WO2017212877A1 - Scintillator panel with mold release sheet - Google Patents

Scintillator panel with mold release sheet Download PDF

Info

Publication number
WO2017212877A1
WO2017212877A1 PCT/JP2017/018246 JP2017018246W WO2017212877A1 WO 2017212877 A1 WO2017212877 A1 WO 2017212877A1 JP 2017018246 W JP2017018246 W JP 2017018246W WO 2017212877 A1 WO2017212877 A1 WO 2017212877A1
Authority
WO
WIPO (PCT)
Prior art keywords
scintillator panel
release sheet
phosphor
phosphor layer
layer
Prior art date
Application number
PCT/JP2017/018246
Other languages
French (fr)
Japanese (ja)
Inventor
伊月直秀
並松智也
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2017527001A priority Critical patent/JPWO2017212877A1/en
Publication of WO2017212877A1 publication Critical patent/WO2017212877A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens

Definitions

  • the present invention relates to a scintillator panel, a radiation image detection apparatus, and a method for manufacturing the same.
  • the indirect radiation image detection apparatus includes a photoelectric conversion imaging element substrate and two scintillator panel substrates, which are formed by bonding them with an adhesive or the like.
  • the scintillator panel includes a phosphor layer containing a phosphor, and the phosphor emits visible light according to the irradiated radiation.
  • Preferred examples of the phosphor include gadolinium oxysulfide (GOS) and cesium iodide (CsI).
  • the photoelectric conversion imaging device substrate has a two-dimensional arrangement of pixels of 50 to 300 ⁇ m including photodiodes, thin film transistors, electric wirings, etc. on a glass substrate. Radiation information is converted into a digital signal by converting visible light generated in the scintillator panel by a photodiode or the like into an electrical signal.
  • the scintillator panel can be formed, for example, by applying a phosphor layer formed by mixing phosphor powder and a binder resin on a sheet-like plastic substrate and then drying.
  • the phosphor layer has higher luminance as the phosphor powder increases, and the characteristics as an FPD are improved.
  • the strength of the film is lowered, and therefore the film is peeled off during the production of the scintillator panel, the subsequent transportation, and the bonding with the photoelectric conversion imaging device substrate.
  • the outer peripheral portion of the phosphor layer is likely to be peeled off due to bending or rubbing.
  • Patent Document 1 discloses a method for preventing the peeling of the phosphor layer by thermally melting
  • Patent Document 2 includes a method in which the edge is chamfered or formed in a circular arc shape. Methods for preventing it have been proposed.
  • the photoelectric conversion imaging device substrate and the scintillator panel In order to produce an indirect radiation image detection apparatus, the photoelectric conversion imaging device substrate and the scintillator panel must be brought into close contact with each other. This is to prevent the emitted light of the phosphor from spreading laterally in the gap between the photoelectric conversion imaging device substrate and the scintillator panel and lowering the resolution. Therefore, in many cases, an optically transparent adhesive layer is formed using an adhesive and the two substrates are bonded.
  • a film-like pressure-sensitive adhesive sheet called OCA Optical Clear Adhesive
  • OCA Optical Clear Adhesive
  • the adhesive layer can be formed by peeling off one release sheet of OCA, and then bonding the exposed adhesive layer to the surface of the scintillator panel substrate using a laminator roll or the like. Next, the release sheet on the opposite side of the OCA is peeled off, and the exposed adhesive layer is similarly adhered to the photoelectric conversion image sensor substrate using a laminator roll to complete the indirect radiation image detection apparatus. . At this time, the scintillator panel and the OCA are larger than the effective area (image display area) of the photoelectric conversion imaging device substrate. This is to prevent the occurrence of a state where there is no scintillator in the effective area due to misalignment at the time of bonding.
  • the release sheet formed on the scintillator panel is peeled off, it is necessary to peel only the release sheet, but only the release sheet
  • the phosphor layer of the scintillator panel also peeled off at the same time.
  • a scintillator panel with a release sheet is manufactured by pasting an OCA film on a large size scintillator panel and then cutting it into a predetermined size, the resulting scintillator panel with a release sheet is separated.
  • Patent Document 3 a scintillator panel having a protruding piece protruding from the outer peripheral edge of the phosphor layer at the outer peripheral end of the protective film has been proposed.
  • this method has a disadvantage in that productivity is inferior because the protective film has to be shaped to protrude from the outer edge of the scintillator panel.
  • an object of the present invention is to provide a scintillator panel with a release sheet that can release the release sheet by a simple method without damaging the phosphor layer of the scintillator panel.
  • the above object is a scintillator panel with a release sheet comprising a scintillator panel having a substrate, a phosphor layer and an adhesive layer, and a release sheet laminated on the adhesive layer, the scintillator panel with the release sheet
  • the scintillator panel has a notch in at least one corner, and the release sheet is achieved by a scintillator panel with a release sheet having a grip portion protruding from the scintillator panel.
  • Sectional view schematically showing scintillator panel with release sheet Cross-sectional view schematically showing the configuration of a scintillator panel with a release sheet and a radiation detector
  • Sectional view schematically showing a scintillator panel with a release sheet provided with a gripping portion at a corner Cross-sectional view schematically showing a scintillator panel with a release sheet that has a half-cut grip at the corner
  • a plan view schematically showing a scintillator panel with a release sheet provided with gripping portions at corners A plan view schematically showing a scintillator panel with a release sheet in which a grip portion is provided by a half cut at a corner portion.
  • a release sheet is further provided on the adhesive layer of the scintillator panel in which the substrate, the phosphor layer and the adhesive layer are provided in this order.
  • FIG. 1 is a cross-sectional view schematically showing a scintillator panel with a release sheet.
  • the scintillator panel 2 includes a substrate 4 and a phosphor layer 5 and an adhesive layer 7 formed on the substrate 4.
  • a release sheet 6 is further laminated on the adhesive layer 7.
  • FIG. 2 is a diagram schematically showing the configuration of the radiation detection apparatus.
  • the radiation image detection apparatus 1 includes a scintillator panel 2, a photoelectric conversion image sensor substrate 3, and a power supply unit (not shown).
  • the photoelectric conversion imaging element substrate 3 has a photoelectric conversion layer 8 and an output layer 9 on a substrate 10 in which pixels including photoelectric conversion elements and TFTs are two-dimensionally formed.
  • the radiation image detection apparatus 1 is configured by adhering or adhering the light exit surface of the scintillator panel 2 and the photoelectric conversion layer 8 of the photoelectric conversion imaging element substrate 3 via the adhesive layer 7.
  • Visible light is emitted by the radiation incident on the radiation image detection device 1 being absorbed by the phosphor contained in the phosphor layer 5.
  • the photoelectric conversion layer 8 When the emitted visible light reaches the photoelectric conversion layer 8, it is photoelectrically converted by the photoelectric conversion layer 8 and output as an electric signal through the output layer 9.
  • Examples of the material of the substrate 4 include glass, ceramics, semiconductors, polymer compounds, and metals having radiation transparency.
  • the glass include quartz, borosilicate glass, and chemically tempered glass.
  • Examples of the ceramic include sapphire, silicon nitride, and silicon carbide.
  • Examples of the semiconductor include silicon, germanium, gallium arsenide, gallium phosphide, and gallium nitrogen.
  • Examples of the polymer compound include cellulose acetate, polyester, polyamide, polyimide, triacetate, polycarbonate, and carbon fiber reinforced resin.
  • the metal include aluminum, iron, copper, and metal oxide.
  • substrate is preferable 2.0 mm or less, and 1.0 mm or less is more preferable.
  • a substrate having a high visible light reflectance is preferable in order to efficiently use the light emitted from the phosphor.
  • Preferred materials for the substrate include glass or a polymer compound.
  • a particularly preferable example is a highly reflective polyester substrate.
  • a white polyester substrate containing voids is more preferable because of its high radiation transparency and low specific gravity.
  • the phosphor layer contains phosphor powder.
  • the phosphor powder refers to a phosphor having an average particle diameter D50 of 40 ⁇ m or less.
  • the phosphor include CsI, CsBr, Gd 2 O 2 S (hereinafter “GOS”), Gd 2 SiO 5 , BiGe 3 O 12 , CaWO 4 , Lu 2 O 2 S, Y 2 O 2 S, LaCl. 3, LaBr 3, LaI 3, CeBr 3, CeI 3 or LuSiO 5 and the like.
  • GOS gadolinium sulfate
  • CsI cesium iodide
  • an activator may be added to the phosphor.
  • the activator include sodium (Na), indium (In), thallium (Tl), lithium (Li), potassium (K), rubidium (Rb), sodium (Na), terbium (Tb), and cerium (Ce). ), Europium (Eu) or praseodymium (Pr).
  • Gadolinium sulfate added with terbium (GOS: Tb) or cesium iodide added with thallium (CsI: Tl) is preferable because of its high chemical stability and high luminous efficiency.
  • the phosphor powder is preferably spherical, flat or rod-like.
  • the average particle diameter D50 of the phosphor is preferably 0.1 to 40 ⁇ m, more preferably 1.0 to 25 ⁇ m, and still more preferably 1.0 to 20 ⁇ m. If D50 is less than 0.1 ⁇ m, sufficient light emission may not be obtained due to surface defects of the phosphor. In addition, when D50 exceeds 40 ⁇ m, the variation in detection intensity for each photoelectric conversion element is large, and a clear image may not be obtained.
  • the average particle diameter D50 of the phosphor powder was measured using a particle size distribution measuring device (for example, MT3300; manufactured by Nikkiso Co., Ltd.), and the phosphor powder was put into a sample chamber filled with water and subjected to ultrasonic treatment for 300 seconds. Later measurements can be made.
  • a particle size distribution measuring device for example, MT3300; manufactured by Nikkiso Co., Ltd.
  • Examples of a method for forming a phosphor layer on a substrate include a method in which a paste containing phosphor powder, that is, a phosphor paste is applied on a substrate to form a coating film.
  • Examples of the method for applying the phosphor paste include a screen printing method, a bar coater, a roll coater, a die coater, and a blade coater.
  • the phosphor paste may contain an organic binder.
  • organic binder include polyvinyl butyral, polyvinyl acetate, polyvinyl alcohol, ethyl cellulose, methyl cellulose, polyethylene; silicone resin such as polymethyl siloxane or polymethyl phenyl siloxane; polystyrene, butadiene / styrene copolymer, polystyrene, polyvinyl pyrrolidone, polyamide, high Examples thereof include molecular weight polyethers, copolymers of ethylene oxide and propylene oxide, polyacrylamide or acrylic resins.
  • the phosphor paste may contain an organic solvent.
  • the organic solvent is a good solvent and preferably has a high hydrogen bonding force.
  • organic solvents include diethylene glycol monobutyl ether acetate, ethylene glycol monobutyl ether alcohol, diethylene glycol monobutyl ether, methyl ethyl ketone, cyclohexanone, isobutyl alcohol, isopropyl alcohol, terpineol, benzyl alcohol, tetrahydrofuran, dimethyl sulfoxide, dihydroterpineol, Examples include ⁇ -butyrolactone, dihydroterpinyl acetate, 3-methoxy-3-methyl-methylbutanol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, N, N-dimethylformamide, hexylene glycol or bromobenzoic acid.
  • the phosphor paste may contain a thickener, a plasticizer or an anti-settling agent in order to adjust its viscosity.
  • the phosphor layer may be composed of a plurality of layers having different packing densities of the phosphor powder.
  • the layer with the highest packing density of the phosphor powder, that is, the high packing density phosphor layer has a high visible light reflectance.
  • the high packing density phosphor layer is preferably located on the substrate side when the radiation direction is the substrate side.
  • the thickness of the phosphor layer is not particularly limited, but is preferably 10 to 600 ⁇ m, more preferably 50 to 400 ⁇ m, and further preferably 80 to 250 ⁇ m.
  • the thickness of the phosphor layer is less than 10 ⁇ m, the phosphor emits less light.
  • the thickness of the phosphor layer exceeds 600 ⁇ m, the luminance may decrease due to scattering of the emitted light due to the inhibition of the phosphor powder itself, and the resolution of the emitted light may spread laterally.
  • the porosity of the phosphor layer is preferably 1 to 50%.
  • the porosity is more preferably 10% or more, and further preferably 20% or more.
  • the porosity is more preferably 45% or less, still more preferably 40% or less.
  • MTF Modulation Transfer Function: an index for evaluating lens performance and spatial frequency characteristics
  • the porosity of the phosphor layer is determined by observing with a scanning electron microscope (for example, S2400; manufactured by Hitachi, Ltd.) after the cross-section of the phosphor layer is precisely polished, and the solid content portion (phosphor and binder resin) in the obtained image. Etc.) and the void portion are converted into two gradations and calculated as the area ratio of the void portion in the cross-sectional area of the scintillator layer.
  • the MTF uses an edge method based on an image obtained by placing a lead plate that does not transmit radiation on a radiation detector equipped with a scintillator panel and irradiating radiation with a tube voltage of 80 kVp from the substrate side of the scintillator panel. Can be measured.
  • the adhesive layer 7 is formed.
  • the adhesive layer is preferably selected from optically transparent thermosetting resins and photocurable resins from the viewpoint of strength and workability.
  • a transparent adhesive made of an acrylic resin, an epoxy resin, a polyester resin, a butyral resin, a polyamide resin, a silicone resin or an ethyl cellulose resin is preferably used.
  • additives such as a cross-linking material, a plasticizer, a tackifier, a filler, and a deterioration preventing agent can be blended in the adhesive layer.
  • the thickness of the adhesive layer is not particularly limited, but is preferably in the range of 3 to 100 ⁇ m, and more preferably in the range of 10 to 50 ⁇ m.
  • the thickness is less than 3 ⁇ m, the adhesion with the phosphor layer is weak, which is not preferable.
  • the thickness exceeds 100 ⁇ m the gap between the scintillator panel and the photoelectric conversion imaging device substrate becomes large, so that the emitted light of the phosphor spreads laterally in the adhesive layer, and the resolution is lowered. This is not preferable because the adhesive strength of the phosphor layer becomes excessive and the phosphor layer may be peeled off when the release sheet is peeled off.
  • a scintillator panel with a release sheet is obtained.
  • the release sheet for example, a film made of a resin such as polyethylene terephthalate, polycarbonate, polyacrylate, or polypropylene can be used.
  • the thickness of the release sheet is not particularly limited, but is preferably in the range of 5 to 100 ⁇ m, more preferably 10 to 75 ⁇ m. When the thickness of the release sheet is less than 5 ⁇ m, the strength of the release sheet is lowered and the release sheet itself is easily broken. When the thickness of the release sheet exceeds 100 ⁇ m, the stress generated at the time of peeling increases and the phosphor layer is easily damaged, which is not preferable.
  • the release coat layer silicone layer
  • OCA Optical Clear Adhesive Film
  • a scintillator panel with a release sheet is obtained.
  • a method of cutting a predetermined size after laminating a large size scintillator panel and a release sheet is preferably used.
  • the scintillator panel and the release sheet have the same size.
  • the release sheet and the scintillator panel have the same size, there arises a problem that it is difficult to remove the release sheet without damaging the scintillator panel.
  • FIGS. 3 to 9 As means for solving this, in the present invention, as illustrated in FIGS. 3 to 9, at least one corner of the scintillator panel with a release sheet is provided with a notch in the scintillator panel, thereby The release sheet has a gripping part 14 protruding from the scintillator panel.
  • the gripping part 14 means an area where the release sheet 6 protrudes from the scintillator panel body 12.
  • FIG. 5 is a plan view of the scintillator panel with a release sheet in FIG. 3 (viewed from the direction of the arrow in FIG. 3). When viewed in a plan view, the scintillator panel has a substantially square shape. As shown in FIG.
  • At least one corner of a substantially square scintillator panel with a release sheet is provided with a notch, and a grip portion is provided there, whereby the release sheet 6 at that location is grasped by hand and peeled off. Therefore, it is possible to peel the release sheet without touching the scintillator panel body 12.
  • the gripping part may be provided only at one corner of the scintillator panel with a release sheet, or may be provided at two or more corners.
  • the shape of the notch provided at the corner is not particularly limited, but as an example, as shown in FIG. 5, the shape of the notch is notched into a triangle when viewed in plan view. It is preferable. By doing so, it is easy to perform a half-cut process described later, and it is easy to position the apparatus in the subsequent process, which is preferable.
  • the shape of the notch is a right-angled isosceles triangle, the stress applied to the corners of the scintillator panel can be made uniform when the release sheet is peeled off, and damage to the phosphor layer can be reduced.
  • it is a right-angled isosceles triangle having a side length of 1 mm or more.
  • the length of the side is preferably 3 mm or more from the viewpoint of workability.
  • the shape of the notch is a curved shape.
  • the corner of the scintillator panel has a curved shape in the grip portion, and stress is concentrated on the corner of the scintillator panel when the release sheet is peeled off. Therefore, damage to the phosphor layer can be further reduced.
  • the corner radius R is preferably 1 mm or more.
  • R is preferably 3 mm or more from the viewpoint of workability in order to form a region to be grasped by hand when peeling the release sheet.
  • a square mold release having the same size as that of the scintillator panel at a portion other than the gripping part is applied to the scintillator panel 2 in which notches are provided in advance at the corners as shown in FIGS.
  • seat 6 on the contact bonding layer 7 is mentioned.
  • the release sheet protrudes from the scintillator panel at the corner notch.
  • the half-cut means that the substrate 4, the phosphor layer 5 and the adhesive layer 7 are cut, but the release sheet is left without being cut.
  • the cut end 13 of the scintillator panel cut by the half cut may be removed as shown in FIGS. 3 and 5, or may be left as it is as shown in FIGS. good.
  • the scintillator panel is cut into two parts, and the cut is made by half-cutting as described above in the first cutting, and in the second cutting, the mold is released into a square of the same size as the scintillator panel in places other than the gripping part.
  • a method of producing a scintillator panel with a release sheet having a grip portion at a corner by cutting the sheet is preferable. By using such a method, it is possible to efficiently produce a scintillator panel with a release sheet having a grip portion by cutting a scintillator panel having a large size into an arbitrary size.
  • the size of the scintillator panel and the release sheet are equal at a place other than the grip portion.
  • the size of the release sheet is the same as that of the scintillator panel, as shown in FIGS. 5 to 9, where the end of the scintillator panel and the end of the release sheet are the same at locations other than the gripping portion. Means you are doing it.
  • FIG. 6 is a plan view of the scintillator panel with a release sheet of FIG. 4 as viewed from the direction of the arrow.
  • the scintillator panel is separated into the scintillator panel main body 12 and the cut end 13 by the half cut 11.
  • the cut end 13 of the scintillator panel is removed together with the release sheet when the release sheet 6 is peeled off. Thereby, when the release sheet is gripped and peeled by hand, it can be peeled without touching the scintillator panel.
  • the substrate cutting method is not particularly limited, and various cutting devices such as a slide cutter, a guillotine cutter, a roller cutter, a diamond cutter, a laser cutter, and a press cutter (Thomson cut) can be used.
  • various cutting devices such as a slide cutter, a guillotine cutter, a roller cutter, a diamond cutter, a laser cutter, and a press cutter (Thomson cut) can be used.
  • release sheet was gripped by hand at the gripping portion, and whether or not the release sheet could be peeled was determined according to the following criteria.
  • phosphor powder 85 parts by mass of phosphor powder was mixed with 15 parts by mass of an organic solution to obtain a phosphor paste.
  • the packing density of the phosphor layer formed using this phosphor paste was 4.0 g / cm 3 .
  • Example 1 On a white PET film substrate (E6SQ; manufactured by Toray Industries, Inc.) of 200 mm ⁇ 200 mm, the phosphor paste is applied with a die coater so that the thickness of the phosphor layer after drying is 200 ⁇ m, and is heated in a hot air drying oven at 80 ° C. The phosphor layer was formed by drying for 4 hours to obtain a scintillator panel.
  • E6SQ white PET film substrate
  • Toray Industries, Inc. manufactured by Toray Industries, Inc.
  • the porosity of the phosphor layer was measured as follows. After the cross section of the phosphor layer was precisely polished, it was observed at a magnification of 500 times using a scanning electron microscope (S2400; manufactured by Hitachi, Ltd.). In the obtained image, the solid content portion (phosphor, binder resin, etc.) and the void portion are converted into two gradations using image processing software (Adobe Photoshop; manufactured by Adobe Systems Co., Ltd.), and the cross-sectional area of the scintillator layer is obtained. The area ratio of the occupied void portion was calculated as the void ratio. The porosity was 30%.
  • An adhesive layer and a release sheet were laminated on the obtained scintillator panel using an OCA film (8171-CL; manufactured by 3M Japan Ltd.) to obtain a scintillator panel with a release sheet.
  • This OCA film is obtained by laminating a release film having a thickness of 50 ⁇ m on both sides of an adhesive layer having a thickness of 25 ⁇ m. After peeling off one release sheet from the OCA film, using a bonding apparatus (HAL-650S; manufactured by Sankyo Co., Ltd.), the exposed adhesive layer is brought into contact with the phosphor layer so that the scintillator panel substrate is in contact with the phosphor layer. Affixed to the surface.
  • the sheet is cut twice by a press cutting machine (MP-600SL; manufactured by Sakai Machine Industry Co., Ltd.), and as shown in FIG.
  • MP-600SL manufactured by Sakai Machine Industry Co., Ltd.
  • FIG. A scintillator panel with a release sheet with a gripping part at one corner by half-cutting with a 2mm right-angled isosceles triangle and cutting the outer periphery into a 100x100mm square in the second cut was made.
  • Table 1 shows the results of evaluating the release property of the release sheet of the scintillator panel and damage to the phosphor layer.
  • a scintillator panel was obtained by the same method as in Example 1 except that grip portions were provided at four corners, and the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 1.
  • Example 5 A scintillator panel was obtained by the same method as in Example 4 except that the white PET film substrate was changed to E20 (manufactured by Toray Industries, Inc.), and the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 1.
  • Example 6 A scintillator panel was obtained by the same method as in Example 4 except that the white PET film substrate was changed to E60L (manufactured by Toray Industries, Inc.), and the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 1.
  • Example 7 A scintillator panel was obtained by the same method as in Example 4 except that the thickness of the phosphor layer after drying was changed to 100 ⁇ m, and the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 2.
  • Example 8 A scintillator panel was obtained by the same method as in Example 4 except that the thickness of the phosphor layer after drying was changed to 300 ⁇ m, and the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 2.
  • Example 9 A scintillator panel was obtained by the same method as in Example 4 except that the thickness of the phosphor layer after drying was changed to 400 ⁇ m, and the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 2.
  • Example 10 A scintillator panel was obtained in the same manner as in Example 4 except that the thickness of the phosphor layer after drying was changed to 500 ⁇ m, and the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 2.
  • Example 11 A scintillator panel was obtained by the same method as in Example 4 except that a protective film was formed on the phosphor layer surface, and the same evaluation as in Example 1 was performed.
  • the protective film is a diaphragm type vacuum laminator (MVLP500 / 600: manufactured by Meiki Seisakusho Co., Ltd.) with a polyester film (4AF53: manufactured by Toray Industries, Inc.) with an adhesive layer (PD-S1: manufactured by Panac Co., Ltd.) on the phosphor layer surface. It was formed by pasting. The evaluation results are shown in Table 2.
  • Example 12 A scintillator panel was obtained by the same method as in Example 4 except that the thickness of the release film was changed to 3 ⁇ m, and the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 3.
  • Example 13 A scintillator panel was obtained by the same method as in Example 4 except that the thickness of the release film was changed to 110 ⁇ m, and the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 3.
  • Example 14 A scintillator panel was obtained by the same method as in Example 4 except that the thickness of the release film was changed to 75 ⁇ m and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 3.
  • Example 15 Except that 76.5 parts by mass of the phosphor powder was mixed with 27.5 parts by mass of the organic solution to prepare a phosphor paste, and the porosity of the phosphor layer was set to 40%.
  • a scintillator panel was obtained by the method described above and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 3.
  • Example 16 A scintillator was prepared in the same manner as in Example 4 except that 70 parts by mass of phosphor powder was mixed with 30 parts by mass of an organic solution to prepare a phosphor paste, and the porosity of the phosphor layer was 50%. A panel was obtained and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 3.
  • Example 17 A scintillator was prepared in the same manner as in Example 4 except that 65 parts by mass of phosphor powder was mixed with 35 parts by mass of an organic solution to prepare a phosphor paste, and the porosity of the phosphor layer was 60%. A panel was obtained and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 3.
  • Example 18 A scintillator panel was obtained by the same method as in Example 4 except that the thickness of the adhesive layer was changed to 125 ⁇ m and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 4.
  • the release sheet of the obtained scintillator panel could not be gripped, and scratching and peeling caused damage to the phosphor layer surface and peeling damage from the PET film interface of the phosphor layer.
  • Comparative Example 2 A scintillator panel was obtained by the same method as in Comparative Example 1 except that a protective film similar to that in Example 11 was formed on the phosphor layer surface, and the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 4.

Abstract

A scintillator panel with a mold release sheet, which comprises: a scintillator panel having a substrate, a phosphor layer and a bonding layer; and a mold release sheet laminated on the bonding layer. The scintillator panel is provided with an incision in at least one corner part of the scintillator panel with a mold release sheet, and the mold release sheet has a grip part that extends beyond the scintillator panel. The present invention makes it possible to separate the mold release sheet of a scintillator panel with a mold release sheet by a simple process without damaging a phosphor layer of the scintillator panel, thereby providing a radiation image conversion device of higher quality.

Description

離型シート付きシンチレータパネルScintillator panel with release sheet
 本発明は、シンチレータパネル、放射線画像検出装置およびその製造方法に関する。 The present invention relates to a scintillator panel, a radiation image detection apparatus, and a method for manufacturing the same.
 従来、医療現場において、フィルムを用いた放射線画像が広く用いられてきた。しかし、フィルムを用いた放射線画像はアナログ画像情報であるため、近年、コンピューテッドラジオグラフィ(computed radiography:CR)やフラットパネル型の放射線ディテクタ(flat panel detector:以下、「FPD」)等のデジタル方式の放射線画像検出装置が開発されている。このFPDには、直接方式と間接方式とがある。直接方式は放射線を直接電気信号に変換して検出する方式である。一方、間接方式は、放射線をシンチレータパネルで一旦可視光に変換した後、該可視光を光電変換撮像素子で検出する方式である。そのため間接方式の放射線画像検出装置は、光電変換撮像素子基板とシンチレータパネルの基板2枚からなり、それらを接着剤等により接合して形成される。 Conventionally, radiation images using a film have been widely used in the medical field. However, since radiographic images using film are analog image information, in recent years, digital radiography such as computed radiography (CR) and flat panel type radiation detectors (hereinafter referred to as “FPD”) has been adopted. A type of radiation image detection apparatus has been developed. This FPD has a direct method and an indirect method. The direct method is a method in which radiation is directly converted into an electrical signal and detected. On the other hand, the indirect method is a method in which radiation is once converted into visible light by a scintillator panel and then the visible light is detected by a photoelectric conversion imaging device. For this reason, the indirect radiation image detection apparatus includes a photoelectric conversion imaging element substrate and two scintillator panel substrates, which are formed by bonding them with an adhesive or the like.
 シンチレータパネルは、蛍光体を含有する蛍光体層を備えており、照射された放射線に応じて蛍光体が可視光を発光する。蛍光体としては、酸硫化ガドリニウム(GOS)またはヨウ化セシウム(CsI)が好ましく挙げられる。 The scintillator panel includes a phosphor layer containing a phosphor, and the phosphor emits visible light according to the irradiated radiation. Preferred examples of the phosphor include gadolinium oxysulfide (GOS) and cesium iodide (CsI).
 光電変換撮像素子基板は、ガラス基板上に、フォトダイオード、薄膜トランジスタ、電気配線などを含む50~300μmの画素が2次元的に配置されている。フォトダイオードなどによりシンチレータパネルで発生した可視光を電気信号に変換することにより、放射線の情報をデジタル信号に変換する。 The photoelectric conversion imaging device substrate has a two-dimensional arrangement of pixels of 50 to 300 μm including photodiodes, thin film transistors, electric wirings, etc. on a glass substrate. Radiation information is converted into a digital signal by converting visible light generated in the scintillator panel by a photodiode or the like into an electrical signal.
 シンチレータパネルは、例えばシート状のプラスチック基板上に蛍光体粉末とバインダー樹脂を混合してなる蛍光体層を塗布した後、乾燥することで形成することができる。この蛍光体層は蛍光体粉末が多いほど輝度が高くなり、FPDとしての特性が良化する。ただし、蛍光体粉末が多すぎる場合、膜の強度が低下するため、シンチレータパネルの製造時や、その後の運搬、また光電変換撮像素子基板との貼り合せ時に、膜剥がれが発生する。特に蛍光体層の外周部分は、曲がりや擦れによる剥がれが発生しやすい。この問題を解決する手段として、例えば特許文献1には、蛍光体層端部を熱溶融して剥がれを防止する方法、特許文献2には、端部を面取りもしくは断面円弧状に形成し剥がれを防止する方法が提案されている。 The scintillator panel can be formed, for example, by applying a phosphor layer formed by mixing phosphor powder and a binder resin on a sheet-like plastic substrate and then drying. The phosphor layer has higher luminance as the phosphor powder increases, and the characteristics as an FPD are improved. However, when the phosphor powder is too much, the strength of the film is lowered, and therefore the film is peeled off during the production of the scintillator panel, the subsequent transportation, and the bonding with the photoelectric conversion imaging device substrate. In particular, the outer peripheral portion of the phosphor layer is likely to be peeled off due to bending or rubbing. As a means for solving this problem, for example, Patent Document 1 discloses a method for preventing the peeling of the phosphor layer by thermally melting, and Patent Document 2 includes a method in which the edge is chamfered or formed in a circular arc shape. Methods for preventing it have been proposed.
 間接方式の放射線画像検出装置を作製するためには、前記光電変換撮像素子基板と前記シンチレータパネルとを密着させる必要がある。蛍光体の発光光が光電変換撮像素子基板とシンチレータパネルの隙間で横に広がり、解像度が低下することを防止するためである。そこで接着剤を用いて光学的に透明な接着層を形成し、2枚の基板を接着する場合が多い。 In order to produce an indirect radiation image detection apparatus, the photoelectric conversion imaging device substrate and the scintillator panel must be brought into close contact with each other. This is to prevent the emitted light of the phosphor from spreading laterally in the gap between the photoelectric conversion imaging device substrate and the scintillator panel and lowering the resolution. Therefore, in many cases, an optically transparent adhesive layer is formed using an adhesive and the two substrates are bonded.
 接着層としてはOCA(Optical Clear Adhesive)とばれる、フィルム状の粘着シートが用いられる。これは粘着剤を2枚の離型シートで挟んだ構造の製品であり、転写加工のみで接着層を形成できるため塗布工程が不要であり、簡便かつ歩留りが良好である。 As the adhesive layer, a film-like pressure-sensitive adhesive sheet called OCA (Optical Clear Adhesive) is used. This is a product having a structure in which an adhesive is sandwiched between two release sheets. Since an adhesive layer can be formed only by transfer processing, an application step is unnecessary, and the yield is simple and good.
 接着層は、OCAの一方の離型シートを剥がした後、むき出しになった接着層をシンチレータパネル基板の表面にラミネータロールなどを用いて接着させることで形成することができる。次に、OCAの反対側の離型シートを剥離し、むき出しになった接着層を同様にラミネータロールを用いて光電変換撮像素子基板へと接着することで間接方式の放射線画像検出装置が完成する。この時、光電変換撮像素子基板の有効エリア(画像表示エリア)よりも、シンチレータパネルおよびOCAは大きなサイズとする。これは貼り合せ時のズレによって有効エリアにシンチレータがない状態が発生することを防止するためである。 The adhesive layer can be formed by peeling off one release sheet of OCA, and then bonding the exposed adhesive layer to the surface of the scintillator panel substrate using a laminator roll or the like. Next, the release sheet on the opposite side of the OCA is peeled off, and the exposed adhesive layer is similarly adhered to the photoelectric conversion image sensor substrate using a laminator roll to complete the indirect radiation image detection apparatus. . At this time, the scintillator panel and the OCA are larger than the effective area (image display area) of the photoelectric conversion imaging device substrate. This is to prevent the occurrence of a state where there is no scintillator in the effective area due to misalignment at the time of bonding.
特開平11-305000号JP 11-305000 A 特許第5702047号Japanese Patent No. 5702417 特開2000-275398号JP 2000-275398 A
 OCAが接着されたシンチレータパネルを光電変換撮像素子基板に貼り付ける工程において、シンチレータパネル上に形成された離型シートを剥がす際に、離型シートのみを剥離する必要があるが、離型シートだけでなくシンチレータパネルの蛍光体層も同時に剥がしてしまう問題が発生した。特に、大きなサイズのシンチレータパネル上にOCAフィルムを貼り付けた後、所定の大きさに切り分ける方法によって離型シート付きのシンチレータパネルを製造した場合においては、得られた離型シート付きシンチレータパネルにおいて離型シートとシンチレータパネルのサイズが同一になるため、シンチレータパネルを傷つけることなく、離型シートを剥がすことが難しいという課題が生じる。これを解決する手段として、接着力の高いテープ等をOCA表面に貼り付け、該テープを引っ張ることによって離型シートを剥がすなどの方法があるが、テープを貼り付ける作業が増加するという問題、および、テープの貼り付け位置がずれた場合、蛍光体層の剥がれが発生する問題がある。 In the process of attaching the scintillator panel to which the OCA is adhered to the photoelectric conversion image sensor substrate, when the release sheet formed on the scintillator panel is peeled off, it is necessary to peel only the release sheet, but only the release sheet In addition, the phosphor layer of the scintillator panel also peeled off at the same time. In particular, when a scintillator panel with a release sheet is manufactured by pasting an OCA film on a large size scintillator panel and then cutting it into a predetermined size, the resulting scintillator panel with a release sheet is separated. Since the mold sheet and the scintillator panel have the same size, there arises a problem that it is difficult to remove the release sheet without damaging the scintillator panel. As a means for solving this, there is a method of attaching a tape or the like having a high adhesive force to the OCA surface and peeling the release sheet by pulling the tape, but the problem that the work of attaching the tape increases, and When the tape application position is shifted, there is a problem that the phosphor layer is peeled off.
 そのため、特許文献3のように、保護膜の外周端部に、蛍光体層の外周端縁から突出した突出片を有するシンチレータパネルが提案されている。しかしながら、この方法では、保護膜をシンチレータパネルの外縁よりも突出した形状にしなければならないため、生産性に劣るという欠点があった。 Therefore, as in Patent Document 3, a scintillator panel having a protruding piece protruding from the outer peripheral edge of the phosphor layer at the outer peripheral end of the protective film has been proposed. However, this method has a disadvantage in that productivity is inferior because the protective film has to be shaped to protrude from the outer edge of the scintillator panel.
 そこで本発明は、簡便な方法によって、シンチレータパネルの蛍光体層を傷つけることなく、離型シートを剥離することを可能とする、離型シート付きシンチレータパネルを提供することを目的とする。 Therefore, an object of the present invention is to provide a scintillator panel with a release sheet that can release the release sheet by a simple method without damaging the phosphor layer of the scintillator panel.
 上記の目的は、基板、蛍光体層、および接着層を有するシンチレータパネルと、前記接着層上に積層された離型シートを含む離型シート付きシンチレータパネルであって、前記離型シート付きシンチレータパネルの少なくとも1箇所の角部において、前記シンチレータパネルに切り欠きが設けられ、前記離型シートが前記シンチレータパネルからはみ出した把持部を有する離型シート付きシンチレータパネルによって達成される。 The above object is a scintillator panel with a release sheet comprising a scintillator panel having a substrate, a phosphor layer and an adhesive layer, and a release sheet laminated on the adhesive layer, the scintillator panel with the release sheet The scintillator panel has a notch in at least one corner, and the release sheet is achieved by a scintillator panel with a release sheet having a grip portion protruding from the scintillator panel.
 本発明によれば、簡便な方法により離型シート付きシンチレータパネルの離型シートをシンチレータパネルの蛍光体層を傷つけることなく剥離することが可能となり、より高品質の放射線画像変換装置を提供することができる。 According to the present invention, it is possible to peel a release sheet of a scintillator panel with a release sheet by a simple method without damaging the phosphor layer of the scintillator panel, and to provide a higher quality radiation image conversion apparatus. Can do.
