WO2017213166A1 - Rolled steel bar for hot forging - Google Patents

Rolled steel bar for hot forging Download PDF

Info

Publication number
WO2017213166A1
WO2017213166A1 PCT/JP2017/021072 JP2017021072W WO2017213166A1 WO 2017213166 A1 WO2017213166 A1 WO 2017213166A1 JP 2017021072 W JP2017021072 W JP 2017021072W WO 2017213166 A1 WO2017213166 A1 WO 2017213166A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
precipitates
hot forging
total
polygonal ferrite
Prior art date
Application number
PCT/JP2017/021072
Other languages
French (fr)
Japanese (ja)
Inventor
幹 高須賀
有祐 宮越
長谷川 達也
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CN201780035018.7A priority Critical patent/CN109312434B/en
Priority to JP2018521747A priority patent/JP6673475B2/en
Publication of WO2017213166A1 publication Critical patent/WO2017213166A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires

Definitions

  • the present invention relates to a steel bar, and more particularly to a rolled steel bar for hot forging.
  • Connecting rods used in automobile engines and the like are engine parts that connect a piston and a crankshaft, and convert the reciprocating motion of the piston into the rotational motion of the crank.
  • Fig. 1 is a front view of a general connecting rod.
  • the connecting rod 1 includes a large end portion 100, a flange portion 200, and a small end portion 300.
  • the large end portion 100 is disposed at one end of the flange portion 200, and the small end portion 300 is disposed at the other end of the flange portion 200.
  • the large end 100 is connected to the crankpin.
  • the small end portion 300 is connected to the piston via a piston pin.
  • the connecting rod 1 has two parts (cap 2 and rod 3). These parts are usually manufactured by hot forging. One end portions of the cap 2 and the rod 3 correspond to the large end portion 100. Other parts than the one end of the rod 3 correspond to the flange 200 and the small end 300. The large end portion 100 and the small end portion 300 are formed by cutting. For this reason, the connecting rod 1 is required to have high machinability.
  • the connecting rod 1 receives a load from surrounding members during engine operation. Recently, in order to save fuel, the connecting rod 1 is required to be reduced in weight and size. Therefore, the connecting rod 1 is required to have an excellent yield strength that can cope with a load transmitted from the piston even if the flange portion 200 is made thin. Furthermore, since the compressive load and the tensile load are repeatedly applied to the connecting rod, excellent fatigue strength is also required.
  • ⁇ Forging at ultra-high temperatures is effective to reduce the weight of the connecting rod. Specifically, if forging is performed at a temperature of 1330 ° C. or higher, molding is facilitated, and the thickness of parts unnecessary for functions can be reduced. Thereby, a connecting rod can be reduced in weight.
  • ⁇ Forging at a very low temperature is also effective in order to reduce the size of the connecting rod. Specifically, forging is performed at a temperature of 850 ° C. or less, the crystal grains are refined, and the strength is increased. Thereby, a connecting rod can be reduced in size.
  • a jig is inserted into the hole of the large end portion 100, and the large end portion is broken by applying a stress to form two parts (corresponding to the cap 2 and the rod 3). To divide. Then, the two parts divided when attached to the crankshaft are joined. If the fracture surface of the large end 100 is a brittle fracture surface without deformation, the fracture surfaces of the cap 2 and the rod 3 can be combined and connected with bolts. Therefore, in this case, the knock pin machining process and the cutting process are omitted. As a result, the manufacturing cost is reduced.
  • Patent Document 5 proposes a steel material for cracking connecting rods and a manufacturing method for cracking connecting rods.
  • the forging steel for cracking connecting rod disclosed in Patent Document 1 is C: 0.6 to 0.75%, Mn: 0.25 to 0.5%, S: 0.04 to 0.12% by weight%. , Mn / S> 3.0, the balance being Fe and impurities: having a chemical composition of about 1.2% or less, and the structure is a pearlite structure. Further, the particle size number according to ASTM standard E112-88 is 3-8. This describes that excellent machinability can be obtained in Patent Document 1.
  • the hot forged non-tempered steel disclosed in Patent Document 2 has a ferrite single phase structure, and fine precipitates having a particle size of less than 10 nm are dispersed and precipitated in the ferrite phase.
  • the yield stress is 600 N / mm 2 or more and the yield ratio is 0.85 or more, and the fracture surface due to tensile fracture is a brittle fracture surface. This describes that excellent machinability can be obtained in Patent Document 2.
  • Patent Document 3 uses hot forged non-heat treated steel whose final material state is a precipitation strengthened state based on V-based precipitates as a steel material constituting the connecting rod.
  • a hot forging step for obtaining a forged body having a base shape of a connecting rod, and after completion of the hot forging step, the forged body is 800 ° C.
  • Intermediate cooling step for intermediate cooling so that the average cooling rate in the first temperature range from 1 to 500 ° C. is 1 ° C./second or more, and after the intermediate cooling step,
  • an aging heat treatment step for aging precipitation of V-based precipitates in two temperature ranges can be increased.
  • the non-heat treated steel for hot forging disclosed in Patent Document 4 is C: 0.35-0.55%, Si: 0.15-0.40%, Mn: 0.50-1. 00%, P: 0.100% or less, S: 0.040 to 0.100%, Cr: 1.00% or less, V: 0.20 to 0.50%, Ca: 0.0005 to 0.0100 %, N: 0.0150% or less, with the balance being Fe and inevitable impurities.
  • 2Mn + 5Mo + Cr ⁇ 3.1, C + Si / 5 + Mn / 10 + 10P + 5V ⁇ 1.8, and Ceq C + Si / 7 + Mn / 5 + Cr / 9 + V is 0.90 to 1.10.
  • the hardness is HV330 or more
  • the yield ratio is 0.73 or more
  • the structure is a ferrite pearlite structure having bainite of 10% or less.
  • Patent Document 4 it is described in Patent Document 4 that the formation of bainite is suppressed by satisfying 2Mn + 5Mo + Cr ⁇ 3.1, and excellent cracking property is obtained by satisfying C + Si / 5 + Mn / 10 + 10P + 5V ⁇ 1.8. Yes.
  • the cracking connecting rod disclosed in Patent Document 5 is made of ferritic pearlite-type non-heat treated steel containing 0.20 to 0.60% C in mass%, and at least a large engagement with the crankshaft and piston respectively. An end portion and a small end portion are connected to each other, and a collar portion that is connected between them and subjected to coining processing is provided.
  • the essential additive elements are C, N, Ti, Si, Mn, P, S, and Cr, and the optional additive elements are V, Pb, Te, Ca, and Bi.
  • Si is in the range of 0.05 to 2.0%
  • Mn is in the range of 0.30 to 1.50%
  • P is in the range of 0.01 to 0.2%.
  • Patent Document 1 hot forging is performed at 1037 to 1260 ° C. (1900 to 2300 ° F.), and hot forging at 850 ° C. or lower or 1330 ° C. or higher is not assumed. Furthermore, the connecting rod of Patent Document 1 lacks fatigue strength and yield strength as compared with a connecting rod obtained by tempering conventional carbon steel for mechanical structures.
  • Patent Documents 2 to 5 sufficient strength can be obtained. However, even in the inventions disclosed in these documents, forging at an ultrahigh temperature of 1330 ° C. or higher and forging at an extremely low temperature of 850 ° C. or lower are not assumed. Therefore, when it manufactures on such conditions, sufficient cracking property, machinability, yield strength, and fatigue strength may not be obtained.
  • the object of the present invention is to realize a connecting rod having high yield strength and fatigue strength even when forged at an ultra-high temperature of 1330 ° C. or higher, or at an extremely low temperature of 850 ° C. or lower.
  • Another object of the present invention is to provide a rolled steel bar for hot forging that can realize the machinability and crackability.
  • the rolled steel bar for hot forging has a chemical composition of mass%, C: 0.39 to 0.55%, Si: 0.10 to 1.0%, Mn: 0.50 to 1. 50%, P: 0.010 to 0.100%, S: 0.040 to 0.130%, Cr: 0.05 to 0.50%, Mo: 0.01 to 0.10%, V: 0 0.05 to 0.40%, Ti: 0.150 to 0.250%, Al: 0.005 to 0.050%, N: 0.0020 to 0.020%, Cu: 0 to 0.40%, Ni: 0 to 0.30%, Nb: 0 to 0.20%, Pb: 0 to 0.30%, Zr: 0 to 0.1000%, Te: 0 to 0.3000%, Ca: 0 to 0 0.0100% and Bi: 0 to 0.3000%, with the balance being Fe and impurities, satisfying formulas (1) and (2).
  • the total area ratio of polygonal ferrite and pearlite is 90% or more.
  • the total content (% by mass) of Mo in the precipitate is 50.0% or more of the total Mo content (% by mass) in the steel.
  • the total number of precipitates having an equivalent circle diameter of 5 to 100 nm in polygonal ferrite is 80.0% or more of the total number of precipitates having an equivalent circle diameter of 3 to 1000 nm in polygonal ferrite.
  • the rolled steel bar for hot forging according to the present embodiment can realize a connecting rod having high yield strength and fatigue strength even when forged at an ultrahigh temperature of 1330 ° C. or higher, or at an extremely low temperature of 850 ° C. or lower, Furthermore, excellent machinability and cracking properties can be realized when manufacturing the connecting rod.
  • FIG. 1 is a front view of a conventional connecting rod.
  • FIG. 2 is a front view of a tensile test piece used in the tensile test.
  • FIG. 3 is a front view of a fatigue strength test piece used in the fatigue strength test.
  • C 0.39 to 0.55%
  • Si 0.10 to 1.0%
  • Mn 0.50 to 1.50%
  • P in mass%. 0.010 to 0.100%
  • S 0.040 to 0.130%
  • Cr 0.05 to 0.50%
  • Mo 0.01 to 0.10%
  • V 0.05 to 0 .40%
  • Ti 0.150 to 0.250%
  • Al 0.005 to 0.050%
  • N 0.0020 to 0.020%
  • Cu 0 to 0.40%
  • Nb 0 to 0.20%
  • Pb 0 to 0.30%
  • Zr 0 to 0.1000%
  • Te 0 to 0.3000%
  • Ca 0 to 0.0100%
  • Bi 0 to 0.3000%
  • the balance being a chemical composition comprising Fe and impurities, and in the microstructure, polygonal ferrite and The total area ratio of the 90.0% or more.
  • the chemical composition further satisfies the formula (1).
  • the content (mass%) of the corresponding element is substituted for the element symbol in the formula (1).
  • fn1 C + 0.2Mn + 0.25Cr + 0.75V + 0.81Mo.
  • fn1 is an index of strength (yield strength, fatigue strength) and machinability. fn1 shows a positive correlation with the intensity. If fn1 is higher than 1.00, the strength of the steel becomes too high, and the machinability of the steel decreases. If fn1 is less than 0.60, the strength of the steel is too low. If fn1 is 0.60 to 1.00, the strength and machinability can be improved.
  • Bainite has higher toughness than ferrite and pearlite. Therefore, when two parts (a cap and a rod) are manufactured by breaking the large end portion of the cracking connecting rod, the broken portion is plastically deformed, and a ductile fracture surface is generated on the fracture surface. That is, cracking properties are reduced. If the generation of bainite is suppressed, the cracking property can be improved.
  • the chemical composition further satisfies the formula (1) as well as the formula (2).
  • the content (mass%) of the corresponding element is substituted for the element symbol in the formula (2).
  • fn2 0.12C + 0.35Mn + 0.42Cr + Mo ⁇ 0.08Si.
  • fn2 is an index of the amount of bainite generated after hot forging.
  • fn2 exceeds 0.70, bainite is likely to be generated particularly in forging at an ultrahigh temperature of 1330 ° C. or higher.
  • precipitation strengthening due to precipitates generated in ferrite due to phase interface precipitation cannot be used, and yield strength and fatigue strength are reduced.
  • bainite has higher toughness than ferrite, cracking properties also deteriorate. If fn2 is 0.70 or less, even after forging at an ultrahigh temperature of 1330 ° C. or higher, the microstructure of the steel material tends to be a ferrite-pearlite structure, and bainite is not easily generated. Therefore, excellent cracking properties can be obtained together with sufficient yield strength and fatigue strength.
  • V-Ti-Mo composite carbide which is a composite carbide of V carbide, Ti carbide and Mo carbide.
  • the V—Ti—Mo composite carbide is a carbide in which Ti and Mo are contained in the V carbide.
  • Precipitates generated in polygonal ferrite may include carbides such as V carbide, Ti carbide, Mo carbide, and V-Ti-Mo composite carbide, as well as other precipitates different from carbides such as TiS. is there.
  • the equivalent circle diameter of other precipitates different from carbides such as TiS is larger than 1 ⁇ m (1000 nm).
  • carbides in the polygonal ferrite of the steel having the above-mentioned chemical composition satisfying the formulas (1) and (2) Ti carbides and Mo carbides are hardly formed, and most of the carbides are V carbides and V carbides. -Ti-Mo composite carbide. And the equivalent circle diameter of these carbides is 1000 nm or less.
  • the ratio of the precipitates having an equivalent circle diameter of 5 to 100 nm is increased.
  • the precipitate having an equivalent circle diameter of 5 to 100 nm is substantially either V carbide or V—Ti—Mo composite carbide.
  • V carbide, Ti carbide, and Mo carbide as precipitates generated by phase interface precipitation
  • V-Ti-Mo composite carbide in which Ti and Mo are dissolved in V carbide.
  • V-Ti-Mo composite carbide has a different precipitation form from V carbide (VC).
  • VC V carbide
  • the V—Ti—Mo composite carbide can dramatically increase the yield strength and fatigue strength of the steel material after hot forging by dissolving Mo in solid solution.
  • it is preferable that V, Ti and Mo are dissolved in austenite in the steel material before hot forging.
  • the above-mentioned V—Ti—Mo composite carbide has a feature that it does not easily dissolve at an ultra-high temperature of 1330 ° C. or higher as compared with VC.
  • the reason for this is not clear, but it is considered that the V—Ti—Mo composite carbide contains Ti, so that it is less likely to dissolve at a higher temperature than VC even at high temperatures.
  • the present inventors have the above-mentioned chemical composition and in a rolled steel bar for hot forging satisfying the formulas (1) and (2), a predetermined amount of carbides precipitated in polygonal ferrite by phase interface precipitation. If the proportion of V-Ti-Mo composite carbide of an appropriate size (equivalent circle diameter of 5 to 100 nm) is increased, each V-Ti-Mo composite carbide dissolves slightly during heating in the hot forging process. However, it was considered that the V—Ti—Mo composite carbide was not completely dissolved but remained.
  • the equivalent circle diameter of carbides generated in polygonal ferrite is 1000 nm or less, and the equivalent circle diameter generated in polygonal ferrite is 1000 nm in a chemical composition satisfying the formulas (1) and (2).
  • the deposit is substantially carbide.
  • the V-Ti-Mo composite carbide is too solid before hot forging, that is, Mo is excessive. It means that it is in solid solution.
  • the generation of bainite is promoted after hot forging.
  • bainite is excessively generated, and as a result, sufficient yield strength, fatigue strength, and crackability cannot be obtained.
  • the total number of precipitates having a circle equivalent diameter of 5 to 100 nm in the polygonal ferrite of the rolled steel bar for hot forging is 80% of the total number of precipitates having a circle equivalent diameter of 3 to 1000 nm in the polygonal ferrite. If it is 0% or more, the yield is excellent in the steel material after hot forging, provided that the chemical composition satisfies the formulas (1) and (2) and further satisfies the requirements of the item (D) described later. Strength, fatigue strength and cracking properties are obtained.
  • the total content of Mo in the precipitate in the hot forging rolled steel bar is the total Mo content in the hot forging rolled steel bar (in the steel). 50.0% or more of the total Mo amount C T-Mo ) As described above, Mo is either contained in the carbide or dissolved in the matrix. If the amount of precipitated Mo is less than 50.0% of the total amount of Mo, Mo is excessively dissolved in the hot forging rolled steel bar. Therefore, bainite is generated in the steel material after hot forging, and sufficient cracking properties cannot be obtained. Furthermore, when bainite is generated, precipitation strengthening caused by precipitates generated in polygonal ferrite due to phase interface precipitation cannot be used, so that sufficient yield strength and fatigue strength cannot be obtained. The amount of precipitated Mo is determined from the extract extracted by extraction residue analysis.
  • the total number of precipitates having a circle equivalent diameter of 5 to 100 nm in polygonal ferrite is 3 to 3 in polygonal ferrite. 80.0% or more of the total number of precipitates having an equivalent circle diameter of 1000 nm, and the total content of Mo in the precipitates in the hot forging rolled steel bar is the total Mo content in the hot forging rolled steel bar.
  • the amount is 50% or more, excellent yield strength, fatigue strength, cracking property and machinability can be obtained in the steel material after hot forging.
  • the following manufacturing method may be carried out.
  • An example of the manufacturing method of the hot forged rolled steel bar according to the present embodiment includes a casting process and a hot working process.
  • the hot working step includes a rough rolling step typified by split rolling and a finish rolling step using a continuous rolling mill in which a plurality of rolling stands are arranged in a row.
  • the cooling time until the steel material temperature reaches 800 ° C. to 500 ° C. is set to 20 minutes or more.
  • the steel material after the rough rolling step is cooled to 400 ° C. or lower, preferably room temperature (25 ° C.).
  • the heating temperature T1 is set to 1100 ° C. or less, and the heating time t1 is set to 30 minutes or less.
  • the steel material temperature T2 during finish rolling is controlled to 1200 ° C. or lower, and the finishing temperature is set to 1000 ° C. or lower.
  • the cooling time until the steel material temperature reaches 800 ° C. to 500 ° C. is set to 5 minutes or less.
  • V-Ti-Mo composite carbide having a certain size is generated in the polygonal ferrite.
  • finish rolling since the material temperature during rolling is set to be low, those V—Ti—Mo composite carbides are not completely dissolved and remain even during finish rolling.
  • the cooling rate after finish rolling is set to be high, the V-Ti-Mo composite carbide is prevented from becoming coarse again.
  • the total number of precipitates having a circle equivalent diameter of 5 to 100 nm in the polygonal ferrite is 3 to 1000 nm in the polygonal ferrite.
  • the total content of Mo in the precipitates in the steel can be 50% or more of the total Mo content in the steel.
  • the said manufacturing method is an example of the manufacturing method of the rolled steel bar for hot forging of this embodiment.
  • the rolled steel bar for hot forging is, in mass%, C: 0.39 to 0.55%, Si: 0.10 to 1.0%, Mn: 0.50 to 1.50%, P: 0.010 to 0.100%, S: 0.040 to 0.130%, Cr: 0.05 to 0.50%, Mo: 0.01 to 0.10%, V : 0.05 to 0.40%, Ti: 0.150 to 0.250%, Al: 0.005 to 0.050%, N: 0.0020 to 0.020%, Cu: 0 to 0.40 %, Ni: 0 to 0.30%, Nb: 0 to 0.20%, Pb: 0 to 0.30%, Zr: 0 to 0.1000%, Te: 0 to 0.3000%, Ca: 0 Containing 0.0 to 100% and Bi: 0 to 0.3000%, with the balance being Fe and impurities, and having a chemical composition satisfying formulas (1) and (2) .
  • the total area ratio of polygonal ferrite and pearlite is 90% or more.
  • the total content (% by mass) of Mo in the precipitate is 50.0% or more of the total Mo content (% by mass) in the steel.
  • the total number of precipitates having an equivalent circle diameter of 5 to 100 nm in polygonal ferrite is 80.0% or more of the total number of precipitates having an equivalent circle diameter of 3 to 1000 nm in polygonal ferrite.
  • the chemical composition is one or two selected from the group consisting of Cu: 0.01 to 0.40%, Ni: 0.005 to 0.30%, and Nb: 0.001 to 0.20%. It may contain seeds or more.
  • the chemical composition is Pb: 0.05 to 0.30%, Zr: 0.0003 to 0.1000%, Te: 0.0003 to 0.3000%, Ca: 0.0003 to 0.0100%, and Bi: One or more selected from the group consisting of 0.0003 to 0.3000% may be contained.
  • the chemical composition of the hot forging rolled steel bar according to the present embodiment contains the following elements.
  • Carbon (C) increases the strength of the steel. If the C content is too low, this effect cannot be obtained. On the other hand, if the C content is too high, the hardness of the steel material increases, and the machinability decreases. Therefore, the C content is 0.39 to 0.55%.
  • the minimum with preferable C content is more than 0.39%, More preferably, it is 0.40%, More preferably, it is 0.42%.
  • the upper limit with preferable C content is less than 0.55%, More preferably, it is 0.53%, More preferably, it is 0.51%.
  • Si 0.10 to 1.0%
  • Silicon (Si) deoxidizes steel. Si further dissolves in the steel to increase the fatigue strength of the steel. If the Si content is too low, these effects cannot be obtained. On the other hand, if the Si content is too high, the above effect is saturated. If the Si content is too high, the hot workability of the steel further decreases, and the manufacturing cost of the steel bar increases. Therefore, the Si content is 0.10 to 1.0%.
  • the minimum with preferable Si content is more than 0.10%, More preferably, it is 0.12%, More preferably, it is 0.15%.
  • the upper limit with preferable Si content is less than 1.00%, More preferably, it is 0.95%, More preferably, it is 0.90%.
  • Mn 0.50 to 1.50%
  • Manganese (Mn) deoxidizes steel. Mn further increases the strength of the steel. If the Mn content is too low, these effects cannot be obtained. On the other hand, if the Mn content is too high, the hot workability of the steel decreases. If the Mn content is too high, the hardenability is further increased, and bainite is generated in the steel structure. In this case, the yield strength, fatigue strength, and crackability of the steel material after hot forging are reduced. Therefore, the Mn content is 0.50 to 1.50%.
  • the minimum with preferable Mn content is more than 0.50%, More preferably, it is 0.55%, More preferably, it is 0.60%.
  • the upper limit with preferable Mn content is less than 1.50%, More preferably, it is 1.45%, More preferably, it is 1.40%.
  • P 0.010 to 0.100% Phosphorus (P) segregates at the grain boundaries and embrittles the steel. Therefore, the fracture surface of the cracking connecting rod after the fracture split becomes smooth. As a result, the cracking property of the steel material after hot forging is increased, and the accuracy of assembling the cracking connecting rod after the fracture split is increased. If the P content is too low, this effect cannot be obtained. On the other hand, if P content is too high, the hot workability of steel will fall. Therefore, the P content is 0.010 to 0.100%.
  • the minimum with preferable P content is more than 0.010%, More preferably, it is 0.015%, More preferably, it is 0.020%.
  • the upper limit with preferable P content is less than 0.100%, More preferably, it is 0.090%, More preferably, it is 0.07%.
  • S 0.040 to 0.130% Sulfur (S) combines with Mn and Ti to form sulfides and enhances the machinability of steel. If the S content is too low, this effect cannot be obtained. On the other hand, if the S content is too high, the fatigue strength decreases. If the S content is too high, the hot workability of the steel further decreases. Therefore, the S content is 0.040 to 0.130%.
  • the minimum with preferable S content is more than 0.040%, More preferably, it is 0.045%, More preferably, it is 0.050%.
  • the upper limit with preferable S content is less than 0.130%, More preferably, it is 0.125%, More preferably, it is 0.120%.
  • Chromium (Cr) increases the strength of the steel. If the Cr content is too low, this effect cannot be obtained. On the other hand, if the Cr content is too high, the hardenability of the steel increases and bainite is generated in the steel structure. In this case, the yield strength, fatigue strength, and crackability of the steel material after hot forging are reduced. If the Cr content is too high, the production cost further increases. Therefore, the Cr content is 0.05 to 0.50%.
  • the minimum with preferable Cr content is 0.10%, More preferably, it is 0.12%, More preferably, it is 0.15%.
  • the upper limit with preferable Cr content is less than 0.50%, More preferably, it is 0.45%, More preferably, it is 0.40%.
  • Mo 0.01 to 0.10% Molybdenum (Mo) increases the strength of steel by solid solution strengthening. Mo further dissolves in VC formed in polygonal ferrite by phase interface precipitation to increase the strength (yield strength and fatigue strength) of the steel. More specifically, since the Mo content is low in the chemical composition of the present embodiment, Mo is difficult to precipitate as Mo 2 C, and is dissolved in VC formed in polygonal ferrite by phase interface precipitation. This forms a V—Ti—Mo composite carbide in which Ti also forms a solid solution. V-Ti-Mo composite carbide has a different precipitation form from VC, and significantly increases the yield strength and fatigue strength of steel. If the Mo content is too low, these effects cannot be obtained.
  • the Mo content is 0.01 to 0.10%.
  • the upper limit with preferable Mo content is less than 0.10%, More preferably, it is 0.09%, More preferably, it is 0.08%.
  • V 0.05 to 0.40%
  • vanadium (V) forms V-Ti-Mo composite carbide in polygonal ferrite by phase interface precipitation, and increases the yield strength and fatigue strength of the steel material after hot forging. Furthermore, by containing with Ti, the V—Ti—Mo composite carbide is refined. Therefore, toughness falls and the cracking property of the steel material after hot forging increases. If the V content is too low, these effects cannot be obtained. On the other hand, if the V content is too high, not only the production cost of steel becomes extremely high, but also the machinability decreases. Therefore, the V content is 0.05 to 0.40%.
  • the minimum with preferable V content is more than 0.05%, More preferably, it is 0.06%, More preferably, it is 0.10%.
  • the upper limit with preferable V content is less than 0.40%, More preferably, it is 0.35%, More preferably, it is 0.32%.
  • Titanium (Ti) forms Ti nitride in polygonal ferrite by phase interface precipitation, or dissolves in VC to form V-Ti-Mo composite carbide to yield steel after hot forging. Increase strength and fatigue strength. Ti further produces sulfides or carbosulfides to enhance the machinability of the steel. Ti further refines the V—Ti—Mo composite carbide to increase the cracking property of the steel by reducing the toughness of the steel. If the Ti content is too low, these effects cannot be obtained. On the other hand, if the Ti content is too high, the amount of Ti carbide will be too much. In this case, the tensile strength of the steel becomes too high and the machinability of the steel decreases. Therefore, the Ti content is 0.150 to 0.250%. The minimum with preferable Ti content is 0.151%, More preferably, it is 0.155%. The upper limit with preferable Ti content is less than 0.250%, More preferably, it is 0.220%.
  • Al 0.005 to 0.050%
  • Aluminum (Al) deoxidizes steel. If the Al content is too low, this effect cannot be obtained. On the other hand, if the Al content is too high, Al forms hard oxide inclusions and lowers fatigue strength. Therefore, the Al content is 0.005 to 0.050%.
  • the minimum with preferable Al content is 0.020%.
  • the upper limit with preferable Al content is 0.040%.
  • the Al content means acid-soluble Al (so-called “sol. Al”).
  • N 0.0020 to 0.020% Nitrogen (N) combines with V or Ti to form nitrides and increases the strength of the steel. If the N content is too low, this effect cannot be obtained. On the other hand, if the N content is too high, this effect is saturated. Therefore, the N content is 0.0020 to 0.020%.
  • the minimum with preferable N content is more than 0.0020%, More preferably, it is 0.0030%, More preferably, it is 0.0040%.
  • the upper limit with preferable N content is less than 0.020%, More preferably, it is 0.019%, More preferably, it is 0.018%.
  • the balance of the chemical composition of the rolled steel bar for hot forging according to the present embodiment is composed of Fe and impurities.
  • the impurities are mixed from ore as a raw material, scrap, or production environment when industrially manufacturing rolled steel bars for hot forging, and are used for hot forging in this embodiment. It means that it is allowed as long as it does not adversely affect the rolled steel bar.
  • the chemical composition of the rolled steel bar for hot forging of this embodiment can contain the following elements as impurities.
  • REM in this specification contains at least one of Sc, Y, and lanthanoid (La of atomic number 57 to Lu of 71), and the REM content is the total content of these elements. Means.
  • the chemical composition of the hot forging rolled steel bar according to the present embodiment may further include one or more selected from the group consisting of Cu, Ni, and Nb instead of part of Fe. These elements are arbitrary elements, and all increase the strength of steel.
  • Cu 0 to 0.40% Copper (Cu) is an optional element and may not be contained. When contained, Cu dissolves in the steel and increases the strength of the steel. However, if the Cu content is too high, the manufacturing cost of steel increases. Therefore, the Cu content is 0 to 0.40%.
  • the minimum with preferable Cu content is 0.01%, More preferably, it is 0.05%, More preferably, it is 0.10%.
  • the upper limit with preferable Cu content is less than 0.40%, More preferably, it is 0.35%, More preferably, it is 0.30%.
  • Nickel (Ni) is an optional element and may not be contained. When contained, Ni dissolves in the steel and increases the strength of the steel. However, if the Ni content is too high, the manufacturing cost increases. Therefore, the Ni content is 0 to 0.30%.
  • the minimum with preferable Ni content is 0.005%, More preferably, it is 0.01%.
  • the upper limit with preferable Ni content is less than 0.30%, More preferably, it is 0.28%, More preferably, it is 0.25%.
  • Niobium (Nb) is an optional element and may not be contained. When contained, Nb precipitates as carbide or nitride in the steel and increases the yield strength and fatigue strength of the steel after hot forging. However, if the Nb content is too high, not only the manufacturing cost of steel becomes very high, but also the machinability decreases. Therefore, the Nb content is 0 to 0.20%.
  • the minimum with preferable Nb content is 0.001%, More preferably, it is 0.005%, More preferably, it is 0.01%.
  • the upper limit with preferable Nb content is less than 0.20%, More preferably, it is 0.18%, More preferably, it is 0.15%.
  • the chemical composition of the rolled steel bar for hot forging according to the present embodiment further includes one or more selected from the group consisting of Pb, Zr, Te, Ca and Bi instead of a part of Fe. May be. These elements are arbitrary elements, and all enhance the machinability of steel.
  • Pb 0 to 0.30%
  • Lead (Pb) is an optional element and may not be contained. When contained, Pb increases the machinability of the steel. However, if the Pb content is too high, the hot ductility of the steel decreases, and wrinkles are likely to occur in the steel after rolling. Therefore, the Pb content is 0 to 0.30%.
  • the minimum with preferable Pb content is 0.05%, More preferably, it is 0.10%.
  • the upper limit with preferable Pb content is less than 0.30%, More preferably, it is 0.25%, More preferably, it is 0.20%.
  • Zr Zircon
  • Zr Zircon
  • Zr is an optional element and may not be contained. When contained, Zr enhances the machinability of the steel. However, if the Zr content is too high, the hot ductility of the steel decreases, and wrinkles are likely to occur in the rolled steel bar. Therefore, the Zr content is 0 to 0.1000%.
  • the minimum with preferable Zr content is 0.0003%, More preferably, it is 0.0005%, More preferably, it is 0.0010%.
  • the upper limit with preferable Zr content is less than 0.10%, More preferably, it is 0.0800%, More preferably, it is 0.0500%.
  • Te 0 to 0.3000%
  • Tellurium (Te) is an optional element and may not be contained. When contained, Te increases the machinability of the steel. However, if the Te content is too high, the productivity of the steel decreases, and wrinkles are likely to occur in the rolled steel bar. Therefore, the Te content is 0 to 0.3000%.
  • the minimum with preferable Te content is 0.0003%, More preferably, it is 0.0005%, More preferably, it is 0.0010%.
  • the upper limit with preferable Te content is less than 0.3000%, More preferably, it is 0.2500%, More preferably, it is 0.2000%.
  • Ca 0 to 0.0100%
  • Calcium (Ca) is an optional element and may not be contained. When contained, Ca increases the machinability of steel. However, if the Ca content is too high, the manufacturing cost increases. Therefore, the Ca content is 0 to 0.0100%.
  • the minimum with preferable Ca content is 0.0003%, More preferably, it is 0.0005%, More preferably, it is 0.0010%.
  • the upper limit with preferable Ca content is less than 0.0100%, More preferably, it is 0.0080%, More preferably, it is 0.0050%.
  • Bi 0 to 0.3000%
  • Bismuth (Bi) is an optional element and may not be contained. When contained, Bi increases the machinability of the steel. However, if the Bi content is too high, the productivity of the steel decreases, and wrinkles are likely to occur in the rolled steel bar. Therefore, the Bi content is 0 to 0.3000%.
  • the minimum with preferable Bi content is 0.0003%, More preferably, it is 0.0005%, More preferably, it is 0.0010%.
  • the upper limit with preferable Bi content is less than 0.3000%, More preferably, it is 0.2000%, More preferably, it is 0.1000%.
  • Analysis of the chemical composition of the rolled steel bar for hot forging of this embodiment can be obtained by a well-known component analysis method. Specifically, the following method is used. A hot forging rolled steel bar is cut perpendicular to the longitudinal direction, and a sample having a length of 20 mm is taken. Chips are generated by drilling the R / 2 part of the sample in a direction parallel to the steel material longitudinal direction using a ⁇ 5 mm drill, and the chips are collected. The collected chips are dissolved in acid to obtain a solution.
  • the R / 2 part is a part that bisects between the center and the outer periphery of the cross section (circular shape) of the steel bar.
  • IPC-OES Inductively Coupled Plasma Optical Emission Spectrometry
  • C content and S content it calculates
  • fn1 C + 0.2Mn + 0.25Cr + 0.75V + 0.81Mo.
  • fn1 is an index of strength (yield strength, fatigue strength) and machinability of steel after hot forging. If fn1 is higher than 1.00, the strength of the steel becomes too high, and the machinability of the steel decreases. If fn1 is less than 0.60, the strength of the steel is too low. When fn1 is 0.60 to 1.00, excellent strength and machinability after hot forging can be obtained in a rolled steel bar for hot forging.
  • the minimum with preferable fn1 is 0.61, More preferably, it is 0.63, More preferably, it is 0.65.
  • the upper limit with preferable fn1 is 0.99, More preferably, it is 0.98, More preferably, it is 0.95.
  • fn2 0.12C + 0.35Mn + 0.42Cr + Mo ⁇ 0.08Si.
  • fn2 is an index of bainite generation after hot forging. When fn2 exceeds 0.70, bainite is likely to be generated particularly in forging at an ultrahigh temperature of 1330 ° C. or higher. As a result, yield strength, fatigue strength, and cracking properties are reduced. If fn2 is 0.70 or less, a ferrite and pearlite structure can be obtained even in forging at an ultrahigh temperature of 1330 ° C. or higher. Therefore, excellent cracking properties can be obtained together with sufficient yield strength and fatigue strength.
  • the upper limit with preferable fn2 is 0.67, More preferably, it is 0.65.
  • the microstructure of the rolled steel bar for hot forging of this embodiment is substantially a ferrite pearlite structure. More specifically, in the microstructure of the rolled steel bar for hot forging of the present embodiment, the total area ratio of polygonal ferrite and pearlite is 90.0% or more, more preferably 95.0% or more, More preferably, it is 100.0%. When the total area ratio of polygonal ferrite and pearlite is not 100.0%, the balance of the microstructure is bainite and / or retained austenite.
  • the total area ratio of polygonal ferrite and pearlite in the microstructure can be measured by the following method. Ten samples are taken from an arbitrary R / 2 part of the rolled steel bar for hot forging. The R / 2 part is a part that bisects between the center and the outer periphery of the cross section (circular shape) of the steel bar. Of the collected samples, the surface perpendicular to the central axis of the hot forged rolled steel bar is taken as the observation surface. After the observation surface is polished, it is etched with 3% nitric acid alcohol (nitral etchant). The etched observation surface is observed with a 200 ⁇ optical microscope, and photographic images with arbitrary five fields of view are generated. The area of each visual field is 0.302 mm 2 .
  • each phase of polygonal ferrite, pearlite, bainite, and retained austenite has a different contrast for each phase. Therefore, each phase is specified based on the contrast.
  • the total area A F + P ( ⁇ m 2 ) of polygonal ferrite and pearlite in each visual field is obtained.
  • the ratio of the total area A F + P of polygonal ferrite and pearlite in all fields of view (5 fields x 10) to the total area A TOTAL of all fields of vision (5 fields x 10) is the total of polygonal ferrite and pearlite.
  • the area ratio is defined as RA F + P (%). That is, the total area ratio RAF + P of polygonal ferrite and pearlite is defined by the following equation.
  • RA F + P A F + P / A TOTAL ⁇ 100
  • Mo content ratio in precipitates in steel As described above, in the rolled steel bar for hot forging of this embodiment, precipitates are formed in polygonal ferrite by phase interface precipitation. In the pearlite, almost no precipitate is generated. Mo is either contained in the precipitate or is dissolved in the matrix.
  • the above-described V—Ti—Mo composite carbide is included to some extent among the precipitates generated in the polygonal ferrite by the phase interface precipitation.
  • the total content of Mo in the precipitate (Mo content in the precipitate C P-Mo ) is the total Mo content in the steel ( It is 50.0% or more of the total Mo amount in the steel (C T-Mo ). That is, the precipitates Mo amount C P-Mo, when defining the total amount of Mo C precipitates the ratio T-Mo Mo ratio RA Mo in the steel, precipitates Mo ratio RA Mo (%) is the following It is defined by an expression.
  • Mo amount ratio in precipitates RA Mo Mo amount in precipitates C P-Mo / Total Mo amount in steel C T-Mo ⁇ 100
  • the precipitates Mo amount ratio RA Mo is less than 50.0%, of the precipitates in polygonal ferrite, small proportion of V-Ti-Mo composite carbide. In this case, it means that Mo is excessively dissolved in the rolled steel bar for hot forging. Therefore, bainite is generated after hot forging, and sufficient yield strength, fatigue strength, and cracking properties cannot be obtained. If the precipitates Mo amount ratio RA Mo is 50.0% or more, of the precipitates in polygonal ferrite, the ratio of V-Ti-Mo composite carbide is sufficiently high. Therefore, excellent yield strength and fatigue after hot forging, provided that the chemical composition satisfies the formulas (1) and (2) and the ratio of the number of precipitates of the specific size described later is 80.0% or more. Strength and cracking properties can be obtained.
  • a preferred lower limit of the precipitates Mo amount ratio RA Mo is 55.0%, still more preferably 60.0%.
  • Mo amount ratio RA Mo in the precipitate can be measured by the following method based on the extraction residue method.
  • a cubic sample having a side of about 10 mm is taken from R / 2 part of the steel material.
  • the surface layer from the sample surface to a depth of 200 ⁇ m is removed by electrolysis using an AA electrolyte solution (an electrolyte solution containing 10 vol% acetylacetone and 1 vol% tetramethylammonium chloride, with the balance being methanol). Remove adhering impurities.
  • the electrolysis time is adjusted with a constant current.
  • the electrolyte is replaced with a new AA-based electrolyte, and the sample is electrolyzed again.
  • the electrolysis time is adjusted so that the volume of the test piece to be electrolyzed is 58 mm 3 with the current being constant at 1000 mA.
  • the electrolytic solution after electrolysis is filtered using a filter having a mesh size of 200 nm to obtain a residue.
  • the obtained residue is subjected to inductively coupled plasma (IPC) emission spectroscopic analysis to determine the total Mo content in the precipitate (Mo amount in the precipitate, C P-Mo , unit is mass (g)).
  • IPC inductively coupled plasma
  • the total Mo content in the steel (total Mo amount in steel C T-Mo , unit is mass (g)) is obtained by the following formula.
  • Total Mo amount in steel C T-Mo Total Mo content in steel (% by mass) ⁇ mass of electrolyzed specimen (g)
  • Mo amount ratio in precipitates RA Mo Mo amount in precipitates C P-Mo / Total Mo amount in steel C T-Mo ⁇ 100
  • precipitates generated in polygonal ferrite are precipitates other than carbides (such as V carbide, Ti carbide, Mo carbide and V-Ti-Mo composite carbide) and carbides represented by TiS and the like. is there.
  • the equivalent-circle diameter of deposits other than carbide is larger than 1000 nm.
  • the equivalent circle diameter of most carbides is 1000 nm or less.
  • Precipitates having a circle equivalent diameter of 3 to 1000 nm in polygonal ferrite are substantially V carbide, Ti carbide, Mo carbide, and V—Ti—Mo composite carbide.
  • carbonized_material are hardly produced
  • the V—Ti—Mo composite carbide means a carbide in which Ti and Mo are contained in the V carbide.
  • the total number N 5-100 of precipitates having a circle equivalent diameter of 5 to 100 nm in polygonal ferrite is 3 to 1000 nm in polygonal ferrite. It is 80.0% or more of the total number N TOTAL of precipitates having an equivalent diameter. That is, the ratio of the total number N 5-100 of precipitates having an equivalent circle diameter of 5 to 100 nm to the total number N TOTAL of precipitates having an equivalent circle diameter of 3 to 1000 nm in polygonal ferrite is the number ratio RA 5-100
  • the precipitates having an equivalent circle diameter of less than 3 nm are not counted because it is difficult to identify precipitates having an equivalent circle diameter of less than 3 nm.
  • the total number N 5-100 of precipitates having an equivalent circle diameter of 5 to 100 nm is the total number N of precipitates having an equivalent circle diameter of 3 to 1000 nm in polygonal ferrite. If it is 80.0% or more of TOTAL , a V-Ti-Mo composite carbide of an appropriate size can be sufficiently secured. Therefore, the yield strength chemical composition satisfies the formula (1) and (2), and the precipitates Mo amount ratio RA Mo is the condition that is 50.0% or more, excellent after hot forging, fatigue Strength and cracking properties can be obtained.
  • the total number N TOTAL of precipitates of equivalent diameter can be measured by the following method.
  • a plate-shaped intermediate material having a thickness of 1 mm is cut out from the R / 2 portion of the rolled steel bar for hot forging.
  • the cut out intermediate material is mechanically polished in the thickness direction to produce a plate-shaped test piece having a thickness of 300 ⁇ m.
  • the plate-shaped test piece is electropolished with a perchloric acid-methanol mixture and thinned to obtain a sample for observation.
  • the observation surface of the sample is observed with a transmission electron microscope (TEM) with a magnification of 200,000, and the precipitate is specified in any five visual fields in the plurality of polygonal ferrites in the observation surface.
  • Precipitates can be identified and distinguished from inclusions by contrast.
  • the size of one visual field is 250 nm ⁇ 350 nm.
  • the area of the identified precipitate is obtained, and the equivalent circle diameter of each precipitate is calculated from the obtained area.
  • the number survey of precipitates is intended only for precipitates that are clearly recognized as precipitates and whose equivalent circle diameter is 3 nm or more.
  • the total number of precipitates having a circle-equivalent diameter of 3 nm to 1000 nm in five fields of view is defined as the total number N TOTAL .
  • the total number of precipitates having an equivalent circle diameter of 5 to 100 nm in five fields of view is defined as the total number N 5-100 .
  • the number ratio RA 5-100 (%) of precipitates having an equivalent circle diameter of 5 to 100 nm among the precipitates having an equivalent circle diameter of 3 to 1000 nm in polygonal ferrite is determined.
  • Number ratio RA 5-100 Total number N 5-100 / Total number N TOTAL ⁇ 100
  • a molten steel satisfying the above-described chemical composition and formulas (1) and (2) is manufactured by a well-known method. Using molten steel, a slab (slab or bloom) is produced by a continuous casting method.
  • Hot working process hot working is performed on the slab produced in the casting process to produce a steel bar.
  • the hot working process includes, for example, a rough rolling process and a finish rolling process.
  • Hot rolling process A billet is manufactured by hot working a slab or an ingot.
  • Hot working is, for example, hot rolling.
  • the hot rolling is performed using a block rolling mill and a continuous rolling mill in which a plurality of stands are arranged in a line and each stand has a plurality of rolls.
  • the hot-rolled billet is cooled.
  • the total number N 5-100 of precipitates having an equivalent circle diameter of 5 to 100 nm in polygonal ferrite is less than the total number of precipitates having an equivalent circle diameter of 3 to 1000 nm in polygonal ferrite.
  • the number N is less than 80.0% of TOTAL .
  • the total content of Mo in the precipitates in the polygonal ferrite (Mo amount in the precipitates C P-Mo ) is the total Mo in the steel.
  • the total number of precipitates of 3 to 1000 nm in polygonal ferrite is 80.0% or more of N TOTAL .
  • the upper limit with preferable cooling time Ct0 is 180 minutes, More preferably, it is 120 minutes.
  • the billet temperature here means the surface temperature of the billet.
  • the billet surface temperature is measured by the following method. At the center in the longitudinal direction of each section when the billet after the rough rolling process is divided into three equal parts in the longitudinal direction (that is, at three locations), the surface temperature of the billet is measured with a radiation thermometer for a predetermined time. The average value of the three measured points is defined as the billet temperature (° C.) at that time.
  • the further cooling method of a billet at the billet temperature of 500 degrees C or less is not specifically limited.
  • the billet after rough rolling is cooled to 100 ° C. or lower, more preferably to room temperature (25 ° C.).
  • a steel bar is manufactured using the billet after the rough rolling process. Specifically, the billet is heated in a heating furnace (heating process). After heating, the billet is hot-rolled (finish rolling) using a continuous rolling mill to produce a rolled steel bar for hot forging (finish rolling step).
  • finishing rolling process A steel bar is manufactured using the billet after the rough rolling process. Specifically, the billet is heated in a heating furnace (heating process). After heating, the billet is hot-rolled (finish rolling) using a continuous rolling mill to produce a rolled steel bar for hot forging (finish rolling step).
  • finishing rolling step finish rolling step
  • the heating process of the finish rolling process should satisfy the following conditions: And heating.
  • the heating conditions are as follows.
  • Heating temperature T1 1100 ° C. or less Heating time t1: Less than 30 minutes If the heating temperature T1 is too high and / or if the heating time t1 is too long, the V—Ti—Mo composite carbide in the polygonal ferrite in the billet is excessive. The precipitate is excessively refined. In this case, the fine V—Ti—Mo composite carbide increases in the polygonal ferrite in the steel material after finish rolling. As a result, the number of precipitates having an equivalent circle diameter of less than 5 nm increases in polygonal ferrite, and the total number N 5-100 of precipitates having an equivalent circle diameter of 5 to 100 nm is 3 to 1000 nm in polygonal ferrite.
  • the total number of precipitates having an equivalent circle diameter of N is less than 80.0% of N TOTAL . Furthermore, since the V—Ti—Mo composite carbide in the billet is excessively dissolved, the total Mo content in the precipitates (Mo amount in the precipitates C P-Mo ) is equal to the total Mo content in the steel (steel The total amount of intermediate Mo (C T-Mo ) is less than 50.0%. In this case, the generation of bainite is promoted after hot forging. In particular, in forging at an ultrahigh temperature of 1330 ° C. or higher, sufficient yield strength, fatigue strength, and crackability may not be obtained.
  • the V—Ti—Mo composite carbide maintains an appropriate size. Therefore, in the steel bar after the finish rolling process, the total content of Mo in the precipitate (Mo amount in the precipitate C P-Mo ) is the total Mo content in the steel (total Mo amount in the steel C T-Mo ).
  • the total number N 5-100 of precipitates having a circle equivalent diameter of 5 to 100 nm in the polygonal ferrite has a circle equivalent diameter of 3 to 1000 nm in the polygonal ferrite. It becomes 80.0% or more of the total number N TOTAL of the deposits to have.
  • the minimum with preferable heating temperature T1 is 900 degreeC, More preferably, it is 950 degreeC.
  • the minimum with the preferable heating time t1 is 5 minutes, More preferably, it is 10 minutes.
  • the upper limit with preferable heating time t1 is 29 minutes, More preferably, it is 25 minutes.
  • the finish rolling mill has a plurality of rolling stands arranged in a row. Each stand has a plurality of rolls (roll groups) arranged around the pass line. The roll group of each stand forms a hole mold, and when the billet passes through the hole mold, it is rolled down to produce a steel bar.
  • finish rolling is carried out.
  • Rolling temperature T2 1200 ° C. or lower Finishing temperature T3: 1000 ° C. or lower
  • the number of rolling stands in each zone is in the range of N ⁇ 2 (N is a natural number).
  • the rolling temperature T2 is defined by the average value (° C.) of the billet temperature measured on the exit side of any two stands of the rolling stands belonging to the middle row zone.
  • the finishing temperature T3 is defined by the average value (° C.) of the billet temperature measured on the exit side of the rolling stand that has finally reduced the billet in the finishing row zone.
  • the billet temperature at the rolling temperature T2 and the finish rolling temperature T3 is measured by the following method.
  • the surface temperature of the billet is measured with a radiation thermometer at the center in the longitudinal direction of each section (that is, at three locations), and the average value is taken as the billet temperature (° C). .
  • the rolling temperature T2 and / or the finishing temperature T3 is too high, the V—Ti—Mo composite carbide in the polygonal ferrite of the billet will be excessively dissolved, so the V—Ti—Mo composite in the steel after finish rolling. Carbide becomes finer.
  • the number of precipitates having an equivalent circle diameter of less than 5 nm increases, and the total number N 5-100 of precipitates having an equivalent circle diameter of 5 to 100 nm has an equivalent circle diameter of 3 to 1000 nm in polygonal ferrite.
  • the total number of precipitates is less than 80.0% of N TOTAL .
  • the rolling temperature T2 is 1200 ° C. or lower and the finish rolling temperature T3 is 1000 ° C. or lower, a moderately sized precipitate is generated in the polygonal ferrite of the steel bar after the finish rolling, and the precipitation in the polygonal ferrite
  • the total content of Mo in the product is 50.0% or more of the total Mo content in steel (total Mo amount in steel C T-Mo ), and
  • the total number N 5-100 of precipitates having an equivalent circle diameter of 5 to 100 nm is 80 % of the total number N TOTAL of precipitates having an equivalent circle diameter of 3 to 1000 nm in the polygonal ferrite. 0% or more.
  • the minimum with preferable rolling temperature T2 is 900 degreeC, More preferably, it is 950 degreeC.
  • the minimum with preferable finishing temperature T3 is 850 degreeC, More preferably, it is 900 degreeC.
  • Cooling time Ct1 from 800 ° C. to 500 ° C. 1: 5 minutes or less If the cooling time Ct1 of the steel bar after finish rolling exceeds 5 minutes, the cooling rate is too slow. In this case, the V—Ti—Mo composite carbide is excessively coarsened in the polygonal ferrite. As a result, the number of precipitates having an equivalent circle diameter exceeding 100 nm increases in polygonal ferrite, and the total number N 5-100 of precipitates having an equivalent circle diameter of 5 to 100 nm is 3 to 1000 nm in polygonal ferrite. The total number of precipitates having a circle-equivalent diameter is less than 80.0% of N TOTAL .
  • the elements (V, Ti, Mo, C) forming the V—Ti—Mo composite carbide in the hot forging rolled steel bar are not sufficiently dissolved. Therefore, after hot forging, fine V—Ti—Mo composite carbide is hardly generated in polygonal ferrite due to phase interface precipitation. Furthermore, since the Mo solid solution amount is low, the hardenability may be lowered. Therefore, the yield strength and fatigue strength are reduced in the steel material after hot forging. In particular, in forging at 850 ° C. or lower, the hardenability is lowered and sufficient strength may not be obtained.
  • the cooling time Ct1 is 5 minutes or less, the V—Ti—Mo composite carbide is maintained at an appropriate size. Therefore, the number of precipitates having an equivalent circle diameter exceeding 100 nm is not excessively increased in the polygonal ferrite, and the total number N 5-100 of precipitates having an equivalent circle diameter of 5 to 100 nm is 3 to 3 in the polygonal ferrite. It becomes 80.0% or more of the total number N TOTAL of 1000 nm precipitates. As a result, sufficient yield strength and fatigue strength can be obtained in the steel material after hot forging.
  • a preferable lower limit of the cooling time Ct1 is 1 minute, and more preferably 2 minutes.
  • the cumulative area reduction rate in the finish rolling mill in the finish rolling process is 70% or more.
  • the above-described rolled steel bar for hot forging is manufactured by the above manufacturing process.
  • a cracking connecting rod manufacturing method will be described as an example of a method for manufacturing a hot forged product using the above-described hot forging rolled steel bar.
  • a steel material is heated in a high frequency induction heating furnace.
  • the preferred heating temperature is 1100-1300 ° C.
  • a preferred heating time in the high frequency induction heating furnace is 1 to 15 minutes.
  • the surface temperature of the rolled steel bar for hot forging becomes equal to the heating temperature. If the rolled steel bar for hot forging of this embodiment is used, excellent cracking property, machinability, yield strength, and fatigue strength can be obtained even in forging at ultrahigh temperatures of 1330 ° C.
  • the V—Ti—Mo composite carbide in the polygonal ferrite of the rolled steel bar for hot forging contains Ti, so that it does not easily dissolve at high temperatures. Therefore, even when heated at an ultrahigh temperature of 1330 ° C. or higher for 1 to 15 minutes, most of the V—Ti—Mo composite carbide in the polygonal ferrite remains without being completely dissolved. As a result, during hot forging, it is possible to suppress the formation of bainite resulting from an excessively large amount of solute Mo, and it is possible to obtain excellent cracking properties while having high yield strength and fatigue strength.
  • ⁇ Hot forging is performed on the heated steel bars to produce cracking connecting rods.
  • the degree of processing during hot forging is 0.22 or more.
  • the working degree is the maximum value of the logarithmic strain generated in the portion excluding burrs in the forging process.
  • the microstructure of the manufactured hot forged product is mainly composed of polygonal ferrite and pearlite.
  • the total area ratio of polygonal ferrite and pearlite is 90% or more.
  • the total area ratio of polygonal ferrite and pearlite in the microstructure is preferably 95.0% or more, and more preferably 100.0%.
  • the balance of the microstructure is bainite / and / or retained austenite. If the rolled steel bar for hot forging of this embodiment is used, even if forging is performed at an ultrahigh temperature of 1330 ° C. or higher or an extremely low temperature of 850 ° C. or lower, the microstructure of bainite having a microstructure of a hot forged product (for example, cracking connecting rod) Generation is suppressed.
  • bainite When bainite is included in the microstructure, when the large end is fractured and divided into two parts (cap and rod), the fractured part is plastically deformed and a part of the fracture surface tends to become a ductile fracture surface, and cracking properties Is prone to decline.
  • the rolled steel bar for hot forging of this embodiment can suppress the generation of bainite and maintain excellent cracking properties.
  • the area ratio of bainite in the microstructure in the hot forged product can be measured by the same method as the microstructure observation in the rolled steel bar for hot forging.
  • a cracking connecting rod has been described as an example of a method for manufacturing a hot forged product.
  • the rolled steel bar for hot forging of this embodiment is not limited to cracking connecting rod applications.
  • the rolled steel bar for hot forging of this embodiment can be widely applied to hot forged products.
  • the manufacturing method of the rolled steel bar for hot forging of this embodiment is not limited to the said manufacturing method. It has a chemical composition satisfying the formulas (1) and (2), the total area ratio of polygonal ferrite and pearlite is 90.0% or more in the microstructure, and the total content of Mo in the precipitate (precipitate Medium Mo amount C P-Mo ) becomes 50.0% or more of the total Mo content in steel (total Mo amount in steel C T-Mo ), and 5 to 100 nm in polygonal ferrite
  • the production method is particularly limited if the total number N 5-100 of precipitates having an equivalent diameter is 80.0% or more of the total number N TOTAL of precipitates having a circle equivalent diameter of 3 to 1000 nm in polygonal ferrite. Not.
  • the rolled steel bar for hot forging of this embodiment has the above chemical composition satisfying the formulas (1) and (2), and the total area ratio of polygonal ferrite and pearlite is 90.0% or more in the microstructure.
  • the total Mo content in the precipitates in the polygonal ferrite (Mo amount in the precipitates C P-Mo ) is 50.0 of the total Mo content in the steel (total Mo amount in the steels C T-Mo ).
  • the total number N 5-100 of precipitates having an equivalent circle diameter of 5 to 100 nm in polygonal ferrite is equal to the total number of precipitates having an equivalent circle diameter of 3 to 1000 nm in polygonal ferrite.
  • the number N is 80.0% or more of TOTAL . Therefore, it has high yield strength and fatigue strength, and has excellent machinability and cracking properties.
  • a hot forging simulated product obtained by carrying out hot forward extrusion with a cross-section reduction rate of 60% after heating the above-described rolled steel bar for hot forging at 1350 ° C. for 5 minutes is a 1350 ° C. product.
  • a hot forging simulated product obtained by carrying out hot forward extrusion with a cross-section reduction rate of 60% after heating the above-described hot forging rolled steel bar at 800 ° C. for 5 minutes is defined as an 800 ° C. product.
  • the yield strength is 600 MPa or more
  • the fatigue strength obtained by the double fatigue test with the minimum maximum stress ratio ⁇ 1 and the frequency 30 Hz at 25 ° C in the atmosphere is 360 MPa or more.
  • the molten steel which has the chemical composition shown in Table 1 and Table 2 was manufactured.
  • test Nos. 1 to 53 are appropriate and satisfy Formula (1) and Formula (2).
  • test numbers 54 to 76 the content of any element in the chemical composition was inappropriate or did not satisfy formula (1) and / or formula (2).
  • the test number 76 was used as a comparative material used as a reference value for mechanical characteristics described later.
  • the molten steel of each test number was manufactured in a 3 ton electric furnace to produce an ingot.
  • the manufactured ingot was hot-rolled to produce a steel bar.
  • the time Ct0 until the steel material temperature at the time of cooling after rough rolling reaches 800 ° C. to 500 ° C. is as shown in Tables 3 and 4, and test numbers 1 to 46 and 48 to 76 are 23 to 29 minutes and test number 47 was 15 minutes.
  • the steel material temperature after rough rolling was obtained by measuring with a radiation thermometer by the above-described method. Thereafter, finish rolling was performed using a finish rolling mill to produce a steel bar having a diameter of 33 mm.
  • the rolling conditions of test numbers 1 to 49 and 54 to 76 in the finish rolling process are as follows: heating temperature T1: 1023-1078 ° C., heating time t1: 22-26 minutes, rolling temperature T2: 989 to 1011 ° C., finishing temperature T3: 929 to 962 ° C.
  • the rolling conditions of test number 50 were heating temperature T1: 1148 ° C, heating time t1: 25 minutes, rolling temperature T2: 1098 ° C, and finishing temperature T3: 1052 ° C.
  • the rolling conditions of test number 51 were heating temperature T1: 1023 to 1078 ° C., heating time t1: 30 minutes, rolling temperature T2: 989 to 1011 ° C., and finishing temperature T3: 929 to 962 ° C.
  • the rolling conditions of test number 52 were heating temperature T1: 1023 to 1078 ° C., heating time t1: 22 to 26 minutes, rolling temperature T2: 1098 ° C., and finishing temperature T3: 1052 ° C.
  • the rolling conditions of test number 53 were heating temperature T1: 1148 ° C, heating time t1: 25 minutes, rolling temperature T2: 1098 ° C, and finishing temperature T3: 1052 ° C.
  • the steel bar was cooled. As shown in Tables 3 and 4, the cooling time Ct1 from 800 ° C. to 500 ° C. in Test Nos. 1 to 47 and 50 to 76 was 3 to 4 minutes. The time Ct1 from 800 ° C. to 500 ° C. for Test No. 48 and Test No. 49 was 7 minutes. The heating temperature T1, the rolling temperature T2, and the finishing temperature T3 were measured by the method described above. The cooling time Ct1 was obtained in the same manner as the cooling time Ct0. The rolled steel bars for hot forging No. 1 to No. 76 were manufactured by the above manufacturing method.
  • Test No. 76 was held at a heating temperature of 1200 ° C. before hot extrusion for 5 minutes. Immediately after heating, hot forward extrusion with a cross-section reduction rate of 60% was performed to form a round bar having a diameter of 24 mm. This was used as a comparative material (a steel material used as a reference value for each mechanical characteristic).
  • evaluation test The following evaluation test was carried out using a test material that is a steel bar before hot forward extrusion and a simulated hot forging product.
  • the above-mentioned well-known component analysis method was implemented with respect to the test material of each test number, and the chemical composition was analyzed.
  • the chemical composition of the test material of each test number was as shown in Tables 1 and 2.
  • a microstructural observation test was performed using a test material that is a steel bar before hot forward extrusion of each test number and a hot forging simulated product. Specifically, a sample containing R / 2 part was collected from the longitudinal sections of the test material and the hot simulated product. The surface perpendicular to the central axis of the rolled steel bar for hot forging was used as the observation surface. After the observation surface was polished, it was etched with 3% nitric alcohol (nitral corrosive solution). The etched observation surface was observed with a 200 ⁇ optical microscope, and the total area ratio RA F + P (%) of polygonal ferrite and pearlite was determined by the method described above.
  • Precipitates were identified by the above-described method, and the total number N 5-100 of precipitates having a circle equivalent diameter of 5 to 100 nm in polygonal ferrite and precipitates having a circle equivalent diameter of 3 to 1000 nm in polygonal ferrite
  • the total number N of TOTAL was determined.
  • the number ratio RA 5-100 (%) of precipitates having a circle equivalent diameter of 5 to 100 nm in polygonal ferrite is obtained by the following formula. It was.
  • Number ratio RA 5-100 Total number N 5-100 / Total number N TOTAL ⁇ 100
  • the obtained number ratio RA 5-100 is shown in Tables 3 and 4.
  • “A” means that the number ratio RA 5-100 in the corresponding test number was 90.0% or more.
  • “B” means that the number ratio RA 5-100 in the corresponding test number was 80.0 to less than 90.0%.
  • “N” means that the number ratio RA 5-100 in the corresponding test number was less than 80.0%.
  • “N-1” and “N-2” both mean that the number ratio RA 5-100 was less than 80.0%.
  • N-1 has an excessively large number ratio of precipitates having an equivalent circle diameter of less than 5 nm in polygonal ferrite, resulting in a number ratio RA 5-100 of less than 80.0%.
  • Means that “N-2” indicates that the number ratio of RA 5-100 was less than 80.0% as a result of the excessive number ratio of precipitates having an equivalent circle diameter exceeding 100 nm in polygonal ferrite. means.
  • Table 3 and Table 4 show the obtained Mo amount ratio RA Mo in the precipitate.
  • RA Mo Mo amount ratio RA Mo in the precipitates in the corresponding test number was 90.0% or more.
  • B means that the Mo amount ratio RA Mo in the precipitate in the corresponding test number was 70.0 to less than 90.0%.
  • C means that the Mo amount ratio RA Mo in the precipitate in the corresponding test number was 50.0 to less than 70.0%.
  • N means that the Mo content ratio RA Mo in the precipitate in the corresponding test number was less than 50.0%.
  • the evaluation is “A”, and the evaluation strength is “B” when the yield strength is less than 110 to 125%.
  • the case where the yield strength YS was less than 110% was evaluated as “N”.
  • the fatigue test piece shown in FIG. 3 was collected from R / 2 part of each hot forging simulated product. Referring to FIG. 3, the fatigue test piece had a circular cross section and a parallel part length of 42 mm.
  • the numerical value in which the unit in FIG. 3 is not shown shows the dimension (a unit is mm) of the corresponding site
  • the “ ⁇ numerical value” in the figure indicates the diameter (mm) of the designated part.
  • the “R value” in the figure indicates the radius (mm) of the shoulder.
  • a swing fatigue test Ono-type rotating bending fatigue test
  • the frequency was 30 Hz.
  • the case where the fatigue strength is 125% or more with respect to the fatigue strength (360 MPa) of the comparative material of test number 76 was evaluated as “A”, and the case where the fatigue strength was 110 to less than 125% was evaluated as “B”. The case where the fatigue strength was less than 110% was evaluated as “N”.
  • a V-notch Charpy impact test piece in which a notch was machined was collected from the center of the hot forging simulated product of each test number.
  • the test piece had a width of 10 mm, a height of 10 mm, a length of 55 mm, and a notch depth of 2 mm.
  • Each specimen was subjected to a Charpy impact test in accordance with JIS Z2242 (2005) at 0 ° C. to obtain a Charpy impact value (J / cm 2 ).
  • the evaluation was “A” when the Charpy impact value was 8 J / cm 2 or less, and the evaluation “N” when the Charpy impact value exceeded 8 J / cm 2 .
  • Test No. 48 and Test No. 49 have an appropriate chemical composition, fn1 satisfies the formula (1), and fn2 satisfies the formula (2).
  • the cooling time Ct1 is 5 minutes. Exceeded. Therefore, the cooling rate is too slow, the V—Ti—Mo composite carbide in the polygonal ferrite is coarsened, the total number of precipitates having an equivalent circle diameter exceeding 100 nm is increased, and the number ratio RA 5-100 (%) is 80 Less than 0.0%. As a result, the yield strength and fatigue strength of the 800 ° C. product were low.
  • test number 50 the chemical composition was appropriate, fn1 satisfied Formula (1), and fn2 satisfied Formula (2).
  • the heating temperature T1 exceeded 1100 ° C. Therefore, the finish rolling temperature T3 also exceeded 1000 ° C.
  • the V—Ti—Mo composite carbide in the polygonal ferrite is not sufficiently coarsened, the number ratio of precipitates having a diameter of less than 5 nm is large, and the number ratio of precipitates having a circle equivalent diameter of 5 to 100 nm is RA 5- 100 was less than 80.0%.
  • the formation of bainite was promoted, and the yield strength, fatigue strength, and cracking properties were low at 1350 ° C.
  • test number 51 the chemical composition was appropriate, fn1 satisfied equation (1), and fn2 satisfied equation (2).
  • the heating time t1 in finish rolling was too long.
  • the V—Ti—Mo composite carbide in the polygonal ferrite is not sufficiently coarsened, the number ratio of precipitates having a diameter of less than 5 nm is large, and the number ratio of precipitates having a circle equivalent diameter of 5 to 100 nm is RA 5- 100 was less than 80.0%.
  • the formation of bainite was promoted, and the yield strength, fatigue strength, and cracking properties were low at 1350 ° C.
  • test number 54 The C content of test number 54 was too high. Therefore, machinability was low.
  • test number 55 The C content of test number 55 was too low. Therefore, the yield strength and fatigue strength were low.
  • test number 56 The Si content of test number 56 was too low. Therefore, the yield strength and fatigue strength were low.
  • the Mn content of test number 57 was too high. Therefore, bainite was generated in the 1350 ° C. product, and the total area ratio of polygonal ferrite and pearlite in the microstructure was less than 90.0%. Therefore, the cracking property was low. Furthermore, the yield strength and fatigue strength were also low.
  • test number 58 The Mn content of test number 58 was too low. Therefore, the yield strength and fatigue strength were low.
  • test number 60 The S content of test number 60 was too high. Therefore, the fatigue strength was low.
  • test number 61 The S content of test number 61 was too low. Therefore, machinability was low.
  • the Cr content of test number 62 was too high. Therefore, bainite was generated in the 1350 ° C. product, and the total area ratio of polygonal ferrite and pearlite in the microstructure was less than 90.0%. Therefore, the cracking property was low. Furthermore, the yield strength and fatigue strength were also low.
  • test number 63 The Cr content of test number 63 was too low. Therefore, the yield strength and fatigue strength were low.
  • test number 64 The Mo content of test number 64 was too high. Therefore, bainite was generated in the 1350 ° C. product, and the total area ratio of polygonal ferrite and pearlite in the microstructure was less than 90.0%. Therefore, the cracking property was low. Furthermore, the yield strength and fatigue strength were also low.
  • test number 65 The Mo content of test number 65 was too low. Therefore, the yield strength and fatigue strength were low.
  • test number 66 The V content of test number 66 was too high. Therefore, machinability was low.
  • test number 67 The V content of test number 67 was too low. Therefore, the yield strength and fatigue strength were low.
  • test number 68 The Ti content of test number 68 was too high. Therefore, machinability was low.
  • test number 69 The Ti content of test number 69 was too low. Therefore, yield strength, fatigue strength, and cracking properties were low.
  • test number 70 The Al content of test number 70 was too high. Therefore, the fatigue strength was low.
  • N content of test number 71 was low. Therefore, the yield strength and fatigue strength were low.
  • test numbers 72 and 73 In test numbers 72 and 73, fn1 was too high. Therefore, machinability was low.
  • test number 74 In test number 74, fn1 was too low. Therefore, the yield strength and fatigue strength were low.
  • test number 75 fn2 was too high. As a result, bainite was generated, and the yield strength, fatigue strength, and cracking property of the 1350 ° C. product were low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

