WO2017213140A1 - Polyether polymer, composition containing same, and molded article - Google Patents

Polyether polymer, composition containing same, and molded article Download PDF

Info

Publication number
WO2017213140A1
WO2017213140A1 PCT/JP2017/020983 JP2017020983W WO2017213140A1 WO 2017213140 A1 WO2017213140 A1 WO 2017213140A1 JP 2017020983 W JP2017020983 W JP 2017020983W WO 2017213140 A1 WO2017213140 A1 WO 2017213140A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyether polymer
weight
resistance value
surface resistance
polyether
Prior art date
Application number
PCT/JP2017/020983
Other languages
French (fr)
Japanese (ja)
Inventor
小田 実生
大悟 平山
安史 近田
敦朗 山▲崎▼
Original Assignee
株式会社大阪ソーダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪ソーダ filed Critical 株式会社大阪ソーダ
Priority to JP2018521734A priority Critical patent/JP7031582B2/en
Priority to CN201780031441.XA priority patent/CN109153778A/en
Priority to KR1020187033259A priority patent/KR20190016490A/en
Publication of WO2017213140A1 publication Critical patent/WO2017213140A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/08Saturated oxiranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/14Unsaturated oxiranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • the present invention (hereinafter sometimes referred to as the present invention) relates to a polyether polymer, a composition containing the polyether polymer, and a molded body.
  • the present invention relates to a polyether polymer having a surface resistance value within a certain range under a predetermined condition and having a suppressed appearance change, that is, excellent in shape stability, a composition containing the polyether polymer, and a molded article.
  • the present invention shows a single polyether polymer (hereinafter, referred to as a rubber roll material for OA equipment such as a copying machine or the like, an excellent surface resistance value suitable as an antistatic material, and an excellent balance property with water absorption.
  • polyether copolymer (Sometimes referred to as “polyether copolymer”).
  • the “single polyether polymer” means one polyether copolymer, and is distinguished from a blend of a plurality of polyether copolymers such as Patent Document 1 described later.
  • the present invention also relates to a polyether polymer having a stable surface resistance value under low temperature / low humidity conditions and high temperature / high humidity conditions, and an antistatic material using the polyether polymer.
  • the polyether copolymer having ionic conductivity is widely used as a rubber roll material for office automation equipment, and is also used as an antistatic material that is mixed with a resin and other rubber to maintain its function semipermanently.
  • polymer materials such as resins and rubbers are easily charged, and thus have a problem of attracting dust and dust and deteriorating the beauty.
  • static electricity causes malfunction of electronic devices, and in order to prevent malfunction, the surface resistance value of rubber or plastic is set to 1.0 ⁇ 10 10 to 1.0 ⁇ 10 12 ( ⁇ / Sq.) Or less (Non-Patent Document 1).
  • Patent Document 1 proposes a method of blending a propylene oxide homopolymer having a low water absorption rate with respect to an ethylene oxide copolymer as a method for achieving a balance between surface resistance and water absorption.
  • Polyether materials such as polyether copolymers are excellent in ionic conductivity, but at the same time have the problem of high water absorption, lack of dimensional stability, and change in color tone such as becoming cloudy with water absorption. There is a problem to cause. Moreover, the same problem may arise also in the composition which mixed these as an antistatic material, and the molded object obtained using this composition.
  • Patent Document 1 As the polyether material, the material of Patent Document 1 is cited.
  • two types of polyether polymers are required, and in addition, it is an essential condition to mix polymers having different characteristics. Therefore, uneven surface resistance and water absorption in the same material due to poor dispersion. May occur.
  • the present invention has been made by paying attention to the above-mentioned circumstances, and the purpose thereof is the conditions of 23 ° C. and 50% RH; and the conditions of 10 ° C., 15% RH and 35 ° C., 85% RH. At least one of the following: satisfying a predetermined surface resistance value (hereinafter, this characteristic is sometimes referred to as “excellent in semiconductivity”), and the appearance change is suppressed, that is, excellent in shape stability ( Hereinafter, this property may be referred to as “excellent in dimensional stability”) a polyether polymer, a composition containing the same, and a molded product produced using the polyether polymer or the composition Is to provide.
  • a predetermined surface resistance value hereinafter, this characteristic is sometimes referred to as “excellent in semiconductivity”
  • excellent in shape stability hereinafter, this property may be referred to as “excellent in dimensional stability”
  • a polyether polymer a composition containing the same, and a molded product produced using the polyether polymer
  • the object of the present invention is to provide, for example, a single polyether polymer excellent in semiconductivity and dimensional stability that is suitable as a rubber roll for OA equipment, an antistatic material, and an antistatic material alone, and a crosslinked product thereof.
  • An object is to provide an antistatic material.
  • the present inventors have made various studies.
  • the water absorption at 23 ° C. and 50% RH is 1.5% by weight or less, and the surface resistance value is 1.0 ⁇ 10 12. ( ⁇ / sq.) Or less; and the surface resistance value at 10 ° C. and 15% RH and the surface resistance value at 35 ° C. and 85% RH are both 1.0 ⁇ 10 8 to 1.0 ⁇ . 10 12 ( ⁇ / sq.);
  • a polyether polymer characterized by satisfying at least one of the above, and further a cross-linked product thereof has found that the above-mentioned problems can be solved. .
  • Item 1 The water absorption at 23 ° C. and 50% RH is 1.5% by weight or less and the surface resistance value is 1.0 ⁇ 10 12 ( ⁇ / sq.) Or less; and 10 ° C., 15% The surface resistance value at RH and the surface resistance value at 35 ° C. and 85% RH are all 1.0 ⁇ 10 8 to 1.0 ⁇ 10 12 ( ⁇ / sq.).
  • Item 2 (A) 65 to 99 mole percent of structural units derived from ethylene oxide, (B) 35 to 1 mole percent of structural units derived from an oxirane monomer composed of 4 or more carbon atoms, (C) having a crosslinkable functional group Item 2.
  • the polyether polymer according to Item 1 which contains 0 to 10 mole percent of structural units derived from an oxirane monomer.
  • Item 3 (A) 65 to 90 mole percent of structural units derived from ethylene oxide, (B) 30 to 5 mole percent of structural units derived from an oxirane monomer composed of 4 to 10 carbon atoms, (C) a crosslinkable functional group Item 3.
  • the polyether polymer according to Item 1 or 2 which contains 1 to 8 mole percent of structural units derived from an oxirane monomer.
  • Item 4 The polyether polymer according to Item 2, wherein the (B) oxirane monomer having 4 or more carbon atoms is an oxirane monomer having an alkyl group or an alkoxy group.
  • Item 5 The polyether polymer according to any one of Items 2 to 4, wherein the oxirane monomer having a crosslinkable functional group (C) is glycidyl methacrylate or allyl glycidyl ether.
  • Item 6. A composition comprising the polyether polymer according to any one of Items 1 to 5, or a crosslinked product thereof; and at least one selected from a conductivity-imparting agent, rubber, resin and solvent.
  • Item 7 A molded article produced using the polyether polymer or composition according to any one of Items 1 to 6.
  • Item 1a Polyether polymer characterized by having a water absorption of 1.5 wt% or less at 23 ° C. and 50% RH and having a surface resistance of 1.0 ⁇ 10 12 ( ⁇ / sq.) Or less.
  • Item 2a (A) 65 to 99 mol% (mol percent) of structural units derived from ethylene oxide, (B) 35 to 1 mol% of structural units derived from an oxirane monomer composed of 4 or more carbon atoms, (C) crosslinkability The polyether polymer according to Item 1a, comprising 0 to 10 mol% of a structural unit derived from an oxirane monomer having a functional group.
  • Item 3a The polyether polymer according to Item 2a, wherein the oxirane monomer having 4 or more carbon atoms is an oxirane monomer having an alkyl group or an alkoxy group.
  • Item 4a The polyether polymer according to Item 2a or 3a, wherein the oxirane monomer having a crosslinkable functional group is glycidyl methacrylate or allyl glycidyl ether.
  • Item 5a A crosslinked product obtained by crosslinking the polyether polymer according to any one of Items 1a to 4a.
  • Item 1b The surface resistance value at 10 ° C. and 15% RH and the surface resistance value at 35 ° C. and 85% RH are both 1.0 ⁇ 10 8 to 1.0 ⁇ 10 12 ( ⁇ / sq.).
  • a polyether polymer characterized by Item 2b An antistatic material containing the polyether polymer according to Item 1b.
  • Item 3b (A) 65 to 90 mol% of structural units derived from ethylene oxide, (B) 30 to 5 mol% of structural units derived from alkylene oxide (oxirane monomer) composed of 4 to 10 carbon atoms, (C) cross-linking Item 2.
  • the antistatic material according to Item 2b which is a polyether polymer containing 1 to 8 mol% of a structural unit derived from an oxirane monomer having a functional functional group.
  • Item 4b (C) The antistatic material according to Item 3b, wherein the oxirane monomer having a crosslinkable functional group is glycidyl methacrylate or allyl glycidyl ether.
  • Item 5b An antistatic material-containing composition comprising the antistatic material according to Item 2b to 4b and a resin.
  • Item 6b An antistatic material-containing composition comprising the antistatic material according to Item 2b to 4b and rubber.
  • Item 7b An antistatic material-containing composition comprising the antistatic material according to items 2b to 4b, a rubber and a resin.
  • Item 8b An antistatic material-containing composition comprising the antistatic material according to Item 2b to 4b and a solvent.
  • Item 9b A molded article obtained by molding the antistatic material-containing composition according to any one of Items 5b to 8b.
  • a polyether polymer having a surface resistance value within a certain range under a predetermined condition and having an appearance change suppressed, that is, excellent in shape stability, a composition containing the polyether polymer, and molding Can provide the body.
  • the polyether polymer and its cross-linked product according to the present invention are suitable for uses such as antistatic materials, specifically antistatic materials that require semiconductivity, rubber rolls for OA equipment, and the like.
  • the polyether polymer of the present invention has a water absorption at 23 ° C. and 50% RH of 1.5% by weight or less and a surface resistance value of 1.0 ⁇ 10 12 ( ⁇ / sq.) Or less;
  • the surface resistance value at 10 ° C. and 15% RH and the surface resistance value at 35 ° C. and 85% RH are both 1.0 ⁇ 10 8 to 1.0 ⁇ 10 12 ( ⁇ / sq.). Satisfying at least one of the following:
  • the water absorption at 23 ° C. and 50% RH of the polyether polymer of the present invention is 1.5% by weight or less in that it does not cause a problem of appearance change such as cloudiness or warpage deformation under high temperature and high humidity. It is preferably 1.4% by weight or less, and particularly preferably 1.2% by weight or less.
  • the lower limit of the water absorption rate at 23 ° C. and 50% RH is not particularly limited, but may be 0.01% by weight or more, and may be 0.1% by weight or more. From the viewpoint of securing a certain water absorption rate in order to suppress an increase in the surface resistance value, the water absorption rate is 0.3% by weight or more, further 0.5% by weight or more, and further 0.7% by weight. Can be super.
  • the water absorption at 23 ° C. and 50% RH can be calculated from the weight of the polyether polymer in a dry state and the weight of the polyether polymer conditioned at a temperature of 23 ° C. and a humidity of 50% RH as follows. .
  • a polyether polymer is laid on a mold and pressed for 2 minutes with a vacuum heating press set at 160 ° C., thereby forming a 1 mm thick molded polymer sheet as a test piece.
  • the weight of the test piece in the dry state after conditioning the test piece in a dry bath adjusted to ⁇ 50 ° C. for 48 hours is defined as the weight of the polyether polymer in the dry state.
  • the weight of the test piece after conditioning for 48 hours in a constant temperature and humidity chamber adjusted to a temperature of 23 ° C. and a humidity of 50% RH is adjusted to a temperature of 23 ° C. and a humidity of 50% RH.
  • the weight of the obtained polyether polymer is adjusted to a temperature of 23 ° C. and a humidity of 50% RH.
  • the surface resistance value of the polyether polymer of the present invention at 23 ° C. and 50% RH is 1.0 ⁇ 10 12 ( ⁇ / sq.) Or less, and 1.0 ⁇ 10 11 ( ⁇ / sq.) Or less. And is more preferably 7.0 ⁇ 10 10 ( ⁇ / sq.) Or less.
  • the lower limit of the surface resistance value at 23 ° C. and 50% RH is not particularly limited, but may be 1.0 ⁇ 10 7 ( ⁇ / sq.) Or more, and 1.0 ⁇ 10 8 ( ⁇ / sq.) Or more. It may be.
  • the surface resistance value at 23 ° C. and 50% RH is obtained as follows. That is, a polyether polymer is spread on a mold and pressed for 2 minutes with a vacuum heating press set at a temperature of 160 ° C., so that a 1 mm thick molded polymer sheet is used as a test piece, and the test piece is dew point- Test specimens conditioned for 48 hours in a constant temperature and humidity chamber adjusted to a temperature of 23 ° C. and a humidity of 50% RH for the test pieces in a dry state after conditioning for 48 hours in a dry bath adjusted to 50 ° C. In a humidity chamber, a voltage of 100 volts is applied using an insulation resistance meter such as Hiresta manufactured by Mitsubishi Chemical Corporation, the resistance value after 1 minute is read, and the surface resistance value is calculated.
  • a humidity chamber a voltage of 100 volts is applied using an insulation resistance meter such as Hiresta manufactured by Mitsubishi Chemical Corporation, the resistance value after 1 minute is read, and the surface resistance value is calculated.
  • the polyether polymer of the present invention satisfies the above characteristics, or the surface resistance value at 10 ° C. and 15% RH and the surface resistance value at 35 ° C. and 85% RH are both 1.0 ⁇ It is preferably 10 8 ( ⁇ / sq.) Or more, more preferably 2.0 ⁇ 10 8 ( ⁇ / sq.) Or more, and the upper limit is 1.0 ⁇ 10 12 ( ⁇ / sq.) Or less. It is preferable that it is 5.0 ⁇ 10 11 ( ⁇ / sq.) Or less. Since the surface resistance value at 10 ° C. and 15% RH and the surface resistance value at 35 ° C. and 85% RH are both within this range, the surface resistance value is stable under general temperature and humidity conditions. I can expect that. It is more preferable that the water absorption rate and surface resistance value at 23 ° C. and 50% RH are satisfied, and the surface resistance value at 10 ° C. and 15% RH and the surface resistance value at 35 ° C. and 85% RH are satisfied.
  • the surface resistance value at 10 ° C. and 15% RH and the surface resistance value at 35 ° C. and 85% RH are obtained as follows. That is, a polyether polymer is spread on a mold and pressed for 2 minutes with a vacuum heating press set at a temperature of 160 ° C., so that a 1 mm thick molded polymer sheet is used as a test piece, and the test piece is dew point- The dried test piece after conditioning for 48 hours in a dry bath adjusted to 50 ° C. was subjected to a temperature of 10 ° C. and humidity of 15% RH (low temperature and low humidity conditions), or a temperature of 35 ° C. and humidity of 85% RH (high temperature and high humidity conditions).
  • test piece conditioned for 48 hours in the constant temperature and humidity chamber adjusted to was applied with a voltage of 100 volts in the same constant temperature and humidity chamber using an insulation resistance meter such as Hiresta manufactured by Mitsubishi Chemical Corporation.
  • insulation resistance meter such as Hiresta manufactured by Mitsubishi Chemical Corporation.
  • the resistance value after 1 minute is read to calculate the surface resistance value.
  • the polyether polymer of the present invention has an excellent balance between the surface resistance value and the water absorption that affects the shape stability, and achieves both a low surface resistance value and excellent shape stability. Can be realized.
  • polyether polymer satisfying the above properties, (A) 65 to 99 mole percent of structural units derived from ethylene oxide, (B) 35 to 1 mole percent of structural units derived from an oxirane monomer having 4 or more carbon atoms, ( C) Those containing 0 to 10 mole percent of structural units derived from an oxirane monomer having a crosslinkable functional group are preferred.
  • polyether polymer satisfying the above characteristics, (A) 65 to 90 mole percent of structural units derived from ethylene oxide, (B) 30 to 5 mole percent of structural units derived from an oxirane monomer composed of 4 to 10 carbon atoms, (C) Those containing 1 to 8 mole percent of structural units derived from an oxirane monomer having a crosslinkable functional group are more preferred.
  • each structural unit will be described.
  • the structural unit derived from (A) ethylene oxide in the polyether polymer is preferably 65 to 99 mol%, more preferably 65 to 95 mol%, and particularly preferably 65 to 90 mol%.
  • (A) a structural unit derived from ethylene oxide The lower limit is preferably 65 mol% or more, more preferably 67 mol% or more, the upper limit is preferably 99 mol% or less, more preferably 95 mol% or less, 90 More preferably, it is at most mol%.
  • the lower limit is preferably 1 mol% or more, and 5 mol% or more. More preferably, it is 8 mol% or more, still more preferably 10 mol% or more.
  • the upper limit is preferably 35 mol% or less, and more preferably 30 mol% or less.
  • the range of the structural unit is preferably 35 to 1 mol%, more preferably 35 to 5 mol%, still more preferably 30 to 5 mol%, and more preferably 30 to 10 mol%. Further preferred.
  • the lower limit of the structural unit is: It is preferably 15 mol% or more, and more preferably 20 mol% or more.
  • Examples of the oxirane monomer having 4 or more carbon atoms include an oxirane monomer having an alkyl group, an oxirane monomer having an alkyloxy group, an oxirane monomer having a cycloalkyl group, and an oxirane having an aromatic group.
  • Examples include monomers, oxirane monomers having an ester group, oxirane monomers having an hydroxy group (epoxy alcohol), oxirane monomers having an alkyl group, and oxirane monomers having an alkyloxy group.
  • oxirane monomers having 4 or more carbon atoms include oxirane monomers having an alkyl group such as epoxybutane, epoxy hexane, and epoxy octane, methyl glycidyl ether, ethyl glycidyl ether, butyl glycidyl ether, and hexyl glycidyl ether.
  • Oxirane monomers having alkyloxy groups such as 2-ethylhexyl glycidyl ether, methoxyethoxyethyl glycidyl ether, 1,2-epoxycyclopentane, 1,2-epoxycyclohexane, 1,2-epoxy Oxirane monomers having a cycloalkyl group such as cyclododecane, oxirane monomers having an aromatic group such as styrene oxide and phenylglycidyl ether, and esters such as propyl 2,3-epoxybutanoate And oxirane monomers having a hydroxy group such as 4,5-epoxy-1-pentanol, 3,4-epoxy-1-butanol, and the like. In addition to these, two or more may be used in combination.
  • alkyloxy groups also referred to as alkoxy groups
  • alkoxy groups such as 2-ethylhexyl glycidy
  • an oxirane monomer having an alkyl group or an alkoxy group is preferable.
  • 2-ethylhexyl glycidyl ether or alkylene oxides having 4 to 10 carbon atoms, particularly epoxy butane and epoxy hexane are preferable because they are easily copolymerized with ethylene oxide.
  • a polyether polymer having a surface resistance value within a certain range under both low temperature and low humidity conditions and high temperature and high humidity conditions it is composed of 4 to 10 carbon atoms.
  • Alkylene oxide is preferable, alkylene oxide having 4 to 8 carbon atoms is more preferable, epoxy butane such as 1,2-epoxybutane, and epoxyhexane such as 1,2-epoxyhexane. Is more preferable.
  • the lower limit is preferably 0 mol% or more, more preferably 1 mol% or more, It is more preferably 2 mol% or more, particularly preferably 3 mol% or more, and the upper limit is preferably 10 mol% or less, more preferably 8 mol% or less, and 6 mol% or less. More preferably, it is more preferably 5 mol% or less.
  • the range of the structural unit is preferably 0 to 10 mol%, more preferably 1 to 8 mol%, more preferably 1 to 6 mol%, particularly preferably 1 to 5 mol%. preferable.
  • (C) a crosslinkable functional group is used in order to obtain a polyether polymer having excellent surface stability and having a stable surface resistance value under the low temperature / low humidity conditions and the high temperature / high humidity conditions.
  • the structural unit derived from the oxirane monomer is preferably in the range of 1 to 8 mole percent.
  • the oxirane monomer having a crosslinkable functional group may be any oxirane monomer capable of crosslinking the polyether copolymer of the present invention, and examples thereof include halogen-containing oxirane monomers.
  • Specific examples include epihalohydrins such as epichlorohydrin, epibromohydrin, epiiodohydrin, epifluorohydrin, p-chlorostyrene oxide, dibromophenylglycidyl ether, m-chloromethylstyrene oxide, p-chloromethylstyrene oxide, chloro Halogen-substituted oxiranes other than epihalohydrins such as glycidyl acetate, chloromethyl glycidate, tetrafluorooxirane, 1,1,2,3,3,3-hexafluoro-1,2-epoxypropane, allyl glycidyl ether, acrylic acid Ethylenically unsaturated
  • oxirane monomers having a crosslinkable functional group may be used alone or in combination of two or more.
  • Preferable in terms of monomer price and availability are allyl glycidyl ether and glycidyl methacrylate. Particularly preferred is glycidyl methacrylate.
  • a preferred combination of the structural unit derived from the oxirane monomer (B) having 4 or more carbon atoms and the structural unit derived from the oxirane monomer (C) having a crosslinkable functional group is 2-ethylhexyl glycidyl ether.
  • a combination of an alkylene oxide composed of 4 to 10 carbon atoms, particularly epoxybutane, epoxyhexane, and an ethylenically unsaturated group-containing oxirane, particularly glycidyl methacrylate in accordance with the present invention. It is preferable for achieving the value and the water absorption rate.
  • the polyether polymer having a water absorption at 23 ° C. and 50% RH and a surface resistance value described above includes (A) ethylene oxide-derived structural units of 65 to 99 mol%, and (B) a carbon number of 4
  • An example of a polyether polymer containing 35 to 1 mol% of structural units derived from the oxirane monomer constituted as described above and (C) 0 to 10 mol% of structural units derived from an oxirane monomer having a crosslinkable functional group can do.
  • the polyether polymer of (A) includes (A) 65 to 99 mol% of structural units derived from ethylene oxide, (B) 35 to 1 mol% of structural units derived from an oxirane monomer having 4 or more carbon atoms, ( C) A polyether polymer containing 0 to 10 mol% of a structural unit derived from an oxirane monomer having a crosslinkable functional group can be exemplified.
  • the polymerization composition of the polyether polymer can be determined from the calculation result obtained by dissolving the polyether polymer in deuterated chloroform, obtaining the integral value of each unit by 1 H-NMR.
  • the lower limit of the weight average molecular weight of the polyether polymer is preferably 10,000 or more, more preferably 100,000 or more, still more preferably 300,000 or more, and the upper limit is 5 million or less. Preferably, it is 3 million or less, more preferably 2 million or less.
  • the weight average molecular weight of the polyether polymer is preferably 10,000 to 5,000,000, more preferably 100,000 to 3,000,000, and even more preferably 300,000 to 2,000,000.
  • the lower limit of the weight average molecular weight is more preferably 500,000 or more, particularly preferably 900,000 or more, and particularly preferably 1.1 million or more.
  • the weight average molecular weight of the polyether polymer is calculated by gel permeation chromatography (GPC) in terms of standard polystyrene.
  • the glass transition temperature of the polyether polymer is preferably ⁇ 35 ° C. or lower, more preferably ⁇ 40 ° C. or lower, still more preferably ⁇ 44 ° C. or lower, and preferably ⁇ 49 ° C. or lower. More preferably, it is more preferably ⁇ 54 ° C. or less, still more preferably ⁇ 59 ° C. or less, and particularly preferably ⁇ 61 ° C. or less.
  • the lower limit of the glass transition temperature of the polyether polymer can be, for example, ⁇ 80 ° C. or higher.
  • the heat of crystal fusion of the polyether polymer is preferably 25 J / g or less, more preferably 22 J / g or less, still more preferably 19 J / g or less, and 16 J / g or less. Particularly preferred is 8 J / g or less in terms of lowering the environmental variation index.
  • the lower limit of the heat of crystal fusion of the polyether polymer can be, for example, 0 J / g or more.
  • the glass transition temperature of the polyether polymer is a value obtained by differential scanning calorimetry (DSC), and the heat of crystal melting is a value obtained from the melting peak.
  • Method for producing polyether polymer (A) 65 to 99 mol% of structural units derived from ethylene oxide, (B) 35 to 1 mol% of structural units derived from an oxirane monomer composed of 4 or more carbon atoms, (C) an oxirane unit having a crosslinkable functional group
  • A 65 to 99 mol% of structural units derived from ethylene oxide
  • B 35 to 1 mol% of structural units derived from an oxirane monomer composed of 4 or more carbon atoms
  • C an oxirane unit having a crosslinkable functional group
  • the production of a polyether polymer containing 0 to 10 mol% of a structural unit derived from a monomer uses a solution capable of ring-opening polymerization of an oxirane compound as a catalyst, and a solution polymerization method at a temperature in the range of ⁇ 20 to 100 ° C. It can be carried out by a slurry polymerization method or the like.
  • a catalyst for example, a catalyst system in which organic aluminum is mainly used and this is reacted with an oxoacid compound of water or phosphorus, acetylacetone, etc., a catalyst system in which organic zinc is mainly used and water is reacted with this, organic tin- Examples include phosphate ester condensate catalyst systems.
  • the polyether copolymer of the present invention can be produced using the organotin-phosphate ester condensate catalyst system described in US Pat. No. 3,773,694 by the present applicant.
  • a crosslinked product obtained by crosslinking the polyether polymer may be used.
  • the cross-linked product obtained by cross-linking the polyether polymer of the present invention may be obtained by cross-linking by reacting the polyether polymer itself, or by cross-linking by heating together with a cross-linking agent suitable for the cross-linkable functional group. Alternatively, it may be obtained by crosslinking using a thermal polymerization initiator or a photoreaction initiator (also referred to as a photopolymerization initiator) suitable for the crosslinkable functional group.
  • the crosslinking can be performed by irradiating active energy rays such as ultraviolet rays in addition to heating.
  • a known crosslinking accelerator, crosslinking accelerator, and crosslinking retarder can be used in the present invention together with the crosslinking agent, and a known crosslinking assistant can be used in the present invention together with the thermal polymerization initiator and the photoreaction initiator. it can.
  • crosslinking agents can be used.
  • a halogen-containing oxirane monomer in particular, an epihalohydrin or halogen-substituted oxirane other than this epihalohydrin is used.
  • Usable crosslinking agents include ethylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, hexamethylenetetramine, p-phenylenediamine, cumenediamine, N, N'-dicinenamylidene-1,6-hexanediamine, ethylenediamine carbamate, hexamethylenediamine Polyamine crosslinking agents such as carbamate, thiourea crosslinking agents such as ethylenethiourea, 1,3-diethylthiourea, 1,3-dibutylthiourea, trimethylthiourea, 2,5-dimercap 1,3,4-thiadiazole, 2-mercapto-1,3,4-thiadiazole-5-thiobenzoate and other thiadiazole-based crosslinking agents, 2,4,6-trimercapto-1,3,5-triazine, 2 -Methoxy-4,6-dimercaptotriazine, 2-hexyla
  • the diene series is usually used as a crosslinking agent.
  • sulfur-based cross-linking agents such as sulfur, tetramethylthiuram disulfide, dipentamethylenethiuram tetrasulfide, morpholine disulfide, parabenzoquinone dioxime, benzoylquinone dioxime, etc.
  • resin-based crosslinking agents such as quinonedioxime-based crosslinking agents, polymethylolphenol, alkylphenol formaldehyde resins, and bromated alkylphenol formaldehyde resins.
  • the amount of the crosslinking agent is preferably 0.1 to 10 parts by weight, more preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the polyether polymer.
  • the heating temperature is 100 to 200 ° C.
  • the heating time is usually 0.5 to 300 minutes, although it varies depending on the temperature.
  • any method such as compression molding using a mold, injection molding, steam, infrared rays, or microwave heating can be used.
  • thermal polymerization initiator examples include radical initiators selected from organic peroxide initiators, azo compound initiators, and the like.
  • organic peroxide initiators ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxyesters, and the like that are usually used for crosslinking are used.
  • azo compound-based initiator those usually used for crosslinking such as an azonitrile compound, an azoamide compound, an azoamidine compound, etc. are used.
  • These compounds can be used alone or in combination of two or more.
  • an organic peroxide-based initiator is used.
  • Activating energy rays can be ultraviolet rays, visible rays, electron beams or the like.
  • ultraviolet rays are preferable because of the price of the apparatus and ease of control.
  • photoreaction initiators that can be used in the present invention, alkylphenone initiators, benzophenone initiators, acylphosphine oxide initiators, titanocene initiators, triazine initiators, bisimidazole initiators, oxime esters And system initiators.
  • an alkylphenone-based initiator, a benzophenone-based initiator, or an acyl phosphine oxide-based initiator is used.
  • two or more types can be used in combination.
  • alkylphenone initiator examples include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1-phenyl-propane. -1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- [4- [4- (2 -Hydroxy-2-methyl-propionyl) -benzyl] phenyl] -2-methyl-propan-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, etc. It is done.
  • benzophenone initiator examples include benzophenone, 2-chlorobenzophenone, 4,4′-bis (diethylamino) benzophenone, 4,4′-bis (dimethylamino) benzophenone, methyl-2-benzoylbenzoate, and the like. .
  • Benzophenone, 4,4′-bis (diethylamino) benzophenone, and 4,4′-bis (dimethylamino) benzophenone are preferred.
  • acylphosphine oxide-based initiator examples include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, and the like. Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide is preferred.
  • the crosslinking reaction can be carried out by heating at a temperature setting from room temperature to about 200 ° C. for about 10 minutes to 24 hours.
  • a xenon lamp, a mercury lamp, a high-pressure mercury lamp, and a metal halide lamp can be used.
  • a UV irradiator using a high-pressure mercury lamp as a light source can be carried out.
  • the amount of the thermal polymerization initiator used for the crosslinking reaction is preferably 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, with respect to 100 parts by weight of the polyether polymer.
  • the upper limit is preferably 10 parts by weight or less, and more preferably 4 parts by weight or less.
  • the amount of the photoinitiator used for the crosslinking reaction is preferably 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, with respect to 100 parts by weight of the polyether polymer.
  • the upper limit is preferably 6 parts by weight or less, and more preferably 4 parts by weight or less.
  • crosslinking aid may be used in combination with a photoreaction initiator.
  • crosslinking aid examples include triallyl cyanurate, triallyl isocyanurate, triacryl formal, triallyl trimellitate, N, N′-m-phenylene bismaleimide, dipropargyl terephthalate, diallyl phthalate, tetraallyl terephthal Amides, triallyl phosphate, hexafluorotriallyl isocyanurate, N-methyltetrafluorodiallyl isocyanurate, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, methanedithiol, 1,2-ethanedithiol, 1,2-propanedithiol 1,3-propanedithiol, 1,4-butanedithiol, 1,6-hexanedithiol, 1,7-heptanedithiol, 1,8-octanedithiol, 1,9-nonanedi Thiol, 1,10-decanedithio
  • the shape of the polyether polymer of the present invention or a cross-linked product thereof is not limited, and examples thereof include lumps, fibers, films, sheets, pellets, and powders.
  • the polyether polymer of the present invention or a crosslinked product thereof is used in fields where non-chargeability is required, such as automobile parts, OA equipment, parts for home appliances, electric / electronic fields, or storage / storage cases, tubes, etc.
  • Used in The polyether polymer of the present invention or a cross-linked product thereof can be preferably used as an antistatic material in the above field. Below, an antistatic material is demonstrated to an example as a use.
  • the polyether polymer or a cross-linked product thereof can be used as a base (base material).
  • base material in addition to the case of using only the polyether polymer or a crosslinked product thereof, the following additives may be included in the polyether polymer or the crosslinked product thereof.
  • additives to be blended in a general rubber composition for example, fillers, processing aids, plasticizers, acid acceptors.
  • additives such as an ultraviolet absorber, an oil resistance improver, a foaming agent, a scorch inhibitor, and a lubricant may be blended in the polyether polymer of the present invention and its cross-linked product.
  • the antistatic material may be an antistatic material containing the above polyether polymer, may be an antistatic material consisting only of the above polyether polymer, and may be pelletized or powdered. Good.
  • the polyether polymer or a crosslinked product thereof can be used as an additive for at least one selected from a conductivity-imparting agent, rubber, resin and solvent. That is, the present invention also includes a composition containing the polyether polymer or a crosslinked product thereof; and at least one selected from a conductivity imparting agent, rubber, resin and solvent.
  • the antistatic material can be used as an antistatic material-containing composition by being used together with a conductivity imparting agent, a resin, rubber, and a solvent.
  • Examples of the conductivity-imparting agent used in the composition of the present invention include organic sulfonic acid alkali metal salts.
  • alkali metal constituting the alkali metal sulfonic acid alkali metal salt examples include alkali metals such as lithium, sodium, potassium, rubidium and cesium, among which sodium, potassium and cesium are preferable, and potassium and sodium are particularly preferable.
  • the organic sulfonic acid alkali metal salt is selected from the group consisting of alkali metal salts of bis (fluoroalkylsulfonyl) imide, alkali metal salts of tris (fluoroalkylsulfonyl) methide, and alkali metal salts of trifluoroalkylsulfonic acid. It is preferable that
  • organic sulfonic acid alkali metal salt examples include bis (trifluoromethanesulfonyl) imide lithium Li (CF 3 SO 2 ) 2 N, bis (trifluoromethanesulfonyl) imidopotassium K (CF 3 SO 2 ) 2 N, Bis (trifluoromethanesulfonyl) imide sodium Na (CF 3 SO 2 ) 2 N, tris (trifluoromethanesulfonyl) methide lithium Li (CF 3 SO 2 ) 3 C, tris (trifluoromethanesulfonyl) methide potassium K (CF 3 SO 2 ) 3 C, sodium tris (trifluoromethanesulfonyl) methide Na (CF 3 SO 2 ) 3 C, lithium trifluoromethanesulfonate Li (CF 3 SO 3 ), potassium trifluoromethanesulfonate K (CF 3 SO 3 ), trifluoromethanesulfone Sodium Na (CF 3 SO
  • the content of the conductivity imparting agent is not particularly limited, but is 0.1 to 30 parts by weight, preferably 0.5 parts by weight or more, more preferably 1.0 parts by weight with respect to 100 parts by weight of the polyether polymer. Part or more, more preferably 1.5 parts by weight or more, particularly preferably 2.0 parts by weight or more, and preferably 25 parts by weight or less, more preferably 20 parts by weight or less, still more preferably 15 parts by weight or less. Preferably there is.
  • the resin used in the composition of the present invention is preferably a thermoplastic resin or a thermoplastic elastomer.
  • the thermoplastic resin is a polyester resin such as polyethylene terephthalate or polybutylene terephthalate.
  • Polycarbonate resin, polystyrene resin, ABS resin, AS resin, polyamide resin, polyphenylene ether resin, polyethylene resin, polypropylene resin, polyvinyl chloride resin, polyoxymethylene resin, acrylic resin, and the like can be used.
  • thermoplastic elastomer a styrene thermoplastic elastomer, a polyamide thermoplastic elastomer, a polyolefin thermoplastic elastomer, a polyester thermoplastic elastomer, a polyvinyl chloride thermoplastic elastomer, a polyurethane thermoplastic elastomer, or the like can be used. These may be used alone or in combination of two or more.
  • the composition of the present invention is not particularly limited in the amount of the resin and the polyether polymer, but the amount of the polyether polymer is 0 with respect to 100 parts by weight of the resin. 0.01 parts by weight or more is preferably blended, 0.05 parts by weight or more is more preferred, 1 part by weight or more is more preferred, 900 parts by weight or less is preferred, 600 More preferably, it is blended in an amount of up to 400 parts by weight.
  • the blending method is not particularly limited, and a commonly used method can be used, and examples thereof include a roll, an extruder, and a kneader.
  • Examples of the rubber used in the composition of the present invention such as an antistatic material-containing composition include butadiene rubber (BR), styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), acrylic rubber, and 2 Examples of mixed rubbers of more than one species can be given.
  • BR butadiene rubber
  • SBR styrene-butadiene rubber
  • NBR acrylonitrile-butadiene rubber
  • acrylic rubber examples of mixed rubbers of more than one species can be given.
  • the blending amount of rubber and polyether polymer is not particularly limited, but the blending amount is 0 for the polyether polymer with respect to 100 parts by weight of rubber. 0.01 parts by weight or more is preferably blended, more preferably 0.05 parts by weight or more, more preferably 1 part by weight or more, still more preferably 30 parts by weight or less, More preferably, it is blended in an amount of not more than 15 parts by weight, still more preferably not more than 15 parts by weight.
  • the blending method is not particularly limited, and a commonly used method can be used, and examples thereof include a roll, an extruder, and a kneader.
  • composition of the present invention is not particularly limited in the amount of the solvent and the polyether polymer, but the amount of the polyether polymer is 0 with respect to 100 parts by weight of the solvent. 0.01 parts by weight or more is preferably blended, more preferably 0.05 parts by weight or more, more preferably 1 part by weight or more, still more preferably 80 parts by weight or less, More preferably, it is blended in an amount of not more than 50 parts by weight, still more preferably not more than 50 parts by weight.
  • the antistatic material-containing composition is a liquid in which a polyether polymer is dissolved in a solvent. In this case, as described later, it can be used as a coating solution.
  • composition of the present invention such as an antistatic material-containing composition
  • examples of the composition of the present invention further include antioxidants, stabilizers, ultraviolet absorbers, antistatic materials other than those defined in the present invention, lubricants, plasticizers, colorants, A foaming agent, a filler, a pigment, a fragrance, a flame retardant, and a thermal polymerization initiator, a photoreaction initiator, a crosslinking aid and the like can be blended as described later.
  • a thermal polymerization initiator, a photoreaction initiator, a crosslinking aid, an antioxidant, or a lubricant it is preferable to use a thermal polymerization initiator, a photoreaction initiator, a crosslinking aid, an antioxidant, or a lubricant.
  • the molded body produced using the said polyether polymer, its crosslinked material, or the composition containing the said polyether polymer is also contained in this invention.
  • the polyether polymer of the present invention or a cross-linked product thereof may be molded, for example, into a fiber, a film, a sheet, a pellet, a powder or the like after adding the above-mentioned additives alone.
  • the composition of the present invention can be used as a molded article by molding as exemplified below.
  • the molded body include fibers, films, sheets, pellets, powders, and coating films on substrates.
  • These molded bodies may be molded bodies that exhibit elasticity (elastic molded bodies) or may be hard molded bodies that do not exhibit elasticity.
  • Examples of the elastic molded body include elastic rolls.
  • composition using the solvent and the polyether polymer for example, the antistatic material-containing composition using the polyether polymer as the solvent and the antistatic material can be used as a coating liquid.
  • the coating method include a roll coating method, a gravure coating method, a dip coating method, and a spray coating method.
  • the resin for example, polyester resin such as polyethylene terephthalate, polycarbonate resin, polystyrene resin, ABS resin, AS resin, polyamide resin, polyphenylene ether resin, polyethylene resin, polypropylene resin, polyvinyl chloride resin, polyoxymethylene
  • polyester resin such as polyethylene terephthalate, polycarbonate resin, polystyrene resin, ABS resin, AS resin, polyamide resin, polyphenylene ether resin, polyethylene resin, polypropylene resin, polyvinyl chloride resin, polyoxymethylene
  • a molded body by coating a substrate with a composition containing a resin, an acrylic resin, or a mixture of two or more of these and a polyether polymer.
  • the antistatic material-containing composition of the present invention can contain a thermal polymerization initiator, a photoreaction initiator, and a crosslinking aid, and can undergo a crosslinking reaction during molding or after molding to obtain a molded body.
  • Crosslinking can be carried out by heating or irradiation with active energy rays such as ultraviolet rays.
  • the crosslinking reaction can be carried out by heating at a temperature setting from room temperature to about 200 ° C. for about 10 minutes to 24 hours.
  • a xenon lamp, a mercury lamp, a high-pressure mercury lamp, and a metal halide lamp can be used.
  • a UV irradiation machine using a high-pressure mercury lamp as a light source an integrated exposure dose of 1 to 10,000 mJ / cm 2 is irradiated. It can be carried out.
  • thermal polymerization initiator examples include radical initiators selected from organic peroxide initiators, azo compound initiators, and the like.
  • organic peroxide initiators ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxy esters, and the like that are usually used for crosslinking are used.
  • azo compound-based initiator those usually used for crosslinking such as an azonitrile compound, an azoamide compound, an azoamidine compound, etc. are used.
  • an organic peroxide-based initiator is used. These compounds can be used alone or in combination of two or more.
  • Activating energy rays can be ultraviolet rays, visible rays, electron beams or the like.
  • ultraviolet rays are preferable because of the price of the apparatus and ease of control.
  • photoreaction initiators that can be used in the present invention, alkylphenone initiators, benzophenone initiators, acylphosphine oxide initiators, titanocene initiators, triazine initiators, bisimidazole initiators, oxime esters And system initiators.
  • an alkylphenone-based initiator, a benzophenone-based initiator, or an acyl phosphine oxide-based initiator is used.
  • two or more types can be used in combination.
  • alkylphenone initiator examples include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1-phenyl-propane. -1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- [4- [4- (2 -Hydroxy-2-methyl-propionyl) -benzyl] phenyl] -2-methyl-propan-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, etc. It is done.
  • benzophenone initiator examples include benzophenone, 2-chlorobenzophenone, 4,4′-bis (diethylamino) benzophenone, 4,4′-bis (dimethylamino) benzophenone, methyl-2-benzoylbenzoate, and the like. .
  • Benzophenone, 4,4′-bis (diethylamino) benzophenone, and 4,4′-bis (dimethylamino) benzophenone are preferred.
  • acylphosphine oxide-based initiator examples include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, and the like. Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide is preferred.
  • the amount of the thermal polymerization initiator used for the crosslinking reaction is preferably 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, with respect to 100 parts by weight of the polyether polymer.
  • the upper limit is preferably 10 parts by weight or less, and more preferably 4 parts by weight or less.
  • the amount of the photoinitiator used for the crosslinking reaction is preferably 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, with respect to 100 parts by weight of the polyether polymer.
  • the upper limit is preferably 6 parts by weight or less, and more preferably 4 parts by weight or less.
  • crosslinking aid may be used in combination with a photoreaction initiator.
  • crosslinking aid examples include triallyl cyanurate, triallyl isocyanurate, triacryl formal, triallyl trimellitate, N, N′-m-phenylene bismaleimide, dipropargyl terephthalate, diallyl phthalate, tetraallyl terephthal Amides, triallyl phosphate, hexafluorotriallyl isocyanurate, N-methyltetrafluorodiallyl isocyanurate, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, methanedithiol, 1,2-ethanedithiol, 1,2-propanedithiol 1,3-propanedithiol, 1,4-butanedithiol, 1,6-hexanedithiol, 1,7-heptanedithiol, 1,8-octanedithiol, 1,9-nonanedi Thiol, 1,10-decanedithio
  • the molded product of the present invention can be formed into a shape such as a coating film on a substrate, in addition to fibers, films, sheets, pellets, and powders.
  • the molded body of the present invention is used as various molded articles in fields where non-chargeability is required, such as automobile parts, OA equipment, home appliance parts, electrical / electronic fields, or storage / storage cases, tubes, etc. It is done.
  • a polyether polymer having a stable surface resistance value under the low temperature / low humidity conditions and the high temperature / high humidity conditions is preferably used as an antistatic material.
  • the copolymer composition of the polyether polymers obtained in the examples and comparative examples was obtained by dissolving the polyether polymer in deuterated chloroform, determining the integral value of each unit by 1 H-NMR, and calculating the composition ratio from the calculation results. Asked. As the apparatus, JNM GSX-270 type manufactured by JEOL Ltd. was used. The weight average molecular weights of the polyether polymers obtained in Examples and Comparative Examples were determined by gel permeation chromatography (GPC) by the following method.
  • the glass transition temperature (Tg) and the heat of crystal melting ( ⁇ Hc) of the polyether polymers obtained in Examples and Comparative Examples were measured as follows. That is, using a differential scanning calorimeter “DSC 6220” manufactured by SII Technology Co., Ltd., a sample of 10 mg was packed in an aluminum pan for measurement, the heating rate was raised to 180 ° C. at 10 ° C./min, and the same temperature was maintained for 3 minutes. After being held, the temperature was lowered to ⁇ 100 ° C.
  • the amount of heat of crystal melting ( ⁇ Hc) was determined from the area of the exothermic peak accompanying melting in the second temperature raising process.
  • Example 1 The inside of a jacketed stainless steel reactor with an internal volume of 10 L was purged with nitrogen, 10 g of the condensate catalyst, 443 g of 2-ethylhexyl glycidyl ether (also described as EHGE), 70 g of glycidyl methacrylate (also described as GMA), and a solvent 4126 g of normal hexane was charged, and 355 g of ethylene oxide (also referred to as EO) was sequentially added while monitoring the polymerization rate of 2-ethylhexyl glycidyl ether by gas chromatography. The polymerization reaction was stopped by adding 16 g of methanol after 8 hours while maintaining the reaction temperature at 28 ° C.
  • the copolymer composition of the obtained polyether copolymer was 86 mol% of structural units derived from ethylene oxide, 11 mol% of structural units derived from 2-ethylhexyl glycidyl ether, and 3 mol% of structural units derived from glycidyl methacrylate.
  • the copolymer composition and weight average molecular weight of the obtained polyether copolymer are shown in Table 1.
  • Example 2 The charge and the amount during the polymerization were carried out except that the condensate catalyst was 10 g, 1,2-epoxyhexane (also referred to as EH) 580 g, glycidyl methacrylate 110 g, and normal hexane 3750 g, and the amount of ethylene oxide was 399 g.
  • EH 1,2-epoxyhexane
  • glycidyl methacrylate 110 g also referred to as EH
  • normal hexane 3750 g normal hexane 3750 g
  • the amount of ethylene oxide was 399 g.
  • 517 g of a polyether copolymer was obtained.
  • the copolymer composition of the obtained polyether copolymer was 74 mol% of structural units derived from ethylene oxide, 22 mol% of structural units derived from 1,2-epoxyhexane, and 4 mol% of structural units derived from glycidyl methacrylate.
  • Example 3 The polymerization charge was charged except that the amount of the charged product and its amount were 10 g of condensate catalyst, 480 g of 1,2-epoxybutane (also referred to as EB), 126 g of glycidyl methacrylate and 3750 g of normal hexane, and the amount of ethylene oxide was 644 g.
  • 806 g of a polyether copolymer was obtained. Ethylene oxide was sequentially added while monitoring the polymerization rate of 1,2-epoxybutane by gas chromatography.
  • the copolymer composition of the obtained polyether copolymer was 68 mol% of structural units derived from ethylene oxide, 28 mol% of structural units derived from 1,2-epoxybutane, and 4 mol% of structural units derived from glycidyl methacrylate. .
  • the copolymer composition and weight average molecular weight of the obtained polyether copolymer are shown in Table 1.
  • the copolymer composition of the obtained polyether copolymer was 9 mol% of a structural unit derived from propylene oxide and 91 mol% of a structural unit derived from ethylene oxide.
  • the copolymer composition and weight average molecular weight of the obtained polyether copolymer are shown in Table 1.
  • Comparative Example 2 The same as in Comparative Example 1 except that the charged product and its amount during polymerization were 10 g of condensate catalyst, 59 g of propylene oxide, 175 g of allyl glycidyl ether (also referred to as AGE) and 3750 g of normal hexane, and the amount of ethylene oxide was 1015 g. According to the procedure, 1007 g of a polyether copolymer was obtained. In addition, ethylene oxide was sequentially added while monitoring the polymerization rate of propylene oxide by gas chromatography.
  • the copolymer composition of the obtained polyether copolymer was 4 mol% of a structural unit derived from propylene oxide, 90% of a structural unit derived from ethylene oxide, and 6 mol% of a structural unit derived from allyl glycidyl ether.
  • the copolymer composition and weight average molecular weight of the obtained polyether copolymer are shown in Table 1.
  • test pieces were prepared as follows.
  • the temperature was 35 ° C. and the humidity was 85% RH (high temperature and high humidity condition, hereinafter “35 ° C. ⁇ 85% RH” or “35 ° C. 85”
  • the temperature was adjusted in a constant temperature and humidity chamber adjusted for 48 hours, and the surface resistance value of each example was measured in the constant temperature and humidity chamber.
  • an insulation resistance meter manufactured by Mitsubishi Chemical Corporation, Hiresta UX MCP-HT800 was used to apply a voltage of 100 volts, and the resistance value after 1 minute was read to calculate the surface resistance value.
  • the measurement results are shown in Table 2.
  • each polyether copolymer obtained in Examples and Comparative Examples is as follows.
  • Table 1 it is clear that the polyether copolymers of Examples 1 to 3 having a water absorption rate of about 1% are excellent in terms of appearance change in a high temperature and high humidity environment.
  • the polyether copolymers of Comparative Examples 1 and 2 using propylene oxide having 3 carbon atoms outside the scope of the present invention are the copolymers of Examples 1 to 3.
  • the surface resistance is not inferior, it has a high water absorption rate and is extremely inferior in terms of appearance change in a high temperature and high humidity environment.
  • the polyether copolymer of Comparative Example 3 has a high surface resistance, and is inferior to the polyether copolymers of Examples 1 to 3 in the balance between semiconductivity and water absorption.
  • the polyether copolymers of Examples 2 to 3 are 1.0 ⁇ 10 8 to 1.0 ⁇ 10 12 ( ⁇ / sq.) Under low temperature / low humidity conditions and high temperature / high humidity conditions.
  • the polyether copolymer of Comparative Examples 1 and 2 has a wide range of surface resistance values under low temperature / low humidity conditions and high temperature / high humidity conditions. Therefore, it was an unfavorable result in applications such as antistatic materials.
  • Example 4 The polyether copolymer obtained in Example 3 was dissolved in tetrahydrofuran to a solid concentration of 15% by weight, and then the photopolymerization initiator Irgacure 907 (2-methyl-1- (4-methylthiophenyl) -2- A uniform solution was prepared by adding 1.5 parts by weight of morpholinopropan-1-one) to 100 parts by weight of the polyether copolymer. After dropping a certain amount of solution on the PET film, it was coated with an applicator and the tetrahydrofuran was evaporated to form a uniform film having a thickness of 100 ⁇ m. A UV irradiation machine using a high-pressure mercury lamp as a light source was irradiated with 1 J / cm 2 to obtain a crosslinked film (molded product).
  • Irgacure 907 2-methyl-1- (4-methylthiophenyl)-2-
  • a uniform solution was prepared by adding 1.5 parts by weight of morpholinopropan-1-one) to 100 parts by
  • the dried molded body of Example 4 was conditioned for 48 hours in a constant temperature and humidity chamber adjusted to a temperature of 10 ° C. and a humidity of 15% RH (low temperature and low humidity conditions). The surface resistance value of was measured.
  • the dried molded body of Example 4 was conditioned for 48 hours in a constant temperature and humidity chamber adjusted to a temperature of 23 ° C. and a humidity of 50% RH, and the surface resistance value of the molded body in the constant temperature and humidity chamber was adjusted. Measurements were made.
  • the dried molded body of Example 4 was conditioned for 48 hours in a constant temperature and humidity chamber adjusted to a temperature of 35 ° C. and a humidity of 85% RH (high temperature and high humidity conditions).
  • the surface resistance value of the molded body was measured.
  • an insulation resistance meter manufactured by Mitsubishi Chemical Corporation, Hiresta UX MCP-HT800 was used to apply a voltage of 100 volts, and the resistance value after 1 minute was read to calculate the surface resistance value.
  • the measurement results are shown in Table 3.
  • the environmental variation value of the surface resistance value with respect to 50% RH (standard environment) was determined. The results are shown in Table 3. The smaller the change in the surface resistance value with respect to the standard environment, the smaller the environmental dependency.
  • the environmental fluctuation value of the surface resistance value is the difference between the common logarithm of the surface resistance value in the environment of 10 ° C. ⁇ 15% RH and the common logarithm of the surface resistance value in the environment of 23 ° C. ⁇ 50% RH, and 23 ° C.
  • Examples 5 and 6 and Example 7 below are shown as examples to which a conductivity imparting agent is added.
  • Example 5 The polyether copolymer obtained in Example 3 was dissolved in tetrahydrofuran to a solid concentration of 15% by weight, and then the photopolymerization initiator Irgacure 907 (2-methyl-1- (4-methylthiophenyl) -2- 1.5 parts by weight of morpholinopropan-1-one) per 100 parts by weight of the polyether copolymer, and sodium salt (sodium trifluoromethanesulfonate, manufactured by Tokyo Chemical Industry Co., Ltd.) A uniform solution was prepared by adding 5 parts by weight to 100 parts by weight.
  • Example 6 The polyether copolymer obtained in Example 3 was dissolved in tetrahydrofuran to a solid concentration of 15% by weight, and then the photopolymerization initiator Irgacure 907 (2-methyl-1- (4-methylthiophenyl) -2- 1.5 parts by weight of morpholinopropan-1-one) with respect to 100 parts by weight of the polyether copolymer, and potassium salt (potassium trifluoromethanesulfonate, manufactured by Tokyo Chemical Industry Co., Ltd.) A homogeneous solution was prepared by adding 10 parts by weight to 100 parts by weight.
  • Example 5 The molded products obtained in Example 5 and Example 6 were measured for surface resistance and evaluated for environmental variation in the same manner as in Example 4 above. The results are shown in Table 4 below.
  • Example 7 20 parts by weight of the polyether copolymer obtained in Example 3, 5 parts by weight of potassium salt (potassium trifluoromethanesulfonate, manufactured by Tokyo Kasei Kogyo Co., Ltd.), 75 weights of ABS resin (EX-18A, manufactured by UMGABS) After blending, the resin composition was melt-kneaded with a vented twin-screw extruder to obtain a resin composition.
  • the resin composition was molded using an injection molding machine (model number “SE18DUZ”, manufactured by Sumitomo Heavy Industries, Ltd.) under conditions of a cylinder temperature of 250 ° C. and a mold temperature of 70 ° C. to obtain a molded product. A test piece (40 mm square, 1 mm thickness) was cut out from the molded product. About this test piece, it carried out similarly to the said Example 4, and performed the measurement of surface resistance value, and environmental fluctuation evaluation. The results are shown in Table 5 below.
  • Example 8 the characteristics of the molded product obtained using the polyether copolymer of the present invention (Example 8) and the molded product obtained using a polyether copolymer other than the present invention (Comparative Example 3) are compared. did.
  • Example 8 After blending 20 parts by weight of the polyether copolymer obtained in Example 3 and 80 parts by weight of ABS resin (EX-18A, UMGABS Co., Ltd.), the mixture was melt-kneaded in a twin-screw extruder with a vent. A resin composition was obtained. The resin composition was molded using an injection molding machine (model number “SE18DUZ”, manufactured by Sumitomo Heavy Industries, Ltd.) under conditions of a cylinder temperature of 250 ° C. and a mold temperature of 70 ° C. to obtain a molded product. A test piece (40 mm square, 1 mm thickness) was cut out from the molded product.
  • an injection molding machine model number “SE18DUZ”, manufactured by Sumitomo Heavy Industries, Ltd.
  • Example 3 Except that 20 parts by weight of the polyether copolymer obtained in Example 3 was changed to 20 parts by weight of the polyether copolymer obtained in Comparative Example 2, the same operation as in Example 8 was performed, and a test piece was obtained. Obtained.
  • the polyether copolymer of the present invention was used for the production of a molded product, and was obtained even when the mixture with the polyether copolymer was various. It can be seen that environmental fluctuation of the surface resistance value of the molded product can be suppressed.
  • the polyether polymer of the present invention is configured as described above, and has a surface resistance value of 23 ° C. and 50% RH; and 10 ° C., 15% RH and 35 ° C., and 85% RH. In at least one of the above, exhibiting excellent semiconductivity, excellent balance characteristics with water absorption, and excellent shape stability. In particular, it has a stable surface resistance value under the low temperature / low humidity conditions and high temperature / high humidity conditions of the present invention.
  • Polyether copolymers are mixed with resins and rubbers and used as antistatic materials, but in the future, they are also expected to be used as single antistatic materials that have elasticity, chemical resistance, heat resistance, etc. as rubber. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Provided are: a polyether polymer which has a surface resistance value reduced to a predetermined value or less, and has superior shape stability; a composition containing the polyether polymer; and a molded article. The polyether polymer is characterized by satisfying at least one of the conditions of: the water absorption percentage is 1.5 wt% or less and the surface resistance value is 1.0 × 1012 (Ω/sq.) or less at 23°C and 50% RH; and the surface resistance value is 1.0 × 108 to 1.0 × 1012 (Ω/sq.) either at 10°C and 15% RH or at 35°C and 85% RH.

Description

ポリエーテル重合体およびこれを含有する組成物、ならびに成形体Polyether polymer, composition containing the same, and molded article
 本発明(以下、本願発明ということがある)は、ポリエーテル重合体およびこれを含有する組成物、ならびに成形体に関する。特に本発明は、表面抵抗値が所定の条件下で一定範囲内にあると共に、外観変化の抑えられた、即ち形状安定性に優れたポリエーテル重合体およびこれを含有する組成物、ならびに成形体に関する。例えば本願発明は、コピー機等のOA機器用ゴムロール材料や帯電防止材料として好適である良好な表面抵抗値を示し、且つ吸水率とのバランス特性に優れた単一のポリエーテル重合体(以下、「ポリエーテル共重合体」ということがある)に関するものである。尚、上記「単一のポリエーテル重合体」とは、1つのポリエーテル共重合体を意味し、後記する特許文献1の様な複数のポリエーテル共重合体のブレンド物と区別される。また、本願発明は、低温・低湿度条件、及び高温・高湿度条件において、安定した表面抵抗値を有するポリエーテル重合体、及びポリエーテル重合体を用いた帯電防止材に関するものでもある。 The present invention (hereinafter sometimes referred to as the present invention) relates to a polyether polymer, a composition containing the polyether polymer, and a molded body. In particular, the present invention relates to a polyether polymer having a surface resistance value within a certain range under a predetermined condition and having a suppressed appearance change, that is, excellent in shape stability, a composition containing the polyether polymer, and a molded article. About. For example, the present invention shows a single polyether polymer (hereinafter, referred to as a rubber roll material for OA equipment such as a copying machine or the like, an excellent surface resistance value suitable as an antistatic material, and an excellent balance property with water absorption. (Sometimes referred to as “polyether copolymer”). The “single polyether polymer” means one polyether copolymer, and is distinguished from a blend of a plurality of polyether copolymers such as Patent Document 1 described later. The present invention also relates to a polyether polymer having a stable surface resistance value under low temperature / low humidity conditions and high temperature / high humidity conditions, and an antistatic material using the polyether polymer.
 イオン伝導性を有するポリエーテル共重合体は、OA機器用ゴムロール材料に広く利用される他、樹脂及び他のゴムに混ぜて半永久的に機能持続する帯電防止材としても利用されている。一般的に樹脂やゴム等の高分子材料は、帯電しやすいため、ほこりやゴミを寄せつけ、美観を損ねてしまうという問題を有する。また静電気によって電子機器等の誤作動を引き起こすことも知られており、特に誤作動を防止するためにはゴムやプラスチックの表面抵抗値を1.0×1010~1.0×1012(Ω/Sq.)以下に制御する必要がある(非特許文献1)。 The polyether copolymer having ionic conductivity is widely used as a rubber roll material for office automation equipment, and is also used as an antistatic material that is mixed with a resin and other rubber to maintain its function semipermanently. In general, polymer materials such as resins and rubbers are easily charged, and thus have a problem of attracting dust and dust and deteriorating the beauty. It is also known that static electricity causes malfunction of electronic devices, and in order to prevent malfunction, the surface resistance value of rubber or plastic is set to 1.0 × 10 10 to 1.0 × 10 12 (Ω / Sq.) Or less (Non-Patent Document 1).
 また、従来においては、帯電防止材のポリエーテル材料として、エチレンオキシドの単独重合体やエチレンオキシドとプロピレンオキシドとの共重合体が用いられている(特許文献1)。具体的に特許文献1には、表面抵抗と吸水性のバランスを両立させる方法として、エチレンオキサイド共重合体に対して吸水率の低いプロピレンオキサイド単独重合体をブレンドする方法が提案されている。 Conventionally, ethylene oxide homopolymers or copolymers of ethylene oxide and propylene oxide have been used as polyether materials for antistatic materials (Patent Document 1). Specifically, Patent Document 1 proposes a method of blending a propylene oxide homopolymer having a low water absorption rate with respect to an ethylene oxide copolymer as a method for achieving a balance between surface resistance and water absorption.
特開平8-183901号公報JP-A-8-183901
 ポリエーテル共重合体等のポリエーテル材料は、イオン伝導性に優れているが、同時に吸水性が大きいという問題を有しており、寸法安定性に欠け、吸水に伴い白濁する等の色調変化を引き起こす問題がある。また、これらを帯電防止材として混合した組成物や該組成物を用いて得た成形体でも同様の問題が生じうる。 Polyether materials such as polyether copolymers are excellent in ionic conductivity, but at the same time have the problem of high water absorption, lack of dimensional stability, and change in color tone such as becoming cloudy with water absorption. There is a problem to cause. Moreover, the same problem may arise also in the composition which mixed these as an antistatic material, and the molded object obtained using this composition.
 ポリエーテル材料として、上記特許文献1の材料が挙げられている。しかしながらこの方法では2種類のポリエーテル重合体が必要であるのに加え、特性の異なる重合体を混合させることが必須条件であるため、分散不良により同一材料中において表面抵抗値と吸水率のムラが生じてしまう可能性がある。 As the polyether material, the material of Patent Document 1 is cited. However, in this method, two types of polyether polymers are required, and in addition, it is an essential condition to mix polymers having different characteristics. Therefore, uneven surface resistance and water absorption in the same material due to poor dispersion. May occur.
 また、低温・低湿度条件、及び高温・高湿度条件において、表面抵抗値が大きく変動するという課題が有り、低温・低湿度条件、及び高温・高湿度条件において、安定した表面抵抗値を有するポリエーテル重合体が求められている。 In addition, there is a problem that the surface resistance value greatly fluctuates under low temperature / low humidity conditions, and high temperature / high humidity conditions. Polyimides having stable surface resistance values under low temperature / low humidity conditions and high temperature / high humidity conditions. There is a need for ether polymers.
 本発明は上記の様な事情に着目してなされたものであって、その目的は、23℃、50%RHの条件下;と、10℃、15%RHと35℃、85%RHの条件下;の少なくともいずれかで所定の表面抵抗値を満たす(以下、この特性を「半導電性に優れた」ということがある)と共に、外観変化の抑えられた、即ち形状安定性に優れた(以下、この特性を「寸法安定性に優れた」ということがある)ポリエーテル重合体、およびこれを含有する組成物、ならびに、前記ポリエーテル重合体または前記組成物を用いて作製された成形体を提供することにある。より具体的に、本願発明の目的は、例えばOA機器用ゴムロールや帯電防止材及び帯電防止素材単体として好適である半導電性と寸法安定性に優れた単一のポリエーテル重合体及びその架橋物を提供することや、帯電防止材等が用いられるような低温・低湿度条件、及び高温・高湿度条件において、安定した表面抵抗値を有するポリエーテル重合体、及び前記のポリエーテル重合体を含有する帯電防止材を提供することにある。 The present invention has been made by paying attention to the above-mentioned circumstances, and the purpose thereof is the conditions of 23 ° C. and 50% RH; and the conditions of 10 ° C., 15% RH and 35 ° C., 85% RH. At least one of the following: satisfying a predetermined surface resistance value (hereinafter, this characteristic is sometimes referred to as “excellent in semiconductivity”), and the appearance change is suppressed, that is, excellent in shape stability ( Hereinafter, this property may be referred to as “excellent in dimensional stability”) a polyether polymer, a composition containing the same, and a molded product produced using the polyether polymer or the composition Is to provide. More specifically, the object of the present invention is to provide, for example, a single polyether polymer excellent in semiconductivity and dimensional stability that is suitable as a rubber roll for OA equipment, an antistatic material, and an antistatic material alone, and a crosslinked product thereof. A polyether polymer having a stable surface resistance value in a low temperature / low humidity condition and a high temperature / high humidity condition in which an antistatic material is used, and the polyether polymer An object is to provide an antistatic material.
 本発明者らは、上記課題を解決するため、種々検討を重ねたところ、23℃、50%RHにおける吸水率が1.5重量%以下であり、かつ表面抵抗値が1.0×1012(Ω/sq.)以下であること;と、10℃、15%RHにおける表面抵抗値、及び、35℃、85%RHにおける表面抵抗値がいずれも1.0×10~1.0×1012(Ω/sq.)であること;の少なくともいずれかを満たすことを特徴とするポリエーテル重合体、更にはその架橋物により、上記の課題を解決することができることを見出したものである。 In order to solve the above problems, the present inventors have made various studies. As a result, the water absorption at 23 ° C. and 50% RH is 1.5% by weight or less, and the surface resistance value is 1.0 × 10 12. (Ω / sq.) Or less; and the surface resistance value at 10 ° C. and 15% RH and the surface resistance value at 35 ° C. and 85% RH are both 1.0 × 10 8 to 1.0 ×. 10 12 (Ω / sq.); A polyether polymer characterized by satisfying at least one of the above, and further a cross-linked product thereof has found that the above-mentioned problems can be solved. .
 即ち、本発明については、以下のように記載することができる。
項1 23℃、50%RHにおける吸水率が1.5重量%以下であり、かつ表面抵抗値が1.0×1012(Ω/sq.)以下であること;と、10℃、15%RHにおける表面抵抗値、及び、35℃、85%RHにおける表面抵抗値がいずれも1.0×10~1.0×1012(Ω/sq.)であること;の少なくともいずれかを満たすことを特徴とするポリエーテル重合体。
項2 (A)エチレンオキシド由来の構成単位65~99モルパーセント、(B)炭素数4以上で構成されるオキシラン単量体由来の構成単位35~1モルパーセント、(C)架橋性官能基を有するオキシラン単量体由来の構成単位0~10モルパーセントを含有することを特徴とする項1に記載のポリエーテル重合体。
項3 (A)エチレンオキシド由来の構成単位65~90モルパーセント、(B)炭素数4~10で構成されるオキシラン単量体由来の構成単位30~5モルパーセント、(C)架橋性官能基を有するオキシラン単量体由来の構成単位1~8モルパーセントを含有することを特徴とする項1または2に記載のポリエーテル重合体。
項4 前記(B)炭素数4以上で構成されるオキシラン単量体が、アルキル基、又はアルコキシ基を有するオキシラン単量体であることを特徴とする項2に記載のポリエーテル重合体。
項5 前記(C)架橋性官能基を有するオキシラン単量体がメタクリル酸グリシジル、アリルグリシジルエーテルであることを特徴とする項2~4のいずれかに記載のポリエーテル重合体。
項6 項1~5のいずれかに記載のポリエーテル重合体、またはその架橋物と;導電性付与剤、ゴム、樹脂及び溶媒から選択される少なくとも1種と;を含有する組成物。
項7 項1~6のいずれかに記載のポリエーテル重合体または組成物を用いて作製された成形体。
That is, the present invention can be described as follows.
Item 1 The water absorption at 23 ° C. and 50% RH is 1.5% by weight or less and the surface resistance value is 1.0 × 10 12 (Ω / sq.) Or less; and 10 ° C., 15% The surface resistance value at RH and the surface resistance value at 35 ° C. and 85% RH are all 1.0 × 10 8 to 1.0 × 10 12 (Ω / sq.). A polyether polymer characterized by the above.
Item 2 (A) 65 to 99 mole percent of structural units derived from ethylene oxide, (B) 35 to 1 mole percent of structural units derived from an oxirane monomer composed of 4 or more carbon atoms, (C) having a crosslinkable functional group Item 2. The polyether polymer according to Item 1, which contains 0 to 10 mole percent of structural units derived from an oxirane monomer.
Item 3 (A) 65 to 90 mole percent of structural units derived from ethylene oxide, (B) 30 to 5 mole percent of structural units derived from an oxirane monomer composed of 4 to 10 carbon atoms, (C) a crosslinkable functional group Item 3. The polyether polymer according to Item 1 or 2, which contains 1 to 8 mole percent of structural units derived from an oxirane monomer.
Item 4 The polyether polymer according to Item 2, wherein the (B) oxirane monomer having 4 or more carbon atoms is an oxirane monomer having an alkyl group or an alkoxy group.
Item 5 The polyether polymer according to any one of Items 2 to 4, wherein the oxirane monomer having a crosslinkable functional group (C) is glycidyl methacrylate or allyl glycidyl ether.
Item 6. A composition comprising the polyether polymer according to any one of Items 1 to 5, or a crosslinked product thereof; and at least one selected from a conductivity-imparting agent, rubber, resin and solvent.
Item 7 A molded article produced using the polyether polymer or composition according to any one of Items 1 to 6.
 また、本発明については、以下の項1a~項5aのように記載することができる。
項1a 23℃、50%RHにおける吸水率が1.5重量%以下であり、かつ表面抵抗値が1.0×1012(Ω/sq.)以下であることを特徴とするポリエーテル重合体。
項2a (A)エチレンオキシド由来の構成単位65~99モル%(モルパーセント)、(B)炭素数4以上で構成されるオキシラン単量体由来の構成単位35~1モル%、(C)架橋性官能基を有するオキシラン単量体由来の構成単位0~10モル%を含有することを特徴とする項1a記載のポリエーテル重合体。
項3a 炭素数4以上で構成されるオキシラン単量体が、アルキル基、又はアルコキシ基を有するオキシラン単量体であることを特徴とする項2a記載のポリエーテル重合体。
項4a 架橋性官能基を有するオキシラン単量体がメタクリル酸グリシジル、アリルグリシジルエーテルであることを特徴とする項2a又は3a記載のポリエーテル重合体。
項5a 項1a~4aいずれかに記載のポリエーテル重合体を架橋してなる架橋物。
Further, the present invention can be described as in the following items 1a to 5a.
Item 1a Polyether polymer characterized by having a water absorption of 1.5 wt% or less at 23 ° C. and 50% RH and having a surface resistance of 1.0 × 10 12 (Ω / sq.) Or less. .
Item 2a (A) 65 to 99 mol% (mol percent) of structural units derived from ethylene oxide, (B) 35 to 1 mol% of structural units derived from an oxirane monomer composed of 4 or more carbon atoms, (C) crosslinkability The polyether polymer according to Item 1a, comprising 0 to 10 mol% of a structural unit derived from an oxirane monomer having a functional group.
Item 3a The polyether polymer according to Item 2a, wherein the oxirane monomer having 4 or more carbon atoms is an oxirane monomer having an alkyl group or an alkoxy group.
Item 4a The polyether polymer according to Item 2a or 3a, wherein the oxirane monomer having a crosslinkable functional group is glycidyl methacrylate or allyl glycidyl ether.
Item 5a A crosslinked product obtained by crosslinking the polyether polymer according to any one of Items 1a to 4a.
 また、本発明については、以下の項1b~項5bのように記載することができる。
項1b 10℃、15%RHにおける表面抵抗値、及び、35℃、85%RHにおける表面抵抗値がいずれも1.0×10~1.0×1012(Ω/sq.)であることを特徴とするポリエーテル重合体。
項2b 項1b記載のポリエーテル重合体を含有する帯電防止材。
項3b (A)エチレンオキシド由来の構成単位65~90モル%、(B)炭素数4~10で構成されるアルキレンオキシド(オキシラン単量体)由来の構成単位30~5モル%、(C)架橋性官能基を有するオキシラン単量体由来の構成単位1~8モル%を含有するポリエーテル重合体であることを特徴とする項2b記載の帯電防止材。
項4b (C)架橋性官能基を有するオキシラン単量体がメタクリル酸グリシジル、アリルグリシジルエーテルであることを特徴とする項3b記載の帯電防止材。
項5b 項2b~4b記載の帯電防止材と樹脂を含有する帯電防止材含有組成物。
項6b 項2b~4b記載の帯電防止材とゴムを含有する帯電防止材含有組成物。
項7b 項2b~4b記載の帯電防止材とゴムと樹脂を含有する帯電防止材含有組成物。
項8b 項2b~4b記載の帯電防止材と溶媒を含有する帯電防止材含有組成物。
項9b 項5b~8bいずれかに記載の帯電防止材含有組成物を成形してなる成形体。
Further, the present invention can be described as the following items 1b to 5b.
Item 1b The surface resistance value at 10 ° C. and 15% RH and the surface resistance value at 35 ° C. and 85% RH are both 1.0 × 10 8 to 1.0 × 10 12 (Ω / sq.). A polyether polymer characterized by
Item 2b An antistatic material containing the polyether polymer according to Item 1b.
Item 3b (A) 65 to 90 mol% of structural units derived from ethylene oxide, (B) 30 to 5 mol% of structural units derived from alkylene oxide (oxirane monomer) composed of 4 to 10 carbon atoms, (C) cross-linking Item 2. The antistatic material according to Item 2b, which is a polyether polymer containing 1 to 8 mol% of a structural unit derived from an oxirane monomer having a functional functional group.
Item 4b (C) The antistatic material according to Item 3b, wherein the oxirane monomer having a crosslinkable functional group is glycidyl methacrylate or allyl glycidyl ether.
Item 5b An antistatic material-containing composition comprising the antistatic material according to Item 2b to 4b and a resin.
Item 6b An antistatic material-containing composition comprising the antistatic material according to Item 2b to 4b and rubber.
Item 7b An antistatic material-containing composition comprising the antistatic material according to items 2b to 4b, a rubber and a resin.
Item 8b An antistatic material-containing composition comprising the antistatic material according to Item 2b to 4b and a solvent.
Item 9b A molded article obtained by molding the antistatic material-containing composition according to any one of Items 5b to 8b.
 本発明によれば、表面抵抗値が所定の条件下で一定範囲内にあると共に、外観変化の抑えられた、即ち形状安定性に優れたポリエーテル重合体およびこれを含有する組成物、ならびに成形体を提供できる。上記本発明によるポリエーテル重合体及びその架橋物は、帯電防止材等の用途、具体的には半導電性が必要とされる帯電防止材料、OA機器用ゴムロール等に好適である。 According to the present invention, a polyether polymer having a surface resistance value within a certain range under a predetermined condition and having an appearance change suppressed, that is, excellent in shape stability, a composition containing the polyether polymer, and molding Can provide the body. The polyether polymer and its cross-linked product according to the present invention are suitable for uses such as antistatic materials, specifically antistatic materials that require semiconductivity, rubber rolls for OA equipment, and the like.
 本発明のポリエーテル重合体は、23℃、50%RHにおける吸水率が1.5重量%以下であり、かつ表面抵抗値が1.0×1012(Ω/sq.)以下であること;と、10℃、15%RHにおける表面抵抗値、及び、35℃、85%RHにおける表面抵抗値がいずれも1.0×10~1.0×1012(Ω/sq.)であること;の少なくともいずれかを満たすことを特徴とする。 The polyether polymer of the present invention has a water absorption at 23 ° C. and 50% RH of 1.5% by weight or less and a surface resistance value of 1.0 × 10 12 (Ω / sq.) Or less; The surface resistance value at 10 ° C. and 15% RH and the surface resistance value at 35 ° C. and 85% RH are both 1.0 × 10 8 to 1.0 × 10 12 (Ω / sq.). Satisfying at least one of the following:
 本発明のポリエーテル重合体の23℃、50%RHにおける吸水率としては、高温高湿下における白濁やそり変形等の外観変化の問題を生じない点で、1.5重量%以下であり、1.4重量%以下であることが好ましく、1.2重量%以下であることが特に好ましい。23℃、50%RHにおける吸水率の下限については特に限定されないが、0.01重量%以上であってよく、0.1重量%以上であってよい。表面抵抗値の上昇を抑制すべく、ある程度の吸水率を確保する観点からは、上記吸水率を、0.3重量%以上、更には0.5重量%以上、より更には0.7重量%超とすることができる。 The water absorption at 23 ° C. and 50% RH of the polyether polymer of the present invention is 1.5% by weight or less in that it does not cause a problem of appearance change such as cloudiness or warpage deformation under high temperature and high humidity. It is preferably 1.4% by weight or less, and particularly preferably 1.2% by weight or less. The lower limit of the water absorption rate at 23 ° C. and 50% RH is not particularly limited, but may be 0.01% by weight or more, and may be 0.1% by weight or more. From the viewpoint of securing a certain water absorption rate in order to suppress an increase in the surface resistance value, the water absorption rate is 0.3% by weight or more, further 0.5% by weight or more, and further 0.7% by weight. Can be super.
 23℃、50%RHにおける吸水率は、乾燥状態におけるポリエーテル重合体の重量と温度23℃、湿度50%RHで状態調節されたポリエーテル重合体の重量から以下のように算出することができる。 The water absorption at 23 ° C. and 50% RH can be calculated from the weight of the polyether polymer in a dry state and the weight of the polyether polymer conditioned at a temperature of 23 ° C. and a humidity of 50% RH as follows. .
 23℃、50%RHにおける吸水率(重量%)=((温度23℃、湿度50%RHで状態調節されたポリエーテル重合体の重量-乾燥状態におけるポリエーテル重合体の重量)/乾燥状態におけるポリエーテル重合体の重量)×100 Water absorption at 23 ° C. and 50% RH (% by weight) = ((weight of polyether polymer conditioned at temperature 23 ° C., humidity 50% RH−weight of polyether polymer in dry state) / in dry state Weight of polyether polymer) x 100
 尚、本発明においては、ポリエーテル重合体を金型の上に敷き詰め、160℃に温度設定した真空加熱プレス機で2分間プレスすることにより、1mm厚の成形されたポリマーシートを試験片とし、試験片を露点-50℃に調整されたドライブースにおいて48時間状態調節した後の乾燥状態の試験片の重量を、乾燥状態におけるポリエーテル重合体の重量とする。また、上記乾燥状態の試験片を温度23℃、湿度50%RHに調節した恒温恒湿槽内で48時間状態調節した後の試験片の重量を、温度23℃、湿度50%RHで状態調節されたポリエーテル重合体の重量とする。 In the present invention, a polyether polymer is laid on a mold and pressed for 2 minutes with a vacuum heating press set at 160 ° C., thereby forming a 1 mm thick molded polymer sheet as a test piece. The weight of the test piece in the dry state after conditioning the test piece in a dry bath adjusted to −50 ° C. for 48 hours is defined as the weight of the polyether polymer in the dry state. The weight of the test piece after conditioning for 48 hours in a constant temperature and humidity chamber adjusted to a temperature of 23 ° C. and a humidity of 50% RH is adjusted to a temperature of 23 ° C. and a humidity of 50% RH. The weight of the obtained polyether polymer.
 本発明のポリエーテル重合体の23℃、50%RHにおける表面抵抗値としては、1.0×1012(Ω/sq.)以下であり、1.0×1011(Ω/sq.)以下であることが好ましく、7.0×1010(Ω/sq.)以下であることがより好ましい。23℃、50%RHにおける表面抵抗値の下限については特に限定されないが、1.0×10(Ω/sq.)以上であってよく、1.0×10(Ω/sq.)以上であってよい。 The surface resistance value of the polyether polymer of the present invention at 23 ° C. and 50% RH is 1.0 × 10 12 (Ω / sq.) Or less, and 1.0 × 10 11 (Ω / sq.) Or less. And is more preferably 7.0 × 10 10 (Ω / sq.) Or less. The lower limit of the surface resistance value at 23 ° C. and 50% RH is not particularly limited, but may be 1.0 × 10 7 (Ω / sq.) Or more, and 1.0 × 10 8 (Ω / sq.) Or more. It may be.
 23℃、50%RHにおける表面抵抗値は次の様にして求められる。即ち、ポリエーテル重合体を金型の上に敷き詰め、160℃に温度設定した真空加熱プレス機で2分間プレスすることにより、1mm厚の成形されたポリマーシートを試験片とし、試験片を露点-50℃に調整されたドライブースにおいて48時間状態調節した後の乾燥状態の試験片を温度23℃、湿度50%RHに調節した恒温恒湿槽内で48時間状態調節した試験片を、同恒温恒湿槽内で、三菱化学株式会社製のハイレスタ等の絶縁抵抗計を用いて、100ボルトの電圧を印加し、1分後の抵抗値を読み取り表面抵抗値を算出する。 The surface resistance value at 23 ° C. and 50% RH is obtained as follows. That is, a polyether polymer is spread on a mold and pressed for 2 minutes with a vacuum heating press set at a temperature of 160 ° C., so that a 1 mm thick molded polymer sheet is used as a test piece, and the test piece is dew point- Test specimens conditioned for 48 hours in a constant temperature and humidity chamber adjusted to a temperature of 23 ° C. and a humidity of 50% RH for the test pieces in a dry state after conditioning for 48 hours in a dry bath adjusted to 50 ° C. In a humidity chamber, a voltage of 100 volts is applied using an insulation resistance meter such as Hiresta manufactured by Mitsubishi Chemical Corporation, the resistance value after 1 minute is read, and the surface resistance value is calculated.
 本発明のポリエーテル重合体は、上記特性を満たすか、または、10℃、15%RHにおける表面抵抗値、及び、35℃、85%RHにおける表面抵抗値がいずれも、下限が1.0×10(Ω/sq.)以上であることが好ましく、2.0×10(Ω/sq.)以上であることがより好ましく、上限は1.0×1012(Ω/sq.)以下であることが好ましく、5.0×1011(Ω/sq.)以下であることがより好ましい。10℃、15%RHにおける表面抵抗値、及び、35℃、85%RHにおける表面抵抗値がいずれもこの範囲であることにより、一般的な温度と湿度の条件において、安定した表面抵抗値を有することが期待できる。上記23℃、50%RHでの吸水率および表面抵抗値を満たすと共に、上記10℃、15%RHにおける表面抵抗値と35℃、85%RHにおける表面抵抗値を満たすことがより好ましい。 The polyether polymer of the present invention satisfies the above characteristics, or the surface resistance value at 10 ° C. and 15% RH and the surface resistance value at 35 ° C. and 85% RH are both 1.0 × It is preferably 10 8 (Ω / sq.) Or more, more preferably 2.0 × 10 8 (Ω / sq.) Or more, and the upper limit is 1.0 × 10 12 (Ω / sq.) Or less. It is preferable that it is 5.0 × 10 11 (Ω / sq.) Or less. Since the surface resistance value at 10 ° C. and 15% RH and the surface resistance value at 35 ° C. and 85% RH are both within this range, the surface resistance value is stable under general temperature and humidity conditions. I can expect that. It is more preferable that the water absorption rate and surface resistance value at 23 ° C. and 50% RH are satisfied, and the surface resistance value at 10 ° C. and 15% RH and the surface resistance value at 35 ° C. and 85% RH are satisfied.
 10℃、15%RHにおける表面抵抗値、及び、35℃、85%RHにおける表面抵抗値は次の様にして求められる。即ち、ポリエーテル重合体を金型の上に敷き詰め、160℃に温度設定した真空加熱プレス機で2分間プレスすることにより、1mm厚の成形されたポリマーシートを試験片とし、試験片を露点-50℃に調整されたドライブースにおいて48時間状態調節した後の乾燥状態の試験片を温度10℃、湿度15%RH(低温低湿条件)、又は温度35℃、湿度85%RH(高温高湿条件)に調節した恒温恒湿槽内で48時間状態調節した試験片を、同恒温恒湿槽内で、三菱化学株式会社製のハイレスタ等の絶縁抵抗計を用いて、100ボルトの電圧を印加し、1分後の抵抗値を読み取り表面抵抗値を算出する。 The surface resistance value at 10 ° C. and 15% RH and the surface resistance value at 35 ° C. and 85% RH are obtained as follows. That is, a polyether polymer is spread on a mold and pressed for 2 minutes with a vacuum heating press set at a temperature of 160 ° C., so that a 1 mm thick molded polymer sheet is used as a test piece, and the test piece is dew point- The dried test piece after conditioning for 48 hours in a dry bath adjusted to 50 ° C. was subjected to a temperature of 10 ° C. and humidity of 15% RH (low temperature and low humidity conditions), or a temperature of 35 ° C. and humidity of 85% RH (high temperature and high humidity conditions). The test piece conditioned for 48 hours in the constant temperature and humidity chamber adjusted to) was applied with a voltage of 100 volts in the same constant temperature and humidity chamber using an insulation resistance meter such as Hiresta manufactured by Mitsubishi Chemical Corporation. The resistance value after 1 minute is read to calculate the surface resistance value.
 後記する実施例の比較例3に示す通り、形状安定性を高めるべく吸水率を低減しすぎると、表面抵抗値が高くなる。これに対し本発明のポリエーテル重合体は、上記の通り、表面抵抗値と、形状安定性に影響を及ぼす吸水率とのバランスに優れており、低い表面抵抗値と優れた形状安定性の両立を実現できる。 As shown in Comparative Example 3 of the examples described later, if the water absorption rate is excessively reduced to increase the shape stability, the surface resistance value is increased. On the other hand, as described above, the polyether polymer of the present invention has an excellent balance between the surface resistance value and the water absorption that affects the shape stability, and achieves both a low surface resistance value and excellent shape stability. Can be realized.
 上記特性を満たすポリエーテル重合体として、(A)エチレンオキシド由来の構成単位65~99モルパーセント、(B)炭素数4以上で構成されるオキシラン単量体由来の構成単位35~1モルパーセント、(C)架橋性官能基を有するオキシラン単量体由来の構成単位0~10モルパーセントを含有するものが好ましい。 As the polyether polymer satisfying the above properties, (A) 65 to 99 mole percent of structural units derived from ethylene oxide, (B) 35 to 1 mole percent of structural units derived from an oxirane monomer having 4 or more carbon atoms, ( C) Those containing 0 to 10 mole percent of structural units derived from an oxirane monomer having a crosslinkable functional group are preferred.
 上記特性を満たすポリエーテル重合体として、(A)エチレンオキシド由来の構成単位65~90モルパーセント、(B)炭素数4~10で構成されるオキシラン単量体由来の構成単位30~5モルパーセント、(C)架橋性官能基を有するオキシラン単量体由来の構成単位1~8モルパーセントを含有するものがより好ましい。以下、各構成単位について説明する。 As the polyether polymer satisfying the above characteristics, (A) 65 to 90 mole percent of structural units derived from ethylene oxide, (B) 30 to 5 mole percent of structural units derived from an oxirane monomer composed of 4 to 10 carbon atoms, (C) Those containing 1 to 8 mole percent of structural units derived from an oxirane monomer having a crosslinkable functional group are more preferred. Hereinafter, each structural unit will be described.
 〔(A)エチレンオキシド由来の構成単位〕
 ポリエーテル重合体における、(A)エチレンオキシド由来の構成単位としては、65~99モル%有することが好ましいが、65~95モル%有することがより好ましく、65~90モル%有することが特に好ましい。特に、形状安定性に優れていると共に、上記低温・低湿度条件、及び高温・高湿度条件において、安定した表面抵抗値を有するポリエーテル重合体を得るには、(A)エチレンオキシド由来の構成単位としては、下限は65モル%以上であることが好ましく、67モル%以上であることがより好ましく、上限は99モル%以下であることが好ましく、95モル%以下であることがより好ましく、90モル%以下であることが更に好ましい。
[(A) Structural unit derived from ethylene oxide]
The structural unit derived from (A) ethylene oxide in the polyether polymer is preferably 65 to 99 mol%, more preferably 65 to 95 mol%, and particularly preferably 65 to 90 mol%. In particular, in order to obtain a polyether polymer having excellent surface stability and having a stable surface resistance value under the low temperature / low humidity conditions and the high temperature / high humidity conditions, (A) a structural unit derived from ethylene oxide The lower limit is preferably 65 mol% or more, more preferably 67 mol% or more, the upper limit is preferably 99 mol% or less, more preferably 95 mol% or less, 90 More preferably, it is at most mol%.
 〔(B)炭素数4以上で構成されるオキシラン単量体由来の構成単位〕
 ポリエーテル重合体における、(B)炭素数4以上で構成されるオキシラン単量体(アルキレンオキシド)由来の構成単位としては、下限は1モル%以上であることが好ましく、5モル%以上であることがより好ましく、8モル%以上であることが更に好ましく、10モル%以上であることがより更に好ましい。上限は35モル%以下であることが好ましく、30モル%以下であることがより好ましい。例えば上記構成単位の範囲として、35~1モル%有することが好ましいが、35~5モル%有することがより好ましく、30~5モル%有することが更に好ましく、30~10モル%有することがより更に好ましい。この範囲であれば、ポリエーテル重合体が充分に低い表面抵抗値が得られる。また、特に、低温・低湿度条件、及び高温・高湿度条件のいずれの条件においても、表面抵抗値が一定範囲内にあるポリエーテル重合体を容易に得るには、上記構成単位の下限は、15モル%以上であることが好ましく、20モル%以上であることがより好ましい。
[(B) a structural unit derived from an oxirane monomer composed of 4 or more carbon atoms]
In the polyether polymer, (B) the structural unit derived from an oxirane monomer (alkylene oxide) composed of 4 or more carbon atoms, the lower limit is preferably 1 mol% or more, and 5 mol% or more. More preferably, it is 8 mol% or more, still more preferably 10 mol% or more. The upper limit is preferably 35 mol% or less, and more preferably 30 mol% or less. For example, the range of the structural unit is preferably 35 to 1 mol%, more preferably 35 to 5 mol%, still more preferably 30 to 5 mol%, and more preferably 30 to 10 mol%. Further preferred. Within this range, a sufficiently low surface resistance value can be obtained for the polyether polymer. In particular, in order to easily obtain a polyether polymer having a surface resistance value within a certain range under any of low temperature / low humidity conditions and high temperature / high humidity conditions, the lower limit of the structural unit is: It is preferably 15 mol% or more, and more preferably 20 mol% or more.
 炭素数4以上で構成されるオキシラン単量体としては、アルキル基を有するオキシラン単量体、アルキルオキシ基を有するオキシラン単量体、シクロアルキル基を有するオキシラン単量体、芳香族基を有するオキシラン単量体、エステル基を有するオキシラン単量体、ヒドロキシ基を有するオキシラン単量体(エポキシアルコール)を例示することでき、アルキル基を有するオキシラン単量体、アルキルオキシ基を有するオキシラン単量体であることが好ましい。 Examples of the oxirane monomer having 4 or more carbon atoms include an oxirane monomer having an alkyl group, an oxirane monomer having an alkyloxy group, an oxirane monomer having a cycloalkyl group, and an oxirane having an aromatic group. Examples include monomers, oxirane monomers having an ester group, oxirane monomers having an hydroxy group (epoxy alcohol), oxirane monomers having an alkyl group, and oxirane monomers having an alkyloxy group. Preferably there is.
 炭素数4以上で構成されるオキシラン単量体を例示すると、エポキシブタン、エポキシヘキサン、エポキシオクタン等のアルキル基を有するオキシラン単量体、メチルグリシジルエーテル、エチルグリシジルエーテル、ブチルグリシジルエーテル、ヘキシルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、メトキシエトキシエチルグリシジルエーテル等のアルキルオキシ基(アルコキシ基ともいう)を有するオキシラン単量体、1,2-エポキシシクロペンタン、1,2-エポキシシクロヘキサン、1,2-エポキシシクロドデカン等のシクロアルキル基を有するオキシラン単量体、スチレンオキシド、フェニルグリシジルエーテル等の芳香族基を有するオキシラン単量体、2,3-エポキシブタン酸プロピル等のエステル基を有するオキシラン単量体、4,5-エポキシ-1-ペンタノール、3,4-エポキシ-1-ブタノール等のヒドロキシ基を有するオキシラン単量体等を例示することができ、これらは、単独で用いる他、2種以上を併用しても良い。 Examples of oxirane monomers having 4 or more carbon atoms include oxirane monomers having an alkyl group such as epoxybutane, epoxy hexane, and epoxy octane, methyl glycidyl ether, ethyl glycidyl ether, butyl glycidyl ether, and hexyl glycidyl ether. Oxirane monomers having alkyloxy groups (also referred to as alkoxy groups) such as 2-ethylhexyl glycidyl ether, methoxyethoxyethyl glycidyl ether, 1,2-epoxycyclopentane, 1,2-epoxycyclohexane, 1,2-epoxy Oxirane monomers having a cycloalkyl group such as cyclododecane, oxirane monomers having an aromatic group such as styrene oxide and phenylglycidyl ether, and esters such as propyl 2,3-epoxybutanoate And oxirane monomers having a hydroxy group such as 4,5-epoxy-1-pentanol, 3,4-epoxy-1-butanol, and the like. In addition to these, two or more may be used in combination.
 このうち、好ましくはアルキル基、又はアルコキシ基を有するオキシラン単量体である。中でも、2-エチルヘキシルグリシジルエーテル、または炭素数4~10で構成されるアルキレンオキシド、特にはエポキシブタン、エポキシヘキサンが、エチレンオキシドと共重合がしやすい点で好ましい。特に、低温・低湿度条件、及び高温・高湿度条件のいずれの条件においても、表面抵抗値が一定範囲内にあるポリエーテル重合体を容易に得るには、炭素数4~10で構成されるアルキレンオキシドであることが好ましく、炭素数4~8で構成されるアルキレンオキシドであることがより好ましく、1,2-エポキシブタン等のエポキシブタン、1,2-エポキシヘキサン等のエポキシヘキサンであることが更に好ましい。 Of these, an oxirane monomer having an alkyl group or an alkoxy group is preferable. Among these, 2-ethylhexyl glycidyl ether or alkylene oxides having 4 to 10 carbon atoms, particularly epoxy butane and epoxy hexane, are preferable because they are easily copolymerized with ethylene oxide. In particular, in order to easily obtain a polyether polymer having a surface resistance value within a certain range under both low temperature and low humidity conditions and high temperature and high humidity conditions, it is composed of 4 to 10 carbon atoms. Alkylene oxide is preferable, alkylene oxide having 4 to 8 carbon atoms is more preferable, epoxy butane such as 1,2-epoxybutane, and epoxyhexane such as 1,2-epoxyhexane. Is more preferable.
 〔(C)架橋性官能基を有するオキシラン単量体由来の構成単位〕
 ポリエーテル重合体における、(C)架橋性官能基を有するオキシラン単量体由来の構成単位としては、下限としては0モル%以上であることが好ましく、1モル%以上であることがより好ましく、2モル%以上であることが更に好ましく、3モル%以上であることが特に好ましく、上限としては10モル%以下であることが好ましく、8モル%以下であることがより好ましく、6モル%以下であることが更に好ましく、5モル%以下であることが特に好ましい。例えば上記構成単位の範囲として、0~10モル%有することが好ましいが、1~8モル%有することがより好ましく、1~6モル%有することがより好ましく、1~5モル%有することが特に好ましい。
 特に、形状安定性に優れていると共に、上記低温・低湿度条件、及び高温・高湿度条件において、安定した表面抵抗値を有するポリエーテル重合体を得るには、(C)架橋性官能基を有するオキシラン単量体由来の構成単位を、1~8モルパーセントの範囲内とすることが好ましい。
[(C) a structural unit derived from an oxirane monomer having a crosslinkable functional group]
As the structural unit derived from the oxirane monomer having a crosslinkable functional group (C) in the polyether polymer, the lower limit is preferably 0 mol% or more, more preferably 1 mol% or more, It is more preferably 2 mol% or more, particularly preferably 3 mol% or more, and the upper limit is preferably 10 mol% or less, more preferably 8 mol% or less, and 6 mol% or less. More preferably, it is more preferably 5 mol% or less. For example, the range of the structural unit is preferably 0 to 10 mol%, more preferably 1 to 8 mol%, more preferably 1 to 6 mol%, particularly preferably 1 to 5 mol%. preferable.
In particular, in order to obtain a polyether polymer having excellent surface stability and having a stable surface resistance value under the low temperature / low humidity conditions and the high temperature / high humidity conditions, (C) a crosslinkable functional group is used. The structural unit derived from the oxirane monomer is preferably in the range of 1 to 8 mole percent.
 架橋性官能基を有するオキシラン単量体としては、本発明のポリエーテル共重合体を架橋せしめ得るオキシラン単量体であればいかなるものでも良く、例えばハロゲン含有オキシラン単量体が挙げられる。具体例としてエピクロルヒドリン、エピブロムヒドリン、エピヨードヒドリン、エピフルオロヒドリン等のエピハロヒドリン類、p-クロロスチレンオキシド、ジブロモフェニルグリシジルエーテル、m-クロロメチルスチレンオキシド、p-クロロメチルスチレンオキシド、クロロ酢酸グリシジル、グリシド酸クロロメチル、テトラフルオロオキシラン、1,1,2,3,3,3-ヘキサフルオロ-1,2-エポキシプロパン等のエピハロヒドリン類以外のハロゲン置換オキシラン類、アリルグリシジルエーテル、アクリル酸グリシジル、メタクリル酸グリシジル、クロトン酸グリシジル、3,4-エポキシ-1-ブテン等のエチレン性不飽和基含有オキシラン類、メタグリシド酸グリシジルエステル、グリシドメタグリシジルエステル等を挙げることができる。これら架橋性官能基を有するオキシラン単量体は、単独で用いる他、2種以上を併用しても良い。単量体価格や入手の面で好ましいのは、アリルグリシジルエーテル、メタクリル酸グリシジルである。メタクリル酸グリシジルであることが特に好ましい。 The oxirane monomer having a crosslinkable functional group may be any oxirane monomer capable of crosslinking the polyether copolymer of the present invention, and examples thereof include halogen-containing oxirane monomers. Specific examples include epihalohydrins such as epichlorohydrin, epibromohydrin, epiiodohydrin, epifluorohydrin, p-chlorostyrene oxide, dibromophenylglycidyl ether, m-chloromethylstyrene oxide, p-chloromethylstyrene oxide, chloro Halogen-substituted oxiranes other than epihalohydrins such as glycidyl acetate, chloromethyl glycidate, tetrafluorooxirane, 1,1,2,3,3,3-hexafluoro-1,2-epoxypropane, allyl glycidyl ether, acrylic acid Ethylenically unsaturated group-containing oxiranes such as glycidyl, glycidyl methacrylate, glycidyl crotonate, 3,4-epoxy-1-butene, glycidyl metaglycidate, glycid metaglycidyl ester, etc. Door can be. These oxirane monomers having a crosslinkable functional group may be used alone or in combination of two or more. Preferable in terms of monomer price and availability are allyl glycidyl ether and glycidyl methacrylate. Particularly preferred is glycidyl methacrylate.
 前記(B)炭素数4以上で構成されるオキシラン単量体由来の構成単位と、前記(C)架橋性官能基を有するオキシラン単量体由来の構成単位の好ましい組み合わせとして、2-エチルヘキシルグリシジルエーテル、または炭素数4~10で構成されるアルキレンオキシド、特にはエポキシブタン、エポキシヘキサンと;エチレン性不飽和基含有オキシラン類、特にはメタクリル酸グリシジルと;の組み合わせが、本発明で規定する表面抵抗値と、吸水率とを達成する上で好ましい。 A preferred combination of the structural unit derived from the oxirane monomer (B) having 4 or more carbon atoms and the structural unit derived from the oxirane monomer (C) having a crosslinkable functional group is 2-ethylhexyl glycidyl ether. Or a combination of an alkylene oxide composed of 4 to 10 carbon atoms, particularly epoxybutane, epoxyhexane, and an ethylenically unsaturated group-containing oxirane, particularly glycidyl methacrylate, in accordance with the present invention. It is preferable for achieving the value and the water absorption rate.
 特に、上記に記載された23℃、50%RHにおける吸水率、及び表面抵抗値を有するポリエーテル重合体としては、(A)エチレンオキシド由来の構成単位65~99モル%、(B)炭素数4以上で構成されるオキシラン単量体由来の構成単位35~1モル%、(C)架橋性官能基を有するオキシラン単量体由来の構成単位0~10モル%を含有するポリエーテル重合体を例示することができる。 In particular, the polyether polymer having a water absorption at 23 ° C. and 50% RH and a surface resistance value described above includes (A) ethylene oxide-derived structural units of 65 to 99 mol%, and (B) a carbon number of 4 An example of a polyether polymer containing 35 to 1 mol% of structural units derived from the oxirane monomer constituted as described above and (C) 0 to 10 mol% of structural units derived from an oxirane monomer having a crosslinkable functional group can do.
 また上記に記載された10℃、15%RHにおける表面抵抗値、及び、35℃、85%RHにおける表面抵抗値がいずれも1.0×10~1.0×1012(Ω/sq.)であるポリエーテル重合体としては、(A)エチレンオキシド由来の構成単位65~99モル%、(B)炭素数4以上で構成されるオキシラン単量体由来の構成単位35~1モル%、(C)架橋性官能基を有するオキシラン単量体由来の構成単位0~10モル%を含有するポリエーテル重合体を例示することができる。 Further, the surface resistance value at 10 ° C. and 15% RH and the surface resistance value at 35 ° C. and 85% RH described above are both 1.0 × 10 8 to 1.0 × 10 12 (Ω / sq. The polyether polymer of (A) includes (A) 65 to 99 mol% of structural units derived from ethylene oxide, (B) 35 to 1 mol% of structural units derived from an oxirane monomer having 4 or more carbon atoms, ( C) A polyether polymer containing 0 to 10 mol% of a structural unit derived from an oxirane monomer having a crosslinkable functional group can be exemplified.
 ポリエーテル重合体の重合組成はポリエーテル重合体を重クロロホルムに溶解し、H-NMRにより各ユニットの積分値を求め、その算出結果から組成を決定することができる。 The polymerization composition of the polyether polymer can be determined from the calculation result obtained by dissolving the polyether polymer in deuterated chloroform, obtaining the integral value of each unit by 1 H-NMR.
 ポリエーテル重合体の重量平均分子量は、下限が1万以上であることが好ましく、10万以上であることがより好ましく、30万以上であることが更に好ましく、上限は500万以下であることが好ましく、300万以下であることがより好ましく、200万以下であることが更に好ましい。例えばポリエーテル重合体の重量平均分子量は1万~500万であることが好ましく、10万~300万であることがより好ましく、30万~200万であることが更に好ましいといえる。上記重量平均分子量の下限は、より更に好ましくは50万以上、特に好ましくは90万以上、より特に好ましくは110万以上とすることができる。ポリエーテル重合体の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で標準ポリスチレン換算により算出する。 The lower limit of the weight average molecular weight of the polyether polymer is preferably 10,000 or more, more preferably 100,000 or more, still more preferably 300,000 or more, and the upper limit is 5 million or less. Preferably, it is 3 million or less, more preferably 2 million or less. For example, the weight average molecular weight of the polyether polymer is preferably 10,000 to 5,000,000, more preferably 100,000 to 3,000,000, and even more preferably 300,000 to 2,000,000. The lower limit of the weight average molecular weight is more preferably 500,000 or more, particularly preferably 900,000 or more, and particularly preferably 1.1 million or more. The weight average molecular weight of the polyether polymer is calculated by gel permeation chromatography (GPC) in terms of standard polystyrene.
 ポリエーテル重合体のガラス転移温度は、-35℃以下であることが好ましく、-40℃以下であることがより好ましく、-44℃以下であることが更に好ましく、-49℃以下であることがより更に好ましく、-54℃以下であることがより更に好ましく、-59℃以下であることがより更に好ましく、-61℃以下であることが特に好ましい。ポリエーテル重合体のガラス転移温度の下限は、例えば-80℃以上とすることができる。ポリエーテル重合体の結晶融解熱量は、25J/g以下であることが好ましく、22J/g以下であることがより好ましく、19J/g以下であることが更に好ましく、16J/g以下であることが特に好ましく、環境変動指数を低くする点においては8J/g以下であることが特に好ましい。ポリエーテル重合体の結晶融解熱量の下限は、例えば0J/g以上とすることができる。ポリエーテル重合体のガラス転移温度は、示差走査熱量測定(DSC)で得られた値であって、結晶融解熱量は、融解ピークより求めた値である。 The glass transition temperature of the polyether polymer is preferably −35 ° C. or lower, more preferably −40 ° C. or lower, still more preferably −44 ° C. or lower, and preferably −49 ° C. or lower. More preferably, it is more preferably −54 ° C. or less, still more preferably −59 ° C. or less, and particularly preferably −61 ° C. or less. The lower limit of the glass transition temperature of the polyether polymer can be, for example, −80 ° C. or higher. The heat of crystal fusion of the polyether polymer is preferably 25 J / g or less, more preferably 22 J / g or less, still more preferably 19 J / g or less, and 16 J / g or less. Particularly preferred is 8 J / g or less in terms of lowering the environmental variation index. The lower limit of the heat of crystal fusion of the polyether polymer can be, for example, 0 J / g or more. The glass transition temperature of the polyether polymer is a value obtained by differential scanning calorimetry (DSC), and the heat of crystal melting is a value obtained from the melting peak.
 〔ポリエーテル重合体の製造方法〕
 (A)エチレンオキシド由来の構成単位65~99モル%、(B)炭素数4以上で構成されるオキシラン単量体由来の構成単位35~1モル%、(C)架橋性官能基を有するオキシラン単量体由来の構成単位0~10モル%を含有するポリエーテル重合体の製造は、触媒としてオキシラン化合物を開環重合させ得るものを使用し、温度-20~100℃の範囲で溶液重合法、スラリー重合法等により実施できる。このような触媒としては、例えば有機アルミニウムを主体としこれに水やリンのオキソ酸化合物やアセチルアセトン等を反応させた触媒系、有機亜鉛を主体としこれに水を反応させた触媒系、有機錫-リン酸エステル縮合物触媒系等が挙げられる。例えば本出願人による米国特許第3,773,694号明細書に記載の有機錫-リン酸エステル縮合物触媒系を使用して本発明のポリエーテル共重合体を製造することができる。なお、このような製法により、共重合させる場合、これらの成分を実質上ランダムに共重合することが好ましい。
[Method for producing polyether polymer]
(A) 65 to 99 mol% of structural units derived from ethylene oxide, (B) 35 to 1 mol% of structural units derived from an oxirane monomer composed of 4 or more carbon atoms, (C) an oxirane unit having a crosslinkable functional group The production of a polyether polymer containing 0 to 10 mol% of a structural unit derived from a monomer uses a solution capable of ring-opening polymerization of an oxirane compound as a catalyst, and a solution polymerization method at a temperature in the range of −20 to 100 ° C. It can be carried out by a slurry polymerization method or the like. As such a catalyst, for example, a catalyst system in which organic aluminum is mainly used and this is reacted with an oxoacid compound of water or phosphorus, acetylacetone, etc., a catalyst system in which organic zinc is mainly used and water is reacted with this, organic tin- Examples include phosphate ester condensate catalyst systems. For example, the polyether copolymer of the present invention can be produced using the organotin-phosphate ester condensate catalyst system described in US Pat. No. 3,773,694 by the present applicant. In addition, when making it copolymerize by such a manufacturing method, it is preferable to copolymerize these components substantially randomly.
 本発明では、ポリエーテル重合体を、重合させたままの状態で使用する他、該ポリエーテル重合体を架橋してなる架橋物を用いてもよい。 In the present invention, in addition to using the polyether polymer in a polymerized state, a crosslinked product obtained by crosslinking the polyether polymer may be used.
 本発明のポリエーテル重合体を架橋してなる架橋物は、ポリエーテル重合体自体を反応させて架橋して得てもよく、架橋性官能基に適した架橋剤とともに加熱することで架橋してもよく、架橋性官能基に適した熱重合開始剤、光反応開始剤(光重合開始剤ともいう)を用い、架橋させて得てもよい。前記架橋は、加熱の他、紫外線などの活性エネルギー線を照射することによっても行うことができる。尚、架橋剤とともに公知の架橋促進剤、架橋促進助剤、架橋遅延剤を本発明において用いることができ、熱重合開始剤、光反応開始剤とともに公知の架橋助剤を本発明において用いることができる。 The cross-linked product obtained by cross-linking the polyether polymer of the present invention may be obtained by cross-linking by reacting the polyether polymer itself, or by cross-linking by heating together with a cross-linking agent suitable for the cross-linkable functional group. Alternatively, it may be obtained by crosslinking using a thermal polymerization initiator or a photoreaction initiator (also referred to as a photopolymerization initiator) suitable for the crosslinkable functional group. The crosslinking can be performed by irradiating active energy rays such as ultraviolet rays in addition to heating. A known crosslinking accelerator, crosslinking accelerator, and crosslinking retarder can be used in the present invention together with the crosslinking agent, and a known crosslinking assistant can be used in the present invention together with the thermal polymerization initiator and the photoreaction initiator. it can.
 上記架橋剤として下記のものを使用できる。まず、ポリエーテル重合体における(C)架橋性官能基を有するオキシラン単量体として、ハロゲン含有オキシラン単量体、特に、エピハロヒドリン類やこのエピハロヒドリン類以外のハロゲン置換オキシラン類を用いた場合には、使用できる架橋剤として、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ヘキサメチレンテトラミン、p-フェニレンジアミン、クメンジアミン、N,N’-ジシンナミリデン-1,6-ヘキサンジアミン、エチレンジアミンカーバメート、ヘキサメチレンジアミンカーバメート等のポリアミン系架橋剤、エチレンチオウレア、1,3-ジエチルチオウレア、1,3-ジブチルチオウレア、トリメチルチオウレア等のチオウレア系架橋剤、2,5-ジメルカプト-1,3,4-チアジアゾール、2-メルカプト-1,3,4-チアジアゾール-5-チオベンゾエート等のチアジアゾール系架橋剤、2,4,6-トリメルカプト-1,3,5-トリアジン、2-メトキシ-4,6-ジメルカプトトリアジン、2-ヘキシルアミノ-4,6-ジメルカプトトリアジン、2-ジエチルアミノ-4,6-ジメルカプトトリアジン、2-シクロヘキサンアミノ-4,6-ジメルカプトトリアジン、2-ジブチルアミノ-4,6-ジメルカプトトリアジン、2-アニリノ-4,6-ジメルカプトトリアジン、2-フェニルアミノ-4,6-ジメルカプトトリアジン等のメルカプトトリアジン系架橋剤、ピラジン-2,3-ジチオカーボネート、5-メチル-2,3-ジメルカプトピラジン、5-エチルピラジン-2,3-ジチオカーボネート、5,6-ジメチル-2,3-ジメルカプトピラジン、5,6-ジメチルピラジン-2,3-ジチオカーボネート等のピラジン系架橋剤、キノキサリン-2,3-ジチオカーボネート、6-メチルキノキサリン-2,3-ジチオカーボネート、6-エチル-2,3-ジメルカプトキノキサリン、6-イソプロピルキノキサリン-2,3-ジチオカーボネート、5,8-ジメチルキノキサリン-2,3-ジチオカーボネート等のキノキサリン系架橋剤、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシジフェニルスルホン(ビスフェノールS)、1,1-シクロヘキシリデン-ビス(4-ヒドロキシベンゼン)、2-クロロ-1,4-シクロヘキシレン-ビス(4-ヒドロキシベンゼン)、2,2-イソプロピリデン-ビス(4-ヒドロキシベンゼン)(ビスフェノールA)、ヘキサフルオロイソプロピリデン-ビス(4-ヒドロキシベンゼン)(ビスフェノールAF)及び2-フルオロ-1,4-フェニレン-ビス(4-ヒドロキシベンゼン)等のビスフェノール系架橋剤等を挙げることができる。 The following crosslinking agents can be used. First, as an oxirane monomer having a crosslinkable functional group (C) in a polyether polymer, a halogen-containing oxirane monomer, in particular, an epihalohydrin or halogen-substituted oxirane other than this epihalohydrin is used. Usable crosslinking agents include ethylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, hexamethylenetetramine, p-phenylenediamine, cumenediamine, N, N'-dicinenamylidene-1,6-hexanediamine, ethylenediamine carbamate, hexamethylenediamine Polyamine crosslinking agents such as carbamate, thiourea crosslinking agents such as ethylenethiourea, 1,3-diethylthiourea, 1,3-dibutylthiourea, trimethylthiourea, 2,5-dimercap 1,3,4-thiadiazole, 2-mercapto-1,3,4-thiadiazole-5-thiobenzoate and other thiadiazole-based crosslinking agents, 2,4,6-trimercapto-1,3,5-triazine, 2 -Methoxy-4,6-dimercaptotriazine, 2-hexylamino-4,6-dimercaptotriazine, 2-diethylamino-4,6-dimercaptotriazine, 2-cyclohexaneamino-4,6-dimercaptotriazine, 2 -Mercaptotriazine-based crosslinking agents such as dibutylamino-4,6-dimercaptotriazine, 2-anilino-4,6-dimercaptotriazine, 2-phenylamino-4,6-dimercaptotriazine, pyrazine-2,3- Dithiocarbonate, 5-methyl-2,3-dimercaptopyrazine, 5-ethylpyrazine- , 3-dithiocarbonate, 5,6-dimethyl-2,3-dimercaptopyrazine, pyrazine-based crosslinking agents such as 5,6-dimethylpyrazine-2,3-dithiocarbonate, quinoxaline-2,3-dithiocarbonate, 6 -Methylquinoxaline-2,3-dithiocarbonate, 6-ethyl-2,3-dimercaptoquinoxaline, 6-isopropylquinoxaline-2,3-dithiocarbonate, 5,8-dimethylquinoxaline-2,3-dithiocarbonate, etc. Quinoxaline-based crosslinking agent, 4,4′-dihydroxydiphenyl sulfoxide, 4,4′-dihydroxydiphenyl sulfone (bisphenol S), 1,1-cyclohexylidene-bis (4-hydroxybenzene), 2-chloro-1,4 -Cyclohexylene-bis (4-hydroxybenzene), 2,2-isopropylidene-bis (4-hydroxybenzene) (bisphenol A), hexafluoroisopropylidene-bis (4-hydroxybenzene) (bisphenol AF) and 2-fluoro-1,4-phenylene-bis (4- And bisphenol-based crosslinking agents such as hydroxybenzene).
 ポリエーテル重合体における(C)架橋性官能基を有するオキシラン単量体として、アリルグリシジルエーテル、メタクリル酸グリシジル等のエチレン性不飽和基含有オキシランを用いた場合には、架橋剤として、通常ジエン系ゴムに用いられているものを適用することができ、例えば硫黄、テトラメチルチウラムジスルフィド、ジペンタメチレンチウラムテトラスルフィド、モルフォリンジスルフィド等の硫黄系架橋剤、パラベンゾキノンジオキシム、ベンゾイルキノンジオキシム等のキノンジオキシム系架橋剤、ポリメチロールフェノール、アルキルフェノールホルムアルデヒド樹脂、臭化アルキルフェノールホルムアルデヒド樹脂等の樹脂系架橋剤を挙げることができる。 When an oxirane monomer having an ethylenically unsaturated group such as allyl glycidyl ether or glycidyl methacrylate is used as the oxirane monomer having a crosslinkable functional group (C) in the polyether polymer, the diene series is usually used as a crosslinking agent. What is used for rubber can be applied, for example, sulfur-based cross-linking agents such as sulfur, tetramethylthiuram disulfide, dipentamethylenethiuram tetrasulfide, morpholine disulfide, parabenzoquinone dioxime, benzoylquinone dioxime, etc. Examples thereof include resin-based crosslinking agents such as quinonedioxime-based crosslinking agents, polymethylolphenol, alkylphenol formaldehyde resins, and bromated alkylphenol formaldehyde resins.
 架橋剤の量としては、ポリエーテル重合体100重量部に対して0.1~10重量部であることが好ましく、より好ましくは0.1~5重量部である。 The amount of the crosslinking agent is preferably 0.1 to 10 parts by weight, more preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the polyether polymer.
 架橋剤を用いた架橋の条件については、加熱温度は100~200℃であり、加熱時間は温度により異なるが、0.5~300分の間で行われるのが通常である。加熱方法としては、金型による圧縮成型、射出成型、蒸気、赤外線或いはマイクロウェーブによる加熱等任意の方法を用いることができる。 Regarding the conditions for crosslinking using a crosslinking agent, the heating temperature is 100 to 200 ° C., and the heating time is usually 0.5 to 300 minutes, although it varies depending on the temperature. As a heating method, any method such as compression molding using a mold, injection molding, steam, infrared rays, or microwave heating can be used.
 本発明に用いることができる熱重合開始剤として、有機過酸化物系開始剤、アゾ化合物系開始剤等から選ばれるラジカル開始剤が挙げられる。
 有機過酸化物系開始剤としては、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル等、架橋用途に通常使用されているものが用いられ、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ベンゾイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート等が挙げられる。
Examples of the thermal polymerization initiator that can be used in the present invention include radical initiators selected from organic peroxide initiators, azo compound initiators, and the like.
As organic peroxide initiators, ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxyesters, and the like that are usually used for crosslinking are used. 1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, di-t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5- Examples include di (t-butylperoxy) hexane, benzoyl peroxide, t-butylperoxy-2-ethylhexanoate, and the like.
 アゾ化合物系開始剤としては、アゾニトリル化合物、アゾアミド化合物、アゾアミジン化合物等、架橋用途に通常使用されているものが用いられ、2,2'-アゾビスイソブチロニトリル、2,2'-アゾビス(2-メチルブチロニトリル)、2,2'-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2-アゾビス(2-メチル-N-フェニルプロピオンアミジン)・二塩酸塩、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2'-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2'-アゾビス(2-メチルプロパン)、2,2'-アゾビス[2-(ヒドロキシメチル)プロピオニトリル]等が挙げられる。
 これらの化合物を、単独で用いる他、2種類以上併用することも可能である。好ましくは有機過酸化物系開始剤が用いられる。
As the azo compound-based initiator, those usually used for crosslinking such as an azonitrile compound, an azoamide compound, an azoamidine compound, etc. are used. 2,2′-azobisisobutyronitrile, 2,2′-azobis ( 2-methylbutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2-azobis (2-methyl-N-phenylpropionamidine) dihydrochloride, 2 , 2′-azobis [2- (2-imidazolin-2-yl) propane], 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 2,2′-azobis ( 2-methylpropane), 2,2′-azobis [2- (hydroxymethyl) propionitrile] and the like.
These compounds can be used alone or in combination of two or more. Preferably, an organic peroxide-based initiator is used.
 活性エネルギー線は、紫外線、可視光線、電子線等を用いることができる。特に装置の価格、制御のしやすさから紫外線が好ましい。 Activating energy rays can be ultraviolet rays, visible rays, electron beams or the like. In particular, ultraviolet rays are preferable because of the price of the apparatus and ease of control.
 本発明に用いることができる光反応開始剤として、アルキルフェノン系開始剤、ベンゾフェノン系開始剤、アシルフォスフィンオキサイド系開始剤、チタノセン系開始剤、トリアジン系開始剤、ビスイミダゾール系開始剤、オキシムエステル系開始剤などが挙げられる。好ましくは、アルキルフェノン系開始剤、ベンゾフェノン系開始剤、アシルフォスフィンオキサイド系開始剤の光反応開始剤が用いられる。光反応開始剤として前述の化合物を、単独で用いる他、2種類以上併用することも可能である。 As photoreaction initiators that can be used in the present invention, alkylphenone initiators, benzophenone initiators, acylphosphine oxide initiators, titanocene initiators, triazine initiators, bisimidazole initiators, oxime esters And system initiators. Preferably, an alkylphenone-based initiator, a benzophenone-based initiator, or an acyl phosphine oxide-based initiator is used. In addition to using the above-mentioned compounds alone as a photoreaction initiator, two or more types can be used in combination.
 アルキルフェノン系開始剤の具体例としては、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-[4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル]-2-メチル-プロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オンなどが挙げられる。2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オンが好ましい。 Specific examples of the alkylphenone initiator include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1-phenyl-propane. -1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- [4- [4- (2 -Hydroxy-2-methyl-propionyl) -benzyl] phenyl] -2-methyl-propan-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, etc. It is done. 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2-methyl-1- (4-Methylthiophenyl) -2-morpholinopropan-1-one is preferred.
 ベンゾフェノン系開始剤の具体例としては、ベンゾフェノン、2-クロロベンゾフェノン、4,4'-ビス(ジエチルアミノ)ベンゾフェノン、4,4'-ビス(ジメチルアミノ)ベンゾフェノン、メチル-2-ベンゾイルベンゾエートなどが挙げられる。ベンゾフェノン、4,4'-ビス(ジエチルアミノ)ベンゾフェノン、4,4'-ビス(ジメチルアミノ)ベンゾフェノンが好ましい。 Specific examples of the benzophenone initiator include benzophenone, 2-chlorobenzophenone, 4,4′-bis (diethylamino) benzophenone, 4,4′-bis (dimethylamino) benzophenone, methyl-2-benzoylbenzoate, and the like. . Benzophenone, 4,4′-bis (diethylamino) benzophenone, and 4,4′-bis (dimethylamino) benzophenone are preferred.
 アシルフォスフィンオキサイド系開始剤の具体例としては、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドなどが挙げられる。ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドが好ましい。 Specific examples of the acylphosphine oxide-based initiator include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, and the like. Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide is preferred.
 架橋反応は、熱による場合は、室温から200℃ぐらいの温度設定で10分から24時間程度加熱することによって行なうことができる。
 紫外線による場合は、キセノンランプ、水銀ランプ、高圧水銀ランプおよびメタルハライドランプを用いることができ、例えば、高圧水銀ランプを光源とするUV照射機にて積算露光量1~10000mJ/cm照射することによって行うことができる。
In the case of using a heat, the crosslinking reaction can be carried out by heating at a temperature setting from room temperature to about 200 ° C. for about 10 minutes to 24 hours.
In the case of using ultraviolet rays, a xenon lamp, a mercury lamp, a high-pressure mercury lamp, and a metal halide lamp can be used. For example, by irradiating a cumulative exposure dose of 1 to 10000 mJ / cm 2 with a UV irradiator using a high-pressure mercury lamp as a light source. It can be carried out.
 架橋反応に用いられる熱重合開始剤の量はポリエーテル重合体100重量部に対して、下限は0.01重量部以上であることが好ましく、0.1重量部以上であることがより好ましく、上限は10重量部以下であることが好ましく、4重量部以下であることがより好ましい。
 架橋反応に用いられる光反応開始剤の量はポリエーテル重合体100重量部に対して、下限は0.01重量部以上であることが好ましく、0.1重量部以上であることがより好ましく、上限は6重量部以下であることが好ましく、4重量部以下であることがより好ましい。
The amount of the thermal polymerization initiator used for the crosslinking reaction is preferably 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, with respect to 100 parts by weight of the polyether polymer. The upper limit is preferably 10 parts by weight or less, and more preferably 4 parts by weight or less.
The amount of the photoinitiator used for the crosslinking reaction is preferably 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, with respect to 100 parts by weight of the polyether polymer. The upper limit is preferably 6 parts by weight or less, and more preferably 4 parts by weight or less.
 本発明においては、架橋助剤を光反応開始剤と併用してもよい。架橋助剤は、通常、多官能性化合物(例えば、CH=CH-、CH=CH-CH-、CF=CF-、HS-を少なくとも2個含む化合物)である。架橋助剤の具体例は、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアクリルホルマール、トリアリルトリメリテート、N,N’-m-フェニレンビスマレイミド、ジプロパルギルテレフタレート、ジアリルフタレート、テトラアリルテレフタールアミド、トリアリルホスフェート、ヘキサフルオロトリアリルイソシアヌレート、N-メチルテトラフルオロジアリルイソシアヌレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート、メタンジチオール、1,2-エタンジチオール、1,2-プロパンジチオール、1,3-プロパンジチオール、1,4-ブタンジチオール、1,6-ヘキサンジチオール、1,7-ヘプタンジチオール、1,8-オクタンジチオール、1,9-ノナンジチオール、1,10-デカンジチオール、1,12-ドデカンジチオール、2,2-ジメチル-1,3-プロパンジチオール、3-メチル-1,5-ペンタンジチオール、2-メチル-1,8-オクタンジチオール、1,4-シクロヘキサンジチオール、1,4-ビス(メルカプトメチル)シクロヘキサン、1,1-シクロヘキサンジチオール、1,2-シクロヘキサンジチオール、ビシクロ〔2,2,1〕ヘプタ-exo-cis-2,3-ジチオール、1,1-ビス(メルカプトメチル)シクロヘキサン、ビス(2-メルカプトエチル)エーテル、エチレングリコールビス(2-メルカプトアセテート)、エチレングリコールビス(3-メルカプトプロピオネート)等のジチオール化合物;1,1,1-トリス(メルカプトメチル)エタン、2-エチル-2-メルカプトメチル-1,3-プロパンジチオール、1,2,3-プロパントリチオール、トリメチロールプロパントリス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリス((メルカプトプロピオニルオキシ)-エチル)イソシアヌレート等のトリチオール化合物;ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブタネート)、ジペンタエリスリトールヘキサ-3-メルカプトプロピオネート等のSH基を4個以上有するチオール化合物等の脂肪族ポリチオール化合物、1,2-ジメルカプトベンゼン、1,3-ジメルカプトベンゼン、1,4-ジメルカプトベンゼン、1,2-ビス(メルカプトメチル)ベンゼン、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、1,2-ビス(2-メルカプトエチル)ベンゼン、1,3-ビス(2-メルカプトエチル)ベンゼン、1,4-ビス(2-メルカプトエチル)ベンゼン、1,2-ビス(2-メルカプトエチレンオキシ)ベンゼン、1,3-ビス(2-メルカプトエチレンオキシ)ベンゼン、1,4-ビス(2-メルカプトエチレンオキシ)ベンゼン、1,2,3-トリメルカプトベンゼン、1,2,4-トリメルカプトベンゼン、1,3,5-トリメルカプトベンゼン、1,2,3-トリス(メルカプトメチル)ベンゼン、1,2,4-トリス(メルカプトメチル)ベンゼン、1,3,5-トリス(メルカプトメチル)ベンゼン、1,2,3-トリス(2-メルカプトエチル)ベンゼン、1,2,4-トリス(2-メルカプトエチル)ベンゼン、1,3,5-トリス(2-メルカプトエチル)ベンゼン、1,2,3-トリス(2-メルカプトエチレンオキシ)ベンゼン、1,2,4-トリス(2-メルカプトエチレンオキシ)ベンゼン、1,3,5-トリス(2-メルカプトエチレンオキシ)ベンゼン、1,2,3,4-テトラメルカプトベンゼン、1,2,3,5-テトラメルカプトベンゼン、1,2,4,5-テトラメルカプトベンゼン、1,2,3,4-テトラキス(メルカプトメチル)ベンゼン、1,2,3,5-テトラキス(メルカプトメチル)ベンゼン、1,2,4,5-テトラキス(メルカプトメチル)ベンゼン、1,2,3,4-テトラキス(2-メルカプトエチル)ベンゼン、1,2,3,5-テトラキス(2-メルカプトエチル)ベンゼン、1,2,4,5-テトラキス(2-メルカプトエチル)ベンゼン、1,2,3,4-テトラキス(2-メルカプトエチレンオキシ)ベンゼン、1,2,3,5-テトラキス(2-メルカプトエチレンオキシ)ベンゼン、1,2,4,5-テトラキス(2-メルカプトエチレンオキシ)ベンゼン、2,2'-ジメルカプトビフェニル、4,4'-チオビス-ベンゼンチオール、4,4'-ジメルカプトビフェニル、4,4'-ジメルカプトビベンジル、2,5-トルエンジチオール、3,4-トルエンジチオール、1,4-ナフタレンジチオール、1,5-ナフタレンジチオール、2,6-ナフタレンジチオール、2,7-ナフタレンジチオール、2,4-ジメチルベンゼン-1,3-ジチオール、4,5-ジメチルベンゼン-1,3-ジチオール、9,10-アントラセンジメタンチオール、1,3-ビス(2-メルカプトエチルチオ)ベンゼン、1,4-ビス(2-メルカプトエチルチオ)ベンゼン、1,2-ビス(2-メルカプトエチルチオメチル)ベンゼン、1,3-ビス(2-メルカプトエチルチオメチル)ベンゼン、1,4-ビス(2-メルカプトエチルチオメチル)ベンゼン、1,2,3-トリス(2-メルカプトエチルチオ)ベンゼン、1,2,4-トリス(2-メルカプトエチルチオ)ベンゼン、1,3,5-トリス(2-メルカプトエチルチオ)ベンゼン、1,2,3,4-テトラキス(2-メルカプトエチルチオ)ベンゼン、1,2,3,5-テトラキス(2-メルカプトエチルチオ)ベンゼン、1,2,4,5-テトラキス(2-メルカプトエチルチオ)ベンゼン等の芳香族ポリチオールなどである。これらの化合物を、単独で用いる他、2種類以上併用することも可能である。 In the present invention, a crosslinking aid may be used in combination with a photoreaction initiator. Crosslinking aid is usually polyfunctional compound (e.g., CH 2 = CH-, CH 2 = CH-CH 2 -, CF 2 = CF-, a compound containing at least two HS- a) is. Specific examples of the crosslinking aid include triallyl cyanurate, triallyl isocyanurate, triacryl formal, triallyl trimellitate, N, N′-m-phenylene bismaleimide, dipropargyl terephthalate, diallyl phthalate, tetraallyl terephthal Amides, triallyl phosphate, hexafluorotriallyl isocyanurate, N-methyltetrafluorodiallyl isocyanurate, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, methanedithiol, 1,2-ethanedithiol, 1,2-propanedithiol 1,3-propanedithiol, 1,4-butanedithiol, 1,6-hexanedithiol, 1,7-heptanedithiol, 1,8-octanedithiol, 1,9-nonanedi Thiol, 1,10-decanedithiol, 1,12-dodecanedithiol, 2,2-dimethyl-1,3-propanedithiol, 3-methyl-1,5-pentanedithiol, 2-methyl-1,8-octanedithiol 1,4-cyclohexanedithiol, 1,4-bis (mercaptomethyl) cyclohexane, 1,1-cyclohexanedithiol, 1,2-cyclohexanedithiol, bicyclo [2,2,1] hepta-exo-cis-2,3 A dithiol compound such as dithiol, 1,1-bis (mercaptomethyl) cyclohexane, bis (2-mercaptoethyl) ether, ethylene glycol bis (2-mercaptoacetate), ethylene glycol bis (3-mercaptopropionate); 1 , 1,1-Tris (mercaptomethyl) eta 2-ethyl-2-mercaptomethyl-1,3-propanedithiol, 1,2,3-propanetrithiol, trimethylolpropane tris (2-mercaptoacetate), trimethylolpropane tris (3-mercaptopropionate) , Trithiol compounds such as tris ((mercaptopropionyloxy) -ethyl) isocyanurate; pentaerythritol tetrakis (2-mercaptoacetate), pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptobutanate) Aliphatic polythiol compounds such as thiol compounds having 4 or more SH groups such as dipentaerythritol hexa-3-mercaptopropionate, 1,2-dimercaptobenzene, 1,3-dimer Ptobenzene, 1,4-dimercaptobenzene, 1,2-bis (mercaptomethyl) benzene, 1,3-bis (mercaptomethyl) benzene, 1,4-bis (mercaptomethyl) benzene, 1,2-bis (2 -Mercaptoethyl) benzene, 1,3-bis (2-mercaptoethyl) benzene, 1,4-bis (2-mercaptoethyl) benzene, 1,2-bis (2-mercaptoethyleneoxy) benzene, 1,3- Bis (2-mercaptoethyleneoxy) benzene, 1,4-bis (2-mercaptoethyleneoxy) benzene, 1,2,3-trimercaptobenzene, 1,2,4-trimercaptobenzene, 1,3,5- Trimercaptobenzene, 1,2,3-tris (mercaptomethyl) benzene, 1,2,4-tris (mercaptomethyl) benzene , 1,3,5-tris (mercaptomethyl) benzene, 1,2,3-tris (2-mercaptoethyl) benzene, 1,2,4-tris (2-mercaptoethyl) benzene, 1,3,5 -Tris (2-mercaptoethyl) benzene, 1,2,3-tris (2-mercaptoethyleneoxy) benzene, 1,2,4-tris (2-mercaptoethyleneoxy) benzene, 1,3,5-tris ( 2-mercaptoethyleneoxy) benzene, 1,2,3,4-tetramercaptobenzene, 1,2,3,5-tetramercaptobenzene, 1,2,4,5-tetramercaptobenzene, 1,2,3 4-tetrakis (mercaptomethyl) benzene, 1,2,3,5-tetrakis (mercaptomethyl) benzene, 1,2,4,5-tetrakis (mercap) Methyl) benzene, 1,2,3,4-tetrakis (2-mercaptoethyl) benzene, 1,2,3,5-tetrakis (2-mercaptoethyl) benzene, 1,2,4,5-tetrakis (2- Mercaptoethyl) benzene, 1,2,3,4-tetrakis (2-mercaptoethyleneoxy) benzene, 1,2,3,5-tetrakis (2-mercaptoethyleneoxy) benzene, 1,2,4,5-tetrakis (2-mercaptoethyleneoxy) benzene, 2,2′-dimercaptobiphenyl, 4,4′-thiobis-benzenethiol, 4,4′-dimercaptobiphenyl, 4,4′-dimercaptobibenzyl, 2,5 -Toluenedithiol, 3,4-toluenedithiol, 1,4-naphthalenedithiol, 1,5-naphthalenedithiol, 2,6-naphth Rangethiol, 2,7-naphthalenedithiol, 2,4-dimethylbenzene-1,3-dithiol, 4,5-dimethylbenzene-1,3-dithiol, 9,10-anthracenedimethanethiol, 1,3-bis (2-mercaptoethylthio) benzene, 1,4-bis (2-mercaptoethylthio) benzene, 1,2-bis (2-mercaptoethylthiomethyl) benzene, 1,3-bis (2-mercaptoethylthiomethyl) ) Benzene, 1,4-bis (2-mercaptoethylthiomethyl) benzene, 1,2,3-tris (2-mercaptoethylthio) benzene, 1,2,4-tris (2-mercaptoethylthio) benzene, 1,3,5-tris (2-mercaptoethylthio) benzene, 1,2,3,4-tetrakis (2-mercaptoethylthio) ) Benzene, 1,2,3,5-tetrakis (2-mercaptoethyl thio) benzene, and the like aromatic polythiol such as 1,2,4,5-tetrakis (2-mercaptoethyl thio) benzene. These compounds can be used alone or in combination of two or more.
 本発明のポリエーテル重合体またはその架橋物の形状は限定されず、例えば塊状である他、繊維、フィルム、シート、ペレット、粉体が挙げられる。 The shape of the polyether polymer of the present invention or a cross-linked product thereof is not limited, and examples thereof include lumps, fibers, films, sheets, pellets, and powders.
 本発明のポリエーテル重合体またはその架橋物は、非帯電性が要求される分野、例えば自動車部品、OA機器、家電製品用部品、電気・電子分野、あるいはその保管・収納ケース、チューブなどの用途で用いられる。本発明のポリエーテル重合体またはその架橋物は、上記分野において、帯電防止材として好ましく用いることができる。以下では、用途として帯電防止材を例に説明する。 The polyether polymer of the present invention or a crosslinked product thereof is used in fields where non-chargeability is required, such as automobile parts, OA equipment, parts for home appliances, electric / electronic fields, or storage / storage cases, tubes, etc. Used in The polyether polymer of the present invention or a cross-linked product thereof can be preferably used as an antistatic material in the above field. Below, an antistatic material is demonstrated to an example as a use.
 前記ポリエーテル重合体またはその架橋物は、ベース(母材)として使用することができる。この場合、ポリエーテル重合体またはその架橋物のみを使用する場合の他、ポリエーテル重合体またはその架橋物に、下記の添加物を含めてもよい。 The polyether polymer or a cross-linked product thereof can be used as a base (base material). In this case, in addition to the case of using only the polyether polymer or a crosslinked product thereof, the following additives may be included in the polyether polymer or the crosslinked product thereof.
 即ち本発明においては、目的又は必要に応じて、本発明の効果を損なわない限りにおいて、一般のゴム組成物に配合する通常の添加物、たとえば、充填剤、加工助剤、可塑剤、受酸剤、軟化剤、老化防止剤、着色剤、安定剤、接着助剤、離型剤、熱伝導性付与剤、表面非粘着剤、粘着付与剤、柔軟性付与剤、耐熱性改善剤、難燃剤、紫外線吸収剤、耐油性向上剤、発泡剤、スコーチ防止剤、滑剤等の各種添加剤を、本発明のポリエーテル重合体、その架橋物に配合して用いてよい。 In other words, in the present invention, as long as the effects of the present invention are not impaired, according to the purpose or necessity, usual additives to be blended in a general rubber composition, for example, fillers, processing aids, plasticizers, acid acceptors. Agent, softener, anti-aging agent, colorant, stabilizer, adhesion aid, release agent, thermal conductivity-imparting agent, surface non-adhesive agent, tackifier, flexibility agent, heat resistance improver, flame retardant Various additives such as an ultraviolet absorber, an oil resistance improver, a foaming agent, a scorch inhibitor, and a lubricant may be blended in the polyether polymer of the present invention and its cross-linked product.
 帯電防止材としては、前記のポリエーテル重合体を含有する帯電防止材であればよく、前記のポリエーテル重合体のみからなる帯電防止材であってよく、ペレット化、粉体化されていてもよい。 The antistatic material may be an antistatic material containing the above polyether polymer, may be an antistatic material consisting only of the above polyether polymer, and may be pelletized or powdered. Good.
 本発明では、前記ポリエーテル重合体またはその架橋物を、導電性付与剤、ゴム、樹脂及び溶媒から選択される少なくとも1種に対し、添加物として使用することもできる。即ち本発明には、前記ポリエーテル重合体、またはその架橋物と;導電性付与剤、ゴム、樹脂及び溶媒から選択される少なくとも1種と;を含有する組成物も含まれる。 In the present invention, the polyether polymer or a crosslinked product thereof can be used as an additive for at least one selected from a conductivity-imparting agent, rubber, resin and solvent. That is, the present invention also includes a composition containing the polyether polymer or a crosslinked product thereof; and at least one selected from a conductivity imparting agent, rubber, resin and solvent.
 例えば前記帯電防止材は、導電性付与剤、樹脂、ゴム、溶媒とともに用いられることにより帯電防止材含有組成物として用いることができる。 For example, the antistatic material can be used as an antistatic material-containing composition by being used together with a conductivity imparting agent, a resin, rubber, and a solvent.
 本発明の、例えば帯電防止材含有組成物などの組成物に用いる導電性付与剤として、有機スルホン酸アルカリ金属塩を例示することができる。 Examples of the conductivity-imparting agent used in the composition of the present invention, for example, an antistatic material-containing composition, include organic sulfonic acid alkali metal salts.
 有機スルホン酸アルカリ金属塩を構成するアルカリ金属の種類としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等のアルカリ金属が挙げられ、その中でもナトリウム、カリウム、セシウムが好ましく、特にはカリウム及びナトリウムが好ましい。 Examples of the alkali metal constituting the alkali metal sulfonic acid alkali metal salt include alkali metals such as lithium, sodium, potassium, rubidium and cesium, among which sodium, potassium and cesium are preferable, and potassium and sodium are particularly preferable. .
 有機スルホン酸アルカリ金属塩としては、ビス(フルオロアルキルスルホニル)イミドのアルカリ金属塩、トリス(フルオロアルキルスルホニル)メチドのアルカリ金属塩およびトリフルオロアルキルスルホン酸のアルカリ金属塩からなる群より選ばれた塩であることが好ましい。 The organic sulfonic acid alkali metal salt is selected from the group consisting of alkali metal salts of bis (fluoroalkylsulfonyl) imide, alkali metal salts of tris (fluoroalkylsulfonyl) methide, and alkali metal salts of trifluoroalkylsulfonic acid. It is preferable that
 有機スルホン酸アルカリ金属塩を具体的に例示すると、ビス(トリフルオロメタンスルホニル)イミドリチウムLi(CFSO)N、ビス(トリフルオロメタンスルホニル)イミドリカリウムK(CFSO)N、ビス(トリフルオロメタンスルホニル)イミドナトリウムNa(CFSO)N、トリス(トリフルオロメタンスルホニル)メチドリチウムLi(CFSO)C、トリス(トリフルオロメタンスルホニル)メチドカリウムK(CFSO)C、トリス(トリフルオロメタンスルホニル)メチドナトリウムNa(CFSO)C、トリフルオロメタンスルホン酸リチウムLi(CFSO)、トリフルオロメタンスルホン酸カリウムK(CFSO)、トリフルオロメタンスルホン酸ナトリウムNa(CFSO)を例示することができる。これらの化合物を、単独で用いる他、2種類以上併用することも可能である。 Specific examples of the organic sulfonic acid alkali metal salt include bis (trifluoromethanesulfonyl) imide lithium Li (CF 3 SO 2 ) 2 N, bis (trifluoromethanesulfonyl) imidopotassium K (CF 3 SO 2 ) 2 N, Bis (trifluoromethanesulfonyl) imide sodium Na (CF 3 SO 2 ) 2 N, tris (trifluoromethanesulfonyl) methide lithium Li (CF 3 SO 2 ) 3 C, tris (trifluoromethanesulfonyl) methide potassium K (CF 3 SO 2 ) 3 C, sodium tris (trifluoromethanesulfonyl) methide Na (CF 3 SO 2 ) 3 C, lithium trifluoromethanesulfonate Li (CF 3 SO 3 ), potassium trifluoromethanesulfonate K (CF 3 SO 3 ), trifluoromethanesulfone Sodium Na (CF 3 SO 3 ). These compounds can be used alone or in combination of two or more.
 導電性付与剤の含有量は特に限定されないが、ポリエーテル重合体100重量部に対して、0.1~30重量部であり、好ましくは0.5重量部以上、より好ましくは1.0重量部以上、さらに好ましくは1.5重量部以上、特に好ましくは2.0重量部以上であり、また、25重量部以下が好ましく、より好ましくは20重量部以下、さらに好ましくは15重量部以下であることが好ましい。 The content of the conductivity imparting agent is not particularly limited, but is 0.1 to 30 parts by weight, preferably 0.5 parts by weight or more, more preferably 1.0 parts by weight with respect to 100 parts by weight of the polyether polymer. Part or more, more preferably 1.5 parts by weight or more, particularly preferably 2.0 parts by weight or more, and preferably 25 parts by weight or less, more preferably 20 parts by weight or less, still more preferably 15 parts by weight or less. Preferably there is.
 本発明の、例えば帯電防止材含有組成物などの組成物に用いる樹脂としては、熱可塑性樹脂や熱可塑性エラストマーであることが好ましく、熱可塑性樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ABS樹脂、AS樹脂、ポリアミド樹脂、ポリフェニレンエーテル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル系樹脂、ポリオキシメチレン樹脂、アクリル系樹脂などを用いることができる。熱可塑性エラストマーとしては、スチレン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリ塩化ビニル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマーなどを用いることができる。これらは単独で用いてもよいし、2種以上混合して用いてもよい。 The resin used in the composition of the present invention, for example, an antistatic material-containing composition, is preferably a thermoplastic resin or a thermoplastic elastomer. The thermoplastic resin is a polyester resin such as polyethylene terephthalate or polybutylene terephthalate. Polycarbonate resin, polystyrene resin, ABS resin, AS resin, polyamide resin, polyphenylene ether resin, polyethylene resin, polypropylene resin, polyvinyl chloride resin, polyoxymethylene resin, acrylic resin, and the like can be used. As the thermoplastic elastomer, a styrene thermoplastic elastomer, a polyamide thermoplastic elastomer, a polyolefin thermoplastic elastomer, a polyester thermoplastic elastomer, a polyvinyl chloride thermoplastic elastomer, a polyurethane thermoplastic elastomer, or the like can be used. These may be used alone or in combination of two or more.
 本発明の、例えば帯電防止材含有組成物などの組成物としては、樹脂とポリエーテル重合体の配合量は特に限定されないが、配合量は樹脂100重量部に対して、ポリエーテル重合体が0.01重量部以上配合されることが好ましく、0.05重量部以上配合されることがより好ましく、1重量部以上配合されることが更に好ましく、900重量部以下配合されることが好ましく、600重量部以下配合されることがより好ましく、400重量部以下配合されることが更に好ましい。配合方法は特に限定されず、通常使用されている方法を用いることができ、ロール、押し出し機、ニーダー等を例示することができる。 The composition of the present invention, for example, an antistatic material-containing composition, is not particularly limited in the amount of the resin and the polyether polymer, but the amount of the polyether polymer is 0 with respect to 100 parts by weight of the resin. 0.01 parts by weight or more is preferably blended, 0.05 parts by weight or more is more preferred, 1 part by weight or more is more preferred, 900 parts by weight or less is preferred, 600 More preferably, it is blended in an amount of up to 400 parts by weight. The blending method is not particularly limited, and a commonly used method can be used, and examples thereof include a roll, an extruder, and a kneader.
 本発明の、例えば帯電防止材含有組成物などの組成物に用いるゴムとしては、ブタジエンゴム(BR)、スチレン-ブタジエンゴム(SBR)、アクリロニトリル-ブタジエンゴム(NBR)、アクリルゴム、およびこれらの2種以上の混合ゴムを例示することができる。 Examples of the rubber used in the composition of the present invention such as an antistatic material-containing composition include butadiene rubber (BR), styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), acrylic rubber, and 2 Examples of mixed rubbers of more than one species can be given.
 本発明の、例えば帯電防止材含有組成物などの組成物としては、ゴムとポリエーテル重合体の配合量は特に限定されないが、配合量はゴム100重量部に対して、ポリエーテル重合体が0.01重量部以上配合されることが好ましく、0.05重量部以上配合されることがより好ましく、1重量部以上配合されることが更に好ましく、30重量部以下配合されることが好ましく、20重量部以下配合されることがより好ましく、15重量部以下配合されることが更に好ましい。配合方法は特に限定されず、通常使用されている方法を用いることができ、ロール、押し出し機、ニーダー等を例示することができる。 In the composition of the present invention, such as an antistatic material-containing composition, the blending amount of rubber and polyether polymer is not particularly limited, but the blending amount is 0 for the polyether polymer with respect to 100 parts by weight of rubber. 0.01 parts by weight or more is preferably blended, more preferably 0.05 parts by weight or more, more preferably 1 part by weight or more, still more preferably 30 parts by weight or less, More preferably, it is blended in an amount of not more than 15 parts by weight, still more preferably not more than 15 parts by weight. The blending method is not particularly limited, and a commonly used method can be used, and examples thereof include a roll, an extruder, and a kneader.
 本発明の、例えば帯電防止材含有組成物などの組成物に用いる溶媒としては、メタノール、エタノール、イソプロピルアルコール、メチルエチルケトン、アセトン、トルエン、テトラヒドロフラン、酢酸エチル、クロロホルム、塩化メチレン等が挙げられる。これらの溶媒は1種の単独使用でも2種以上の併用でも良い。 Examples of the solvent used in the composition of the present invention such as an antistatic material-containing composition include methanol, ethanol, isopropyl alcohol, methyl ethyl ketone, acetone, toluene, tetrahydrofuran, ethyl acetate, chloroform, methylene chloride and the like. These solvents may be used alone or in combination of two or more.
 本発明の、例えば帯電防止材含有組成物などの組成物としては、溶媒とポリエーテル重合体の配合量は特に限定されないが、配合量は溶媒100重量部に対して、ポリエーテル重合体が0.01重量部以上配合されることが好ましく、0.05重量部以上配合されることがより好ましく、1重量部以上配合されることが更に好ましく、80重量部以下配合されることが好ましく、60重量部以下配合されることがより好ましく、50重量部以下配合されることが更に好ましい。 The composition of the present invention, for example, an antistatic material-containing composition, is not particularly limited in the amount of the solvent and the polyether polymer, but the amount of the polyether polymer is 0 with respect to 100 parts by weight of the solvent. 0.01 parts by weight or more is preferably blended, more preferably 0.05 parts by weight or more, more preferably 1 part by weight or more, still more preferably 80 parts by weight or less, More preferably, it is blended in an amount of not more than 50 parts by weight, still more preferably not more than 50 parts by weight.
 本発明の、例えば帯電防止材含有組成物などの組成物として、溶媒を用いた場合には、帯電防止材含有組成物などの組成物は、ポリエーテル重合体を溶媒に溶解させた液状であってもよく、この場合、後述の通りコーティング液として用いることができる。 When a solvent is used as the composition of the present invention, for example, an antistatic material-containing composition, the antistatic material-containing composition is a liquid in which a polyether polymer is dissolved in a solvent. In this case, as described later, it can be used as a coating solution.
 本発明の、例えば帯電防止材含有組成物などの組成物としては、更に、酸化防止剤、安定剤、紫外線吸収剤、本発明で規定する以外の帯電防止材、滑剤、可塑剤、着色剤、発泡剤、充填剤、顔料、香料、難燃剤、後述する通り、熱重合開始剤、光反応開始剤、架橋助剤等を配合することができる。中でも熱重合開始剤、光反応開始剤、架橋助剤、酸化防止剤又は滑剤を使用することが好ましい。 Examples of the composition of the present invention, such as an antistatic material-containing composition, further include antioxidants, stabilizers, ultraviolet absorbers, antistatic materials other than those defined in the present invention, lubricants, plasticizers, colorants, A foaming agent, a filler, a pigment, a fragrance, a flame retardant, and a thermal polymerization initiator, a photoreaction initiator, a crosslinking aid and the like can be blended as described later. Among these, it is preferable to use a thermal polymerization initiator, a photoreaction initiator, a crosslinking aid, an antioxidant, or a lubricant.
 (成形体)
 本発明には、前記ポリエーテル重合体やその架橋物、または前記ポリエーテル重合体を含む組成物を用いて作製された成形体も含まれる。例えば、本発明のポリエーテル重合体またはその架橋物を、単独でまたは前述の添加剤を添加してから、例えば繊維、フィルム、シート、ペレット、粉体等に成形することが挙げられる。
(Molded body)
The molded body produced using the said polyether polymer, its crosslinked material, or the composition containing the said polyether polymer is also contained in this invention. For example, the polyether polymer of the present invention or a cross-linked product thereof may be molded, for example, into a fiber, a film, a sheet, a pellet, a powder or the like after adding the above-mentioned additives alone.
 また本発明の組成物は、以下に例示する通り成形することで成形体として用いることができる。成形体としては、繊維、フィルム、シート、ペレット、粉体、基材に対する塗膜等が挙げられる。これらの成形体は、弾性を示す成形体(弾性成形体)であってもよいし、弾性を示さない硬質成形体であってもよい。前記弾性成形体として、弾性ロール等が挙げられる。 The composition of the present invention can be used as a molded article by molding as exemplified below. Examples of the molded body include fibers, films, sheets, pellets, powders, and coating films on substrates. These molded bodies may be molded bodies that exhibit elasticity (elastic molded bodies) or may be hard molded bodies that do not exhibit elasticity. Examples of the elastic molded body include elastic rolls.
 前記溶媒とポリエーテル重合体を用いた組成物、例えば溶媒と帯電防止材としてポリエーテル重合体を用いた帯電防止材含有組成物は、コーティング液として用いることができる。コーティング方法として、ロールコート法、グラビアコート法、ディップコート法、スプレーコート法などが挙げられる。これらの方法により、前記樹脂、例えばポリエチレンテレフタレートなどのポリエステル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ABS樹脂、AS樹脂、ポリアミド樹脂、ポリフェニレンエーテル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル系樹脂、ポリオキシメチレン樹脂、アクリル系樹脂、またはこれらの2種以上の混合樹脂と、ポリエーテル重合体とを含む組成物を、基材にコーティングして塗膜としての成形体とすることも可能である。 The composition using the solvent and the polyether polymer, for example, the antistatic material-containing composition using the polyether polymer as the solvent and the antistatic material can be used as a coating liquid. Examples of the coating method include a roll coating method, a gravure coating method, a dip coating method, and a spray coating method. By these methods, the resin, for example, polyester resin such as polyethylene terephthalate, polycarbonate resin, polystyrene resin, ABS resin, AS resin, polyamide resin, polyphenylene ether resin, polyethylene resin, polypropylene resin, polyvinyl chloride resin, polyoxymethylene It is also possible to form a molded body as a coating film by coating a substrate with a composition containing a resin, an acrylic resin, or a mixture of two or more of these and a polyether polymer.
 また、本発明の帯電防止材含有組成物に、熱重合開始剤、光反応開始剤、架橋助剤を含有させて、成形時、又は成形後に架橋反応をさせて成形体を得ることができる。架橋は、加熱、又は紫外線などの活性エネルギー線を照射することによって架橋させることができる。 In addition, the antistatic material-containing composition of the present invention can contain a thermal polymerization initiator, a photoreaction initiator, and a crosslinking aid, and can undergo a crosslinking reaction during molding or after molding to obtain a molded body. Crosslinking can be carried out by heating or irradiation with active energy rays such as ultraviolet rays.
 架橋反応は、熱による場合は、室温から200℃ぐらいの温度設定で10分から24時間程度加熱することによって行なうことができる。
 紫外線による場合では、キセノンランプ、水銀ランプ、高圧水銀ランプおよびメタルハライドランプを用いることができ、例えば、高圧水銀ランプを光源とするUV照射機にて積算露光量1~10000mJ/cm照射することによって行うことができる。
In the case of using a heat, the crosslinking reaction can be carried out by heating at a temperature setting from room temperature to about 200 ° C. for about 10 minutes to 24 hours.
In the case of ultraviolet rays, a xenon lamp, a mercury lamp, a high-pressure mercury lamp, and a metal halide lamp can be used. For example, by irradiating with a UV irradiation machine using a high-pressure mercury lamp as a light source, an integrated exposure dose of 1 to 10,000 mJ / cm 2 is irradiated. It can be carried out.
 本発明に用いることができる熱重合開始剤として、有機過酸化物系開始剤、アゾ化合物系開始剤等から選ばれるラジカル開始剤が挙げられる。
 有機過酸化物系開始剤としては、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル等、通常架橋用途に使用されているものが用いられ、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ベンゾイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート等が挙げられる。
Examples of the thermal polymerization initiator that can be used in the present invention include radical initiators selected from organic peroxide initiators, azo compound initiators, and the like.
As organic peroxide initiators, ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxy esters, and the like that are usually used for crosslinking are used. 1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, di-t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5- Examples include di (t-butylperoxy) hexane, benzoyl peroxide, t-butylperoxy-2-ethylhexanoate, and the like.
 アゾ化合物系開始剤としてはアゾニトリル化合物、アゾアミド化合物、アゾアミジン化合物等、通常架橋用途に使用されているものが用いられ、2,2'-アゾビスイソブチロニトリル、2,2'-アゾビス(2-メチルブチロニトリル)、2,2'-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2-アゾビス(2-メチル-N-フェニルプロピオンアミジン)・二塩酸塩、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2'-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2'-アゾビス(2-メチルプロパン)、2,2'-アゾビス[2-(ヒドロキシメチル)プロピオニトリル]等が挙げられる。
 好ましくは有機過酸化物系開始剤が用いられる。これらの化合物を、単独で使用する他、2種類以上併用することも可能である。
As the azo compound-based initiator, those usually used for crosslinking such as an azonitrile compound, an azoamide compound, an azoamidine compound, etc. are used. 2,2′-azobisisobutyronitrile, 2,2′-azobis (2 -Methylbutyronitrile), 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2-azobis (2-methyl-N-phenylpropionamidine) dihydrochloride, 2, 2′-azobis [2- (2-imidazolin-2-yl) propane], 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 2,2′-azobis (2 -Methylpropane), 2,2'-azobis [2- (hydroxymethyl) propionitrile] and the like.
Preferably, an organic peroxide-based initiator is used. These compounds can be used alone or in combination of two or more.
 活性エネルギー線は、紫外線、可視光線、電子線等を用いることができる。特に装置の価格、制御のしやすさから紫外線が好ましい。 Activating energy rays can be ultraviolet rays, visible rays, electron beams or the like. In particular, ultraviolet rays are preferable because of the price of the apparatus and ease of control.
 本発明に用いることができる光反応開始剤として、アルキルフェノン系開始剤、ベンゾフェノン系開始剤、アシルフォスフィンオキサイド系開始剤、チタノセン系開始剤、トリアジン系開始剤、ビスイミダゾール系開始剤、オキシムエステル系開始剤などが挙げられる。好ましくは、アルキルフェノン系開始剤、ベンゾフェノン系開始剤、アシルフォスフィンオキサイド系開始剤の光反応開始剤が用いられる。光反応開始剤として前述の化合物を、単独で用いる他、2種類以上併用することも可能である。 As photoreaction initiators that can be used in the present invention, alkylphenone initiators, benzophenone initiators, acylphosphine oxide initiators, titanocene initiators, triazine initiators, bisimidazole initiators, oxime esters And system initiators. Preferably, an alkylphenone-based initiator, a benzophenone-based initiator, or an acyl phosphine oxide-based initiator is used. In addition to using the above-mentioned compounds alone as a photoreaction initiator, two or more types can be used in combination.
 アルキルフェノン系開始剤の具体例としては、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-[4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル]-2-メチル-プロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オンなどが挙げられる。2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オンが好ましい。 Specific examples of the alkylphenone initiator include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1-phenyl-propane. -1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- [4- [4- (2 -Hydroxy-2-methyl-propionyl) -benzyl] phenyl] -2-methyl-propan-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, etc. It is done. 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2-methyl-1- (4-Methylthiophenyl) -2-morpholinopropan-1-one is preferred.
 ベンゾフェノン系開始剤の具体例としては、ベンゾフェノン、2-クロロベンゾフェノン、4,4'-ビス(ジエチルアミノ)ベンゾフェノン、4,4'-ビス(ジメチルアミノ)ベンゾフェノン、メチル-2-ベンゾイルベンゾエートなどが挙げられる。ベンゾフェノン、4,4'-ビス(ジエチルアミノ)ベンゾフェノン、4,4'-ビス(ジメチルアミノ)ベンゾフェノンが好ましい。 Specific examples of the benzophenone initiator include benzophenone, 2-chlorobenzophenone, 4,4′-bis (diethylamino) benzophenone, 4,4′-bis (dimethylamino) benzophenone, methyl-2-benzoylbenzoate, and the like. . Benzophenone, 4,4′-bis (diethylamino) benzophenone, and 4,4′-bis (dimethylamino) benzophenone are preferred.
 アシルフォスフィンオキサイド系開始剤の具体例としては、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドなどが挙げられる。ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドが好ましい。 Specific examples of the acylphosphine oxide-based initiator include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, and the like. Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide is preferred.
 架橋反応に用いられる熱重合開始剤の量はポリエーテル重合体100重量部に対して、下限は0.01重量部以上であることが好ましく、0.1重量部以上であることがより好ましく、上限は10重量部以下であることが好ましく、4重量部以下であることがより好ましい。
 架橋反応に用いられる光反応開始剤の量はポリエーテル重合体100重量部に対して、下限は0.01重量部以上であることが好ましく、0.1重量部以上であることがより好ましく、上限は6重量部以下であることが好ましく、4重量部以下であることがより好ましい。
The amount of the thermal polymerization initiator used for the crosslinking reaction is preferably 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, with respect to 100 parts by weight of the polyether polymer. The upper limit is preferably 10 parts by weight or less, and more preferably 4 parts by weight or less.
The amount of the photoinitiator used for the crosslinking reaction is preferably 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, with respect to 100 parts by weight of the polyether polymer. The upper limit is preferably 6 parts by weight or less, and more preferably 4 parts by weight or less.
 本発明においては、架橋助剤を光反応開始剤と併用してもよい。架橋助剤は、通常、多官能性化合物(例えば、CH=CH-、CH=CH-CH-、CF=CF-、HS-を少なくとも2個含む化合物)である。架橋助剤の具体例は、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアクリルホルマール、トリアリルトリメリテート、N,N’-m-フェニレンビスマレイミド、ジプロパルギルテレフタレート、ジアリルフタレート、テトラアリルテレフタールアミド、トリアリルホスフェート、ヘキサフルオロトリアリルイソシアヌレート、N-メチルテトラフルオロジアリルイソシアヌレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート、メタンジチオール、1,2-エタンジチオール、1,2-プロパンジチオール、1,3-プロパンジチオール、1,4-ブタンジチオール、1,6-ヘキサンジチオール、1,7-ヘプタンジチオール、1,8-オクタンジチオール、1,9-ノナンジチオール、1,10-デカンジチオール、1,12-ドデカンジチオール、2,2-ジメチル-1,3-プロパンジチオール、3-メチル-1,5-ペンタンジチオール、2-メチル-1,8-オクタンジチオール、1,4-シクロヘキサンジチオール、1,4-ビス(メルカプトメチル)シクロヘキサン、1,1-シクロヘキサンジチオール、1,2-シクロヘキサンジチオール、ビシクロ〔2,2,1〕ヘプタ-exo-cis-2,3-ジチオール、1,1-ビス(メルカプトメチル)シクロヘキサン、ビス(2-メルカプトエチル)エーテル、エチレングリコールビス(2-メルカプトアセテート)、エチレングリコールビス(3-メルカプトプロピオネート)等のジチオール化合物;1,1,1-トリス(メルカプトメチル)エタン、2-エチル-2-メルカプトメチル-1,3-プロパンジチオール、1,2,3-プロパントリチオール、トリメチロールプロパントリス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリス((メルカプトプロピオニルオキシ)-エチル)イソシアヌレート等のトリチオール化合物;ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブタネート)、ジペンタエリスリトールヘキサ-3-メルカプトプロピオネート等のSH基を4個以上有するチオール化合物等の脂肪族ポリチオール化合物、1,2-ジメルカプトベンゼン、1,3-ジメルカプトベンゼン、1,4-ジメルカプトベンゼン、1,2-ビス(メルカプトメチル)ベンゼン、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、1,2-ビス(2-メルカプトエチル)ベンゼン、1,3-ビス(2-メルカプトエチル)ベンゼン、1,4-ビス(2-メルカプトエチル)ベンゼン、1,2-ビス(2-メルカプトエチレンオキシ)ベンゼン、1,3-ビス(2-メルカプトエチレンオキシ)ベンゼン、1,4-ビス(2-メルカプトエチレンオキシ)ベンゼン、1,2,3-トリメルカプトベンゼン、1,2,4-トリメルカプトベンゼン、1,3,5-トリメルカプトベンゼン、1,2,3-トリス(メルカプトメチル)ベンゼン、1,2,4-トリス(メルカプトメチル)ベンゼン、1,3,5-トリス(メルカプトメチル)ベンゼン、1,2,3-トリス(2-メルカプトエチル)ベンゼン、1,2,4-トリス(2-メルカプトエチル)ベンゼン、1,3,5-トリス(2-メルカプトエチル)ベンゼン、1,2,3-トリス(2-メルカプトエチレンオキシ)ベンゼン、1,2,4-トリス(2-メルカプトエチレンオキシ)ベンゼン、1,3,5-トリス(2-メルカプトエチレンオキシ)ベンゼン、1,2,3,4-テトラメルカプトベンゼン、1,2,3,5-テトラメルカプトベンゼン、1,2,4,5-テトラメルカプトベンゼン、1,2,3,4-テトラキス(メルカプトメチル)ベンゼン、1,2,3,5-テトラキス(メルカプトメチル)ベンゼン、1,2,4,5-テトラキス(メルカプトメチル)ベンゼン、1,2,3,4-テトラキス(2-メルカプトエチル)ベンゼン、1,2,3,5-テトラキス(2-メルカプトエチル)ベンゼン、1,2,4,5-テトラキス(2-メルカプトエチル)ベンゼン、1,2,3,4-テトラキス(2-メルカプトエチレンオキシ)ベンゼン、1,2,3,5-テトラキス(2-メルカプトエチレンオキシ)ベンゼン、1,2,4,5-テトラキス(2-メルカプトエチレンオキシ)ベンゼン、2,2'-ジメルカプトビフェニル、4,4'-チオビス-ベンゼンチオール、4,4'-ジメルカプトビフェニル、4,4'-ジメルカプトビベンジル、2,5-トルエンジチオール、3,4-トルエンジチオール、1,4-ナフタレンジチオール、1,5-ナフタレンジチオール、2,6-ナフタレンジチオール、2,7-ナフタレンジチオール、2,4-ジメチルベンゼン-1,3-ジチオール、4,5-ジメチルベンゼン-1,3-ジチオール、9,10-アントラセンジメタンチオール、1,3-ビス(2-メルカプトエチルチオ)ベンゼン、1,4-ビス(2-メルカプトエチルチオ)ベンゼン、1,2-ビス(2-メルカプトエチルチオメチル)ベンゼン、1,3-ビス(2-メルカプトエチルチオメチル)ベンゼン、1,4-ビス(2-メルカプトエチルチオメチル)ベンゼン、1,2,3-トリス(2-メルカプトエチルチオ)ベンゼン、1,2,4-トリス(2-メルカプトエチルチオ)ベンゼン、1,3,5-トリス(2-メルカプトエチルチオ)ベンゼン、1,2,3,4-テトラキス(2-メルカプトエチルチオ)ベンゼン、1,2,3,5-テトラキス(2-メルカプトエチルチオ)ベンゼン、1,2,4,5-テトラキス(2-メルカプトエチルチオ)ベンゼン等の芳香族ポリチオールなどである。これらの化合物を、単独で用いる他、2種類以上併用することも可能である。 In the present invention, a crosslinking aid may be used in combination with a photoreaction initiator. Crosslinking aid is usually polyfunctional compound (e.g., CH 2 = CH-, CH 2 = CH-CH 2 -, CF 2 = CF-, a compound containing at least two HS- a) is. Specific examples of the crosslinking aid include triallyl cyanurate, triallyl isocyanurate, triacryl formal, triallyl trimellitate, N, N′-m-phenylene bismaleimide, dipropargyl terephthalate, diallyl phthalate, tetraallyl terephthal Amides, triallyl phosphate, hexafluorotriallyl isocyanurate, N-methyltetrafluorodiallyl isocyanurate, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, methanedithiol, 1,2-ethanedithiol, 1,2-propanedithiol 1,3-propanedithiol, 1,4-butanedithiol, 1,6-hexanedithiol, 1,7-heptanedithiol, 1,8-octanedithiol, 1,9-nonanedi Thiol, 1,10-decanedithiol, 1,12-dodecanedithiol, 2,2-dimethyl-1,3-propanedithiol, 3-methyl-1,5-pentanedithiol, 2-methyl-1,8-octanedithiol 1,4-cyclohexanedithiol, 1,4-bis (mercaptomethyl) cyclohexane, 1,1-cyclohexanedithiol, 1,2-cyclohexanedithiol, bicyclo [2,2,1] hepta-exo-cis-2,3 A dithiol compound such as dithiol, 1,1-bis (mercaptomethyl) cyclohexane, bis (2-mercaptoethyl) ether, ethylene glycol bis (2-mercaptoacetate), ethylene glycol bis (3-mercaptopropionate); 1 , 1,1-Tris (mercaptomethyl) eta 2-ethyl-2-mercaptomethyl-1,3-propanedithiol, 1,2,3-propanetrithiol, trimethylolpropane tris (2-mercaptoacetate), trimethylolpropane tris (3-mercaptopropionate) , Trithiol compounds such as tris ((mercaptopropionyloxy) -ethyl) isocyanurate; pentaerythritol tetrakis (2-mercaptoacetate), pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptobutanate) Aliphatic polythiol compounds such as thiol compounds having 4 or more SH groups such as dipentaerythritol hexa-3-mercaptopropionate, 1,2-dimercaptobenzene, 1,3-dimer Ptobenzene, 1,4-dimercaptobenzene, 1,2-bis (mercaptomethyl) benzene, 1,3-bis (mercaptomethyl) benzene, 1,4-bis (mercaptomethyl) benzene, 1,2-bis (2 -Mercaptoethyl) benzene, 1,3-bis (2-mercaptoethyl) benzene, 1,4-bis (2-mercaptoethyl) benzene, 1,2-bis (2-mercaptoethyleneoxy) benzene, 1,3- Bis (2-mercaptoethyleneoxy) benzene, 1,4-bis (2-mercaptoethyleneoxy) benzene, 1,2,3-trimercaptobenzene, 1,2,4-trimercaptobenzene, 1,3,5- Trimercaptobenzene, 1,2,3-tris (mercaptomethyl) benzene, 1,2,4-tris (mercaptomethyl) benzene , 1,3,5-tris (mercaptomethyl) benzene, 1,2,3-tris (2-mercaptoethyl) benzene, 1,2,4-tris (2-mercaptoethyl) benzene, 1,3,5 -Tris (2-mercaptoethyl) benzene, 1,2,3-tris (2-mercaptoethyleneoxy) benzene, 1,2,4-tris (2-mercaptoethyleneoxy) benzene, 1,3,5-tris ( 2-mercaptoethyleneoxy) benzene, 1,2,3,4-tetramercaptobenzene, 1,2,3,5-tetramercaptobenzene, 1,2,4,5-tetramercaptobenzene, 1,2,3 4-tetrakis (mercaptomethyl) benzene, 1,2,3,5-tetrakis (mercaptomethyl) benzene, 1,2,4,5-tetrakis (mercap) Methyl) benzene, 1,2,3,4-tetrakis (2-mercaptoethyl) benzene, 1,2,3,5-tetrakis (2-mercaptoethyl) benzene, 1,2,4,5-tetrakis (2- Mercaptoethyl) benzene, 1,2,3,4-tetrakis (2-mercaptoethyleneoxy) benzene, 1,2,3,5-tetrakis (2-mercaptoethyleneoxy) benzene, 1,2,4,5-tetrakis (2-mercaptoethyleneoxy) benzene, 2,2′-dimercaptobiphenyl, 4,4′-thiobis-benzenethiol, 4,4′-dimercaptobiphenyl, 4,4′-dimercaptobibenzyl, 2,5 -Toluenedithiol, 3,4-toluenedithiol, 1,4-naphthalenedithiol, 1,5-naphthalenedithiol, 2,6-naphth Rangethiol, 2,7-naphthalenedithiol, 2,4-dimethylbenzene-1,3-dithiol, 4,5-dimethylbenzene-1,3-dithiol, 9,10-anthracenedimethanethiol, 1,3-bis (2-mercaptoethylthio) benzene, 1,4-bis (2-mercaptoethylthio) benzene, 1,2-bis (2-mercaptoethylthiomethyl) benzene, 1,3-bis (2-mercaptoethylthiomethyl) ) Benzene, 1,4-bis (2-mercaptoethylthiomethyl) benzene, 1,2,3-tris (2-mercaptoethylthio) benzene, 1,2,4-tris (2-mercaptoethylthio) benzene, 1,3,5-tris (2-mercaptoethylthio) benzene, 1,2,3,4-tetrakis (2-mercaptoethylthio) ) Benzene, 1,2,3,5-tetrakis (2-mercaptoethyl thio) benzene, and the like aromatic polythiol such as 1,2,4,5-tetrakis (2-mercaptoethyl thio) benzene. These compounds can be used alone or in combination of two or more.
 本発明の成形体は、前述の通り、繊維、フィルム、シート、ペレット、粉体の他、基材に対する塗膜等の形状とすることができる。本発明の成形体は、各種成形品として、非帯電性が要求される分野、例えば自動車部品、OA機器、家電製品部品、電気・電子分野、あるいはその保管・収納ケース、チューブなどの用途で用いられる。特に、前記低温・低湿度条件、及び高温・高湿度条件において、安定した表面抵抗値を有するポリエーテル重合体は、帯電防止材として好適に用いられる。 As described above, the molded product of the present invention can be formed into a shape such as a coating film on a substrate, in addition to fibers, films, sheets, pellets, and powders. The molded body of the present invention is used as various molded articles in fields where non-chargeability is required, such as automobile parts, OA equipment, home appliance parts, electrical / electronic fields, or storage / storage cases, tubes, etc. It is done. In particular, a polyether polymer having a stable surface resistance value under the low temperature / low humidity conditions and the high temperature / high humidity conditions is preferably used as an antistatic material.
 本願は、2016年6月6日に出願された日本国特許出願第2016-112994号および2016年10月17日に出願された日本国特許出願第2016-203895号に基づく優先権の利益を主張するものである。2016年6月6日に出願された日本国特許出願第2016-112994号の明細書の全内容および2016年10月17日に出願された日本国特許出願第2016-203895号の明細書の全内容が、本願の参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2016-112994 filed on June 6, 2016 and Japanese Patent Application No. 2016-203895 filed on October 17, 2016 To do. The entire contents of the specification of Japanese Patent Application No. 2016-112994 filed on June 6, 2016 and the entire specification of the Japanese Patent Application No. 2016-203895 filed on October 17, 2016 The contents are incorporated by reference for this application.
 以下、本発明を実施例、比較例により具体的に説明する。但し、本発明はその要旨を逸脱しない限り以下の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples. However, the present invention is not limited to the following examples without departing from the gist thereof.
<重合体の分析>
 実施例・比較例で得られたポリエーテル重合体の共重合組成は、ポリエーテル重合体を重クロロホルムに溶解し、H-NMRにより各ユニットの積分値を求め、その算出結果から組成比を求めた。装置としては、日本電子株式会社製のJNM GSX-270型を用いた。
 実施例・比較例で得られたポリエーテル重合体の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によって、以下の方法により求めた。
装置:株式会社島津製作所製GPCシステム
カラム:昭和電工株式会社製Shodex KD-807、KD-806M、KD-806、KD-803
検出器:示差屈折計
溶媒:ジメチルホルムアミド(リチウムブロマイド1mmol/L)
流速:1mL/min
カラム温度:60℃
分子量標準物質:昭和電工株式会社製標準ポリスチレン
<Analysis of polymer>
The copolymer composition of the polyether polymers obtained in the examples and comparative examples was obtained by dissolving the polyether polymer in deuterated chloroform, determining the integral value of each unit by 1 H-NMR, and calculating the composition ratio from the calculation results. Asked. As the apparatus, JNM GSX-270 type manufactured by JEOL Ltd. was used.
The weight average molecular weights of the polyether polymers obtained in Examples and Comparative Examples were determined by gel permeation chromatography (GPC) by the following method.
Equipment: GPC system column manufactured by Shimadzu Corporation Column: Shodex KD-807, KD-806M, KD-806, KD-803 manufactured by Showa Denko KK
Detector: Differential refractometer Solvent: Dimethylformamide (Lithium bromide 1 mmol / L)
Flow rate: 1 mL / min
Column temperature: 60 ° C
Molecular weight reference material: Showa Denko Co., Ltd. standard polystyrene
 (ガラス転移温度(Tg)、結晶融解熱量(ΔHc)の測定)
 実施例・比較例で得られたポリエーテル重合体のガラス転移温度(Tg)と結晶融解熱量(ΔHc)を次の様にして測定した。即ち、エスアイアイテクノロジー社製の示差走査熱量計「DSC6220」を用いて、測定用アルミパンに試料10mgをつめて、加熱速度を10℃/分で180℃まで昇温し、同温度で3分間保持した後、冷却速度10℃/分で-100℃まで降温し、同温度で3分間保持した後、再度10℃/分で180℃まで昇温した際のサーモグラムからガラス転移温度(Tg)を求めた。結晶融解熱量(ΔHc)は、2回目の昇温過程における融解に伴う発熱ピークの面積より求めた。
(Measurement of glass transition temperature (Tg) and heat of crystal melting (ΔHc))
The glass transition temperature (Tg) and the heat of crystal fusion (ΔHc) of the polyether polymers obtained in Examples and Comparative Examples were measured as follows. That is, using a differential scanning calorimeter “DSC 6220” manufactured by SII Technology Co., Ltd., a sample of 10 mg was packed in an aluminum pan for measurement, the heating rate was raised to 180 ° C. at 10 ° C./min, and the same temperature was maintained for 3 minutes. After being held, the temperature was lowered to −100 ° C. at a cooling rate of 10 ° C./min, held at the same temperature for 3 minutes, and then again from the thermogram when heated to 180 ° C. at 10 ° C./min, the glass transition temperature (Tg) Asked. The amount of heat of crystal melting (ΔHc) was determined from the area of the exothermic peak accompanying melting in the second temperature raising process.
<重合用触媒の製造>
 重合用触媒の製造攪拌機、温度計、及びコンデンサーを備えた三つ口フラスコにトリブチル錫クロライド10g、及びトリブチルフォスフェート35gを投入し、窒素気流下に攪拌しながら250℃で20分間加熱して留出物を留去させ、残留物として室温で固体状の縮合物を得た。以降これを重合用触媒として使用した(以下、縮合物触媒と記載する。)。
<Manufacture of polymerization catalyst>
Production of polymerization catalyst A three-necked flask equipped with a stirrer, a thermometer, and a condenser was charged with 10 g of tributyltin chloride and 35 g of tributyl phosphate and heated at 250 ° C. for 20 minutes with stirring under a nitrogen stream. The product was distilled off and a solid condensate was obtained as a residue at room temperature. Thereafter, this was used as a polymerization catalyst (hereinafter referred to as a condensate catalyst).
(実施例1)
 内容量10Lのジャケット付きステンレス製反応器の内部を窒素置換し、上記縮合物触媒10g、2-エチルヘキシルグリシジルエーテル(EHGEとも記載する)443g、メタクリル酸グリシジル(GMAとも記載する)70g、及び溶媒としてノルマルヘキサン4126gを仕込み、エチレンオキシド(EOとも記載する)355gは2-エチルヘキシルグリシジルエーテルの重合率をガスクロマトグラフィーで追跡しながら、逐次添加した。反応温度を28℃に維持したまま8時間後にメタノール16gを加えて重合反応を停止した。デカンテーションにより粒子状の重合体を取り出した後、減圧下、40℃で8時間乾燥してポリエーテル共重合体251gを得た。得られたポリエーテル共重合体の共重合組成は、エチレンオキシド由来の構成単位86モル%、2-エチルヘキシルグリシジルエーテル由来の構成単位11モル%、メタクリル酸グリシジル由来の構成単位3モル%であった。得られたポリエーテル共重合体の共重合組成、及び重量平均分子量については表1に示す。
Example 1
The inside of a jacketed stainless steel reactor with an internal volume of 10 L was purged with nitrogen, 10 g of the condensate catalyst, 443 g of 2-ethylhexyl glycidyl ether (also described as EHGE), 70 g of glycidyl methacrylate (also described as GMA), and a solvent 4126 g of normal hexane was charged, and 355 g of ethylene oxide (also referred to as EO) was sequentially added while monitoring the polymerization rate of 2-ethylhexyl glycidyl ether by gas chromatography. The polymerization reaction was stopped by adding 16 g of methanol after 8 hours while maintaining the reaction temperature at 28 ° C. After taking out the particulate polymer by decantation, it was dried at 40 ° C. under reduced pressure for 8 hours to obtain 251 g of a polyether copolymer. The copolymer composition of the obtained polyether copolymer was 86 mol% of structural units derived from ethylene oxide, 11 mol% of structural units derived from 2-ethylhexyl glycidyl ether, and 3 mol% of structural units derived from glycidyl methacrylate. The copolymer composition and weight average molecular weight of the obtained polyether copolymer are shown in Table 1.
(実施例2)
 重合時の仕込み物及びその量を、縮合物触媒10g、1,2-エポキシヘキサン(EHとも記載する)580g、メタクリル酸グリシジル110g、及びノルマルヘキサン3750gとし、エチレンオキシドの量を399gとした以外は実施例1と同様の手順でポリエーテル共重合体517gを得た。得られたポリエーテル共重合体の共重合組成は、エチレンオキシド由来の構成単位74モル%、1,2-エポキシヘキサン由来の構成単位22モル%、メタクリル酸グリシジル由来の構成単位4モル%であった。得られたポリエーテル共重合体の共重合組成、及び重量平均分子量については表1に示す。
(Example 2)
The charge and the amount during the polymerization were carried out except that the condensate catalyst was 10 g, 1,2-epoxyhexane (also referred to as EH) 580 g, glycidyl methacrylate 110 g, and normal hexane 3750 g, and the amount of ethylene oxide was 399 g. In the same procedure as in Example 1, 517 g of a polyether copolymer was obtained. The copolymer composition of the obtained polyether copolymer was 74 mol% of structural units derived from ethylene oxide, 22 mol% of structural units derived from 1,2-epoxyhexane, and 4 mol% of structural units derived from glycidyl methacrylate. . The copolymer composition and weight average molecular weight of the obtained polyether copolymer are shown in Table 1.
(実施例3)
 重合時の仕込み物及びその量を、縮合物触媒10g、1,2-エポキシブタン(EBとも記載する)480g、メタクリル酸グリシジル126g、及びノルマルヘキサン3750gとし、エチレンオキシドの量を644gとした以外は実施例1と同様の手順でポリエーテル共重合体806gを得た。尚、エチレンオキシドは1,2-エポキシブタンの重合率をガスクロマトグラフィーで追跡しながら、逐次添加した。得られたポリエーテル共重合体の共重合組成は、エチレンオキシド由来の構成単位68モル%、1,2-エポキシブタン由来の構成単位28モル%、メタクリル酸グリシジル由来の構成単位4モル%であった。得られたポリエーテル共重合体の共重合組成、及び重量平均分子量については表1に示す。
(Example 3)
The polymerization charge was charged except that the amount of the charged product and its amount were 10 g of condensate catalyst, 480 g of 1,2-epoxybutane (also referred to as EB), 126 g of glycidyl methacrylate and 3750 g of normal hexane, and the amount of ethylene oxide was 644 g. In the same procedure as in Example 1, 806 g of a polyether copolymer was obtained. Ethylene oxide was sequentially added while monitoring the polymerization rate of 1,2-epoxybutane by gas chromatography. The copolymer composition of the obtained polyether copolymer was 68 mol% of structural units derived from ethylene oxide, 28 mol% of structural units derived from 1,2-epoxybutane, and 4 mol% of structural units derived from glycidyl methacrylate. . The copolymer composition and weight average molecular weight of the obtained polyether copolymer are shown in Table 1.
(比較例1)
 内容量10Lのジャケット付きステンレス製反応器の内部を窒素置換し、上記縮合物触媒10g、プロピレンオキシド(POとも記載する)144g及び溶媒としてノルマルヘキサン3750gを仕込み、エチレンオキシド1106gはプロピレンオキシドの重合率をガスクロマトグラフィーで追跡しながら、逐次添加した。反応温度を28℃に維持したまま8時間後にメタノール16gを加えて重合反応を停止した。デカンテーションにより粒子状の重合体を取り出した後、減圧下、40℃で8時間乾燥してポリエーテル共重合体1086gを得た。得られたポリエーテル共重合体の共重合組成は、プロピレンオキシド由来の構成単位9モル%、エチレンオキシド由来の構成単位91モル%であった。得られたポリエーテル共重合体の共重合組成、及び重量平均分子量については表1に示す。
(Comparative Example 1)
The inside of a jacketed stainless steel reactor with an internal volume of 10 L is purged with nitrogen, charged with 10 g of the above condensate catalyst, 144 g of propylene oxide (also referred to as PO) and 3750 g of normal hexane as a solvent, and 1106 g of ethylene oxide has a polymerization rate of propylene oxide. Sequential additions were made while monitoring by gas chromatography. The polymerization reaction was stopped by adding 16 g of methanol after 8 hours while maintaining the reaction temperature at 28 ° C. After taking out the particulate polymer by decantation, it was dried at 40 ° C. under reduced pressure for 8 hours to obtain 1086 g of a polyether copolymer. The copolymer composition of the obtained polyether copolymer was 9 mol% of a structural unit derived from propylene oxide and 91 mol% of a structural unit derived from ethylene oxide. The copolymer composition and weight average molecular weight of the obtained polyether copolymer are shown in Table 1.
(比較例2)
 重合時の仕込み物及びその量を、縮合物触媒10g、プロピレンオキシド59g、アリルグリシジルエーテル(AGEとも記載する)175g、及びノルマルヘキサン3750gとし、エチレンオキシドの量を1015gとした以外は比較例1と同様の手順でポリエーテル共重合体1007gを得た。尚、エチレンオキシドはプロピレンオキシドの重合率をガスクロマトグラフィーで追跡しながら、逐次添加した。得られたポリエーテル共重合体の共重合組成は、プロピレンオキシド由来の構成単位4モル%、エチレンオキシド由来の構成単位モル90%、アリルグリシジルエーテル由来の構成単位6モル%であった。得られたポリエーテル共重合体の共重合組成、及び重量平均分子量については表1に示す。
(Comparative Example 2)
The same as in Comparative Example 1 except that the charged product and its amount during polymerization were 10 g of condensate catalyst, 59 g of propylene oxide, 175 g of allyl glycidyl ether (also referred to as AGE) and 3750 g of normal hexane, and the amount of ethylene oxide was 1015 g. According to the procedure, 1007 g of a polyether copolymer was obtained. In addition, ethylene oxide was sequentially added while monitoring the polymerization rate of propylene oxide by gas chromatography. The copolymer composition of the obtained polyether copolymer was 4 mol% of a structural unit derived from propylene oxide, 90% of a structural unit derived from ethylene oxide, and 6 mol% of a structural unit derived from allyl glycidyl ether. The copolymer composition and weight average molecular weight of the obtained polyether copolymer are shown in Table 1.
(比較例3)
 重合時の仕込み物及びその量を、縮合物触媒10g、フェニルグリシジルエーテル(PhGEとも記載する)536g、メタクリル酸グリシジル68g、及びノルマルヘキサン4050gとし、エチレンオキシドの量を346gとした以外は実施例1と同様の手順でポリエーテル共重合体881gを得た。得られたポリエーテル共重合体の共重合組成は、エチレンオキシド由来の構成単位66モル%、フェニルグリシジルエーテル由来の構成単位30モル%、メタクリル酸グリシジル由来の構成単位4モル%であった。得られたポリエーテル共重合体の共重合組成、及び重量平均分子量については表1に示す。
(Comparative Example 3)
The charge and the amount during polymerization were 10 g of condensate catalyst, 536 g of phenylglycidyl ether (also referred to as PhGE), 68 g of normal glycidyl methacrylate, and 4050 g of normal hexane, and the amount of ethylene oxide was 346 g. In the same procedure, 881 g of a polyether copolymer was obtained. The copolymer composition of the obtained polyether copolymer was 66 mol% of structural units derived from ethylene oxide, 30 mol% of structural units derived from phenylglycidyl ether, and 4 mol% of structural units derived from glycidyl methacrylate. The copolymer composition and weight average molecular weight of the obtained polyether copolymer are shown in Table 1.
 上記実施例1~3および比較例1~3で得られたポリエーテル共重合体の表面抵抗値と吸水率を後記の通り測定するため、下記の通り試験片を作製した。 In order to measure the surface resistance value and water absorption of the polyether copolymers obtained in Examples 1 to 3 and Comparative Examples 1 to 3 as described later, test pieces were prepared as follows.
<試験片の作製>
 実施例1~3のポリエーテル共重合体及び比較例1~3のポリエーテル共重合体それぞれを金型の上に敷き詰め、160℃に温度設定した真空加熱プレス機で2分間プレスすることにより、1mm厚のポリマーシートを成形し、実施例1~3、及び比較例1~3の試験片とした。
<Preparation of test piece>
Each of the polyether copolymers of Examples 1 to 3 and the polyether copolymers of Comparative Examples 1 to 3 was spread on a mold and pressed for 2 minutes with a vacuum heating press set at 160 ° C. A polymer sheet having a thickness of 1 mm was molded to obtain test pieces of Examples 1 to 3 and Comparative Examples 1 to 3.
<試験片の乾燥>
 実施例1~3、及び比較例1~3の各試験片に対し、露点-50℃に調整されたドライブースにおいて48時間状態調節後、試験片の重量を測定した。その重量を乾燥状態における重量とした。
<Drying of test piece>
For each of the test pieces of Examples 1 to 3 and Comparative Examples 1 to 3, the weight of the test pieces was measured after conditioning for 48 hours in a drive source adjusted to a dew point of −50 ° C. The weight was taken as the weight in the dry state.
<23℃、50%RHにおける表面抵抗値、吸水率の測定>
 乾燥させた実施例1~3、及び比較例1~3の各試験片に対し、温度23℃、湿度50%RH(以下「23℃×50%RH」または「23℃50%」と示すことがある)に調節した恒温恒湿槽内で48時間状態調節し、同恒温恒湿槽内で表面抵抗値の測定を行った。測定は絶縁抵抗計(三菱化学株式会社製、ハイレスタUX MCP-HT800)を用いて、100ボルトの電圧を印加し、1分後の抵抗値を読み取り表面抵抗値を算出した。測定結果は表1に記載した。
 また、温度23℃、湿度50%RHに調節した恒温恒湿槽内で48時間状態調節した試験片の重量を測定し、乾燥状態における試験片の重量からの増加率を以下の式より算出して、23℃、50%RHにおける吸水率として、表1に併記した。
23℃、50%RHにおける吸水率(重量%)=((温度23℃、湿度50%RHで状態調節されたポリエーテル重合体の重量-乾燥状態におけるポリエーテル重合体の重量)/乾燥状態におけるポリエーテル重合体の重量)×100
<Measurement of surface resistance and water absorption at 23 ° C. and 50% RH>
For each of the dried test pieces of Examples 1 to 3 and Comparative Examples 1 to 3, the temperature is 23 ° C. and the humidity is 50% RH (hereinafter referred to as “23 ° C. × 50% RH” or “23 ° C. 50%”). The temperature was adjusted for 48 hours in the constant temperature and humidity chamber adjusted), and the surface resistance value was measured in the constant temperature and humidity chamber. For the measurement, an insulation resistance meter (manufactured by Mitsubishi Chemical Corporation, Hiresta UX MCP-HT800) was used to apply a voltage of 100 volts, and the resistance value after 1 minute was read to calculate the surface resistance value. The measurement results are shown in Table 1.
In addition, the weight of the test piece conditioned for 48 hours in a constant temperature and humidity chamber adjusted to a temperature of 23 ° C. and a humidity of 50% RH was measured, and the rate of increase from the weight of the test piece in the dry state was calculated from the following formula. Table 1 also shows the water absorption at 23 ° C. and 50% RH.
Water absorption at 23 ° C. and 50% RH (% by weight) = ((weight of polyether polymer conditioned at temperature 23 ° C., humidity 50% RH−weight of polyether polymer in dry state) / in dry state Weight of polyether polymer) x 100
<10℃、15%RHにおける表面抵抗値と35℃、85%RHにおける表面抵抗値の測定>
 また、表1の実施例2、3および比較例1、2については、10℃、15%RHにおける表面抵抗値と35℃、85%RHにおける表面抵抗値も、下記の通り測定した。
 即ち、乾燥させた実施例2~3、及び比較例1~2の各試験片に対し、温度10℃、湿度15%RH(低温低湿条件、以下「10℃×15%RH」または「10℃15%」と示すことがある。)に調節した恒温恒湿槽内で48時間状態調節し、同恒温恒湿槽内で各例の表面抵抗値の測定を行った。
 乾燥させた実施例2~3、及び比較例1~2の各試験片に対し、温度35℃、湿度85%RH(高温高湿条件、以下「35℃×85%RH」または「35℃85%」と示すことがある)に調節した恒温恒湿槽内で48時間状態調節し、同恒温恒湿槽内で各例の表面抵抗値の測定を行った。
 測定は絶縁抵抗計(三菱化学株式会社製、ハイレスタUX MCP-HT800)を用いて、100ボルトの電圧を印加し、1分後の抵抗値を読み取り表面抵抗値を算出した。測定結果は表2に記載した。
<Measurement of surface resistance value at 10 ° C. and 15% RH and surface resistance value at 35 ° C. and 85% RH>
For Examples 2 and 3 and Comparative Examples 1 and 2 in Table 1, the surface resistance value at 10 ° C. and 15% RH and the surface resistance value at 35 ° C. and 85% RH were also measured as follows.
That is, for each of the dried test pieces of Examples 2 to 3 and Comparative Examples 1 and 2, the temperature was 10 ° C. and the humidity was 15% RH (low temperature and low humidity condition, hereinafter “10 ° C. × 15% RH” or “10 ° C.”). The temperature was adjusted in a constant temperature and humidity chamber adjusted for 48 hours, and the surface resistance value of each example was measured in the same constant temperature and humidity chamber.
For each of the dried test pieces of Examples 2 to 3 and Comparative Examples 1 to 2, the temperature was 35 ° C. and the humidity was 85% RH (high temperature and high humidity condition, hereinafter “35 ° C. × 85% RH” or “35 ° C. 85” The temperature was adjusted in a constant temperature and humidity chamber adjusted for 48 hours, and the surface resistance value of each example was measured in the constant temperature and humidity chamber.
For the measurement, an insulation resistance meter (manufactured by Mitsubishi Chemical Corporation, Hiresta UX MCP-HT800) was used to apply a voltage of 100 volts, and the resistance value after 1 minute was read to calculate the surface resistance value. The measurement results are shown in Table 2.
<外観変化評価>
 乾燥させた実施例1~3、及び比較例1~3の各試験片を温度35℃、湿度85%RHに調節した恒温恒湿槽内で48時間状態調節し、高温高湿環境下における外観変化を以下の基準で目視評価を行った。その結果を表1に示す。
○:そり変形なし
×:そり変形あり
<Appearance change evaluation>
The dried specimens of Examples 1 to 3 and Comparative Examples 1 to 3 were conditioned for 48 hours in a constant temperature and humidity chamber adjusted to a temperature of 35 ° C. and a humidity of 85% RH, and the appearance in a high temperature and high humidity environment The change was visually evaluated according to the following criteria. The results are shown in Table 1.
○: No warpage deformation ×: Warpage deformation
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例、及び比較例で得られた各ポリエーテル共重合体の評価は次の通りである。表1中、吸水率が1%前後である実施例1~3のポリエーテル共重合体は、高温高湿環境時における外観変化の点で優れていることが明らかである。エチレンオキシドと共重合可能なアルキルオキシランのうち、本発明範囲外である炭素数3で構成されるプロピレンオキシドを用いた比較例1~2のポリエーテル共重合体は実施例1~3の共重合体と表面抵抗値は遜色ないものの、吸水率が高く、高温高湿環境下における外観変化の点で著しく劣る。比較例3のポリエーテル共重合体は表面抵抗値が高く、半導電性と吸水率のバランス特性において、実施例1~3のポリエーテル共重合体に劣る。 Evaluation of each polyether copolymer obtained in Examples and Comparative Examples is as follows. In Table 1, it is clear that the polyether copolymers of Examples 1 to 3 having a water absorption rate of about 1% are excellent in terms of appearance change in a high temperature and high humidity environment. Of the alkyloxiranes copolymerizable with ethylene oxide, the polyether copolymers of Comparative Examples 1 and 2 using propylene oxide having 3 carbon atoms outside the scope of the present invention are the copolymers of Examples 1 to 3. Although the surface resistance is not inferior, it has a high water absorption rate and is extremely inferior in terms of appearance change in a high temperature and high humidity environment. The polyether copolymer of Comparative Example 3 has a high surface resistance, and is inferior to the polyether copolymers of Examples 1 to 3 in the balance between semiconductivity and water absorption.
 また表2中、実施例2~3のポリエーテル共重合体は、低温・低湿度条件、及び高温・高湿度条件において、1.0×10~1.0×1012(Ω/sq.)の表面抵抗値を有するポリエーテル重合体であり、比較例1、2のポリエーテル共重合体は低温・低湿度条件、及び高温・高湿度条件において、幅の広い表面抵抗値を有することになり、帯電防止材等の用途で好ましくない結果であった。 In Table 2, the polyether copolymers of Examples 2 to 3 are 1.0 × 10 8 to 1.0 × 10 12 (Ω / sq.) Under low temperature / low humidity conditions and high temperature / high humidity conditions. The polyether copolymer of Comparative Examples 1 and 2 has a wide range of surface resistance values under low temperature / low humidity conditions and high temperature / high humidity conditions. Therefore, it was an unfavorable result in applications such as antistatic materials.
<成形体の実施例>
(実施例4)
 実施例3で得られたポリエーテル共重合体をテトラヒドロフランに固形分濃度15重量%になるように溶解後、光重合開始剤イルガキュア907(2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン)をポリエーテル共重合体100重量部に対して、1.5重量部加え均一な溶液を調製した。PETフィルム上に一定量の溶液を垂らした後、アプリケーターでコーティングし、テトラヒドロフランを蒸発させることで均一な100μm膜厚のフィルムを作成した。高圧水銀ランプを光源とするUV照射機にて、1J/cm照射し架橋フィルム(成形体)を得た。
<Example of molded body>
Example 4
The polyether copolymer obtained in Example 3 was dissolved in tetrahydrofuran to a solid concentration of 15% by weight, and then the photopolymerization initiator Irgacure 907 (2-methyl-1- (4-methylthiophenyl) -2- A uniform solution was prepared by adding 1.5 parts by weight of morpholinopropan-1-one) to 100 parts by weight of the polyether copolymer. After dropping a certain amount of solution on the PET film, it was coated with an applicator and the tetrahydrofuran was evaporated to form a uniform film having a thickness of 100 μm. A UV irradiation machine using a high-pressure mercury lamp as a light source was irradiated with 1 J / cm 2 to obtain a crosslinked film (molded product).
<成形体の乾燥>
 実施例4の成形体に対し、露点-50℃に調整されたドライブースにおいて48時間状態調節を行った。
<Drying the molded body>
The molded body of Example 4 was conditioned for 48 hours in a dry bath adjusted to a dew point of −50 ° C.
<表面抵抗値の測定>
 乾燥させた実施例4の成形体に対し、温度10℃、湿度15%RH(低温低湿条件)に調節した恒温恒湿槽内で48時間状態調節し、同恒温恒湿槽内で上記成形体の表面抵抗値の測定を行った。
 乾燥させた実施例4の成形体に対し、温度23℃、湿度50%RHに調節した恒温恒湿槽内で48時間状態調節し、同恒温恒湿槽内で上記成形体の表面抵抗値の測定を行った。
 また、乾燥させた実施例4の成形体に対し、温度35℃、湿度85%RH(高温高湿条件)に調節した恒温恒湿槽内で48時間状態調節し、同恒温恒湿槽内で上記成形体の表面抵抗値の測定を行った。
 測定は絶縁抵抗計(三菱化学株式会社製、ハイレスタUX MCP-HT800)を用いて、100ボルトの電圧を印加し、1分後の抵抗値を読み取り表面抵抗値を算出した。測定結果は表3に記載した。
<Measurement of surface resistance value>
The dried molded body of Example 4 was conditioned for 48 hours in a constant temperature and humidity chamber adjusted to a temperature of 10 ° C. and a humidity of 15% RH (low temperature and low humidity conditions). The surface resistance value of was measured.
The dried molded body of Example 4 was conditioned for 48 hours in a constant temperature and humidity chamber adjusted to a temperature of 23 ° C. and a humidity of 50% RH, and the surface resistance value of the molded body in the constant temperature and humidity chamber was adjusted. Measurements were made.
In addition, the dried molded body of Example 4 was conditioned for 48 hours in a constant temperature and humidity chamber adjusted to a temperature of 35 ° C. and a humidity of 85% RH (high temperature and high humidity conditions). The surface resistance value of the molded body was measured.
For the measurement, an insulation resistance meter (manufactured by Mitsubishi Chemical Corporation, Hiresta UX MCP-HT800) was used to apply a voltage of 100 volts, and the resistance value after 1 minute was read to calculate the surface resistance value. The measurement results are shown in Table 3.
<環境変動評価>
 上記表面抵抗値の測定で得られた10℃×15%RH環境下、23℃×50%RH環境下、35℃×85%RH環境下、それぞれの表面抵抗値をもとに、23℃×50%RH(標準環境)に対する表面抵抗値の環境変動値を求めた。その結果を表3に示す。尚、標準環境に対する表面抵抗値の変化が小さいほど環境依存性が小さいことになる。
 上記表面抵抗値の環境変動値は、10℃×15%RH環境下での表面抵抗値の常用対数と23℃×50%RH環境下での表面抵抗値の常用対数の差と、23℃×50%RH環境下での表面抵抗値の常用対数と35℃×85%RH環境下での表面抵抗値の常用対数の差の、両数値の差より算出される。より具体的には以下の計算式で算出される。
表面抵抗値の環境変動値=[log10(10℃×15%RHでの表面抵抗値)-log10(23℃×50%RHでの表面抵抗値)]-[log10(23℃×35%RHでの表面抵抗値)-log10(35℃×85%RHでの表面抵抗値)]
<Environmental change assessment>
23 ° C. × 15% RH environment, 23 ° C. × 50% RH environment, 35 ° C. × 85% RH environment, and 35 ° C. × 85% RH environment. The environmental variation value of the surface resistance value with respect to 50% RH (standard environment) was determined. The results are shown in Table 3. The smaller the change in the surface resistance value with respect to the standard environment, the smaller the environmental dependency.
The environmental fluctuation value of the surface resistance value is the difference between the common logarithm of the surface resistance value in the environment of 10 ° C. × 15% RH and the common logarithm of the surface resistance value in the environment of 23 ° C. × 50% RH, and 23 ° C. × It is calculated from the difference between the two values: the common logarithm of the surface resistance value in a 50% RH environment and the common logarithm of the surface resistance value in a 35 ° C. × 85% RH environment. More specifically, it is calculated by the following calculation formula.
Environmental variation value of surface resistance value = [log 10 (surface resistance value at 10 ° C. × 15% RH) −log 10 (surface resistance value at 23 ° C. × 50% RH)] − [log 10 (23 ° C. × 35 Surface resistance value at% RH) −log 10 (surface resistance value at 35 ° C. × 85% RH)]
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 次に、導電性付与剤を添加した実施例として、下記の実施例5、6および実施例7を示す。 Next, Examples 5 and 6 and Example 7 below are shown as examples to which a conductivity imparting agent is added.
(実施例5)
 実施例3で得られたポリエーテル共重合体をテトラヒドロフランに固形分濃度15重量%になるように溶解後、光重合開始剤イルガキュア907(2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン)をポリエーテル共重合体100重量部に対して1.5重量部と、ナトリウム塩(トリフルオロメタンスルホン酸ナトリウム、東京化成工業株式会社製)を、ポリエーテル共重合体100重量部に対して、5重量部を加え均一な溶液を調製した。PETフィルム上に一定量の溶液を垂らした後、アプリケーターでコーティングし、テトラヒドロフランを蒸発させることで均一な100μm膜厚のフィルムを作成した。高圧水銀ランプを光源とするUV照射機にて、1J/cm照射し架橋フィルム(成形体)を得た。
(Example 5)
The polyether copolymer obtained in Example 3 was dissolved in tetrahydrofuran to a solid concentration of 15% by weight, and then the photopolymerization initiator Irgacure 907 (2-methyl-1- (4-methylthiophenyl) -2- 1.5 parts by weight of morpholinopropan-1-one) per 100 parts by weight of the polyether copolymer, and sodium salt (sodium trifluoromethanesulfonate, manufactured by Tokyo Chemical Industry Co., Ltd.) A uniform solution was prepared by adding 5 parts by weight to 100 parts by weight. After dropping a certain amount of solution on the PET film, it was coated with an applicator and the tetrahydrofuran was evaporated to form a uniform film having a thickness of 100 μm. A UV irradiation machine using a high-pressure mercury lamp as a light source was irradiated with 1 J / cm 2 to obtain a crosslinked film (molded product).
(実施例6)
 実施例3で得られたポリエーテル共重合体をテトラヒドロフランに固形分濃度15重量%になるように溶解後、光重合開始剤イルガキュア907(2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン)をポリエーテル共重合体100重量部に対して1.5重量部と、カリウム塩(トリフルオロメタンスルホン酸カリウム、東京化成工業株式会社製)を、ポリエーテル共重合体100重量部に対して、10重量部を加え均一な溶液を調製した。PETフィルム上に一定量の溶液を垂らした後、アプリケーターでコーティングし、テトラヒドロフランを蒸発させることで均一な100μm膜厚のフィルムを作成した。高圧水銀ランプを光源とするUV照射機にて、1J/cm照射し架橋フィルム(成形体)を得た。
(Example 6)
The polyether copolymer obtained in Example 3 was dissolved in tetrahydrofuran to a solid concentration of 15% by weight, and then the photopolymerization initiator Irgacure 907 (2-methyl-1- (4-methylthiophenyl) -2- 1.5 parts by weight of morpholinopropan-1-one) with respect to 100 parts by weight of the polyether copolymer, and potassium salt (potassium trifluoromethanesulfonate, manufactured by Tokyo Chemical Industry Co., Ltd.) A homogeneous solution was prepared by adding 10 parts by weight to 100 parts by weight. After dropping a certain amount of solution on the PET film, it was coated with an applicator and the tetrahydrofuran was evaporated to form a uniform film having a thickness of 100 μm. A UV irradiation machine using a high-pressure mercury lamp as a light source was irradiated with 1 J / cm 2 to obtain a crosslinked film (molded product).
 上記実施例5および実施例6で得られた成形体について、上記実施例4と同様にして、表面抵抗値の測定と環境変動評価を行った。その結果を下記表4に示す。 The molded products obtained in Example 5 and Example 6 were measured for surface resistance and evaluated for environmental variation in the same manner as in Example 4 above. The results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(実施例7)
 実施例3で得られたポリエーテル共重合体20重量部とカリウム塩(トリフルオロメタンスルホン酸カリウム、東京化成工業株式会社製)5重量部、ABS樹脂(EX-18A、UMGABS株式会社製)75重量部とをブレンドした後、ベント付き2軸押出機にて溶融混練して、樹脂組成物を得た。上記樹脂組成物を射出成形機(型番「SE18DUZ」、住友重機械工業株式会社製)を用い、シリンダー温度250℃、金型温度70℃の条件で成形し、成形品を得た。そして該成形品から試験片(40mm角、1mm厚)を切り出して得た。この試験片について、上記実施例4と同様にして、表面抵抗値の測定と環境変動評価を行った。その結果を下記表5に示す。
(Example 7)
20 parts by weight of the polyether copolymer obtained in Example 3, 5 parts by weight of potassium salt (potassium trifluoromethanesulfonate, manufactured by Tokyo Kasei Kogyo Co., Ltd.), 75 weights of ABS resin (EX-18A, manufactured by UMGABS) After blending, the resin composition was melt-kneaded with a vented twin-screw extruder to obtain a resin composition. The resin composition was molded using an injection molding machine (model number “SE18DUZ”, manufactured by Sumitomo Heavy Industries, Ltd.) under conditions of a cylinder temperature of 250 ° C. and a mold temperature of 70 ° C. to obtain a molded product. A test piece (40 mm square, 1 mm thickness) was cut out from the molded product. About this test piece, it carried out similarly to the said Example 4, and performed the measurement of surface resistance value, and environmental fluctuation evaluation. The results are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 次に、本発明のポリエーテル共重合体を用いて得た成形品(実施例8)と、本発明以外のポリエーテル共重合体を用いて得た成形品(比較例3)の特性を比較した。 Next, the characteristics of the molded product obtained using the polyether copolymer of the present invention (Example 8) and the molded product obtained using a polyether copolymer other than the present invention (Comparative Example 3) are compared. did.
(実施例8)
 実施例3で得られたポリエーテル共重合体20重量部とABS樹脂(EX-18A、UMGABS株式会社製)80重量部とを、ブレンドした後、ベント付き2軸押出機にて溶融混練して、樹脂組成物を得た。上記樹脂組成物を射出成形機(型番「SE18DUZ」、住友重機械工業株式会社製)を用い、シリンダー温度250℃、金型温度70℃の条件で成形し、成形品を得た。そして該成形品から試験片(40mm角、1mm厚)を切り出して得た。
(比較例3)
 実施例3で得られたポリエーテル共重合体20重量部を比較例2で得られたポリエーテル共重合体20重量部に変更した以外は、実施例8と同様の操作を行い、試験片を得た。
(Example 8)
After blending 20 parts by weight of the polyether copolymer obtained in Example 3 and 80 parts by weight of ABS resin (EX-18A, UMGABS Co., Ltd.), the mixture was melt-kneaded in a twin-screw extruder with a vent. A resin composition was obtained. The resin composition was molded using an injection molding machine (model number “SE18DUZ”, manufactured by Sumitomo Heavy Industries, Ltd.) under conditions of a cylinder temperature of 250 ° C. and a mold temperature of 70 ° C. to obtain a molded product. A test piece (40 mm square, 1 mm thickness) was cut out from the molded product.
(Comparative Example 3)
Except that 20 parts by weight of the polyether copolymer obtained in Example 3 was changed to 20 parts by weight of the polyether copolymer obtained in Comparative Example 2, the same operation as in Example 8 was performed, and a test piece was obtained. Obtained.
 上記各試験片について、上記実施例4と同様にして、表面抵抗値の測定と環境変動評価を行った。その結果を下記表6に示す。 For each of the above test pieces, the surface resistance value was measured and the environmental variation was evaluated in the same manner as in Example 4. The results are shown in Table 6 below.
<外観評価>
 上記試験片を23℃の水に7日間浸漬し、下記の通り、表面に水ぶくれが発生したか否かで外観を評価した。その結果を下記表6に示す。
水ぶくれが発生しない(外観が良好):○
水ぶくれが発生した(外観が不良):×
<Appearance evaluation>
The test piece was immersed in water at 23 ° C. for 7 days, and the appearance was evaluated based on whether or not blistering occurred on the surface as described below. The results are shown in Table 6 below.
No blistering (appearance is good): ○
Blister occurred (exterior appearance): ×
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記実施例4~8および比較例3の結果から、本発明のポリエーテル共重合体を成形品の製造に用いれば、ポリエーテル共重合体との混合対象が様々であっても、得られた成形品の表面抵抗値の環境変動を抑えられることがわかる。 From the results of Examples 4 to 8 and Comparative Example 3 described above, the polyether copolymer of the present invention was used for the production of a molded product, and was obtained even when the mixture with the polyether copolymer was various. It can be seen that environmental fluctuation of the surface resistance value of the molded product can be suppressed.
 本発明のポリエーテル重合体は以上のように構成されており、表面抵抗値が、23℃、50%RHの条件下;と、10℃、15%RHと35℃、85%RHの条件下;の少なくともいずれかで所定の範囲内にあり、優れた半導電性を示すと共に、吸水率とのバランス特性に優れ、形状安定性に優れている。特に本発明の低温・低湿度条件、及び高温・高湿度条件において、安定した表面抵抗値を有する。ポリエーテル共重合体は、樹脂やゴムに混合し帯電防止材として利用されているが、今後はゴムとしての弾性や耐薬品性、耐熱性等を併せ持つ帯電防止素材単体としての利用も期待される。 The polyether polymer of the present invention is configured as described above, and has a surface resistance value of 23 ° C. and 50% RH; and 10 ° C., 15% RH and 35 ° C., and 85% RH. In at least one of the above, exhibiting excellent semiconductivity, excellent balance characteristics with water absorption, and excellent shape stability. In particular, it has a stable surface resistance value under the low temperature / low humidity conditions and high temperature / high humidity conditions of the present invention. Polyether copolymers are mixed with resins and rubbers and used as antistatic materials, but in the future, they are also expected to be used as single antistatic materials that have elasticity, chemical resistance, heat resistance, etc. as rubber. .

Claims (7)

  1.  23℃、50%RHにおける吸水率が1.5重量%以下であり、かつ表面抵抗値が1.0×1012(Ω/sq.)以下であること;と、
     10℃、15%RHにおける表面抵抗値、及び、35℃、85%RHにおける表面抵抗値がいずれも1.0×10~1.0×1012(Ω/sq.)であること;の少なくともいずれかを満たすことを特徴とするポリエーテル重合体。
    The water absorption at 23 ° C. and 50% RH is 1.5% by weight or less and the surface resistance value is 1.0 × 10 12 (Ω / sq.) Or less;
    The surface resistance value at 10 ° C. and 15% RH and the surface resistance value at 35 ° C. and 85% RH are both 1.0 × 10 8 to 1.0 × 10 12 (Ω / sq.); A polyether polymer characterized by satisfying at least one of them.
  2.  (A)エチレンオキシド由来の構成単位65~99モルパーセント、(B)炭素数4以上で構成されるオキシラン単量体由来の構成単位35~1モルパーセント、(C)架橋性官能基を有するオキシラン単量体由来の構成単位0~10モルパーセントを含有することを特徴とする請求項1に記載のポリエーテル重合体。 (A) 65 to 99 mole percent of structural units derived from ethylene oxide, (B) 35 to 1 mole percent of structural units derived from an oxirane monomer composed of 4 or more carbon atoms, (C) an oxirane unit having a crosslinkable functional group The polyether polymer according to claim 1, comprising 0 to 10 mole percent of a structural unit derived from a monomer.
  3.  (A)エチレンオキシド由来の構成単位65~90モルパーセント、(B)炭素数4~10で構成されるオキシラン単量体由来の構成単位30~5モルパーセント、(C)架橋性官能基を有するオキシラン単量体由来の構成単位1~8モルパーセントを含有することを特徴とする請求項1または2に記載のポリエーテル重合体。 (A) 65 to 90 mole percent of structural units derived from ethylene oxide, (B) 30 to 5 mole percent of structural units derived from an oxirane monomer composed of 4 to 10 carbon atoms, and (C) an oxirane having a crosslinkable functional group The polyether polymer according to claim 1 or 2, which contains 1 to 8 mole percent of structural units derived from monomers.
  4.  前記(B)炭素数4以上で構成されるオキシラン単量体が、アルキル基、又はアルコキシ基を有するオキシラン単量体であることを特徴とする請求項2に記載のポリエーテル重合体。 The polyether polymer according to claim 2, wherein the (B) oxirane monomer having 4 or more carbon atoms is an oxirane monomer having an alkyl group or an alkoxy group.
  5.  前記(C)架橋性官能基を有するオキシラン単量体がメタクリル酸グリシジル、アリルグリシジルエーテルであることを特徴とする請求項2~4のいずれかに記載のポリエーテル重合体。 5. The polyether polymer according to claim 2, wherein the (C) oxirane monomer having a crosslinkable functional group is glycidyl methacrylate or allyl glycidyl ether.
  6.  請求項1~5のいずれかに記載のポリエーテル重合体、またはその架橋物と;導電性付与剤、ゴム、樹脂及び溶媒から選択される少なくとも1種と;を含有する組成物。 A composition comprising the polyether polymer according to any one of claims 1 to 5 or a crosslinked product thereof; and at least one selected from a conductivity-imparting agent, rubber, resin and solvent.
  7.  請求項1~6のいずれかに記載のポリエーテル重合体または組成物を用いて作製された成形体。
     
    A molded article produced using the polyether polymer or composition according to any one of claims 1 to 6.
PCT/JP2017/020983 2016-06-06 2017-06-06 Polyether polymer, composition containing same, and molded article WO2017213140A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018521734A JP7031582B2 (en) 2016-06-06 2017-06-06 Antistatic material
CN201780031441.XA CN109153778A (en) 2016-06-06 2017-06-06 Polyether polymer and composition and formed body containing the polyether polymer
KR1020187033259A KR20190016490A (en) 2016-06-06 2017-06-06 POLYETHER POLYMERS AND COMPOSITIONS CONTAINING THE SAME

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-112994 2016-06-06
JP2016112994 2016-06-06
JP2016-203895 2016-10-17
JP2016203895 2016-10-17

Publications (1)

Publication Number Publication Date
WO2017213140A1 true WO2017213140A1 (en) 2017-12-14

Family

ID=60577854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020983 WO2017213140A1 (en) 2016-06-06 2017-06-06 Polyether polymer, composition containing same, and molded article

Country Status (5)

Country Link
JP (1) JP7031582B2 (en)
KR (1) KR20190016490A (en)
CN (1) CN109153778A (en)
TW (1) TW201815884A (en)
WO (1) WO2017213140A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003205224A (en) * 2001-08-22 2003-07-22 Daiso Co Ltd Polymeric separation membrane
JP2003229021A (en) * 2002-02-04 2003-08-15 National Institute Of Advanced Industrial & Technology Polymer electrolyte and polymer secondary battery using it
JP2006028425A (en) * 2004-07-20 2006-02-02 Daiso Co Ltd Method of manufacturing polyether type copolymer
JP2007031618A (en) * 2005-07-28 2007-02-08 Dai Ichi Kogyo Seiyaku Co Ltd Method for transporting polyalkylene oxide-based water-soluble resin
JP2012158763A (en) * 2012-04-20 2012-08-23 Nippon Zeon Co Ltd Polyether polymer
JP2013175393A (en) * 2012-02-27 2013-09-05 Daiso Co Ltd Electrolyte composition and nonaqueous electrolyte secondary battery using the same
JP2016091668A (en) * 2014-10-31 2016-05-23 株式会社大阪ソーダ Organic secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5086351A (en) * 1989-07-13 1992-02-04 M&T Chemicals, Inc. Electrochromic elements, materials for use in such element, processes for making such elements and such materials and use of such element in an electrochromic glass device
CA2111049A1 (en) * 1993-12-09 1995-06-10 Paul-Etienne Harvey Copolymer composed of an ethylene oxyde and/or a propylene oxyde and of at least one substituted oxiranne with a crosslinkable function, process for preparing it, and its use in the making of ionic conducting materials
JPH08183901A (en) 1994-12-30 1996-07-16 Nippon Zeon Co Ltd Antistatic agent and thermoplastic resin composition containing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003205224A (en) * 2001-08-22 2003-07-22 Daiso Co Ltd Polymeric separation membrane
JP2003229021A (en) * 2002-02-04 2003-08-15 National Institute Of Advanced Industrial & Technology Polymer electrolyte and polymer secondary battery using it
JP2006028425A (en) * 2004-07-20 2006-02-02 Daiso Co Ltd Method of manufacturing polyether type copolymer
JP2007031618A (en) * 2005-07-28 2007-02-08 Dai Ichi Kogyo Seiyaku Co Ltd Method for transporting polyalkylene oxide-based water-soluble resin
JP2013175393A (en) * 2012-02-27 2013-09-05 Daiso Co Ltd Electrolyte composition and nonaqueous electrolyte secondary battery using the same
JP2012158763A (en) * 2012-04-20 2012-08-23 Nippon Zeon Co Ltd Polyether polymer
JP2016091668A (en) * 2014-10-31 2016-05-23 株式会社大阪ソーダ Organic secondary battery

Also Published As

Publication number Publication date
KR20190016490A (en) 2019-02-18
CN109153778A (en) 2019-01-04
JP7031582B2 (en) 2022-03-08
JPWO2017213140A1 (en) 2019-03-28
TW201815884A (en) 2018-05-01

Similar Documents

Publication Publication Date Title
US9688817B2 (en) Method for producing polyarylene sulfide resin and polyarylene sulfide resin composition
EP2546281A2 (en) Polyarylene sulfide with small amount of outgassing, and preparation method thereof
WO2011081152A1 (en) Polyether rubber, rubber composition, cross-linked rubber, and conductive member
JP4871495B2 (en) Antistatic composition, method for producing the same, and molded article using the same
JP7081104B2 (en) A polyether polymer, a composition containing the polyether polymer, and a molded product.
JP7092118B2 (en) Nano substance-containing composition
JP7020436B2 (en) Antistatic agent, composition for molded article and crosslinkable composition using it
JP7031582B2 (en) Antistatic material
JP2021098864A (en) Polyarylene sulfide composition satisfactorily bonded to metal
CN106795365B (en) Composition for electrophotographic apparatus member
JP2019048781A (en) Antibacterial agent, composition for molded body and crosslinking composition using the same
JP7013242B2 (en) Polyarylene sulfide composition with excellent adhesion to metals
JP2009007514A (en) Antistatic composition, and molded product, coating, antistatic covering, color resist composition for liquid crystal panel using the same, and method for producing the same
JP2012036289A (en) Semiconductive rubber material
JP5078121B2 (en) Conductive resin composition and conductive resin molding
CN108699235A (en) The manufacturing method of polyether rubber
CN110382652B (en) Resistance regulator
JP6707655B2 (en) Polyarylene sulfide composition having excellent adhesion to metals
KR102289864B1 (en) Polyarylene sulfide composition having improved adhesion to metal
JP4285216B2 (en) Polyether copolymer and cross-linked product thereof
JP2002012651A (en) Thermosetting resin composition
JP2017052838A (en) Resin composition containing glycoluril compound and use thereof
JP2024502985A (en) Curable composition and optical member containing the same
JP2009062448A (en) Polyether-based multi-component polymer and crosslinked product therefrom
CN118541011A (en) Polymer material for piezoelectric device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018521734

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187033259

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810315

Country of ref document: EP

Kind code of ref document: A1