離型シート付きシンチレータパネルを模式的に表した断面図Sectional view schematically showing scintillator panel with release sheet 離型シート付きシンチレータパネルと放射線検出装置の構成を模式的に表した断面図Cross-sectional view schematically showing the configuration of a scintillator panel with a release sheet and a radiation detector 角部に把持部を設けた離型シート付きシンチレータパネルを模式的に表した断面図Sectional view schematically showing a scintillator panel with a release sheet provided with a gripping portion at a corner 角部にハーフカットにより把持部を設けた離型シート付きシンチレータパネルを模式的に表した断面図Cross-sectional view schematically showing a scintillator panel with a release sheet that has a half-cut grip at the corner 角部に把持部を設けた離型シート付きシンチレータパネルを模式的に表した平面図A plan view schematically showing a scintillator panel with a release sheet provided with gripping portions at corners. 角部にハーフカットにより把持部を設けた離型シート付きシンチレータパネルを模式的に表した平面図A plan view schematically showing a scintillator panel with a release sheet in which a grip portion is provided by a half cut at a corner portion. シンチレータパネルの四隅が曲線形状に形成され、かつ、1箇所の角部にハーフカットにより把持部を設けた離型シート付きシンチレータパネルを模式的に表した平面図A plan view schematically showing a scintillator panel with a release sheet in which the four corners of the scintillator panel are formed in a curved shape and a grip portion is provided by half-cutting at one corner. 四隅の角部にハーフカットにより把持部を設けた離型シート付きシンチレータパネルを模式的に表した平面図A plan view schematically showing a scintillator panel with a release sheet in which grips are provided by half-cuts at the corners of the four corners. シンチレータパネルの四隅が曲線形状に形成され、かつ、四隅の角部にハーフカットにより把持部を設けた離型シート付きシンチレータパネルを模式的に表した平面図A plan view schematically showing a scintillator panel with a release sheet in which the four corners of the scintillator panel are formed in a curved shape and the corners of the four corners are provided with gripping portions by half-cutting.
 本発明の離型シート付きシンチレータパネルは、基板、蛍光体層および接着層がこの順に設けられたシンチレータパネルの該接着層の上に、離型シートがさらに設けられたものである。 In the scintillator panel with a release sheet of the present invention, a release sheet is further provided on the adhesive layer of the scintillator panel in which the substrate, the phosphor layer and the adhesive layer are provided in this order.
 以下に、図を用いて本発明の離型シート付きシンチレータパネルの具体的な構成について説明するが、本発明はこれらによって限定されるものではない。 Hereinafter, the specific configuration of the scintillator panel with a release sheet of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
 図1は、離型シート付きシンチレータパネルを模式的に表した断面図である。シンチレータパネル2は、基板4、および、基板4の上に形成された蛍光体層5および接着層7を備える。接着層7の上には、さらに離型シート6が積層されている。 FIG. 1 is a cross-sectional view schematically showing a scintillator panel with a release sheet. The scintillator panel 2 includes a substrate 4 and a phosphor layer 5 and an adhesive layer 7 formed on the substrate 4. A release sheet 6 is further laminated on the adhesive layer 7.
 図2は、放射線検出装置の構成を模式的に表した図である。放射線画像検出装置1は、シンチレータパネル2、光電変換撮像素子基板3および図示されない電源部からなる。 FIG. 2 is a diagram schematically showing the configuration of the radiation detection apparatus. The radiation image detection apparatus 1 includes a scintillator panel 2, a photoelectric conversion image sensor substrate 3, and a power supply unit (not shown).
 光電変換撮像素子基板3は、基板10上に、光電変換素子とTFTとからなる画素が2次元状に形成された光電変換層8、および、出力層9を有する。シンチレータパネル2の出光面と、光電変換撮像素子基板3の光電変換層8とを、接着層7を介して接着または密着させることで、放射線画像検出装置1が構成される。 The photoelectric conversion imaging element substrate 3 has a photoelectric conversion layer 8 and an output layer 9 on a substrate 10 in which pixels including photoelectric conversion elements and TFTs are two-dimensionally formed. The radiation image detection apparatus 1 is configured by adhering or adhering the light exit surface of the scintillator panel 2 and the photoelectric conversion layer 8 of the photoelectric conversion imaging element substrate 3 via the adhesive layer 7.
 放射線画像検出装置1に入射した放射線が、蛍光体層5に含有される蛍光体に吸収されることにより、可視光が放射される。放射された可視光が光電変換層8に到達すると、光電変換層8で光電変換され、出力層9を通じて、電気信号として出力される。 Visible light is emitted by the radiation incident on the radiation image detection device 1 being absorbed by the phosphor contained in the phosphor layer 5. When the emitted visible light reaches the photoelectric conversion layer 8, it is photoelectrically converted by the photoelectric conversion layer 8 and output as an electric signal through the output layer 9.
 基板4の材質としては、例えば、放射線の透過性を有するガラス、セラミック、半導体、高分子化合物または金属が挙げられる。ガラスとしては、例えば、石英、ホウ珪酸ガラスまたは化学的強化ガラスが挙げられる。セラミックとしては、例えば、サファイア、チッ化珪素または炭化珪素が挙げられる。半導体としては、例えば、シリコン、ゲルマニウム、ガリウム砒素、ガリウム燐またはガリウム窒素が挙げられる。高分子化合物としては、例えば、セルロースアセテート、ポリエステル、ポリアミド、ポリイミド、トリアセテート、ポリカーボネートまたは炭素繊維強化樹脂が挙げられる。金属としては、例えば、アルミニウム、鉄、銅または金属酸化物が挙げられる。 Examples of the material of the substrate 4 include glass, ceramics, semiconductors, polymer compounds, and metals having radiation transparency. Examples of the glass include quartz, borosilicate glass, and chemically tempered glass. Examples of the ceramic include sapphire, silicon nitride, and silicon carbide. Examples of the semiconductor include silicon, germanium, gallium arsenide, gallium phosphide, and gallium nitrogen. Examples of the polymer compound include cellulose acetate, polyester, polyamide, polyimide, triacetate, polycarbonate, and carbon fiber reinforced resin. Examples of the metal include aluminum, iron, copper, and metal oxide.
 なお、シンチレータパネルの持ち運びの利便性の点でシンチレータパネルの軽量化が進められていることから、基板の厚さは2.0mm以下が好ましく、1.0mm以下がより好ましい。また、蛍光体の発光光を高効率に利用するため、可視光の反射率の高い基板が好ましい。好ましい基板の材料としては、ガラスまたは高分子化合物が挙げられる。特に、好ましい例として、高反射ポリエステル基板が挙げられる。高反射ポリエステル基板としては、放射線の透過性が高く、かつ、低比重であることから、ボイドを含む白色ポリエステル基板がさらに好ましい。 In addition, since the weight reduction of the scintillator panel is advanced from the point of the convenience of carrying around of a scintillator panel, the thickness of a board | substrate is preferable 2.0 mm or less, and 1.0 mm or less is more preferable. Further, a substrate having a high visible light reflectance is preferable in order to efficiently use the light emitted from the phosphor. Preferred materials for the substrate include glass or a polymer compound. A particularly preferable example is a highly reflective polyester substrate. As the highly reflective polyester substrate, a white polyester substrate containing voids is more preferable because of its high radiation transparency and low specific gravity.
 基板の上に蛍光体層を形成する。蛍光体層は、蛍光体粉末を含有する。ここで蛍光体粉末とは、平均粒子径D50が40μm以下の蛍光体をいう。蛍光体としては、例えば、CsI、CsBr、GdS(以下、「GOS」)、GdSiO、BiGe12、CaWO、LuS、YS、LaCl、LaBr、LaI、CeBr、CeIまたはLuSiOが挙げられる。中でも硫酸化ガドリニウム(GOS)またはヨウ化セシウム(CsI)が好ましい。発光効率を高めるために、蛍光体に賦活剤を添加しても構わない。賦活剤としては、例えば、ナトリウム(Na)、インジウム(In)、タリウム(Tl)、リチウム(Li)、カリウム(K)、ルビジウム(Rb)、ナトリウム(Na)、テルビニウム(Tb)、セリウム(Ce)、ユーロピウム(Eu)またはプラセオジム(Pr)が挙げられる。化学的安定性が高く、かつ発光効率が高いため、テルビニウムを添加した硫酸化ガドリニウム(GOS:Tb)、または、タリウムを添加したヨウ化セシウム(CsI:Tl)が好ましい。 A phosphor layer is formed on the substrate. The phosphor layer contains phosphor powder. Here, the phosphor powder refers to a phosphor having an average particle diameter D50 of 40 μm or less. Examples of the phosphor include CsI, CsBr, Gd 2 O 2 S (hereinafter “GOS”), Gd 2 SiO 5 , BiGe 3 O 12 , CaWO 4 , Lu 2 O 2 S, Y 2 O 2 S, LaCl. 3, LaBr 3, LaI 3, CeBr 3, CeI 3 or LuSiO 5 and the like. Among these, gadolinium sulfate (GOS) or cesium iodide (CsI) is preferable. In order to increase the luminous efficiency, an activator may be added to the phosphor. Examples of the activator include sodium (Na), indium (In), thallium (Tl), lithium (Li), potassium (K), rubidium (Rb), sodium (Na), terbium (Tb), and cerium (Ce). ), Europium (Eu) or praseodymium (Pr). Gadolinium sulfate added with terbium (GOS: Tb) or cesium iodide added with thallium (CsI: Tl) is preferable because of its high chemical stability and high luminous efficiency.
 蛍光体粉末は、球状、扁平状または棒状等であることが好ましい。蛍光体の平均粒子径D50は、0.1~40μmであることが好ましく、より好ましくは1.0~25μmであり、さらに好ましくは1.0~20μmである。D50が0.1μm未満であると、蛍光体の表面欠陥により十分な発光が得られない場合がある。また、D50が40μmを超えると、光電変換素子ごとの検出強度の変動が大きく、鮮明な画像が得られない場合がある。 The phosphor powder is preferably spherical, flat or rod-like. The average particle diameter D50 of the phosphor is preferably 0.1 to 40 μm, more preferably 1.0 to 25 μm, and still more preferably 1.0 to 20 μm. If D50 is less than 0.1 μm, sufficient light emission may not be obtained due to surface defects of the phosphor. In addition, when D50 exceeds 40 μm, the variation in detection intensity for each photoelectric conversion element is large, and a clear image may not be obtained.
 蛍光体粉末の平均粒子径D50は、粒度分布測定装置(例えば、MT3300;日機装株式会社製)を用いて、水を満たした試料室に蛍光体粉末を投入し、300秒間超音波処理を行った後に測定をすることができる。 The average particle diameter D50 of the phosphor powder was measured using a particle size distribution measuring device (for example, MT3300; manufactured by Nikkiso Co., Ltd.), and the phosphor powder was put into a sample chamber filled with water and subjected to ultrasonic treatment for 300 seconds. Later measurements can be made.
 基板の上に蛍光体層を形成する方法としては、基板上に、蛍光体粉末を含有するペースト、すなわち蛍光体ペーストを塗布して、塗布膜を形成する方法が挙げられる。蛍光体ペーストの塗布方法としては、例えば、スクリーン印刷法、バーコーター、ロールコーター、ダイコーターまたはブレードコーターが挙げられる。 Examples of a method for forming a phosphor layer on a substrate include a method in which a paste containing phosphor powder, that is, a phosphor paste is applied on a substrate to form a coating film. Examples of the method for applying the phosphor paste include a screen printing method, a bar coater, a roll coater, a die coater, and a blade coater.
 蛍光体ペーストは、有機バインダーを含有しても構わない。有機バインダーとしては、例えば、ポリビニルブチラール、ポリビニルアセテート、ポリビニルアルコール、エチルセルロース、メチルセルロース、ポリエチレン;ポリメチルシロキサンもしくはポリメチルフェニルシロキサン等のシリコーン樹脂;ポリスチレン、ブタジエン/スチレンコポリマー、ポリスチレン、ポリビニルピロリドン、ポリアミド、高分子量ポリエーテル、エチレンオキサイドとプロピレンオキサイドとの共重合体、ポリアクリルアミドまたはアクリル樹脂が挙げられる。 The phosphor paste may contain an organic binder. Examples of the organic binder include polyvinyl butyral, polyvinyl acetate, polyvinyl alcohol, ethyl cellulose, methyl cellulose, polyethylene; silicone resin such as polymethyl siloxane or polymethyl phenyl siloxane; polystyrene, butadiene / styrene copolymer, polystyrene, polyvinyl pyrrolidone, polyamide, high Examples thereof include molecular weight polyethers, copolymers of ethylene oxide and propylene oxide, polyacrylamide or acrylic resins.
 蛍光体ペーストは、有機溶媒を含有しても構わない。蛍光体ペーストが有機バインダーを含有する場合、有機溶媒はその良溶媒であり、水素結合力が大きいことが好ましい。そのような有機溶媒としては、例えば、ジエチレングリコールモノブチルエーテルアセテート、エチレングリコールモノブチルエーテルアルコール、ジエチレングリコールモノブチルエーテル、メチルエチルケトン、シクロヘキサノン、イソブチルアルコール、イソプロピルアルコール、テルピネオール、ベンジルアルコール、テトラヒドロフラン、ジメチルスルフォキシド、ジヒドロターピネオール、γ-ブチロラクトン、ジヒドロターピニルアセテート、3-メトキシ-3-メチル-メチルブタノール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、N,N-ジメチルホルムアミド、ヘキシレングリコールまたはブロモ安息香酸が挙げられる。 The phosphor paste may contain an organic solvent. When the phosphor paste contains an organic binder, the organic solvent is a good solvent and preferably has a high hydrogen bonding force. Examples of such organic solvents include diethylene glycol monobutyl ether acetate, ethylene glycol monobutyl ether alcohol, diethylene glycol monobutyl ether, methyl ethyl ketone, cyclohexanone, isobutyl alcohol, isopropyl alcohol, terpineol, benzyl alcohol, tetrahydrofuran, dimethyl sulfoxide, dihydroterpineol, Examples include γ-butyrolactone, dihydroterpinyl acetate, 3-methoxy-3-methyl-methylbutanol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, N, N-dimethylformamide, hexylene glycol or bromobenzoic acid.
 蛍光体ペーストは、その粘度を調整するため、増粘剤、可塑剤または沈降防止剤を含有しても構わない。 The phosphor paste may contain a thickener, a plasticizer or an anti-settling agent in order to adjust its viscosity.
 蛍光体層を、蛍光体粉末の充填密度が異なる、複数の層から構成することも可能である。蛍光体粉末の充填密度が最も高い層、すなわち高充填密度蛍光体層は、可視光の反射率が高い。高充填密度蛍光体層は、放射線の照射方向が基板側である場合、基板側に位置していることが好ましい。 The phosphor layer may be composed of a plurality of layers having different packing densities of the phosphor powder. The layer with the highest packing density of the phosphor powder, that is, the high packing density phosphor layer has a high visible light reflectance. The high packing density phosphor layer is preferably located on the substrate side when the radiation direction is the substrate side.
 蛍光体層の厚みとしては、特に限定はされないが、10~600μmであることが好ましく、より好ましくは50~400μmであり、さらに好ましくは80~250μmである。蛍光体層の厚みが10μm未満であると、蛍光体の発光が少なくなる。また、蛍光体層の厚みが600μmを超えると、蛍光体粉末自体の阻害により発光光が散乱して輝度が低下する場合があるうえに、発光光が横に広がり解像度が低下する場合がある。 The thickness of the phosphor layer is not particularly limited, but is preferably 10 to 600 μm, more preferably 50 to 400 μm, and further preferably 80 to 250 μm. When the thickness of the phosphor layer is less than 10 μm, the phosphor emits less light. On the other hand, if the thickness of the phosphor layer exceeds 600 μm, the luminance may decrease due to scattering of the emitted light due to the inhibition of the phosphor powder itself, and the resolution of the emitted light may spread laterally.
 蛍光体層の空隙率は、1~50%であることが好ましい。空隙率は、より好ましくは10%以上であり、さらに好ましくは20%以上である。空隙率は、より好ましくは45%以下であり、さらに好ましくは40%以下である。空隙率をこの範囲にすることによって、高い輝度を保持したまま、画像の解像度の指標であるMTF(Modulation Transfer Function:レンズ性能を評価する指標の一つで、空間周波数特性)を向上させることができる。また、空隙率が50%を超えると、蛍光体層の蛍光体同士の結合が弱くなり層内剥離が発生する場合がある。 The porosity of the phosphor layer is preferably 1 to 50%. The porosity is more preferably 10% or more, and further preferably 20% or more. The porosity is more preferably 45% or less, still more preferably 40% or less. By setting the void ratio within this range, it is possible to improve MTF (Modulation Transfer Function: an index for evaluating lens performance and spatial frequency characteristics) that is an index of image resolution while maintaining high luminance. it can. On the other hand, when the porosity exceeds 50%, bonding between the phosphors in the phosphor layer is weakened, and peeling in the layer may occur.
 蛍光体層の空隙率は、蛍光体層の断面を精密研磨した後に、走査型電子顕微鏡(例えば、S2400;日立製作所製)で観察し、得られた画像において固形分部分(蛍光体およびバインダー樹脂等)と空隙部分を2階調に画像変換し、シンチレータ層の断面の面積に占める空隙部分の面積割合として算出することができる。また、MTFは、シンチレータパネルを具備する放射線検出器に、放射線を透過しない鉛板を置き、管電圧80kVpの放射線をシンチレータパネルの基板側から照射して得られた画像を基に、エッジ法により測定することができる。 The porosity of the phosphor layer is determined by observing with a scanning electron microscope (for example, S2400; manufactured by Hitachi, Ltd.) after the cross-section of the phosphor layer is precisely polished, and the solid content portion (phosphor and binder resin) in the obtained image. Etc.) and the void portion are converted into two gradations and calculated as the area ratio of the void portion in the cross-sectional area of the scintillator layer. The MTF uses an edge method based on an image obtained by placing a lead plate that does not transmit radiation on a radiation detector equipped with a scintillator panel and irradiating radiation with a tube voltage of 80 kVp from the substrate side of the scintillator panel. Can be measured.
 本発明においては、基板上に蛍光体層を形成した後、接着層7を形成する。接着層としては、光学的に透明な熱硬化性樹脂および光硬化性樹脂から選択することが、強度および作業性の面から好ましい。材料としては、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、ブチラール樹脂、ポリアミド樹脂、シリコーン樹脂またはエチルセルロース樹脂からなる透明接着剤が好適に用いられる。なお接着層には必要に応じて、架橋材、可塑剤、粘着性付与剤、充填剤、劣化防止剤など適宜添加剤を配合することができる。 In the present invention, after the phosphor layer is formed on the substrate, the adhesive layer 7 is formed. The adhesive layer is preferably selected from optically transparent thermosetting resins and photocurable resins from the viewpoint of strength and workability. As a material, a transparent adhesive made of an acrylic resin, an epoxy resin, a polyester resin, a butyral resin, a polyamide resin, a silicone resin or an ethyl cellulose resin is preferably used. If necessary, additives such as a cross-linking material, a plasticizer, a tackifier, a filler, and a deterioration preventing agent can be blended in the adhesive layer.
 接着層の厚みとしては、特に限定はされないが、3~100μmの範囲が好ましく、より好ましくは10~50μmの範囲である。厚みが3μm未満の場合、蛍光体層との接着が弱くなるため好ましくない。一方、厚みが100μmを超える場合、シンチレータパネルと光電変換撮像素子基板との間の隙間が大きくなることにより、蛍光体の発光光が接着層で横に広がり、解像度が低下するうえに、接着層の粘着力が過剰となり、離型シートを剥離する際に蛍光体層も剥がれてしまう場合があるため好ましくない。 The thickness of the adhesive layer is not particularly limited, but is preferably in the range of 3 to 100 μm, and more preferably in the range of 10 to 50 μm. When the thickness is less than 3 μm, the adhesion with the phosphor layer is weak, which is not preferable. On the other hand, when the thickness exceeds 100 μm, the gap between the scintillator panel and the photoelectric conversion imaging device substrate becomes large, so that the emitted light of the phosphor spreads laterally in the adhesive layer, and the resolution is lowered. This is not preferable because the adhesive strength of the phosphor layer becomes excessive and the phosphor layer may be peeled off when the release sheet is peeled off.
 接着層7の上に、さらに離型シート6を積層することにより、離型シート付きシンチレータパネルが得られる。離型シートとしては、例えば、ポリエチレンテレフタレート、ポリカーボネート、ポリアクリレート、ポリプロピレン等の樹脂よりなるフィルムを使用することができる。離型シートの厚みとしては、特に限定はされないが、5~100μmの範囲が好ましく、10~75μmがより好ましい。離型シートの厚みが5μm未満の場合、離型シートの強度が低くなり、離型シート自体が破れやすい。離型シートの厚みが100μmを超える場合、剥離の際に発生する応力が大きくなり、蛍光体層が損傷しやすくなるため好ましくない。なお、この基材の接着層7との接合面には図示しない離型コート層(シリコーン層)が形成されているものを用いることができる。 By further laminating the release sheet 6 on the adhesive layer 7, a scintillator panel with a release sheet is obtained. As the release sheet, for example, a film made of a resin such as polyethylene terephthalate, polycarbonate, polyacrylate, or polypropylene can be used. The thickness of the release sheet is not particularly limited, but is preferably in the range of 5 to 100 μm, more preferably 10 to 75 μm. When the thickness of the release sheet is less than 5 μm, the strength of the release sheet is lowered and the release sheet itself is easily broken. When the thickness of the release sheet exceeds 100 μm, the stress generated at the time of peeling increases and the phosphor layer is easily damaged, which is not preferable. In addition, what has the release coat layer (silicone layer) which is not shown in figure formed in the joint surface with the contact bonding layer 7 of this base material can be used.
 なお、蛍光体層上に接着層および離型シートを形成するに際しては、OCA(Optical Clear Adhesive Film)と呼ばれる、接着層を2枚の離型シートで挟んだフィルム状の粘着シートを活用することが作業性および経済性の面でより好ましい。 When forming the adhesive layer and release sheet on the phosphor layer, use a film-like pressure-sensitive adhesive sheet called OCA (Optical Clear Adhesive Film) that sandwiches the adhesive layer between two release sheets. Is more preferable in terms of workability and economy.
 このようにして離型シート付きシンチレータパネルが得られる。離型シート付きシンチレータパネルの製造にあたっては、大きなサイズのシンチレータパネルと離型シートを貼り合わせてから、所定サイズに裁断する方法が好ましく用いられる。この場合、得られた離型シート付きシンチレータパネルにおいて、シンチレータパネルと離型シートの大きさが同一になる。しかしながら、前記のように、離型シートとシンチレータパネルのサイズが同一になるため、シンチレータパネルを傷つけることなく、離型シートを剥がすことが難しいという課題が生じる。 In this way, a scintillator panel with a release sheet is obtained. In manufacturing a scintillator panel with a release sheet, a method of cutting a predetermined size after laminating a large size scintillator panel and a release sheet is preferably used. In this case, in the obtained scintillator panel with a release sheet, the scintillator panel and the release sheet have the same size. However, as described above, since the release sheet and the scintillator panel have the same size, there arises a problem that it is difficult to remove the release sheet without damaging the scintillator panel.
 これを解決する手段として、本発明においては、図3~図9に例示されるように、離型シート付きシンチレータパネルの少なくとも1箇所の角部において、シンチレータパネルに切り欠きが設けられ、それによって離型シートがシンチレータパネルからはみ出した把持部14を有する。ここで、把持部14とは、離型シート6がシンチレータパネル本体12からはみ出している領域のことを意味する。図3の離型シート付きシンチレータパネルの平面図(図3の矢印の方向から見た図)を図5に示す。平面図で見た場合、シンチレータパネルは、略方形を有する。図5に示すように略方形の離型シート付きシンチレータパネルの少なくとも1箇所の角部に切り欠きを設け、そこに把持部を設けることで、その箇所の離型シート6を手で掴んで剥離できるため、シンチレータパネル本体12に触れることなく、離型シートを剥離することが可能となる。把持部は、離型シート付きシンチレータパネルの1箇所の角部のみに設けても良いし、2箇所以上の角部に設けても良い。 As means for solving this, in the present invention, as illustrated in FIGS. 3 to 9, at least one corner of the scintillator panel with a release sheet is provided with a notch in the scintillator panel, thereby The release sheet has a gripping part 14 protruding from the scintillator panel. Here, the gripping part 14 means an area where the release sheet 6 protrudes from the scintillator panel body 12. FIG. 5 is a plan view of the scintillator panel with a release sheet in FIG. 3 (viewed from the direction of the arrow in FIG. 3). When viewed in a plan view, the scintillator panel has a substantially square shape. As shown in FIG. 5, at least one corner of a substantially square scintillator panel with a release sheet is provided with a notch, and a grip portion is provided there, whereby the release sheet 6 at that location is grasped by hand and peeled off. Therefore, it is possible to peel the release sheet without touching the scintillator panel body 12. The gripping part may be provided only at one corner of the scintillator panel with a release sheet, or may be provided at two or more corners.
 角部に設ける切り欠きの形状としては、特に限定されないが、一例としては、図5に示されるように、平面図で見た際に、切り欠きの形状が三角形に切り欠かれた形状であることが、好ましい。このようにすることにより、後述のハーフカット工程を行うことが容易であり、また、後の工程において装置の位置決めもしやすいため好ましい。特に、切り欠きの形状が直角二等辺三角形であると、離型シートを剥離する際に、シンチレータパネルの角部にかかる応力を均等にでき、蛍光体層へのダメージを軽減することができるので好ましい。より好ましくは、辺の長さ1mm以上の直角二等辺三角形である。特に離型シートを剥離する際に手で掴む領域を形成するためには、辺の長さは3mm以上であることが作業性の面から好ましい。 The shape of the notch provided at the corner is not particularly limited, but as an example, as shown in FIG. 5, the shape of the notch is notched into a triangle when viewed in plan view. It is preferable. By doing so, it is easy to perform a half-cut process described later, and it is easy to position the apparatus in the subsequent process, which is preferable. In particular, if the shape of the notch is a right-angled isosceles triangle, the stress applied to the corners of the scintillator panel can be made uniform when the release sheet is peeled off, and damage to the phosphor layer can be reduced. preferable. More preferably, it is a right-angled isosceles triangle having a side length of 1 mm or more. In particular, in order to form a region to be grasped by hand when the release sheet is peeled, the length of the side is preferably 3 mm or more from the viewpoint of workability.
