WO2017213163A1 - Piezoelectric vibration element - Google Patents

Piezoelectric vibration element Download PDF

Info

Publication number
WO2017213163A1
WO2017213163A1 PCT/JP2017/021058 JP2017021058W WO2017213163A1 WO 2017213163 A1 WO2017213163 A1 WO 2017213163A1 JP 2017021058 W JP2017021058 W JP 2017021058W WO 2017213163 A1 WO2017213163 A1 WO 2017213163A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
viewed
piezoelectric
vibrating
electrode
Prior art date
Application number
PCT/JP2017/021058
Other languages
French (fr)
Japanese (ja)
Inventor
直 與田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2017213163A1 publication Critical patent/WO2017213163A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz

Definitions

  • the present invention relates to a piezoelectric vibration element, and more particularly to a piezoelectric vibration element having a structure in which a piezoelectric piece is sandwiched between two excitation electrodes.
  • FIG. 10 is an exploded perspective view of the piezoelectric device described in Patent Document 1.
  • FIG. 10 is simply referred to as the vertical direction.
  • the piezoelectric device includes a lid plate 510, a base plate 520, a terminal electrode 524, a piezoelectric vibration element 530, and bonding materials 540 and 542.
  • the lid plate 510, the piezoelectric vibration element 530, and the base plate 520 are stacked in this order from the upper side to the lower side.
  • the excitation electrode 536 is a rectangular electrode provided at the center of the upper surface of the piezoelectric vibrating piece.
  • the extraction electrode 537 is connected to the excitation electrode 536 and is extracted to a corner on the upper surface of the piezoelectric vibration element 530. Accordingly, the lead electrode 537 is connected to the terminal electrode 524 provided on the lower surface of the base plate 520 via the conductor provided at the corner of the piezoelectric vibration element 530 and the corner of the base plate 520.
  • the bonding material 540 bonds the lid plate 510 and the piezoelectric vibration element 530 together.
  • the bonding material 540 is provided on the outer edge of the lower surface of the lid plate 510 and the outer edge of the upper surface of the piezoelectric vibration element 530 and has a rectangular ring shape.
  • the bonding material 542 bonds the piezoelectric vibration element 530 and the base plate 520 to each other.
  • the bonding material 542 is provided on the outer edge of the lower surface of the piezoelectric vibration element 530 and the outer edge of the upper surface of the base plate 520, and has a rectangular ring shape.
  • the material of the bonding materials 540 and 542 is, for example, a metal.
  • the bonding materials 540 and 542 realize hermetic sealing of the piezoelectric device.
  • the extraction electrode 537 when viewed from above, the extraction electrode 537 is arranged so as to overlap the metal bonding material 540.
  • the electrostatic capacitance due to the bonding materials 540 and 542 provided on the upper surface and the lower surface of the piezoelectric vibration element 530 includes the excitation electrode 536 provided on the upper surface of the piezoelectric vibration element 530 and the excitation electrode ( (Not shown).
  • the electrostatic capacitance on the equivalent circuit of a piezoelectric device becomes large.
  • Increasing the capacitance when the piezoelectric device is represented by an equivalent circuit causes problems such as an increase in power consumption due to a decrease in the vibration efficiency of the piezoelectric device and an increased sensitivity to external electromagnetic noise. .
  • an object of the present invention is to provide a piezoelectric vibration element that can suppress an increase in capacitance.
  • a piezoelectric vibration element includes a piezoelectric piece having a first main surface and a second main surface, a first excitation electrode, a second excitation electrode, and a first extraction electrode.
  • a piezoelectric vibration element comprising: a through conductor, wherein the piezoelectric piece is separated from the vibration part when viewed from a normal direction of the vibration part and the first main surface.
  • the first excitation electrode is provided on the first main surface of the vibrating portion.
  • the second excitation electrode is provided on the second main surface of the vibrating portion; the first extraction electrode is connected to the first excitation electrode; and
  • the first connecting portion is provided on the first main surface, the through conductor is connected to the first lead electrode, and the first main surface and the second main surface Passing through the piezoelectric piece so as to connect, at least a part of the through conductor is located in the first connecting portion when viewed from the normal direction of the first main surface, Features.
  • an increase in capacitance can be suppressed in the piezoelectric vibration element.
  • FIG. 1 is an exploded perspective view of the crystal unit 10.
  • FIG. 2 is an external perspective view of the crystal resonator element 13 as viewed from below.
  • FIG. 3 is an external perspective view of the substrate 16 as viewed from below.
  • FIG. 4 is a cross-sectional structure diagram of the crystal resonator element 13 taken along the line AA of FIG.
  • FIG. 5 is an exploded perspective view of the crystal unit 10a.
  • FIG. 6 is an external perspective view of the crystal resonator element 13a as viewed from below.
  • FIG. 7 is an exploded perspective view of the crystal unit 10b.
  • FIG. 8 is an external perspective view of the crystal resonator element 13b as viewed from below.
  • FIG. 9 is an exploded perspective view of the crystal unit 10c.
  • FIG. 10 is an exploded perspective view of the piezoelectric device described in Patent Document 1.
  • FIG. 10 is an exploded perspective view of the piezoelectric device described in Patent Document 1.
  • FIG. 10 is an exploded perspective view
  • FIG. 1 is an exploded perspective view of the crystal unit 10.
  • FIG. 2 is an external perspective view of the crystal resonator element 13 as viewed from below.
  • FIG. 3 is an external perspective view of the substrate 16 as viewed from below.
  • FIG. 4 is a cross-sectional structure diagram of the crystal resonator element 13 taken along the line AA of FIG.
  • the normal direction of the upper surface of the crystal piece (Quartz Crystal Blank) 14 of the crystal resonator element 13 is defined as the vertical direction.
  • the direction in which the long side extends is defined as the left-right direction
  • the direction in which the short side extends is defined as the front-rear direction.
  • the up-down direction, the front-rear direction, and the left-right direction are examples, and need not coincide with the up-down direction, the front-rear direction, and the left-right direction when the crystal unit 10 is actually used.
  • the crystal resonator 10 includes a cap 12, a crystal resonator element 13, and a substrate 16, as shown in FIG.
  • the crystal resonator element 13 includes a crystal piece 14, excitation electrodes 20 and 22, lead electrodes 24 and 26, bonding materials 36 and 38, a pad electrode 39, and a via-hole conductor v1.
  • the crystal piece 14 which is an example of a piezoelectric piece is a plate-like crystal piece having an upper surface which is an example of a first main surface and a lower surface which is an example of a second main surface.
  • the top surface of the crystal piece 14 has a rectangular shape with long sides extending in the left-right direction when viewed from above.
  • the crystal piece 14 is, for example, an AT cut type cut out from a rough crystal or the like at a predetermined angle.
  • the crystal piece 14 includes a vibrating portion 14a, a flange portion 14b, a frame portion 14c, and connecting portions 14d and 14e.
  • the vibration part 14a vibrates at a predetermined frequency and has a rectangular shape when viewed from above.
  • the frame portion 14c surrounds the periphery of the vibration portion 14a in a state of being separated from the vibration portion 14a when viewed from above. That is, the frame portion 14c, which is an example of the bonding material, has an annular shape whose outer shape is rectangular when viewed from above. However, the frame portion 14c is not directly connected to the vibrating portion 14a. Further, the frame portion 14c has a thickness equal to or greater than the thickness of the vibration portion 14a.
  • the thickness of the frame portion 14c and the thickness of the vibrating portion 14a are substantially equal.
  • thickness means the thickness of an up-down direction.
  • the upper surface of the frame portion 14c and the upper surface of the vibrating portion 14a are located at substantially the same height in the vertical direction.
  • the lower surface of the frame part 14c and the lower surface of the vibration part 14a are located at substantially the same height in the vertical direction.
  • the flange portion 14b is provided between the vibrating portion 14a and the frame portion 14c when viewed from above.
  • the flange portion 14b is in contact with the vibration portion 14a at the inner peripheral portion thereof and surrounds most of the periphery of the vibration portion 14a in a state of being in contact with the frame portion 14c at the outer peripheral portion thereof.
  • the flange portion 14b has a rectangular frame shape with a part cut when viewed from above.
  • the concave portion G1 is formed by the upper surface of the crystal piece 14 being depressed.
  • the flange part 14b is an area
  • the recess G1 is interrupted at the center of the left short side when viewed from above.
  • the recess G2 is interrupted at the center of the right short side.
  • the flange portion 14b is a region sandwiched from above and below by the concave portion G1 and the concave portion G2 in the crystal piece 14. Therefore, when viewed from above, the flange portion 14b has a shape in which the center of the short side on the right side and the center of the short side on the left side are interrupted.
  • connection part 14d which is an example of a 1st connection part has connected the center of the short side of the left side of the vibration part 14a, and the center of the short side of the left side of the frame part 14c, when it sees from upper side, It has a strip shape extending in the direction. Thereby, the recessed part G1 is interrupted in the center of the left short side. There is no step between the upper surface of the vibrating part 14a and the upper surface of the connecting part 14d. Further, there is no step between the upper surface of the frame portion 14c and the upper surface of the connecting portion 14d. In the present embodiment, the upper surface of the vibrating portion 14a, the upper surface of the frame portion 14c, and the upper surface of the connecting portion 14d are positioned at the same height in the vertical direction.
  • connection part 14e which is an example of a 2nd connection part has connected the center of the short side of the right side of the vibration part 14a, and the center of the short side of the right side of the frame part 14c, when it sees from the lower side, It has a strip shape extending in the left-right direction. Thereby, the recessed part G2 is interrupted in the center of the short side on the right side. There is no step between the lower surface of the vibrating portion 14a and the lower surface of the connecting portion 14e. Further, there is no step between the lower surface of the frame portion 14c and the lower surface of the connecting portion 14e. In the present embodiment, the lower surface of the vibration portion 14a, the lower surface of the frame portion 14c, and the lower surface of the connecting portion 14e are positioned at the same height in the vertical direction.
  • the portion of the lower surface of the crystal piece 14 that overlaps the connecting portion 14d is depressed as shown in FIG. That is, the recess G ⁇ b> 2 is provided on the lower surface of the crystal piece 14.
  • the part which overlaps with the connection part 14e in the upper surface of the crystal piece 14 is depressed as shown in FIG. That is, the concave portion G ⁇ b> 1 is provided on the upper surface of the crystal piece 14.
  • the left end of the connecting portion 14d is located near the boundary between the connecting portion 14d and the frame portion 14c.
  • the extraction electrode 26 which is an example of a second extraction electrode, is connected to the excitation electrode 22 at the left end and is provided on the lower surface of the coupling portion 14e.
  • the right end of the connecting portion 14e is located near the boundary between the connecting portion 14e and the frame portion 14c.
  • the excitation electrodes 20 and 22 and the extraction electrodes 24 and 26 have, for example, a configuration in which an Au layer is provided on a Cr underlayer by a plating method.
  • a via-hole conductor v1 which is an example of a through conductor, is connected to the extraction electrode 24 and penetrates the crystal piece 14 in the vertical direction so as to connect the upper surface and the lower surface. More specifically, the via-hole conductor v1 is located at the boundary between the connecting portion 14d and the frame portion 14c when viewed from above. Thereby, the via-hole conductor v ⁇ b> 1 is connected to the left end of the extraction electrode 24. Further, the right half of the via hole conductor v1 (an example of a part of the through conductor) is positioned at the connecting portion 14d when viewed from above, and the left half of the via hole conductor v1 is framed when viewed from above. It is located in the part 14c.
  • the via-hole conductor v1 has a structure in which a through hole penetrating the crystal piece 14 in the vertical direction is filled with a conductor.
  • the via-hole conductor v1 does not need to have a structure in which the through hole is filled with the conductor, and may have a structure in which the inner peripheral surface of the through hole is covered with the conductor.
  • the via-hole conductor v1 has a configuration in which, for example, a conductive paste containing a material of Ag or AgPd is filled in the via hole and then sintered.
  • the pad electrode 39 is provided on the lower surface of the crystal piece 14 and is a conductor that forms a circle when viewed from below.
  • the pad electrode 39 is connected to the lower end of the via-hole conductor v1.
  • the pad electrode 39 has, for example, a configuration in which an Au layer is provided on a Cr underlayer by a plating method.
  • the bonding material 36 is provided on the upper surface of the crystal piece 14 and is a rectangular frame-shaped conductor provided along the outer edge of the upper surface of the crystal piece 14.
  • the bonding material 36 functions as a sealing member that fills the gap between the cap 12 and the upper surface of the crystal piece 14.
  • the material of the bonding material 36 is, for example, Au.
  • the extraction electrode 24 is located in a region surrounded by the bonding material 36 and is disposed without overlapping the frame-shaped bonding material 36.
  • the distance between the bonding material 38 and the extraction electrode 24 can be made larger than the length of the bonding material 36 in the thickness direction. Therefore, the capacitive coupling between the extraction electrode 24 and the bonding material 36 can be reduced. As a result, the capacitance between the bonding material 36 and the bonding material 38 added via the extraction electrode 24 to the capacitance between the excitation electrode 20 and the excitation electrode 22 can be reduced. Furthermore, since the bonding material 36 and the extraction electrode 24 can be arranged without overlapping in plan view, the length in the thickness direction of the bonding material 36 at the overlapping portion with the extraction electrode 24 does not increase. Therefore, the thickness of the bonding material 36 becomes uniform, and the bonding strength of the bonding material 36 can be increased. As a result, the hermetic sealing of the crystal unit 10 can be reliably performed.
  • the bonding material 38 is a rectangular frame-shaped conductor provided on the lower surface of the crystal piece 14 and provided along the outer edge of the lower surface of the crystal piece 14. Thereby, when viewed from the lower side, the extraction electrode 26 is located in a region surrounded by the bonding material 38 and is not in contact with the bonding material 38.
  • the bonding material 38 functions as a sealing member that fills a gap between the upper surface of the substrate body 17 and the lower surface of the crystal piece 14.
  • the material of the bonding material 38 is, for example, Au.
  • the extraction electrode 26 is located in a region surrounded by the bonding material 36 and is disposed without overlapping the frame-shaped bonding material 38. Thereby, the distance between the bonding material 38 and the extraction electrode 26 can be made larger than the length of the bonding material 38 in the thickness direction.
  • the cap 12 is a box-shaped housing having a rectangular parallelepiped shape with a space inside, and has a shape substantially coincident with the upper surface of the crystal piece 14 when viewed from above. Further, the lower surface of the cap 12 is open. The outer edge of the opening of the cap 12 has a shape that substantially matches the bonding material 36. The cap 12 is fixed on the upper surface of the crystal piece 14 by bonding the outer edge of the opening to the bonding material 36. Thereby, the upper surface of the crystal piece 14 is covered with the cap 12. However, since the cap 12 has a box shape, it is not in contact with the excitation electrode 20. Therefore, the cap 12 does not inhibit the vibration of the crystal piece 14.