This rolled steel bar for hot forging includes, in mass%, 0.39-0.55% of C, 0.10-1.0% of Si, 0.50-1.50% of Mn, 0.05-0.50% of Cr, 0.01-0.10% of Mo, 0.05-0.40% of V, 0.150-0.250% of Ti, 0.005-0.050% of Al, and 0.0020-0.020% of N, and satisfies formulae (1) and (2), wherein: the total area ratio of polygonal ferrite and pearlite is 90% or more; the total content (mass%) of Mo included in precipitates accounts for 50% or more of the total Mo content (mass%) in the steel; and the total number of precipitates having a circle-equivalent diameter of 5-100 nm in the polygonal ferrite accounts for 80% or more of the total number precipitates having a circle-equivalent diameter of 3-1000 nm. 0.60≤C+0.2Mn+0.25Cr+0.75V+0.81Mo≤1.00 (1) 0.12C+0.35Mn+0.42Cr+Mo-0.08Si≤0.70 (2)

Description

熱間鍛造用圧延棒鋼Rolled steel bar for hot forging
 本発明は、棒鋼に関し、さらに詳しくは、熱間鍛造用圧延棒鋼に関する。 The present invention relates to a steel bar, and more particularly to a rolled steel bar for hot forging.
 自動車エンジン等に用いられるコネクティングロッド(以下、コンロッドという)は、ピストンとクランクシャフトとを連結するエンジン部品であり、ピストンの往復運動をクランクの回転運動に変換する。 Connecting rods (hereinafter referred to as connecting rods) used in automobile engines and the like are engine parts that connect a piston and a crankshaft, and convert the reciprocating motion of the piston into the rotational motion of the crank.
 図1は一般的なコンロッドの正面図である。図1に示すとおり、コンロッド1は、大端部100と、棹部200と、小端部300とを含む。棹部200の一端に大端部100が配置され、棹部200の他端に小端部300が配置される。大端部100はクランクピンに連結される。小端部300はピストンピンを介してピストンに連結される。 Fig. 1 is a front view of a general connecting rod. As shown in FIG. 1, the connecting rod 1 includes a large end portion 100, a flange portion 200, and a small end portion 300. The large end portion 100 is disposed at one end of the flange portion 200, and the small end portion 300 is disposed at the other end of the flange portion 200. The large end 100 is connected to the crankpin. The small end portion 300 is connected to the piston via a piston pin.
 コンロッド1は2つの部品(キャップ2及びロッド3)を備える。これらの部品は通常、熱間鍛造により製造される。キャップ2及びロッド3の一端部が大端部100に相当する。ロッド3の一端部以外の他の部分が、棹部200及び小端部300に相当する。大端部100及び小端部300は切削して形成される。そのため、コンロッド1には高い被削性が求められる。 The connecting rod 1 has two parts (cap 2 and rod 3). These parts are usually manufactured by hot forging. One end portions of the cap 2 and the rod 3 correspond to the large end portion 100. Other parts than the one end of the rod 3 correspond to the flange 200 and the small end 300. The large end portion 100 and the small end portion 300 are formed by cutting. For this reason, the connecting rod 1 is required to have high machinability.
 コンロッド1は、エンジン動作時に周辺部材からの荷重を受ける。最近ではさらに、省燃費化のために、コンロッド1の軽量化及び小型化が求められている。そのため、コンロッド1には、棹部200を細くしても、ピストンから伝わる荷重に対応可能な優れた降伏強度が求められている。さらに、コンロッドには、繰り返しの圧縮荷重及び引張荷重がかかるため、優れた疲労強度も求められる。 The connecting rod 1 receives a load from surrounding members during engine operation. Recently, in order to save fuel, the connecting rod 1 is required to be reduced in weight and size. Therefore, the connecting rod 1 is required to have an excellent yield strength that can cope with a load transmitted from the piston even if the flange portion 200 is made thin. Furthermore, since the compressive load and the tensile load are repeatedly applied to the connecting rod, excellent fatigue strength is also required.
 コンロッドの軽量化実現のために、超高温での鍛造が有効である。具体的には、1330℃以上の温度で鍛造すれば成形が容易になり、機能上不必要な部位の肉厚を削減することができる。これにより、コンロッドを軽量化できる。 ¡Forging at ultra-high temperatures is effective to reduce the weight of the connecting rod. Specifically, if forging is performed at a temperature of 1330 ° C. or higher, molding is facilitated, and the thickness of parts unnecessary for functions can be reduced. Thereby, a connecting rod can be reduced in weight.
 コンロッドの小型化実現のために、極低温での鍛造も有効である。具体的には、850℃以下の温度で鍛造し、結晶粒を微細化して、強度を高める。これにより、コンロッドを小型化できる。 ¡Forging at a very low temperature is also effective in order to reduce the size of the connecting rod. Specifically, forging is performed at a temperature of 850 ° C. or less, the crystal grains are refined, and the strength is increased. Thereby, a connecting rod can be reduced in size.
 ところで、従来技術では、コンロッド1のキャップ2とロッド3とが別々に製造されていた。そのため、キャップ2とロッド3との位置決めのために、ノックピン加工等が必要だった。さらに、キャップ2とロッド3との合わせ面に対して切削加工工程が必要だった。近年では、これらの工程を省略可能なクラッキングコンロッドが普及し始めている。 By the way, in the prior art, the cap 2 and the rod 3 of the connecting rod 1 were manufactured separately. Therefore, knock pin processing or the like is necessary for positioning the cap 2 and the rod 3. Further, a cutting process is required for the mating surface of the cap 2 and the rod 3. In recent years, cracking connecting rods that can omit these steps have begun to spread.
 クラッキングコンロッドでは、コンロッドを一体成型した後、大端部100の孔に治具を挿入し、応力を負荷して大端部を破断して、2つの部品(キャップ2及びロッド3に相当)に分割する。そして、クランクシャフトに取り付けるときに分割された2つの部品を結合する。大端部100の破断面が変形のない脆性破面であれば、キャップ2及びロッド3の破断面を合わせ、ボルトで連結することができる。したがってこの場合、ノックピン加工工程及び切削加工工程が省略される。その結果、製造コストが下がる。 In the cracking connecting rod, after integrally forming the connecting rod, a jig is inserted into the hole of the large end portion 100, and the large end portion is broken by applying a stress to form two parts (corresponding to the cap 2 and the rod 3). To divide. Then, the two parts divided when attached to the crankshaft are joined. If the fracture surface of the large end 100 is a brittle fracture surface without deformation, the fracture surfaces of the cap 2 and the rod 3 can be combined and connected with bolts. Therefore, in this case, the knock pin machining process and the cutting process are omitted. As a result, the manufacturing cost is reduced.
 米国特許第5135587号(特許文献1)、特開2005-68460号公報(特許文献2)、特開2005-29825号公報(特許文献3)、特開2011-195862号公報(特許文献4)、及び、特開2014-77200号公報(特許文献5)は、クラッキングコンロッド用鋼材及びクラッキングコンロッドの製造方法を提案する。 US Pat. No. 5,135,587 (Patent Document 1), JP-A-2005-68460 (Patent Document 2), JP-A-2005-29825 (Patent Document 3), JP-A-2011-195862 (Patent Document 4), Japanese Patent Laying-Open No. 2014-77200 (Patent Document 5) proposes a steel material for cracking connecting rods and a manufacturing method for cracking connecting rods.
 特許文献1に開示されたクラッキングコンロッド用鍛造用鋼は、重量%でC:0.6~0.75%、Mn:0.25~0.5%、S:0.04~0.12%、Mn/S>3.0であり、残部がFe及び不純物:約1.2%以下からなる化学組成を有し、組織はパーライト組織である。さらに、ASTM基準E112-88による粒度番号が3~8である。これにより、優れた被削性が得られる、と特許文献1には記載されている。 The forging steel for cracking connecting rod disclosed in Patent Document 1 is C: 0.6 to 0.75%, Mn: 0.25 to 0.5%, S: 0.04 to 0.12% by weight%. , Mn / S> 3.0, the balance being Fe and impurities: having a chemical composition of about 1.2% or less, and the structure is a pearlite structure. Further, the particle size number according to ASTM standard E112-88 is 3-8. This describes that excellent machinability can be obtained in Patent Document 1.
 特許文献2に開示された熱間鍛造非調質鋼は、フェライト単相組織を有し、フェライト相中に粒径が10nm未満の微細析出物が分散析出していることを特徴とする。降伏応力600N/mm2以上で0.85以上の降伏比を有し、且つ、引張破断による破面が脆性破面である。これにより、優れた被削性が得られる、と特許文献2には記載されている。 The hot forged non-tempered steel disclosed in Patent Document 2 has a ferrite single phase structure, and fine precipitates having a particle size of less than 10 nm are dispersed and precipitated in the ferrite phase. The yield stress is 600 N / mm 2 or more and the yield ratio is 0.85 or more, and the fracture surface due to tensile fracture is a brittle fracture surface. This describes that excellent machinability can be obtained in Patent Document 2.
 特許文献3に開示されたコンロッドの製造方法は、最終的な素材状態がV系析出物に基づく析出強化状態とされる熱間鍛造非調質鋼を、コンロッドを構成する鋼材として用いる。この鋼材を1100℃以上1300℃以下の温度域で熱間鍛造することにより、コンロッドの母形状を有する鍛造体を得る熱間鍛造工程と、該熱間鍛造工程が終了後、鍛造体を800℃から500℃までの第一温度域の平均冷却速度が1℃/秒以上となるように中間冷却する中間冷却工程と、該中間冷却工程が終了後、鍛造体を500℃以上700℃以下の第二温度域でV系析出物を時効析出させる時効熱処理工程とを有する。これにより、コンロッドの強度を高めることができる、と特許文献3には記載されている。 The manufacturing method of a connecting rod disclosed in Patent Document 3 uses hot forged non-heat treated steel whose final material state is a precipitation strengthened state based on V-based precipitates as a steel material constituting the connecting rod. By hot forging this steel material in a temperature range of 1100 ° C. or more and 1300 ° C. or less, a hot forging step for obtaining a forged body having a base shape of a connecting rod, and after completion of the hot forging step, the forged body is 800 ° C. Intermediate cooling step for intermediate cooling so that the average cooling rate in the first temperature range from 1 to 500 ° C. is 1 ° C./second or more, and after the intermediate cooling step, And an aging heat treatment step for aging precipitation of V-based precipitates in two temperature ranges. Thus, Patent Document 3 describes that the strength of the connecting rod can be increased.
 特許文献4に開示された熱間鍛造用非調質鋼は、質量%でC:0.35~0.55%、Si:0.15~0.40%、Mn:0.50~1.00%、P:0.100%以下、S:0.040~0.100%、Cr:1.00%以下、V:0.20~0.50%、Ca:0.0005~0.0100%、N:0.0150%以下を含有し、残部がFe及び不可避的不純物よりなる。2Mn+5Mo+Cr≦3.1であり、C+Si/5+Mn/10+10P+5V≧1.8であり、Ceq=C+Si/7+Mn/5+Cr/9+Vが0.90~1.10である。さらに、硬さがHV330以上であり、降伏比が0.73以上であり、組織が、ベイナイトが10%以下のフェライト・パーライト組織である。この文献では、2Mn+5Mo+Cr≦3.1を満たすことによりベイナイトの生成を抑制し、C+Si/5+Mn/10+10P+5V≧1.8を満たすことにより優れたクラッキング性が得られる、と特許文献4には記載されている。 The non-heat treated steel for hot forging disclosed in Patent Document 4 is C: 0.35-0.55%, Si: 0.15-0.40%, Mn: 0.50-1. 00%, P: 0.100% or less, S: 0.040 to 0.100%, Cr: 1.00% or less, V: 0.20 to 0.50%, Ca: 0.0005 to 0.0100 %, N: 0.0150% or less, with the balance being Fe and inevitable impurities. 2Mn + 5Mo + Cr ≦ 3.1, C + Si / 5 + Mn / 10 + 10P + 5V ≧ 1.8, and Ceq = C + Si / 7 + Mn / 5 + Cr / 9 + V is 0.90 to 1.10. Furthermore, the hardness is HV330 or more, the yield ratio is 0.73 or more, and the structure is a ferrite pearlite structure having bainite of 10% or less. In this document, it is described in Patent Document 4 that the formation of bainite is suppressed by satisfying 2Mn + 5Mo + Cr ≦ 3.1, and excellent cracking property is obtained by satisfying C + Si / 5 + Mn / 10 + 10P + 5V ≧ 1.8. Yes.
 特許文献5に開示されたクラッキングコンロッドは、質量%で、0.20~0.60%のCを含むフェライト・パーライト型非調質鋼からなり、少なくとも、クランクシャフト及びピストンにそれぞれ係合する大端部及び小端部とこれらの間を接続しコイニング処理された桿部とを具備する。必須添加元素をC、N、Ti、Si、Mn、P、S及びCrとして、任意添加元素をV、Pb、Te、Ca及びBiとする。必須添加元素において、質量%で、Siを0.05~2.0%の範囲内、Mnを0.30~1.50%の範囲内、Pを0.01~0.2%の範囲内、Sを0.060~0.2%の範囲内、及び、Crを0.05~1.00%の範囲内で添加するとともに、Nを0.005~0.030%且つTiを0.20%以下(ただし0.154%以上を除く)の範囲内で、Ti≧3.4N+0.02を満たすように含む。任意添加元素において、質量%で、Vを0.14%以下、Pbを0.30%以下、Teを0.3%以下、Caを0.01%以下、及び、Biを0.30%以下で含み、残部Fe及び不可避的不純物から構成された鋼からなる。大端部における0.2%耐力が650MPaよりも小であるとともに、コイニング処理された桿部における0.2%耐力が700MPaよりも大である。これにより、強度及び被削性を高められる、と特許文献5には記載されている。 The cracking connecting rod disclosed in Patent Document 5 is made of ferritic pearlite-type non-heat treated steel containing 0.20 to 0.60% C in mass%, and at least a large engagement with the crankshaft and piston respectively. An end portion and a small end portion are connected to each other, and a collar portion that is connected between them and subjected to coining processing is provided. The essential additive elements are C, N, Ti, Si, Mn, P, S, and Cr, and the optional additive elements are V, Pb, Te, Ca, and Bi. In the essential additive elements, by mass%, Si is in the range of 0.05 to 2.0%, Mn is in the range of 0.30 to 1.50%, and P is in the range of 0.01 to 0.2%. , S in the range of 0.060 to 0.2% and Cr in the range of 0.05 to 1.00%, N in the range of 0.005 to 0.030% and Ti in the range of 0.0. Within a range of 20% or less (excluding 0.154% or more), it is included so as to satisfy Ti ≧ 3.4N + 0.02. Arbitrary addition element, in mass%, V is 0.14% or less, Pb is 0.30% or less, Te is 0.3% or less, Ca is 0.01% or less, and Bi is 0.30% or less. And made of steel composed of the balance Fe and inevitable impurities. The 0.2% yield strength at the large end is less than 650 MPa, and the 0.2% yield strength at the coined heel is greater than 700 MPa. Thus, Patent Document 5 describes that the strength and machinability can be improved.
米国特許第5135587号US Pat. No. 5,135,587 特開2005-68460号公報JP 2005-68460 A 特開2005-29825号公報JP 2005-29825 A 特開2011-195862号公報JP 2011-195862 A 特開2014-77200号公報JP 2014-77200 A
 ここまで述べた従来技術においては、いずれも、十分な性能を示すコンロッドを製造するための熱間鍛造の温度条件幅が狭いという課題があった。 In the conventional techniques described so far, there is a problem that the temperature condition range of hot forging for producing a connecting rod exhibiting sufficient performance is narrow.
 例えば、特許文献1では、熱間鍛造を1037~1260℃(1900~2300°F)で行っており、850℃以下、または1330℃以上の熱間鍛造は想定されていない。さらに、特許文献1のコンロッドでは、従来の機械構造用炭素鋼を調質処理したコンロッドに比べて疲労強度及び降伏強度が不足する。 For example, in Patent Document 1, hot forging is performed at 1037 to 1260 ° C. (1900 to 2300 ° F.), and hot forging at 850 ° C. or lower or 1330 ° C. or higher is not assumed. Furthermore, the connecting rod of Patent Document 1 lacks fatigue strength and yield strength as compared with a connecting rod obtained by tempering conventional carbon steel for mechanical structures.
 特許文献2~5では、十分な強度が得られる。しかしながら、これらの文献が開示する発明でも、1330℃以上の超高温での鍛造、及び850℃以下の極低温での鍛造が想定されていない。そのため、こういった条件で製造した場合、十分なクラッキング性、被削性、降伏強度、及び疲労強度が得られない場合があり得る。 In Patent Documents 2 to 5, sufficient strength can be obtained. However, even in the inventions disclosed in these documents, forging at an ultrahigh temperature of 1330 ° C. or higher and forging at an extremely low temperature of 850 ° C. or lower are not assumed. Therefore, when it manufactures on such conditions, sufficient cracking property, machinability, yield strength, and fatigue strength may not be obtained.
 一方で、上述したように、1330℃以上の超高温、又は、850℃以下の極低温で熱間鍛造することにより、コンロッドの軽量化及び小型化が可能となる。さらに、多様な製造条件において十分な性能の製品を実現できる圧延棒鋼は、多くの生産工場で利用可能である。そのため、広い鍛造温度範囲において、十分な性能の製品を製造可能な鋼材(圧延棒鋼)が望まれている。 On the other hand, as described above, it is possible to reduce the weight and size of the connecting rod by hot forging at an ultrahigh temperature of 1330 ° C. or higher or an extremely low temperature of 850 ° C. or lower. Furthermore, rolled steel bars that can realize products with sufficient performance under various production conditions can be used in many production factories. Therefore, a steel material (rolled steel bar) capable of producing a product with sufficient performance in a wide forging temperature range is desired.
 本発明の目的は、1330℃以上の超高温、又は、850℃以下の極低温で鍛造された場合であっても、高い降伏強度及び疲労強度を有するコンロッドを実現でき、さらにコンロッド製造時の優れた被削性及びクラッキング性を実現できる熱間鍛造用圧延棒鋼を提供することである。 The object of the present invention is to realize a connecting rod having high yield strength and fatigue strength even when forged at an ultra-high temperature of 1330 ° C. or higher, or at an extremely low temperature of 850 ° C. or lower. Another object of the present invention is to provide a rolled steel bar for hot forging that can realize the machinability and crackability.
 本実施形態による熱間鍛造用圧延棒鋼は、化学組成が、質量%で、C:0.39~0.55%、Si:0.10~1.0%、Mn:0.50~1.50%、P:0.010~0.100%、S:0.040~0.130%、Cr:0.05~0.50%、Mo:0.01~0.10%、V:0.05~0.40%、Ti:0.150~0.250%、Al:0.005~0.050%、N:0.0020~0.020%、Cu:0~0.40%、Ni:0~0.30%、Nb:0~0.20%、Pb:0~0.30%、Zr:0~0.1000%、Te:0~0.3000%、Ca:0~0.0100%、及び、Bi:0~0.3000%を含有し、残部がFe及び不純物からなり、式(1)及び式(2)を満たす。上記熱間鍛造用圧延棒鋼のミクロ組織において、ポリゴナルフェライト及びパーライトの総面積率は90%以上である。析出物中のMoの総含有量(質量%)は、鋼中の全Mo含有量(質量%)の50.0%以上である。ポリゴナルフェライト中の5~100nmの円相当径を有する析出物の総個数は、ポリゴナルフェライト中の3~1000nmの円相当径を有する析出物の総個数の80.0%以上である。
 0.60≦C+0.2Mn+0.25Cr+0.75V+0.81Mo≦1.00 (1)
 0.12C+0.35Mn+0.42Cr+Mo-0.08Si≦0.70 (2)
 ここで、式(1)及び式(2)中の元素記号には、対応する元素の含有量(質量%)が代入される。
The rolled steel bar for hot forging according to this embodiment has a chemical composition of mass%, C: 0.39 to 0.55%, Si: 0.10 to 1.0%, Mn: 0.50 to 1. 50%, P: 0.010 to 0.100%, S: 0.040 to 0.130%, Cr: 0.05 to 0.50%, Mo: 0.01 to 0.10%, V: 0 0.05 to 0.40%, Ti: 0.150 to 0.250%, Al: 0.005 to 0.050%, N: 0.0020 to 0.020%, Cu: 0 to 0.40%, Ni: 0 to 0.30%, Nb: 0 to 0.20%, Pb: 0 to 0.30%, Zr: 0 to 0.1000%, Te: 0 to 0.3000%, Ca: 0 to 0 0.0100% and Bi: 0 to 0.3000%, with the balance being Fe and impurities, satisfying formulas (1) and (2). In the microstructure of the rolled steel bar for hot forging, the total area ratio of polygonal ferrite and pearlite is 90% or more. The total content (% by mass) of Mo in the precipitate is 50.0% or more of the total Mo content (% by mass) in the steel. The total number of precipitates having an equivalent circle diameter of 5 to 100 nm in polygonal ferrite is 80.0% or more of the total number of precipitates having an equivalent circle diameter of 3 to 1000 nm in polygonal ferrite.
0.60 ≦ C + 0.2Mn + 0.25Cr + 0.75V + 0.81Mo ≦ 1.00 (1)
0.12C + 0.35Mn + 0.42Cr + Mo−0.08Si ≦ 0.70 (2)
Here, the content (mass%) of the corresponding element is substituted for the element symbols in the formulas (1) and (2).
 本実施形態による熱間鍛造用圧延棒鋼は、1330℃以上の超高温、又は、850℃以下の極低温で鍛造された場合であっても、高い降伏強度及び疲労強度を有するコンロッドを実現でき、さらに、コンロッド製造時の優れた被削性及びクラッキング性を実現できる。 The rolled steel bar for hot forging according to the present embodiment can realize a connecting rod having high yield strength and fatigue strength even when forged at an ultrahigh temperature of 1330 ° C. or higher, or at an extremely low temperature of 850 ° C. or lower, Furthermore, excellent machinability and cracking properties can be realized when manufacturing the connecting rod.
図1は、従来のコネクティングロッドの正面図である。FIG. 1 is a front view of a conventional connecting rod. 図2は、引張試験に用いた引張試験片の正面図である。FIG. 2 is a front view of a tensile test piece used in the tensile test. 図3は、疲労強度試験に用いた疲労強度試験片の正面図である。FIG. 3 is a front view of a fatigue strength test piece used in the fatigue strength test.
 本発明者は、熱間鍛造用圧延棒鋼の熱間鍛造後の強度(降伏強度及び疲労強度)、被削性、及び、クラッキング性について調査及び検討を行った。その結果、本発明者は次の知見を得た。 The inventor investigated and examined the strength (yield strength and fatigue strength), machinability, and crackability after hot forging of rolled steel bars for hot forging. As a result, the present inventor obtained the following knowledge.
 (A)降伏強度及び疲労強度と、被削性とは相反する機械特性である。化学成分を適正に調整できれば、これらの機械特性の両立が可能である。 (A) Yield strength, fatigue strength, and machinability are contradictory mechanical properties. If the chemical components can be adjusted appropriately, these mechanical properties can be achieved.
 本実施形態の熱間鍛造用圧延棒鋼では、質量%で、C:0.39~0.55%、Si:0.10~1.0%、Mn:0.50~1.50%、P:0.010~0.100%、S:0.040~0.130%、Cr:0.05~0.50%、Mo:0.01~0.10%、V:0.05~0.40%、Ti:0.150~0.250%、Al:0.005~0.050%、N:0.0020~0.020%、Cu:0~0.40%、Ni:0~0.30%、Nb:0~0.20%、Pb:0~0.30%、Zr:0~0.1000%、Te:0~0.3000%、Ca:0~0.0100%、及び、Bi:0~0.3000%を含有し、残部がFe及び不純物からなる化学組成とし、ミクロ組織において、ポリゴナルフェライト及びパーライトの総面積率を90.0%以上とする。 In the rolled steel bar for hot forging of the present embodiment, C: 0.39 to 0.55%, Si: 0.10 to 1.0%, Mn: 0.50 to 1.50%, P in mass%. : 0.010 to 0.100%, S: 0.040 to 0.130%, Cr: 0.05 to 0.50%, Mo: 0.01 to 0.10%, V: 0.05 to 0 .40%, Ti: 0.150 to 0.250%, Al: 0.005 to 0.050%, N: 0.0020 to 0.020%, Cu: 0 to 0.40%, Ni: 0 to 0.30%, Nb: 0 to 0.20%, Pb: 0 to 0.30%, Zr: 0 to 0.1000%, Te: 0 to 0.3000%, Ca: 0 to 0.0100%, And Bi: 0 to 0.3000%, with the balance being a chemical composition comprising Fe and impurities, and in the microstructure, polygonal ferrite and The total area ratio of the 90.0% or more.
 本実施形態の熱間鍛造用圧延棒鋼ではさらに、上記化学組成が式(1)を満たすようにする。
 0.60≦C+0.2Mn+0.25Cr+0.75V+0.81Mo≦1.00 (1)
 ここで、式(1)中の元素記号には、対応する元素の含有量(質量%)が代入される。
In the rolled steel bar for hot forging of this embodiment, the chemical composition further satisfies the formula (1).
0.60 ≦ C + 0.2Mn + 0.25Cr + 0.75V + 0.81Mo ≦ 1.00 (1)
Here, the content (mass%) of the corresponding element is substituted for the element symbol in the formula (1).
 fn1=C+0.2Mn+0.25Cr+0.75V+0.81Moと定義する。fn1は強度(降伏強度、疲労強度)及び被削性の指標である。fn1は、強度と正の相関を示す。fn1が1.00よりも高ければ、鋼の強度が高くなりすぎ、鋼の被削性が低下する。fn1が0.60未満であれば、鋼の強度が低すぎる。fn1が0.60~1.00であれば、強度及び被削性を高めることができる。 Defined as fn1 = C + 0.2Mn + 0.25Cr + 0.75V + 0.81Mo. fn1 is an index of strength (yield strength, fatigue strength) and machinability. fn1 shows a positive correlation with the intensity. If fn1 is higher than 1.00, the strength of the steel becomes too high, and the machinability of the steel decreases. If fn1 is less than 0.60, the strength of the steel is too low. If fn1 is 0.60 to 1.00, the strength and machinability can be improved.
 (B)ベイナイトは、フェライト及びパーライトと比較して靭性が高い。そのため、クラッキングコンロッドの大端部を破断して2つの部品(キャップ及びロッド)を製造した場合、破断部分が塑性変形し、破断面に延性破面が発生する。つまり、クラッキング性が低下する。ベイナイトの生成を抑制すれば、クラッキング性を高めることができる。 (B) Bainite has higher toughness than ferrite and pearlite. Therefore, when two parts (a cap and a rod) are manufactured by breaking the large end portion of the cracking connecting rod, the broken portion is plastically deformed, and a ductile fracture surface is generated on the fracture surface. That is, cracking properties are reduced. If the generation of bainite is suppressed, the cracking property can be improved.
 そこで、本実施形態の熱間鍛造用圧延棒鋼ではさらに、上記化学組成が式(1)を満たすだけでなく、式(2)を満たすようにする。
 0.12C+0.35Mn+0.42Cr+Mo-0.08Si≦0.70 (2)
 ここで、式(2)中の元素記号には、対応する元素の含有量(質量%)が代入される。
Therefore, in the rolled steel bar for hot forging of the present embodiment, the chemical composition further satisfies the formula (1) as well as the formula (2).
0.12C + 0.35Mn + 0.42Cr + Mo−0.08Si ≦ 0.70 (2)
Here, the content (mass%) of the corresponding element is substituted for the element symbol in the formula (2).
 fn2=0.12C+0.35Mn+0.42Cr+Mo-0.08Siと定義する。fn2は熱間鍛造後のベイナイト生成量の指標である。fn2が0.70を超えれば、特に、1330℃以上の超高温での鍛造において、ベイナイトが生成しやすくなる。その結果、相界面析出によりフェライト中に生成する析出物による析出強化を利用することができず、降伏強度、疲労強度が低下する。さらにベイナイトはフェライトよりも靱性が高いため、クラッキング性も低下する。fn2が0.70以下であれば、1330℃以上の超高温での鍛造を実施した後でも、鋼材のミクロ組織がフェライト-パーライト組織になりやすく、ベイナイトが生成しにくい。そのため、十分な降伏強度及び疲労強度とともに、優れたクラッキング性が得られる。 Defined as fn2 = 0.12C + 0.35Mn + 0.42Cr + Mo−0.08Si. fn2 is an index of the amount of bainite generated after hot forging. When fn2 exceeds 0.70, bainite is likely to be generated particularly in forging at an ultrahigh temperature of 1330 ° C. or higher. As a result, precipitation strengthening due to precipitates generated in ferrite due to phase interface precipitation cannot be used, and yield strength and fatigue strength are reduced. Furthermore, since bainite has higher toughness than ferrite, cracking properties also deteriorate. If fn2 is 0.70 or less, even after forging at an ultrahigh temperature of 1330 ° C. or higher, the microstructure of the steel material tends to be a ferrite-pearlite structure, and bainite is not easily generated. Therefore, excellent cracking properties can be obtained together with sufficient yield strength and fatigue strength.
 (C)しかしながら、上記化学組成が式(1)及び式(2)を満たすだけでは、十分な降伏強度、疲労強度及びクラッキング性が得られない。そこで、本実施形態の熱間鍛造用圧延棒鋼では、相界面析出によりポリゴナルフェライト中に析出する析出物のうち、V炭化物、Ti炭化物及びMo炭化物の複合炭化物であるV-Ti-Mo複合炭化物に注目する。ここで、V-Ti-Mo複合炭化物は、V炭化物中にTi及びMoが含有された炭化物である。 (C) However, sufficient yield strength, fatigue strength and cracking properties cannot be obtained if the chemical composition only satisfies the formulas (1) and (2). Therefore, in the rolled steel bar for hot forging of this embodiment, among the precipitates precipitated in polygonal ferrite by phase interface precipitation, V-Ti-Mo composite carbide which is a composite carbide of V carbide, Ti carbide and Mo carbide. Pay attention to. Here, the V—Ti—Mo composite carbide is a carbide in which Ti and Mo are contained in the V carbide.
 ポリゴナルフェライト中に生成する析出物には、V炭化物、Ti炭化物、Mo炭化物及び、V-Ti-Mo複合炭化物等の炭化物の他、TiS等の炭化物と異なる他の析出物も存在する場合がある。しかしながら、TiS等の炭化物と異なる他の析出物の円相当径は1μm(1000nm)よりも大きい。一方、式(1)及び式(2)を満たす上述の化学組成の鋼のポリゴナルフェライト中の炭化物に注目した場合、Ti炭化物及びMo炭化物はほとんど生成せず、炭化物のほとんどがV炭化物及びV-Ti-Mo複合炭化物である。そして、これらの炭化物の円相当径は1000nm以下である。 Precipitates generated in polygonal ferrite may include carbides such as V carbide, Ti carbide, Mo carbide, and V-Ti-Mo composite carbide, as well as other precipitates different from carbides such as TiS. is there. However, the equivalent circle diameter of other precipitates different from carbides such as TiS is larger than 1 μm (1000 nm). On the other hand, when attention is paid to carbides in the polygonal ferrite of the steel having the above-mentioned chemical composition satisfying the formulas (1) and (2), Ti carbides and Mo carbides are hardly formed, and most of the carbides are V carbides and V carbides. -Ti-Mo composite carbide. And the equivalent circle diameter of these carbides is 1000 nm or less.
 本実施形態では、ポリゴナルフェライト中の3~1000nmの円相当径を有する析出物のうち、5~100nmの円相当径を有する析出物の割合を多くする。5~100nmの円相当径を有する析出物は、実質的にV炭化物及びV-Ti-Mo複合炭化物のいずれかである。5~100nmの円相当径を有する析出物の割合を多くすることにより、熱間鍛造後においても優れた降伏強度及び疲労強度が得られ、優れたクラッキング性も得られる。以下、この点について詳述する。 In the present embodiment, among the precipitates having an equivalent circle diameter of 3 to 1000 nm in the polygonal ferrite, the ratio of the precipitates having an equivalent circle diameter of 5 to 100 nm is increased. The precipitate having an equivalent circle diameter of 5 to 100 nm is substantially either V carbide or V—Ti—Mo composite carbide. By increasing the proportion of precipitates having an equivalent circle diameter of 5 to 100 nm, excellent yield strength and fatigue strength can be obtained even after hot forging, and excellent cracking properties can also be obtained. Hereinafter, this point will be described in detail.
 上記化学組成を有し、式(1)及び式(2)を満たす棒鋼を熱間鍛造した場合、熱間鍛造後の冷却工程において、相界面析出により、ポリゴナルフェライト中に析出物が生成する。上記化学組成において、Mo含有量は0.01~0.10%と低い。そのため、MoはMoCとしては析出しにくく、相界面析出により生成するV炭化物(VC)に固溶しやすい。さらに、V炭化物(VC)にはTiも固溶しやすい。なお、上述の化学組成を有する鋼の場合、Moは、析出物に含有されるか、マトリクスに固溶しているかのいずれかである。 When a steel bar having the above chemical composition and satisfying the formulas (1) and (2) is hot forged, precipitates are generated in polygonal ferrite by phase interface precipitation in the cooling step after hot forging. . In the above chemical composition, the Mo content is as low as 0.01 to 0.10%. Therefore, Mo hardly precipitates as Mo 2 C, and is easily dissolved in V carbide (VC) generated by phase interface precipitation. Furthermore, Ti is easily dissolved in V carbide (VC). In the case of steel having the above-described chemical composition, Mo is either contained in the precipitate or is dissolved in the matrix.
 本実施形態では、相界面析出により生成される析出物として、主として、V炭化物、Ti炭化物、Mo炭化物が存在し、さらに、V炭化物にTi及びMoが固溶したV-Ti-Mo複合炭化物が存在する。V-Ti-Mo複合炭化物はV炭化物(VC)とは析出形態が異なる。具体的には、V-Ti-Mo複合炭化物は、Moを固溶することにより、熱間鍛造後の鋼材の降伏強度及び疲労強度を飛躍的に高めることができる。熱間鍛造後の鋼材中に微細なV-Ti-Mo複合炭化物を析出させるためには、熱間鍛造前の鋼材において、V、Ti及びMoがオーステナイトに固溶しているのが好ましい。 In this embodiment, there are mainly V carbide, Ti carbide, and Mo carbide as precipitates generated by phase interface precipitation, and V-Ti-Mo composite carbide in which Ti and Mo are dissolved in V carbide. Exists. V-Ti-Mo composite carbide has a different precipitation form from V carbide (VC). Specifically, the V—Ti—Mo composite carbide can dramatically increase the yield strength and fatigue strength of the steel material after hot forging by dissolving Mo in solid solution. In order to precipitate fine V—Ti—Mo composite carbide in the steel material after hot forging, it is preferable that V, Ti and Mo are dissolved in austenite in the steel material before hot forging.
 しかしながら、熱間鍛造工程において熱間鍛造用圧延棒鋼が加熱され、そのミクロ組織がオーステナイトとなったときに、Moがオーステナイトに過剰に固溶していれば、鋼の焼入れ性が過剰に高まり、ベイナイトの生成が促進されてしまう。特に、1330℃以上の超高温での鍛造において、その傾向(ベイナイト生成の促進)が顕著になる。この場合、フェライトの生成が抑制されるため、相界面析出によるVC及びV-Ti-Mo複合炭化物の生成量が不十分となる。そのため、十分な降伏強度、疲労強度が得られない。さらに、ベイナイトの生成により靱性が高まるため、十分なクラッキング性が得られない。 However, when the rolled steel bar for hot forging is heated in the hot forging process and its microstructure becomes austenite, if Mo is excessively dissolved in austenite, the hardenability of the steel is excessively increased, The generation of bainite is promoted. In particular, in forging at an ultrahigh temperature of 1330 ° C. or higher, the tendency (promotion of bainite generation) becomes remarkable. In this case, since the formation of ferrite is suppressed, the amount of VC and V—Ti—Mo composite carbide produced by phase interface precipitation becomes insufficient. Therefore, sufficient yield strength and fatigue strength cannot be obtained. Furthermore, since the toughness is increased by the generation of bainite, sufficient cracking properties cannot be obtained.
 一方で、上述のV-Ti-Mo複合炭化物は、VCと比較して、1330℃以上の超高温でも固溶しにくい特徴を有する。その理由は定かではないが、V-Ti-Mo複合炭化物はTiを含有するため、高温においてもVCよりも固溶しにくくなるためと考えられる。 On the other hand, the above-mentioned V—Ti—Mo composite carbide has a feature that it does not easily dissolve at an ultra-high temperature of 1330 ° C. or higher as compared with VC. The reason for this is not clear, but it is considered that the V—Ti—Mo composite carbide contains Ti, so that it is less likely to dissolve at a higher temperature than VC even at high temperatures.
