriptions overlapping with those described in the nanopattern forming apparatus will be omitted.
  • an exemplary method of forming a nanopattern of the present application by attaching catalytic metal nanoparticles to a water-soluble salt, it is possible to form a nanopattern in a polygonal form at low cost, short time, and environmentally friendly without using a template on a substrate.
  • Exemplary methods of forming nanopatterns of the present application include generating catalytic metal nanoparticles and attaching the catalytic metal nanoparticles to a water soluble salt.
  • the generating of the catalytic metal nanoparticles may be performed in the discharge part of the pattern forming apparatus described above, and in one example, by applying a voltage to each of the pair of conductive rods, the catalyst metal may be formed from the pair of conductive rods. Generating nanoparticles.
  • the pair of conductive rods are spaced apart from each other at predetermined intervals, and thus the pair of conductive rods may form a gap.
  • the catalyst metal when a high voltage is applied to the conductive rod, the catalyst metal is vaporized and condensed by spark discharge, which is then granulated, and then inert gas or nitrogen flowing through the gap between the rods. According to the flow can be delivered to the spray.
  • the catalyst metal when a voltage is applied to the conductive rod of the discharge portion, the catalyst metal is vaporized at an interval between the pair of conductive rods of the discharge portion, and moves along the carrier gas such as an inert gas or nitrogen, thereby allowing the opportunity metal. As it deviates from the gap, it condenses, thereby forming catalytic metal nanoparticles.
  • the carrier gas such as an inert gas or nitrogen
  • the material constituting the conductive rod is not particularly limited as long as it is a rod or rod-shaped object through which electricity can flow.
  • the conductive rod may be palladium, platinum, gold, silver, copper, ruthenium, rhodium, It may comprise one or more catalytic metals selected from the group consisting of iridium, rhenium and osmium.
  • Attaching the catalytic metal nanoparticles to the water-soluble salt may be performed in the spraying unit of the pattern forming apparatus described above, and in one example, spraying a solution containing a water-soluble salt to the generated metal nanoparticles. Include. For example, injecting a solution containing a water-soluble salt into the catalyst metal nanoparticles generated from the conductive rod generates a diffusion force or electrostatic attraction between the catalyst metal nanoparticles and the water-soluble salt molecules, thereby providing a catalyst on the surface of the water-soluble salt molecules. Metal nanoparticles may be attached. Accordingly, the water-soluble salt in the state where the catalyst metal nanoparticles are attached can be attached onto the substrate described later.
  • the water-soluble salt a salt having a crystal form of a polygonal form may be used, and the water-soluble salt may be sodium nitrate (NaNO 3 ), potassium nitrate (KNO 3 ), ammonium nitrate (NH 4 NO 3 ), magnesium nitrate ( MG (NO 3 ) 2 ), barium nitrate (Ba (NO 3 ) 2 ), calcium nitrate (Ca (NO 3 ) 2 ), lead nitrate (Pb (NO 3 ) 2 ), silver nitrate (AgNO 3 ), sodium chloride (NaCl ), Potassium chloride (KCl), ammonium chloride (NH 4 Cl), magnesium chloride (MgCl 2 ), barium chloride (BaCl 2 ), calcium chloride (CaCl 2 ), sodium sulfide (Na 2 S), potassium sulfide (K 2 S) , Ammonium sulfide ((NH 4 ) 2 S), magnesium n
  • an exemplary method of forming a nanopattern of the present application may further include attaching a water-soluble salt to which the catalytic metal nanoparticles are attached on a substrate.
  • the substrate include silicon, glass, metal, acrylic resin, polycarbonate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), polyamide (PA), and polytetrafluoroethylene (PTFE). ), Polyurethane (PU), polyarylate (PA), polyethersulfone (PES), fluorene polyester (FPE), cyclo olefin resin, epoxy resin and ester resin can be used at least one selected from the group .
  • an exemplary method of forming a nanopattern of the present application further comprises drying the substrate to which the water-soluble salt is attached and removing the water-soluble salt to form a pattern of catalytic metal nanoparticles on the substrate. It may include. The forming of the pattern may be performed in the pattern forming unit of the pattern forming apparatus described above.
  • the substrate to which the water-soluble salt is attached may be dried at 50 ° C. to 350 ° C., thereby increasing adhesion between the catalytic metal nanoparticles and the substrate and removing the water-soluble salt.
  • the cross-sectional shape of the pattern of the catalyst metal nanoparticles formed on the substrate may vary depending on the crystal structure of the water-soluble salt.
  • the cross-section of the pattern of the metal nanoparticles formed on the substrate may be triangular, square, pentagonal and hexagonal.
  • an exemplary method of forming a nanopattern of the present application may further include reacting a target metal on a substrate on which a pattern of metal nanoparticles is formed.
  • the target metal may be attached in the reaction tank of the pattern forming apparatus described above.
  • the substrate in which the pattern of the catalytic metal nanoparticles is formed may be impregnated in a reaction tank in which a solution including the target metal is stored, and the target metal may be patterned through an electroless plating method.
  • nanopattern forming apparatus of the present application after attaching a water-soluble salt molecule having catalytic metal nanoparticles attached onto a substrate, a target metal pattern is formed, thereby enabling a low cost, short time and environmentally friendly polygonal form without using a template on the substrate. Can form a nano-pattern.
  • FIG. 1 is a view schematically showing a nano-pattern forming apparatus according to an embodiment of the present application.
  • FIG. 2 is a diagram schematically showing a method of forming a nanopattern of the present application.
  • 3 and 4 are low and high magnification scanning electron microscopy images of the nanopatterns formed in the examples.
  • FIG. 6 is a transmission electron microscope image of water soluble salt-palladium hybrid particles electrostatically attached onto a silicon substrate in an embodiment.
  • FIG. 7 is an element map image of water soluble salt-palladium hybrid particles electrostatically attached onto a silicon substrate in an embodiment.
  • FIG. 8 is a transmission electron microscope image of ethylene glycol-palladium hybrid particles electrostatically attached onto a silicon substrate in a comparative example.
  • a sodium chloride solution was prepared by mixing 0.001 part by weight of sodium chloride (NaCl) as a water-soluble salt, relative to 100 parts by weight of water as a solvent.
  • nano-patterns were formed according to the same process as in FIG. 2.
  • a pair of conductive rods including a palladium (Pd) metal having a particle diameter of 3 mm and a length of 100 mm are spaced apart from each other to form a gap in a chamber through which nitrogen gas flows, and a power supply part included in a discharge part.
  • a power supply part included in a discharge part Is electrically connected to each of the conductive rods, and voltage is applied to the pair of conductive rods and spark discharged to obtain a total number of 4.76 ⁇ 10 7 particles / cm 3 of palladium-catalyzed metal nanoparticles having an average particle diameter of 12.0 nm. Total number concentration and geometric standard deviation of 1.54.
  • the voltage was quantitatively controlled to 4 kV through the power supply unit.
  • the shape and crystallinity of the nanoparticles were measured using a transmission electron microscope (TEM, JEM-3010, JEOL, Japan).
  • the palladium metal nanoparticles generated in the conductive rods were moved to the spraying unit along with nitrogen gas, and in the spraying unit, the water-soluble water prepared above was produced to the metal nanoparticles flowing along the nitrogen gas through a Collison Atomizer.
  • a solution containing a salt was sprayed at a spray amount of 3 L / min to attach metal nanoparticles to the water-soluble salt to prepare a hybrid droplet.
  • the solvent-derived droplets were injected into an Aerosol Charge Neutralizer (4530, HCT, Korea) and injected into a Nanodifferential Mobility Analyzer (Nanodifferential Mobility Analyzer, NDMA, 3085, TSI, US).
  • the nanoparticle separator was operated at a fixed input voltage by an electrostatic classifier and classified into particles having equivalent electrical mobility.
  • the droplets were injected into an electrostatic collector.
  • the hybrid droplets moved along the nitrogen gas into the deposition chamber and deposited on the silicon substrate.
  • the hybrid droplets deposited on the silicon substrate were dried at 200 ° C. for 5 minutes to increase adhesion of the catalytic metal nanoparticles on the substrate, and the water-soluble salts were removed to form a square palladium nanopattern on the substrate. .
  • the rectangular nano-pattern-formed substrate was impregnated with a solution containing 0.1 parts by weight of silver (Ag) as a target metal with respect to 100 parts by weight of distilled water as a solvent and impregnated at room temperature for 10 minutes.
  • the silver pattern was grown along the palladium catalyst nanopattern formed on the substrate through sea plating.
  • the height of the silver pattern was 80 ⁇ 5 nm, and the lengths of the horizontal and vertical were measured at 180 nm and 190 nm, respectively.
  • Example 1 Except for using potassium chloride (KCl) as a water-soluble salt, the same method as in Example 1 was 35 nm in height, and the horizontal and vertical length of 40 nm and 60 nm, respectively, to form a rectangular nano-pattern.
  • KCl potassium chloride
  • a ring-shaped nanopattern having a diameter of 90 nm was formed in the same manner as in Example 1, except that an ethylene glycol (EG) solution was sprayed instead of a solution containing a water-soluble salt.
  • EG ethylene glycol

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Catalysts (AREA)

Abstract

The present application relates to a nano-pattern forming apparatus and a nano-pattern forming method, which form a target metal pattern after attaching water-soluble salt molecules, to which catalytic metal nano-particles are attached, onto a substrate, thereby being able to form a polygonal-shaped nano-pattern at low cost, in a short amount of time and in an environmentally friendly manner even without the use of a template on the substrate.

Description

나노 패턴 형성 장치 및 형성 방법Nano pattern forming apparatus and forming method
본 출원은, 나노 패턴의 형성 장치 및 형성 방법에 관한 것이다.The present application relates to a nanopattern forming apparatus and a forming method.
고유의 물리 화학적 특성을 갖는 귀금속 나노 입자는, 목적하는 기판 상에 금속 나노 입자의 미세 패터닝을 요구하는 데이터 저장 장치를 포함하는 광전자 장치의 응용에 대하여 상당한 잠재력을 가지고 있다. 그러나, 나노 입자 자체의 합성 이외에 공간 제어 또한 고려되어야 하기 때문에, 상기 입자의 직접적인 위치 결정(Direct Positioning)은 매우 복잡하다. Precious metal nanoparticles with inherent physicochemical properties have significant potential for the application of optoelectronic devices, including data storage devices that require fine patterning of metal nanoparticles on desired substrates. However, in addition to the synthesis of nanoparticles themselves, spatial control must also be taken into account, so that direct positioning of the particles is very complicated.
기존의 리소그래피에 의하여 기판 상에 도전체 및 유전체의 나노 패터닝을 통한 나노 크기의 제조(Nano-fabrication)는 이전에 보고되어있다. 그러나, 리소그래피는 고가이고, 복잡하며, 시간소요가 많은 문제점이 있다. 따라서, 전처리된 기판 및 템플릿에서 넓은 범위의 재료의 합성 및 순차적인 패터닝을 통하여 이러한 한계를 극복하기 위한 방안을 모색하고 있다.Nano-fabrication through nano-patterning of conductors and dielectrics on substrates by conventional lithography has been previously reported. However, lithography is expensive, complex, and time consuming. Therefore, a method for overcoming these limitations is being sought through the synthesis and sequential patterning of a wide range of materials in pretreated substrates and templates.
무전해 도금(Electroless Deposition, ELD)은 낮은 비용 및 공정의 간단함으로 인하여, 박막 및 미세 패턴을 형성하기 위한 대표적인 금속층 생성 방법으로 알려져 있다. 무전해 도금을 통한 패턴 형성은 그것의 적용 가능성을 높이기 위해 위치 선택적 도금을 위한 전처리를 요구한다. 반응조 내의 원자들에 대한 금속 이온을 환원시킬 수 있는 촉매를 제공하기 위하여, 무전해 도금 전에 유전체 표면이 귀금속 입자로 전처리 되어야 하기 때문에, 개시제로서 촉매/시드(Seed)의 직접 패터닝 및 무전해 도금은 상호 보완적이며, 이는 금속층의 위치 선택적 성장을 가져오게 된다. 대부분의 무전해 도금을 위한 대표적인 전처리 방법은 습식의 단일 또는 이중으로 구성된 주석-증감(Sn-sensitization) 및 팔라듐-활성화(Pd-activation) 공정이다. 그러나 추가적인 습식 화학적 단계들을 통한 금속층의 순도의 저하 및 공정의 환경 유해성은 여전히 해결되어야 하는 과제로 남아있다.Electroless Deposition (ELD) is known as a representative metal layer production method for forming thin films and fine patterns due to the low cost and simplicity of the process. Pattern formation through electroless plating requires pretreatment for site selective plating to increase its applicability. In order to provide a catalyst capable of reducing metal ions to atoms in the reactor, direct patterning of the catalyst / seed as an initiator and electroless plating as an initiator is required since the dielectric surface must be pretreated with precious metal particles prior to electroless plating. Complementary, this leads to regioselective growth of the metal layer. Representative pretreatment methods for most electroless plating are wet single or double composed Sn-sensitization and palladium-activation processes. However, the degradation of the purity of the metal layer through additional wet chemical steps and the environmental hazards of the process still remain challenges.
본 출원은, 기판 상에 템플릿의 사용 없이도 저비용, 단시간 및 친환경적으로 다각형 형태의 나노 패턴을 형성할 수 있는 나노 패턴의 형성 장치 및 형성 방법을 제공한다.The present application provides a nanopattern forming apparatus and method for forming a nanopattern in a polygonal shape at low cost, short time, and environmentally friendly without using a template on a substrate.
본 출원은 나노 패턴 형성 장치에 관한 것이다. 예시적인 본 출원의 상기 나노 패턴 형성 장치에 의하면, 촉매 금속 나노 입자가 부착된 수용성 염 분자를 기판 상에 부착시킨 후에, 타겟 금속 패턴을 형성함으로써, 기판 상에 템플릿의 사용 없이도 저비용, 단시간 및 친환경적으로 다각형 형태의 나노 패턴을 형성할 수 있다.The present application relates to a nano pattern forming apparatus. According to the exemplary nanopattern forming apparatus of the present application, after attaching a water-soluble salt molecule to which a catalytic metal nanoparticle is attached onto a substrate, a target metal pattern is formed, thereby making it possible to realize low cost, short time, and eco-friendliness without using a template on the substrate. To form a nano pattern of a polygonal shape.
본 명세서에서 용어 「나노」는 나노 미터(nm) 단위의 크기를 의미할 수 있고, 예를 들어, 1 내지 1,000 nm의 크기를 의미할 수 있으나, 이에 제한되는 것은 아니다. 또한, 본 명세서에서 용어 「나노 입자」는 나노 미터(nm) 단위의 평균 입경을 갖는 입자를 의미할 수 있고, 예를 들어, 1 내지 1,000 nm의 평균 입경을 갖는 입자를 의미할 수 있으나, 이에 제한되는 것은 아니다. 또한, 본 명세서에서 용어 「나노 패턴」은 나노 미터(nm) 단위의 폭 또는 높이를 갖는 패턴을 의미할 수 있고, 예를 들어, 1 내지 1,000 nm의 폭 또는 높이를 갖는 패턴을 의미할 수 있으나, 이에 제한되는 것은 아니다. As used herein, the term "nano" may mean a size in nanometers (nm), for example, may mean a size of 1 to 1,000 nm, but is not limited thereto. In addition, the term "nanoparticle" in the present specification may mean a particle having an average particle diameter of the nanometer (nm) unit, for example, may mean a particle having an average particle diameter of 1 to 1,000 nm, It is not limited. In addition, the term "nano pattern" in the present specification may mean a pattern having a width or height in the unit of nanometers (nm), for example, may mean a pattern having a width or height of 1 to 1,000 nm. However, the present invention is not limited thereto.
이하, 첨부된 도면을 참조로 본 출원의 나노 패턴 형성 장치를 설명하며, 첨부된 도면은 예시적인 것으로, 본 출원의 나노 패턴 형성 장치가 첨부된 도면에 한정되는 것은 아니다.Hereinafter, the nanopattern forming apparatus of the present application will be described with reference to the accompanying drawings, and the accompanying drawings are exemplary, and the nanopattern forming apparatus of the present application is not limited to the accompanying drawings.
도 1은, 본 출원의 일 구현예에 따른 나노 패턴 형성 장치의 구조를 예시적으로 나타낸 도면이다.1 is a diagram showing the structure of a nano-pattern forming apparatus according to an embodiment of the present application by way of example.
도 1에 나타낸 바와 같이, 본 출원의 나노 패턴 형성 장치는 방전부(100) 및 분무부(200)를 포함한다. As shown in FIG. 1, the nanopattern forming apparatus of the present application includes a discharge part 100 and a spray part 200.
일 구현예에서, 상기 방전부(100)는 한 쌍의 도전성 로드(110) 및 상기 한 쌍의 도전성 로드에 각각 전압을 인가하는 전원부(120)를 포함한다. In one embodiment, the discharge unit 100 includes a pair of conductive rods 110 and a power supply unit 120 for applying a voltage to the pair of conductive rods, respectively.
상기 한 쌍의 도전성 로드(110)는 각각 소정 간격을 두고 서로 이격 배치되어 있으며, 이에 따라 상기 한 쌍의 도전성 로드는 간격을 형성할 수 있다. 본 명세서에서 용어 「간격」 또는 「간극」은 움직이거나 고정된 두 부품 사이의 틈을 의미하며, 예를 들어, 상기 간격은 서로 이격 배치되어 있는 한 쌍의 도전성 로드 사이의 틈을 의미한다.The pair of conductive rods 110 are spaced apart from each other at predetermined intervals, whereby the pair of conductive rods may form a gap. As used herein, the term "gap" or "gap" means a gap between two moving or fixed parts, for example, the gap means a gap between a pair of conductive rods that are spaced apart from each other.
상기 도전성 로드(110)를 구성하는 재료로는, 전기가 흐를 수 있는 막대 형태의 물체라면 특별히 제한되는 것은 아니며, 예를 들어, 상기 도전성 로드(110)는 팔라듐, 백금, 금, 은, 구리, 루테늄, 로듐, 이리듐, 레늄 및 오스뮴으로 이루어진 군으로부터 선택된 하나 이상의 촉매 금속을 포함할 수 있고, 바람직하게는 상기 도전성 로드는 팔라듐 로드일 수 있으나, 이에 제한되는 것은 아니다.The material constituting the conductive rod 110 is not particularly limited as long as it is a rod-shaped object through which electricity can flow. For example, the conductive rod 110 may include palladium, platinum, gold, silver, copper, One or more catalytic metals selected from the group consisting of ruthenium, rhodium, iridium, rhenium and osmium, preferably the conductive rod may be a palladium rod, but is not limited thereto.
상기 전원부(120)는 상기 각각의 도전성 로드에 전압을 인가하기 위한 부분으로서, 하나의 예시에서 상기 전원부로부터 상기 도전성 로드에 인가되는 전압은 0.5 내지 20 kV이고, 전류량은 0.005 내지 100 mA일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 전원부(120)에서는 상기 한 쌍의 도전성 로드(110)에 인가되는 전압을 일정하게 조절할 수 있다. 이에 따라, 금속 나노 입자를 정량적으로 공급함으로써, 우수한 공급 안정성으로 금속 나노 입자를 제조할 수 있다. The power supply unit 120 is a part for applying a voltage to each of the conductive rods. In one example, the voltage applied to the conductive rods from the power supply unit may be 0.5 to 20 kV, and the amount of current may be 0.005 to 100 mA. However, the present invention is not limited thereto. For example, the power supply unit 120 may constantly adjust the voltage applied to the pair of conductive rods 110. Accordingly, by quantitatively supplying the metal nanoparticles, the metal nanoparticles can be manufactured with excellent supply stability.
하나의 예시에서, 상기 전원부(120)는, 상기 도전성 로드(110)에 고전압을 인가하기 위한 전기 회로를 포함할 수 있다. 상기 전기 회로는 고전압 공급원(HV), 외부 커패시터(C) 및 저항(R)으로 구성된 정전압원(Constant High Voltage Source) 구조를 가지며, 다수의 저항, 다수의 커패시터 및 회로전류의 고속 스위칭이 가능한 회로를 이용하여 금속 나노 입자의 크기를 조절할 수 있다.In one example, the power supply unit 120 may include an electrical circuit for applying a high voltage to the conductive rod 110. The electrical circuit has a constant high voltage source structure consisting of a high voltage source (HV), an external capacitor (C), and a resistor (R), and enables a high-speed switching of a plurality of resistors, a plurality of capacitors, and a circuit current. By using the size of the metal nanoparticles can be adjusted.
비록 도시되지는 않았지만, 상기 본 출원의 나노 패턴 형성 장치는 캐리어 기체 공급 시스템(Carrier Air Supply System) 등의 기체 공급 장치와, MFC(Mass Flow Controller) 등의 유량계를 포함할 수 있다. 또한, 상기 기체 공급 장치 및 유량계에 의해 비활성 기체 또는 질소가 상기 한 쌍의 도전성 로드 사이의 간격으로 정량적으로 공급될 수 있다.Although not shown, the nanopattern forming apparatus of the present application may include a gas supply device such as a carrier air supply system and a flow meter such as a mass flow controller (MFC). In addition, inert gas or nitrogen may be quantitatively supplied at intervals between the pair of conductive rods by the gas supply device and the flow meter.
상기 도전성 로드(110)에 고전압을 인가하면 스파크 방전에 의해 상기 촉매 금속이 기화 및 응축되고, 이를 통하여 입자화된 후, 상기 로드 사이의 간격을 통해 흐르는 비활성 기체 또는 질소 흐름에 따라 분무부(200)로 전달될 수 있다. 예를 들어, 상기 방전부(100)의 도전성 로드(110)로 전압이 인가되면, 방전부(100)의 한 쌍의 도전성 로드(110) 사이의 간격에서 상기 촉매 금속이 기화되며, 비활성 기체 또는 질소 등의 캐리어 기체를 따라 이동하여 기화된 금속은, 상기 간격을 벗어남에 따라, 응축되고, 이에 따라, 촉매 금속 나노 입자가 형성된다.When a high voltage is applied to the conductive rod 110, the catalyst metal is vaporized and condensed by spark discharge, and then granulated through the spray metal according to the inert gas or nitrogen flow flowing through the gap between the rods. Can be delivered. For example, when a voltage is applied to the conductive rod 110 of the discharge part 100, the catalyst metal is vaporized at an interval between the pair of conductive rods 110 of the discharge part 100, and an inert gas or The metal vaporized by moving along a carrier gas such as nitrogen is condensed as it goes out of the gap, thereby forming catalytic metal nanoparticles.
또한, 상기 도전성 로드(110) 사이의 간격, 예를 들어, 상기 도전성 로드(110) 간 최단거리인 전극 갭(Electrode Gap)은, 그 거리가 작을수록 점화요구 전압이 낮아지며, 그 거리가 커질수록 고전압이 요구된다. 또한, 전극 갭이 좁으면 스파크를 발생시키는데 필요한 전압은 감소하지만, 짧은 스파크는 혼합기에 점화 최소 에너지를 전달하여 실화를 일으킬 수 있으므로, 실험에 의해 적정 거리를 설정하는 것이 필요하다. 하나의 예시에서, 상기 전극 사이의 갭은, 0.1 내지 10 mm일 수 있으나, 이에 제한되는 것은 아니다.In addition, the gap between the conductive rods 110, for example, the electrode gap (the shortest distance between the conductive rods 110), the smaller the distance, the lower the ignition demand voltage, and the larger the distance is. High voltage is required. In addition, narrower electrode gaps reduce the voltage required to generate sparks, but shorter sparks can deliver ignition minimum energy to the mixer and cause misfire, so it is necessary to set the appropriate distance by experiment. In one example, the gap between the electrodes may be 0.1 to 10 mm, but is not limited thereto.
상기 방전부(100)로부터 생성되는 촉매 금속 나노 입자의 입경은, 상기 비활성 기체 또는 질소의 유량 또는 유속에 따라, 수 나노미터 단위에서 수백 나노미터 단위로 광범위하게 조절될 수 있다. 예를 들어, 상기 공급되는 비활성 기체 또는 질소의 유량 또는 유속이 증가되는 경우, 상기 촉매 금속 나노 입자의 농도가 감소됨에 따라 입자 간의 응집현상 또한 감소하게 되며, 이러한 과정을 통해 촉매 금속 나노 입자의 크기가 감소될 수 있다. 또한, 상기 촉매 금속 나노 입자의 입경, 형상 및 밀도는, 인가전압, 주파수, 전류, 저항, 커패시턴스 값 등의 스파크 생성 조건; 상기 비활성 기체의 종류 및 유량; 또는 스파크 전극의 형상 등에 의해 변경될 수 있다. 상기 도전성 로드로부터 발생된 촉매 금속 나노 입자의 입경은 특별히 제한되지 않고, 예를 들어, 상기 촉매 금속 나노 입자의 입경은 5 nm 내지 20 nm일 수 있고, 또한, 7 nm 내지 18 nm, 9 nm 내지 16 nm 또는 11 nm 내지 14 nm일 수 있으나 이에 제한되는 것은 아니다.The particle diameter of the catalytic metal nanoparticles generated from the discharge part 100 may be controlled in a wide range from several nanometers to several hundred nanometers according to the flow rate or flow rate of the inert gas or nitrogen. For example, when the flow rate or flow rate of the supplied inert gas or nitrogen is increased, as the concentration of the catalyst metal nanoparticles is reduced, the aggregation phenomenon between the particles is also reduced, and through this process, the size of the catalyst metal nanoparticles is reduced. Can be reduced. In addition, the particle diameter, shape, and density of the catalytic metal nanoparticles may include spark generation conditions such as an applied voltage, a frequency, a current, a resistance, and a capacitance value; Type and flow rate of the inert gas; Or by the shape of the spark electrode or the like. The particle diameter of the catalytic metal nanoparticles generated from the conductive rod is not particularly limited, and for example, the particle diameter of the catalytic metal nanoparticles may be 5 nm to 20 nm, and may also be 7 nm to 18 nm and 9 nm to. 16 nm or 11 nm to 14 nm, but is not limited thereto.
상기 비활성 기체로는 아르곤(Ar), 네온(Ne) 또는 헬륨(He) 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.Argon (Ar), neon (Ne) or helium (He) may be exemplified as the inert gas, but is not limited thereto.
상기 분무부(200)는, 상기 촉매 금속 나노 입자에 수용성 염을 포함하는 용액을 분무하여 상기 수용성 염 분자에 상기 금속 나노 입자를 부착시키기 위한 부분이다. 예를 들어, 상기 도전성 로드(110)에서 발생된 촉매 금속 나노 입자에 수용성 염을 분사하면 상기 촉매 금속 나노 입자와 수용성 염 간에는 충돌이 발생하여, 상기 수용성 염 분자 표면에 상기 촉매 금속 나노 입자가 부착될 수 있다. 이에 따라, 상기 촉매 금속 나노 입자가 부착된 상태의 수용성 염을 후술하는 기판 상에 부착시킬 수 있다.The spray unit 200 is a portion for attaching the metal nanoparticles to the water-soluble salt molecules by spraying a solution containing a water-soluble salt to the catalyst metal nanoparticles. For example, injecting a water-soluble salt to the catalyst metal nanoparticles generated in the conductive rod 110, a collision occurs between the catalyst metal nanoparticles and the water-soluble salts, the catalyst metal nanoparticles are attached to the surface of the water-soluble salt molecules Can be. Accordingly, the water-soluble salt in the state where the catalyst metal nanoparticles are attached can be attached onto the substrate described later.
상기 수용성 염으로는, 다각형 형태의 결정 형태를 가지는 염을 사용할 수 있으며, 예를 들어, 상기 수용성 염은, 질산나트륨(NaNO3), 질산칼륨(KNO3), 질산암모늄(NH4NO3), 질산마그네슘(MG(NO3)2), 질산바륨(Ba(NO3)2), 질산칼슘(Ca(NO3)2), 질산납(Pb(NO3)2), 질산은(AgNO3), 염화나트륨(NaCl), 염화칼륨(KCl), 염화암모늄(NH4Cl), 염화마그네슘(MgCl2), 염화바륨(BaCl2), 염화칼슘(CaCl2), 황화나트륨(Na2S), 황화칼륨(K2S), 황화암모늄((NH4)2S), 황화마그네슘(MgS), 황화바륨(BaS), 황화칼슘(CaS), 황산나트륨(Na2SO4), 황산칼륨(K2SO4), 황산암모늄((NH4)2SO4), 황산마그네슘(MgSO4), 탄산나트륨(Na2CO3), 탄산칼륨(K2CO3) 및 탄산암모늄((NH4)2CO3)으로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있다.As the water-soluble salt, salts having a crystal form of a polygonal form can be used. For example, the water-soluble salt may be sodium nitrate (NaNO 3 ), potassium nitrate (KNO 3 ), or ammonium nitrate (NH 4 NO 3 ). , Magnesium nitrate (MG (NO 3 ) 2 ), barium nitrate (Ba (NO 3 ) 2 ), calcium nitrate (Ca (NO 3 ) 2 ), lead nitrate (Pb (NO 3 ) 2 ), silver nitrate (AgNO 3 ) , Sodium chloride (NaCl), potassium chloride (KCl), ammonium chloride (NH 4 Cl), magnesium chloride (MgCl 2 ), barium chloride (BaCl 2 ), calcium chloride (CaCl 2 ), sodium sulfide (Na 2 S), potassium sulfide ( K 2 S), ammonium sulfide ((NH 4 ) 2 S), magnesium sulfide (MgS), barium sulfide (BaS), calcium sulfide (CaS), sodium sulfate (Na 2 SO 4 ), potassium sulfate (K 2 SO 4 ) , Consisting of ammonium sulfate ((NH 4 ) 2 SO 4 ), magnesium sulfate (MgSO 4 ), sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ) and ammonium carbonate ((NH 4 ) 2 CO 3 ) It may include one or more selected from the group.
상기와 같이 촉매 금속 나노 입자가 부착된 수용성 염 분자를 기판 상에 부착시키는 경우, 상기 촉매 금속 나노 입자는 후술할 무전해 도금 시에 촉매로서 작용할 수 있으며, 이에 따라, 상기 도금이 완료된 후 타겟 금속 외의 부산물을 제거하기 위한 별도의 세정 또는 에칭 작업 없이 친환경적으로 패터닝이 가능하며, 또한 상기 수용성 염의 다각형 형태의 결정 구조로 인하여 비구형 패턴을 별도의 템플릿 없이도 용이하게 형성할 수 있다.When the water-soluble salt molecules to which the catalytic metal nanoparticles are attached are attached on the substrate as described above, the catalytic metal nanoparticles may act as a catalyst in the electroless plating, which will be described later, and thus, the target metal after the plating is completed. Environmentally friendly patterning is possible without a separate cleaning or etching operation to remove other by-products, and due to the polygonal crystal structure of the water-soluble salt, an aspherical pattern can be easily formed without a separate template.
하나의 예시에서, 도 1에 나타낸 바와 같이, 예시적인 본 출원의 나노 패턴 형성 장치는 부착부(300)를 추가로 포함할 수 있다.In one example, as shown in FIG. 1, an exemplary nano pattern forming apparatus of the present application may further include an attachment part 300.
상기 부착부(300)에서는 촉매 금속 나노 입자가 부착된 수용성 염이 기판(310) 상에 부착될 수 있다. 상기 기판(310)은, 실리콘, 유리, 금속, 아크릴 수지, 폴리카보네이트, 폴리에틸렌 테레프탈레이트(PET), 폴리에틸렌 나프탈레이트(PEN), 폴리이미드(PI), 폴리아미드(PA), 폴리테트라플루오로에틸렌(PTFE), 폴리우레탄(PU), 폴리아릴레이트(PA), 폴리에테르설폰(PES), 플루오렌 폴리에스터(FPE), 사이클로 올레핀 수지, 에폭시 수지 및 에스테르 수지로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있다.In the attachment part 300, a water-soluble salt to which catalytic metal nanoparticles are attached may be attached onto the substrate 310. The substrate 310 may be silicon, glass, metal, acrylic resin, polycarbonate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), polyamide (PA), polytetrafluoroethylene At least one selected from the group consisting of (PTFE), polyurethane (PU), polyarylate (PA), polyethersulfone (PES), fluorene polyester (FPE), cyclo olefin resin, epoxy resin and ester resin can do.
또 하나의 예시에서, 비록 도시되지는 않았지만, 예시적인 본 출원의 나노 패턴 형성 장치는 패턴 형성부를 추가로 포함할 수 있다.In another example, although not shown, an exemplary nano pattern forming apparatus of the present application may further include a pattern forming unit.
상기 패턴 형성부에서는 상기 촉매 금속 나노 입자가 부착된 수용성 염이 부착된 기판이 건조됨에 따라, 상기 수용성 염이 제거되며, 이에 따라, 상기 기판 상에 촉매 금속 나노 입자의 패턴이 형성된다. 이 경우, 전술한 수용성 염이 다각형 형태의 결정 구조를 가지기 때문에, 촉매 금속 나노 입자는 수용성 염의 결정 구조의 형태로 기판 상에 패터닝되게 되며, 예를 들면, 상기 기판 상에 다각형 형태의 촉매 금속 나노 입자 패턴이 형성될 수 있다.In the pattern forming unit, as the substrate on which the water-soluble salt with the catalyst metal nanoparticles is attached is dried, the water-soluble salts are removed, thereby forming a pattern of the catalyst metal nanoparticles on the substrate. In this case, since the aforementioned water-soluble salts have a crystal structure of polygonal form, the catalytic metal nanoparticles are patterned on the substrate in the form of the crystal structure of the water-soluble salt, for example, the catalyst metal nanoparticles of polygonal form on the substrate. Particle patterns can be formed.
예를 들어, 상기 수용성 염이 부착된 기판은 50℃ 내지 350℃에서 건조될 수 있으며, 이에 따라, 상기 금속 나노입자와 기판 사이의 부착력이 증대될 수 있고, 상기 수용성 염이 제거될 수 있다.For example, the substrate to which the water-soluble salt is attached may be dried at 50 ° C. to 350 ° C., whereby the adhesion between the metal nanoparticles and the substrate may be increased, and the water-soluble salt may be removed.
상기 기판 상에 형성된 촉매 금속 나노 입자의 패턴의 단면 형태는 상기 수용성 염의 결정 구조에 따라 결정될 수 있으며, 예를 들어, 상기 기판 상에 형성된 촉매 금속 나노 입자의 패턴의 단면은 삼각형, 사각형, 오각형 및 육각형으로 이루어진 군으로부터 선택된 하나 이상의 다각형일 수 있으나, 이에 제한되는 것은 아니다. The cross-sectional shape of the pattern of the catalytic metal nanoparticles formed on the substrate may be determined according to the crystal structure of the water-soluble salt. For example, the cross-section of the pattern of the catalytic metal nanoparticles formed on the substrate may be triangular, square, pentagonal and It may be one or more polygons selected from the group consisting of hexagons, but is not limited thereto.
일 구현예에서, 비록 도시되지는 않았지만, 예시적인 본 출원의 나노 패턴 형성 장치는 반응조를 추가로 포함할 수 있다. In one embodiment, although not shown, the exemplary nano pattern forming apparatus of the present application may further include a reactor.
상기 반응조에는 최종 패터닝을 위한 타겟 금속을 포함하는 용액이 저장되어 있고, 하나의 예시에서, 상기 반응조는 상기 용액에 촉매 금속 나노 입자의 패턴이 형성된 기판이 함침되도록 마련될 수 있다. 예를 들어, 상기 타겟 금속을 포함하는 용액이 저장되어 있는 반응조에 상기 촉매 금속 나노 입자의 패턴이 형성된 기판을 함침시키고, 무전해 도금법을 통하여 상기 타겟 금속의 패터닝을 수행할 수 있다. 하나의 예시에서, 상기 무전해 도금법은, 상온에서 상기 촉매 금속 나노 입자의 패턴이 형성된 기판을 상기 타겟 금속을 포함하는 용액이 저장되어 있는 반응조에 1 내지 60 분 동안 함침시켜 수행될 수 있고, 바람직하게는, 상온에서 상기 촉매 금속 나노 입자의 패턴이 형성된 기판을 상기 타겟 금속을 포함하는 용액이 저장되어 있는 반응조에 5 내지 20분 동안 함침시켜 수행될 수 있다. 이와 같이 상기 타겟 금속을 포함하는 용액이 저장되어 있는 반응조에 상기 촉매 금속 나노 입자의 패턴이 형성된 기판을 함침시킴으로써, 상기 타겟 금속을 포함하는 용액이 기판 상에 형성된 촉매 금속 나노 입자의 패턴을 따라 금속층이 생성되며, 이에 따라, 템플릿의 사용 없이도 저비용, 단시간 및 친환경적으로 비구형 형태의 나노 패턴을 형성할 수 있다.In the reactor, a solution containing a target metal for final patterning is stored. In one example, the reactor may be provided to impregnate a substrate in which a pattern of catalytic metal nanoparticles is formed in the solution. For example, the substrate in which the pattern of the catalytic metal nanoparticles is formed may be impregnated in a reaction tank in which a solution including the target metal is stored, and the target metal may be patterned through an electroless plating method. In one example, the electroless plating method may be performed by impregnating the substrate on which the pattern of the catalytic metal nanoparticles is formed at room temperature in a reaction tank containing a solution containing the target metal for 1 to 60 minutes, preferably. Preferably, the substrate may be formed by impregnating the substrate on which the pattern of the catalytic metal nanoparticles is formed at room temperature for 5 to 20 minutes in a reaction vessel in which a solution containing the target metal is stored. As such, by impregnating the substrate in which the pattern of the catalytic metal nanoparticles is formed in the reaction tank in which the solution containing the target metal is stored, the metal layer is formed along the pattern of the catalytic metal nanoparticles in which the solution containing the target metal is formed on the substrate. As a result, it is possible to form a non-spherical nano-pattern in a low cost, short time and environmentally friendly without the use of a template.
본 명세서에서 「타겟 금속」은 예를 들어, 상기 촉매 금속 나노 입자를 촉매로 하는 무전해 도금법에 의해 패터닝 공정이 수행될 때, 최종적으로 패터닝되는 목적 금속을 의미한다. 또한, 본 명세서에서 「무전해 도금(Electroless Deposition, ELD)」은, 외부 전기에너지 없이 상기 촉매 금속 입자의 환원력에 의해 기판 상에 1차 타겟 금속층이 생성된 후, 상기 1차 타겟 금속층의 자기 촉매적으로 환원의 지속을 통하여 상기 기판의 표면 위에 상기 타겟 금속층을 생성하는 방법을 의미한다.In the present specification, the "target metal" means, for example, the target metal finally patterned when the patterning process is performed by an electroless plating method using the catalyst metal nanoparticles as a catalyst. In addition, in the present specification, "Electroless Deposition (ELD)" is a self-catalytic catalyst of the primary target metal layer after the primary target metal layer is formed on the substrate by the reducing force of the catalytic metal particles without external electrical energy. In general, it means a method of producing the target metal layer on the surface of the substrate through the continuous reduction.
상기 타겟 금속의 종류로는, 금(Au), 은(Ag), 백금(Pt), 구리(Cu), 크롬(Cr), 니켈(Ni), 철(Fe), 코발트(Co), 스칸듐(Sc), 이트륨(Y), 하프늄(Hf), 러더포듐(Rf), 티타늄(Ti), 지르코늄(Zr), 탄탈(Ta), 더브늄(Db), 바나듐(V), 니오브(Nb), 텅스텐(W), 시보르기움(Sg), 크롬(Cr), 몰리브덴(Mo), 레늄(Re), 보륨(Bh), 망간(Mn), 테크네튬(Tc), 오스뮴(Os), 하슘(Hs), 철(Fe), 루테늄(Ru), 이리듐(Ir), 마이트너륨(Mt), 로듐(Rh), 다름스타튬(Ds), 팔라듐(Pd), 렌트게늄(Rg), 수은(Hg), 코페르니슘(Cn), 아연(Zn) 및 카드뮴(Cd)으로 이루어진 군으로부터 선택된 하나 이상이 예시될 수 있다.Examples of the target metal include gold (Au), silver (Ag), platinum (Pt), copper (Cu), chromium (Cr), nickel (Ni), iron (Fe), cobalt (Co), and scandium ( Sc, Yttrium (Y), Hafnium (Hf), Rutherfordium (Rf), Titanium (Ti), Zirconium (Zr), Tantalum (Ta), Dubnium (Db), Vanadium (V), Niobium (Nb), Tungsten (W), Borborium (Sg), Chromium (Cr), Molybdenum (Mo), Rhenium (Re), Bolium (Bh), Manganese (Mn), Technetium (Tc), Osmium (Os), Hassium (Hs) ), Iron (Fe), Ruthenium (Ru), Iridium (Ir), Mitenerium (Mt), Rhodium (Rh), Darmium (Ds), Palladium (Pd), Rentenium (Rg), Mercury (Hg) ), At least one selected from the group consisting of copernium (Cn), zinc (Zn) and cadmium (Cd).
본 출원은 또한, 나노 패턴의 형성 방법에 관한 것이다. 본 출원의 나노 패턴의 형성 방법은 전술한 나노 패턴 형성 장치에 의해 수행될 수 있으며, 이에 따라, 상기 나노 패턴 형성 장치에서 설명한 내용과 중복되는 내용은 생략하기로 한다. 예시적인 본 출원의 나노 패턴의 형성 방법에 의하면, 수용성 염에 촉매 금속 나노 입자를 부착시킴으로써, 기판 상에 템플릿의 사용 없이도 저비용, 단시간 및 친환경적으로 다각형 형태의 나노 패턴을 형성할 수 있다.The present application also relates to a method of forming a nanopattern. The method of forming a nanopattern of the present application may be performed by the nanopattern forming apparatus described above, and thus, descriptions overlapping with those described in the nanopattern forming apparatus will be omitted. According to an exemplary method of forming a nanopattern of the present application, by attaching catalytic metal nanoparticles to a water-soluble salt, it is possible to form a nanopattern in a polygonal form at low cost, short time, and environmentally friendly without using a template on a substrate.
예시적인 본 출원의 나노 패턴의 형성 방법은 촉매 금속 나노 입자를 발생시키는 단계 및 수용성 염에 상기 촉매 금속 나노 입자를 부착시키는 단계를 포함한다.Exemplary methods of forming nanopatterns of the present application include generating catalytic metal nanoparticles and attaching the catalytic metal nanoparticles to a water soluble salt.
상기 촉매 금속 나노 입자를 발생시키는 단계는, 전술한 패턴 형성 장치의 방전부에서 수행될 수 있으며, 하나의 예시에서, 한 쌍의 도전성 로드에 각각 전압을 인가하여 상기 한 쌍의 도전성 로드로부터 촉매 금속 나노입자를 발생시키는 것을 포함한다. 상기 한 쌍의 도전성 로드는 각각 소정 간격을 두고 서로 이격 배치되어 있으며, 이에 따라 상기 한 쌍의 도전성 로드는 간격을 형성할 수 있다. 상기 금속 나노 입자를 발생시키는 단계에서, 상기 도전성 로드에 고전압이 인가되면 스파크 방전에 의해 상기 촉매 금속이 기화 및 응축되고, 이를 통해 입자화된 후, 상기 로드 사이의 간격을 통해 흐르는 비활성 기체 또는 질소 흐름에 따라 분무부로 전달될 수 있다. 예를 들어, 상기 방전부의 도전성 로드로 전압이 인가되면, 방전부의 한 쌍의 도전성 로드 사이의 간격에서 상기 촉매 금속이 기화되며, 비활성 기체 또는 질소 등의 캐리어 기체를 따라 이동하여 기회된 금속은, 상기 간격을 벗어남에 따라, 응축되고, 이에 따라, 촉매 금속 나노 입자가 형성된다.The generating of the catalytic metal nanoparticles may be performed in the discharge part of the pattern forming apparatus described above, and in one example, by applying a voltage to each of the pair of conductive rods, the catalyst metal may be formed from the pair of conductive rods. Generating nanoparticles. The pair of conductive rods are spaced apart from each other at predetermined intervals, and thus the pair of conductive rods may form a gap. In the step of generating the metal nanoparticles, when a high voltage is applied to the conductive rod, the catalyst metal is vaporized and condensed by spark discharge, which is then granulated, and then inert gas or nitrogen flowing through the gap between the rods. According to the flow can be delivered to the spray. For example, when a voltage is applied to the conductive rod of the discharge portion, the catalyst metal is vaporized at an interval between the pair of conductive rods of the discharge portion, and moves along the carrier gas such as an inert gas or nitrogen, thereby allowing the opportunity metal. As it deviates from the gap, it condenses, thereby forming catalytic metal nanoparticles.
상기 도전성 로드를 구성하는 재료로는, 전기가 흐를 수 있는 봉 또는 막대 형태의 물체라면 특별히 제한되는 것은 아니며, 예를 들어, 상기 도전성 로드는 팔라듐, 백금, 금, 은, 구리, 루테늄, 로듐, 이리듐, 레늄 및 오스뮴으로 이루어진 군으로부터 선택된 하나 이상의 촉매 금속을 포함할 수 있다.The material constituting the conductive rod is not particularly limited as long as it is a rod or rod-shaped object through which electricity can flow. For example, the conductive rod may be palladium, platinum, gold, silver, copper, ruthenium, rhodium, It may comprise one or more catalytic metals selected from the group consisting of iridium, rhenium and osmium.
상기 수용성 염에 촉매 금속 나노 입자를 부착시키는 단계는, 전술한 패턴 형성 장치의 분무부에서 수행될 수 있으며, 하나의 예시에서, 상기 발생된 금속 나노 입자에 수용성 염을 포함하는 용액을 분사하는 것을 포함한다. 예를 들어, 상기 도전성 로드로부터 발생된 촉매 금속 나노 입자에 수용성 염을 포함하는 용액을 분사하면 상기 촉매 금속 나노 입자와 수용성 염 분자 간에는 확산력 또는 정전기적 인력이 발생하여, 수용성 염 분자의 표면에 촉매 금속 나노 입자가 부착될 수 있다. 이에 따라, 상기 촉매 금속 나노 입자가 부착된 상태의 수용성 염을 후술하는 기판 상에 부착시킬 수 있다.Attaching the catalytic metal nanoparticles to the water-soluble salt may be performed in the spraying unit of the pattern forming apparatus described above, and in one example, spraying a solution containing a water-soluble salt to the generated metal nanoparticles. Include. For example, injecting a solution containing a water-soluble salt into the catalyst metal nanoparticles generated from the conductive rod generates a diffusion force or electrostatic attraction between the catalyst metal nanoparticles and the water-soluble salt molecules, thereby providing a catalyst on the surface of the water-soluble salt molecules. Metal nanoparticles may be attached. Accordingly, the water-soluble salt in the state where the catalyst metal nanoparticles are attached can be attached onto the substrate described later.
상기 수용성 염으로는, 다각형 형태의 결정 형태를 가지는 염을 사용할 수 있으며, 상기 수용성 염은, 질산나트륨(NaNO3), 질산칼륨(KNO3), 질산암모늄(NH4NO3), 질산마그네슘(MG(NO3)2), 질산바륨(Ba(NO3)2), 질산칼슘(Ca(NO3)2), 질산납(Pb(NO3)2), 질산은(AgNO3), 염화나트륨(NaCl), 염화칼륨(KCl), 염화암모늄(NH4Cl), 염화마그네슘(MgCl2), 염화바륨(BaCl2), 염화칼슘(CaCl2), 황화나트륨(Na2S), 황화칼륨(K2S), 황화암모늄((NH4)2S), 황화마그네슘(MgS), 황화바륨(BaS), 황화칼슘(CaS), 황산나트륨(Na2SO4), 황산칼륨(K2SO4), 황산암모늄((NH4)2SO4), 황산마그네슘(MgSO4), 탄산나트륨(Na2CO3), 탄산칼륨(K2CO3) 및 탄산암모늄((NH4)2CO3)으로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있다.As the water-soluble salt, a salt having a crystal form of a polygonal form may be used, and the water-soluble salt may be sodium nitrate (NaNO 3 ), potassium nitrate (KNO 3 ), ammonium nitrate (NH 4 NO 3 ), magnesium nitrate ( MG (NO 3 ) 2 ), barium nitrate (Ba (NO 3 ) 2 ), calcium nitrate (Ca (NO 3 ) 2 ), lead nitrate (Pb (NO 3 ) 2 ), silver nitrate (AgNO 3 ), sodium chloride (NaCl ), Potassium chloride (KCl), ammonium chloride (NH 4 Cl), magnesium chloride (MgCl 2 ), barium chloride (BaCl 2 ), calcium chloride (CaCl 2 ), sodium sulfide (Na 2 S), potassium sulfide (K 2 S) , Ammonium sulfide ((NH 4 ) 2 S), magnesium sulfide (MgS), barium sulfide (BaS), calcium sulfide (CaS), sodium sulfate (Na 2 SO 4 ), potassium sulfate (K 2 SO 4 ), ammonium sulfate ( (NH 4 ) 2 SO 4 ), magnesium sulfate (MgSO 4 ), sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ) and ammonium carbonate ((NH 4 ) 2 CO 3 ) It may contain the above.
하나의 예시에서, 예시적인 본 출원의 나노 패턴의 형성 방법은 상기 촉매 금속 나노 입자가 부착된 수용성 염을 기판 상에 부착하는 단계를 추가로 포함할 수 있다. 상기 기판으로는, 실리콘, 유리, 금속, 아크릴 수지, 폴리카보네이트, 폴리에틸렌 테레프탈레이트(PET), 폴리에틸렌 나프탈레이트(PEN), 폴리이미드(PI), 폴리아미드(PA), 폴리테트라플루오로에틸렌(PTFE), 폴리우레탄(PU), 폴리아릴레이트(PA), 폴리에테르설폰(PES), 플루오렌 폴리에스터(FPE), 사이클로 올레핀 수지, 에폭시 수지 및 에스테르 수지로 이루어진 군으로부터 선택된 하나 이상을 사용할 수 있다.In one example, an exemplary method of forming a nanopattern of the present application may further include attaching a water-soluble salt to which the catalytic metal nanoparticles are attached on a substrate. Examples of the substrate include silicon, glass, metal, acrylic resin, polycarbonate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), polyamide (PA), and polytetrafluoroethylene (PTFE). ), Polyurethane (PU), polyarylate (PA), polyethersulfone (PES), fluorene polyester (FPE), cyclo olefin resin, epoxy resin and ester resin can be used at least one selected from the group .
또 하나의 예시에서, 예시적인 본 출원의 나노 패턴의 형성 방법은 상기 수용성 염이 부착된 기판을 건조하고 상기 수용성 염을 제거하여 상기 기판 상에 촉매 금속 나노 입자의 패턴을 형성하는 단계를 추가로 포함할 수 있다. 상기 패턴을 형성하는 단계는 전술한 패턴 형성 장치의 패턴 형성부에서 수행될 수 있다. In another example, an exemplary method of forming a nanopattern of the present application further comprises drying the substrate to which the water-soluble salt is attached and removing the water-soluble salt to form a pattern of catalytic metal nanoparticles on the substrate. It may include. The forming of the pattern may be performed in the pattern forming unit of the pattern forming apparatus described above.
예를 들어, 상기 수용성 염이 부착된 기판은 50℃ 내지 350℃에서 건조될 수 있으며, 이에 따라 상기 촉매 금속 나노 입자와 기판 사이의 부착력이 증대되고, 상기 수용성 염이 제거될 수 있다.For example, the substrate to which the water-soluble salt is attached may be dried at 50 ° C. to 350 ° C., thereby increasing adhesion between the catalytic metal nanoparticles and the substrate and removing the water-soluble salt.
상기 기판 상에 형성된 촉매 금속 나노 입자의 패턴의 단면 형태는 상기 수용성 염의 결정 구조에 따라 달라질 수 있으며, 예를 들어, 상기 기판 상에 형성된 금속 나노 입자의 패턴의 단면은 삼각형, 사각형, 오각형 및 육각형으로 이루어진 군으로부터 선택된 하나 이상의 다각형일 수 있으나 이에 제한되는 것은 아니다. The cross-sectional shape of the pattern of the catalyst metal nanoparticles formed on the substrate may vary depending on the crystal structure of the water-soluble salt. For example, the cross-section of the pattern of the metal nanoparticles formed on the substrate may be triangular, square, pentagonal and hexagonal. One or more polygons selected from the group consisting of, but is not limited thereto.
또 하나의 예시에서, 예시적인 본 출원의 나노 패턴의 형성 방법은 금속 나노 입자의 패턴이 형성된 기판 상에 타겟 금속을 반응시키는 단계를 추가로 포함할 수 있다. 상기 타겟 금속은 전술한 패턴 형성 장치의 반응조에서 부착될 수 있다. 예를 들어, 상기 타겟 금속을 포함하는 용액이 저장되어 있는 반응조에 상기 촉매 금속 나노 입자의 패턴이 형성된 기판을 함침시키고, 무전해 도금법을 통하여 상기 타겟 금속의 패터닝을 수행할 수 있다.In another example, an exemplary method of forming a nanopattern of the present application may further include reacting a target metal on a substrate on which a pattern of metal nanoparticles is formed. The target metal may be attached in the reaction tank of the pattern forming apparatus described above. For example, the substrate in which the pattern of the catalytic metal nanoparticles is formed may be impregnated in a reaction tank in which a solution including the target metal is stored, and the target metal may be patterned through an electroless plating method.
본 출원의 나노 패턴 형성 장치에 의하면, 촉매 금속 나노 입자가 부착된 수용성 염 분자를 기판 상에 부착시킨 후에, 타겟 금속 패턴을 형성함으로써, 기판 상에 템플릿의 사용 없이도 저비용, 단시간 및 친환경적으로 다각형 형태의 나노 패턴을 형성할 수 있다.According to the nanopattern forming apparatus of the present application, after attaching a water-soluble salt molecule having catalytic metal nanoparticles attached onto a substrate, a target metal pattern is formed, thereby enabling a low cost, short time and environmentally friendly polygonal form without using a template on the substrate. Can form a nano-pattern.
도 1은, 본 출원의 일 구현예에 따른 나노 패턴 형성 장치를 모식적으로 나타낸 도면이다.1 is a view schematically showing a nano-pattern forming apparatus according to an embodiment of the present application.
도 2는, 본 출원의 나노 패턴의 형성 방법을 모식적으로 나타낸 도면이다. 2 is a diagram schematically showing a method of forming a nanopattern of the present application.
도 3 및 도 4는, 실시예에서 형성된 나노 패턴의 저배율 및 고배율 주사 전자 현미경 이미지이다.3 and 4 are low and high magnification scanning electron microscopy images of the nanopatterns formed in the examples.
도 5는, 비교예에서 형성된 나노 패턴의 저배율 및 고배율 주사 전자 현미경 이미지이다.5 is a low magnification and high magnification scanning electron microscope image of the nanopattern formed in the comparative example.
도 6은, 실시예에서 실리콘 기판 상에 정전기적으로 부착된 수용성 염-팔라듐 하이브리드 입자의 투과전자 현미경 이미지이다.6 is a transmission electron microscope image of water soluble salt-palladium hybrid particles electrostatically attached onto a silicon substrate in an embodiment.
도 7은, 실시예에서 실리콘 기판 상에 정전기적으로 부착된 수용성 염-팔라듐 하이브리드 입자의 원소 맵 이미지이다.FIG. 7 is an element map image of water soluble salt-palladium hybrid particles electrostatically attached onto a silicon substrate in an embodiment. FIG.
도 8은, 비교예에서 실리콘 기판 상에 정전기적으로 부착된 에틸렌글리콜-팔라듐 하이브리드 입자의 투과전자 현미경 이미지이다.FIG. 8 is a transmission electron microscope image of ethylene glycol-palladium hybrid particles electrostatically attached onto a silicon substrate in a comparative example.
<부호의 설명><Description of the code>
100: 방전부100: discharge part
110: 도전성 로드110: conductive rod
120: 전원부120: power supply
200: 분무부200: spraying unit
300: 부착부300: attachment
이하 실시예 및 비교예를 통하여 상기 기술한 내용을 보다 구체적으로 설명하지만, 본 출원의 범위가 하기 제시된 내용에 의해 제한되는 것은 아니다.Hereinafter, the above-described contents will be described in more detail with reference to Examples and Comparative Examples, but the scope of the present application is not limited by the contents given below.
실시예Example 1  One
수용성 염을 포함하는 용액의 제조Preparation of Solutions Containing Water Soluble Salts
용매로서 물 100 중량부에 대하여, 수용성 염으로서 염화나트륨(NaCl)을 0.001 중량부로 혼합하여 염화나트륨 용액을 제조하였다.A sodium chloride solution was prepared by mixing 0.001 part by weight of sodium chloride (NaCl) as a water-soluble salt, relative to 100 parts by weight of water as a solvent.
나노 패턴의 형성Formation of Nano Patterns
도 1의 나노 패턴 형성 장치를 이용하여, 도 2와 같은 과정에 따라 나노 패턴을 형성하였다.Using the nano-pattern forming apparatus of FIG. 1, nano-patterns were formed according to the same process as in FIG. 2.
도 1과 같이, 질소 기체가 흐르는 챔버 내에, 3 mm의 입경 및 100 mm의 길이를 갖는 팔라듐(Pd) 금속을 포함하는 도전성 로드 한 쌍을 이격 배치시켜 간극을 형성하였고, 방전부에 포함된 전원부를 상기 도전성 로드 각각에 전기적으로 연결하였으며, 상기 한 쌍의 도전성 로드에 전압을 인가하고 스파크 방전시켜, 12.0 nm의 평균 입경을 갖는 팔라듐 촉매 금속 나노 입자를 4.76×107 particles/cm3의 전체 수 농도(total number concentration) 및 1.54의 기하표준편차로 발생시켰다. 이 때, 상기 도전성 로드에 전압을 인가하는 경우, 상기 전원부를 통해, 전압은 4 kV로 정량 제어하였다. 상기 나노 입자의 모양 및 결정성은 투과 전자 현미경(TEM, JEM-3010, JEOL, Japan)을 사용하여 측정하였다.As shown in FIG. 1, a pair of conductive rods including a palladium (Pd) metal having a particle diameter of 3 mm and a length of 100 mm are spaced apart from each other to form a gap in a chamber through which nitrogen gas flows, and a power supply part included in a discharge part. Is electrically connected to each of the conductive rods, and voltage is applied to the pair of conductive rods and spark discharged to obtain a total number of 4.76 × 10 7 particles / cm 3 of palladium-catalyzed metal nanoparticles having an average particle diameter of 12.0 nm. Total number concentration and geometric standard deviation of 1.54. At this time, when a voltage was applied to the conductive rod, the voltage was quantitatively controlled to 4 kV through the power supply unit. The shape and crystallinity of the nanoparticles were measured using a transmission electron microscope (TEM, JEM-3010, JEOL, Japan).
상기 도전성 로드에서 발생된 팔라듐 금속 나노 입자는 질소 기체를 따라 분무부로 이동하였으며, 상기 분무부에서는, 콜리슨 타입 분무기(Collison Atomizer)를 통해, 상기 질소 기체를 따라 흐르는 금속 나노 입자에 상기에서 제조된 수용성 염을 포함하는 용액을 3 L/min의 분무량으로 분사하여, 상기 수용성 염에 금속 나노 입자를 부착시켜 하이브리드 액적(Hybrid Droplet)을 제조하였다. 용매가 추출된 액적은 에어로졸 대전 중화기(Aerosol Charge Neutralizer, 4530, HCT, Korea)로 주입되었고, 나노 입경 분리장치(Nanodifferential Mobility Analyzer, NDMA, 3085, TSI, US)로 주입되었다. 상기 나노 입경 분리장치는 정전 분립기(Electrostatic Classifier)에 의해 고정된 입력 전압에서 작동되었으며, 등가의 전기적 이동도를 갖는 입자로 분류하였다. 상기 액적은 정전 포집기로 주입되었다.The palladium metal nanoparticles generated in the conductive rods were moved to the spraying unit along with nitrogen gas, and in the spraying unit, the water-soluble water prepared above was produced to the metal nanoparticles flowing along the nitrogen gas through a Collison Atomizer. A solution containing a salt was sprayed at a spray amount of 3 L / min to attach metal nanoparticles to the water-soluble salt to prepare a hybrid droplet. The solvent-derived droplets were injected into an Aerosol Charge Neutralizer (4530, HCT, Korea) and injected into a Nanodifferential Mobility Analyzer (Nanodifferential Mobility Analyzer, NDMA, 3085, TSI, US). The nanoparticle separator was operated at a fixed input voltage by an electrostatic classifier and classified into particles having equivalent electrical mobility. The droplets were injected into an electrostatic collector.
상기 하이브리드 액적은 질소 기체를 따라 부착 챔버로 이동하였으며, 실리콘 기판 상에 부착되었다.The hybrid droplets moved along the nitrogen gas into the deposition chamber and deposited on the silicon substrate.
상기 실리콘 기판 상에 부착된 하이브리드 액적을 200℃에서 5분 동안 건조하여 촉매 금속 나노 입자의 기판 상 부착력을 증대시키고, 상기 수용성 염을 제거하여, 상기 기판 상에 사각형 형태의 팔라듐 나노 패턴을 형성하였다.The hybrid droplets deposited on the silicon substrate were dried at 200 ° C. for 5 minutes to increase adhesion of the catalytic metal nanoparticles on the substrate, and the water-soluble salts were removed to form a square palladium nanopattern on the substrate. .
상기 사각형 형태의 나노 패턴이 형성된 기판을, 용매로서, 증류수 100 중량부에 대하여, 타겟 금속으로서, 은(Ag)을 0.1 중량부로 포함하는 용액이 저장된 반응조에 상온에서 10 분 동안 함침시켰으며, 무전해 도금법을 통해 상기 기판 상에 형성된 팔라듐 촉매 나노 패턴을 따라 은 패턴을 성장시켰다.The rectangular nano-pattern-formed substrate was impregnated with a solution containing 0.1 parts by weight of silver (Ag) as a target metal with respect to 100 parts by weight of distilled water as a solvent and impregnated at room temperature for 10 minutes. The silver pattern was grown along the palladium catalyst nanopattern formed on the substrate through sea plating.
상기 은 패턴의 높이는 80±5 nm였으며, 가로 및 세로의 길이는 각각 180 nm 및 190 nm로 측정되었다.The height of the silver pattern was 80 ± 5 nm, and the lengths of the horizontal and vertical were measured at 180 nm and 190 nm, respectively.
실시예 2Example 2
수용성 염으로서, 염화칼륨(KCl)을 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 높이는 35 nm였으며, 가로 및 세로의 길이는 각각 40 nm 및 60 nm인 사각형 형태의 나노 패턴을 형성하였다.Except for using potassium chloride (KCl) as a water-soluble salt, the same method as in Example 1 was 35 nm in height, and the horizontal and vertical length of 40 nm and 60 nm, respectively, to form a rectangular nano-pattern.
비교예Comparative example
수용성 염을 포함하는 용액 대신, 에틸렌 글리콜(EG) 용액을 분사한 것을 제외하고, 실시예 1과 동일한 방법으로 직경이 90 nm인 링 형태의 나노 패턴을 형성하였다.A ring-shaped nanopattern having a diameter of 90 nm was formed in the same manner as in Example 1, except that an ethylene glycol (EG) solution was sprayed instead of a solution containing a water-soluble salt.

Claims (16)

  1. 서로 이격 배치되어 간격을 형성하고 있으며, 팔라듐, 백금, 금, 은, 구리, 루테늄, 로듐, 이리듐, 레늄 및 오스뮴으로 이루어진 군으로부터 선택된 하나 이상의 촉매 금속을 포함하는 한 쌍의 도전성 로드 및 상기 한 쌍의 도전성 로드에 각각 전압을 인가하는 전원부를 포함하는 방전부; 및A pair of conductive rods and one pair of conductive rods spaced apart from each other to form a gap, and including at least one catalytic metal selected from the group consisting of palladium, platinum, gold, silver, copper, ruthenium, rhodium, iridium, rhenium, and osmium A discharge unit including a power supply unit for applying a voltage to the conductive rods of the respective circuits; And
    상기 도전성 로드에서 발생된 촉매 금속 나노 입자에 수용성 염을 분사하여 상기 수용성 염에 촉매 금속 나노 입자를 부착시키는 분무부를 포함하는 나노 패턴 형성 장치.And a spraying unit spraying a water-soluble salt to the catalyst metal nanoparticles generated from the conductive rod to attach the catalyst metal nanoparticles to the water-soluble salt.
  2. 제 1 항에 있어서, 수용성 염은 질산나트륨(NaNO3), 질산칼륨(KNO3), 질산암모늄(NH4NO3), 질산마그네슘(Mg(NO3)2), 질산바륨(Ba(NO3)2), 질산칼슘(Ca(NO3)2), 질산납(Pb(NO3)2), 질산은(AgNO3), 염화나트륨(NaCl), 염화칼륨(KCl), 염화암모늄(NH4Cl), 염화마그네슘(MgCl2), 염화바륨(BaCl2), 염화칼슘(CaCl2), 황화나트륨(Na2S), 황화칼륨(K2S), 황화암모늄((NH4)2S), 황화마그네슘(MgS), 황화바륨(BaS), 황화칼슘(CaS), 황산나트륨(Na2SO4), 황산칼륨(K2SO4), 황산암모늄((NH4)2SO4), 황산마그네슘(MgSO4), 탄산나트륨(Na2CO3), 탄산칼륨(K2CO3) 및 탄산암모늄((NH4)2CO3)으로 이루어진 군으로부터 선택된 하나 이상인 나노 패턴 형성 장치.The method of claim 1, wherein the water-soluble salt is sodium nitrate (NaNO 3 ), potassium nitrate (KNO 3 ), ammonium nitrate (NH 4 NO 3 ), magnesium nitrate (Mg (NO 3 ) 2 ), barium nitrate (Ba (NO 3) ) 2 ), calcium nitrate (Ca (NO 3 ) 2 ), lead nitrate (Pb (NO 3 ) 2 ), silver nitrate (AgNO 3 ), sodium chloride (NaCl), potassium chloride (KCl), ammonium chloride (NH 4 Cl), Magnesium chloride (MgCl 2 ), barium chloride (BaCl 2 ), calcium chloride (CaCl 2 ), sodium sulfide (Na 2 S), potassium sulfide (K 2 S), ammonium sulfide ((NH 4 ) 2 S), magnesium sulfide ( MgS), barium sulfide (BaS), calcium sulfide (CaS), sodium sulfate (Na 2 SO 4 ), potassium sulfate (K 2 SO 4 ), ammonium sulfate ((NH 4 ) 2 SO 4 ), magnesium sulfate (MgSO 4 ) At least one selected from the group consisting of sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ), and ammonium carbonate ((NH 4 ) 2 CO 3 ).
  3. 제 1 항에 있어서, 촉매 금속 나노 입자가 부착된 수용성 염이 부착되는 부착부를 추가로 포함하는 나노 패턴 형성 장치.The nano pattern forming apparatus of claim 1, further comprising an attachment portion to which the water-soluble salt to which the catalytic metal nanoparticles are attached is attached.
  4. 제 3 항에 있어서, 촉매 금속 나노 입자가 부착된 수용성 염은 기판 상에 부착되며, 상기 기판은, 실리콘, 유리, 금속, 아크릴 수지, 폴리카보네이트, 폴리에틸렌 테레프탈레이트(PET), 폴리에틸렌 나프탈레이트(PEN), 폴리이미드(PI), 폴리아미드(PA), 폴리테트라플루오로에틸렌(PTFE), 폴리우레탄(PU), 폴리아릴레이트(PA), 폴리에테르설폰(PES), 플루오렌 폴리에스터(FPE), 사이클로 올레핀 수지, 에폭시 수지 및 에스테르 수지로 이루어진 군으로부터 선택된 하나 이상인 나노 패턴 형성 장치.The method of claim 3, wherein the water-soluble salt to which the catalytic metal nanoparticles are attached is attached onto a substrate, the substrate comprising silicon, glass, metal, acrylic resin, polycarbonate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN). ), Polyimide (PI), polyamide (PA), polytetrafluoroethylene (PTFE), polyurethane (PU), polyarylate (PA), polyethersulfone (PES), fluorene polyester (FPE) At least one selected from the group consisting of cycloolefin resins, epoxy resins and ester resins.
  5. 제 3 항에 있어서, 수용성 염이 부착된 기판을 건조하고 상기 수용성 염을 제거하여 상기 기판 상에 촉매 금속 나노 입자의 패턴을 형성하는 패턴 형성부를 추가로 포함하는 나노 패턴 형성 장치.The nanopattern forming apparatus of claim 3, further comprising a pattern forming unit configured to dry the substrate to which the water-soluble salt is attached and to remove the water-soluble salt to form a pattern of catalytic metal nanoparticles on the substrate.
  6. 제 5 항에 있어서, 촉매 금속 나노 입자의 패턴의 단면은 삼각형, 사각형, 오각형 및 육각형으로 이루어진 군으로부터 선택된 하나 이상의 다각형인 나노 패턴 형성 장치.The apparatus of claim 5, wherein the cross section of the pattern of catalytic metal nanoparticles is one or more polygons selected from the group consisting of triangles, squares, pentagons, and hexagons.
  7. 제 5 항에 있어서, 타겟 금속을 포함하는 용액이 저장되어 있고, 상기 용액에 촉매 금속 나노 입자의 패턴이 형성된 기판이 함침되도록 마련된 반응조를 추가로 포함하는 나노 패턴 형성 장치.The nanopattern forming apparatus according to claim 5, further comprising a reaction tank in which a solution containing a target metal is stored, and the substrate having the pattern of catalytic metal nanoparticles formed therein is impregnated with the solution.
  8. 제 7 항에 있어서, 타겟 금속은, 금(Au), 은(Ag), 백금(Pt), 구리(Cu), 크롬(Cr), 니켈(Ni), 철(Fe), 코발트(Co), 스칸듐(Sc), 이트륨(Y), 하프늄(Hf), 러더포듐(Rf), 티타늄(Ti), 지르코늄(Zr), 탄탈(Ta), 더브늄(Db), 바나듐(V), 니오브(Nb), 텅스텐(W), 시보르기움(Sg), 크롬(Cr), 몰리브덴(Mo), 레늄(Re), 보륨(Bh), 망간(Mn), 테크네튬(Tc), 오스뮴(Os), 하슘(Hs), 철(Fe), 루테늄(Ru), 이리듐(Ir), 마이트너륨(Mt), 로듐(Rh), 다름슈타튬(Ds), 팔라듐(Pd), 렌트게늄(Rg), 수은(Hg), 코페르니슘(Cn), 아연(Zn) 및 카드뮴(Cd)으로 이루어진 군으로부터 선택된 하나 이상인 나노 패턴 형성 장치.The method of claim 7, wherein the target metal is gold (Au), silver (Ag), platinum (Pt), copper (Cu), chromium (Cr), nickel (Ni), iron (Fe), cobalt (Co), Scandium (Sc), Yttrium (Y), Hafnium (Hf), Rutherfordium (Rf), Titanium (Ti), Zirconium (Zr), Tantalum (Ta), Dubnium (Db), Vanadium (V), Niobium (Nb) ), Tungsten (W), chevron (Sg), chromium (Cr), molybdenum (Mo), rhenium (Re), borium (Bh), manganese (Mn), technetium (Tc), osmium (Os), and calcium (Hs), Iron (Fe), Ruthenium (Ru), Iridium (Ir), Mitenerium (Mt), Rhodium (Rh), Darmstadtium (Ds), Palladium (Pd), Rentenium (Rg), Mercury (Hg), copernium (Cn), zinc (Zn) and cadmium (Cd) at least one selected from the group consisting of nano pattern forming apparatus.
  9. 서로 이격 배치되어 간격을 형성하고 있으며, 팔라듐, 백금, 금, 은, 구리, 루테늄, 로듐, 이리듐, 레늄 및 오스뮴으로 이루어진 군으로부터 선택된 하나 이상의 촉매 금속을 포함하는 한 쌍의 도전성 로드에 각각 전압을 인가하여 상기 한 쌍의 도전성 로드로부터 촉매 금속 나노 입자를 발생시키는 단계; 및Spaced apart from each other to form a gap, and a voltage is applied to a pair of conductive rods each including one or more catalytic metals selected from the group consisting of palladium, platinum, gold, silver, copper, ruthenium, rhodium, iridium, rhenium, and osmium. Applying to generate catalytic metal nanoparticles from the pair of conductive rods; And
    상기 발생된 촉매 금속 나노 입자에 수용성 염을 포함하는 용액을 분사하여 상기 수용성 염에 촉매 금속 나노 입자를 부착시키는 부착 단계를 포함하는 나노 패턴의 형성 방법.Method of forming a nano-pattern comprising the step of attaching the catalyst metal nanoparticles to the water-soluble salts by spraying a solution containing a water-soluble salt to the generated catalyst metal nanoparticles.
  10. 제 9 항에 있어서, 수용성 염은 질산나트륨(NaNO3), 질산칼륨(KNO3), 질산암모늄(NH4NO3), 질산마그네슘(MG(NO3)2), 질산바륨(Ba(NO3)2), 질산칼슘(Ca(NO3)2), 질산납(Pb(NO3)2), 질산은(AgNO3), 염화나트륨(NaCl), 염화칼륨(KCl), 염화암모늄(NH4Cl), 염화마그네슘(MgCl2), 염화바륨(BaCl2), 염화칼슘(CaCl2), 황화나트륨(Na2S), 황화칼륨(K2S), 황화암모늄((NH4)2S), 황화마그네슘(MgS), 황화바륨(BaS), 황화칼슘(CaS), 황산나트륨(Na2SO4), 황산칼륨(K2SO4), 황산암모늄((NH4)2SO4), 황산마그네슘(MgSO4), 탄산나트륨(Na2CO3), 탄산칼륨(K2CO3) 및 탄산암모늄((NH4)2CO3)으로 이루어진 군으로부터 선택된 하나 이상인 나노 패턴의 형성 방법.10. The method of claim 9, wherein the water soluble salt is sodium nitrate (NaNO 3 ), potassium nitrate (KNO 3 ), ammonium nitrate (NH 4 NO 3 ), magnesium nitrate (MG (NO 3 ) 2 ), barium nitrate (Ba (NO 3) ) 2 ), calcium nitrate (Ca (NO 3 ) 2 ), lead nitrate (Pb (NO 3 ) 2 ), silver nitrate (AgNO 3 ), sodium chloride (NaCl), potassium chloride (KCl), ammonium chloride (NH 4 Cl), Magnesium chloride (MgCl 2 ), barium chloride (BaCl 2 ), calcium chloride (CaCl 2 ), sodium sulfide (Na 2 S), potassium sulfide (K 2 S), ammonium sulfide ((NH 4 ) 2 S), magnesium sulfide ( MgS), barium sulfide (BaS), calcium sulfide (CaS), sodium sulfate (Na 2 SO 4 ), potassium sulfate (K 2 SO 4 ), ammonium sulfate ((NH 4 ) 2 SO 4 ), magnesium sulfate (MgSO 4 ) , Sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ) and ammonium carbonate ((NH 4 ) 2 CO 3 ) A method of forming a nano-pattern selected from the group consisting of.
  11. 제 9 항에 있어서, 촉매 금속 나노 입자가 부착된 수용성 염을 기판 상에 부착하는 단계를 추가로 포함하는 나노 패턴의 형성 방법.10. The method of claim 9, further comprising attaching a water soluble salt having catalytic metal nanoparticles attached thereto on the substrate.
  12. 제 11 항에 있어서, 기판은, 실리콘, 유리, 금속, 아크릴 수지, 폴리카보네이트, 폴리에틸렌 테레프탈레이트(PET), 폴리에틸렌 나프탈레이트(PEN), 폴리이미드(PI), 폴리아미드(PA), 폴리테트라플루오로에틸렌(PTFE), 폴리우레탄(PU), 폴리아릴레이트(PA), 폴리에테르설폰(PES), 플루오렌 폴리에스터(FPE), 사이클로 올레핀 수지, 에폭시 수지 및 에스테르 수지로 이루어진 군으로부터 선택된 하나 이상을 포함하는 나노 패턴의 형성 방법.The method of claim 11, wherein the substrate is silicon, glass, metal, acrylic resin, polycarbonate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), polyamide (PA), polytetrafluoro At least one selected from the group consisting of polyethylene (PTFE), polyurethane (PU), polyarylate (PA), polyethersulfone (PES), fluorene polyester (FPE), cycloolefin resin, epoxy resin and ester resin Method of forming a nano pattern comprising a.
  13. 제 11 항에 있어서, 수용성 염이 부착된 기판을 건조하고 상기 수용성 염을 제거하여 상기 기판 상에 촉매 금속 나노 입자의 패턴을 형성하는 단계를 추가로 포함하는 나노 패턴의 형성 방법.The method of claim 11, further comprising drying the substrate to which the water-soluble salt is attached and removing the water-soluble salt to form a pattern of catalytic metal nanoparticles on the substrate.
  14. 제 13 항에 있어서, 촉매 금속 나노 입자의 패턴의 단면은 삼각형, 사각형, 오각형 및 육각형으로 이루어진 군으로부터 선택된 하나 이상의 다각형인 나노 패턴의 형성 방법.The method of claim 13, wherein the cross section of the pattern of catalytic metal nanoparticles is one or more polygons selected from the group consisting of triangles, squares, pentagons, and hexagons.
  15. 제 13 항에 있어서, 촉매 금속 나노 입자의 패턴이 형성된 기판 상에 타겟 금속을 반응시키는 단계를 추가로 포함하고, 상기 반응시키는 단계는 상기 촉매 금속 나노 입자를 촉매 금속으로 하는 무전해 도금법에 의해 수행되는 나노 패턴의 형성 방법.The method of claim 13, further comprising reacting a target metal on a substrate on which a pattern of catalytic metal nanoparticles is formed, wherein the reacting is performed by an electroless plating method using the catalytic metal nanoparticles as a catalyst metal. Method of forming nanopatterns.
  16. 제 15 항에 있어서, 타겟 금속은, 금(Au), 은(Ag), 백금(Pt), 구리(Cu), 크롬(Cr), 니켈(Ni), 철(Fe), 코발트(Co), 스칸듐(Sc), 이트륨(Y), 하프늄(Hf), 러더포듐(Rf), 티타늄(Ti), 지르코늄(Zr), 탄탈(Ta), 더브늄(Db), 바나듐(V), 니오브(Nb), 텅스텐(W), 시보르기움(Sg), 크롬(Cr), 몰리브덴(Mo), 레늄(Re), 보륨(Bh), 망간(Mn), 테크네튬(Tc), 오스뮴(Os), 하슘(Hs), 철(Fe), 루테늄(Ru), 이리듐(Ir), 마이트너륨(Mt), 로듐(Rh), 다름스타튬(Ds), 팔라듐(Pd), 렌트게늄(Rg), 수은(Hg), 코페르니슘(Cn), 아연(Zn) 및 카드뮴(Cd)으로 이루어진 군으로부터 선택된 하나 이상인 나노 패턴의 형성 방법.The method of claim 15, wherein the target metal is gold (Au), silver (Ag), platinum (Pt), copper (Cu), chromium (Cr), nickel (Ni), iron (Fe), cobalt (Co), Scandium (Sc), Yttrium (Y), Hafnium (Hf), Rutherfordium (Rf), Titanium (Ti), Zirconium (Zr), Tantalum (Ta), Dubnium (Db), Vanadium (V), Niobium (Nb) ), Tungsten (W), chevron (Sg), chromium (Cr), molybdenum (Mo), rhenium (Re), borium (Bh), manganese (Mn), technetium (Tc), osmium (Os), and calcium (Hs), iron (Fe), ruthenium (Ru), iridium (Ir), mitenerium (Mt), rhodium (Rh), darmstadtium (Ds), palladium (Pd), rentgenium (Rg), mercury (Hg), copernium (Cn), zinc (Zn) and cadmium (Cd) of at least one selected from the group consisting of nano-pattern forming method.
PCT/KR2017/006088 2016-06-10 2017-06-12 Nano-pattern forming apparatus and nano-pattern forming method WO2017213482A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0072567 2016-06-10
KR1020160072567A KR101835978B1 (en) 2016-06-10 2016-06-10 Device for forming nano pattern and method for forming nano pattern

Publications (1)

Publication Number Publication Date
WO2017213482A1 true WO2017213482A1 (en) 2017-12-14

Family

ID=60578043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006088 WO2017213482A1 (en) 2016-06-10 2017-06-12 Nano-pattern forming apparatus and nano-pattern forming method

Country Status (2)

Country Link
KR (1) KR101835978B1 (en)
WO (1) WO2017213482A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080077730A (en) * 2007-02-21 2008-08-26 연세대학교 산학협력단 Method for micro/nano scale metal patterning
KR101349976B1 (en) * 2012-07-13 2014-01-16 재단법인 멀티스케일 에너지시스템 연구단 Optical device for 3-dimensional nanoparticle structure
US20140193325A1 (en) * 2012-07-13 2014-07-10 Global Frontier Center For Multiscale Energy Systems 3-dimensional nanoparticle assembly structure and gas sensor using same
KR20140127148A (en) * 2013-04-22 2014-11-03 엔라이팅 주식회사 Method for manufacturing light extraction nanopatterning plate by transparent powder
KR101482951B1 (en) * 2014-04-25 2015-01-15 연세대학교 산학협력단 Nano Particle Generating and Printing Apparatus, and Nano Particle Printing Method Using the Same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080077730A (en) * 2007-02-21 2008-08-26 연세대학교 산학협력단 Method for micro/nano scale metal patterning
KR101349976B1 (en) * 2012-07-13 2014-01-16 재단법인 멀티스케일 에너지시스템 연구단 Optical device for 3-dimensional nanoparticle structure
US20140193325A1 (en) * 2012-07-13 2014-07-10 Global Frontier Center For Multiscale Energy Systems 3-dimensional nanoparticle assembly structure and gas sensor using same
KR20140127148A (en) * 2013-04-22 2014-11-03 엔라이팅 주식회사 Method for manufacturing light extraction nanopatterning plate by transparent powder
KR101482951B1 (en) * 2014-04-25 2015-01-15 연세대학교 산학협력단 Nano Particle Generating and Printing Apparatus, and Nano Particle Printing Method Using the Same

Also Published As

Publication number Publication date
KR20170139933A (en) 2017-12-20
KR101835978B1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
US11845216B2 (en) 3D printed electronics using directional plasma jet
AU2016352978B2 (en) Air controlled electrospray manufacturing and products thereof
WO2006057766A1 (en) Electrohydrodynamic spraying system comprising an inner and an outer electrode
US20210060603A1 (en) Method for producing large-area monolayer films of solution dispersed nanomaterials
KR101519906B1 (en) Flexible Transparent Electrode and Manufacturing Method Thereof
US20110027491A1 (en) Anisotropic nanotube fabric layers and films and methods of forming same
KR20070087517A (en) Electron attachment assisted formation of electrical conductors
US8579415B2 (en) Inkjet printing of nanoparticulate functional inks
EP2486163A1 (en) Atmospheric pressure plasma method for producing surface-modified particles and coatings
US20150054201A1 (en) Apparatus and method for forming three-dimensional pattern using electrojetting
Tang et al. Controlled nanoparticle synthesis via opposite-polarity electrospray pyrolysis
WO2017213482A1 (en) Nano-pattern forming apparatus and nano-pattern forming method
US8128993B2 (en) Anisotropic nanotube fabric layers and films and methods of forming same
US20190098767A1 (en) Laminate, method for producing the same, and method for forming conductive pattern
Chowdhuri et al. Ambient microdroplet annealing of nanoparticles
Cole et al. Mimicking Electrodeposition in the Gas Phase: A Programmable Concept for Selected‐Area Fabrication of Multimaterial Nanostructures
US20140255709A1 (en) Laminate, method for producing the same, and method for forming conductive pattern
JP2010248651A (en) Device and method for accumulating fine particle and fine particle accumulation film formed by the device
US11649525B2 (en) Single electron transistor (SET), circuit containing set and energy harvesting device, and fabrication method
Aoboun et al. Controlling Ag microfibres during the electrospinning process using a manipulated electric field for the maskless patterning of transparent conductive electrodes
Kang et al. Assembly of charged aerosols on non-conducting substrates via ion-assisted aerosol lithography (IAAL)
CN104040687A (en) Method for producing three-dimensional structures assembled with nanoparticles
JP5543889B2 (en) Wiring forming method and wiring
JP2008137122A (en) Coating method with fine particle
Qin et al. Direct Fabrication of Highly Conductive Micro Silver Tracks Using Electrohydrodynamic Jet Printing for Sub-20 µM Micro-Manufacturing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810605

Country of ref document: EP

Kind code of ref document: A1