  • the substrate 16 includes a substrate body 17, mounting electrodes 28 and 30, external electrodes 32 and 34, and via-hole conductors v2 and v3.
  • the substrate body 17 is a flat plate having a rectangular shape when viewed from above, and has an upper surface and a lower surface.
  • a recess G ⁇ b> 3 is provided on the upper surface of the substrate body 17.
  • the recess G3 has a rectangular shape with long sides extending in the left-right direction when viewed from above.
  • Examples of the material of the substrate body 17 include ceramic insulating materials such as an aluminum oxide sintered body, a mullite sintered body, an aluminum nitride sintered body, a silicon carbide sintered body, and a glass ceramic sintered body, Glass, silicon and the like.
  • ceramic insulating materials such as an aluminum oxide sintered body, a mullite sintered body, an aluminum nitride sintered body, a silicon carbide sintered body, and a glass ceramic sintered body, Glass, silicon and the like.
  • the mounting electrode 28 is provided on the upper surface of the substrate body 17 and is adjacent to the center of the short side on the left side of the recess G3 when viewed from above.
  • the mounting electrode 30 is provided on the upper surface of the substrate body 17 and is adjacent to the center of the short side on the right side of the recess G3 when viewed from above.
  • the external electrode 32 is a rectangular conductor which is provided on the lower surface of the substrate body 17 and is adjacent to the left short side of the substrate body 17 when viewed from below.
  • the external electrode 34 is provided on the lower surface of the substrate body 17 and is a rectangular conductor adjacent to the right short side of the substrate body 17 when viewed from below.
  • the external electrodes 32 and 34 have, for example, a configuration in which an Au layer is provided on a Cr underlayer by a plating method.
  • the via-hole conductor v2 penetrates the substrate body 17 in the vertical direction, and connects the mounting electrode 28 and the external electrode 32.
  • the via-hole conductor v3 penetrates the substrate body 17 in the vertical direction, and connects the mounting electrode 30 and the external electrode 34.
  • the via-hole conductors v2 and v3 have a configuration in which, for example, a conductive paste containing Ag and AgPd is filled in the via-hole and then sintered.
  • the crystal resonator element 13 is mounted on the upper surface of the substrate 16.
  • the pad electrode 39 is connected to the mounting electrode 28 by solder or the like.
  • the excitation electrode 20 and the external electrode 32 are connected via the extraction electrode 24, the via-hole conductor v1, the pad electrode 39, the mounting electrode 28, and the via-hole conductor v2.
  • the right end of the extraction electrode 26 is connected to the mounting electrode 30 by solder or the like.
  • the excitation electrode 22 and the external electrode 34 are connected via the extraction electrode 26, the mounting electrode 30, and the via-hole conductor v3.
  • a bonding material 38 is provided on the lower surface of the crystal piece 14.
  • the bonding material 38 bonds the outer edge of the lower surface of the crystal piece 14 and the outer edge of the upper surface of the substrate body 17.
  • the recess G ⁇ b> 3 is provided on the upper surface of the substrate body 17, the substrate body 17 is not in contact with the excitation electrode 22. Therefore, the substrate body 17 does not hinder the vibration of the crystal piece 14.
  • the via-hole conductor v1 is connected to the extraction electrode 24 and penetrates the crystal piece 14 so as to connect the upper surface and the lower surface.
  • the right half of the via-hole conductor v1 is positioned at the connecting portion 14d when viewed from above, and the left half of the via-hole conductor v1 is positioned at the frame portion 14c when viewed from above.
  • the via-hole conductor v1 when viewed from above, the via-hole conductor v1 is positioned in the vicinity of the inner peripheral portion of the frame portion 14c and is not positioned in the vicinity of the outer peripheral portion of the frame portion 14c.
  • the bonding material 36 is along the outer peripheral portion of the frame portion 14c when viewed from above. Therefore, the contact of the via-hole conductor v1 and the extraction electrode 24 with the bonding material 36 and the cap 12 is suppressed. As a result, the conduction between the excitation electrode 20 and the bonding material 36 is suppressed, and the capacitance between the bonding material 36 and the bonding material 38 is added to the capacitance between the excitation electrode 20 and the excitation electrode 22. Is suppressed.
  • the crystal resonator element 13 it is possible to suppress an increase in capacitance added to the capacitance between the excitation electrode 20 and the excitation electrode 22. And the power consumption resulting from the vibration efficiency of the crystal vibration element 13 is suppressed, and the influence of the electromagnetic noise from the outside is reduced.
  • the crystal resonator element 13 it is possible to suppress the vibration from leaking out of the vibrating portion 14a. More specifically, in the crystal resonator element 13, the right half of the via-hole conductor v1 is located at the connecting portion 14d when viewed from above. As a result, the acoustic impedance changes in the portion of the connecting portion 14d where the via-hole conductor v1 is provided. Therefore, even if the vibration generated in the vibration part 14a is transmitted through the connecting part 14d and leaks to the frame part 14c, it is reflected to the vibration part 14a side in the via-hole conductor v1. As a result, according to the crystal resonator element 13, it is possible to suppress vibration from leaking out of the vibrating portion 14 a.
  • the right half of the via-hole conductor v ⁇ b> 1 is located at the connecting portion 14 d when viewed from above, so that the via-hole conductor v ⁇ b> 1 is positioned closer to the center of the crystal resonator element 13. It becomes like this.
  • the crystal resonator element 13 the element can be miniaturized.
  • the via-hole conductor v1 has a structure in which the through hole is filled with the conductor. Therefore, the direct current resistance value of the via-hole conductor v1 is reduced. Furthermore, occurrence of disconnection of the via-hole conductor v1 is suppressed.
  • the crystal resonator element 13 it is possible to suppress the vibration from leaking out of the vibrating portion 14a. More specifically, in the crystal resonator element 13, the flange portion 14b surrounds most of the periphery of the vibrating portion 14a when viewed from above. Moreover, the thickness of the flange part 14b is smaller than the thickness of the vibration part 14a. Thereby, the vibration generated in the vibration part 14a is suppressed from being transmitted to the flange part 14b, and is confined in the vibration part 14a. That is, the leakage of vibrations outside the vibrating portion 14a is suppressed.
  • the leakage of vibration outside the vibrating portion 14a is suppressed for the following reason. More specifically, when viewed from above, a portion of the lower surface of the crystal piece 14 that overlaps the connecting portion 14d is depressed as shown in FIG. That is, the recess G2 is provided. Thereby, the thickness of the part in which the connection part 14d was provided in the crystal piece 14 becomes small. As a result, the leakage of vibration from the portion of the crystal piece 14 where the connecting portion 14d is provided to the outside of the vibrating portion 14a is suppressed. For the same reason, the leakage of vibration from the portion of the crystal piece 14 where the connecting portion 14e is provided to the outside of the vibrating portion 14a is suppressed.
  • FIG. 5 is an exploded perspective view of the crystal unit 10a.
  • FIG. 6 is an external perspective view of the crystal resonator element 13a as viewed from below.
  • the crystal resonator element 13a is different from the crystal resonator element 13 at a position where the connecting portions 14d and 14e are provided.
  • the crystal resonator element 13a will be described focusing on the difference.
  • the connecting portions 14d and 14e are connected to the diagonal of the vibrating portion 14a when viewed from above. More specifically, when viewed from above, the connecting portion 14d connects the left rear corner of the vibrating portion 14a and the left rear corner of the inner peripheral portion of the frame portion 14c. When viewed from above, the connecting portion 14e connects the right front corner of the vibrating portion 14a and the right front corner of the inner peripheral portion of the frame portion 14c.
  • the extraction electrode 24 is connected to the left rear corner of the excitation electrode 20 and is provided on the upper surface of the coupling portion 14d.
  • the via hole conductor v ⁇ b> 1 is provided at the boundary between the connecting portion 14 d and the frame portion 14 c and is connected to the extraction electrode 24.
  • the extraction electrode 26 is connected to the right front corner of the excitation electrode 20 and is provided on the upper surface of the coupling portion 14e.
  • the other structure of the crystal oscillation element 13a is the same as the crystal oscillation element 13, description is abbreviate
  • the crystal resonator element 13 a configured as described above, an increase in capacitance between the excitation electrode 20 and the excitation electrode 22 can be suppressed for the same reason as the crystal resonator element 13. Further, according to the crystal resonator element 13a, the leakage of the vibration to the outside of the vibration portion 14a is suppressed for the same reason as the crystal resonator element 13. Further, according to the crystal resonator element 13a, the element can be miniaturized for the same reason as the crystal resonator element 13.
  • the direct current resistance value of the via-hole conductor v1 is reduced and the occurrence of disconnection of the via-hole conductor v1 is suppressed.
  • the connecting portions 14d and 14e are connected to the diagonal of the vibrating portion 14a when viewed from above.
  • An AT-cut quartz piece generally used as a quartz oscillator causes a frequency change proportional to external stress. The magnitude of the change depends on the angle with respect to the crystal crystal axis in the direction in which stress is applied, and is the smallest on the crystal axis rotated 60 degrees from the X direction.
  • the long side direction of a typical crystal resonator element is the X direction.
  • FIG. 7 is an exploded perspective view of the crystal unit 10b.
  • FIG. 8 is an external perspective view of the crystal resonator element 13b as viewed from below.
  • the crystal resonator element 13b is different from the crystal resonator element 13 in the position where the connecting portions 14d and 14e are provided.
  • the crystal resonator element 13b will be described focusing on the difference.
  • the connecting portions 14d and 14e are connected to the short side on the left side of the vibrating portion 14a when viewed from above. More specifically, the connecting portion 14d is connected slightly to the rear side with respect to the center of the short side on the left side of the vibrating portion 14a when viewed from above.
  • the connection part 14e is slightly connected to the front side with respect to the center of the short side on the left side of the vibration part 14a when viewed from below. Thereby, the connection part 14d and the connection part 14e are slightly shifted in the front-back direction when viewed from above.
  • the extraction electrode 24 is connected to the left short side of the excitation electrode 20 and is provided on the upper surface of the coupling portion 14d.
  • the via hole conductor v ⁇ b> 1 is provided at the boundary between the connecting portion 14 d and the frame portion 14 c and is connected to the extraction electrode 24.
  • the extraction electrode 26 is connected to the left short side of the excitation electrode 20 and is provided on the upper surface of the coupling portion 14e.
  • the position where the via-hole conductor v3 is provided on the substrate 16b is the same as the position where the via-hole conductor v3 is provided on the substrate 16. Therefore, the left end of the extraction electrode 26 and the via-hole conductor v3 are greatly separated. Therefore, in the substrate 16b, the mounting electrode 30 extends along the outer edge of the recess G3 from the vicinity of the center of the short side on the left side of the recess G3 to the vicinity of the center of the short side on the right side of the recess G3 when viewed from above. Yes. Thereby, the mounting electrode 30 connects the left end of the extraction electrode 26 and the via-hole conductor v3.
  • the other structure of the crystal oscillation element 13b is the same as the crystal oscillation element 13, description is abbreviate
  • the crystal resonator element 13b configured as described above, an increase in the capacitance between the excitation electrode 20 and the excitation electrode 22 can be suppressed for the same reason as the crystal resonator element 13. Further, according to the crystal resonator element 13b, the leakage of vibration outside the vibrating portion 14a is suppressed for the same reason as the crystal resonator element 13. Further, according to the crystal resonator element 13b, the element can be miniaturized for the same reason as the crystal resonator element 13.
  • the direct current resistance value of the via-hole conductor v1 is reduced and the occurrence of disconnection of the via-hole conductor v1 is suppressed.
  • FIG. 9 is an exploded perspective view of the crystal unit 10c.
  • a perspective view of the crystal resonator element 13c as viewed from below is the same as the crystal resonator element 13, and therefore FIG.
  • the crystal resonator element 13c is different from the crystal resonator element 13 in the line width of the connecting portion 14d.
  • the crystal resonator element 13c will be described focusing on the difference.
  • the line width of the connecting portion 14d is larger than the line width of the connecting portion 14e.
  • the line width of the connecting portion 14d means a width in a direction orthogonal to the direction in which the connecting portion 14d extends (that is, the front-rear direction) when viewed from above.
  • the line width of the connecting portion 14e means a width in a direction perpendicular to the direction in which the connecting portion 14e extends (that is, the front-rear direction) when viewed from above.
  • crystal resonator element 13c configured as described above, an increase in capacitance between the excitation electrode 20 and the excitation electrode 22 can be suppressed for the same reason as the crystal resonator element 13. Further, according to the crystal resonator element 13c, the leakage of vibration to the outside of the vibration portion 14a is suppressed for the same reason as the crystal resonator element 13. Further, according to the crystal resonator element 13c, the element can be miniaturized for the same reason as the crystal resonator element 13.
  • the direct-current resistance value of the via-hole conductor v1 is reduced and the occurrence of disconnection of the via-hole conductor v1 is suppressed.
  • the via-hole conductor v1 can be thickened. More specifically, a part of the via-hole conductor v1 is provided in the connecting portion 14d. Thereby, it is suppressed that the vibration which generate
  • the via-hole conductor v1 can be increased. As a result, the direct current resistance value of the via-hole conductor v1 is reduced. Further, since the via hole conductor is not provided in the connecting portion 14e, the leakage of vibration from the vibrating portion 14a to the frame portion 14c is suppressed by reducing the line width of the connecting portion 14e.
  • the piezoelectric resonator element according to the present invention is not limited to the crystal resonator elements 13, 13a to 13c, and can be changed within the scope of the gist thereof.
  • a part of the via-hole conductor v1 is located at the connecting portion 14d when viewed from the upper side.
  • the entire via-hole conductor v1 may be located at the connecting portion 14d when viewed from above.
  • the crystal piece 14 is an AT-cut crystal piece, it may be a BT-cut crystal piece that vibrates in the thickness-slip mode in the same manner. Further, instead of the crystal piece 14, a piezoelectric piece including lithium tantalate, lithium niobate, or piezoelectric ceramic may be used.
  • the vibration part 14a of the crystal piece 14 may have a so-called mesa structure. That is, the thickness of the outer edge of the vibrating portion 14a may be smaller than the thickness of the portion excluding the outer edge of the vibrating portion 14a. Thereby, it is suppressed more effectively that a vibration leaks from the vibration part 14a.
  • the present invention is useful for piezoelectric vibration elements, and is particularly excellent in that an increase in capacitance can be suppressed.
  • Crystal resonator 12 Cap 13, 13a to 13c: Crystal vibrating element 14: Crystal piece 14a: Vibrating portion 14b: Flange portion 14c: Frame portion 14d, 14e: Connecting portion 16, 16b: Substrate 17: Substrate bodies 20, 22: Excitation electrodes 24, 26: Lead electrodes 36, 38: Bonding material 39: Pad electrodes G1 to G3: Recesses v1 to v3: Via hole conductors