 また、図7に示すように、切り欠きの形状が曲線形状であることが好ましい。このようにすることにより、平面図で見た際に、把持部においてシンチレータパネルの角部が曲線形状を有する形状となり、離型シートを剥離する際に、シンチレータパネルの角部に応力が集中することがないため、より蛍光体層へのダメージを軽減することができる。角部の曲線半径Rは、1mm以上が好ましい。特に離型シートを剥離する際に手で掴む領域を形成するためには、Rは3mm以上であることが作業性の面から好ましい。 Moreover, as shown in FIG. 7, it is preferable that the shape of the notch is a curved shape. By doing so, when viewed in plan view, the corner of the scintillator panel has a curved shape in the grip portion, and stress is concentrated on the corner of the scintillator panel when the release sheet is peeled off. Therefore, damage to the phosphor layer can be further reduced. The corner radius R is preferably 1 mm or more. In particular, R is preferably 3 mm or more from the viewpoint of workability in order to form a region to be grasped by hand when peeling the release sheet.
 把持部の形成方法としては、例えば、図3、5に示されるような角部に予め切り欠きが設けられたシンチレータパネル2に、把持部以外の箇所においてシンチレータパネルと同サイズの方形の離型シート6を接着層7の上に貼り付けて形成する方法が挙げられる。図3、5に示すように、角部の切り欠きの部分において、離型シートがシンチレータパネルからはみ出す。 As a method of forming the gripping part, for example, a square mold release having the same size as that of the scintillator panel at a portion other than the gripping part is applied to the scintillator panel 2 in which notches are provided in advance at the corners as shown in FIGS. The method of sticking and forming the sheet | seat 6 on the contact bonding layer 7 is mentioned. As shown in FIGS. 3 and 5, the release sheet protrudes from the scintillator panel at the corner notch.
 また、図4、6に示すように離型シートを積層した大きなサイズのシンチレータパネルを任意のサイズに裁断する際に、角部をハーフカット11して離型シートの角部のみを残す方法がある。ここで、ハーフカットとは、基板4、蛍光体層5および接着層7を裁断するが、離型シートは裁断せずに残すことを意味する。このとき、ハーフカットにより切断されたシンチレータパネルの切れ端13は、図3、5に示されるように除去してしまっても良いし、図4、6に示されるように、そのまま残しておいても良い。シンチレータパネルの裁断を二回に分けて行い、1回目の裁断において前記のとおりハーフカットにより切り欠きを設け、2回目の裁断において、把持部以外の箇所においてシンチレータパネルと同サイズの方形に離型シートを裁断することで、角部に把持部を設けた離型シート付きのシンチレータパネルを作製する方法が好ましい。このような方法を用いることによって、大きなサイズのシンチレータパネルを任意のサイズに裁断して、把持部を有する離型シート付きのシンチレータパネルを効率よく生産することが可能である。 4 and 6, when a large-sized scintillator panel in which release sheets are laminated is cut into an arbitrary size, there is a method of leaving only the corners of the release sheet by half-cutting the corners 11. is there. Here, the half-cut means that the substrate 4, the phosphor layer 5 and the adhesive layer 7 are cut, but the release sheet is left without being cut. At this time, the cut end 13 of the scintillator panel cut by the half cut may be removed as shown in FIGS. 3 and 5, or may be left as it is as shown in FIGS. good. The scintillator panel is cut into two parts, and the cut is made by half-cutting as described above in the first cutting, and in the second cutting, the mold is released into a square of the same size as the scintillator panel in places other than the gripping part. A method of producing a scintillator panel with a release sheet having a grip portion at a corner by cutting the sheet is preferable. By using such a method, it is possible to efficiently produce a scintillator panel with a release sheet having a grip portion by cutting a scintillator panel having a large size into an arbitrary size.
 前記把持部以外の箇所において、シンチレータパネルと、離型シートの大きさは等しいことが好ましい。ここで、シンチレータパネルと、離型シートの大きさが等しいとは、図5~9に示されるように、把持部以外の箇所において、シンチレータパネルの端部と、離型シートの端部が一致していることを意味する。 It is preferable that the size of the scintillator panel and the release sheet are equal at a place other than the grip portion. Here, the size of the release sheet is the same as that of the scintillator panel, as shown in FIGS. 5 to 9, where the end of the scintillator panel and the end of the release sheet are the same at locations other than the gripping portion. Means you are doing it.
 図6は図4の離型シート付きシンチレータパネルを矢印方向から見た平面図である。この態様では、ハーフカット11により、シンチレータパネルは、シンチレータパネル本体12と切れ端13に分離されている。シンチレータパネルの切れ端13は、離型シート6を剥離する際に、離型シートとともに除去される。これにより、離型シートを手で掴んで剥離する際に、シンチレータパネルに触れることなく、剥離することが可能となる。 FIG. 6 is a plan view of the scintillator panel with a release sheet of FIG. 4 as viewed from the direction of the arrow. In this aspect, the scintillator panel is separated into the scintillator panel main body 12 and the cut end 13 by the half cut 11. The cut end 13 of the scintillator panel is removed together with the release sheet when the release sheet 6 is peeled off. Thereby, when the release sheet is gripped and peeled by hand, it can be peeled without touching the scintillator panel.
 基板の裁断方法も特に限定はされず、スライドカッター、ギロチンカッター、ローラーカッター、ダイヤモンドカッター、レーザーカッター、プレス裁断機(トムソンカット)など各種裁断装置を活用することができる。 The substrate cutting method is not particularly limited, and various cutting devices such as a slide cutter, a guillotine cutter, a roller cutter, a diamond cutter, a laser cutter, and a press cutter (Thomson cut) can be used.
 以下に、実施例および比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらによって限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited thereto.
 まず、評価方法について説明する。以下の各評価ごとに、離型シート付きシンチレータパネルを5枚用意し、1枚当たり4箇所の角部、合わせて20箇所の角部で評価を実施した。 First, the evaluation method will be described. For each of the following evaluations, five scintillator panels with a release sheet were prepared, and evaluation was performed at four corners per sheet, in total, at 20 corners.
 <離型シートの剥離性>
 離型シート付きシンチレータパネルの白色PETフィルム基板面を吸着ステージに吸着させた後に、把持部において離型シートを手で掴み、離型シートを剥離できるかどうかを以下の基準で判定した。
A:20箇所中20箇所において離型シートを掴んで剥離できる
C:20箇所中17箇所以上20箇所未満の確率で離型シートを掴んで剥離できる
D:20箇所中17箇所未満の確率で離型シートを掴んで剥離できる、または離型シートを全く掴めない。
<Releasability of release sheet>
After the white PET film substrate surface of the scintillator panel with a release sheet was adsorbed to the suction stage, the release sheet was gripped by hand at the gripping portion, and whether or not the release sheet could be peeled was determined according to the following criteria.
A: The release sheet can be gripped and peeled at 20 of 20 locations. C: The release sheet can be gripped and peeled with a probability of 17 to less than 20 in 20 locations. D: Released with a probability of less than 17 of 20 locations. The mold sheet can be grasped and peeled off, or the release sheet cannot be grasped at all.
 <蛍光体層表面の損傷>
 離型シートを剥離した後のシンチレータパネルの蛍光体層表面の損傷(手の触れ傷、亀裂)を目視により以下の基準で判定した。
A:20箇所中蛍光体層表面の損傷は全く発生しない
B:20箇所中3箇所未満の確率で蛍光体層表面の損傷が発生する
C:20箇所中3箇所以上、5箇所未満の確率で蛍光体層表面の損傷が発生する
D:20箇所中5箇所以上の確率で蛍光体層表面の損傷が発生する。
<Damage on phosphor layer surface>
Damage to the phosphor layer surface of the scintillator panel after peeling the release sheet (hand touch scratches, cracks) was visually determined according to the following criteria.
A: No damage on the surface of the phosphor layer in 20 places B: Damage on the surface of the phosphor layer occurs with a probability of less than 3 places in 20 places C: 3 or more out of 20 places with a probability of less than 5 places Damage to the surface of the phosphor layer occurs D: Damage to the surface of the phosphor layer occurs with a probability of 5 or more out of 20 places.
 <蛍光体層のPETフィルム界面からの剥がれ損傷>
 離型シートを剥離した後のシンチレータパネルのPETフィルム界面からの剥がれ損傷を目視により以下の基準で判定した。
A:20箇所中剥がれ損傷は全く発生しない
B:20箇所中3箇所未満の確率で剥がれ損傷が発生する
C:20箇所中3箇所以上、5箇所未満の確率で剥がれ損傷が発生する
D:20箇所中5箇所以上の確率で剥がれ損傷が発生する。
<Peeling damage from the PET film interface of the phosphor layer>
The peeling damage from the PET film interface of the scintillator panel after peeling off the release sheet was visually judged according to the following criteria.
A: No peeling damage occurs in 20 places. B: A peeling damage occurs with a probability of less than 3 places in 20 places. C: A peeling damage occurs with a probability of 3 places or more in 20 places and less than 5 places. D: 20 Peeling damage occurs with a probability of 5 or more places.
 <蛍光体層の層内剥離損傷>
 離型シートを剥離した後のシンチレータパネルの蛍光体層の層内剥離損傷を目視により以下の基準で判定した。
A:20箇所中層内剥離損傷は全く発生しない
C:20箇所中5箇所未満の確率で層内剥離損傷が発生する
D:20箇所中5箇所以上の確率で層内剥離損傷が発生する。
<In-layer peeling damage of phosphor layer>
The in-layer peeling damage of the phosphor layer of the scintillator panel after peeling off the release sheet was visually judged according to the following criteria.
A: No delamination damage in the middle 20 layers occurs C: Delamination damage occurs in the layer with a probability of less than 5 out of 20 D: Delamination damage in the layer occurs with a probability of 5 or more out of 20
 (蛍光体ペーストの作製)
 30質量部の有機バインダー(エチルセルロース(7cp);比重1.1g/cm)を、70質量部の有機溶媒(テルピネオール、比重0.93g/cm)に80℃で加熱溶解し、有機溶液を得た。また蛍光体粉末として、平均粒子径D50が10μmのTb賦活GdS(GdS:Tb、比重7.3g/cm)を準備した。
(Preparation of phosphor paste)
30 parts by weight of an organic binder (ethyl cellulose (7 cp); specific gravity 1.1 g / cm 3) and was heated and dissolved at 80 ° C. to 70 parts by weight of an organic solvent (terpineol, specific gravity 0.93 g / cm 3), the organic solution Obtained. As the phosphor powder, the average particle size D50 10μm of Tb-activated Gd 2 O 2 S (Gd 2 O 2 S: Tb, a specific gravity of 7.3 g / cm 3) was prepared.
 15質量部の有機溶液に、85質量部の蛍光体粉末を混合して、蛍光体ペーストを得た。この蛍光体ペーストを用いて形成した蛍光体層の充填密度は、4.0g/cmであった。 85 parts by mass of phosphor powder was mixed with 15 parts by mass of an organic solution to obtain a phosphor paste. The packing density of the phosphor layer formed using this phosphor paste was 4.0 g / cm 3 .
 (実施例1)
 200mm×200mmの白色PETフィルム基板(E6SQ;東レ株式会社製)上に、上記蛍光体ペーストを乾燥後の蛍光体層厚みが200μmになるようにダイコーターで塗布し、80℃の熱風乾燥炉で4時間乾燥することで蛍光体層を形成し、シンチレータパネルを得た。
Example 1
On a white PET film substrate (E6SQ; manufactured by Toray Industries, Inc.) of 200 mm × 200 mm, the phosphor paste is applied with a die coater so that the thickness of the phosphor layer after drying is 200 μm, and is heated in a hot air drying oven at 80 ° C. The phosphor layer was formed by drying for 4 hours to obtain a scintillator panel.
 以下のようにして、蛍光体層の空隙率を測定した。蛍光体層の断面を精密研磨した後に、走査型電子顕微鏡(S2400;日立製作所製)を用いて倍率500倍で観察した。得られた画像において、固形分部分(蛍光体およびバインダー樹脂等)と空隙部分を画像処理ソフト(Adobe Photoshop;アドビシステムズ株式会社製)で2階調に画像変換し、シンチレータ層の断面の面積に占める空隙部分の面積割合を空隙率として算出した。空隙率は30%であった。 The porosity of the phosphor layer was measured as follows. After the cross section of the phosphor layer was precisely polished, it was observed at a magnification of 500 times using a scanning electron microscope (S2400; manufactured by Hitachi, Ltd.). In the obtained image, the solid content portion (phosphor, binder resin, etc.) and the void portion are converted into two gradations using image processing software (Adobe Photoshop; manufactured by Adobe Systems Co., Ltd.), and the cross-sectional area of the scintillator layer is obtained. The area ratio of the occupied void portion was calculated as the void ratio. The porosity was 30%.
 得られたシンチレータパネル上にOCAフィルム(8171-CL;スリーエムジャパン株式会社製)を用いて、接着層および離型シートを積層し、離型シート付きシンチレータパネルを得た。このOCAフィルムは、厚みが25μmの接着剤層の両面に、厚みが50μmの離型フィルムが積層されたものである。OCAフィルムから一方の離型シートを剥がした後、貼り合わせ装置(HAL-650S;三共株式会社製)を用いて、むき出しになった接着層が蛍光体層に接触するように、シンチレータパネル基板の表面に貼り付けた。 An adhesive layer and a release sheet were laminated on the obtained scintillator panel using an OCA film (8171-CL; manufactured by 3M Japan Ltd.) to obtain a scintillator panel with a release sheet. This OCA film is obtained by laminating a release film having a thickness of 50 μm on both sides of an adhesive layer having a thickness of 25 μm. After peeling off one release sheet from the OCA film, using a bonding apparatus (HAL-650S; manufactured by Sankyo Co., Ltd.), the exposed adhesive layer is brought into contact with the phosphor layer so that the scintillator panel substrate is in contact with the phosphor layer. Affixed to the surface.
 そして、プレス裁断機(MP-600SL;曙機械工業株式会社製)で二回に分けて裁断し、図8に示すように、1回目の裁断において角部の4箇所を辺の長さC=2mmの直角二等辺三角形で切り取る形状でハーフカットし、2回目の裁断において外周を100×100mmの方形に裁断することで、1箇所の角部に把持部を設けた離型シート付きのシンチレータパネルを作製した。得られたシンチレータパネルの離型シートの剥離性と蛍光体層の損傷について評価した結果を表1に示す。 Then, the sheet is cut twice by a press cutting machine (MP-600SL; manufactured by Sakai Machine Industry Co., Ltd.), and as shown in FIG. A scintillator panel with a release sheet with a gripping part at one corner by half-cutting with a 2mm right-angled isosceles triangle and cutting the outer periphery into a 100x100mm square in the second cut Was made. Table 1 shows the results of evaluating the release property of the release sheet of the scintillator panel and damage to the phosphor layer.
 (実施例2)
 ハーフカットを行う角部の形状を辺の長さC=4mmの直角二等辺三角形に変更した以外は、実施例1と同様の方法によりシンチレータパネルを得て、実施例1と同様の評価をした。評価結果を表1に示す。
(Example 2)
A scintillator panel was obtained by the same method as in Example 1 except that the shape of the corner portion for half-cutting was changed to a right-angled isosceles triangle having a side length C = 4 mm, and the same evaluation as in Example 1 was performed. . The evaluation results are shown in Table 1.
 (実施例3)
 図9に示すように、1回目の裁断において、全ての角部の形状を曲率半径R=2mmの円弧状に変更してハーフカットし、2回目の裁断において外周を100×100mmの方形に裁断することで、角部の4箇所に把持部を設けた以外は、実施例1と同様の方法によりシンチレータパネルを得て、実施例1と同様の評価をした。評価結果を表1に示す。
(Example 3)
As shown in FIG. 9, in the first cutting, the shape of all corners is changed to an arc shape with a radius of curvature R = 2 mm and half cut, and in the second cutting, the outer periphery is cut into a 100 × 100 mm square. Thus, a scintillator panel was obtained by the same method as in Example 1 except that grip portions were provided at four corners, and the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 1.
 (実施例4)
 全ての角部の形状を曲率半径R=4mmの円弧状に変更した以外は、実施例3と同様の方法によりシンチレータパネルを得て、実施例1と同様の評価をした。評価結果を表1に示す。
Example 4
A scintillator panel was obtained by the same method as in Example 3 except that the shape of all corners was changed to an arc shape with a radius of curvature R = 4 mm, and the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 1.
 (実施例5)
 白色PETフィルム基板をE20(東レ株式会社製)に変更した以外は、実施例4と同様の方法によりシンチレータパネルを得て、実施例1と同様の評価をした。評価結果を表1に示す。
(Example 5)
A scintillator panel was obtained by the same method as in Example 4 except that the white PET film substrate was changed to E20 (manufactured by Toray Industries, Inc.), and the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 1.
 (実施例6)
 白色PETフィルム基板をE60L(東レ株式会社製)に変更した以外は、実施例4と同様の方法によりシンチレータパネルを得て、実施例1と同様の評価をした。評価結果を表1に示す。
(Example 6)
A scintillator panel was obtained by the same method as in Example 4 except that the white PET film substrate was changed to E60L (manufactured by Toray Industries, Inc.), and the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 1.
 (実施例7)
 乾燥後の蛍光体層厚みを100μmに変更した以外は、実施例4と同様の方法によりシンチレータパネルを得て、実施例1と同様の評価をした。評価結果を表2に示す。
(Example 7)
A scintillator panel was obtained by the same method as in Example 4 except that the thickness of the phosphor layer after drying was changed to 100 μm, and the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 2.
 (実施例8)
 乾燥後の蛍光体層厚みを300μmに変更した以外は、実施例4と同様の方法によりシンチレータパネルを得て、実施例1と同様の評価をした。評価結果を表2に示す。
(Example 8)
A scintillator panel was obtained by the same method as in Example 4 except that the thickness of the phosphor layer after drying was changed to 300 μm, and the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 2.
 (実施例9)
 乾燥後の蛍光体層厚みを400μmに変更した以外は、実施例4と同様の方法によりシンチレータパネルを得て、実施例1と同様の評価をした。評価結果を表2に示す。
Example 9
A scintillator panel was obtained by the same method as in Example 4 except that the thickness of the phosphor layer after drying was changed to 400 μm, and the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 2.
 (実施例10)
 乾燥後の蛍光体層厚みを500μmに変更した以外は、実施例4と同様の方法によりシンチレータパネルを得て、実施例1と同様の評価をした。評価結果を表2に示す。
(Example 10)
A scintillator panel was obtained in the same manner as in Example 4 except that the thickness of the phosphor layer after drying was changed to 500 μm, and the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 2.
 (実施例11)
 蛍光体層表面に保護膜を形成した以外は、実施例4と同様の方法によりシンチレータパネルを得て、実施例1と同様の評価をした。
(Example 11)
A scintillator panel was obtained by the same method as in Example 4 except that a protective film was formed on the phosphor layer surface, and the same evaluation as in Example 1 was performed.
 保護膜は、蛍光体層表面に粘着層(PD-S1:パナック株式会社製)付きポリエステルフィルム(4AF53:東レ株式会社製)をダイヤフラム式真空ラミネータ(MVLP500/600:株式会社名機製作所製)で貼り付けることで形成した。評価結果を表2に示す。 The protective film is a diaphragm type vacuum laminator (MVLP500 / 600: manufactured by Meiki Seisakusho Co., Ltd.) with a polyester film (4AF53: manufactured by Toray Industries, Inc.) with an adhesive layer (PD-S1: manufactured by Panac Co., Ltd.) on the phosphor layer surface. It was formed by pasting. The evaluation results are shown in Table 2.
 (実施例12)
 離型フィルムの厚みを3μmに変更した以外は、実施例4と同様の方法によりシンチレータパネルを得て、実施例1と同様の評価をした。評価結果を表3に示す。
Example 12
A scintillator panel was obtained by the same method as in Example 4 except that the thickness of the release film was changed to 3 μm, and the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 3.
 (実施例13)
 離型フィルムの厚みを110μmに変更した以外は、実施例4と同様の方法によりシンチレータパネルを得て、実施例1と同様の評価をした。評価結果を表3に示す。
(Example 13)
A scintillator panel was obtained by the same method as in Example 4 except that the thickness of the release film was changed to 110 μm, and the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 3.
 (実施例14)
 離型フィルムの厚みを75μmに変更した以外は、実施例4と同様の方法によりシンチレータパネルを得て、実施例1と同様の評価をした。評価結果を表3に示す。
(Example 14)
A scintillator panel was obtained by the same method as in Example 4 except that the thickness of the release film was changed to 75 μm and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 3.
 (実施例15)
 27.5質量部の有機溶液に、76.5質量部の蛍光体粉末を混合して、蛍光体ペーストを作製し、蛍光体層の空隙率を40%とした以外は、実施例4と同様の方法によりシンチレータパネルを得て、実施例1と同様の評価をした。評価結果を表3に示す。
(Example 15)
Except that 76.5 parts by mass of the phosphor powder was mixed with 27.5 parts by mass of the organic solution to prepare a phosphor paste, and the porosity of the phosphor layer was set to 40%. A scintillator panel was obtained by the method described above and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 3.
 (実施例16)
 30質量部の有機溶液に、70質量部の蛍光体粉末を混合して、蛍光体ペーストを作製し、蛍光体層の空隙率を50%とした以外は、実施例4と同様の方法によりシンチレータパネルを得て、実施例1と同様の評価をした。評価結果を表3に示す。
(Example 16)
A scintillator was prepared in the same manner as in Example 4 except that 70 parts by mass of phosphor powder was mixed with 30 parts by mass of an organic solution to prepare a phosphor paste, and the porosity of the phosphor layer was 50%. A panel was obtained and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 3.
 (実施例17)
 35質量部の有機溶液に、65質量部の蛍光体粉末を混合して、蛍光体ペーストを作製し、蛍光体層の空隙率を60%とした以外は、実施例4と同様の方法によりシンチレータパネルを得て、実施例1と同様の評価をした。評価結果を表3に示す。
(Example 17)
A scintillator was prepared in the same manner as in Example 4 except that 65 parts by mass of phosphor powder was mixed with 35 parts by mass of an organic solution to prepare a phosphor paste, and the porosity of the phosphor layer was 60%. A panel was obtained and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 3.
 (実施例18)
 接着層の厚みを125μmに変更した以外は、実施例4と同様の方法によりシンチレータパネルを得て、実施例1と同様の評価をした。評価結果を表4に示す。
(Example 18)
A scintillator panel was obtained by the same method as in Example 4 except that the thickness of the adhesive layer was changed to 125 μm and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 4.
 (比較例1)
 1回目の裁断を行わず、ハーフカットによる把持部の形成を行わなかった以外は、実施例1と同様の方法によりシンチレータパネルを得て、実施例1と同様の評価をした。評価結果を表4に示す。
(Comparative Example 1)
A scintillator panel was obtained by the same method as in Example 1 except that the first cutting was not performed and the grip part was not formed by half cut, and the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 4.
 得られたシンチレータパネルの離型シートは掴むことができず、引っ掻いて剥離することで蛍光体層表面の損傷および蛍光体層のPETフィルム界面からの剥がれ損傷が発生した。 The release sheet of the obtained scintillator panel could not be gripped, and scratching and peeling caused damage to the phosphor layer surface and peeling damage from the PET film interface of the phosphor layer.
 (比較例2)
 蛍光体層表面に実施例11と同様の保護膜を形成した以外は、比較例1と同様の方法によりシンチレータパネルを得て、実施例1と同様の評価をした。評価結果を表4に示す。
(Comparative Example 2)
A scintillator panel was obtained by the same method as in Comparative Example 1 except that a protective film similar to that in Example 11 was formed on the phosphor layer surface, and the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 4.
 (比較例3)
 ハーフカットを行わずに、1回の裁断によって全ての角部の形状を曲率半径R=4mmの円弧状に裁断し、把持部を設けなかったこと以外は、実施例4と同様の方法によりシンチレータパネルを得て、実施例1と同様の評価をした。評価結果を表4に示す。
(Comparative Example 3)
The scintillator was made in the same manner as in Example 4 except that all the corners were cut into a circular arc with a radius of curvature R = 4 mm by a single cutting without carrying out half-cutting, and no grip was provided. A panel was obtained and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 4.
 (比較例4)
 蛍光体層表面に実施例11と同様の保護膜を形成した以外は、比較例3と同様の方法によりシンチレータパネルを得て、実施例1と同様の評価をした。評価結果を表4に示す。
(Comparative Example 4)
A scintillator panel was obtained by the same method as in Comparative Example 3 except that a protective film similar to that in Example 11 was formed on the phosphor layer surface, and the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
1 放射線画像検出装置
2 シンチレータパネル
3 光電変換撮像素子基板
4 基板
5 蛍光体層
6 離型シート
7 接着層
8 光電変換層
9 出力層
10 基板
11 ハーフカット
12 シンチレータパネル本体
13 シンチレータパネルの切れ端
14 把持部
DESCRIPTION OF SYMBOLS 1 Radiation image detection apparatus 2 Scintillator panel 3 Photoelectric conversion image pick-up element board | substrate 4 Substrate 5 Phosphor layer 6 Release sheet 7 Adhesion layer 8 Photoelectric conversion layer 9 Output layer 10 Substrate 11 Half cut 12 Scintillator panel main body 13 Snip 14 of the scintillator panel Part