 そこで、本発明者らは、上記化学組成を有し、式(1)及び式(2)を満たす熱間鍛造用圧延棒鋼において、相界面析出によりポリゴナルフェライト中に析出した炭化物のうち所定の適切なサイズ(円相当径で5~100nm)のV-Ti-Mo複合炭化物の割合を多くすれば、熱間鍛造工程での加熱時において、各V-Ti-Mo複合炭化物が若干固溶してサイズを小さくなるものの、V-Ti-Mo複合炭化物が完全には固溶せずに残存すると考えた。この場合、Moが鋼中に過剰に固溶するのを抑制できるため、ベイナイトの生成を抑制しつつ、熱間鍛造前に析出していたV-Ti-Mo複合炭化物を、熱間鍛造後の鋼材にも残存させることができる。さらに、熱間鍛造工程の冷却時に相界面析出により新たに生成した微細なV-Ti-Mo複合析出物も、熱間鍛造後の鋼材に含めることができる。その結果、優れた降伏強度、疲労強度、及び、クラッキング性が得られると考えた。以上の検討結果に基づいて本発明者らがさらに調査及び検討を行った結果、次の知見を得た。 Therefore, the present inventors have the above-mentioned chemical composition and in a rolled steel bar for hot forging satisfying the formulas (1) and (2), a predetermined amount of carbides precipitated in polygonal ferrite by phase interface precipitation. If the proportion of V-Ti-Mo composite carbide of an appropriate size (equivalent circle diameter of 5 to 100 nm) is increased, each V-Ti-Mo composite carbide dissolves slightly during heating in the hot forging process. However, it was considered that the V—Ti—Mo composite carbide was not completely dissolved but remained. In this case, since Mo can be prevented from excessively dissolving in the steel, the V—Ti—Mo composite carbide precipitated before hot forging is suppressed after hot forging while suppressing the formation of bainite. It can also remain in steel. Furthermore, fine V—Ti—Mo composite precipitates newly generated by phase interface precipitation during cooling in the hot forging process can also be included in the steel material after hot forging. As a result, it was considered that excellent yield strength, fatigue strength, and cracking properties were obtained. As a result of further investigation and examination by the present inventors based on the above examination results, the following knowledge was obtained.
 上述のとおり、ポリゴナルフェライト中に生成する炭化物の円相当径は1000nm以下であり、式(1)及び式(2)を満たす化学組成において、ポリゴナルフェライト中に生成する円相当径が1000nmの析出物は、実質的に炭化物である。熱間鍛造用圧延棒鋼のポリゴナルフェライト中において、円相当径が5nm未満の析出物が多い場合、熱間鍛造以前にV-Ti-Mo複合炭化物が固溶しすぎている、つまりMoが過剰に固溶していることを意味する。この場合、熱間鍛造時において焼入れ性が過剰に高くなるため、熱間鍛造後にベイナイトの生成が促進される。特に、1330℃以上の超高温での熱間鍛造において、ベイナイトが過剰に生成し、その結果、十分な降伏強度、疲労強度及びクラッキング性が得られない。 As described above, the equivalent circle diameter of carbides generated in polygonal ferrite is 1000 nm or less, and the equivalent circle diameter generated in polygonal ferrite is 1000 nm in a chemical composition satisfying the formulas (1) and (2). The deposit is substantially carbide. When there are many precipitates with an equivalent circle diameter of less than 5 nm in the polygonal ferrite of a rolled steel bar for hot forging, the V-Ti-Mo composite carbide is too solid before hot forging, that is, Mo is excessive. It means that it is in solid solution. In this case, since the hardenability becomes excessively high during hot forging, the generation of bainite is promoted after hot forging. In particular, in hot forging at an ultrahigh temperature of 1330 ° C. or higher, bainite is excessively generated, and as a result, sufficient yield strength, fatigue strength, and crackability cannot be obtained.
 一方、熱間鍛造用圧延棒鋼のポリゴナルフェライト中において、円相当径が100nmを超える析出物が多い場合、熱間鍛造工程での加熱時に棒鋼のポリゴナルフェライト中に存在した粗大なV-Ti-Mo複合炭化物の多くが固溶しきらず粗大なまま残存し、Ti、V及びMoがマトリクスに十分に固溶しない。この場合、熱間鍛造工程の冷却時に新たな微細V-Ti-Mo複合析出物が析出しにくい。その結果、熱間鍛造後の鋼材の強度が低下する。850℃以下での熱間鍛造では特に、Moの固溶量が低下し、十分な強度(降伏強度、疲労強度)が得られない。 On the other hand, when there are many precipitates with an equivalent circle diameter exceeding 100 nm in the polygonal ferrite of the rolled steel bar for hot forging, the coarse V-Ti present in the polygonal ferrite of the steel bar during heating in the hot forging process. -Most of the Mo composite carbide is not completely dissolved but remains coarse, and Ti, V and Mo are not sufficiently dissolved in the matrix. In this case, new fine V—Ti—Mo composite precipitates are difficult to precipitate during cooling in the hot forging process. As a result, the strength of the steel material after hot forging decreases. In particular, in hot forging at 850 ° C. or lower, the solid solution amount of Mo decreases, and sufficient strength (yield strength, fatigue strength) cannot be obtained.
 熱間鍛造用圧延棒鋼のポリゴナルフェライト中の5~100nmの円相当径を有する析出物の総個数が、ポリゴナルフェライト中の3~1000nmの円相当径を有する析出物の総個数の80.0%以上であれば、上記化学組成が式(1)及び式(2)を満たし、さらに、後述の項目(D)の要件を満たすことを条件として、熱間鍛造後の鋼材において優れた降伏強度、疲労強度及びクラッキング性が得られる。 The total number of precipitates having a circle equivalent diameter of 5 to 100 nm in the polygonal ferrite of the rolled steel bar for hot forging is 80% of the total number of precipitates having a circle equivalent diameter of 3 to 1000 nm in the polygonal ferrite. If it is 0% or more, the yield is excellent in the steel material after hot forging, provided that the chemical composition satisfies the formulas (1) and (2) and further satisfies the requirements of the item (D) described later. Strength, fatigue strength and cracking properties are obtained.
 (D)さらに、熱間鍛造用圧延棒鋼中の析出物中のMoの総含有量(析出物中Mo量CP-Mo)は、熱間鍛造用圧延棒鋼中の全Mo含有量(鋼中全Mo量CT-Mo)の50.0%以上である。上述のとおり、Moは、炭化物中に含有されるか、マトリクスに固溶されているかのいずれかである。析出Mo量が全Mo量の50.0%未満であれば、熱間鍛造用圧延棒鋼中にMoが過剰に固溶している。そのため、熱間鍛造後の鋼材にベイナイトが生成し、十分なクラッキング性が得られない。さらに、ベイナイトが生成すると、相界面析出によりポリゴナルフェライト中に生成する析出物に起因した析出強化を利用できないため、十分な降伏強度及び疲労強度が得られない。析出Mo量は、抽出残渣分析により抽出される抽出物より求められる。 (D) Furthermore, the total content of Mo in the precipitate in the hot forging rolled steel bar (Mo content in the precipitate CP -Mo ) is the total Mo content in the hot forging rolled steel bar (in the steel). 50.0% or more of the total Mo amount C T-Mo ) As described above, Mo is either contained in the carbide or dissolved in the matrix. If the amount of precipitated Mo is less than 50.0% of the total amount of Mo, Mo is excessively dissolved in the hot forging rolled steel bar. Therefore, bainite is generated in the steel material after hot forging, and sufficient cracking properties cannot be obtained. Furthermore, when bainite is generated, precipitation strengthening caused by precipitates generated in polygonal ferrite due to phase interface precipitation cannot be used, so that sufficient yield strength and fatigue strength cannot be obtained. The amount of precipitated Mo is determined from the extract extracted by extraction residue analysis.
 上記式(1)及び式(2)を満たす化学組成の熱間鍛造用圧延棒鋼において、ポリゴナルフェライト中の5~100nmの円相当径を有する析出物の総個数をポリゴナルフェライト中の3~1000nmの円相当径の析出物の総個数の80.0%以上とし、かつ、熱間鍛造用圧延棒鋼中の析出物中のMoの総含有量を熱間鍛造用圧延棒鋼中の全Mo含有量の50%以上にすれば、熱間鍛造後の鋼材において、優れた降伏強度、疲労強度、クラッキング性及び被削性が得られる。このような熱間鍛造用棒鋼を製造するには、たとえば、次の製造方法を実施すればよい。 In a rolled steel bar for hot forging having a chemical composition satisfying the above formulas (1) and (2), the total number of precipitates having a circle equivalent diameter of 5 to 100 nm in polygonal ferrite is 3 to 3 in polygonal ferrite. 80.0% or more of the total number of precipitates having an equivalent circle diameter of 1000 nm, and the total content of Mo in the precipitates in the hot forging rolled steel bar is the total Mo content in the hot forging rolled steel bar When the amount is 50% or more, excellent yield strength, fatigue strength, cracking property and machinability can be obtained in the steel material after hot forging. In order to manufacture such a hot forging steel bar, for example, the following manufacturing method may be carried out.
 本実施形態の熱間鍛造用圧延棒鋼の製造方法の一例は、鋳造工程と、熱間加工工程とを含む。熱間加工工程は、分塊圧延に代表される粗圧延工程と、複数の圧延スタンドが一列に配列された連続圧延機を用いた仕上げ圧延工程とを含む。粗圧延工程では、粗圧延後の鋼材の冷却において、鋼材温度が800℃~500℃になるまでの冷却時間を20分以上とする。粗圧延工程後の鋼材を400℃以下、好ましくは室温(25℃)になるまで冷却する。仕上げ圧延工程では、加熱温度T1を1100℃以下とし、加熱時間t1を30分以下とする。さらに、仕上げ圧延中の鋼材温度T2を1200℃以下に制御し、かつ、仕上げ温度を1000℃以下にする。そして、仕上げ圧延後の鋼材の冷却において、鋼材温度が800℃~500℃になるまでの冷却時間を5分以下とする。この場合、粗圧延工程において冷却速度を遅めに設定できるため、ある程度のサイズのV-Ti-Mo複合炭化物がポリゴナルフェライト内に生成する。そして、仕上げ圧延では圧延中の素材温度を低めに設定するため、仕上げ圧延中でもそれらのV-Ti-Mo複合炭化物が固溶しきらず、残存する。さらに、仕上げ圧延後の冷却速度を速めに設定しているため、V-Ti-Mo複合炭化物が再び粗大になるのを抑制する。以上の工程により、式(1)及び式(2)を満たす化学組成の鋼において、ポリゴナルフェライト中の5~100nmの円相当径を有する析出物の総個数をポリゴナルフェライト中の3~1000nmの円相当径の析出物の総個数の80.0%以上とし、かつ、鋼中の析出物中のMoの総含有量を鋼中の全Mo含有量の50%以上にすることができる。なお、上記製造方法は本実施形態の熱間鍛造用圧延棒鋼の製造方法の一例である。 An example of the manufacturing method of the hot forged rolled steel bar according to the present embodiment includes a casting process and a hot working process. The hot working step includes a rough rolling step typified by split rolling and a finish rolling step using a continuous rolling mill in which a plurality of rolling stands are arranged in a row. In the rough rolling process, in cooling the steel material after the rough rolling, the cooling time until the steel material temperature reaches 800 ° C. to 500 ° C. is set to 20 minutes or more. The steel material after the rough rolling step is cooled to 400 ° C. or lower, preferably room temperature (25 ° C.). In the finish rolling step, the heating temperature T1 is set to 1100 ° C. or less, and the heating time t1 is set to 30 minutes or less. Furthermore, the steel material temperature T2 during finish rolling is controlled to 1200 ° C. or lower, and the finishing temperature is set to 1000 ° C. or lower. In the cooling of the steel material after finish rolling, the cooling time until the steel material temperature reaches 800 ° C. to 500 ° C. is set to 5 minutes or less. In this case, since the cooling rate can be set slower in the rough rolling process, V-Ti-Mo composite carbide having a certain size is generated in the polygonal ferrite. In finish rolling, since the material temperature during rolling is set to be low, those V—Ti—Mo composite carbides are not completely dissolved and remain even during finish rolling. Further, since the cooling rate after finish rolling is set to be high, the V-Ti-Mo composite carbide is prevented from becoming coarse again. Through the above steps, in the steel having the chemical composition satisfying the formulas (1) and (2), the total number of precipitates having a circle equivalent diameter of 5 to 100 nm in the polygonal ferrite is 3 to 1000 nm in the polygonal ferrite. The total content of Mo in the precipitates in the steel can be 50% or more of the total Mo content in the steel. In addition, the said manufacturing method is an example of the manufacturing method of the rolled steel bar for hot forging of this embodiment.
 以上の知見により完成した本実施形態の熱間鍛造用圧延棒鋼は、質量%で、C:0.39~0.55%、Si:0.10~1.0%、Mn:0.50~1.50%、P:0.010~0.100%、S:0.040~0.130%、Cr:0.05~0.50%、Mo:0.01~0.10%、V:0.05~0.40%、Ti:0.150~0.250%、Al:0.005~0.050%、N:0.0020~0.020%、Cu:0~0.40%、Ni:0~0.30%、Nb:0~0.20%、Pb:0~0.30%、Zr:0~0.1000%、Te:0~0.3000%、Ca:0~0.0100%、及び、Bi:0~0.3000%を含有し、残部がFeおよび不純物からなり、式(1)及び式(2)を満たす化学組成を有する。上記熱間鍛造用圧延棒鋼のミクロ組織において、ポリゴナルフェライト及びパーライトの総面積率は90%以上である。析出物中のMoの総含有量(質量%)は、鋼中の全Mo含有量(質量%)の50.0%以上である。ポリゴナルフェライト中の5~100nmの円相当径を有する析出物の総個数は、ポリゴナルフェライト中の3~1000nmの円相当径の析出物の総個数の80.0%以上である。
 0.60≦C+0.2Mn+0.25Cr+0.75V+0.81Mo≦1.00 (1)
 0.12C+0.35Mn+0.42Cr+Mo-0.08Si≦0.70 (2)
 ここで、式(1)及び式(2)中の元素記号には、対応する元素の含有量(質量%)が代入される。
The rolled steel bar for hot forging according to the present embodiment completed based on the above knowledge is, in mass%, C: 0.39 to 0.55%, Si: 0.10 to 1.0%, Mn: 0.50 to 1.50%, P: 0.010 to 0.100%, S: 0.040 to 0.130%, Cr: 0.05 to 0.50%, Mo: 0.01 to 0.10%, V : 0.05 to 0.40%, Ti: 0.150 to 0.250%, Al: 0.005 to 0.050%, N: 0.0020 to 0.020%, Cu: 0 to 0.40 %, Ni: 0 to 0.30%, Nb: 0 to 0.20%, Pb: 0 to 0.30%, Zr: 0 to 0.1000%, Te: 0 to 0.3000%, Ca: 0 Containing 0.0 to 100% and Bi: 0 to 0.3000%, with the balance being Fe and impurities, and having a chemical composition satisfying formulas (1) and (2) . In the microstructure of the rolled steel bar for hot forging, the total area ratio of polygonal ferrite and pearlite is 90% or more. The total content (% by mass) of Mo in the precipitate is 50.0% or more of the total Mo content (% by mass) in the steel. The total number of precipitates having an equivalent circle diameter of 5 to 100 nm in polygonal ferrite is 80.0% or more of the total number of precipitates having an equivalent circle diameter of 3 to 1000 nm in polygonal ferrite.
0.60 ≦ C + 0.2Mn + 0.25Cr + 0.75V + 0.81Mo ≦ 1.00 (1)
0.12C + 0.35Mn + 0.42Cr + Mo−0.08Si ≦ 0.70 (2)
Here, the content (mass%) of the corresponding element is substituted for the element symbols in the formulas (1) and (2).
 上記化学組成は、Cu:0.01~0.40%、Ni:0.005~0.30%、及び、Nb:0.001~0.20%からなる群から選択される1種又は2種以上を含有してもよい。上記化学組成は、Pb:0.05~0.30%、Zr:0.0003~0.1000%、Te:0.0003~0.3000%、Ca:0.0003~0.0100%、及び、Bi:0.0003~0.3000%からなる群から選択される1種又は2種以上を含有してもよい。 The chemical composition is one or two selected from the group consisting of Cu: 0.01 to 0.40%, Ni: 0.005 to 0.30%, and Nb: 0.001 to 0.20%. It may contain seeds or more. The chemical composition is Pb: 0.05 to 0.30%, Zr: 0.0003 to 0.1000%, Te: 0.0003 to 0.3000%, Ca: 0.0003 to 0.0100%, and Bi: One or more selected from the group consisting of 0.0003 to 0.3000% may be contained.
 以下、本実施形態の熱間鍛造用圧延棒鋼について詳しく説明する。各元素の含有量の「%」は「質量%」を意味する。 Hereinafter, the rolled steel bar for hot forging of this embodiment will be described in detail. “%” Of the content of each element means “mass%”.
 [化学組成]
 本実施形態による熱間鍛造用圧延棒鋼の化学組成は、次の元素を含有する。
[Chemical composition]
The chemical composition of the hot forging rolled steel bar according to the present embodiment contains the following elements.
 [必須元素について]
 C:0.39~0.55%
 炭素(C)は、鋼の強度を高める。C含有量が低すぎれば、この効果が得られない。一方、C含有量が高すぎれば、鋼材の硬さが高まり、被削性が低下する。したがって、C含有量は0.39~0.55%である。C含有量の好ましい下限は0.39%超であり、さらに好ましくは0.40%であり、さらに好ましくは0.42%である。C含有量の好ましい上限は0.55%未満であり、さらに好ましくは0.53%であり、さらに好ましくは0.51%である。
[About essential elements]
C: 0.39 to 0.55%
Carbon (C) increases the strength of the steel. If the C content is too low, this effect cannot be obtained. On the other hand, if the C content is too high, the hardness of the steel material increases, and the machinability decreases. Therefore, the C content is 0.39 to 0.55%. The minimum with preferable C content is more than 0.39%, More preferably, it is 0.40%, More preferably, it is 0.42%. The upper limit with preferable C content is less than 0.55%, More preferably, it is 0.53%, More preferably, it is 0.51%.
 Si:0.10~1.0%
 シリコン(Si)は、鋼を脱酸する。Siはさらに、鋼に固溶して鋼の疲労強度を高める。Si含有量が低すぎれば、これらの効果が得られない。一方、Si含有量が高すぎれば、上記効果は飽和する。Si含有量が高すぎればさらに、鋼の熱間加工性が低下し、棒鋼の製造コストも高くなる。したがって、Si含有量は0.10~1.0%である。Si含有量の好ましい下限は0.10%超であり、さらに好ましくは0.12%であり、さらに好ましくは0.15%である。Si含有量の好ましい上限は1.00%未満であり、さらに好ましくは0.95%であり、さらに好ましくは0.90%である。
Si: 0.10 to 1.0%
Silicon (Si) deoxidizes steel. Si further dissolves in the steel to increase the fatigue strength of the steel. If the Si content is too low, these effects cannot be obtained. On the other hand, if the Si content is too high, the above effect is saturated. If the Si content is too high, the hot workability of the steel further decreases, and the manufacturing cost of the steel bar increases. Therefore, the Si content is 0.10 to 1.0%. The minimum with preferable Si content is more than 0.10%, More preferably, it is 0.12%, More preferably, it is 0.15%. The upper limit with preferable Si content is less than 1.00%, More preferably, it is 0.95%, More preferably, it is 0.90%.
 Mn:0.50~1.50%
 マンガン(Mn)は鋼を脱酸する。Mnはさらに、鋼の強度を高める。Mn含有量が低すぎれば、これらの効果は得られない。一方、Mn含有量が高すぎれば、鋼の熱間加工性が低下する。Mn含有量が高すぎればさらに、焼入れ性が高まり、鋼の組織にベイナイトが生成する。この場合、熱間鍛造後の鋼材の降伏強度、疲労強度、及びクラッキング性が低下する。したがって、Mn含有量は0.50~1.50%である。Mn含有量の好ましい下限は0.50%超であり、さらに好ましくは0.55%であり、さらに好ましくは0.60%である。Mn含有量の好ましい上限は1.50%未満であり、さらに好ましくは1.45%であり、さらに好ましくは1.40%である。
Mn: 0.50 to 1.50%
Manganese (Mn) deoxidizes steel. Mn further increases the strength of the steel. If the Mn content is too low, these effects cannot be obtained. On the other hand, if the Mn content is too high, the hot workability of the steel decreases. If the Mn content is too high, the hardenability is further increased, and bainite is generated in the steel structure. In this case, the yield strength, fatigue strength, and crackability of the steel material after hot forging are reduced. Therefore, the Mn content is 0.50 to 1.50%. The minimum with preferable Mn content is more than 0.50%, More preferably, it is 0.55%, More preferably, it is 0.60%. The upper limit with preferable Mn content is less than 1.50%, More preferably, it is 1.45%, More preferably, it is 1.40%.
 P:0.010~0.100%
 燐(P)は、粒界に偏析して鋼を脆化する。そのため、破断分割後のクラッキングコンロッドの破面が平滑になる。その結果、熱間鍛造後の鋼材のクラッキング性が高まり、破断分割後のクラッキングコンロッドの組付けの精度が高まる。P含有量が低すぎれば、この効果は得られない。一方、P含有量が高すぎれば、鋼の熱間加工性が低下する。したがって、P含有量は0.010~0.100%である。P含有量の好ましい下限は0.010%超であり、さらに好ましくは0.015%であり、さらに好ましくは0.020%である。P含有量の好ましい上限は0.100%未満であり、さらに好ましくは0.090%であり、さらに好ましくは0.07%である。
P: 0.010 to 0.100%
Phosphorus (P) segregates at the grain boundaries and embrittles the steel. Therefore, the fracture surface of the cracking connecting rod after the fracture split becomes smooth. As a result, the cracking property of the steel material after hot forging is increased, and the accuracy of assembling the cracking connecting rod after the fracture split is increased. If the P content is too low, this effect cannot be obtained. On the other hand, if P content is too high, the hot workability of steel will fall. Therefore, the P content is 0.010 to 0.100%. The minimum with preferable P content is more than 0.010%, More preferably, it is 0.015%, More preferably, it is 0.020%. The upper limit with preferable P content is less than 0.100%, More preferably, it is 0.090%, More preferably, it is 0.07%.
 S:0.040~0.130%
 硫黄(S)は、Mn及びTiと結合して硫化物を形成し、鋼の被削性を高める。S含有量が低すぎれば、この効果は得られない。一方、S含有量が高すぎれば、疲労強度が低下する。S含有量が高すぎればさらに、鋼の熱間加工性が低下する。したがって、S含有量は0.040~0.130%である。S含有量の好ましい下限は0.040%超であり、さらに好ましくは0.045%であり、さらに好ましくは0.050%である。S含有量の好ましい上限は0.130%未満であり、さらに好ましくは0.125%であり、さらに好ましくは0.120%である。
S: 0.040 to 0.130%
Sulfur (S) combines with Mn and Ti to form sulfides and enhances the machinability of steel. If the S content is too low, this effect cannot be obtained. On the other hand, if the S content is too high, the fatigue strength decreases. If the S content is too high, the hot workability of the steel further decreases. Therefore, the S content is 0.040 to 0.130%. The minimum with preferable S content is more than 0.040%, More preferably, it is 0.045%, More preferably, it is 0.050%. The upper limit with preferable S content is less than 0.130%, More preferably, it is 0.125%, More preferably, it is 0.120%.
 Cr:0.05~0.50%
 クロム(Cr)は鋼の強度を高める。Cr含有量が低すぎれば、この効果は得られない。一方、Cr含有量が高すぎれば、鋼の焼入れ性が高まり、鋼の組織にベイナイトが生成する。この場合、熱間鍛造後の鋼材の降伏強度、疲労強度、及びクラッキング性が低下する。Cr含有量が高すぎればさらに、製造コストが高くなる。したがって、Cr含有量は0.05~0.50%である。Cr含有量の好ましい下限は0.10%であり、さらに好ましくは0.12%であり、さらに好ましくは0.15%である。Cr含有量の好ましい上限は0.50%未満であり、さらに好ましくは0.45%であり、さらに好ましくは0.40%である。
Cr: 0.05 to 0.50%
Chromium (Cr) increases the strength of the steel. If the Cr content is too low, this effect cannot be obtained. On the other hand, if the Cr content is too high, the hardenability of the steel increases and bainite is generated in the steel structure. In this case, the yield strength, fatigue strength, and crackability of the steel material after hot forging are reduced. If the Cr content is too high, the production cost further increases. Therefore, the Cr content is 0.05 to 0.50%. The minimum with preferable Cr content is 0.10%, More preferably, it is 0.12%, More preferably, it is 0.15%. The upper limit with preferable Cr content is less than 0.50%, More preferably, it is 0.45%, More preferably, it is 0.40%.
 Mo:0.01~0.10%
 モリブデン(Mo)は、固溶強化により鋼の強度を高める。Moはさらに、相界面析出によりポリゴナルフェライト中に生成するVCに固溶して、鋼の強度(降伏強度及び疲労強度)を高める。より具体的には、本実施形態の化学組成ではMo含有量が低いため、MoはMoCとしては析出しにくく、相界面析出によりポリゴナルフェライト中に生成するVCに固溶して、後述のTiも固溶したV-Ti-Mo複合炭化物を形成する。V-Ti-Mo複合炭化物は、VCとは異なる析出形態となり、鋼の降伏強度及び疲労強度を顕著に高める。Mo含有量が低すぎれば、これらの効果が得られない。一方、Mo含有量が高すぎれば、固溶Mo量が増加するため、焼入れ性が高くなりすぎる。この場合、熱間鍛造前又は熱間鍛造後の鋼の組織でのベイナイトの生成が促進されるため、熱間鍛造後の鋼材の降伏強度、疲労強度、及びクラッキング性が低下する。したがって、Mo含有量は0.01~0.10%である。Mo含有量の好ましい上限は0.10%未満であり、さらに好ましくは0.09%であり、さらに好ましくは0.08%である。
Mo: 0.01 to 0.10%
Molybdenum (Mo) increases the strength of steel by solid solution strengthening. Mo further dissolves in VC formed in polygonal ferrite by phase interface precipitation to increase the strength (yield strength and fatigue strength) of the steel. More specifically, since the Mo content is low in the chemical composition of the present embodiment, Mo is difficult to precipitate as Mo 2 C, and is dissolved in VC formed in polygonal ferrite by phase interface precipitation. This forms a V—Ti—Mo composite carbide in which Ti also forms a solid solution. V-Ti-Mo composite carbide has a different precipitation form from VC, and significantly increases the yield strength and fatigue strength of steel. If the Mo content is too low, these effects cannot be obtained. On the other hand, if the Mo content is too high, the solid solution Mo amount increases, so that the hardenability becomes too high. In this case, since the formation of bainite in the steel structure before hot forging or after hot forging is promoted, the yield strength, fatigue strength, and cracking properties of the steel material after hot forging are reduced. Therefore, the Mo content is 0.01 to 0.10%. The upper limit with preferable Mo content is less than 0.10%, More preferably, it is 0.09%, More preferably, it is 0.08%.
 V:0.05~0.40%
 バナジウム(V)は、上述のとおり、相界面析出によりポリゴナルフェライト中にV-Ti-Mo複合炭化物を形成し、熱間鍛造後の鋼材の降伏強度及び疲労強度を高める。さらに、Tiと共に含有されることにより、V-Ti-Mo複合炭化物が微細化する。そのため、靱性が低下して、熱間鍛造後の鋼材のクラッキング性が高まる。V含有量が低すぎれば、これらの効果が得られない。一方、V含有量が高すぎれば、鋼の製造コストが極めて高くなるだけでなく、被削性が低下する。したがって、V含有量は0.05~0.40%である。V含有量の好ましい下限は0.05%超であり、さらに好ましくは0.06%であり、さらに好ましくは0.10%である。V含有量の好ましい上限は0.40%未満であり、さらに好ましくは0.35%であり、さらに好ましくは0.32%である。
V: 0.05 to 0.40%
As described above, vanadium (V) forms V-Ti-Mo composite carbide in polygonal ferrite by phase interface precipitation, and increases the yield strength and fatigue strength of the steel material after hot forging. Furthermore, by containing with Ti, the V—Ti—Mo composite carbide is refined. Therefore, toughness falls and the cracking property of the steel material after hot forging increases. If the V content is too low, these effects cannot be obtained. On the other hand, if the V content is too high, not only the production cost of steel becomes extremely high, but also the machinability decreases. Therefore, the V content is 0.05 to 0.40%. The minimum with preferable V content is more than 0.05%, More preferably, it is 0.06%, More preferably, it is 0.10%. The upper limit with preferable V content is less than 0.40%, More preferably, it is 0.35%, More preferably, it is 0.32%.
 Ti:0.150~0.250%
 チタン(Ti)は、相界面析出によりポリゴナルフェライト中にTi窒化物を形成したり、VCに固溶して、V-Ti-Mo複合炭化物を形成して、熱間鍛造後の鋼材の降伏強度及び疲労強度を高める。Tiはさらに、硫化物又は炭硫化物を生成して、鋼の被削性を高める。Tiはさらに、V-Ti-Mo複合炭化物を微細化して、鋼の靱性を低下することにより鋼のクラッキング性を高める。Ti含有量が低すぎれば、これらの効果が得られない。一方、Ti含有量が高すぎれば、Ti炭化物が多くなりすぎる。この場合、鋼の引張強度が高くなりすぎ、鋼の被削性が低下する。したがって、Ti含有量は0.150~0.250%である。Ti含有量の好ましい下限は0.151%であり、さらに好ましくは0.155%である。Ti含有量の好ましい上限は0.250%未満であり、さらに好ましくは0.220%である。
Ti: 0.150 to 0.250%
Titanium (Ti) forms Ti nitride in polygonal ferrite by phase interface precipitation, or dissolves in VC to form V-Ti-Mo composite carbide to yield steel after hot forging. Increase strength and fatigue strength. Ti further produces sulfides or carbosulfides to enhance the machinability of the steel. Ti further refines the V—Ti—Mo composite carbide to increase the cracking property of the steel by reducing the toughness of the steel. If the Ti content is too low, these effects cannot be obtained. On the other hand, if the Ti content is too high, the amount of Ti carbide will be too much. In this case, the tensile strength of the steel becomes too high and the machinability of the steel decreases. Therefore, the Ti content is 0.150 to 0.250%. The minimum with preferable Ti content is 0.151%, More preferably, it is 0.155%. The upper limit with preferable Ti content is less than 0.250%, More preferably, it is 0.220%.
 Al:0.005~0.050%
 アルミニウム(Al)は、鋼を脱酸する。Al含有量が低すぎれば、この効果は得られない。一方、Al含有量が高すぎれば、Alは、硬質な酸化物系介在物を形成し、疲労強度を低下する。したがって、Al含有量は0.005~0.050%である。Al含有量の好ましい下限は0.020%である。Al含有量の好ましい上限は0.040%である。本実施形態の熱間鍛造用圧延棒鋼において、Al含有量とは酸可溶Al(いわゆる「sol.Al」)を意味する。
Al: 0.005 to 0.050%
Aluminum (Al) deoxidizes steel. If the Al content is too low, this effect cannot be obtained. On the other hand, if the Al content is too high, Al forms hard oxide inclusions and lowers fatigue strength. Therefore, the Al content is 0.005 to 0.050%. The minimum with preferable Al content is 0.020%. The upper limit with preferable Al content is 0.040%. In the rolled steel bar for hot forging of the present embodiment, the Al content means acid-soluble Al (so-called “sol. Al”).
 N:0.0020~0.020%
 窒素(N)はV又はTiと結合して窒化物を形成し、鋼の強度を高める。N含有量が低すぎれば、この効果は得られない。一方、N含有量が高すぎれば、この効果は飽和する。したがって、N含有量は0.0020~0.020%である。N含有量の好ましい下限は0.0020%超であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0040%である。N含有量の好ましい上限は0.020%未満であり、さらに好ましくは0.019%であり、さらに好ましくは0.018%である。
N: 0.0020 to 0.020%
Nitrogen (N) combines with V or Ti to form nitrides and increases the strength of the steel. If the N content is too low, this effect cannot be obtained. On the other hand, if the N content is too high, this effect is saturated. Therefore, the N content is 0.0020 to 0.020%. The minimum with preferable N content is more than 0.0020%, More preferably, it is 0.0030%, More preferably, it is 0.0040%. The upper limit with preferable N content is less than 0.020%, More preferably, it is 0.019%, More preferably, it is 0.018%.
 本実施の形態による熱間鍛造用圧延棒鋼の化学組成の残部は、Fe及び不純物からなる。ここで、不純物とは、熱間鍛造用圧延棒鋼を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境などから混入されるものであって、本実施形態の熱間鍛造用圧延棒鋼に悪影響を与えない範囲で許容されるものを意味する。本実施形態の熱間鍛造用圧延棒鋼の化学組成は、次の元素を不純物として含有し得る。
 B:0.0002%以下、
 Sb:0.05%以下、
 Sn:0.03%以下、
 Co:0.03%以下、
 希土類元素(REM):0.03%以下、
 O(酸素):0.0050%以下、及び、
 H(水素):0.0005%以下
The balance of the chemical composition of the rolled steel bar for hot forging according to the present embodiment is composed of Fe and impurities. Here, the impurities are mixed from ore as a raw material, scrap, or production environment when industrially manufacturing rolled steel bars for hot forging, and are used for hot forging in this embodiment. It means that it is allowed as long as it does not adversely affect the rolled steel bar. The chemical composition of the rolled steel bar for hot forging of this embodiment can contain the following elements as impurities.
B: 0.0002% or less,
Sb: 0.05% or less,
Sn: 0.03% or less,
Co: 0.03% or less,
Rare earth element (REM): 0.03% or less,
O (oxygen): 0.0050% or less, and
H (hydrogen): 0.0005% or less
 なお、本明細書におけるREMは、Sc、Y、及び、ランタノイド(原子番号57番のLa~71番のLu)の少なくとも1種以上を含有し、REM含有量は、これらの元素の合計含有量を意味する。 Note that REM in this specification contains at least one of Sc, Y, and lanthanoid (La of atomic number 57 to Lu of 71), and the REM content is the total content of these elements. Means.
 [任意元素について]
 本実施の形態による熱間鍛造用圧延棒鋼の化学組成はさらに、Feの一部に代えて、Cu、Ni及びNbからなる群から選択される1種又は2種以上を含有してもよい。これらの元素は任意元素であり、いずれも鋼の強度を高める。
[Arbitrary elements]
The chemical composition of the hot forging rolled steel bar according to the present embodiment may further include one or more selected from the group consisting of Cu, Ni, and Nb instead of part of Fe. These elements are arbitrary elements, and all increase the strength of steel.
 Cu:0~0.40%
 銅(Cu)は任意元素であり、含有されなくてもよい。含有された場合、Cuは鋼に固溶して鋼の強度を高める。しかしながら、Cu含有量が高すぎれば、鋼の製造コストが高くなる。したがって、Cu含有量は0~0.40%である。Cu含有量の好ましい下限は0.01%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%である。Cu含有量の好ましい上限は0.40%未満であり、さらに好ましくは0.35%であり、さらに好ましくは0.30%である。
Cu: 0 to 0.40%
Copper (Cu) is an optional element and may not be contained. When contained, Cu dissolves in the steel and increases the strength of the steel. However, if the Cu content is too high, the manufacturing cost of steel increases. Therefore, the Cu content is 0 to 0.40%. The minimum with preferable Cu content is 0.01%, More preferably, it is 0.05%, More preferably, it is 0.10%. The upper limit with preferable Cu content is less than 0.40%, More preferably, it is 0.35%, More preferably, it is 0.30%.
 Ni:0~0.30%
 ニッケル(Ni)は任意元素であり、含有されなくてもよい。含有された場合、Niは鋼に固溶して鋼の強度を高める。しかしながら、Ni含有量が高すぎれば、製造コストが高くなる。したがって、Ni含有量は0~0.30%である。Ni含有量の好ましい下限は0.005%であり、さらに好ましくは0.01%である。Ni含有量の好ましい上限は0.30%未満であり、さらに好ましくは0.28%であり、さらに好ましくは0.25%である。
Ni: 0 to 0.30%
Nickel (Ni) is an optional element and may not be contained. When contained, Ni dissolves in the steel and increases the strength of the steel. However, if the Ni content is too high, the manufacturing cost increases. Therefore, the Ni content is 0 to 0.30%. The minimum with preferable Ni content is 0.005%, More preferably, it is 0.01%. The upper limit with preferable Ni content is less than 0.30%, More preferably, it is 0.28%, More preferably, it is 0.25%.
 Nb:0~0.20%
 ニオブ(Nb)は任意元素であり、含有されなくてもよい。含有された場合、Nbは鋼中に炭化物もしくは窒化物として析出し、熱間鍛造後の鋼の降伏強度及び疲労強度を高める。しかしながら、Nb含有量が高すぎれば、鋼の製造コストが極めて高くなるだけでなく、被削性が低下する。したがって、Nb含有量は0~0.20%である。Nb含有量の好ましい下限は0.001%であり、さらに好ましくは0.005%であり、さらに好ましくは0.01%である。Nb含有量の好ましい上限は0.20%未満であり、さらに好ましくは0.18%であり、さらに好ましくは0.15%である。
Nb: 0 to 0.20%
Niobium (Nb) is an optional element and may not be contained. When contained, Nb precipitates as carbide or nitride in the steel and increases the yield strength and fatigue strength of the steel after hot forging. However, if the Nb content is too high, not only the manufacturing cost of steel becomes very high, but also the machinability decreases. Therefore, the Nb content is 0 to 0.20%. The minimum with preferable Nb content is 0.001%, More preferably, it is 0.005%, More preferably, it is 0.01%. The upper limit with preferable Nb content is less than 0.20%, More preferably, it is 0.18%, More preferably, it is 0.15%.
 本実施の形態による熱間鍛造用圧延棒鋼の化学組成はさらに、Feの一部に代えて、Pb、Zr、Te、Ca及びBiからなる群から選択される1種又は2種以上を含有してもよい。これらの元素は任意元素であり、いずれも鋼の被削性を高める。 The chemical composition of the rolled steel bar for hot forging according to the present embodiment further includes one or more selected from the group consisting of Pb, Zr, Te, Ca and Bi instead of a part of Fe. May be. These elements are arbitrary elements, and all enhance the machinability of steel.
 Pb:0~0.30%
 鉛(Pb)は任意元素であり、含有されなくてもよい。含有された場合、Pbは鋼の被削性を高める。しかしながら、Pb含有量が高すぎれば、鋼の熱間延性が低下し、圧延後の鋼材に疵が発生しやすくなる。したがって、Pb含有量は0~0.30%である。Pb含有量の好ましい下限は0.05%であり、さらに好ましくは0.10%である。Pb含有量の好ましい上限は0.30%未満であり、さらに好ましくは0.25%であり、さらに好ましくは0.20%である。
Pb: 0 to 0.30%
Lead (Pb) is an optional element and may not be contained. When contained, Pb increases the machinability of the steel. However, if the Pb content is too high, the hot ductility of the steel decreases, and wrinkles are likely to occur in the steel after rolling. Therefore, the Pb content is 0 to 0.30%. The minimum with preferable Pb content is 0.05%, More preferably, it is 0.10%. The upper limit with preferable Pb content is less than 0.30%, More preferably, it is 0.25%, More preferably, it is 0.20%.
 Zr:0~0.1000%
 ジルコン(Zr)は任意元素であり、含有されなくてもよい。含有された場合、Zrは鋼の被削性を高める。しかしながら、Zr含有量が高すぎれば、鋼の熱間延性が低下し、圧延後の棒鋼に疵が発生しやすくなる。したがって、Zr含有量は0~0.1000%である。Zr含有量の好ましい下限は0.0003%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%である。Zr含有量の好ましい上限は0.10%未満であり、さらに好ましくは0.0800%であり、さらに好ましくは0.0500%である。
Zr: 0 to 0.1000%
Zircon (Zr) is an optional element and may not be contained. When contained, Zr enhances the machinability of the steel. However, if the Zr content is too high, the hot ductility of the steel decreases, and wrinkles are likely to occur in the rolled steel bar. Therefore, the Zr content is 0 to 0.1000%. The minimum with preferable Zr content is 0.0003%, More preferably, it is 0.0005%, More preferably, it is 0.0010%. The upper limit with preferable Zr content is less than 0.10%, More preferably, it is 0.0800%, More preferably, it is 0.0500%.
 Te:0~0.3000%
 テルル(Te)は任意元素であり、含有されなくてもよい。含有された場合、Teは鋼の被削性を高める。しかしながら、Te含有量が高すぎれば、鋼の製造性が低下し、圧延後の棒鋼に疵が発生しやすくなる。したがって、Te含有量は0~0.3000%である。Te含有量の好ましい下限は0.0003%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%である。Te含有量の好ましい上限は0.3000%未満であり、さらに好ましくは0.2500%であり、さらに好ましくは0.2000%である。
Te: 0 to 0.3000%
Tellurium (Te) is an optional element and may not be contained. When contained, Te increases the machinability of the steel. However, if the Te content is too high, the productivity of the steel decreases, and wrinkles are likely to occur in the rolled steel bar. Therefore, the Te content is 0 to 0.3000%. The minimum with preferable Te content is 0.0003%, More preferably, it is 0.0005%, More preferably, it is 0.0010%. The upper limit with preferable Te content is less than 0.3000%, More preferably, it is 0.2500%, More preferably, it is 0.2000%.
 Ca:0~0.0100%
 カルシウム(Ca)は任意元素であり、含有されなくてもよい。含有された場合、Caは鋼の被削性を高める。しかしながら、Ca含有量が高すぎれば、製造コストが高くなる。したがって、Ca含有量は0~0.0100%である。Ca含有量の好ましい下限は0.0003%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%である。Ca含有量の好ましい上限は0.0100%未満であり、さらに好ましくは0.0080%であり、さらに好ましくは0.0050%である。
Ca: 0 to 0.0100%
Calcium (Ca) is an optional element and may not be contained. When contained, Ca increases the machinability of steel. However, if the Ca content is too high, the manufacturing cost increases. Therefore, the Ca content is 0 to 0.0100%. The minimum with preferable Ca content is 0.0003%, More preferably, it is 0.0005%, More preferably, it is 0.0010%. The upper limit with preferable Ca content is less than 0.0100%, More preferably, it is 0.0080%, More preferably, it is 0.0050%.
 Bi:0~0.3000%
 ビスマス(Bi)は任意元素であり、含有されなくてもよい。含有された場合、Biは鋼の被削性を高める。しかしながら、Bi含有量が高すぎれば、鋼の製造性が低下し、圧延後の棒鋼に疵が発生しやすくなる。したがって、Bi含有量は0~0.3000%である。Bi含有量の好ましい下限は0.0003%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%である。Bi含有量の好ましい上限は0.3000%未満であり、さらに好ましくは0.2000%であり、さらに好ましくは0.1000%である。
Bi: 0 to 0.3000%
Bismuth (Bi) is an optional element and may not be contained. When contained, Bi increases the machinability of the steel. However, if the Bi content is too high, the productivity of the steel decreases, and wrinkles are likely to occur in the rolled steel bar. Therefore, the Bi content is 0 to 0.3000%. The minimum with preferable Bi content is 0.0003%, More preferably, it is 0.0005%, More preferably, it is 0.0010%. The upper limit with preferable Bi content is less than 0.3000%, More preferably, it is 0.2000%, More preferably, it is 0.1000%.
 [化学組成の分析に方法ついて]
 本実施形態の熱間鍛造用圧延棒鋼の化学組成の分析は、周知の成分分析法により求めることができる。具体的には、次の方法で求める。熱間鍛造用圧延棒鋼の長手方向に対して垂直に切断し、長さ20mmのサンプルを採取する。サンプルのR/2部にφ5mmのドリルを用いて鋼材長手方向と平行方向に穿孔加工を施すことで切粉を生成し、その切粉を採取する。採取された切粉を酸に溶解させて溶液を得る。R/2部とは、棒鋼の横断面(円形状)の中心と外周との間を2等分する部分である。溶液に対して、IPC-OES(Inductively Coupled Plasma Optical Emission Spectrometry)を実施して、化学組成の元素分析を実施する。C含有量及びS含有量については、周知の高周波燃焼法により求める。具体的には、上記溶液を酸素気流中で高周波加熱により燃焼して、発生した二酸化炭素、二酸化硫黄を検出して、C含有量及びS含有量を求める。
[Method for chemical composition analysis]
Analysis of the chemical composition of the rolled steel bar for hot forging of this embodiment can be obtained by a well-known component analysis method. Specifically, the following method is used. A hot forging rolled steel bar is cut perpendicular to the longitudinal direction, and a sample having a length of 20 mm is taken. Chips are generated by drilling the R / 2 part of the sample in a direction parallel to the steel material longitudinal direction using a φ5 mm drill, and the chips are collected. The collected chips are dissolved in acid to obtain a solution. The R / 2 part is a part that bisects between the center and the outer periphery of the cross section (circular shape) of the steel bar. An IPC-OES (Inductively Coupled Plasma Optical Emission Spectrometry) is performed on the solution to perform an elemental analysis of the chemical composition. About C content and S content, it calculates | requires by the known high frequency combustion method. Specifically, the above solution is burned by high-frequency heating in an oxygen stream, and the generated carbon dioxide and sulfur dioxide are detected, and the C content and S content are determined.
 [式(1)について]
 本実施形態の熱間鍛造用圧延棒鋼の化学組成はさらに、式(1)を満たす。
 0.60≦C+0.2Mn+0.25Cr+0.75V+0.81Mo≦1.00 (1)
 ここで、式(1)中の元素記号には、対応する元素の含有量(質量%)が代入される。
[Regarding Formula (1)]
The chemical composition of the hot forged rolled steel bar of this embodiment further satisfies the formula (1).
0.60 ≦ C + 0.2Mn + 0.25Cr + 0.75V + 0.81Mo ≦ 1.00 (1)
Here, the content (mass%) of the corresponding element is substituted for the element symbol in the formula (1).
 fn1=C+0.2Mn+0.25Cr+0.75V+0.81Moと定義する。fn1は熱間鍛造後の鋼の強度(降伏強度、疲労強度)及び被削性の指標である。fn1が1.00よりも高ければ、鋼の強度が高くなりすぎ、鋼の被削性が低下する。fn1が0.60未満であれば、鋼の強度が低すぎる。fn1が0.60~1.00であれば、熱間鍛造用圧延棒鋼において、熱間鍛造後の優れた強度と被削性とが得られる。fn1の好ましい下限は0.61であり、さらに好ましくは0.63であり、さらに好ましくは0.65である。fn1の好ましい上限は0.99であり、さらに好ましくは0.98であり、さらに好ましくは0.95である。 Defined as fn1 = C + 0.2Mn + 0.25Cr + 0.75V + 0.81Mo. fn1 is an index of strength (yield strength, fatigue strength) and machinability of steel after hot forging. If fn1 is higher than 1.00, the strength of the steel becomes too high, and the machinability of the steel decreases. If fn1 is less than 0.60, the strength of the steel is too low. When fn1 is 0.60 to 1.00, excellent strength and machinability after hot forging can be obtained in a rolled steel bar for hot forging. The minimum with preferable fn1 is 0.61, More preferably, it is 0.63, More preferably, it is 0.65. The upper limit with preferable fn1 is 0.99, More preferably, it is 0.98, More preferably, it is 0.95.
 [式(2)について]
 本実施形態の熱間鍛造用圧延棒鋼の化学組成はさらに、式(2)を満たす。
 0.12C+0.35Mn+0.42Cr+Mo-0.08Si≦0.70 (2)
 ここで、式(2)中の元素記号には、対応する元素の含有量(質量%)が代入される。
[Regarding Formula (2)]
The chemical composition of the hot forged rolled steel bar of this embodiment further satisfies the formula (2).
0.12C + 0.35Mn + 0.42Cr + Mo−0.08Si ≦ 0.70 (2)
Here, the content (mass%) of the corresponding element is substituted for the element symbol in the formula (2).
 fn2=0.12C+0.35Mn+0.42Cr+Mo-0.08Siと定義する。fn2は熱間鍛造後のベイナイト生成の指標である。fn2が0.70を超えれば、特に、1330℃以上の超高温での鍛造において、ベイナイトが生成しやすくなる。その結果、降伏強度、疲労強度、及びクラッキング性が低下する。fn2が0.70以下であれば、1330℃以上の超高温での鍛造においても、フェライト及びパーライト組織を得ることができる。そのため、十分な降伏強度及び疲労強度とともに、優れたクラッキング性が得られる。fn2の好ましい上限は0.67であり、さらに好ましくは0.65である。 Defined as fn2 = 0.12C + 0.35Mn + 0.42Cr + Mo−0.08Si. fn2 is an index of bainite generation after hot forging. When fn2 exceeds 0.70, bainite is likely to be generated particularly in forging at an ultrahigh temperature of 1330 ° C. or higher. As a result, yield strength, fatigue strength, and cracking properties are reduced. If fn2 is 0.70 or less, a ferrite and pearlite structure can be obtained even in forging at an ultrahigh temperature of 1330 ° C. or higher. Therefore, excellent cracking properties can be obtained together with sufficient yield strength and fatigue strength. The upper limit with preferable fn2 is 0.67, More preferably, it is 0.65.
 [ミクロ組織]
 本実施形態の熱間鍛造用圧延棒鋼のミクロ組織は実質的にフェライト・パーライト組織である。より具体的には、本実施形態の熱間鍛造用圧延棒鋼のミクロ組織では、ポリゴナルフェライト及びパーライトの総面積率が90.0%以上であり、さらに好ましくは95.0%以上であり、さらに好ましくは100.0%である。ポリゴナルフェライト及びパーライトの総面積率が100.0%でない場合、ミクロ組織の残部はベイナイト及び/又は残留オーステナイトである。
[Microstructure]
The microstructure of the rolled steel bar for hot forging of this embodiment is substantially a ferrite pearlite structure. More specifically, in the microstructure of the rolled steel bar for hot forging of the present embodiment, the total area ratio of polygonal ferrite and pearlite is 90.0% or more, more preferably 95.0% or more, More preferably, it is 100.0%. When the total area ratio of polygonal ferrite and pearlite is not 100.0%, the balance of the microstructure is bainite and / or retained austenite.
 ミクロ組織中のポリゴナルフェライト及びパーライトの総面積率は次の方法で測定できる。熱間鍛造用圧延棒鋼の任意のR/2部からサンプルを10個採取する。R/2部とは、棒鋼の横断面(円形状)の中心と外周との間を2等分する部分である。採取された各サンプルのうち、熱間鍛造用圧延棒鋼の中心軸と垂直な表面を観察面とする。観察面を研磨した後、3%硝酸アルコール(ナイタル腐食液)にてエッチングする。エッチングされた観察面を200倍の光学顕微鏡にて観察して、任意の5視野の写真画像を生成する。各視野の面積は0.302mm2とする。 The total area ratio of polygonal ferrite and pearlite in the microstructure can be measured by the following method. Ten samples are taken from an arbitrary R / 2 part of the rolled steel bar for hot forging. The R / 2 part is a part that bisects between the center and the outer periphery of the cross section (circular shape) of the steel bar. Of the collected samples, the surface perpendicular to the central axis of the hot forged rolled steel bar is taken as the observation surface. After the observation surface is polished, it is etched with 3% nitric acid alcohol (nitral etchant). The etched observation surface is observed with a 200 × optical microscope, and photographic images with arbitrary five fields of view are generated. The area of each visual field is 0.302 mm 2 .
 各視野において、ポリゴナルフェライト、パーライト、ベイナイト、残留オーステナイトの各相は、相ごとにコントラストが異なる。したがって、コントラストに基づいて、各相を特定する。特定された相のうち、各視野でのポリゴナルフェライト及びパーライトの総面積AF+P(μm2)を求める。全ての視野(5視野×10個)でのポリゴナルフェライト及びパーライトの総面積AF+Pの、全ての視野(5視野×10個)の総面積ATOTALに対する比を、ポリゴナルフェライト及びパーライトの総面積率RAF+P(%)と定義する。つまり、ポリゴナルフェライト及びパーライトの総面積率RAF+Pは次の式で定義される。
 RAF+P=AF+P/ATOTAL×100
In each visual field, each phase of polygonal ferrite, pearlite, bainite, and retained austenite has a different contrast for each phase. Therefore, each phase is specified based on the contrast. Among the identified phases, the total area A F + P (μm 2 ) of polygonal ferrite and pearlite in each visual field is obtained. The ratio of the total area A F + P of polygonal ferrite and pearlite in all fields of view (5 fields x 10) to the total area A TOTAL of all fields of vision (5 fields x 10) is the total of polygonal ferrite and pearlite. The area ratio is defined as RA F + P (%). That is, the total area ratio RAF + P of polygonal ferrite and pearlite is defined by the following equation.
RA F + P = A F + P / A TOTAL × 100
 [鋼中の析出物中Mo量割合について]
 上述のとおり、本実施形態の熱間鍛造用圧延棒鋼では、相界面析出により、ポリゴナルフェライト中に析出物が形成されている。なお、パーライト中には析出物はほとんど生成されない。また、Moは析出物中に含有されているか、マトリクスに固溶しているかのいずれかである。
[Mo content ratio in precipitates in steel]
As described above, in the rolled steel bar for hot forging of this embodiment, precipitates are formed in polygonal ferrite by phase interface precipitation. In the pearlite, almost no precipitate is generated. Mo is either contained in the precipitate or is dissolved in the matrix.
 本実施形態では、相界面析出によりポリゴナルフェライト内に生成する析出物のうち、上述のV-Ti-Mo複合炭化物がある程度含まれている。具体的には、本実施形態の熱間鍛造用圧延棒鋼のミクロ組織において、析出物中のMoの総含有量(析出物中Mo量CP-Mo)は、鋼中の全Mo含有量(鋼中全Mo量CT-Mo)の50.0%以上である。つまり、析出物中Mo量CP-Moの、鋼中全Mo量CT-Moに対する比を析出物中Mo比RAMoと定義したとき、析出物中Mo比RAMo(%)は次の式で定義される。
 析出物中Mo量割合RAMo=析出物中Mo量CP-Mo/鋼中全Mo量CT-Mo×100
In the present embodiment, the above-described V—Ti—Mo composite carbide is included to some extent among the precipitates generated in the polygonal ferrite by the phase interface precipitation. Specifically, in the microstructure of the rolled steel bar for hot forging according to the present embodiment, the total content of Mo in the precipitate (Mo content in the precipitate C P-Mo ) is the total Mo content in the steel ( It is 50.0% or more of the total Mo amount in the steel (C T-Mo ). That is, the precipitates Mo amount C P-Mo, when defining the total amount of Mo C precipitates the ratio T-Mo Mo ratio RA Mo in the steel, precipitates Mo ratio RA Mo (%) is the following It is defined by an expression.
Mo amount ratio in precipitates RA Mo = Mo amount in precipitates C P-Mo / Total Mo amount in steel C T-Mo × 100
 析出物中Mo量割合RAMoが50.0%未満であれば、ポリゴナルフェライト中の析出物のうち、V-Ti-Mo複合炭化物の割合が少ない。この場合、熱間鍛造用圧延棒鋼中にMoが過剰に多く固溶していることを意味する。そのため、熱間鍛造後にベイナイトが生成し、十分な降伏強度、疲労強度、及びクラッキング性が得られない。析出物中Mo量割合RAMoが50.0%以上であれば、ポリゴナルフェライト中の析出物のうち、V-Ti-Mo複合炭化物の割合が十分に高い。したがって、化学組成が式(1)及び式(2)を満たし、かつ、後述の特定サイズ析出物個数比が80.0%以上であることを条件として、熱間鍛造後に優れた降伏強度、疲労強度及びクラッキング性を得ることができる。析出物中Mo量割合RAMoの好ましい下限は55.0%であり、さらに好ましくは60.0%である。 If the precipitates Mo amount ratio RA Mo is less than 50.0%, of the precipitates in polygonal ferrite, small proportion of V-Ti-Mo composite carbide. In this case, it means that Mo is excessively dissolved in the rolled steel bar for hot forging. Therefore, bainite is generated after hot forging, and sufficient yield strength, fatigue strength, and cracking properties cannot be obtained. If the precipitates Mo amount ratio RA Mo is 50.0% or more, of the precipitates in polygonal ferrite, the ratio of V-Ti-Mo composite carbide is sufficiently high. Therefore, excellent yield strength and fatigue after hot forging, provided that the chemical composition satisfies the formulas (1) and (2) and the ratio of the number of precipitates of the specific size described later is 80.0% or more. Strength and cracking properties can be obtained. A preferred lower limit of the precipitates Mo amount ratio RA Mo is 55.0%, still more preferably 60.0%.
 析出物中Mo量割合RAMoは抽出残渣法による次の方法で測定できる。鋼材のR/2部から、一辺が10mm程度の立方体状のサンプルを採取する。サンプル表面から200μm深さまでの表層を、AA系電解液(10vol%アセチルアセトンと1vol%塩化テトラメチルアンモニウムとを含有し、残部がメタノールからなる電解液)を用いて電解にて除去し、サンプル表面に付着した不純物を除去する。電解時間は電流を一定にして調整する。電解液を新しいAA系電解液に交換して、サンプルに対して電解を再度実施する。電解時間は、電流を1000mAで一定として、電解される試験片の体積が58mm3となるように調整する。電解後の電解液を、メッシュサイズが200nmのフィルタを用いてろ過し、残渣を得る。得られた残渣に対して誘導結合プラズマ(IPC)発光分光分析法を実施し、析出物中のMo総含有量(析出物中Mo量CP-Mo、単位は質量(g))を求める。さらに、次の式により、鋼中の全Mo含有量(鋼中全Mo量CT-Mo、単位は質量(g))を求める。
 鋼中全Mo量CT-Mo=鋼中の全Mo含有量(質量%)×電解された試験片の質量(g)
Mo amount ratio RA Mo in the precipitate can be measured by the following method based on the extraction residue method. A cubic sample having a side of about 10 mm is taken from R / 2 part of the steel material. The surface layer from the sample surface to a depth of 200 μm is removed by electrolysis using an AA electrolyte solution (an electrolyte solution containing 10 vol% acetylacetone and 1 vol% tetramethylammonium chloride, with the balance being methanol). Remove adhering impurities. The electrolysis time is adjusted with a constant current. The electrolyte is replaced with a new AA-based electrolyte, and the sample is electrolyzed again. The electrolysis time is adjusted so that the volume of the test piece to be electrolyzed is 58 mm 3 with the current being constant at 1000 mA. The electrolytic solution after electrolysis is filtered using a filter having a mesh size of 200 nm to obtain a residue. The obtained residue is subjected to inductively coupled plasma (IPC) emission spectroscopic analysis to determine the total Mo content in the precipitate (Mo amount in the precipitate, C P-Mo , unit is mass (g)). Furthermore, the total Mo content in the steel (total Mo amount in steel C T-Mo , unit is mass (g)) is obtained by the following formula.
Total Mo amount in steel C T-Mo = Total Mo content in steel (% by mass) × mass of electrolyzed specimen (g)
 求めた析出物中Mo量CP-Mo及び鋼中全Mo量CT-Moに基づいて、次式より析出物中Mo量割合RAMoを求める。
 析出物中Mo量割合RAMo=析出物中Mo量CP-Mo/鋼中全Mo量CT-Mo×100
Based in the obtained precipitates Mo amount C P-Mo and steel in the total amount of Mo C T-Mo, obtaining the precipitates Mo amount ratio RA Mo from the following equation.
Mo amount ratio in precipitates RA Mo = Mo amount in precipitates C P-Mo / Total Mo amount in steel C T-Mo × 100
 [ポリゴナルフェライト中の5~100nmの円相当径を有する析出物の個数割合]
 上述のとおり、本実施形態の熱間鍛造用圧延棒鋼では、相界面析出により、ポリゴナルフェライト中に炭化物を含む析出物が形成されている。そして、パーライト中には析出物はほとんど生成されない。
[Number ratio of precipitates having equivalent circle diameter of 5 to 100 nm in polygonal ferrite]
As described above, in the rolled steel bar for hot forging of this embodiment, precipitates containing carbides are formed in polygonal ferrite by phase interface precipitation. And almost no precipitate is generated in the pearlite.
 本明細書において、ポリゴナルフェライト中に生成する析出物は、炭化物(V炭化物、Ti炭化物、Mo炭化物及びV-Ti-Mo複合炭化物等)や、TiS等に代表される炭化物以外の析出物である。このうち、炭化物以外の析出物の円相当径は1000nmよりも大きい。一方、ほとんどの炭化物の円相当径は1000nm以下である。また、後述の200000倍の透過型電子顕微鏡における析出物の観察において、円相当径が3nm未満の析出物の確認は困難である。したがって、本明細書では、ポリゴナルフェライト中の3~1000nmの円相当径を有する析出物に注目する。ポリゴナルフェライト中の3~1000nmの円相当径を有する析出物は、実質的にV炭化物、Ti炭化物、Mo炭化物、及び、V-Ti-Mo複合炭化物である。また、上述のとおり、式(1)及び式(2)を満たす化学組成において、Ti炭化物及びMo炭化物はほとんど生成しない。したがって、ポリゴナルフェライト中の3~1000nmの円相当径の析出物のほとんどは、V炭化物及びV-Ti-Mo複合炭化物である。V-Ti-Mo複合炭化物は、V炭化物にTi及びMoが含有された炭化物を意味する。 In the present specification, precipitates generated in polygonal ferrite are precipitates other than carbides (such as V carbide, Ti carbide, Mo carbide and V-Ti-Mo composite carbide) and carbides represented by TiS and the like. is there. Among these, the equivalent-circle diameter of deposits other than carbide is larger than 1000 nm. On the other hand, the equivalent circle diameter of most carbides is 1000 nm or less. In addition, in observation of precipitates with a transmission electron microscope of 200,000 times described later, it is difficult to confirm precipitates having an equivalent circle diameter of less than 3 nm. Therefore, in this specification, attention is paid to precipitates having a circle-equivalent diameter of 3 to 1000 nm in polygonal ferrite. Precipitates having a circle equivalent diameter of 3 to 1000 nm in polygonal ferrite are substantially V carbide, Ti carbide, Mo carbide, and V—Ti—Mo composite carbide. Moreover, as above-mentioned, in the chemical composition which satisfy | fills Formula (1) and Formula (2), Ti carbide | carbonized_material and Mo carbide | carbonized_material are hardly produced | generated. Therefore, most of the precipitates having a circle equivalent diameter of 3 to 1000 nm in polygonal ferrite are V carbide and V—Ti—Mo composite carbide. The V—Ti—Mo composite carbide means a carbide in which Ti and Mo are contained in the V carbide.
 本実施形態の熱間鍛造用圧延棒鋼のミクロ組織において、ポリゴナルフェライト中の5~100nmの円相当径を有する析出物の総個数N5-100は、ポリゴナルフェライト中の3~1000nmの円相当径を有する析出物の総個数NTOTALの80.0%以上である。つまり、ポリゴナルフェライト中の3~1000nmの円相当径の析出物の総個数NTOTALに対する5~100nmの円相当径を有する析出物の総個数N5-100の割合を個数割合RA5-100と定義した場合、個数割合RA5-100は次の式で定義される。
 個数割合RA5-100=総個数N5-100/総個数NTOTAL×100
In the microstructure of the hot forging rolled steel bar of this embodiment, the total number N 5-100 of precipitates having a circle equivalent diameter of 5 to 100 nm in polygonal ferrite is 3 to 1000 nm in polygonal ferrite. It is 80.0% or more of the total number N TOTAL of precipitates having an equivalent diameter. That is, the ratio of the total number N 5-100 of precipitates having an equivalent circle diameter of 5 to 100 nm to the total number N TOTAL of precipitates having an equivalent circle diameter of 3 to 1000 nm in polygonal ferrite is the number ratio RA 5-100 The number ratio RA 5-100 is defined by the following equation.
Number ratio RA 5-100 = Total number N 5-100 / Total number N TOTAL × 100
 上述のとおり、総個数NTOTALにおいて、円相当径が3nm未満の析出物をカウントしないのは、円相当径が3nm未満の析出物の特定は困難のためである。 As described above, in the total number N TOTAL , the precipitates having an equivalent circle diameter of less than 3 nm are not counted because it is difficult to identify precipitates having an equivalent circle diameter of less than 3 nm.
 上述のとおり、熱間鍛造用圧延棒鋼のポリゴナルフェライト内において、円相当径が5nm未満の析出物の割合が多い場合、V-Ti-Mo複合炭化物が微細すぎる、又は、Moが固溶しすぎている。この場合、焼入れ性が高すぎるため、熱間鍛造後にベイナイトの生成が促進される。特に1330℃以上での超高温での熱間鍛造後において、ベイナイトの生成が促進される。そのため、フェライトの生成に伴い相界面析出により生成するV-Ti-Mo複合炭化物の生成量が不足して、十分な降伏強度及び疲労強度が得られない場合がある。さらに、ベイナイトは靱性が高いため、十分なクラッキング性が得られない場合がある。 As described above, when there is a large proportion of precipitates with an equivalent circle diameter of less than 5 nm in the polygonal ferrite of hot forged rolled steel bars, the V-Ti-Mo composite carbide is too fine or Mo is dissolved. Too much. In this case, since the hardenability is too high, the generation of bainite is promoted after hot forging. In particular, the formation of bainite is promoted after hot forging at an ultrahigh temperature of 1330 ° C. or higher. For this reason, the amount of V—Ti—Mo composite carbide produced by phase interface precipitation along with the formation of ferrite is insufficient, and sufficient yield strength and fatigue strength may not be obtained. Furthermore, since bainite has high toughness, sufficient cracking properties may not be obtained.
 一方、熱間鍛造用圧延棒鋼のポリゴナルフェライト内において、円相当径が100nmを超える析出物の割合が多い場合、Ti、V及びMoが十分に固溶していない。この場合、熱間鍛造後において、相界面析出によりポリゴナルフェライト内に微細なV-Ti-Mo複合炭化物が十分に生成しにくく、かつ、Mo固溶量の不足により焼入れ性も低い。その結果、熱間鍛造後の鋼材の降伏強度及び疲労強度が低くなる。特に、850℃以下での鍛造において、十分な強度が得られない場合がある。 On the other hand, Ti, V, and Mo are not sufficiently dissolved in the case of a large proportion of precipitates having an equivalent circle diameter exceeding 100 nm in the polygonal ferrite of the rolled steel bar for hot forging. In this case, after hot forging, fine V—Ti—Mo composite carbide is not easily generated in the polygonal ferrite by phase interface precipitation, and the hardenability is low due to the insufficient amount of Mo solid solution. As a result, the yield strength and fatigue strength of the steel material after hot forging are lowered. In particular, in forging at 850 ° C. or lower, sufficient strength may not be obtained.
 ポリゴナルフェライト中の析出物のうち、5~100nmの円相当径を有する析出物の総個数N5-100が、ポリゴナルフェライト中の3~1000nmの円相当径を有する析出物の総個数NTOTALの80.0%以上であれば、適切なサイズのV-Ti-Mo複合炭化物を十分に確保できている。そのため、化学組成が式(1)及び式(2)を満たし、かつ、析出物中Mo量割合RAMoが50.0%以上であることを条件として、熱間鍛造後に優れた降伏強度、疲労強度及びクラッキング性を得ることができる。 Of the precipitates in polygonal ferrite, the total number N 5-100 of precipitates having an equivalent circle diameter of 5 to 100 nm is the total number N of precipitates having an equivalent circle diameter of 3 to 1000 nm in polygonal ferrite. If it is 80.0% or more of TOTAL , a V-Ti-Mo composite carbide of an appropriate size can be sufficiently secured. Therefore, the yield strength chemical composition satisfies the formula (1) and (2), and the precipitates Mo amount ratio RA Mo is the condition that is 50.0% or more, excellent after hot forging, fatigue Strength and cracking properties can be obtained.
 [個数割合RA5-100の測定方法]
 本実施形態の熱間鍛造用圧延棒鋼のミクロ組織のポリゴナルフェライト中の5~100nmの円相当径を有する析出物の総個数N5-100、及び、ポリゴナルフェライト中の3~1000nmの円相当径の析出物の総個数NTOTALは、次の方法で測定できる。熱間鍛造用圧延棒鋼のR/2部から、厚さ1mmの板状の中間材を切り出す。切り出された中間材を厚さ方向に機械研磨して、厚さ300μmの板状試験片を作製する。板状試験片に対して、過塩素酸-メタノール混合液を用いて電解研磨し、薄膜化させて観察用のサンプルとする。サンプルの観察面を200000倍の透過型電子顕微鏡(TEM)で観察し、観察面内の複数のポリゴナルフェライト内の任意の5視野で析出物を特定する。析出物はコントラストにより介在物と区別して特定できる。1視野のサイズは250nm×350nmとする。特定された析出物の面積を求め、得られた面積から各析出物の円相当径を算定する。なお、析出物の個数調査は、明確に析出物であると認められる、円相当径が3nm以上の析出物のみを対象とする。5視野において円相当径が3nm~1000nmの析出物の総個数を、総個数NTOTALと定義する。5視野において円相当径が5~100nmの析出物の総個数を、総個数N5-100と定義する。下記式に基づいて、ポリゴナルフェライト中の3~1000nmの円相当径を有する析出物のうち5~100nmの円相当径を有する析出物の個数割合RA5-100(%)を求める。
 個数割合RA5-100=総個数N5-100/総個数NTOTAL×100
[Measurement method for number ratio RA 5-100 ]
The total number N 5-100 of precipitates having a circle equivalent diameter of 5 to 100 nm in the polygonal ferrite of the microstructure of the rolled steel bar for hot forging of this embodiment, and the circle of 3 to 1000 nm in the polygonal ferrite The total number N TOTAL of precipitates of equivalent diameter can be measured by the following method. A plate-shaped intermediate material having a thickness of 1 mm is cut out from the R / 2 portion of the rolled steel bar for hot forging. The cut out intermediate material is mechanically polished in the thickness direction to produce a plate-shaped test piece having a thickness of 300 μm. The plate-shaped test piece is electropolished with a perchloric acid-methanol mixture and thinned to obtain a sample for observation. The observation surface of the sample is observed with a transmission electron microscope (TEM) with a magnification of 200,000, and the precipitate is specified in any five visual fields in the plurality of polygonal ferrites in the observation surface. Precipitates can be identified and distinguished from inclusions by contrast. The size of one visual field is 250 nm × 350 nm. The area of the identified precipitate is obtained, and the equivalent circle diameter of each precipitate is calculated from the obtained area. In addition, the number survey of precipitates is intended only for precipitates that are clearly recognized as precipitates and whose equivalent circle diameter is 3 nm or more. The total number of precipitates having a circle-equivalent diameter of 3 nm to 1000 nm in five fields of view is defined as the total number N TOTAL . The total number of precipitates having an equivalent circle diameter of 5 to 100 nm in five fields of view is defined as the total number N 5-100 . Based on the following formula, the number ratio RA 5-100 (%) of precipitates having an equivalent circle diameter of 5 to 100 nm among the precipitates having an equivalent circle diameter of 3 to 1000 nm in polygonal ferrite is determined.
Number ratio RA 5-100 = Total number N 5-100 / Total number N TOTAL × 100
 [製造方法]
 上述の熱間鍛造用圧延棒鋼の製造方法の一例を説明する。本製造方法は、鋳造工程と、熱間圧延工程とを含む。
[Production method]
An example of the manufacturing method of the above-mentioned hot forging rolled steel bar will be described. This manufacturing method includes a casting process and a hot rolling process.
 [鋳造工程]
 上述の化学組成及び式(1)及び式(2)を満たす溶鋼を周知の方法で製造する。溶鋼を利用して、連続鋳造法により鋳片(スラブ又はブルーム)を製造する。
[Casting process]
A molten steel satisfying the above-described chemical composition and formulas (1) and (2) is manufactured by a well-known method. Using molten steel, a slab (slab or bloom) is produced by a continuous casting method.
 [熱間加工工程]
 熱間加工工程では、上記鋳造工程で製造された鋳片に対して、熱間加工を実施して、棒鋼を製造する。熱間加工工程はたとえば、粗圧延工程と、仕上げ圧延工程とを含む。
[Hot working process]
In the hot working process, hot working is performed on the slab produced in the casting process to produce a steel bar. The hot working process includes, for example, a rough rolling process and a finish rolling process.
 [粗圧延工程]