Abstract

Provided is a piezoelectric vibration element capable of suppressing an increase in capacitance between excitation electrodes. This piezoelectric vibration element is a piezoelectric vibration element comprising: a piezoelectric piece that has first and second principal surfaces; first and second excitation electrodes; a first extraction electrode; and a through conductor. The piezoelectric piece includes: a vibrating part; a frame part that surrounds the periphery of the vibrating part and has a thickness which is greater than or equal to the thickness of the vibrating part; and a first connection part that connects the vibrating part and the frame part. The first and second excitation electrodes are respectively provided on first and second principal surfaces of the vibrating part. The first extraction electrode is connected to the first excitation electrode and is provided on a first principal surface of the first connection part. The through conductor is connected to the first extraction electrode and penetrates the piezoelectric piece so as to connect the first principal surface and the second principal surface. At least a portion of the through conductor is located in the first connection part when viewed from the normal direction of the first principal surface.

Description

圧電振動素子Piezoelectric vibration element
 本発明は、圧電振動素子、特に、圧電片を2つの励振電極で挟んだ構造を有する圧電振動素子に関する。 The present invention relates to a piezoelectric vibration element, and more particularly to a piezoelectric vibration element having a structure in which a piezoelectric piece is sandwiched between two excitation electrodes.
 従来の圧電振動素子に関する発明としては、例えば、特許文献1に記載の圧電デバイスが知られている。図10は、特許文献1に記載の圧電デバイスの分解斜視図である。以下では、図10における上下方向を単に上下方向と呼ぶ。 As an invention related to a conventional piezoelectric vibration element, for example, a piezoelectric device described in Patent Document 1 is known. FIG. 10 is an exploded perspective view of the piezoelectric device described in Patent Document 1. FIG. Hereinafter, the vertical direction in FIG. 10 is simply referred to as the vertical direction.
 該圧電デバイスは、リッド板510、ベース板520、端子電極524、圧電振動素子530及び接合材540,542を備えている。リッド板510、圧電振動素子530及びベース板520は、上側から下側へとこの順に積み重ねられている。励振電極536は、圧電振動片の上面の中央に設けられている長方形状の電極である。引き出し電極537は、励振電極536に接続されており、圧電振動素子530の上面の角に引き出されている。これにより、引き出し電極537は、圧電振動素子530の角及びベース板520の角に設けられた導体を介して、ベース板520の下面に設けられている端子電極524に接続されている。 The piezoelectric device includes a lid plate 510, a base plate 520, a terminal electrode 524, a piezoelectric vibration element 530, and bonding materials 540 and 542. The lid plate 510, the piezoelectric vibration element 530, and the base plate 520 are stacked in this order from the upper side to the lower side. The excitation electrode 536 is a rectangular electrode provided at the center of the upper surface of the piezoelectric vibrating piece. The extraction electrode 537 is connected to the excitation electrode 536 and is extracted to a corner on the upper surface of the piezoelectric vibration element 530. Accordingly, the lead electrode 537 is connected to the terminal electrode 524 provided on the lower surface of the base plate 520 via the conductor provided at the corner of the piezoelectric vibration element 530 and the corner of the base plate 520.
 接合材540は、リッド板510と圧電振動素子530とを接合している。接合材540は、リッド板510の下面の外縁及び圧電振動素子530の上面の外縁に設けられており、長方形状の環状をなしている。接合材542は、圧電振動素子530とベース板520とを接合している。接合材542は、圧電振動素子530の下面の外縁及びベース板520の上面の外縁に設けられており、長方形状の環状をなしている。接合材540,542の材料は、例えば、金属である。接合材540,542により、圧電デバイスの気密封止が実現されている。 The bonding material 540 bonds the lid plate 510 and the piezoelectric vibration element 530 together. The bonding material 540 is provided on the outer edge of the lower surface of the lid plate 510 and the outer edge of the upper surface of the piezoelectric vibration element 530 and has a rectangular ring shape. The bonding material 542 bonds the piezoelectric vibration element 530 and the base plate 520 to each other. The bonding material 542 is provided on the outer edge of the lower surface of the piezoelectric vibration element 530 and the outer edge of the upper surface of the base plate 520, and has a rectangular ring shape. The material of the bonding materials 540 and 542 is, for example, a metal. The bonding materials 540 and 542 realize hermetic sealing of the piezoelectric device.
特開2015-173366号公報Japanese Patent Laying-Open No. 2015-173366
 ところで、特許文献1に記載の圧電デバイスでは、上側から見たときに、引き出し電極537が金属の接合材540と重なるように配置にされる。そのため、圧電振動素子530の上面と下面とに設けられた接合材540,542による静電容量が、圧電振動素子530の上面に設けられている励振電極536と下面に設けられている励振電極(図示せず)との間の静電容量に付加される。このため、圧電デバイスの等価回路上の静電容量が大きくなるという問題がある。圧電デバイスを等価回路で表したときの静電容量が増加することで、圧電デバイスの振動効率の低下による消費電力の上昇や、外部からの電磁ノイズの影響を受けやすくなる等の問題が発生する。 By the way, in the piezoelectric device described in Patent Document 1, when viewed from above, the extraction electrode 537 is arranged so as to overlap the metal bonding material 540. For this reason, the electrostatic capacitance due to the bonding materials 540 and 542 provided on the upper surface and the lower surface of the piezoelectric vibration element 530 includes the excitation electrode 536 provided on the upper surface of the piezoelectric vibration element 530 and the excitation electrode ( (Not shown). For this reason, there exists a problem that the electrostatic capacitance on the equivalent circuit of a piezoelectric device becomes large. Increasing the capacitance when the piezoelectric device is represented by an equivalent circuit causes problems such as an increase in power consumption due to a decrease in the vibration efficiency of the piezoelectric device and an increased sensitivity to external electromagnetic noise. .
 そこで、本発明の目的は、静電容量の増大を抑制できる圧電振動素子を提供することである。 Therefore, an object of the present invention is to provide a piezoelectric vibration element that can suppress an increase in capacitance.
 本発明の一形態である圧電振動素子は、第1の主面及び第2の主面を有する圧電片と、第1の励振電極と、第2の励振電極と、第1の引き出し電極と、貫通導体と、を備えている圧電振動素子であって、前記圧電片は、振動部と、前記第1の主面の法線方向から見たときに、前記振動部から外側に離れて前記振動部の周囲を囲み、かつ、前記振動部の厚み以上の厚みを有する枠部と、前記第1の主面の法線方向から見たときに、前記振動部と前記枠部とを連結する第1の連結部と、を含んでおり、前記振動部の前記第1の主面と前記第1の連結部の前記第1の主面との間には段差がなく、前記枠部の前記第1の主面と前記第1の連結部の前記第1の主面との間には段差がなく、前記第1の励振電極は、前記振動部の前記第1の主面上に設けられており、前記第2の励振電極は、前記振動部の前記第2の主面上に設けられており、前記第1の引き出し電極は、前記第1の励振電極に接続され、かつ、前記第1の連結部の前記第1の主面上に設けられており、前記貫通導体は、前記第1の引き出し電極に接続されると共に、前記第1の主面と前記第2の主面とを繋ぐように前記圧電片を貫通し、前記貫通導体の少なくとも一部は、前記第1の主面の法線方向から見たときに、前記第1の連結部に位置していること、を特徴とする。 A piezoelectric vibration element according to one embodiment of the present invention includes a piezoelectric piece having a first main surface and a second main surface, a first excitation electrode, a second excitation electrode, and a first extraction electrode. A piezoelectric vibration element comprising: a through conductor, wherein the piezoelectric piece is separated from the vibration part when viewed from a normal direction of the vibration part and the first main surface. A frame portion surrounding the portion and having a thickness equal to or greater than a thickness of the vibration portion, and a first portion connecting the vibration portion and the frame portion when viewed from a normal direction of the first main surface. There is no step between the first main surface of the vibrating portion and the first main surface of the first connecting portion, and the first portion of the frame portion. There is no step between the first main surface and the first main surface of the first connecting portion, and the first excitation electrode is provided on the first main surface of the vibrating portion. The second excitation electrode is provided on the second main surface of the vibrating portion; the first extraction electrode is connected to the first excitation electrode; and The first connecting portion is provided on the first main surface, the through conductor is connected to the first lead electrode, and the first main surface and the second main surface Passing through the piezoelectric piece so as to connect, at least a part of the through conductor is located in the first connecting portion when viewed from the normal direction of the first main surface, Features.
 本発明によれば、圧電振動素子において静電容量の増大を抑制できる。 According to the present invention, an increase in capacitance can be suppressed in the piezoelectric vibration element.
図1は、水晶振動子10の分解斜視図である。FIG. 1 is an exploded perspective view of the crystal unit 10. 図2は、水晶振動素子13を下側から見た外観斜視図である。FIG. 2 is an external perspective view of the crystal resonator element 13 as viewed from below. 図3は、基板16を下側から見た外観斜視図である。FIG. 3 is an external perspective view of the substrate 16 as viewed from below. 図4は、図1のA-Aにおける水晶振動素子13の断面構造図である。FIG. 4 is a cross-sectional structure diagram of the crystal resonator element 13 taken along the line AA of FIG. 図5は、水晶振動子10aの分解斜視図である。FIG. 5 is an exploded perspective view of the crystal unit 10a. 図6は、水晶振動素子13aを下側から見た外観斜視図である。FIG. 6 is an external perspective view of the crystal resonator element 13a as viewed from below. 図7は、水晶振動子10bの分解斜視図である。FIG. 7 is an exploded perspective view of the crystal unit 10b. 図8は、水晶振動素子13bを下側から見た外観斜視図である。FIG. 8 is an external perspective view of the crystal resonator element 13b as viewed from below. 図9は、水晶振動子10cの分解斜視図である。FIG. 9 is an exploded perspective view of the crystal unit 10c. 図10は、特許文献1に記載の圧電デバイスの分解斜視図である。FIG. 10 is an exploded perspective view of the piezoelectric device described in Patent Document 1. FIG.
(実施形態)
 以下に、一実施形態に係る水晶振動素子(Quartz Crystal Resonator)13を備えた水晶振動子(Quartz Crystal Resonator Unit)10について図面を参照しながら説明する。図1は、水晶振動子10の分解斜視図である。図2は、水晶振動素子13を下側から見た外観斜視図である。図3は、基板16を下側から見た外観斜視図である。図4は、図1のA-Aにおける水晶振動素子13の断面構造図である。
(Embodiment)
Hereinafter, a crystal resonator (Quartz Crystal Resonator Unit) 10 including a crystal resonator element (Quartz Crystal Resonator) 13 according to an embodiment will be described with reference to the drawings. FIG. 1 is an exploded perspective view of the crystal unit 10. FIG. 2 is an external perspective view of the crystal resonator element 13 as viewed from below. FIG. 3 is an external perspective view of the substrate 16 as viewed from below. FIG. 4 is a cross-sectional structure diagram of the crystal resonator element 13 taken along the line AA of FIG.
 以下では、水晶振動素子13の水晶片(Quartz Crystal Blank)14の上面の法線方向を上下方向と定義する。また、水晶片14を上側から見たときに、長辺が延びる方向を左右方向と定義し、短辺が延びる方向を前後方向と定義する。ただし、上下方向、前後方向及び左右方向は、一例であり、水晶振動子10が実際に使用される際の上下方向、前後方向及び左右方向と一致している必要はない。 Hereinafter, the normal direction of the upper surface of the crystal piece (Quartz Crystal Blank) 14 of the crystal resonator element 13 is defined as the vertical direction. Further, when the crystal piece 14 is viewed from above, the direction in which the long side extends is defined as the left-right direction, and the direction in which the short side extends is defined as the front-rear direction. However, the up-down direction, the front-rear direction, and the left-right direction are examples, and need not coincide with the up-down direction, the front-rear direction, and the left-right direction when the crystal unit 10 is actually used.
 水晶振動子10は、図1に示すように、キャップ12、水晶振動素子13及び基板16を備えている。水晶振動素子13は、図1及び図2に示すように、水晶片14、励振電極20,22、引き出し電極24,26、接合材36,38、パッド電極39及びビアホール導体v1を備えている。 The crystal resonator 10 includes a cap 12, a crystal resonator element 13, and a substrate 16, as shown in FIG. As shown in FIGS. 1 and 2, the crystal resonator element 13 includes a crystal piece 14, excitation electrodes 20 and 22, lead electrodes 24 and 26, bonding materials 36 and 38, a pad electrode 39, and a via-hole conductor v1.