Claims (10)

  1. 基板、蛍光体層、および接着層を有するシンチレータパネルと、前記接着層上に積層された離型シートを含む離型シート付きシンチレータパネルであって、前記離型シート付きシンチレータパネルの少なくとも1箇所の角部において、前記シンチレータパネルに切り欠きが設けられ、前記離型シートが前記シンチレータパネルからはみ出した把持部を有する離型シート付きシンチレータパネル。 A scintillator panel having a substrate, a phosphor layer, and an adhesive layer; and a release sheet-attached scintillator panel including a release sheet laminated on the adhesive layer, wherein the scintillator panel having the release sheet is at least one place. A scintillator panel with a release sheet in which a cutout is provided in the scintillator panel at a corner, and the release sheet has a gripping part protruding from the scintillator panel.
  2. 前記把持部において、シンチレータパネルの角部が曲線形状を有する請求項1記載の離型シート付きシンチレータパネル The scintillator panel with a release sheet according to claim 1, wherein corners of the scintillator panel have a curved shape in the grip portion.
  3. 前記シンチレータパネルの角部の曲線半径が1mm以上である請求項2記載の離型シート付きシンチレータパネル。 The scintillator panel with a release sheet according to claim 2, wherein a curve radius of a corner portion of the scintillator panel is 1 mm or more.
  4. 前記把持部において、切り欠きの形状が三角形に切り欠かれた形状である請求項1記載の離型シート付きシンチレータパネル The scintillator panel with a release sheet according to claim 1, wherein, in the grip portion, the shape of the notch is a shape notched in a triangle.
  5. 前記把持部において、切り欠きの形状が辺の長さ1mm以上の直角二等辺三角形である請求項4記載の離型シート付きシンチレータパネル 5. The scintillator panel with a release sheet according to claim 4, wherein in the grip portion, the shape of the notch is a right isosceles triangle having a side length of 1 mm or more.
  6. 前記接着層の厚みが3~100μmである請求項1~5のいずれか一項に記載の離型シート付きシンチレータパネル。 The scintillator panel with a release sheet according to any one of claims 1 to 5, wherein the adhesive layer has a thickness of 3 to 100 袖 m.
  7. 前記蛍光体層の空隙率が1~50%である請求項1~6のいずれか一項に記載の離型シート付きシンチレータパネル。 The scintillator panel with a release sheet according to any one of claims 1 to 6, wherein a porosity of the phosphor layer is 1 to 50%.
  8. 前記把持部以外の箇所において、シンチレータパネルと、離型シートの大きさが等しい請求項1~7のいずれか一項に記載の離型シート付きシンチレータパネル。 The scintillator panel with a release sheet according to any one of claims 1 to 7, wherein a size of the release sheet is equal to that of the scintillator panel at a place other than the grip portion.
  9. 前記離型シートの厚みが5~100μmである請求項1~8のいずれか一項に記載の離型シート付きシンチレータパネル。 The scintillator panel with a release sheet according to any one of claims 1 to 8, wherein a thickness of the release sheet is 5 to 100 袖 m.
  10. 前記蛍光体層が、酸硫化ガドリニウムまたはヨウ化セシウムを含有する、請求項1~9のいずれか一項に記載の離型シート付きシンチレータパネル。 The scintillator panel with a release sheet according to any one of claims 1 to 9, wherein the phosphor layer contains gadolinium oxysulfide or cesium iodide.
PCT/JP2017/018246 2016-06-09 2017-05-15 Scintillator panel with mold release sheet WO2017212877A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017527001A JPWO2017212877A1 (en) 2016-06-09 2017-05-15 Scintillator panel with release sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-115051 2016-06-09
JP2016115051 2016-06-09

Publications (1)

Publication Number Publication Date
WO2017212877A1 true WO2017212877A1 (en) 2017-12-14

Family

ID=60578227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018246 WO2017212877A1 (en) 2016-06-09 2017-05-15 Scintillator panel with mold release sheet

Country Status (3)

Country Link
JP (1) JPWO2017212877A1 (en)
TW (1) TW201810292A (en)
WO (1) WO2017212877A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114023845A (en) 2020-07-17 2022-02-08 睿生光电股份有限公司 X-ray device and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081421A (en) * 1999-09-13 2001-03-27 Takara Yojo Shizai Kk Double-coated adhesive sheet
JP2003215252A (en) * 2002-01-23 2003-07-30 Canon Inc Radiation-detection device
JP2004061172A (en) * 2002-07-25 2004-02-26 Canon Inc Radiation conversion sheet for digital x-ray imaging, and digital x-ray imaging equipment
JP2010101722A (en) * 2008-10-23 2010-05-06 Fujifilm Corp Radiation conversion sheet, method for manufacturing the same, and radiation image detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081421A (en) * 1999-09-13 2001-03-27 Takara Yojo Shizai Kk Double-coated adhesive sheet
JP2003215252A (en) * 2002-01-23 2003-07-30 Canon Inc Radiation-detection device
JP2004061172A (en) * 2002-07-25 2004-02-26 Canon Inc Radiation conversion sheet for digital x-ray imaging, and digital x-ray imaging equipment
JP2010101722A (en) * 2008-10-23 2010-05-06 Fujifilm Corp Radiation conversion sheet, method for manufacturing the same, and radiation image detector

Also Published As

Publication number Publication date
TW201810292A (en) 2018-03-16
JPWO2017212877A1 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
JP6241132B2 (en) Scintillator plate and radiation detection panel
US20150316659A1 (en) Radiation detection device and method for manufacturing the same
US9316750B2 (en) Radiation image detecting device and radiation image capturing system
WO2015076150A1 (en) Scintillator panel
JP6435861B2 (en) Three-dimensional structure manufacturing method, scintillator panel manufacturing method, and scintillator panel
JP5535670B2 (en) Manufacturing method of radiation image detector
US10254415B2 (en) Scintillator panel for X-ray talbot imaging apparatus, image detecting panel for X-ray talbot imaging apparatus, and X-ray talbot imaging apparatus
JP2019023579A (en) Scintillator
JP6926726B2 (en) Radiation image detection panel and radiation detection device
WO2017212877A1 (en) Scintillator panel with mold release sheet
JP7110588B2 (en) Scintillator panel and radiation image detection device
US10761220B2 (en) Laminated scintillator panel
JP2019060821A (en) Panel for x-ray talbot imaging
US10775518B2 (en) Method for manufacturing layered scintillator panel
US10741298B2 (en) Scintillator panel and production method for same, and radiation detection apparatus
JP2020159938A (en) Scintillator panel and solid state detector
US11958785B2 (en) Bonding scintillator material to produce large panels or other shapes
JP7163651B2 (en) Scintillator panel and manufacturing method thereof
US20210139383A1 (en) Bonding scintillator material to produce large panels or other shapes
CN114958225A (en) Sheet for sealing optical semiconductor element and method for manufacturing optical semiconductor device
JP2019105547A (en) Scintillator panel, radiation image detection device and manufacturing method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017527001

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810058

Country of ref document: EP

Kind code of ref document: A1