 鋳片又はインゴットを熱間加工してビレットを製造する。熱間加工はたとえば、熱間圧延である。熱間圧延はたとえば、分塊圧延機、及び、複数のスタンドが一列に並び、各スタンドが複数のロールを有する連続圧延機を利用して実施される。熱間圧延されたビレットを冷却する。
[Rough rolling process]
A billet is manufactured by hot working a slab or an ingot. Hot working is, for example, hot rolling. For example, the hot rolling is performed using a block rolling mill and a continuous rolling mill in which a plurality of stands are arranged in a line and each stand has a plurality of rolls. The hot-rolled billet is cooled.
 円相当径が5~100nmの析出物の個数割合RA5-100と円相当径が3~1000nmの析出物中Mo量割合RAMoとを上記範囲にするために、粗圧延工程後の冷却では、次の条件を満たすように、ビレットを冷却する。 In order to bring the number ratio RA 5-100 of precipitates having an equivalent circle diameter of 5 to 100 nm and the Mo amount ratio RA Mo in precipitates having an equivalent circle diameter of 3 to 1000 nm within the above range, cooling after the rough rolling step is performed. The billet is cooled to satisfy the following conditions.
 ビレット温度(℃)が800℃から500℃となるまでの冷却時間Ct0:20分以上
 冷却時間Ct0が20分未満であれば、冷却速度が速すぎ、ポリゴナルフェライト中において、V-Ti-Mo複合炭化物が生成しにくく、かつ、十分に粗大化しない。十分に粗大化していないV-Ti-Mo複合炭化物は、次工程の仕上げ圧延で固溶しやすい。この場合、鋼中の析出物中のMo総含有量(析出物中Mo量CP-Mo)が、鋼中の全Mo含有量(鋼中全Mo量CT-Mo)の50.0%未満になり、かつ、ポリゴナルフェライト中において、5~100nmの円相当径を有する析出物の総個数N5-100が、ポリゴナルフェライト中の3~1000nmの円相当径を有する析出物の総個数NTOTALの80.0%未満となる。
Cooling time Ct0 until the billet temperature (° C.) reaches 800 ° C. to 500 ° C .: 20 minutes or more If the cooling time Ct0 is less than 20 minutes, the cooling rate is too high, and V—Ti—Mo in polygonal ferrite Complex carbides are difficult to form and do not become coarse enough. V-Ti-Mo composite carbide that has not been sufficiently coarsened is likely to be dissolved in the finish rolling of the next step. In this case, the total Mo content in the precipitates in the steel (Mo content in the precipitates C P-Mo ) is 50.0% of the total Mo content in the steels (the total Mo content in the steels C T-Mo ). The total number N 5-100 of precipitates having an equivalent circle diameter of 5 to 100 nm in polygonal ferrite is less than the total number of precipitates having an equivalent circle diameter of 3 to 1000 nm in polygonal ferrite. The number N is less than 80.0% of TOTAL .
 冷却時間Ct0が20分以上であれば、V-Ti-Mo複合炭化物が生成しやすく、かつ、十分に粗大化する。そのため、後述の仕上げ圧延工程での製造条件を満たすことを条件に、ポリゴナルフェライト中の析出物中のMoの総含有量(析出物中Mo量CP-Mo)が、鋼中の全Mo含有量(鋼中全Mo量CT-Mo)の50.0%以上になり、かつ、ポリゴナルフェライト中において、5~100nmの円相当径を有する析出物の総個数N5-100が、ポリゴナルフェライト中の3~1000nmの析出物の総個数NTOTALの80.0%以上になる。その結果、熱間鍛造後において、ベイナイトの生成が抑制され、優れた降伏強度、疲労強度及びクラッキング性が得られる。冷却時間Ct0の好ましい上限は180分であり、さらに好ましくは120分である。 If the cooling time Ct0 is 20 minutes or more, V-Ti-Mo composite carbide is likely to be formed and is sufficiently coarsened. Therefore, on the condition that the manufacturing conditions in the finish rolling process described later are satisfied, the total content of Mo in the precipitates in the polygonal ferrite (Mo amount in the precipitates C P-Mo ) is the total Mo in the steel. The total number N 5-100 of precipitates having a content equivalent to 50.0% or more of the total Mo content in the steel (C T-Mo ) and having a circle equivalent diameter of 5 to 100 nm in the polygonal ferrite, The total number of precipitates of 3 to 1000 nm in polygonal ferrite is 80.0% or more of N TOTAL . As a result, after hot forging, the formation of bainite is suppressed, and excellent yield strength, fatigue strength, and crackability are obtained. The upper limit with preferable cooling time Ct0 is 180 minutes, More preferably, it is 120 minutes.
 ここでいうビレット温度は、ビレットの表面温度を意味する。ビレットの表面温度は次の方法で測定する。粗圧延工程後のビレットを長手方向に三等分したときの各区分の長手方向中央部で(つまり、3箇所で)、ビレットの表面温度を放射温度計で所定時間測定する。測定された3箇所の平均値を、その時間のビレット温度(℃)と定義する。 The billet temperature here means the surface temperature of the billet. The billet surface temperature is measured by the following method. At the center in the longitudinal direction of each section when the billet after the rough rolling process is divided into three equal parts in the longitudinal direction (that is, at three locations), the surface temperature of the billet is measured with a radiation thermometer for a predetermined time. The average value of the three measured points is defined as the billet temperature (° C.) at that time.
 なお、500℃以下のビレット温度でのビレットのさらなる冷却方法は特に限定されない。好ましくは、粗圧延後のビレットは100℃以下まで冷却され、さらに好ましくは、室温(25℃)まで冷却される。 In addition, the further cooling method of a billet at the billet temperature of 500 degrees C or less is not specifically limited. Preferably, the billet after rough rolling is cooled to 100 ° C. or lower, more preferably to room temperature (25 ° C.).
 [仕上げ圧延工程]
 粗圧延工程後のビレットを用いて棒鋼を製造する。具体的には、ビレットを加熱炉で加熱する(加熱工程)。加熱後、連続圧延機を用いてビレットを熱間圧延(仕上げ圧延)し、熱間鍛造用圧延棒鋼を製造する(仕上げ圧延工程)。以下、各工程について説明する。
[Finishing rolling process]
A steel bar is manufactured using the billet after the rough rolling process. Specifically, the billet is heated in a heating furnace (heating process). After heating, the billet is hot-rolled (finish rolling) using a continuous rolling mill to produce a rolled steel bar for hot forging (finish rolling step). Hereinafter, each step will be described.
 [加熱工程]
 円相当径が5~100nmの析出物の個数割合RA5-100と析出物中Mo量割合RAMoとを上記範囲にするために、仕上げ圧延工程の加熱工程では、次の条件を満たすように、加熱を実施する。加熱条件は次のとおりである。
[Heating process]
In order to keep the number ratio RA 5-100 of precipitates having an equivalent circle diameter of 5 to 100 nm and the Mo amount ratio RA Mo in the precipitates within the above range, the heating process of the finish rolling process should satisfy the following conditions: And heating. The heating conditions are as follows.
 加熱温度T1:1100℃以下
 加熱時間t1:30分未満
 加熱温度T1が高すぎれば、及び/又は加熱時間t1が長すぎれば、ビレット中のポリゴナルフェライト中のV-Ti-Mo複合炭化物が過度に固溶し、析出物が微細化しすぎる。この場合、仕上げ圧延後の鋼材中において、ポリゴナルフェライト中では、微細なV-Ti-Mo複合炭化物が多くなる。その結果、ポリゴナルフェライト中において、円相当径が5nm未満の析出物が多くなり、5~100nmの円相当径を有する析出物の総個数N5-100が、ポリゴナルフェライト中の3~1000nmの円相当径を有する析出物の総個数NTOTALの80.0%未満になる。さらに、ビレット中のV-Ti-Mo複合炭化物が過度に固溶するため、析出物中のMo総含有量(析出物中Mo量CP-Mo)が、鋼中の全Mo含有量(鋼中全Mo量CT-Mo)の50.0%未満になる。この場合、熱間鍛造後にベイナイトの生成が促進される。特に、1330℃以上の超高温での鍛造において、十分な降伏強度、疲労強度、及びクラッキング性が得られない場合がある。
Heating temperature T1: 1100 ° C. or less Heating time t1: Less than 30 minutes If the heating temperature T1 is too high and / or if the heating time t1 is too long, the V—Ti—Mo composite carbide in the polygonal ferrite in the billet is excessive. The precipitate is excessively refined. In this case, the fine V—Ti—Mo composite carbide increases in the polygonal ferrite in the steel material after finish rolling. As a result, the number of precipitates having an equivalent circle diameter of less than 5 nm increases in polygonal ferrite, and the total number N 5-100 of precipitates having an equivalent circle diameter of 5 to 100 nm is 3 to 1000 nm in polygonal ferrite. The total number of precipitates having an equivalent circle diameter of N is less than 80.0% of N TOTAL . Furthermore, since the V—Ti—Mo composite carbide in the billet is excessively dissolved, the total Mo content in the precipitates (Mo amount in the precipitates C P-Mo ) is equal to the total Mo content in the steel (steel The total amount of intermediate Mo (C T-Mo ) is less than 50.0%. In this case, the generation of bainite is promoted after hot forging. In particular, in forging at an ultrahigh temperature of 1330 ° C. or higher, sufficient yield strength, fatigue strength, and crackability may not be obtained.
 加熱温度T1が1100℃以下であり、加熱時間t1が30分以下であれば、V-Ti-Mo複合炭化物が適度な大きさを維持する。そのため、仕上げ圧延工程後の棒鋼において、析出物中のMoの総含有量(析出物中Mo量CP-Mo)が、鋼中の全Mo含有量(鋼中全Mo量CT-Mo)の50.0%以上になり、かつ、ポリゴナルフェライト中において、5~100nmの円相当径を有する析出物の総個数N5-100が、ポリゴナルフェライト中の3~1000nmの円相当径を有する析出物の総個数NTOTALの80.0%以上になる。その結果、ベイナイトの生成を抑制でき、1330℃以上の超高温での熱間鍛造においても、十分な降伏強度、疲労強度、及び優れたクラッキング性が得られる。加熱温度T1の好ましい下限は900℃であり、さらに好ましくは950℃である。加熱時間t1の好ましい下限は5分であり、さらに好ましくは10分である。加熱時間t1の好ましい上限は29分であり、さらに好ましくは25分である。 When the heating temperature T1 is 1100 ° C. or less and the heating time t1 is 30 minutes or less, the V—Ti—Mo composite carbide maintains an appropriate size. Therefore, in the steel bar after the finish rolling process, the total content of Mo in the precipitate (Mo amount in the precipitate C P-Mo ) is the total Mo content in the steel (total Mo amount in the steel C T-Mo ). The total number N 5-100 of precipitates having a circle equivalent diameter of 5 to 100 nm in the polygonal ferrite has a circle equivalent diameter of 3 to 1000 nm in the polygonal ferrite. It becomes 80.0% or more of the total number N TOTAL of the deposits to have. As a result, generation of bainite can be suppressed, and sufficient yield strength, fatigue strength, and excellent cracking properties can be obtained even in hot forging at an ultrahigh temperature of 1330 ° C. or higher. The minimum with preferable heating temperature T1 is 900 degreeC, More preferably, it is 950 degreeC. The minimum with the preferable heating time t1 is 5 minutes, More preferably, it is 10 minutes. The upper limit with preferable heating time t1 is 29 minutes, More preferably, it is 25 minutes.
 [熱間圧延工程]
 仕上げ圧延機を用いて、加熱後のビレットを周知の方法で仕上げ圧延(熱間圧延)し、熱間鍛造用圧延棒鋼を製造する。仕上げ圧延機は、一列に並んだ複数の圧延スタンドを有する。各スタンドは、パスライン周りに配置された複数のロール(ロール群)を有する。各スタンドのロール群が孔型を形成し、ビレットが孔型を通過するときに圧下され、棒鋼が製造される。
[Hot rolling process]
Using a finish rolling mill, the billet after heating is finish-rolled (hot-rolled) by a well-known method to produce hot-forged rolled steel bars. The finish rolling mill has a plurality of rolling stands arranged in a row. Each stand has a plurality of rolls (roll groups) arranged around the pass line. The roll group of each stand forms a hole mold, and when the billet passes through the hole mold, it is rolled down to produce a steel bar.
 円相当径が5~100nmの析出物の個数割合RA5-100と析出物中Mo量割合RAMoとを上記範囲にするために、仕上げ圧延工程の熱間圧延工程では、次の条件を満たすように、仕上げ圧延を実施する。 In order to keep the number ratio RA 5-100 of precipitates having an equivalent circle diameter of 5 to 100 nm and the Mo amount ratio RA Mo in the precipitates within the above range, the following conditions are satisfied in the hot rolling step of the finish rolling step: Thus, finish rolling is carried out.
 圧延温度T2:1200℃以下
 仕上げ温度T3:1000℃以下
 上述の仕上げ圧延機の一列に並んだ複数の圧延スタンドにおいて、配列方向に3つのゾーン(先頭から順に、粗列ゾーン、中間列ゾーン、仕上げ列ゾーンという)に区分けする。各ゾーンでの圧延スタンド数は、N±2(Nは自然数)の範囲内とする。圧延温度T2は、中間列ゾーンに所属する圧延スタンドの任意の2つのスタンドの出側で測定されたビレット温度の平均値(℃)で定義される。仕上げ温度T3は、仕上げ列ゾーンでビレットを最終圧下した圧延スタンドの出側で測定されたビレット温度の平均値(℃)で定義される。圧延温度T2及び仕上げ圧延温度T3におけるビレット温度は次の方法で測定する。ビレットを長手方向に三等分したときの各区分の長手方向中央部で(つまり、3箇所で)、ビレットの表面温度を放射温度計で測定し、その平均値をビレット温度(℃)とする。
Rolling temperature T2: 1200 ° C. or lower Finishing temperature T3: 1000 ° C. or lower In a plurality of rolling stands arranged in a row in the above-described finish rolling mill, three zones (arranged zone, intermediate row zone, finish in order from the top) are arranged. Divided into column zones). The number of rolling stands in each zone is in the range of N ± 2 (N is a natural number). The rolling temperature T2 is defined by the average value (° C.) of the billet temperature measured on the exit side of any two stands of the rolling stands belonging to the middle row zone. The finishing temperature T3 is defined by the average value (° C.) of the billet temperature measured on the exit side of the rolling stand that has finally reduced the billet in the finishing row zone. The billet temperature at the rolling temperature T2 and the finish rolling temperature T3 is measured by the following method. When the billet is divided into three equal parts in the longitudinal direction, the surface temperature of the billet is measured with a radiation thermometer at the center in the longitudinal direction of each section (that is, at three locations), and the average value is taken as the billet temperature (° C). .
 圧延温度T2、及び/又は仕上げ温度T3が高過ぎれば、ビレットのポリゴナルフェライト中のV-Ti-Mo複合炭化物が過度に固溶するため、仕上げ圧延後の鋼材中のV-Ti-Mo複合炭化物が微細化する。その結果、円相当径が5nm未満の析出物が多くなり、5~100nmの円相当径を有する析出物の総個数N5-100が、ポリゴナルフェライト中の3~1000nmの円相当径を有する析出物の総個数NTOTALの80.0%未満になる。さらに、ビレット中のポリゴナルフェライト中のV-Ti-Mo複合炭化物が過度に固溶するため、析出物中のMoの総含有量(析出物中Mo量CP-Mo)が、鋼中の全Mo含有量(鋼中全Mo量CT-Mo)の50.0%未満になる。この場合、熱間鍛造後にベイナイトの生成が促進される。特に、1330℃以上の超高温での鍛造において、十分なクラッキング性が得られない場合がある。 If the rolling temperature T2 and / or the finishing temperature T3 is too high, the V—Ti—Mo composite carbide in the polygonal ferrite of the billet will be excessively dissolved, so the V—Ti—Mo composite in the steel after finish rolling. Carbide becomes finer. As a result, the number of precipitates having an equivalent circle diameter of less than 5 nm increases, and the total number N 5-100 of precipitates having an equivalent circle diameter of 5 to 100 nm has an equivalent circle diameter of 3 to 1000 nm in polygonal ferrite. The total number of precipitates is less than 80.0% of N TOTAL . Furthermore, since the V—Ti—Mo composite carbide in the polygonal ferrite in the billet is excessively dissolved, the total content of Mo in the precipitate (Mo content in the precipitate, C P—Mo ) It becomes less than 50.0% of the total Mo content (total Mo amount in steel C T-Mo ). In this case, the generation of bainite is promoted after hot forging. In particular, in forging at an ultrahigh temperature of 1330 ° C. or higher, sufficient cracking properties may not be obtained.
 圧延温度T2が1200℃以下であり、仕上げ圧延温度T3が1000℃以下であれば、仕上げ圧延後の棒鋼のポリゴナルフェライトにおいて、適度な大きさの析出物が生成し、ポリゴナルフェライト内の析出物中のMoの総含有量(析出物中Mo量CP-Mo)が、鋼中の全Mo含有量(鋼中全Mo量CT-Mo)の50.0%以上になり、かつ、ポリゴナルフェライト中において、5~100nmの円相当径を有する析出物の総個数N5-100が、ポリゴナルフェライト中の3~1000nmの円相当径を有する析出物の総個数NTOTALの80.0%以上になる。その結果、ベイナイトの生成を抑制でき、1330℃以上の超高温での熱間鍛造においても、十分な降伏強度、疲労強度、及び優れたクラッキング性が得られる。圧延温度T2の好ましい下限は900℃であり、さらに好ましくは950℃である。仕上げ温度T3の好ましい下限は850℃であり、さらに好ましくは900℃である。 If the rolling temperature T2 is 1200 ° C. or lower and the finish rolling temperature T3 is 1000 ° C. or lower, a moderately sized precipitate is generated in the polygonal ferrite of the steel bar after the finish rolling, and the precipitation in the polygonal ferrite The total content of Mo in the product (Mo amount in precipitates C P-Mo ) is 50.0% or more of the total Mo content in steel (total Mo amount in steel C T-Mo ), and In the polygonal ferrite, the total number N 5-100 of precipitates having an equivalent circle diameter of 5 to 100 nm is 80 % of the total number N TOTAL of precipitates having an equivalent circle diameter of 3 to 1000 nm in the polygonal ferrite. 0% or more. As a result, generation of bainite can be suppressed, and sufficient yield strength, fatigue strength, and excellent cracking properties can be obtained even in hot forging at an ultrahigh temperature of 1330 ° C. or higher. The minimum with preferable rolling temperature T2 is 900 degreeC, More preferably, it is 950 degreeC. The minimum with preferable finishing temperature T3 is 850 degreeC, More preferably, it is 900 degreeC.
 800℃から500℃となるまでの冷却時間Ct1:5分以下
 仕上げ圧延後の棒鋼の冷却時間Ct1が5分を超えれば、冷却速度が遅すぎる。この場合、ポリゴナルフェライト内において、V-Ti-Mo複合炭化物が粗大化しすぎる。その結果、ポリゴナルフェライト中に円相当径が100nmを超える析出物が多くなり、5~100nmの円相当径を有する析出物の総個数N5-100が、ポリゴナルフェライト中の3~1000nmの円相当径を有する析出物の総個数NTOTALの80.0%未満になる。この場合、熱間鍛造用圧延棒鋼中のV-Ti-Mo複合炭化物を形成する元素(V、Ti、Mo、C)が十分に固溶していない。そのため、熱間鍛造後において、相界面析出によりポリゴナルフェライト内に微細なV-Ti-Mo複合炭化物が生成しにくい。さらに、Mo固溶量が低いために焼入れ性も低くなる場合がある。そのため、熱間鍛造後の鋼材において、降伏強度及び疲労強度が低下する。特に、850℃以下での鍛造において、焼き入れ性が低下し、十分な強度が得られない場合がある。
Cooling time Ct1 from 800 ° C. to 500 ° C. 1: 5 minutes or less If the cooling time Ct1 of the steel bar after finish rolling exceeds 5 minutes, the cooling rate is too slow. In this case, the V—Ti—Mo composite carbide is excessively coarsened in the polygonal ferrite. As a result, the number of precipitates having an equivalent circle diameter exceeding 100 nm increases in polygonal ferrite, and the total number N 5-100 of precipitates having an equivalent circle diameter of 5 to 100 nm is 3 to 1000 nm in polygonal ferrite. The total number of precipitates having a circle-equivalent diameter is less than 80.0% of N TOTAL . In this case, the elements (V, Ti, Mo, C) forming the V—Ti—Mo composite carbide in the hot forging rolled steel bar are not sufficiently dissolved. Therefore, after hot forging, fine V—Ti—Mo composite carbide is hardly generated in polygonal ferrite due to phase interface precipitation. Furthermore, since the Mo solid solution amount is low, the hardenability may be lowered. Therefore, the yield strength and fatigue strength are reduced in the steel material after hot forging. In particular, in forging at 850 ° C. or lower, the hardenability is lowered and sufficient strength may not be obtained.
 冷却時間Ct1が5分以下であれば、V-Ti-Mo複合炭化物が適度なサイズで維持される。そのため、ポリゴナルフェライト中に円相当径が100nmを超える析出物が過剰に多くならず、5~100nmの円相当径を有する析出物の総個数N5-100が、ポリゴナルフェライト中の3~1000nmの析出物の総個数NTOTALの80.0%以上になる。その結果、熱間鍛造後の鋼材において、十分な降伏強度及び疲労強度が得られる。冷却時間Ct1の好ましい下限は1分であり、さらに好ましくは2分である。 When the cooling time Ct1 is 5 minutes or less, the V—Ti—Mo composite carbide is maintained at an appropriate size. Therefore, the number of precipitates having an equivalent circle diameter exceeding 100 nm is not excessively increased in the polygonal ferrite, and the total number N 5-100 of precipitates having an equivalent circle diameter of 5 to 100 nm is 3 to 3 in the polygonal ferrite. It becomes 80.0% or more of the total number N TOTAL of 1000 nm precipitates. As a result, sufficient yield strength and fatigue strength can be obtained in the steel material after hot forging. A preferable lower limit of the cooling time Ct1 is 1 minute, and more preferably 2 minutes.
 なお、仕上げ圧延工程での仕上げ圧延機での累積減面率は70%以上であるのが好ましい。ここで、累積減面率は次の式で定義される。
 累積減面率=(仕上げ圧延前のビレットの横断面積-仕上げ圧延後の熱間鍛造用圧延棒鋼の横断面積)/仕上げ圧延前のビレットの横断面積×100
In addition, it is preferable that the cumulative area reduction rate in the finish rolling mill in the finish rolling process is 70% or more. Here, the cumulative area reduction is defined by the following equation.
Cumulative area reduction ratio = (cross-sectional area of billet before finish rolling−cross-sectional area of rolled steel bar for hot forging after finish rolling) / cross-sectional area of billet before finish rolling × 100
 以上の製造工程により、上述の熱間鍛造用圧延棒鋼が製造される。 The above-described rolled steel bar for hot forging is manufactured by the above manufacturing process.
 [熱間鍛造品の製造方法]
 上述の熱間鍛造用圧延棒鋼を用いた熱間鍛造品の製造方法の一例として、クラッキングコンロッドの製造方法を説明する。初めに、鋼材を高周波誘導加熱炉で加熱する。この場合、好ましい加熱温度は1100~1300℃である。高周波誘導加熱炉での好ましい加熱時間は1~15分である。高周波誘導加熱炉で加熱後、熱間鍛造用圧延棒鋼の表面温度は、加熱温度と同等になる。本実施形態の熱間鍛造用圧延棒鋼を用いれば、1330℃以上の超高温や850℃以下の極低温での鍛造においても、優れたクラッキング性、被削性、降伏強度、及び疲労強度を得ることができる。上述のとおり、熱間鍛造用圧延棒鋼のポリゴナルフェライト中のV-Ti-Mo複合炭化物は、Tiを含有するために高温でも固溶しにくい。そのため、1330℃以上の超高温で1~15分加熱した場合であっても、ポリゴナルフェライト中のV-Ti-Mo複合炭化物の多くは固溶し切らずに残存する。その結果、熱間鍛造時において、過剰に多い固溶Moに起因するベイナイトの生成を抑制でき、高い降伏強度及び疲労強度を有しつつ、優れたクラッキング性も得ることができる。
[Method for manufacturing hot forged products]
A cracking connecting rod manufacturing method will be described as an example of a method for manufacturing a hot forged product using the above-described hot forging rolled steel bar. First, a steel material is heated in a high frequency induction heating furnace. In this case, the preferred heating temperature is 1100-1300 ° C. A preferred heating time in the high frequency induction heating furnace is 1 to 15 minutes. After heating in the high frequency induction heating furnace, the surface temperature of the rolled steel bar for hot forging becomes equal to the heating temperature. If the rolled steel bar for hot forging of this embodiment is used, excellent cracking property, machinability, yield strength, and fatigue strength can be obtained even in forging at ultrahigh temperatures of 1330 ° C. or higher and extremely low temperatures of 850 ° C. or lower. be able to. As described above, the V—Ti—Mo composite carbide in the polygonal ferrite of the rolled steel bar for hot forging contains Ti, so that it does not easily dissolve at high temperatures. Therefore, even when heated at an ultrahigh temperature of 1330 ° C. or higher for 1 to 15 minutes, most of the V—Ti—Mo composite carbide in the polygonal ferrite remains without being completely dissolved. As a result, during hot forging, it is possible to suppress the formation of bainite resulting from an excessively large amount of solute Mo, and it is possible to obtain excellent cracking properties while having high yield strength and fatigue strength.
 加熱された棒鋼に対して、熱間鍛造を実施してクラッキングコンロッドを製造する。好ましくは、熱間鍛造時の加工度は0.22以上である。ここで、加工度は、鍛造工程において、バリを除く部分に生じる対数ひずみの最大値とする。 ¡Hot forging is performed on the heated steel bars to produce cracking connecting rods. Preferably, the degree of processing during hot forging is 0.22 or more. Here, the working degree is the maximum value of the logarithmic strain generated in the portion excluding burrs in the forging process.
 熱間鍛造後のクラッキングコンロッドを、常温になるまで放冷する。冷却後のクラッキングコンロッドに対して、必要に応じて機械加工を実施する。以上の工程により、クラッキングコンロッドが製造される。 ク ラ Allow the cracking connecting rod after hot forging to cool to room temperature. Machining is performed as necessary on the cracking connecting rod after cooling. The cracking connecting rod is manufactured by the above process.
 [熱間鍛造品のミクロ組織]
 製造された熱間鍛造品(クラッキングコンロッド)のミクロ組織は主としてポリゴナルフェライト及びパーライトからなる。好ましくは、ミクロ組織では、ポリゴナルフェライト及びパーライトの総面積率は90%以上である。ミクロ組織中におけるポリゴナルフェライト及びパーライトの総面積率は好ましくは95.0%以上であり、さらに好ましくは100.0%である。ポリゴナルフェライト及びパーライトの総面積率が100.0%でない場合、ミクロ組織の残部はベイナイト/及び又は残留オーステナイトである。本実施形態の熱間鍛造用圧延棒鋼を用いれば、1330℃以上の超高温や850℃以下の極低温での鍛造を行っても、熱間鍛造品(たとえばクラッキングコンロッド)のミクロ組織のベイナイトの生成は抑制される。
[Microstructure of hot forged products]
The microstructure of the manufactured hot forged product (cracking connecting rod) is mainly composed of polygonal ferrite and pearlite. Preferably, in the microstructure, the total area ratio of polygonal ferrite and pearlite is 90% or more. The total area ratio of polygonal ferrite and pearlite in the microstructure is preferably 95.0% or more, and more preferably 100.0%. When the total area ratio of polygonal ferrite and pearlite is not 100.0%, the balance of the microstructure is bainite / and / or retained austenite. If the rolled steel bar for hot forging of this embodiment is used, even if forging is performed at an ultrahigh temperature of 1330 ° C. or higher or an extremely low temperature of 850 ° C. or lower, the microstructure of bainite having a microstructure of a hot forged product (for example, cracking connecting rod) Generation is suppressed.
 ミクロ組織にベイナイトが含まれる場合、大端部を破断して2つの部品(キャップ及びロッド)に分割するとき、破断部が塑性変形して破断面の一部が延性破面となりやすく、クラッキング性が低下しやすい。しかしながら、本実施形態の熱間鍛造用圧延棒鋼では、ベイナイトの生成を抑制し、優れたクラッキング性を維持できる。 When bainite is included in the microstructure, when the large end is fractured and divided into two parts (cap and rod), the fractured part is plastically deformed and a part of the fracture surface tends to become a ductile fracture surface, and cracking properties Is prone to decline. However, the rolled steel bar for hot forging of this embodiment can suppress the generation of bainite and maintain excellent cracking properties.
 熱間鍛造品中のミクロ組織中のベイナイトの面積率は熱間鍛造用圧延棒鋼でのミクロ組織観察と同様の方法で測定できる。 The area ratio of bainite in the microstructure in the hot forged product can be measured by the same method as the microstructure observation in the rolled steel bar for hot forging.
 上述の説明では、熱間鍛造品の製造方法としてクラッキングコンロッドを例に説明した。しかしながら、本実施形態の熱間鍛造用圧延棒鋼はクラッキングコンロッド用途に限定されない。本実施形態の熱間鍛造用圧延棒鋼は熱間鍛造品用途に広く適用できる。 In the above description, a cracking connecting rod has been described as an example of a method for manufacturing a hot forged product. However, the rolled steel bar for hot forging of this embodiment is not limited to cracking connecting rod applications. The rolled steel bar for hot forging of this embodiment can be widely applied to hot forged products.
 また、本実施形態の熱間鍛造用圧延棒鋼の製造方法は、上記製造方法に限定されない。式(1)及び式(2)を満たす化学組成を有し、ミクロ組織においてポリゴナルフェライト及びパーライトの総面積率が90.0%以上になり、析出物中のMoの総含有量(析出物中Mo量CP-Mo)が、鋼中の全Mo含有量(鋼中全Mo量CT-Mo)の50.0%以上になり、かつ、ポリゴナルフェライト中において、5~100nmの円相当径を有する析出物の総個数N5-100が、ポリゴナルフェライト中の3~1000nmの円相当径の析出物の総個数NTOTALの80.0%以上になれば、製造方法は特に限定されない。 Moreover, the manufacturing method of the rolled steel bar for hot forging of this embodiment is not limited to the said manufacturing method. It has a chemical composition satisfying the formulas (1) and (2), the total area ratio of polygonal ferrite and pearlite is 90.0% or more in the microstructure, and the total content of Mo in the precipitate (precipitate Medium Mo amount C P-Mo ) becomes 50.0% or more of the total Mo content in steel (total Mo amount in steel C T-Mo ), and 5 to 100 nm in polygonal ferrite The production method is particularly limited if the total number N 5-100 of precipitates having an equivalent diameter is 80.0% or more of the total number N TOTAL of precipitates having a circle equivalent diameter of 3 to 1000 nm in polygonal ferrite. Not.
 本実施形態の熱間鍛造用圧延棒鋼では、式(1)及び式(2)を満たす上記化学組成を有し、ミクロ組織においてポリゴナルフェライト及びパーライトの総面積率が90.0%以上になり、ポリゴナルフェライト内の析出物中のMoの総含有量(析出物中Mo量CP-Mo)が、鋼中の全Mo含有量(鋼中全Mo量CT-Mo)の50.0%以上になり、かつ、ポリゴナルフェライト中において、5~100nmの円相当径を有する析出物の総個数N5-100が、ポリゴナルフェライト中の3~1000nmの円相当径の析出物の総個数NTOTALの80.0%以上である。そのため、高い降伏強度及び疲労強度を有し、優れた被削性及びクラッキング性を有する。 The rolled steel bar for hot forging of this embodiment has the above chemical composition satisfying the formulas (1) and (2), and the total area ratio of polygonal ferrite and pearlite is 90.0% or more in the microstructure. The total Mo content in the precipitates in the polygonal ferrite (Mo amount in the precipitates C P-Mo ) is 50.0 of the total Mo content in the steel (total Mo amount in the steels C T-Mo ). %, And the total number N 5-100 of precipitates having an equivalent circle diameter of 5 to 100 nm in polygonal ferrite is equal to the total number of precipitates having an equivalent circle diameter of 3 to 1000 nm in polygonal ferrite. The number N is 80.0% or more of TOTAL . Therefore, it has high yield strength and fatigue strength, and has excellent machinability and cracking properties.
 より具体的には、上述の熱間鍛造用圧延棒鋼を1350℃で5分加熱した後に断面減少率60%の熱間前方押出しを実施して得られた熱間鍛造模擬品を1350℃品と定義し、上述の熱間鍛造用圧延棒鋼を800℃で5分加熱した後に断面減少率60%の熱間前方押出しを実施して得られた熱間鍛造模擬品を800℃品と定義した場合、1350℃品及び800℃品のいずれにおいても、降伏強度が600MPa以上であり、大気中25℃において最小最大応力比-1、周波数30Hzとした両振り疲労試験で得られる疲労強度が360MPa以上であり、ドリル径が10mmのハイスドリルを用いて、主軸の回転速度を1000回/min、ドリル穴深さを30mmとするドリル穴あけ加工を実施した場合、51穴目のドリル穴あけ加工時の切削抵抗が50N・cm以上であり、JIS Z2242(2005)に準拠した0℃でのシャルピー衝撃試験により得られたシャルピー衝撃値が8J/cm2以下である。 More specifically, a hot forging simulated product obtained by carrying out hot forward extrusion with a cross-section reduction rate of 60% after heating the above-described rolled steel bar for hot forging at 1350 ° C. for 5 minutes is a 1350 ° C. product. When a hot forging simulated product obtained by carrying out hot forward extrusion with a cross-section reduction rate of 60% after heating the above-described hot forging rolled steel bar at 800 ° C. for 5 minutes is defined as an 800 ° C. product. In both 1350 ° C and 800 ° C products, the yield strength is 600 MPa or more, and the fatigue strength obtained by the double fatigue test with the minimum maximum stress ratio −1 and the frequency 30 Hz at 25 ° C in the atmosphere is 360 MPa or more. Yes, when drilling with a high-speed drill with a drill diameter of 10 mm and a spindle rotation speed of 1000 times / min and a drill hole depth of 30 mm, when drilling the 51st hole Cutting resistance is at 50 N · cm or more, JIS Z2242 Charpy impact value obtained by the Charpy impact test at 0 ℃ conforming to (2005) of 8 J / cm 2 or less.
 表1及び表2に示す化学組成を有する溶鋼を製造した。 The molten steel which has the chemical composition shown in Table 1 and Table 2 was manufactured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2を参照して、試験番号1~53の化学組成は適切であり、式(1)及び式(2)を満たした。一方、試験番号54~76については、化学組成内のいずれかの元素含有量が不適切であったり、式(1)及び又は式(2)を満たさなかった。試験番号76は、後述の機械特性の基準値とする比較材として用いた。 Referring to Tables 1 and 2, the chemical compositions of Test Nos. 1 to 53 are appropriate and satisfy Formula (1) and Formula (2). On the other hand, for test numbers 54 to 76, the content of any element in the chemical composition was inappropriate or did not satisfy formula (1) and / or formula (2). The test number 76 was used as a comparative material used as a reference value for mechanical characteristics described later.
 各試験番号の溶鋼を3ton電気炉で製造し、インゴットを作製した。 The molten steel of each test number was manufactured in a 3 ton electric furnace to produce an ingot.
 作製されたインゴットを熱間圧延して棒鋼を製造した。熱間圧延において、粗圧延後の冷却時の鋼材温度が800℃から500℃となるまでの時間Ct0は、表3及び表4に示すとおり、試験番号1~46、及び48~76は23~29分であり、試験番号47は15分であった。粗圧延後の鋼材温度は、上述の方法で放射温度計により測定し、求めた。その後、仕上げ圧延機を用いて仕上げ圧延を実施して直径33mmの棒鋼に製造した。 The manufactured ingot was hot-rolled to produce a steel bar. In hot rolling, the time Ct0 until the steel material temperature at the time of cooling after rough rolling reaches 800 ° C. to 500 ° C. is as shown in Tables 3 and 4, and test numbers 1 to 46 and 48 to 76 are 23 to 29 minutes and test number 47 was 15 minutes. The steel material temperature after rough rolling was obtained by measuring with a radiation thermometer by the above-described method. Thereafter, finish rolling was performed using a finish rolling mill to produce a steel bar having a diameter of 33 mm.
 表3及び表4にも示したとおり、仕上げ圧延工程での試験番号1~49、54~76の圧延条件は、加熱温度T1:1023~1078℃、加熱時間t1:22~26分、圧延温度T2:989~1011℃、仕上げ温度T3:929~962℃であった。試験番号50の圧延条件は、加熱温度T1:1148℃、加熱時間t1:25分であり、圧延温度T2:1098℃、仕上げ温度T3:1052℃であった。試験番号51の圧延条件は、加熱温度T1:1023~1078℃、加熱時間t1:30分であり、圧延温度T2:989~1011℃、仕上げ温度T3:929~962℃であった。試験番号52の圧延条件は、加熱温度T1:1023~1078℃、加熱時間t1:22~26分であり、圧延温度T2:1098℃、仕上げ温度T3:1052℃であった。試験番号53の圧延条件は、加熱温度T1:1148℃、加熱時間t1:25分であり、圧延温度T2:1098℃、仕上げ温度T3:1052℃であった。 As shown in Tables 3 and 4, the rolling conditions of test numbers 1 to 49 and 54 to 76 in the finish rolling process are as follows: heating temperature T1: 1023-1078 ° C., heating time t1: 22-26 minutes, rolling temperature T2: 989 to 1011 ° C., finishing temperature T3: 929 to 962 ° C. The rolling conditions of test number 50 were heating temperature T1: 1148 ° C, heating time t1: 25 minutes, rolling temperature T2: 1098 ° C, and finishing temperature T3: 1052 ° C. The rolling conditions of test number 51 were heating temperature T1: 1023 to 1078 ° C., heating time t1: 30 minutes, rolling temperature T2: 989 to 1011 ° C., and finishing temperature T3: 929 to 962 ° C. The rolling conditions of test number 52 were heating temperature T1: 1023 to 1078 ° C., heating time t1: 22 to 26 minutes, rolling temperature T2: 1098 ° C., and finishing temperature T3: 1052 ° C. The rolling conditions of test number 53 were heating temperature T1: 1148 ° C, heating time t1: 25 minutes, rolling temperature T2: 1098 ° C, and finishing temperature T3: 1052 ° C.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 仕上げ圧延後、棒鋼を冷却した。表3及び表4にも示したとおり、試験番号1~47、50~76の800℃から500℃となるまでの冷却時間Ct1は3~4分であった。試験番号48及び試験番号49の800℃から500℃となるまでの時間Ct1は、7分であった。加熱温度T1、圧延温度T2及び仕上げ温度T3は上述の方法で測定した。冷却時間Ct1は、冷却時間Ct0と同様の方法で得られた。以上の製造方法により、試験番号1~試験番号76の熱間鍛造用圧延棒鋼を製造した。 After finishing rolling, the steel bar was cooled. As shown in Tables 3 and 4, the cooling time Ct1 from 800 ° C. to 500 ° C. in Test Nos. 1 to 47 and 50 to 76 was 3 to 4 minutes. The time Ct1 from 800 ° C. to 500 ° C. for Test No. 48 and Test No. 49 was 7 minutes. The heating temperature T1, the rolling temperature T2, and the finishing temperature T3 were measured by the method described above. The cooling time Ct1 was obtained in the same manner as the cooling time Ct0. The rolled steel bars for hot forging No. 1 to No. 76 were manufactured by the above manufacturing method.
 [熱鍛模擬品の製造]
 棒鋼を長手方向と垂直な方向に切断し、直径33mm、長さ60mmの供試材を採取した。供試材に対して、熱間鍛造を模擬して、熱間前方押出しを行った。具体的には、熱間押出前の加熱炉での加熱温度を1350℃及び800℃の2条件とし、いずれも5分間保持した。加熱後速やかに断面減少率60%の熱間前方押出しを実施して、直径24mmの丸棒に成形して熱間鍛造模擬品を製造した。成形後の熱間鍛造模擬品を大気中で放冷した。以下、加熱温度1350℃のものを1350℃品、加熱温度800℃のものを800℃品という。
[Manufacture of heat forged simulated products]
The steel bar was cut in a direction perpendicular to the longitudinal direction, and a specimen having a diameter of 33 mm and a length of 60 mm was collected. The test material was subjected to hot forward extrusion by simulating hot forging. Specifically, the heating temperature in the heating furnace before hot extrusion was set to two conditions of 1350 ° C. and 800 ° C., and both were held for 5 minutes. Immediately after heating, hot forward extrusion with a cross-section reduction rate of 60% was performed, and a hot forging simulated product was manufactured by forming into a round bar with a diameter of 24 mm. The hot forging simulated product after forming was allowed to cool in the air. Hereinafter, those having a heating temperature of 1350 ° C are referred to as 1350 ° C products, and those having a heating temperature of 800 ° C are referred to as 800 ° C products.
 試験番号76については、熱間押出前の加熱温度1200℃で5分間保持した。加熱後速やかに、断面減少率60%の熱間前方押出しを実施して、直径24mmの丸棒に成形した。これを比較材(各機械特性の基準値とする鋼材)とした。 Test No. 76 was held at a heating temperature of 1200 ° C. before hot extrusion for 5 minutes. Immediately after heating, hot forward extrusion with a cross-section reduction rate of 60% was performed to form a round bar having a diameter of 24 mm. This was used as a comparative material (a steel material used as a reference value for each mechanical characteristic).
 [評価試験]
 熱間前方押出し前の棒鋼である供試材、及び熱間鍛造模擬品を用いて、次の評価試験を実施した。なお、各試験番号の供試材に対して、上述の周知の成分分析法を実施して、化学組成を分析した。その結果、各試験番号の供試材の化学組成は、表1及び表2に示したとおりであった。
[Evaluation test]
The following evaluation test was carried out using a test material that is a steel bar before hot forward extrusion and a simulated hot forging product. In addition, the above-mentioned well-known component analysis method was implemented with respect to the test material of each test number, and the chemical composition was analyzed. As a result, the chemical composition of the test material of each test number was as shown in Tables 1 and 2.
 [ミクロ組織観察]
 各試験番号の熱間前方押出し前の棒鋼である供試材、及び、熱間鍛造模擬品を用いて、ミクロ組織観察試験を実施した。具体的には、供試材及び熱間模擬品の縦断面のうち、R/2部を含むサンプルを採取した。熱間鍛造用圧延棒鋼の中心軸と垂直な表面を観察面とした。観察面を研磨した後、3%硝酸アルコール(ナイタル腐食液)にてエッチングした。エッチングされた観察面を200倍の光学顕微鏡にて観察して、上述の方法により、ポリゴナルフェライト及びパーライトの総面積率RAF+P(%)を求めた。ポリゴナルフェライト及びパーライトの総面積率RAF+Pが90.0%以上であるものを「≧90」とした。ポリゴナルフェライト及びパーライトの総面積率RAF+Pが90.0%未満であるものを「<90」とした。結果を表3及び表4に示す。
[Microstructure observation]
A microstructural observation test was performed using a test material that is a steel bar before hot forward extrusion of each test number and a hot forging simulated product. Specifically, a sample containing R / 2 part was collected from the longitudinal sections of the test material and the hot simulated product. The surface perpendicular to the central axis of the rolled steel bar for hot forging was used as the observation surface. After the observation surface was polished, it was etched with 3% nitric alcohol (nitral corrosive solution). The etched observation surface was observed with a 200 × optical microscope, and the total area ratio RA F + P (%) of polygonal ferrite and pearlite was determined by the method described above. A case where the total area ratio RAF + P of polygonal ferrite and pearlite was 90.0% or more was defined as “≧ 90”. Polygonal ferrite and pearlite having a total area ratio RAF + P of less than 90.0% was defined as “<90”. The results are shown in Tables 3 and 4.
 [ポリゴナルフェライト中の個数割合RA5-100の測定]
 各試験番号の熱間前方押出し前の棒鋼である供試材のR/2部からサンプルを採取した。サンプルの表面のうち、供試材の軸方向を含む断面(縦断面)に相当する表面を観察面とした。上述の方法で、200000倍のTEMで観察し、任意の5視野で析出物を特定した。1視野の面積は250nm×350nmであった。上述の方法により析出物を特定し、ポリゴナルフェライト中の5~100nmの円相当径を有する析出物の総個数N5-100と、ポリゴナルフェライト中の3~1000nmの円相当径の析出物の総個数NTOTALとを求めた。そして、総個数N5-100と総個数NTOTALとに基づいて、下記式により、ポリゴナルフェライト中の5~100nmの円相当径を有する析出物の個数割合RA5-100(%)を求めた。
 個数割合RA5-100=総個数N5-100/総個数NTOTAL×100
[Measurement of number ratio RA 5-100 in polygonal ferrite]
A sample was taken from R / 2 part of the test material, which is a steel bar before hot forward extrusion for each test number. Of the surface of the sample, the surface corresponding to the cross section (longitudinal cross section) including the axial direction of the specimen was used as the observation surface. By the above-mentioned method, it observed with 200000 times TEM, and identified the deposit in arbitrary five visual fields. The area of one field of view was 250 nm × 350 nm. Precipitates were identified by the above-described method, and the total number N 5-100 of precipitates having a circle equivalent diameter of 5 to 100 nm in polygonal ferrite and precipitates having a circle equivalent diameter of 3 to 1000 nm in polygonal ferrite The total number N of TOTAL was determined. Then, based on the total number N 5-100 and the total number N TOTAL , the number ratio RA 5-100 (%) of precipitates having a circle equivalent diameter of 5 to 100 nm in polygonal ferrite is obtained by the following formula. It was.
Number ratio RA 5-100 = Total number N 5-100 / Total number N TOTAL × 100
 求めた個数割合RA5-100を表3及び表4に示す。表3及び表4中の「RA5-100」欄において、「A」は、対応する試験番号での個数割合RA5-100が90.0%以上であったことを意味する。「B」は、対応する試験番号での個数割合RA5-100が80.0~90.0%未満であったことを意味する。「N」は、対応する試験番号での個数割合RA5-100が80.0%未満であったことを意味する。「N-1」及び「N-2」はいずれも、個数割合RA5-100が80.0%未満であったことを意味する。具体的には、「N-1」は、ポリゴナルフェライト内において、円相当径が5nm未満の析出物の個数割合が過剰に多かった結果、個数割合RA5-100が80.0%未満となったことを意味する。「N-2」は、ポリゴナルフェライト内において、円相当径が100nmを超えた析出物の個数割合が過剰に多かった結果、個数割合RA5-100が80.0%未満となったことを意味する。 The obtained number ratio RA 5-100 is shown in Tables 3 and 4. In the “RA 5-100 ” column in Tables 3 and 4, “A” means that the number ratio RA 5-100 in the corresponding test number was 90.0% or more. “B” means that the number ratio RA 5-100 in the corresponding test number was 80.0 to less than 90.0%. “N” means that the number ratio RA 5-100 in the corresponding test number was less than 80.0%. “N-1” and “N-2” both mean that the number ratio RA 5-100 was less than 80.0%. Specifically, “N-1” has an excessively large number ratio of precipitates having an equivalent circle diameter of less than 5 nm in polygonal ferrite, resulting in a number ratio RA 5-100 of less than 80.0%. Means that “N-2” indicates that the number ratio of RA 5-100 was less than 80.0% as a result of the excessive number ratio of precipitates having an equivalent circle diameter exceeding 100 nm in polygonal ferrite. means.
 [析出物中Mo量割合RAMoの測定]
 各試験番号の熱間前方押出し前の棒鋼である供試材のR/2部から一辺が10mmの立方体状のサンプルを採取した。サンプル表面から200μm深さまでの表層を、AA系電解液(10vol%アセチルアセトンと1vol%塩化テトラメチルアンモニウムとを含有し、残部がメタノールからなる電解液)を用いて電解にて除去した。電解時間は30分であった。電解液を新しいAA系電解液に交換し、サンプルに対して電解を実施した。電解時間は150分であった。電解後の電解液を、メッシュサイズが200nmのフィルタを用いてろ過し、残渣を得た。得られた残渣に基づいて、上述の方法で、析出物中Mo量割合RAMoを求めた。
[Measurement of Mo amount ratio RA Mo in precipitate]
A cubic sample with a side of 10 mm was taken from R / 2 part of the test material, which is a steel bar before hot forward extrusion of each test number. The surface layer from the sample surface to a depth of 200 μm was removed by electrolysis using an AA-based electrolytic solution (an electrolytic solution containing 10 vol% acetylacetone and 1 vol% tetramethylammonium chloride, with the balance being methanol). The electrolysis time was 30 minutes. The electrolyte was replaced with a new AA electrolyte, and the sample was electrolyzed. The electrolysis time was 150 minutes. The electrolytic solution after electrolysis was filtered using a filter having a mesh size of 200 nm to obtain a residue. Based on the obtained residue, in the manner described above to determine the precipitates Mo amount ratio RA Mo.
 求めた析出物中Mo量割合RAMoを表3及び表4に示す。表3及び表4中の「RAMo」欄において、「A」は、対応する試験番号での析出物中Mo量割合RAMoが90.0%以上であったことを意味する。「B」は、対応する試験番号での析出物中Mo量割合RAMoが70.0~90.0%未満であったことを意味する。「C」は、対応する試験番号での析出物中Mo量割合RAMoが50.0~70.0%未満であったことを意味する。「N」は、対応する試験番号での析出物中Mo量割合RAMoが50.0%未満であったことを意味する。 Table 3 and Table 4 show the obtained Mo amount ratio RA Mo in the precipitate. In the “RA Mo ” column in Tables 3 and 4, “A” means that the Mo amount ratio RA Mo in the precipitates in the corresponding test number was 90.0% or more. “B” means that the Mo amount ratio RA Mo in the precipitate in the corresponding test number was 70.0 to less than 90.0%. “C” means that the Mo amount ratio RA Mo in the precipitate in the corresponding test number was 50.0 to less than 70.0%. “N” means that the Mo content ratio RA Mo in the precipitate in the corresponding test number was less than 50.0%.
 [降伏強度評価]
 各熱間鍛造模擬品のR/2部から、図2に示す直径が5mmのJIS 14A号試験片を2本採取した。図2を参照して、疲労試験片は、横断面が円形状であり、平行部長さが35mmであった。図2中の単位が示されていない数値は、試験片の対応する部位の寸法(単位はmm)を示す。図中の「φ数値」は、指定されている部位の直径(mm)を示す。図中の「R数値」は、肩部の半径(mm)を示す。図中の「M数値」は、呼び径(mm)を示す。採取された試験片を用いて、大気中の室温(25℃)で引張試験を実施して、鋼材の0.2%耐力で、2本平均の降伏強度YS(MPa)を求めた。
[Yield strength evaluation]
Two JIS 14A test pieces having a diameter of 5 mm shown in FIG. 2 were collected from the R / 2 part of each hot forging simulated product. Referring to FIG. 2, the fatigue test piece had a circular cross section and a parallel part length of 35 mm. The numerical value in which the unit in FIG. 2 is not shown shows the dimension (a unit is mm) of the corresponding site | part of a test piece. The “φ numerical value” in the figure indicates the diameter (mm) of the designated part. The “R value” in the figure indicates the radius (mm) of the shoulder. “M numerical value” in the figure indicates a nominal diameter (mm). Using the collected specimens, a tensile test was performed at room temperature (25 ° C.) in the atmosphere, and the average yield strength YS (MPa) of the two steels was determined at 0.2% proof stress of the steel material.
 試験番号76の比較材の降伏強度(600MPa)に対して、降伏強度YS(MPa)が125%以上の場合を評価「A」とし、110~125%未満の場合を評価「B」とした。降伏強度YSが110%未満の場合を評価「N」とした。 When the yield strength YS (MPa) is 125% or more with respect to the yield strength (600 MPa) of the comparative material of test number 76, the evaluation is “A”, and the evaluation strength is “B” when the yield strength is less than 110 to 125%. The case where the yield strength YS was less than 110% was evaluated as “N”.
 評価「A」又は「B」の場合、十分な降伏強度が得られたと判断した。評価「N」の場合、降伏強度が低いと判断した。 In the case of evaluation “A” or “B”, it was judged that sufficient yield strength was obtained. In the case of evaluation “N”, it was determined that the yield strength was low.
 [疲労強度評価]
 各熱間鍛造模擬品のR/2部から、図3に示す疲労試験片を採取した。図3を参照して、疲労試験片は、横断面が円形状であり、平行部長さが42mmであった。図3中の単位が示されていない数値は、試験片の対応する部位の寸法(単位はmm)を示す。図中の「φ数値」は、指定されている部位の直径(mm)を示す。図中の「R数値」は、肩部の半径(mm)を示す。採取された試験片を用いて、大気中の室温(25℃)において、最小最大応力比-1の両振り疲労試験(小野式回転曲げ疲労試験)を実施した。繰り返し数107回で破断しない最大の応力を疲労強度(MPa)とした。周波数は30Hzとした。
[Fatigue strength evaluation]
The fatigue test piece shown in FIG. 3 was collected from R / 2 part of each hot forging simulated product. Referring to FIG. 3, the fatigue test piece had a circular cross section and a parallel part length of 42 mm. The numerical value in which the unit in FIG. 3 is not shown shows the dimension (a unit is mm) of the corresponding site | part of a test piece. The “φ numerical value” in the figure indicates the diameter (mm) of the designated part. The “R value” in the figure indicates the radius (mm) of the shoulder. Using the collected specimens, a swing fatigue test (Ono-type rotating bending fatigue test) with a minimum maximum stress ratio of −1 was performed at room temperature (25 ° C.) in the atmosphere. The maximum stress that did not break after 10 7 repetitions was defined as fatigue strength (MPa). The frequency was 30 Hz.
 試験番号76の比較材の疲労強度(360MPa)に対して、疲労強度が125%以上の場合を評価「A」、110~125%未満の場合を評価「B」とした。疲労強度が110%未満の場合を評価「N」とした。 The case where the fatigue strength is 125% or more with respect to the fatigue strength (360 MPa) of the comparative material of test number 76 was evaluated as “A”, and the case where the fatigue strength was 110 to less than 125% was evaluated as “B”. The case where the fatigue strength was less than 110% was evaluated as “N”.
 評価「A」又は「B」の場合、十分な疲労強度が得られたと判断した。評価「N」の場合、疲労強度が低いと判断した。 In the case of evaluation “A” or “B”, it was judged that sufficient fatigue strength was obtained. In the case of evaluation “N”, it was judged that the fatigue strength was low.
 [被削性評価]
 試験番号ごとに5つの熱間鍛造模擬品を準備した。準備した5つの熱間鍛造模擬品に対して端部を切断し、切断面をスラスト加工した。スラスト加工した熱鍛模擬品に対して、スラスト面と垂直方向の位置に深さ30mmのドリル穴あけ加工を行い、51穴目のドリル穴あけ加工時の切削抵抗(N・cm)を測定した。このとき、ドリル径を10mm、主軸の回転速度を1000回/minとした。使用したドリルはハイスドリルであった。
[Machinability evaluation]
Five hot forging simulated products were prepared for each test number. End portions of the prepared five hot forging simulated products were cut, and the cut surfaces were thrust processed. A 30 mm deep drilling process was performed on the thrust-processed thermal forging simulated product at a position perpendicular to the thrust surface, and the cutting resistance (N · cm) at the time of drilling the 51st hole was measured. At this time, the drill diameter was 10 mm, and the rotation speed of the main shaft was 1000 times / min. The drill used was a high speed drill.
 試験番号76の比較材の切削抵抗(50N・cm)に対して、切削抵抗が90%以下の場合を評価「A」、90超~110%の場合を評価「B」とした。切削抵抗が110%を超える場合を評価「N」とした。 When the cutting resistance was 90% or less with respect to the cutting resistance (50 N · cm) of the comparative material of test number 76, the evaluation was “A”, and the case where the cutting resistance was 90 to 110% was evaluated as “B”. The case where the cutting resistance exceeded 110% was evaluated as “N”.
 評価「A」又は「B」の場合、十分な被削性が得られたと判断した。評価「N」の場合、被削性が低いと判断した。 In the case of evaluation “A” or “B”, it was judged that sufficient machinability was obtained. In the case of evaluation “N”, it was determined that the machinability was low.
 [クラッキング性評価]
 各試験番号の熱間鍛造模擬品の中心部から、ノッチを加工した、Vノッチシャルピー衝撃試験片を採取した。試験片の幅は10mm、高さは10mm、長さは55mmであり、ノッチ深さは2mmであった。各試験片に対して、0℃にて、JIS Z2242(2005)に準拠したシャルピー衝撃試験を実施して、シャルピー衝撃値(J/cm2)を求めた。
[Cracking evaluation]
A V-notch Charpy impact test piece in which a notch was machined was collected from the center of the hot forging simulated product of each test number. The test piece had a width of 10 mm, a height of 10 mm, a length of 55 mm, and a notch depth of 2 mm. Each specimen was subjected to a Charpy impact test in accordance with JIS Z2242 (2005) at 0 ° C. to obtain a Charpy impact value (J / cm 2 ).
 クラッキング性評価において、シャルピー衝撃値が8J/cm2以下の場合を評価「A」、8J/cm2を超える場合を評価「N」とした。 In the evaluation of cracking property, the evaluation was “A” when the Charpy impact value was 8 J / cm 2 or less, and the evaluation “N” when the Charpy impact value exceeded 8 J / cm 2 .
 評価「A」の場合、十分なクラッキング性が得られたと判断した。評価「N」の場合、クラッキング性が低いと判断した。 In the case of evaluation “A”, it was judged that sufficient cracking property was obtained. In the case of evaluation “N”, it was judged that the cracking property was low.
 [評価結果]
 評価結果を表3及び表4に示す。表3及び表4を参照して、試験番号1~46の化学組成は適切であり、fn1が式(1)を満たし、fn2が式(2)を満たした。さらに、ポリゴナルフェライト中の5~100nmの円相当径を有する析出物の個数割合RA5-100(%)は80.0%以上であり、析出物中Mo量割合RAMoは50.0%以上であった。その結果、試験番号76の比較材と比較して、優れたクラッキング性が得られた。さらに、降伏強度、疲労強度、被削性も良好であった。
[Evaluation results]
The evaluation results are shown in Tables 3 and 4. Referring to Tables 3 and 4, the chemical compositions of Test Nos. 1 to 46 are appropriate, fn1 satisfies Formula (1), and fn2 satisfies Formula (2). Further, the number ratio RA 5-100 (%) of precipitates having an equivalent circle diameter of 5 to 100 nm in polygonal ferrite is 80.0% or more, and the Mo amount ratio RA Mo in the precipitates is 50.0%. That was all. As a result, superior cracking properties were obtained as compared with the comparative material of test number 76. Furthermore, yield strength, fatigue strength, and machinability were also good.
 一方、試験番号47は、化学組成は適切であり、fn1が式(1)を満たし、fn2が式(2)を満たした、しかしながら、冷却時間Ct0が20分未満であった。そのため、冷却速度が速すぎ、ポリゴナルフェライト中にV-Ti-Mo複合炭化物が析出しなかった。そのため、析出物中Mo量割合RAMoが50.0%未満であった。Moが固溶しすぎ、ベイナイトの生成が促進された。その結果、1350℃品で、ポリゴナルフェライトとパーライトとの総面積率が90.0%未満となり、ベイナイトが過剰に生成した。そのため、クラッキング性が低かった。さらに、降伏強度及び疲労強度も低かった。 On the other hand, in test number 47, the chemical composition was appropriate, fn1 satisfied Formula (1), and fn2 satisfied Formula (2). However, the cooling time Ct0 was less than 20 minutes. For this reason, the cooling rate was too high, and V—Ti—Mo composite carbide was not precipitated in polygonal ferrite. Therefore, the Mo content ratio RA Mo in the precipitate was less than 50.0%. Mo dissolved too much, and the generation of bainite was promoted. As a result, in the 1350 ° C. product, the total area ratio of polygonal ferrite and pearlite was less than 90.0%, and bainite was excessively generated. Therefore, the cracking property was low. Furthermore, the yield strength and fatigue strength were also low.
 試験番号48及び試験番号49は、化学組成は適切であり、fn1が式(1)を満たし、fn2が式(2)を満たした、しかしながら、仕上げ圧延後の冷却において、冷却時間Ct1が5分を超えた。そのため、冷却速度が遅すぎ、ポリゴナルフェライト中のV-Ti-Mo複合炭化物が粗大化し、100nmを超える円相当径の析出物の総数が多くなり、個数割合RA5-100(%)が80.0%未満となった。その結果、800℃品の降伏強度及び疲労強度が低かった。 Test No. 48 and Test No. 49 have an appropriate chemical composition, fn1 satisfies the formula (1), and fn2 satisfies the formula (2). However, in the cooling after finish rolling, the cooling time Ct1 is 5 minutes. Exceeded. Therefore, the cooling rate is too slow, the V—Ti—Mo composite carbide in the polygonal ferrite is coarsened, the total number of precipitates having an equivalent circle diameter exceeding 100 nm is increased, and the number ratio RA 5-100 (%) is 80 Less than 0.0%. As a result, the yield strength and fatigue strength of the 800 ° C. product were low.
 試験番号50は、化学組成は適切であり、fn1が式(1)を満たし、fn2が式(2)を満たした、しかしながら、加熱温度T1が1100℃を超えた。そのため、仕上げ圧延温度T3も1000℃を超えた。その結果、ポリゴナルフェライト中のV-Ti-Mo複合炭化物が十分に粗大化せず、5nm未満の析出物の個数割合が多く、円相当径が5~100nmの析出物の個数割合RA5-100が80.0%未満であった。その結果、ベイナイトの生成が促進され、1350℃品で、降伏強度、疲労強度、及びクラッキング性が低かった。 In test number 50, the chemical composition was appropriate, fn1 satisfied Formula (1), and fn2 satisfied Formula (2). However, the heating temperature T1 exceeded 1100 ° C. Therefore, the finish rolling temperature T3 also exceeded 1000 ° C. As a result, the V—Ti—Mo composite carbide in the polygonal ferrite is not sufficiently coarsened, the number ratio of precipitates having a diameter of less than 5 nm is large, and the number ratio of precipitates having a circle equivalent diameter of 5 to 100 nm is RA 5- 100 was less than 80.0%. As a result, the formation of bainite was promoted, and the yield strength, fatigue strength, and cracking properties were low at 1350 ° C.
 試験番号51では、化学組成は適切であり、fn1が式(1)を満たし、fn2が式(2)を満たした。しかしながら、仕上げ圧延での加熱時間t1が長すぎた。その結果、ポリゴナルフェライト中のV-Ti-Mo複合炭化物が十分に粗大化せず、5nm未満の析出物の個数割合が多く、円相当径が5~100nmの析出物の個数割合RA5-100が80.0%未満であった。その結果、ベイナイトの生成が促進され、1350℃品で、降伏強度、疲労強度、及びクラッキング性が低かった。 In test number 51, the chemical composition was appropriate, fn1 satisfied equation (1), and fn2 satisfied equation (2). However, the heating time t1 in finish rolling was too long. As a result, the V—Ti—Mo composite carbide in the polygonal ferrite is not sufficiently coarsened, the number ratio of precipitates having a diameter of less than 5 nm is large, and the number ratio of precipitates having a circle equivalent diameter of 5 to 100 nm is RA 5- 100 was less than 80.0%. As a result, the formation of bainite was promoted, and the yield strength, fatigue strength, and cracking properties were low at 1350 ° C.
 試験番号52では、化学組成は適切であり、fn1が式(1)を満たし、fn2が式(2)を満たした。しかしながら、仕上げ圧延での仕上げ温度T3が高すぎた。その結果、ポリゴナルフェライト中のV-Ti-Mo複合炭化物が十分に粗大化せず、5nm未満の析出物の個数割合が多く、円相当径が5~100nmの析出物の個数割合RA5-100が80.0%未満であった。その結果、ベイナイトの生成が促進され、1350℃品で、降伏強度、疲労強度、及びクラッキング性が低かった。 In test number 52, the chemical composition was appropriate, fn1 satisfied equation (1), and fn2 satisfied equation (2). However, finishing temperature T3 in finish rolling was too high. As a result, the V—Ti—Mo composite carbide in the polygonal ferrite is not sufficiently coarsened, the number ratio of precipitates having a diameter of less than 5 nm is large, and the number ratio of precipitates having a circle equivalent diameter of 5 to 100 nm is RA 5- 100 was less than 80.0%. As a result, the formation of bainite was promoted, and the yield strength, fatigue strength, and cracking properties were low at 1350 ° C.
 試験番号53では、化学組成は適切であり、fn1が式(1)を満たし、fn2が式(2)を満たした。しかしながら、加熱温度T1が1100℃を超えた。そのため、仕上げ圧延温度T3も1000℃を超えた。その結果、ポリゴナルフェライト中のV-Ti-Mo複合炭化物が十分に粗大化せず、5nm未満の析出物の個数割合が多く、円相当径が5~100nmの析出物の個数割合RA5-100が80.0%未満であった。その結果、ベイナイトの生成が促進され、1350℃品で、降伏強度、疲労強度、及びクラッキング性が低かった。 In test number 53, the chemical composition was appropriate, fn1 satisfied equation (1), and fn2 satisfied equation (2). However, the heating temperature T1 exceeded 1100 ° C. Therefore, the finish rolling temperature T3 also exceeded 1000 ° C. As a result, the V—Ti—Mo composite carbide in the polygonal ferrite is not sufficiently coarsened, the number ratio of precipitates having a diameter of less than 5 nm is large, and the number ratio of precipitates having a circle equivalent diameter of 5 to 100 nm is RA 5- 100 was less than 80.0%. As a result, the formation of bainite was promoted, and the yield strength, fatigue strength, and cracking properties were low at 1350 ° C.
 試験番号54のC含有量は高すぎた。そのため、被削性が低かった。 The C content of test number 54 was too high. Therefore, machinability was low.
 試験番号55のC含有量は低すぎた。そのため、降伏強度及び疲労強度が低かった。 The C content of test number 55 was too low. Therefore, the yield strength and fatigue strength were low.
 試験番号56のSi含有量が低すぎた。そのため、降伏強度及び疲労強度が低かった。 The Si content of test number 56 was too low. Therefore, the yield strength and fatigue strength were low.
 試験番号57のMn含有量は高すぎた。そのため1350℃品においてベイナイトが生成し、ミクロ組織におけるポリゴナルフェライトとパーライトとの総面積率が90.0%未満となった。そのため、クラッキング性が低かった。さらに降伏強度、及び疲労強度も低かった。 The Mn content of test number 57 was too high. Therefore, bainite was generated in the 1350 ° C. product, and the total area ratio of polygonal ferrite and pearlite in the microstructure was less than 90.0%. Therefore, the cracking property was low. Furthermore, the yield strength and fatigue strength were also low.
 試験番号58のMn含有量は低すぎた。そのため、降伏強度及び疲労強度が低かった。 The Mn content of test number 58 was too low. Therefore, the yield strength and fatigue strength were low.
 試験番号59のP含有量は低すぎた。そのため、クラッキング性が低かった。 The P content of test number 59 was too low. Therefore, the cracking property was low.
 試験番号60のS含有量は高すぎた。そのため、疲労強度が低かった。 The S content of test number 60 was too high. Therefore, the fatigue strength was low.
 試験番号61のS含有量は低すぎた。そのため、被削性が低かった。 The S content of test number 61 was too low. Therefore, machinability was low.
 試験番号62のCr含有量は高すぎた。そのため1350℃品においてベイナイトが生成し、ミクロ組織におけるポリゴナルフェライトとパーライトとの総面積率が90.0%未満となった。そのため、クラッキング性が低かった。さらに降伏強度、及び疲労強度も低かった。 The Cr content of test number 62 was too high. Therefore, bainite was generated in the 1350 ° C. product, and the total area ratio of polygonal ferrite and pearlite in the microstructure was less than 90.0%. Therefore, the cracking property was low. Furthermore, the yield strength and fatigue strength were also low.
 試験番号63のCr含有量は低すぎた。そのため、降伏強度及び疲労強度が低かった。 The Cr content of test number 63 was too low. Therefore, the yield strength and fatigue strength were low.
 試験番号64のMo含有量は高すぎた。そのため1350℃品においてベイナイトが生成し、ミクロ組織におけるポリゴナルフェライトとパーライトとの総面積率が90.0%未満となった。そのため、クラッキング性が低かった。さらに降伏強度、及び疲労強度も低かった。 The Mo content of test number 64 was too high. Therefore, bainite was generated in the 1350 ° C. product, and the total area ratio of polygonal ferrite and pearlite in the microstructure was less than 90.0%. Therefore, the cracking property was low. Furthermore, the yield strength and fatigue strength were also low.
 試験番号65のMo含有量は低すぎた。そのため、降伏強度及び疲労強度が低かった。 The Mo content of test number 65 was too low. Therefore, the yield strength and fatigue strength were low.
 試験番号66のV含有量は高すぎた。そのため、被削性が低かった。 The V content of test number 66 was too high. Therefore, machinability was low.
 試験番号67のV含有量は低すぎた。そのため、降伏強度及び疲労強度が低かった。 The V content of test number 67 was too low. Therefore, the yield strength and fatigue strength were low.
 試験番号68のTi含有量が高すぎた。そのため、被削性が低かった。 The Ti content of test number 68 was too high. Therefore, machinability was low.
 試験番号69のTi含有量は低すぎた。そのため、降伏強度、疲労強度、及びクラッキング性が低かった。 The Ti content of test number 69 was too low. Therefore, yield strength, fatigue strength, and cracking properties were low.
 試験番号70のAl含有量は高すぎた。そのため、疲労強度が低かった。 The Al content of test number 70 was too high. Therefore, the fatigue strength was low.
 試験番号71のN含有量は低かった。そのため、降伏強度及び疲労強度が低かった。 N content of test number 71 was low. Therefore, the yield strength and fatigue strength were low.
 試験番号72及び73では、fn1が高すぎた。そのため、被削性が低かった。 In test numbers 72 and 73, fn1 was too high. Therefore, machinability was low.
 試験番号74では、fn1が低すぎた。そのため、降伏強度及び疲労強度が低かった。 In test number 74, fn1 was too low. Therefore, the yield strength and fatigue strength were low.
 試験番号75では、fn2が高すぎた。そのためベイナイトが生成し、1350℃品での降伏強度、疲労強度、及びクラッキング性が低かった。 In test number 75, fn2 was too high. As a result, bainite was generated, and the yield strength, fatigue strength, and cracking property of the 1350 ° C. product were low.
 以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。 The embodiment of the present invention has been described above. However, the above-described embodiment is merely an example for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately changing the above-described embodiment without departing from the spirit thereof.
1 コンロッド
2 キャップ
3 ロッド
100 大端部
200 棹部
300 小端部
1 connecting rod 2 cap 3 rod 100 large end 200 collar 300 small end

Claims (3)

  1.  化学組成が、質量%で、
     C:0.39~0.55%、
     Si:0.10~1.0%、
     Mn:0.50~1.50%、
     P:0.010~0.100%、
     S:0.040~0.130%、
     Cr:0.05~0.50%、
     Mo:0.01~0.10%、
     V:0.05~0.40%、
     Ti:0.150~0.250%、
     Al:0.005~0.050%、
     N:0.0020~0.020%、
     Cu:0~0.40%、
     Ni:0~0.30%、
     Nb:0~0.20%、
     Pb:0~0.30%、
     Zr:0~0.1000%、
     Te:0~0.3000%、
     Ca:0~0.0100%、及び、
     Bi:0~0.3000%、を含有し、残部がFe及び不純物からなり、式(1)及び式(2)を満たし、
     ミクロ組織において、ポリゴナルフェライト及びパーライトの総面積率は90%以上であり、
     析出物中に含有されるMoの総含有量(質量%)は、鋼中の全Mo含有量(質量%)の50.0%以上であり、
     前記ポリゴナルフェライト中の5~100nmの円相当径を有する析出物の総個数は、前記ポリゴナルフェライト中の3~1000nmの円相当径を有する析出物の総個数の80.0%以上である、
     熱間鍛造用圧延棒鋼。
     0.60≦C+0.2Mn+0.25Cr+0.75V+0.81Mo≦1.00 (1)
     0.12C+0.35Mn+0.42Cr+Mo-0.08Si≦0.70 (2)
     ここで、式(1)及び式(2)中の元素記号には、対応する元素の含有量(質量%)が代入される。
    Chemical composition is mass%,
    C: 0.39 to 0.55%,
    Si: 0.10 to 1.0%,
    Mn: 0.50 to 1.50%,
    P: 0.010 to 0.100%,
    S: 0.040 to 0.130%,
    Cr: 0.05 to 0.50%,
    Mo: 0.01 to 0.10%,
    V: 0.05 to 0.40%,
    Ti: 0.150 to 0.250%,
    Al: 0.005 to 0.050%,
    N: 0.0020 to 0.020%,
    Cu: 0 to 0.40%,
    Ni: 0 to 0.30%,
    Nb: 0 to 0.20%,
    Pb: 0 to 0.30%,
    Zr: 0 to 0.1000%,
    Te: 0 to 0.3000%,
    Ca: 0 to 0.0100%, and
    Bi: 0 to 0.3000%, with the balance being Fe and impurities, satisfying formula (1) and formula (2),
    In the microstructure, the total area ratio of polygonal ferrite and pearlite is 90% or more,
    The total content (% by mass) of Mo contained in the precipitate is 50.0% or more of the total Mo content (% by mass) in the steel,
    The total number of precipitates having an equivalent circle diameter of 5 to 100 nm in the polygonal ferrite is 80.0% or more of the total number of precipitates having an equivalent circle diameter of 3 to 1000 nm in the polygonal ferrite. ,
    Rolled steel bar for hot forging.
    0.60 ≦ C + 0.2Mn + 0.25Cr + 0.75V + 0.81Mo ≦ 1.00 (1)
    0.12C + 0.35Mn + 0.42Cr + Mo−0.08Si ≦ 0.70 (2)
    Here, the content (mass%) of the corresponding element is substituted for the element symbols in the formulas (1) and (2).
  2.  請求項1に記載の熱間鍛造用圧延棒鋼であって、
     前記化学組成は、
     Cu:0.01~0.40%、
     Ni:0.005~0.30%、及び、
     Nb:0.001~0.20%、からなる群から選択される1種又は2種以上を含有する、熱間鍛造用圧延棒鋼。
    A rolled steel bar for hot forging according to claim 1,
    The chemical composition is
    Cu: 0.01 to 0.40%,
    Ni: 0.005 to 0.30%, and
    Nb: Rolled steel bar for hot forging containing one or more selected from the group consisting of 0.001 to 0.20%.
  3.  請求項1又は請求項2に記載の熱間鍛造用圧延棒鋼であって、
     前記化学組成は、
     Pb:0.05~0.30%、
     Zr:0.0003~0.1000%、
     Te:0.0003~0.3000%、
     Ca:0.0003~0.0100%、及び、
     Bi:0.0003~0.3000%、からなる群から選択される1種又は2種以上を含有する、熱間鍛造用圧延棒鋼。
    It is a rolled steel bar for hot forging according to claim 1 or claim 2,
    The chemical composition is
    Pb: 0.05 to 0.30%,
    Zr: 0.0003 to 0.1000%,
    Te: 0.0003 to 0.3000%,
    Ca: 0.0003 to 0.0100%, and
    Bi: Rolled steel bar for hot forging containing one or more selected from the group consisting of 0.0003 to 0.3000%.
PCT/JP2017/021072 2016-06-07 2017-06-07 Rolled steel bar for hot forging WO2017213166A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780035018.7A CN109312434B (en) 2016-06-07 2017-06-07 Rolled steel bar for hot forging
JP2018521747A JP6673475B2 (en) 2016-06-07 2017-06-07 Rolled steel bars for hot forging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-113834 2016-06-07
JP2016113834 2016-06-07

Publications (1)

Publication Number Publication Date
WO2017213166A1 true WO2017213166A1 (en) 2017-12-14

Family

ID=60577828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021072 WO2017213166A1 (en) 2016-06-07 2017-06-07 Rolled steel bar for hot forging

Country Status (3)

Country Link
JP (1) JP6673475B2 (en)
CN (1) CN109312434B (en)
WO (1) WO2017213166A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115747674A (en) * 2022-11-28 2023-03-07 南京工程学院 Low-cost hydrogen-embrittlement-resistant non-quenched and tempered steel for direct cutting of super-large cross section and preparation method and application thereof
CN116607079A (en) * 2023-07-07 2023-08-18 江苏三鑫特殊金属材料股份有限公司 Rust-proof wear-resistant high-fragmentation free-cutting carbon steel and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110106446B (en) * 2019-06-24 2021-04-13 新余钢铁股份有限公司 400 MPa-grade Ti-containing hot-rolled ribbed steel bar and production process thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199967A (en) * 1998-01-07 1999-07-27 Sumitomo Metal Ind Ltd High strength and low ductility non-heat treated steel excellent in machinability
JP2014025105A (en) * 2012-07-26 2014-02-06 Nippon Steel & Sumitomo Metal Steel for connecting rod and connecting rod
JP2015025162A (en) * 2013-07-25 2015-02-05 大同特殊鋼株式会社 Ferrite pearlite type non-heat treated steel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3780999B2 (en) * 2002-10-17 2006-05-31 住友金属工業株式会社 Manufacturing method of non-tempered steel hot forged member
EP1605071B1 (en) * 2003-03-18 2008-10-15 Sumitomo Metal Industries, Ltd. Non-quenched/tempered connecting rod and method of producing the same
US20070227634A1 (en) * 2005-03-16 2007-10-04 Mittal Steel Gandrange Forged or Stamped Average or Small Size Mechanical Part

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199967A (en) * 1998-01-07 1999-07-27 Sumitomo Metal Ind Ltd High strength and low ductility non-heat treated steel excellent in machinability
JP2014025105A (en) * 2012-07-26 2014-02-06 Nippon Steel & Sumitomo Metal Steel for connecting rod and connecting rod
JP2015025162A (en) * 2013-07-25 2015-02-05 大同特殊鋼株式会社 Ferrite pearlite type non-heat treated steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115747674A (en) * 2022-11-28 2023-03-07 南京工程学院 Low-cost hydrogen-embrittlement-resistant non-quenched and tempered steel for direct cutting of super-large cross section and preparation method and application thereof
CN115747674B (en) * 2022-11-28 2023-09-29 南京工程学院 Low-cost hydrogen embrittlement-resistant non-quenched and tempered steel for direct cutting of oversized section, and preparation method and application thereof
CN116607079A (en) * 2023-07-07 2023-08-18 江苏三鑫特殊金属材料股份有限公司 Rust-proof wear-resistant high-fragmentation free-cutting carbon steel and preparation method thereof

Also Published As

Publication number Publication date
CN109312434A (en) 2019-02-05
CN109312434B (en) 2021-05-11
JP6673475B2 (en) 2020-03-25
JPWO2017213166A1 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
JP7063386B2 (en) Manufacturing method of steel materials, forged heat-treated products, and forged heat-treated products
JP6384629B2 (en) Induction hardening steel
JP6384626B2 (en) Induction hardening steel
JP6528898B2 (en) Non-tempered bar
WO2016013205A1 (en) Low-alloy steel pipe for oil well
JP6384630B2 (en) Induction hardening steel
JP6384628B2 (en) Induction hardening steel
JP6384627B2 (en) Induction hardening steel
JP7445119B2 (en) Machine parts and methods of manufacturing machine parts
JP6614393B2 (en) Non-tempered steel bar
JP6673475B2 (en) Rolled steel bars for hot forging
JP2017193767A (en) Steel for cold forging and manufacturing method therefor
EP3272896B1 (en) Age-hardenable steel, and method for manufacturing components using age-hardenable steel
JP6298898B2 (en) Rolled steel for cracking connecting rod
JP6465206B2 (en) Hot-rolled bar wire, parts and method for producing hot-rolled bar wire
JP2019218584A (en) bolt
JP7200646B2 (en) CARBURIZED PARTS, MATERIALS FOR CARBURIZED PARTS, AND PRODUCTION METHOD THEREOF
JP2017115190A (en) Hot rolled bar wire rod
JP5302704B2 (en) Machine structural steel for cold working, its manufacturing method and machine structural parts
JP2023060831A (en) steel piston
JP2001131680A (en) High strength and high toughness non-heattreated cold formed parts and method for producing same
JPWO2019088190A1 (en) Hot forged steel

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018521747

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810340

Country of ref document: EP

Kind code of ref document: A1