 圧電片の一例である水晶片14は、第1の主面の一例である上面及び第2の主面の一例である下面を有する板状の水晶片である。水晶片14の上面は、上側から見たときに、左右方向に延びる長辺を有する長方形状をなしている。水晶片14は、例えば、水晶の原石などから所定の角度で切り出されたATカット型である。 The crystal piece 14 which is an example of a piezoelectric piece is a plate-like crystal piece having an upper surface which is an example of a first main surface and a lower surface which is an example of a second main surface. The top surface of the crystal piece 14 has a rectangular shape with long sides extending in the left-right direction when viewed from above. The crystal piece 14 is, for example, an AT cut type cut out from a rough crystal or the like at a predetermined angle.
 水晶片14は、振動部14a、フランジ部14b、枠部14c及び連結部14d,14eを含んでいる。振動部14aは、所定の周波数で振動し、上側から見たときに、長方形状をなしている。枠部14cは、上側から見たときに、振動部14aから外側に離れた状態で振動部14aの周囲を囲んでいる。すなわち、接合材の一例である枠部14cは、上側から見たときに、外形が長方形状である環状形状をなしている。ただし、枠部14cは、振動部14aに対して直接に接続されていない。また、枠部14cは、振動部14aの厚み以上の厚みを有している。本実施形態では、枠部14cの厚みと振動部14aの厚みとは実質的に等しい。以下では、厚みとは、上下方向の厚みを意味する。また、枠部14cの上面と振動部14aの上面とは、上下方向において実質的に同じ高さに位置している。枠部14cの下面と振動部14aの下面とは、上下方向において実質的に同じ高さに位置している。 The crystal piece 14 includes a vibrating portion 14a, a flange portion 14b, a frame portion 14c, and connecting portions 14d and 14e. The vibration part 14a vibrates at a predetermined frequency and has a rectangular shape when viewed from above. The frame portion 14c surrounds the periphery of the vibration portion 14a in a state of being separated from the vibration portion 14a when viewed from above. That is, the frame portion 14c, which is an example of the bonding material, has an annular shape whose outer shape is rectangular when viewed from above. However, the frame portion 14c is not directly connected to the vibrating portion 14a. Further, the frame portion 14c has a thickness equal to or greater than the thickness of the vibration portion 14a. In the present embodiment, the thickness of the frame portion 14c and the thickness of the vibrating portion 14a are substantially equal. Below, thickness means the thickness of an up-down direction. Further, the upper surface of the frame portion 14c and the upper surface of the vibrating portion 14a are located at substantially the same height in the vertical direction. The lower surface of the frame part 14c and the lower surface of the vibration part 14a are located at substantially the same height in the vertical direction.
 フランジ部14bは、上側から見たときに、振動部14aと枠部14cとの間に設けられている。フランジ部14bは、上側から見たときに、その内周部分において振動部14aに接し、かつ、その外周部分において枠部14cに接した状態で、振動部14aの周囲の大部分を囲んでいる。すなわち、フランジ部14bは、上側から見たときに、一部が切りかかれた長方形状の枠形状をなしている。水晶片14の上面には、一部が切りかかれた長方形状を描く溝状の凹部G1が設けられている。凹部G1は、水晶片14の上面が窪むことにより形成されている。また、水晶片14の下面には、一部が切りかかれた長方形状を描く溝状の凹部G2が設けられている。凹部G2は、水晶片14の下面が窪むことにより形成されている。そして、フランジ部14bは、凹部G1と凹部G2に上下方向からはさまれた領域である。すなわち、水晶片14の上面及び下面は、フランジ部14bにおいて窪んでいる。これにより、フランジ部14bは、振動部14a及び枠部14cの厚みよりも小さな厚みを有する。 The flange portion 14b is provided between the vibrating portion 14a and the frame portion 14c when viewed from above. When viewed from above, the flange portion 14b is in contact with the vibration portion 14a at the inner peripheral portion thereof and surrounds most of the periphery of the vibration portion 14a in a state of being in contact with the frame portion 14c at the outer peripheral portion thereof. . That is, the flange portion 14b has a rectangular frame shape with a part cut when viewed from above. On the upper surface of the crystal piece 14, there is provided a groove-like recess G1 that draws a rectangular shape with a part cut off. The concave portion G1 is formed by the upper surface of the crystal piece 14 being depressed. Further, on the lower surface of the crystal piece 14, there is provided a groove-shaped recess G2 that draws a rectangular shape with a part cut off. The recess G2 is formed by the depression of the lower surface of the crystal piece 14. And the flange part 14b is an area | region pinched | interposed into the recessed part G1 and the recessed part G2 from the up-down direction. That is, the upper surface and the lower surface of the crystal piece 14 are recessed in the flange portion 14b. Thereby, the flange part 14b has thickness smaller than the thickness of the vibration part 14a and the frame part 14c.
 ただし、凹部G1は、上側から見たときに、左側の短辺の中央において途切れている。同様に、凹部G2は、上側から見たときに、右側の短辺の中央において途切れている。また、前記の通り、フランジ部14bは、水晶片14において凹部G1及び凹部G2に上下から挟まれた領域である。よって、フランジ部14bは、上側から見たときに、右側の短辺の中央及び左側の短辺の中央が途切れた形状をなしている。 However, the recess G1 is interrupted at the center of the left short side when viewed from above. Similarly, when viewed from above, the recess G2 is interrupted at the center of the right short side. Further, as described above, the flange portion 14b is a region sandwiched from above and below by the concave portion G1 and the concave portion G2 in the crystal piece 14. Therefore, when viewed from above, the flange portion 14b has a shape in which the center of the short side on the right side and the center of the short side on the left side are interrupted.
 第1の連結部の一例である連結部14dは、上側から見たときに、振動部14aの左側の短辺の中央と枠部14cの左側の短辺の中央とを連結しており、左右方向に延びる帯状をなしている。これにより、凹部G1は、左側の短辺の中央において途切れている。振動部14aの上面と連結部14dの上面との間には段差がない。また、枠部14cの上面と連結部14dの上面との間にも段差がない。本実施形態では、振動部14aの上面、枠部14cの上面及び連結部14dの上面は、上下方向において同じ高さに位置している。 The connection part 14d which is an example of a 1st connection part has connected the center of the short side of the left side of the vibration part 14a, and the center of the short side of the left side of the frame part 14c, when it sees from upper side, It has a strip shape extending in the direction. Thereby, the recessed part G1 is interrupted in the center of the left short side. There is no step between the upper surface of the vibrating part 14a and the upper surface of the connecting part 14d. Further, there is no step between the upper surface of the frame portion 14c and the upper surface of the connecting portion 14d. In the present embodiment, the upper surface of the vibrating portion 14a, the upper surface of the frame portion 14c, and the upper surface of the connecting portion 14d are positioned at the same height in the vertical direction.
 第2の連結部の一例である連結部14eは、下側から見たときに、振動部14aの右側の短辺の中央と枠部14cの右側の短辺の中央とを連結しており、左右方向に延びる帯状をなしている。これにより、凹部G2は、右側の短辺の中央において途切れている。振動部14aの下面と連結部14eの下面との間には段差がない。また、枠部14cの下面と連結部14eの下面との間にも段差がない。本実施形態では、振動部14aの下面、枠部14cの下面及び連結部14eの下面は、上下方向において同じ高さに位置している。 The connection part 14e which is an example of a 2nd connection part has connected the center of the short side of the right side of the vibration part 14a, and the center of the short side of the right side of the frame part 14c, when it sees from the lower side, It has a strip shape extending in the left-right direction. Thereby, the recessed part G2 is interrupted in the center of the short side on the right side. There is no step between the lower surface of the vibrating portion 14a and the lower surface of the connecting portion 14e. Further, there is no step between the lower surface of the frame portion 14c and the lower surface of the connecting portion 14e. In the present embodiment, the lower surface of the vibration portion 14a, the lower surface of the frame portion 14c, and the lower surface of the connecting portion 14e are positioned at the same height in the vertical direction.
 また、上側から見たときに、水晶片14の下面において連結部14dと重なる部分は、図4に示すように、窪んでいる。すなわち、水晶片14の下面に凹部G2が設けられている。同様に、水晶片14の上面において連結部14eと重なる部分は、図4に示すように、窪んでいる。すなわち、水晶片14の上面に凹部G1が設けられている。 Further, when viewed from above, the portion of the lower surface of the crystal piece 14 that overlaps the connecting portion 14d is depressed as shown in FIG. That is, the recess G <b> 2 is provided on the lower surface of the crystal piece 14. Similarly, the part which overlaps with the connection part 14e in the upper surface of the crystal piece 14 is depressed as shown in FIG. That is, the concave portion G <b> 1 is provided on the upper surface of the crystal piece 14.
 第1の励振電極の一例である励振電極20は、振動部14aの上面上に設けられている導体層であり、上側から見たときに、長方形状をなしている。第2の励振電極の一例である励振電極22は、振動部14aの下面上に設けられている導体層であり、下側から見たときに、長方形状をなしている。これにより、励振電極20と励振電極22とは、振動部14aを上下方向から挟んでいる。 The excitation electrode 20, which is an example of the first excitation electrode, is a conductor layer provided on the upper surface of the vibration portion 14a, and has a rectangular shape when viewed from above. The excitation electrode 22, which is an example of the second excitation electrode, is a conductor layer provided on the lower surface of the vibrating portion 14a, and has a rectangular shape when viewed from below. As a result, the excitation electrode 20 and the excitation electrode 22 sandwich the vibrating portion 14a from above and below.
 第1の引き出し電極の一例である引き出し電極24は、その右端において励振電極20に接続され、かつ、連結部14dの上面上に設けられている。連結部14dの左端は、連結部14dと枠部14cとの境界近傍に位置している。 The extraction electrode 24, which is an example of a first extraction electrode, is connected to the excitation electrode 20 at the right end thereof and is provided on the upper surface of the coupling portion 14d. The left end of the connecting portion 14d is located near the boundary between the connecting portion 14d and the frame portion 14c.
 第2の引き出し電極の一例である引き出し電極26は、その左端において励振電極22に接続され、かつ、連結部14eの下面上に設けられている。連結部14eの右端は、連結部14eと枠部14cとの境界近傍に位置している。励振電極20,22及び引き出し電極24,26は、例えば、Cr下地層上にAu層をめっき工法によって設けた構成である。 The extraction electrode 26, which is an example of a second extraction electrode, is connected to the excitation electrode 22 at the left end and is provided on the lower surface of the coupling portion 14e. The right end of the connecting portion 14e is located near the boundary between the connecting portion 14e and the frame portion 14c. The excitation electrodes 20 and 22 and the extraction electrodes 24 and 26 have, for example, a configuration in which an Au layer is provided on a Cr underlayer by a plating method.
 貫通導体の一例であるビアホール導体v1は、引き出し電極24に接続されると共に、上面と下面とを繋ぐように水晶片14を上下方向に貫通している。より詳細には、ビアホール導体v1は、上側から見たときに、連結部14dと枠部14cとの境界に位置している。これにより、ビアホール導体v1は、引き出し電極24の左端に接続されている。また、ビアホール導体v1の右半分(貫通導体の一部の一例)は、上側から見たときに、連結部14dに位置し、ビアホール導体v1の左半部は、上側から見たときに、枠部14cに位置している。また、ビアホール導体v1は、水晶片14を上下方向に貫通する貫通孔内が導体により満たされた構造を有している。ただし、ビアホール導体v1は、貫通孔が導体により満たされた構造である必要はなく、貫通孔の内周面が導体により覆われた構造を有していてもよい。ビアホール導体v1は、例えば、Ag、AgPdの材料を含む導電ペーストをビアホールに充填した後、焼結した構成である。 A via-hole conductor v1, which is an example of a through conductor, is connected to the extraction electrode 24 and penetrates the crystal piece 14 in the vertical direction so as to connect the upper surface and the lower surface. More specifically, the via-hole conductor v1 is located at the boundary between the connecting portion 14d and the frame portion 14c when viewed from above. Thereby, the via-hole conductor v <b> 1 is connected to the left end of the extraction electrode 24. Further, the right half of the via hole conductor v1 (an example of a part of the through conductor) is positioned at the connecting portion 14d when viewed from above, and the left half of the via hole conductor v1 is framed when viewed from above. It is located in the part 14c. In addition, the via-hole conductor v1 has a structure in which a through hole penetrating the crystal piece 14 in the vertical direction is filled with a conductor. However, the via-hole conductor v1 does not need to have a structure in which the through hole is filled with the conductor, and may have a structure in which the inner peripheral surface of the through hole is covered with the conductor. The via-hole conductor v1 has a configuration in which, for example, a conductive paste containing a material of Ag or AgPd is filled in the via hole and then sintered.
 パッド電極39は、水晶片14の下面に設けられおり、下側から見たときに円形をなす導体である。パッド電極39は、ビアホール導体v1の下端に接続されている。パッド電極39は、例えば、Cr下地層上にAu層をめっき工法によって設けた構成である。 The pad electrode 39 is provided on the lower surface of the crystal piece 14 and is a conductor that forms a circle when viewed from below. The pad electrode 39 is connected to the lower end of the via-hole conductor v1. The pad electrode 39 has, for example, a configuration in which an Au layer is provided on a Cr underlayer by a plating method.
 接合材36は、水晶片14の上面上に設けられており、水晶片14の上面の外縁に沿って設けられた長方形状の枠状の導体である。これにより、引き出し電極24及びビアホール導体v1は、上側から見たときに、接合材36に囲まれた領域内に位置し、接合材36には接触していない。接合材36は、キャップ12と水晶片14の上面との間の隙間を埋める封止部材として機能する。接合材36の材料は、例えば、Auである。さらに、上側から見たとき、引き出し電極24が、接合材36に囲まれた領域内に位置し、枠状の接合材36と重ならずに配置されている。これにより、接合材36の厚さ方向の長さより、接合材38と引き出し電極24と間の距離を大きくできる。そのため、引き出し電極24と接合材36との容量結合を小さくできる。これにより、励振電極20と励振電極22との間の静電容量に引き出し電極24を介して付加される接合材36と接合材38との間の静電容量を減少できる。さらに、接合材36と引き出し電極24とが、平面視して重ならずに配置できるため、引き出し電極24と重なり部分における、接合材36の厚さ方向の長さが増加することがない。そのため、接合材36の厚さが均一となり、接合材36の接合強度を高くできる。その結果、水晶振動子10の気密封止が確実に実施できる。 The bonding material 36 is provided on the upper surface of the crystal piece 14 and is a rectangular frame-shaped conductor provided along the outer edge of the upper surface of the crystal piece 14. As a result, the lead electrode 24 and the via-hole conductor v1 are located in a region surrounded by the bonding material 36 and are not in contact with the bonding material 36 when viewed from above. The bonding material 36 functions as a sealing member that fills the gap between the cap 12 and the upper surface of the crystal piece 14. The material of the bonding material 36 is, for example, Au. Further, when viewed from the upper side, the extraction electrode 24 is located in a region surrounded by the bonding material 36 and is disposed without overlapping the frame-shaped bonding material 36. Thereby, the distance between the bonding material 38 and the extraction electrode 24 can be made larger than the length of the bonding material 36 in the thickness direction. Therefore, the capacitive coupling between the extraction electrode 24 and the bonding material 36 can be reduced. As a result, the capacitance between the bonding material 36 and the bonding material 38 added via the extraction electrode 24 to the capacitance between the excitation electrode 20 and the excitation electrode 22 can be reduced. Furthermore, since the bonding material 36 and the extraction electrode 24 can be arranged without overlapping in plan view, the length in the thickness direction of the bonding material 36 at the overlapping portion with the extraction electrode 24 does not increase. Therefore, the thickness of the bonding material 36 becomes uniform, and the bonding strength of the bonding material 36 can be increased. As a result, the hermetic sealing of the crystal unit 10 can be reliably performed.
 接合材38は、水晶片14の下面上に設けられており、水晶片14の下面の外縁に沿って設けられた長方形状の枠状の導体である。これにより、引き出し電極26は、下側から見たときに、接合材38に囲まれた領域内に位置し、接合材38には接触していない。接合材38は、基板本体17の上面と水晶片14の下面との間の隙間を埋める封止部材として機能する。接合材38の材料は、例えば、Auである。更に、上側から見たとき、引き出し電極26が、接合材36に囲まれた領域内に位置し、枠状の接合材38と重ならずに配置されている。これにより、接合材38の厚さ方向の長さより、接合材38と引き出し電極26と間の距離を大きくできる。 The bonding material 38 is a rectangular frame-shaped conductor provided on the lower surface of the crystal piece 14 and provided along the outer edge of the lower surface of the crystal piece 14. Thereby, when viewed from the lower side, the extraction electrode 26 is located in a region surrounded by the bonding material 38 and is not in contact with the bonding material 38. The bonding material 38 functions as a sealing member that fills a gap between the upper surface of the substrate body 17 and the lower surface of the crystal piece 14. The material of the bonding material 38 is, for example, Au. Furthermore, when viewed from the upper side, the extraction electrode 26 is located in a region surrounded by the bonding material 36 and is disposed without overlapping the frame-shaped bonding material 38. Thereby, the distance between the bonding material 38 and the extraction electrode 26 can be made larger than the length of the bonding material 38 in the thickness direction.
 キャップ12は、内部に空間を有する直方体状をなす箱状の筐体であり、上側から見たときに、水晶片14の上面と略一致する形状をなす。また、キャップ12の下面は開口している。キャップ12の開口の外縁は、接合材36と略一致する形状を有している。そして、キャップ12は、その開口の外縁が接合材36に接合されることにより、水晶片14の上面上に固定される。これにより、水晶片14の上面は、キャップ12により覆い隠される。ただし、キャップ12は、箱状をなしているので、励振電極20とは接触していない。よって、キャップ12は、水晶片14の振動を阻害しない。 The cap 12 is a box-shaped housing having a rectangular parallelepiped shape with a space inside, and has a shape substantially coincident with the upper surface of the crystal piece 14 when viewed from above. Further, the lower surface of the cap 12 is open. The outer edge of the opening of the cap 12 has a shape that substantially matches the bonding material 36. The cap 12 is fixed on the upper surface of the crystal piece 14 by bonding the outer edge of the opening to the bonding material 36. Thereby, the upper surface of the crystal piece 14 is covered with the cap 12. However, since the cap 12 has a box shape, it is not in contact with the excitation electrode 20. Therefore, the cap 12 does not inhibit the vibration of the crystal piece 14.
 基板16は、図1及び図3に示すように、基板本体17、実装電極28,30、外部電極32,34及びビアホール導体v2,v3を備えている。基板本体17は、上側から見たときに、長方形状をなす平板であり、上面及び下面を有している。基板本体17の上面には、凹部G3が設けられている。凹部G3は、上側から見たときに、左右方向に延びる長辺を有する長方形状をなしている。基板本体17の材料は、例えば、酸化アルミニウム質焼結体、ムライト質焼結体、窒化アルミニウム質焼結体、炭化ケイ素質焼結体、ガラスセラミックス焼結体等のセラミックス系絶縁性材料、水晶、ガラス、シリコン等である。 As shown in FIGS. 1 and 3, the substrate 16 includes a substrate body 17, mounting electrodes 28 and 30, external electrodes 32 and 34, and via-hole conductors v2 and v3. The substrate body 17 is a flat plate having a rectangular shape when viewed from above, and has an upper surface and a lower surface. A recess G <b> 3 is provided on the upper surface of the substrate body 17. The recess G3 has a rectangular shape with long sides extending in the left-right direction when viewed from above. Examples of the material of the substrate body 17 include ceramic insulating materials such as an aluminum oxide sintered body, a mullite sintered body, an aluminum nitride sintered body, a silicon carbide sintered body, and a glass ceramic sintered body, Glass, silicon and the like.
 実装電極28は、基板本体17の上面上に設けられており、上側から見たときに、凹部G3の左側の短辺の中央に隣接している。実装電極30は、基板本体17の上面上に設けられており、上側から見たときに、凹部G3の右側の短辺の中央に隣接している。 The mounting electrode 28 is provided on the upper surface of the substrate body 17 and is adjacent to the center of the short side on the left side of the recess G3 when viewed from above. The mounting electrode 30 is provided on the upper surface of the substrate body 17 and is adjacent to the center of the short side on the right side of the recess G3 when viewed from above.
 外部電極32は、基板本体17の下面上に設けられており、下側から見たときに、基板本体17の左側の短辺に隣接する長方形状の導体である。外部電極34は、基板本体17の下面上に設けられており、下側から見たときに、基板本体17の右側の短辺に隣接する長方形状の導体である。外部電極32,34は、例えば、Cr下地層上にAu層をめっき工法によって設けた構成である。 The external electrode 32 is a rectangular conductor which is provided on the lower surface of the substrate body 17 and is adjacent to the left short side of the substrate body 17 when viewed from below. The external electrode 34 is provided on the lower surface of the substrate body 17 and is a rectangular conductor adjacent to the right short side of the substrate body 17 when viewed from below. The external electrodes 32 and 34 have, for example, a configuration in which an Au layer is provided on a Cr underlayer by a plating method.
 ビアホール導体v2は、基板本体17を上下方向に貫通しており、実装電極28と外部電極32とを接続している。ビアホール導体v3は、基板本体17を上下方向に貫通しており、実装電極30と外部電極34とを接続している。ビアホール導体v2,v3は、例えば、Ag、AgPdの材料を含む導電ペーストをビアホールに充填した後、焼結した構成である。 The via-hole conductor v2 penetrates the substrate body 17 in the vertical direction, and connects the mounting electrode 28 and the external electrode 32. The via-hole conductor v3 penetrates the substrate body 17 in the vertical direction, and connects the mounting electrode 30 and the external electrode 34. The via-hole conductors v2 and v3 have a configuration in which, for example, a conductive paste containing Ag and AgPd is filled in the via-hole and then sintered.
 水晶振動素子13は、基板16の上面上に実装される。具体的には、パッド電極39は、はんだ等により実装電極28に接続される。これにより、励振電極20と外部電極32とは、引き出し電極24、ビアホール導体v1、パッド電極39、実装電極28及びビアホール導体v2を介して接続される。また、引き出し電極26の右端は、はんだ等により実装電極30に接続される。これにより、励振電極22と外部電極34とは、引き出し電極26、実装電極30及びビアホール導体v3を介して接続される。 The crystal resonator element 13 is mounted on the upper surface of the substrate 16. Specifically, the pad electrode 39 is connected to the mounting electrode 28 by solder or the like. Thereby, the excitation electrode 20 and the external electrode 32 are connected via the extraction electrode 24, the via-hole conductor v1, the pad electrode 39, the mounting electrode 28, and the via-hole conductor v2. The right end of the extraction electrode 26 is connected to the mounting electrode 30 by solder or the like. Thereby, the excitation electrode 22 and the external electrode 34 are connected via the extraction electrode 26, the mounting electrode 30, and the via-hole conductor v3.
 また、水晶片14の下面には、接合材38が設けられている。接合材38は、水晶片14の下面の外縁と基板本体17の上面の外縁とを接合する。ただし、基板本体17の上面には凹部G3が設けられているので、基板本体17は励振電極22とは接触していない。よって、基板本体17は、水晶片14の振動を阻害しない。 Further, a bonding material 38 is provided on the lower surface of the crystal piece 14. The bonding material 38 bonds the outer edge of the lower surface of the crystal piece 14 and the outer edge of the upper surface of the substrate body 17. However, since the recess G <b> 3 is provided on the upper surface of the substrate body 17, the substrate body 17 is not in contact with the excitation electrode 22. Therefore, the substrate body 17 does not hinder the vibration of the crystal piece 14.
 (効果)
 以上のように構成された水晶振動素子13によれば、励振電極20と励振電極22との間の静電容量の増大を抑制できる。より詳細には、水晶振動素子13では、ビアホール導体v1は、引き出し電極24に接続されると共に、上面と下面とを繋ぐように水晶片14を貫通している。そして、ビアホール導体v1の右半分は、上側から見たときに、連結部14dに位置しており、ビアホール導体v1の左半分は、上側から見たときに、枠部14cに位置している。よって、ビアホール導体v1は、上側から見たときに、枠部14cの内周部分近傍に位置し、枠部14cの外周部分近傍には位置しない。接合材36は、上側から見たときに、枠部14cの外周部分に沿っている。よって、ビアホール導体v1及び引き出し電極24が接合材36及びキャップ12に接触することが抑制される。その結果、励振電極20と接合材36とが導通することが抑制され、接合材36と接合材38との間の静電容量が励振電極20と励振電極22との間の静電容量に付加されることが抑制される。以上より、水晶振動素子13によれば、励振電極20と励振電極22との間の静電容量に付加される静電容量の増大を抑制できる。そして、水晶振動素子13の振動効率に起因する消費電力が抑制され、外部からの電磁ノイズの影響が低減される。
(effect)
According to the crystal resonator element 13 configured as described above, an increase in capacitance between the excitation electrode 20 and the excitation electrode 22 can be suppressed. More specifically, in the crystal resonator element 13, the via-hole conductor v1 is connected to the extraction electrode 24 and penetrates the crystal piece 14 so as to connect the upper surface and the lower surface. The right half of the via-hole conductor v1 is positioned at the connecting portion 14d when viewed from above, and the left half of the via-hole conductor v1 is positioned at the frame portion 14c when viewed from above. Therefore, when viewed from above, the via-hole conductor v1 is positioned in the vicinity of the inner peripheral portion of the frame portion 14c and is not positioned in the vicinity of the outer peripheral portion of the frame portion 14c. The bonding material 36 is along the outer peripheral portion of the frame portion 14c when viewed from above. Therefore, the contact of the via-hole conductor v1 and the extraction electrode 24 with the bonding material 36 and the cap 12 is suppressed. As a result, the conduction between the excitation electrode 20 and the bonding material 36 is suppressed, and the capacitance between the bonding material 36 and the bonding material 38 is added to the capacitance between the excitation electrode 20 and the excitation electrode 22. Is suppressed. As described above, according to the crystal resonator element 13, it is possible to suppress an increase in capacitance added to the capacitance between the excitation electrode 20 and the excitation electrode 22. And the power consumption resulting from the vibration efficiency of the crystal vibration element 13 is suppressed, and the influence of the electromagnetic noise from the outside is reduced.
 ここで、水晶振動素子の静電容量に付加される静電容量の増大と水晶振動素子13の振動効率の低下との関係について説明する。水晶振動素子の等価回路を、等価直列容量C1と等価直列インダクタンスL1と等価直列抵抗R1が互いに直列接続された機械系ブランチと、等価並列容量C0の電気系ブランチとが並列接続された系に近似する。このとき、共振現象を利用した圧電デバイスにおいて、電気機械結合定数K、等価並列容量C0及び等価直列容量C1との間には、以下の式(1)が成立することが知られている。 Here, the relationship between the increase in capacitance added to the capacitance of the crystal resonator element and the decrease in vibration efficiency of the crystal resonator element 13 will be described. An equivalent circuit of the crystal resonator element is approximated to a system in which an equivalent series capacitance C1, an equivalent series inductance L1, and an equivalent series resistance R1 are connected in series to each other, and an electric system branch of the equivalent parallel capacitance C0 is connected in parallel. To do. At this time, it is known that the following formula (1) is established among the electromechanical coupling constant K, the equivalent parallel capacitance C0, and the equivalent series capacitance C1 in the piezoelectric device using the resonance phenomenon.
2∝C1/C0 ・・・(1) K 2 ∝C1 / C0 (1)
 励振電極20と励振電極22との間の静電容量に、接合材に起因する静電容量が付加されると、水晶振動子の等価回路における等価並列容量C0が増加する。これにより、式(1)で示す電気機械結合定数Kが減少する。その結果、水晶振動素子13の振動効率が低下する。よって、水晶振動素子13において、励振電極20と励振電極22との間の静電容量に付加される静電容量の増加が抑制されると、水晶振動素子13の振動効率の低下が抑制される。 When the capacitance caused by the bonding material is added to the capacitance between the excitation electrode 20 and the excitation electrode 22, the equivalent parallel capacitance C0 in the equivalent circuit of the crystal resonator increases. Thereby, the electromechanical coupling constant K shown by Formula (1) reduces. As a result, the vibration efficiency of the crystal resonator element 13 is reduced. Therefore, in the crystal resonator element 13, when an increase in capacitance added to the capacitance between the excitation electrode 20 and the excitation electrode 22 is suppressed, a decrease in vibration efficiency of the crystal resonator element 13 is suppressed. .
 また、水晶振動素子13によれば、振動部14a外に振動が漏れることが抑制される。より詳細には、水晶振動素子13では、ビアホール導体v1の右半分は、上側から見たときに、連結部14dに位置している。これにより、連結部14dのビアホール導体v1が設けられた部分において、音響インピーダンスが変化する。そのため、振動部14aで発生した振動が連結部14dを伝わって枠部14cに漏れようとしても、ビアホール導体v1において振動部14a側に反射される。その結果、水晶振動素子13によれば、振動部14a外に振動が漏れることが抑制される。 Further, according to the crystal resonator element 13, it is possible to suppress the vibration from leaking out of the vibrating portion 14a. More specifically, in the crystal resonator element 13, the right half of the via-hole conductor v1 is located at the connecting portion 14d when viewed from above. As a result, the acoustic impedance changes in the portion of the connecting portion 14d where the via-hole conductor v1 is provided. Therefore, even if the vibration generated in the vibration part 14a is transmitted through the connecting part 14d and leaks to the frame part 14c, it is reflected to the vibration part 14a side in the via-hole conductor v1. As a result, according to the crystal resonator element 13, it is possible to suppress vibration from leaking out of the vibrating portion 14 a.
 また、水晶振動素子13によれば、ビアホール導体v1の右半分は、上側から見たときに、連結部14dに位置しているので、ビアホール導体v1は、水晶振動素子13の中央寄りに位置するようになる。その結果、水晶振動素子13によれば、素子の小型化が図られる。 Further, according to the crystal resonator element 13, the right half of the via-hole conductor v <b> 1 is located at the connecting portion 14 d when viewed from above, so that the via-hole conductor v <b> 1 is positioned closer to the center of the crystal resonator element 13. It becomes like this. As a result, according to the crystal resonator element 13, the element can be miniaturized.
 また、水晶振動素子13によれば、ビアホール導体v1は、貫通孔内が導体により満たされた構造を有している。そのため、ビアホール導体v1の直流抵抗値が低減される。更に、ビアホール導体v1の断線の発生が抑制される。 Further, according to the crystal resonator element 13, the via-hole conductor v1 has a structure in which the through hole is filled with the conductor. Therefore, the direct current resistance value of the via-hole conductor v1 is reduced. Furthermore, occurrence of disconnection of the via-hole conductor v1 is suppressed.
 また、水晶振動素子13によれば、振動部14a外に振動が漏れることが抑制される。より詳細には、水晶振動素子13では、フランジ部14bは、上側から見たときに、振動部14aの周囲の大部分を囲んでいる。また、フランジ部14bの厚みは、振動部14aの厚みよりも小さい。これにより、振動部14aで発生した振動は、フランジ部14bへと伝わることが抑制され、振動部14a内に閉じ込められる。すなわち、振動部14a外に振動が漏れることが抑制される。 Further, according to the crystal resonator element 13, it is possible to suppress the vibration from leaking out of the vibrating portion 14a. More specifically, in the crystal resonator element 13, the flange portion 14b surrounds most of the periphery of the vibrating portion 14a when viewed from above. Moreover, the thickness of the flange part 14b is smaller than the thickness of the vibration part 14a. Thereby, the vibration generated in the vibration part 14a is suppressed from being transmitted to the flange part 14b, and is confined in the vibration part 14a. That is, the leakage of vibrations outside the vibrating portion 14a is suppressed.
 また、水晶振動素子13によれば、以下の理由によっても、振動部14a外に振動が漏れることが抑制される。より詳細には、上側から見たときに、水晶片14の下面において連結部14dと重なる部分は、図4に示すように、窪んでいる。すなわち、凹部G2が設けられている。これにより、水晶片14において連結部14dが設けられた部分の厚みが小さくなる。その結果、水晶片14において連結部14dが設けられた部分から振動部14a外に振動が漏れることが抑制される。同じ理由により、水晶片14において連結部14eが設けられた部分から振動部14a外に振動が漏れることが抑制される。 Further, according to the crystal resonator element 13, the leakage of vibration outside the vibrating portion 14a is suppressed for the following reason. More specifically, when viewed from above, a portion of the lower surface of the crystal piece 14 that overlaps the connecting portion 14d is depressed as shown in FIG. That is, the recess G2 is provided. Thereby, the thickness of the part in which the connection part 14d was provided in the crystal piece 14 becomes small. As a result, the leakage of vibration from the portion of the crystal piece 14 where the connecting portion 14d is provided to the outside of the vibrating portion 14a is suppressed. For the same reason, the leakage of vibration from the portion of the crystal piece 14 where the connecting portion 14e is provided to the outside of the vibrating portion 14a is suppressed.
(第1の変形例)
 以下に、第1の変形例に係る水晶振動素子13aを備えた水晶振動子10aについて図面を参照しながら説明する。図5は、水晶振動子10aの分解斜視図である。図6は、水晶振動素子13aを下側から見た外観斜視図である。
(First modification)
Hereinafter, a crystal resonator 10a including the crystal resonator element 13a according to the first modification will be described with reference to the drawings. FIG. 5 is an exploded perspective view of the crystal unit 10a. FIG. 6 is an external perspective view of the crystal resonator element 13a as viewed from below.
 水晶振動素子13aは、連結部14d,14eが設けられている位置において、水晶振動素子13と相違する。以下では、かかる相違点を中心に水晶振動素子13aについて説明する。 The crystal resonator element 13a is different from the crystal resonator element 13 at a position where the connecting portions 14d and 14e are provided. Hereinafter, the crystal resonator element 13a will be described focusing on the difference.
 水晶振動素子13aでは、連結部14d,14eは、上側から見たときに、振動部14aの対角に接続されている。より詳細には、連結部14dは、上側から見たときに、振動部14aの左後ろの角と枠部14cの内周部分の左後ろの角とを連結している。連結部14eは、上側から見たときに、振動部14aの右前の角と枠部14cの内周部分の右前の角とを連結している。 In the crystal resonator element 13a, the connecting portions 14d and 14e are connected to the diagonal of the vibrating portion 14a when viewed from above. More specifically, when viewed from above, the connecting portion 14d connects the left rear corner of the vibrating portion 14a and the left rear corner of the inner peripheral portion of the frame portion 14c. When viewed from above, the connecting portion 14e connects the right front corner of the vibrating portion 14a and the right front corner of the inner peripheral portion of the frame portion 14c.
 また、引き出し電極24は、励振電極20の左後ろの角に接続され、連結部14dの上面上に設けられている。また、ビアホール導体v1は、連結部14dと枠部14cとの境界に設けられ、引き出し電極24に接続されている。 Further, the extraction electrode 24 is connected to the left rear corner of the excitation electrode 20 and is provided on the upper surface of the coupling portion 14d. The via hole conductor v <b> 1 is provided at the boundary between the connecting portion 14 d and the frame portion 14 c and is connected to the extraction electrode 24.
 また、引き出し電極26は、励振電極20の右前の角に接続され、連結部14eの上面上に設けられている。なお、水晶振動素子13aのその他の構成は、水晶振動素子13と同じであるので説明を省略する。 Further, the extraction electrode 26 is connected to the right front corner of the excitation electrode 20 and is provided on the upper surface of the coupling portion 14e. In addition, since the other structure of the crystal oscillation element 13a is the same as the crystal oscillation element 13, description is abbreviate | omitted.
 以上のように構成された水晶振動素子13aによれば、水晶振動素子13と同じ理由により、励振電極20と励振電極22との間の静電容量の増大を抑制できる。また、水晶振動素子13aによれば、水晶振動素子13と同じ理由により、振動部14a外に振動が漏れることが抑制される。また、水晶振動素子13aによれば、水晶振動素子13と同じ理由により、素子の小型化が図られる。水晶振動素子13aによれば、水晶振動素子13と同じ理由により、ビアホール導体v1の直流抵抗値が低減されると共に、ビアホール導体v1の断線の発生が抑制される。 According to the crystal resonator element 13 a configured as described above, an increase in capacitance between the excitation electrode 20 and the excitation electrode 22 can be suppressed for the same reason as the crystal resonator element 13. Further, according to the crystal resonator element 13a, the leakage of the vibration to the outside of the vibration portion 14a is suppressed for the same reason as the crystal resonator element 13. Further, according to the crystal resonator element 13a, the element can be miniaturized for the same reason as the crystal resonator element 13. According to the crystal resonator element 13a, for the same reason as the crystal resonator element 13, the direct current resistance value of the via-hole conductor v1 is reduced and the occurrence of disconnection of the via-hole conductor v1 is suppressed.
 また、水晶振動素子13aによれば、連結部14d,14eは、上側から見たときに、振動部14aの対角に接続されている。水晶振動子として一般的に用いられるATカットの水晶片は、外部の応力に比例した周波数の変化を生じる。変化の大きさは応力を加える方向の水晶結晶軸に対する角度により異なり、X方向から60度回転した結晶軸で最も小さくなる。代表的な水晶振動素子の長辺方向はX方向である。対角接続により、連結部14d,14eから振動部14aに伝わる応力に関して、応力を加える方向をX方向から回転させることができるため、振動周波数に対する応力の影響を小さくできる。 Further, according to the crystal resonator element 13a, the connecting portions 14d and 14e are connected to the diagonal of the vibrating portion 14a when viewed from above. An AT-cut quartz piece generally used as a quartz oscillator causes a frequency change proportional to external stress. The magnitude of the change depends on the angle with respect to the crystal crystal axis in the direction in which stress is applied, and is the smallest on the crystal axis rotated 60 degrees from the X direction. The long side direction of a typical crystal resonator element is the X direction. With the diagonal connection, the stress applied from the connecting portions 14d and 14e to the vibrating portion 14a can be rotated from the X direction, so that the influence of the stress on the vibration frequency can be reduced.
(第2の変形例)
 以下に、第2の変形例に係る水晶振動素子13bを備えた水晶振動子10bについて図面を参照しながら説明する。図7は、水晶振動子10bの分解斜視図である。図8は、水晶振動素子13bを下側から見た外観斜視図である。
(Second modification)
Hereinafter, a crystal resonator 10b including the crystal resonator element 13b according to the second modification will be described with reference to the drawings. FIG. 7 is an exploded perspective view of the crystal unit 10b. FIG. 8 is an external perspective view of the crystal resonator element 13b as viewed from below.
 水晶振動素子13bは、連結部14d,14eが設けられている位置において、水晶振動素子13と相違する。以下では、かかる相違点を中心に水晶振動素子13bについて説明する。 The crystal resonator element 13b is different from the crystal resonator element 13 in the position where the connecting portions 14d and 14e are provided. Hereinafter, the crystal resonator element 13b will be described focusing on the difference.
 水晶振動素子13bでは、連結部14d,14eは、上側から見たときに、振動部14aの左側の短辺に接続されている。より詳細には、連結部14dは、上側から見たときに、振動部14aの左側の短辺の中央に対して僅かに後ろ側に接続されている。連結部14eは、下側から見たときに、振動部14aの左側の短辺の中央に対して僅かに前側に接続されている。これにより、連結部14dと連結部14eとは、上側から見たときに、前後方向に僅かにずらされている。 In the crystal resonator element 13b, the connecting portions 14d and 14e are connected to the short side on the left side of the vibrating portion 14a when viewed from above. More specifically, the connecting portion 14d is connected slightly to the rear side with respect to the center of the short side on the left side of the vibrating portion 14a when viewed from above. The connection part 14e is slightly connected to the front side with respect to the center of the short side on the left side of the vibration part 14a when viewed from below. Thereby, the connection part 14d and the connection part 14e are slightly shifted in the front-back direction when viewed from above.
 また、引き出し電極24は、励振電極20の左側の短辺に接続され、連結部14dの上面上に設けられている。また、ビアホール導体v1は、連結部14dと枠部14cとの境界に設けられ、引き出し電極24に接続されている。 Further, the extraction electrode 24 is connected to the left short side of the excitation electrode 20 and is provided on the upper surface of the coupling portion 14d. The via hole conductor v <b> 1 is provided at the boundary between the connecting portion 14 d and the frame portion 14 c and is connected to the extraction electrode 24.
 また、引き出し電極26は、励振電極20の左側の短辺に接続され、連結部14eの上面上に設けられている。 Further, the extraction electrode 26 is connected to the left short side of the excitation electrode 20 and is provided on the upper surface of the coupling portion 14e.
 また、基板16bにおいてビアホール導体v3が設けられている位置は、基板16においてビアホール導体v3が設けられている位置と同じである。そのため、引き出し電極26の左端とビアホール導体v3とは大きく離れている。そこで、基板16bでは、実装電極30は、上側から見たときに、凹部G3の左側の短辺の中央近傍から凹部G3の右側の短辺の中央近傍まで、凹部G3の外縁に沿って延びている。これにより、実装電極30は、引き出し電極26の左端とビアホール導体v3とを接続している。なお、水晶振動素子13bのその他の構成は、水晶振動素子13と同じであるので説明を省略する。 The position where the via-hole conductor v3 is provided on the substrate 16b is the same as the position where the via-hole conductor v3 is provided on the substrate 16. Therefore, the left end of the extraction electrode 26 and the via-hole conductor v3 are greatly separated. Therefore, in the substrate 16b, the mounting electrode 30 extends along the outer edge of the recess G3 from the vicinity of the center of the short side on the left side of the recess G3 to the vicinity of the center of the short side on the right side of the recess G3 when viewed from above. Yes. Thereby, the mounting electrode 30 connects the left end of the extraction electrode 26 and the via-hole conductor v3. In addition, since the other structure of the crystal oscillation element 13b is the same as the crystal oscillation element 13, description is abbreviate | omitted.
 以上のように構成された水晶振動素子13bによれば、水晶振動素子13と同じ理由により、励振電極20と励振電極22との間の静電容量の増大を抑制できる。また、水晶振動素子13bによれば、水晶振動素子13と同じ理由により、振動部14a外に振動が漏れることが抑制される。また、水晶振動素子13bによれば、水晶振動素子13と同じ理由により、素子の小型化が図られる。水晶振動素子13bによれば、水晶振動素子13と同じ理由により、ビアホール導体v1の直流抵抗値が低減されると共に、ビアホール導体v1の断線の発生が抑制される。 According to the crystal resonator element 13b configured as described above, an increase in the capacitance between the excitation electrode 20 and the excitation electrode 22 can be suppressed for the same reason as the crystal resonator element 13. Further, according to the crystal resonator element 13b, the leakage of vibration outside the vibrating portion 14a is suppressed for the same reason as the crystal resonator element 13. Further, according to the crystal resonator element 13b, the element can be miniaturized for the same reason as the crystal resonator element 13. According to the crystal resonator element 13b, for the same reason as the crystal resonator element 13, the direct current resistance value of the via-hole conductor v1 is reduced and the occurrence of disconnection of the via-hole conductor v1 is suppressed.
 (第3の変形例)
 以下に、第3の変形例に係る水晶振動素子13cを備えた水晶振動子10cについて図面を参照しながら説明する。図9は、水晶振動子10cの分解斜視図である。水晶振動素子13cを下側から見た斜視図は、水晶振動素子13と同じであるので図2を援用する。
(Third Modification)
Hereinafter, a crystal resonator 10c including a crystal resonator element 13c according to a third modification will be described with reference to the drawings. FIG. 9 is an exploded perspective view of the crystal unit 10c. A perspective view of the crystal resonator element 13c as viewed from below is the same as the crystal resonator element 13, and therefore FIG.
 水晶振動素子13cは、連結部14dの線幅において、水晶振動素子13と相違する。以下では、かかる相違点を中心に水晶振動素子13cについて説明する。 The crystal resonator element 13c is different from the crystal resonator element 13 in the line width of the connecting portion 14d. Hereinafter, the crystal resonator element 13c will be described focusing on the difference.
 水晶振動素子13cでは、連結部14dの線幅は、連結部14eの線幅よりも太い。連結部14dの線幅とは、上側から見たときに、連結部14dが延びる方向に直交する方向(すなわち、前後方向)の幅を意味する。連結部14eの線幅とは、上側から見たときに、連結部14eが延びる方向に直交する方向(すなわち、前後方向)の幅を意味する。 In the crystal resonator element 13c, the line width of the connecting portion 14d is larger than the line width of the connecting portion 14e. The line width of the connecting portion 14d means a width in a direction orthogonal to the direction in which the connecting portion 14d extends (that is, the front-rear direction) when viewed from above. The line width of the connecting portion 14e means a width in a direction perpendicular to the direction in which the connecting portion 14e extends (that is, the front-rear direction) when viewed from above.
 以上のように構成された水晶振動素子13cによれば、水晶振動素子13と同じ理由により、励振電極20と励振電極22との間の静電容量の増大を抑制できる。また、水晶振動素子13cによれば、水晶振動素子13と同じ理由により、振動部14a外に振動が漏れることが抑制される。また、水晶振動素子13cによれば、水晶振動素子13と同じ理由により、素子の小型化が図られる。水晶振動素子13cによれば、水晶振動素子13と同じ理由により、ビアホール導体v1の直流抵抗値が低減されると共に、ビアホール導体v1の断線の発生が抑制される。 According to the crystal resonator element 13c configured as described above, an increase in capacitance between the excitation electrode 20 and the excitation electrode 22 can be suppressed for the same reason as the crystal resonator element 13. Further, according to the crystal resonator element 13c, the leakage of vibration to the outside of the vibration portion 14a is suppressed for the same reason as the crystal resonator element 13. Further, according to the crystal resonator element 13c, the element can be miniaturized for the same reason as the crystal resonator element 13. According to the crystal resonator element 13c, for the same reason as the crystal resonator element 13, the direct-current resistance value of the via-hole conductor v1 is reduced and the occurrence of disconnection of the via-hole conductor v1 is suppressed.
 また、水晶振動素子13cによれば、ビアホール導体v1を太くすることができる。より詳細には、連結部14dには、ビアホール導体v1の一部が設けられる。これにより、振動部14aにおいて発生した振動が連結部14dを介して枠部14cに漏れることが抑制されている。そのため、ビアホール導体v1が設けられている連結部14dでは、ビアホール導体が設けられていない連結部14eよりも、振動の漏れが発生しにくい。そのため、連結部14dの線幅を太くしても、連結部14dからの振動の漏れ量を連結部14eからの振動の漏れ量と同等に抑えることが容易である。そして、連結部14dの線幅を太くすることにより、ビアホール導体v1を太くすることが可能となる。その結果、ビアホール導体v1の直流抵抗値が低減される。また、連結部14eにはビアホール導体が設けられないので、連結部14eの線幅を細くすることにより、振動部14aから枠部14cへと振動が漏れることが抑制される。 Further, according to the crystal resonator element 13c, the via-hole conductor v1 can be thickened. More specifically, a part of the via-hole conductor v1 is provided in the connecting portion 14d. Thereby, it is suppressed that the vibration which generate | occur | produced in the vibration part 14a leaks to the frame part 14c via the connection part 14d. Therefore, the leakage of vibration is less likely to occur in the connecting portion 14d where the via-hole conductor v1 is provided than in the connecting portion 14e where the via-hole conductor is not provided. Therefore, even if the line width of the connecting portion 14d is increased, it is easy to suppress the amount of vibration leakage from the connecting portion 14d to be equal to the amount of vibration leakage from the connecting portion 14e. Then, by increasing the line width of the connecting portion 14d, the via-hole conductor v1 can be increased. As a result, the direct current resistance value of the via-hole conductor v1 is reduced. Further, since the via hole conductor is not provided in the connecting portion 14e, the leakage of vibration from the vibrating portion 14a to the frame portion 14c is suppressed by reducing the line width of the connecting portion 14e.
(その他の実施形態)
 本発明に係る圧電振動素子は、前記水晶振動素子13,13a~13cに限らず、その要旨の範囲内において変更可能である。
(Other embodiments)
The piezoelectric resonator element according to the present invention is not limited to the crystal resonator elements 13, 13a to 13c, and can be changed within the scope of the gist thereof.
 なお、水晶振動素子13,13a~13cの構成を任意に組み合わせてもよい。 Note that the configurations of the crystal resonator elements 13 and 13a to 13c may be arbitrarily combined.
 また、ビアホール導体v1の一部は、上側から見たときに、連結部14dに位置している。しかしながら、ビアホール導体v1の全体が、上側から見たときに、連結部14dに位置していてもよい。これにより、振動部14aで発生した振動が、ビアホール導体v1により、振動部14a側により効果的に反射されるようになる。その結果、振動部14aから枠部14cへと振動が漏れることがより効果的に抑制される。 Further, a part of the via-hole conductor v1 is located at the connecting portion 14d when viewed from the upper side. However, the entire via-hole conductor v1 may be located at the connecting portion 14d when viewed from above. Thereby, the vibration generated in the vibration part 14a is effectively reflected by the via hole conductor v1 on the vibration part 14a side. As a result, the leakage of vibration from the vibrating portion 14a to the frame portion 14c is more effectively suppressed.
 また、水晶片14は、ATカットの水晶片であるとしたが、同じように厚みすべりモードで振動するBTカットの水晶片であってもよい。また、水晶片14の代わりに、タンタル酸リチウムやニオブ酸リチウムあるいは圧電セラミックを含む圧電片が用いられてもよい。 Further, although the crystal piece 14 is an AT-cut crystal piece, it may be a BT-cut crystal piece that vibrates in the thickness-slip mode in the same manner. Further, instead of the crystal piece 14, a piezoelectric piece including lithium tantalate, lithium niobate, or piezoelectric ceramic may be used.
 なお、水晶片14の振動部14aは、所謂メサ構造を有していてもよい。すなわち、振動部14aの外縁の厚みは、振動部14aの外縁を除く部分の厚みより小さくてもよい。これにより、振動部14aから振動が漏れることがより効果的に抑制される。 In addition, the vibration part 14a of the crystal piece 14 may have a so-called mesa structure. That is, the thickness of the outer edge of the vibrating portion 14a may be smaller than the thickness of the portion excluding the outer edge of the vibrating portion 14a. Thereby, it is suppressed more effectively that a vibration leaks from the vibration part 14a.
 以上のように、本発明は、圧電振動素子に有用であり、特に、静電容量の増大を抑制できる点で優れている。 As described above, the present invention is useful for piezoelectric vibration elements, and is particularly excellent in that an increase in capacitance can be suppressed.
10,10a~10c:水晶振動子
12:キャップ
13,13a~13c:水晶振動素子
14:水晶片
14a:振動部
14b:フランジ部
14c:枠部
14d,14e:連結部
16,16b:基板
17:基板本体
20,22:励振電極
24,26:引き出し電極
36,38:接合材
39:パッド電極
G1~G3:凹部
v1~v3:ビアホール導体
 
10, 10a to 10c: Crystal resonator 12: Cap 13, 13a to 13c: Crystal vibrating element 14: Crystal piece 14a: Vibrating portion 14b: Flange portion 14c: Frame portion 14d, 14e: Connecting portion 16, 16b: Substrate 17: Substrate bodies 20, 22: Excitation electrodes 24, 26: Lead electrodes 36, 38: Bonding material 39: Pad electrodes G1 to G3: Recesses v1 to v3: Via hole conductors

Claims (9)

  1.  第1の主面及び第2の主面を有する圧電片と、第1の励振電極と、第2の励振電極と、第1の引き出し電極と、貫通導体と、を備えている圧電振動素子であって、
     前記圧電片は、
      振動部と、
      前記第1の主面の法線方向から見たときに、前記振動部から外側に離れて前記振動部の周囲を囲み、かつ、前記振動部の厚み以上の厚みを有する枠部と、
      前記第1の主面の法線方向から見たときに、前記振動部と前記枠部とを連結する第1の連結部と、
     を含んでおり、
     前記振動部の前記第1の主面と前記第1の連結部の前記第1の主面との間には段差がなく、
     前記枠部の前記第1の主面と前記第1の連結部の前記第1の主面との間には段差がなく、
     前記第1の励振電極は、前記振動部の前記第1の主面上に設けられており、
     前記第2の励振電極は、前記振動部の前記第2の主面上に設けられており、
     前記第1の引き出し電極は、前記第1の励振電極に接続され、かつ、前記第1の連結部の前記第1の主面上に設けられており、
     前記貫通導体は、前記第1の引き出し電極に接続されると共に、前記第1の主面と前記第2の主面とを繋ぐように前記圧電片を貫通し、
     前記貫通導体の少なくとも一部は、前記第1の主面の法線方向から見たときに、前記第1の連結部に位置していること、
     を特徴とする圧電振動素子。
    A piezoelectric vibration element including a piezoelectric piece having a first main surface and a second main surface, a first excitation electrode, a second excitation electrode, a first extraction electrode, and a through conductor. There,
    The piezoelectric piece is
    A vibrating part;
    When viewed from the normal direction of the first main surface, a frame portion that surrounds the periphery of the vibration portion away from the vibration portion and has a thickness equal to or greater than the thickness of the vibration portion;
    A first connecting part that connects the vibrating part and the frame part when viewed from the normal direction of the first main surface;
    Contains
    There is no step between the first main surface of the vibrating portion and the first main surface of the first connecting portion,
    There is no step between the first main surface of the frame portion and the first main surface of the first connecting portion,
    The first excitation electrode is provided on the first main surface of the vibration part,
    The second excitation electrode is provided on the second main surface of the vibrating part,
    The first extraction electrode is connected to the first excitation electrode and provided on the first main surface of the first coupling portion;
    The through conductor is connected to the first lead electrode and penetrates the piezoelectric piece so as to connect the first main surface and the second main surface,
    At least a part of the through conductor is located in the first connecting portion when viewed from the normal direction of the first main surface;
    A piezoelectric vibration element characterized by the above.
  2.  前記貫通導体は、前記圧電片を貫通する貫通孔内が導体により満たされた構造を有すること、
     を特徴とする請求項1に記載の圧電振動素子。
    The through conductor has a structure in which a through hole penetrating the piezoelectric piece is filled with a conductor,
    The piezoelectric vibration element according to claim 1.
  3.  前記貫通導体の一部は、前記第1の主面の法線方向から見たときに、前記第1の連結部に位置していること、
     を特徴とする請求項1又は請求項2のいずれかに記載の圧電振動素子。
    A part of the through conductor is located in the first connecting portion when viewed from the normal direction of the first main surface;
    The piezoelectric vibration element according to claim 1, wherein:
  4.  前記貫通導体の全体は、前記第1の主面の法線方向から見たときに、前記第1の連結部に位置していること、
     を特徴とする請求項1又は請求項2のいずれかに記載の圧電振動素子。
    The entire through conductor is located in the first connecting portion when viewed from the normal direction of the first main surface;
    The piezoelectric vibration element according to claim 1, wherein:
  5.  第2の引き出し電極を、
     更に備えており、
     前記圧電片は、前記第2の主面の法線方向から見たときに、前記振動部と前記枠部とを連結する第2の連結部を、更に含んでおり、
     前記振動部の前記第2の主面と前記第2の連結部の前記第2の主面との間には段差がなく、
     前記枠部の前記第2の主面と前記第2の連結部の前記第2の主面との間には段差がなく、
     前記第2の引き出し電極は、前記第2の励振電極に接続され、かつ、前記第2の連結部の前記第2の主面に設けられており、
     前記第1の主面の法線方向から見たときの前記第1の連結部の線幅は、前記第2の主面の法線方向から見たときの前記第2の連結部の線幅よりも太いこと、
     を特徴とする請求項1ないし請求項4のいずれかに記載の圧電振動素子。
    The second extraction electrode,
    In addition,
    The piezoelectric piece further includes a second connecting portion that connects the vibrating portion and the frame portion when viewed from the normal direction of the second main surface,
    There is no step between the second main surface of the vibrating portion and the second main surface of the second connecting portion,
    There is no step between the second main surface of the frame portion and the second main surface of the second connecting portion,
    The second extraction electrode is connected to the second excitation electrode and provided on the second main surface of the second coupling portion;
    The line width of the first connecting portion when viewed from the normal direction of the first main surface is the line width of the second connecting portion when viewed from the normal direction of the second main surface. Is thicker than
    The piezoelectric vibration element according to claim 1, wherein:
  6.  前記圧電片は、
      前記第1の主面の法線方向から見たときに、前記振動部と前記枠部との間に設けられているフランジ部であって、前記振動部の厚みよりも小さな厚みを有するフランジ部を、
     更に含んでおり、
     前記圧電片の前記第1の主面は、前記フランジ部において窪んでいること、
     を特徴とする請求項1ないし請求項5のいずれかに記載の圧電振動素子。
    The piezoelectric piece is
    A flange portion provided between the vibrating portion and the frame portion when viewed from the normal direction of the first main surface, the flange portion having a thickness smaller than the thickness of the vibrating portion The
    In addition,
    The first main surface of the piezoelectric piece is recessed in the flange portion;
    The piezoelectric vibration element according to claim 1, wherein:
  7.  前記圧電片は、
      前記第1の主面の法線方向から見たときに、前記振動部と前記枠部との間に設けられているフランジ部であって、前記振動部の厚みよりも小さな厚みを有するフランジ部を、
     更に含んでおり、
     前記圧電片の前記第2の主面は、前記フランジ部において窪んでいること、
     を特徴とする請求項1ないし請求項6のいずれかに記載の圧電振動素子。
    The piezoelectric piece is
    A flange portion provided between the vibrating portion and the frame portion when viewed from the normal direction of the first main surface, the flange portion having a thickness smaller than the thickness of the vibrating portion The
    In addition,
    The second main surface of the piezoelectric piece is recessed in the flange portion;
    The piezoelectric vibration element according to claim 1, wherein:
  8.  前記第1の主面の法線方向から見たときに、前記第2の主面において前記第1の連結部と重なる部分は、窪んでいること、
     を特徴とする請求項6に記載の圧電振動素子。
    When viewed from the normal direction of the first main surface, a portion of the second main surface that overlaps the first connecting portion is depressed,
    The piezoelectric vibration element according to claim 6.
  9.  前記振動部は、前記第1の主面の法線方向から見たときに、長方形状をなしており、
     前記第1の連結部及び前記第2の連結部は、前記第1の主面の法線方向から見たときに、前記振動部の対角に接続されていること、
     を特徴とする請求項5に記載の圧電振動素子。
     
    The vibrating portion has a rectangular shape when viewed from the normal direction of the first main surface,
    The first connecting part and the second connecting part are connected to the diagonal of the vibrating part when viewed from the normal direction of the first main surface;
    The piezoelectric vibration element according to claim 5.
PCT/JP2017/021058 2016-06-10 2017-06-07 Piezoelectric vibration element WO2017213163A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016115845 2016-06-10
JP2016-115845 2016-06-10

Publications (1)

Publication Number Publication Date
WO2017213163A1 true WO2017213163A1 (en) 2017-12-14

Family

ID=60578622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021058 WO2017213163A1 (en) 2016-06-10 2017-06-07 Piezoelectric vibration element

Country Status (1)

Country Link
WO (1) WO2017213163A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104512A (en) * 1986-10-21 1988-05-10 Toyo Commun Equip Co Ltd Sealing structure for piezoelectric resonator
JPH07106909A (en) * 1993-08-09 1995-04-21 Murata Mfg Co Ltd Piezoelectric resonance parts
JP2009094806A (en) * 2007-10-09 2009-04-30 Epson Toyocom Corp Piezoelectric device and method of manufacturing the same
JP2011030198A (en) * 2009-06-30 2011-02-10 Nippon Dempa Kogyo Co Ltd Stacked crystal resonator
JP2015173366A (en) * 2014-03-12 2015-10-01 日本電波工業株式会社 Piezoelectric vibration piece and piezoelectric device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104512A (en) * 1986-10-21 1988-05-10 Toyo Commun Equip Co Ltd Sealing structure for piezoelectric resonator
JPH07106909A (en) * 1993-08-09 1995-04-21 Murata Mfg Co Ltd Piezoelectric resonance parts
JP2009094806A (en) * 2007-10-09 2009-04-30 Epson Toyocom Corp Piezoelectric device and method of manufacturing the same
JP2011030198A (en) * 2009-06-30 2011-02-10 Nippon Dempa Kogyo Co Ltd Stacked crystal resonator
JP2015173366A (en) * 2014-03-12 2015-10-01 日本電波工業株式会社 Piezoelectric vibration piece and piezoelectric device

Similar Documents

Publication Publication Date Title
US10205434B2 (en) Piezoelectric resonator unit and method of manufacturing the same
US8907545B2 (en) Crystal element and crystal device
JP2009135830A (en) Crystal vibration piece, crystal vibrator, and crystal oscillator
US9006960B2 (en) Piezoelectric vibrating piece and piezoelectric device
JP5123043B2 (en) Crystal oscillator and crystal oscillator
EP2355342A2 (en) Piezoelectric vibrator and oscillator using the same
JP2011160094A (en) Piezoelectric vibration chip
WO2016140301A1 (en) Crystal oscillator
JP2014068098A (en) Vibration piece, vibration device, electronic apparatus and moving body
CN108352820B (en) Piezoelectric vibration device
JP2013066109A (en) Piezoelectric device
US20040075370A1 (en) Surface mount crystal unit
US10985727B2 (en) Piezoelectric vibrator
WO2017213163A1 (en) Piezoelectric vibration element
US20130328450A1 (en) Piezoelectric vibrating piece and piezoelectric device
US11063573B2 (en) Quartz crystal resonator and quartz crystal resonator unit
JP2015173366A (en) Piezoelectric vibration piece and piezoelectric device
JP2015186196A (en) Piezoelectric vibration piece and piezoelectric device
JP2015019127A (en) Crystal resonator piece and crystal device
JP3912102B2 (en) Crystal filter
WO2020195144A1 (en) Crystal vibration device
JP6555500B2 (en) Piezoelectric vibration element and piezoelectric vibrator
JP4833716B2 (en) Piezoelectric oscillator
JP2003332877A (en) Crystal vibrator
JP6611524B2 (en) Piezoelectric vibrating piece and piezoelectric vibrator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP