WO2017212852A1 - Organic electroluminescent element and lighting fixture for vehicles - Google Patents

Organic electroluminescent element and lighting fixture for vehicles Download PDF

Info

Publication number
WO2017212852A1
WO2017212852A1 PCT/JP2017/017675 JP2017017675W WO2017212852A1 WO 2017212852 A1 WO2017212852 A1 WO 2017212852A1 JP 2017017675 W JP2017017675 W JP 2017017675W WO 2017212852 A1 WO2017212852 A1 WO 2017212852A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
electrode layer
layer
organic electroluminescence
Prior art date
Application number
PCT/JP2017/017675
Other languages
French (fr)
Japanese (ja)
Inventor
一樹 加藤
松村 智之
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2018522380A priority Critical patent/JP6913088B2/en
Publication of WO2017212852A1 publication Critical patent/WO2017212852A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces

Definitions

  • the present invention relates to an organic electroluminescence element and a vehicular lamp using the organic electroluminescence element.
  • an organic EL element using a light emitting material that realizes high luminous efficiency by using all of singlet excitons and triplet excitons for electroluminescence (hereinafter also referred to as EL) has been proposed.
  • EL organic EL element
  • a material in a practical range has been developed with both high light emission efficiency and light emission lifetime, and is used for display and illumination.
  • the present invention has been made in view of the above problems and situations, and provides an organic electroluminescence element having high visibility suitable for a vehicle lamp, and visibility by using this organic electroluminescence element.
  • An object of the present invention is to provide an improved vehicular lamp.
  • the present invention includes a flexible substrate, a first electrode layer provided on the flexible substrate, a second electrode layer provided above the first electrode layer, an organic At least two light emitting units having a light emitting layer made of a material and disposed so as to overlap each other between the first electrode layer and the second electrode layer, and an intermediate electrode layer disposed between the light emitting units And the at least two light emitting units have different chromaticities of the respective emitted light, and at least one of the at least two light emitting units is connected to the flexible substrate side or the second light emitting unit.
  • this invention is also a vehicle lamp using such an organic electroluminescent element.
  • the present invention having such a configuration, it is possible to obtain an organic electroluminescence element having high visibility suitable for a vehicle lamp, and the use of this organic electroluminescence element improves visibility.
  • the obtained vehicle lamp can be obtained.
  • FIG. 1 is a cross-sectional view schematically showing an organic electroluminescence element 1 according to the embodiment.
  • the organic electroluminescence element 1 includes a flexible substrate 10, a first electrode layer 11, a first light emitting unit 21, an intermediate electrode layer 30, a second light emitting unit 22, and a second electrode layer 12 in this order. It is a laminated tandem structure. Is this organic electroluminescence device 1 of the bottom emission type that extracts the emitted light h1 and the emitted light h2 generated by the first light emitting unit 21 and the second light emitting unit 22 from the flexible substrate 10 side as shown in the figure? Alternatively, the top emission type may be taken out from the reverse.
  • the first electrode layer 11 and the intermediate electrode layer 30 on the light extraction side are configured as transparent electrodes having optical transparency. If the emitted light h1 and h2 are extracted by interference due to the microcavity effect, the first electrode layer 11 and the intermediate electrode layer 30 are configured as electrodes having transflective properties.
  • the second electrode layer 12 is configured as a reflective electrode.
  • a voltage is applied from the external power source to the first electrode layer 11 and the intermediate electrode layer 30, and thereby, emitted light h ⁇ b> 1 is generated in the first light emitting unit 21.
  • a voltage is applied from the external power source to the intermediate electrode layer 30 and the second electrode layer 12, whereby emitted light h ⁇ b> 2 is generated in the second light emitting unit 22.
  • Generation of the emitted light h ⁇ b> 1 and the emitted light h ⁇ b> 2 is individually controlled by adjusting voltage application to the first electrode layer 11, the intermediate electrode layer 30, and the second electrode layer 12.
  • the first electrode layer 11, the second electrode layer 12, and the intermediate electrode layer 30 to which a voltage is applied by being connected to an external power source needs to suppress sheet resistance to some extent. Therefore, the first electrode layer 11 and the intermediate electrode layer 30 configured to have light transmittance need to have a certain thickness, and thus are configured as semi-transmissive and semi-reflective electrodes.
  • the emitted light h1 generated by the first light emitting unit 21 and the emitted light h2 generated by the second light emitting unit 22 have different chromaticities.
  • the emitted light h1 and the emitted light h2 are also different in maximum peak wavelength.
  • the difference between the emitted light h1 and the emitted light h2 is due to the difference in the configuration of the first light emitting unit 21 and the second light emitting unit 22, and will be described in detail later.
  • the organic electroluminescent element 1 including the first light emitting unit 21 and the second light emitting unit 22 as described above emits light extracted from the light extraction surface S when the outermost surface on the flexible substrate 10 side is the light extraction surface S.
  • the light distribution characteristics of the lights h1 and h2 are characteristic. Further, the chromaticity of the emitted lights h1 and h2 is also characteristic.
  • the light distribution characteristics of the emitted lights h1 and h2 the chromaticity of the emitted lights h1 and h2 and the details of the components constituting the organic electroluminescent element 1 will be described in this order.
  • At least one of the emitted light h1 and the emitted light h2 has the following light distribution characteristics. That is, the normal N direction of the light extraction surface S is the front, the front luminance is [L1], the luminance at a viewing angle of 20 ° with respect to the normal N is [L2], and the luminance at a viewing angle of 60 ° with respect to the normal [N]. Let [L3]. In this case, the light distribution characteristics of at least one of the emitted light h1 and the emitted light h2 are 0.85 ⁇ [L2] / [L1] ⁇ 1.20 and [L3] / [L1] ⁇ 0.50. It is.
  • the organic electroluminescence element 1 is provided as a vehicular lamp at the rear corner portion of the vehicle, for example, with the light extraction surface S curved in a convex direction, the vehicle is moved backward. It is possible to make uniform the extraction intensity of the emitted lights h1 and h2 on the light extraction surface S when viewed from the vehicle. This also makes it possible to improve the visibility of the emitted lights h1 and h2 when the vehicle is viewed from the rear vehicle.
  • the light distribution characteristics as described above are preferably 0.90 ⁇ [L2] / [L1] ⁇ 1.10 and [L3] / [L1] ⁇ 0.45. The effect of can be further enhanced. Moreover, it is preferable that the above light distribution characteristics are provided for both the emitted light h1 and the emitted light h2.
  • the light distribution characteristic of the organic electroluminescence element 1 according to the embodiment is a light distribution shape having a light distribution degree in the normal N direction stronger than Lambertian which is the intensity of light from the uniform diffusion light source.
  • the light distribution shape may be weak.
  • Table 1 shows, as an example of the light distribution characteristics of the organic electroluminescence element 1 according to the embodiment, the light distribution shapes 1 and 2 and the distribution in the normal N direction when the degree of light distribution in the normal N direction is strong. Examples of [L2] / [L1] and [L3] / [L1] for the light distribution shapes 3 and 4 when the degree of light is weak are shown.
  • the light distribution shape 1 has a strong light distribution degree in the normal N direction, and the value of [L2] / [L1] is out of the range of 0.85 ⁇ [L2] / [L1] ⁇ 1.20.
  • Luminance [L1] to [L3] is set by setting the organic electroluminescence device 1 on a rotating stage that automatically rotates and measuring the light intensity distribution and spectrum using a spectral luminance meter (CS-2000, manufactured by Konica Minolta). Can be requested. These measurements are performed with respect to the normal line N in a state in which each of the first light emitting unit 21 and the second light emitting unit 22 is caused to emit light by individually flowing a constant current amount (5 mA / cm 2 ). It is carried out in the range of 80 °.
  • the luminance values [L1] to [L3] are measured from the measured value in the normal [N] direction, the measured value at a viewing angle of 20 ° with respect to the normal N, and the measured value at a viewing angle of 60 ° with respect to the normal N. ].
  • Examples of a method for adjusting the luminance [L1] to [L3] of the emitted lights h1 and h2 within the range of the above light distribution characteristics include the following two methods.
  • the first method uses a microcavity effect between the first electrode layer 11, the intermediate electrode layer 30, and the second electrode layer 12.
  • the first electrode layer 11, the intermediate electrode layer 30, and the second electrode layer 12 are adjusted. Thereby, the emitted lights h1 and h2 of each emission wavelength are taken out from the light extraction surface S by causing interference between the first electrode layer 11, the intermediate electrode layer 30, and the second electrode layer 12.
  • the directivity in the light extraction direction is adjusted by adjusting the degree of interference between the emitted lights h1 and h2 according to the thickness design of each layer constituting the first light emitting unit 21 and the second light emitting unit 22 and the intermediate electrode layer 30. Is controlled. Thereby, the luminances [L1] to [L3] of the emitted lights h1 and h2 are adjusted so as to satisfy the above-described light distribution characteristics.
  • the second method is a method of providing an optical film, not shown here, on the light extraction surface S side of the organic electroluminescence element 1.
  • the optical film is made of a translucent resin material, for example, a microlens array or dot pattern having a plurality of convex portions, or a sheet-like optical film or optical sheet having a diffraction grating or an uneven structure, or an optical multilayer having different refractive indexes.
  • An optical film made of a film can be used.
  • the luminance [L1] to [L3] of the emitted lights h1 and h2 is obtained by applying the first method described above to the above light distribution characteristics. It is preferable to adjust within the range.
  • ⁇ Chromaticity of emitted light h1, h2> Regarding the chromaticity of the emitted light h1 and the emitted light h2, it is preferable that one of them is red and the other is amber. More preferably, the emitted light h1 from the first light emitting unit 21 disposed on the light extraction side is set to the longer wavelength red emitted light, while the second light emitting unit 22 disposed on the second electrode layer 12 side.
  • the emitted light h ⁇ b> 2 from the light is preferably amber-colored light having a shorter wavelength. As a result, it is possible to suppress the attenuation due to plasmon absorption of red having a long wavelength, so that high efficiency is expected as an organic electroluminescence element.
  • the chromaticity of the organic electroluminescence element of the present invention is not particularly limited, and various ranges of chromaticity can be applied.
  • red and amber are preferred.
  • the red emitted light preferably has a front chromaticity of 0.29 ⁇ y ⁇ 0.34 and y + x ⁇ 0.98 in the CIE-xy chromaticity diagram.
  • the amber-colored emitted light preferably satisfies y ⁇ 0.39, y ⁇ 0.79 ⁇ 0.67x, and y ⁇ x ⁇ 0.12 in the CIE-xy chromaticity diagram. Note that x and y in the chromaticity range are chromaticity x and y in the CIE 1931 color system.
  • the chromaticity of the emitted lights h1 and h2 can be measured using, for example, a spectral radiance meter CS-2000 (manufactured by Konica Minolta). At this time, each of the first light emitting unit 21 and the second light emitting unit 22 is individually given a predetermined current density, and the chromaticities of the generated emitted lights h1 and h2 are measured.
  • the front luminance [L1] of the organic electroluminescent device of the present invention can be arbitrarily adjusted depending on the area to be used and is not particularly limited, but can be applied in the range of 100 to 50000 cd / m 2 , for example.
  • each component of organic electroluminescence element 1 ⁇ Details of each component of organic electroluminescence element 1> Next, the detail of each component of the organic electroluminescent element 1 which has the above light distribution characteristics is demonstrated.
  • each component of the organic electroluminescence element 1 described below is an example for describing the embodiment, and any one of the emitted light h1 and the emitted light h2 having the above-described light distribution characteristics and chromaticity is included. Other configurations can be applied as appropriate within the range obtained.
  • Each of the first electrode layer 11 and the second electrode layer 12 serves as an anode for supplying holes to the first light emitting unit 21 or the second light emitting unit 22 sandwiched between the first electrode layer 11 and the intermediate electrode layer 30. It functions as a cathode for supplying electrons.
  • one of the first electrode layer 11 and the intermediate electrode layer 30 functions as an anode for supplying holes to the first light emitting unit 21, and the other is the first. It functions as a cathode for supplying electrons to one light emitting unit 21.
  • the case where the first electrode layer 11 is used as an anode and the intermediate electrode layer 30 is used as a cathode for the first light emitting unit 21 is illustrated.
  • one of the second electrode layer 12 and the intermediate electrode layer 30 functions as an anode for supplying holes to the second light emitting unit 22, and the other is It functions as a cathode for supplying electrons to the second light emitting unit 22.
  • the second light emitting unit 22 is used with the second electrode layer 12 as a cathode and the intermediate electrode layer 30 as an anode is illustrated.
  • the first electrode layer 11 and the second electrode layer 12 as described above are configured using materials suitable for each as shown below, depending on whether they are used as an anode or a cathode. Further, the first electrode layer 11 and the second electrode layer 12 are selected from materials having excellent light transmittance or light reflectivity from the following materials depending on whether or not the electrodes are arranged on the light extraction side. Used. Below, the anode and cathode which comprise the 1st electrode layer 11 or the 2nd electrode layer 12 are demonstrated.
  • an anode material used for the organic electroluminescent element As an anode material used for the organic electroluminescent element 1, an electrode material made of a metal, an alloy, an electrically conductive compound, and a mixture thereof having a high work function (4 eV or more, preferably 4.3 V or more) is used. Specific examples of such an electrode substance include metals such as Au and Ag, alloys thereof, and conductive transparent materials such as CuI, indium titanium oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (registered trademark: In 2 O 3 —ZnO) that can form a transparent conductive film may be used.
  • IDIXO registered trademark: In 2 O 3 —ZnO
  • the anode can be produced by depositing the anode material on a substrate using a method such as vapor deposition or sputtering.
  • the transmittance of the anode is set to be greater than 10%, or a semi-transmissive / semi-reflective electrode is formed.
  • the sheet resistance of the anode is several hundred ⁇ / sq. The following is preferred.
  • the thickness of the anode is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 to 200 nm, although it depends on the material.
  • cathode As a cathode material used for the organic electroluminescence element 1, an electrode substance made of a metal, an alloy, an electrically conductive compound, and a mixture thereof having a small work function (4 eV or less) is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, aluminum, silver, silver-based alloys, aluminum / silver mixtures, rare earth metals, and the like.
  • the cathode can be produced by depositing the cathode material on a substrate using a method such as vapor deposition or sputtering.
  • the transmittance of the cathode is made larger than 10%, or a semi-transmissive and semi-reflective electrode is used.
  • the sheet resistance of the cathode is several hundred ⁇ / sq. The following is preferred.
  • the thickness of the cathode is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the first light emitting unit 21 includes at least one light emitting layer that is provided between the first electrode layer 11 and the intermediate electrode layer 30 and contains a light emitting organic material.
  • the second light emitting unit 22 includes at least one light emitting layer that is provided between the intermediate electrode layer 30 and the second electrode layer 12 and contains an organic material having a light emitting property.
  • first light emitting unit 21 and the second light emitting unit 22 will be collectively described as a light emitting unit.
  • Typical layer configurations of the light emitting unit include the following configurations, but are not limited thereto.
  • the light emitting layer is composed of a single layer or a plurality of layers.
  • an intermediate layer may be provided between these light emitting layers.
  • This intermediate layer may be a layer having the same configuration as the intermediate electrode layer described below, but is a layer that is not connected to an external power source.
  • the electron transport layer is a layer having a function of transporting electrons.
  • the electron transport layer includes an electron injection layer and a hole blocking layer in a broad sense. Further, the electron transport layer may be composed of a plurality of layers.
  • the hole transport layer is a layer having a function of transporting holes.
  • the hole transport layer includes a hole injection layer and an electron blocking layer in a broad sense.
  • the hole transport layer may be composed of a plurality of layers.
  • At least two light emitting units provided in the organic electroluminescence element 1 are light emitting units having a configuration using the same layers and materials except the light emitting layer. Further, each light emitting unit preferably has the same number of light emitting layers. Thereby, the number of materials used can be reduced, and there are advantages in production such as cost and quality control. Furthermore, the vapor deposition process has an advantage in terms of production efficiency such that the film forming chamber can be easily shared by the light emitting units.
  • each layer constituting each light emitting unit has a degree of interference between the emitted lights h1 and h2. It is assumed that a combined film thickness design is made.
  • each layer constituting each light emitting unit includes the first electrode layer 11 of external light incident on the organic electroluminescence element 1 in combination with the thickness design as described above or separately from the thickness design as described above. It is preferable that the film thickness is designed so that interference with the second electrode layer 12 is suppressed. Thereby, the coloring by interference of external light at the time of making the organic electroluminescent element 1 non-light-emission is prevented.
  • the film thickness of each layer can be derived using conventionally known light extraction calculation software.
  • the light extraction calculation software for example, setfos (registered trademark) (manufactured by Fluxim AG) can be used, and the film thickness of each layer is set to a value derived therefrom.
  • the film thickness of the electron transport layer constituting the first light emitting unit 21 and the second light emitting unit 22 is appropriately adjusted between several nm and 200 nm.
  • the electron mobility of the electron transport layer is preferably 10 ⁇ 5 cm 2 / Vs or more.
  • the film thickness of each layer constituting the light emitting unit Is not particularly limited.
  • the entire film thickness of each light emitting unit is within the range of 5 to 200 nm from the viewpoint of ensuring the uniformity of the film to be formed, lowering the driving voltage, and improving the stability of the emission color with respect to the driving current. It is preferable to adjust, and it is more preferable to adjust in the range of 10 to 100 nm or less.
  • the light emitting layer provides a field in which electrons and holes injected from the first electrode layer 11, the second electrode layer 12, the intermediate electrode layer 30, or an adjacent layer are recombined to emit light via excitons. And a layer including a light-emitting organic semiconductor thin film.
  • the light emitting layer preferably contains a light emitting dopant and a host compound.
  • the light-emitting dopant is also referred to as a light-emitting dopant compound, a dopant compound, or simply a dopant.
  • the host compound is also called a matrix material, a light emitting host compound, or simply a host.
  • the formation method of the light emitting layer is not particularly limited, and can be formed by a conventionally known method such as a vacuum deposition method or a wet method. It is preferable to form by the wet method from the manufacturing cost of the organic electroluminescent element 1.
  • FIG. Details of each compound constituting the light emitting layer are as follows.
  • Luminescent dopant As the luminescent dopant, a fluorescent luminescent dopant (also referred to as a fluorescent dopant or a fluorescent compound) and a phosphorescent dopant (also referred to as a phosphorescent dopant or a phosphorescent compound) are preferably used.
  • the concentration of the light-emitting dopant in the light-emitting layer can be arbitrarily determined based on the specific dopant used and the device requirements. The concentration of the light emitting dopant may be contained at a uniform concentration in the film thickness direction of the light emitting layer, or may have an arbitrary concentration distribution.
  • the light emitting layer may contain a plurality of kinds of light emitting dopants.
  • dopants having different structures may be used in combination, or a fluorescent luminescent dopant and a phosphorescent dopant may be used in combination. Thereby, arbitrary luminescent colors can be obtained.
  • one of the emitted lights h1 and h2 is red emitted light and the other is amber emitted light as described above.
  • the emitted light h1 from the first light emitting unit 21 arranged on the flexible substrate 10 side is red emitted light
  • this is achieved by including a red emitting dopant in the light emitting layer.
  • the emitted light h2 from the second light emitting unit 22 arranged on the second electrode layer 12 side is amber-colored emitted light
  • a red or green light-emitting dopant having emitted light close to amber is added to the light-emitting layer.
  • red and green light emitting dopants It is achieved by containing alone or a combination of two or three red and green light emitting dopants.
  • a red or green light emitting dopant having emission light close to amber color is contained alone, the light emitting unit is optically designed so that only the emission spectrum near the amber color is taken out. Further, when amber light emission is obtained by combining red and green light-emitting dopants, two kinds of red and green light-emitting dopants are often combined.
  • a 3rd light emission unit may generate
  • white light emission can be obtained by including a plurality of light emission dopants having different light emission colors in the light emitting layer.
  • the combination of light-emitting dopants that exhibit white but examples include a combination of blue and orange, a combination of blue, green, and red.
  • the phosphorescent dopant is a compound in which light emission from an excited triplet is observed.
  • the phosphorescent dopant is a compound that emits phosphorescence at room temperature (25 ° C.), and has a phosphorescence quantum yield of 0 at 25 ° C. .01 or more compounds.
  • a preferable phosphorescence quantum yield is 0.1 or more.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition.
  • the phosphorescence quantum yield in a solution can be measured using various solvents.
  • the phosphorescence emitting dopant used for the light emitting layer should just achieve the said phosphorescence quantum yield (0.01 or more) in any solvent.
  • the phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic electroluminescence element 1.
  • preferable phosphorescent dopants include organometallic complexes having iridium (Ir) as a central metal. More preferably, a complex containing at least one coordination mode of metal-carbon bond, metal-nitrogen bond, metal-oxygen bond, and metal-sulfur bond is preferable.
  • the fluorescent light-emitting dopant is a compound that can emit light from an excited singlet, and is not particularly limited as long as light emission from the excited singlet is observed.
  • Examples of the fluorescent light-emitting dopant include anthracene derivatives, pyrene derivatives, chrysene derivatives, fluoranthene derivatives, perylene derivatives, fluorene derivatives, arylacetylene derivatives, styrylarylene derivatives, styrylamine derivatives, arylamine derivatives, boron complexes, coumarin derivatives, Examples include pyran derivatives, cyanine derivatives, croconium derivatives, squalium derivatives, oxobenzanthracene derivatives, fluorescein derivatives, rhodamine derivatives, pyrylium derivatives, perylene derivatives, polythiophene derivatives, rare earth complex compounds, and the like.
  • a light emitting dopant using delayed fluorescence may be used as the fluorescent light emitting dopant.
  • Specific examples of the luminescent dopant using delayed fluorescence include compounds described in, for example, International Publication No. 2011/156793, Japanese Patent Application Laid-Open No. 2011-213643, Japanese Patent Application Laid-Open No. 2010-93181, and the like.
  • the host compound is a compound mainly responsible for charge injection and transport in the light emitting layer, and light emission of itself is not substantially observed in the organic electroluminescence device 1.
  • it is a compound having a phosphorescence quantum yield of phosphorescence of less than 0.1 at room temperature (25 ° C.), more preferably a compound having a phosphorescence quantum yield of less than 0.01.
  • the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.
  • the excited state energy of a host compound is higher than the excited state energy of the light emission dopant contained in the same layer.
  • a host compound may be used independently or may be used in combination of multiple types. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and it is possible to increase the efficiency of the organic electroluminescence element 1.
  • the compound used for a normal organic electroluminescent element can be mentioned.
  • a low molecular compound, a high molecular compound having a repeating unit, or a compound having a reactive group such as a vinyl group or an epoxy group may be used.
  • Tg glass transition temperature
  • the glass transition point (Tg) is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
  • the intermediate electrode layer 30 functions as an anode for supplying holes to the first light emitting unit 21 and the second light emitting unit 22, or functions as a cathode for supplying electrons.
  • the intermediate electrode layer 30 functions as a cathode for the first light emitting unit 21.
  • the intermediate electrode layer 30 functions as an anode with respect to the first light emitting unit 21.
  • the intermediate electrode layer 30 functions as an anode for the second light emitting unit 22.
  • the intermediate electrode layer 30 functions as a cathode for the second light emitting unit 22.
  • the intermediate electrode 30 is electrically connected to the first electrode layer 11 via a power source, and is electrically connected to the second electrode layer 12 via a power source.
  • such an intermediate electrode layer 30 is made of a transparent conductive material having optical transparency.
  • the film thickness of the intermediate electrode layer 30 is as well as the film thickness of each layer constituting the light emitting unit. Also, it is assumed that the film thickness is designed in accordance with the degree of interference of each light emitted from each light emitting unit.
  • the intermediate electrode layer 30 is designed so that interference with external light incident on the organic electroluminescence element 1 can be suppressed in combination with the above-described thickness design or separately from the above-described thickness design. It is preferable that Thereby, the coloring by interference of external light at the time of making the organic electroluminescent element 1 non-light-emission is prevented.
  • the thickness of the intermediate electrode layer 30 is preferably 10 nm or more, more preferably 15 nm or more.
  • the flexible substrate 10 is not particularly limited as long as it is a flexible plastic or glass material, and a resin film or the like can be preferably used. Moreover, when the organic electroluminescent element 1 is a bottom emission structure which takes out emitted light h1, h2 from the flexible substrate 10 side, the flexible substrate 10 shall have a light transmittance.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, arton (trade name, manufactured by JSR) or abortion (trade name,
  • a gas barrier film may be formed on the surface of the resin film by using an inorganic film, an organic film, or a hybrid film of both.
  • the gas barrier film has a water vapor permeability (25 ⁇ 0.5 ° C., humidity 90 ⁇ 2% RH) measured by a method according to JIS K 7129-1992, of 0.01 g / (m 2 ⁇ 24 h) or less.
  • a gas barrier film is preferred.
  • the oxygen permeability measured by a method according to JIS K 7126-1987 is 10 ⁇ 3 mL / (m 2 ⁇ 24 h ⁇ atm) or less
  • the water vapor permeability is 10 ⁇ 5 g / (m 2 ⁇ 24h)
  • the following high gas barrier films are preferred.
  • any material may be used as long as it has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • stack both alternately several times there is no limitation in particular about the formation method of a gas barrier film
  • the organic electroluminescence element 1 has a sealing unit for sealing a light emitting unit configured using an organic material.
  • a sealing means a well-known material and a formation method can be employ
  • a known protective film or protective plate may be provided outside the sealing means within a range that does not impair flexibility.
  • the anode to be the transparent first electrode layer 11, the first light emitting unit 21, the intermediate electrode layer 30, the second light emitting unit 22, and the second light-reflecting second from the flexible substrate 10 side, the anode to be the transparent first electrode layer 11, the first light emitting unit 21, the intermediate electrode layer 30, the second light emitting unit 22, and the second light-reflecting second.
  • the bottom emission type organic electroluminescence element 1 in which the cathode to be the electrode layer 12 was laminated in this order was illustrated.
  • the organic electroluminescence of the present invention is not limited to such a configuration.
  • the stacking order of the layers may be reversed, or the anode and the cathode may be reversed, that is, the first electrode layer 11 may be a cathode and the second electrode layer 12 may be an anode.
  • the cathode is a transparent electrode and the anode is a reflective electrode.
  • the configuration of the light emitting unit, the number of stacked layers, and the number of stacked light emitting layers are not particularly limited, and a configuration capable of realizing a desired organic electroluminescence element can be obtained.
  • the organic electroluminescence element may have a configuration in which three or more light emitting units are stacked.
  • FIG. 3 is a top view of the vehicle for explaining a schematic configuration of the vehicular lamp according to the embodiment.
  • the vehicular lamp 2 according to the embodiment described with reference to this figure is configured to include the organic electroluminescence element 1 according to the above-described embodiment.
  • a tail lamp, a stop lamp, a back lamp, a turn of the vehicle 200 are provided. It can be applied to any lamp.
  • the organic electroluminescent element 1 is It is suitably used as a tail lamp, a stop lamp, and a turn lamp.
  • a headlamp 201 is provided at the front portion of the vehicle 200, and a vehicle lamp 2 is provided at the rear corner portion of the vehicle 200.
  • the vehicular lamp 2 is configured to distribute emitted light to the rear of the vehicle 200.
  • the directions viewed from the driver of the vehicle 200 are described as front, rear, left, and right.
  • the vehicular lamp 2 includes a housing 203 that is attached to a recess formed in a rear corner portion of the vehicle 200, a translucent cover 204 that is formed in accordance with the shape of the vehicle body of the vehicle 200 and covers the housing 203, and the housing 203 and the translucent cover 204. And the organic electroluminescence element 1 as a light source provided in the lamp chamber 205 formed between the two.
  • the organic electroluminescence element 1 is formed in a belt shape extending in the left-right direction of the vehicle 200, and is held by the housing 203 in a state where a part thereof is curved in a convex shape according to the shape of the vehicle body of the vehicle 200.
  • the material of the light emitting layer of the organic electroluminescence element 1 is appropriately selected, so that red light h1 for tail lamps and stop lamps and amber light h2 for turn lamps are generated. Has been. In addition, it is good also as what emits the emitted light of said each color by using what shows white light as the organic electroluminescent element 1, and providing a color filter.
  • the organic electroluminescence element 1 provided as the vehicular lamp 2 may have different light emitting areas of the first light emitting unit 21 and the second light emitting unit 22. That is, the light emitting region of the first light emitting unit 21 is a portion where the first light emitting unit 21 is sandwiched between the first electrode layer 11 and the intermediate electrode layer 30. The light emitting region of the second light emitting unit 22 is a portion where the second light emitting unit 22 is sandwiched between the intermediate electrode layer 30 and the second electrode layer 12. And these two light emission area
  • regions may be shifted and arrange
  • the organic electroluminescent element 1 of the embodiment described above since the light extraction surface S can be used by being curved by using the flexible substrate 10, the design characteristics according to the vehicle body design can be improved.
  • a high vehicle lamp 2 can be configured.
  • the light distribution characteristics of the emitted lights h1 and h2 from the first light emitting unit 21 and the second light emitting unit 22 stacked on the flexible substrate 10 are limited as described above. Thereby, for example, when the light extraction surface S of the organic electroluminescence element 1 is curved in a convex direction and provided at the rear corner portion of the vehicle as a vehicle lamp, the visibility of the emitted light h1 and h2 is improved. be able to.
  • the emitted light is individually emitted from the first light emitting unit 21 and the second light emitting unit 22. h1 and h2 were taken out and the toned light was emitted. As a result, red light for the tail lamp and amber light for the turn lamp can be emitted from the same lamp, and the design of the vehicular lamp 2 can also be improved.
  • each layer constituting the first light emitting unit 21 and the second light emitting unit 22 in designing the film thickness to make the emitted light h1 and h2 have specific light distribution characteristics.
  • the film thickness of the intermediate electrode layer 30 can be changed, and the degree of freedom in designing the film thickness is improved.
  • the degree of freedom in designing the film thickness is improved, it is possible to adopt a configuration that suppresses interference of external light incident on the organic electroluminescence element 1, thereby preventing coloring of the vehicular lamp 2 due to interference of external light. Is also possible.
  • a polyethylene naphthalate film (a film made by Teijin DuPont Co., Ltd., hereinafter referred to as a PEN film) was prepared.
  • An inorganic gas barrier layer made of silicon oxide (SiOx) is formed on one main surface of the PEN film using an atmospheric pressure plasma discharge treatment apparatus having a configuration described in Japanese Patent Application Laid-Open No. 2004-68143.
  • a flexible substrate 10 with a gas barrier layer was formed to a thickness of 500 nm.
  • the flexible substrate 10 with a gas barrier layer was fixed to a base material holder of a commercially available vacuum deposition apparatus, and the substrate holder was attached to a vacuum chamber of the vacuum deposition apparatus. Next, after reducing the pressure in the vacuum chamber to 4 ⁇ 10 ⁇ 4 Pa, a heating boat containing the following compound 1 which is a nitrogen-containing compound was energized and heated. Thus, Compound 1 was deposited on the gas barrier layer of the flexible substrate 10 at a deposition rate of 0.1 to 0.2 nm / second to form a base layer having a thickness of 15 nm.
  • the flexible substrate 10 on which the base layer was formed was mounted in a vacuum chamber of a vacuum deposition apparatus. Next, after reducing the pressure in the vacuum chamber to 4 ⁇ 10 ⁇ 4 Pa, the heating boat containing silver (Ag) was energized and heated. Thus, the first electrode layer 11 made of silver (Ag) having a film thickness of 13 nm was formed at a deposition rate of 0.1 to 0.2 nm / second.
  • the first electrode layer 11 was a transparent electrode and formed as an anode.
  • the 1st light emission unit 21 On the 1st electrode layer 11 as an anode, the 1st light emission unit 21 was formed in accordance with the procedure shown below.
  • the flexible substrate 10 formed up to the first electrode layer 11 is dried in a glove box having a dew point of ⁇ 80 ° C. or less and an oxygen concentration of 1 ppm or less, and then the first light emitting unit 21 is formed without being exposed to the atmosphere from the glove box. It transferred to the vacuum chamber of a vacuum evaporation system.
  • a resistance heating boat filled with the optimum amount of the constituent materials of each layer was attached.
  • the resistance heating boat used was made of a resistance heating material made of molybdenum or tungsten.
  • a resistance heating boat containing a compound M-1 (MTDATA) represented by the following chemical formula was energized and heated.
  • Compound M-1 (MTDATA) was deposited on the first electrode layer 11 at a deposition rate of 0.1 nm / second to form a 17 nm-thick hole injection layer.
  • a resistance heating boat containing a compound M-2 ( ⁇ -NPD) represented by the following chemical formula was heated by energization.
  • the compound M-2 ( ⁇ -NPD) was vapor-deposited on the hole injection layer to form a 20 nm-thick hole transport layer (HTL).
  • the compound GD-1, the compound RD-1, and the compound H-2 represented by the following chemical formula have a concentration of 10% by volume for the compound GD-1 and 10% by volume for the compound RD-1.
  • co-evaporation was performed at a deposition rate of 0.1 nm / second to form a phosphorescent light emitting layer having a thickness of 35 nm on the hole transport layer (HTL).
  • HTL hole transport layer
  • Compound RD-1 has a maximum peak wavelength of 620 nm.
  • the resistance heating boat containing the compound 1 was energized and heated. Thereby, Compound 1 was deposited on the phosphorescent light emitting layer at a deposition rate of 0.1 nm / second to form an electron transport layer (ETL) having a film thickness of 22 nm.
  • ETL electron transport layer
  • a resistance heating boat containing lithium fluoride (LiF) was energized and heated. Thereby, lithium fluoride (LiF) was deposited on the electron transport layer (ETL) at a deposition rate of 0.1 nm / second to form an electron injection layer having a thickness of 1 nm.
  • the first light emitting unit 21 having a red phosphorescent light emitting layer was formed.
  • the intermediate electrode layer 30 was formed on the first light emitting unit 21 as follows. First, aluminum (Al) and silver (Ag) are put in each resistance heating boat made of tungsten, and these resistance heating boats and the flexible substrate 10 on which the first light emitting unit 21 is formed are vacuum-deposited. In a vacuum chamber. The inside of the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then each resistance heating boat was independently energized and heated. Thereby, aluminum (Al) and silver (Ag) are vapor-deposited in this order on the 1st light emission unit 21, and the intermediate electrode layer 30 which consists of a film thickness ratio of aluminum (Al) 1nm and silver (Ag) 15nm is formed. did.
  • the second light emitting unit 22 was formed on the intermediate electrode layer 30 as follows.
  • the above compound M-1 was deposited on the intermediate electrode layer 30 at a deposition rate of 0.1 nm / second to form a hole injection layer having a thickness of 18 nm.
  • the above-described compound M-2 was deposited on the hole injection layer to form a 95 nm-thick hole transport layer.
  • the above-mentioned compound GD-1, the following compound RD-2, and the above-mentioned compound H-2 are adjusted so that the compound GD-1 has a volume ratio of 10% and the compound RD-2 has a volume ratio of 10%.
  • Compound RD-2 has a maximum peak wavelength of 605 nm.
  • the above-described compound 1 was deposited at a deposition rate of 0.1 nm / second to form an electron transport layer having a thickness of 55 nm.
  • lithium fluoride (LiF) was deposited at a deposition rate of 0.1 nm / second to form an electron injection layer having a thickness of 1 nm.
  • the second light emitting unit 22 having an amber phosphorescent light emitting layer was formed.
  • the second electrode layer 12 is a light impermeable reflective electrode, and was formed as a cathode.
  • An adhesive was applied to a non-alkali glass substrate having a thickness of 0.7 mm and dried at 120 ° C. for 2 minutes to form an adhesive layer having a thickness of 20 ⁇ m.
  • an aluminum laminate film was prepared in which a polyethylene terephthalate film having a thickness of 50 ⁇ m was bonded to an aluminum foil having a thickness of 100 ⁇ m. The polyethylene terephthalate film side of the aluminum laminate film was bonded to the previous adhesive layer to obtain a sealing film. Thereafter, the laminate of the aluminum foil, the polyethylene terephthalate film, and the adhesive layer was peeled off from the alkali-free glass substrate, and the adhesive layer side was covered with a release sheet to obtain a sealing film.
  • the release sheet After leaving this sealing film in a nitrogen atmosphere for 24 hours or more, the release sheet is removed, the adhesive film side of the sealing film is disposed so as to face the second electrode layer 12, and a vacuum heated to 80 ° C. It bonded to the flexible substrate 10 with the laminator. Furthermore, it sealed by heating for 30 minutes at 120 degreeC. Thereby, the organic electroluminescent element 101 which sealed the laminated body from the 1st electrode layer 11 to the 2nd electrode layer 12 between the flexible substrate 10 and the sealing film was produced.
  • the produced organic electroluminescence element 101 has a light emitting region of 200 mm ⁇ 40 mm.
  • the organic electroluminescence elements 101 to 112 produced as described above are set on a rotating stage that automatically rotates, and a light intensity distribution and spectrum are measured using a spectral luminance meter (CS-2000, manufactured by Konica Minolta). Was measured.
  • CS-2000 spectral luminance meter
  • a constant amount of current (5 mA / cm 2 ) is separately supplied between the first electrode layer 11 and the intermediate electrode layer 30 and between the intermediate electrode layer 30 and the second electrode layer 12 to thereby generate the first light emission.
  • the unit 21 and the second light emitting unit 22 were made to emit light individually, and the normal N direction with respect to the light extraction surface S of each of the organic electroluminescence elements 101 to 112 was set to 0 °, and the measurement was performed a plurality of times within a range of ⁇ 80 °.
  • the rotation stage used was a handmade one.
  • the front luminance [L1] at this time was adjusted to 1000 cd / m 2 and evaluated.
  • the uniformity of the brightness of the entire light extraction surface S of each of the organic electroluminescence elements 101 to 112 was evaluated by 10 general monitors according to the following criteria. In addition, if it was (circle) or (triangle
  • the light distribution characteristics of the emitted light satisfy the relationship of 0.85 ⁇ [L2] / [L1] ⁇ 1.20 and [L3] / [L1] ⁇ 0.50. It was confirmed that the light emitting unit is superior in brightness uniformity when the light extraction surface S curved in the convex direction is observed from the center position, as compared with the light emitting unit that does not satisfy this relationship.
  • the first light emitting unit and the second light emitting unit of the electroluminescence element 112 did not satisfy the above relationship, and were inferior in brightness uniformity as compared with other light emitting units satisfying the above relationship.
  • the light distribution characteristics of the emitted light from both the first light emitting unit and the second light emitting unit are 0.85 ⁇ [L2] / [L1] ⁇ 1.06. And satisfying the relationship of 0.15 ⁇ [L3] / [L1] ⁇ 0.47, the red emission light from the first light emission unit and the amber emission light from the second light emission unit It was confirmed that both were more reliably extracted from the light extraction surface S curved in the convex direction while maintaining uniformity.
  • the vehicle tail lamp and the stop lamp that emit red light, and the vehicle turn lamp that emits amber light can be used.
  • the organic electroluminescence element 1 it is possible to visually recognize both red light emission and amber light emission when the vehicle is viewed from the rear vehicle with uniform brightness. For this reason, it was confirmed that the visibility of the tail lamp, the stop lamp, and further the turn lamp can be improved.

Abstract

An organic electroluminescent element which is provided with: a flexible substrate; a first electrode layer that is arranged on the flexible substrate; a second electrode layer that is arranged above the first electrode layer; at least two light emitting units which are laminated and arranged between the first electrode layer and the second electrode layer, and each of which has a light emitting layer configured using an organic material; and an intermediate electrode layer that is arranged between the light emitting units. The at least two light emitting units are different from each other in the chromaticity of emitted light; and with respect to the light distribution characteristics of emitted light extracted from at least one light emitting unit among the at least two light emitting units toward the flexible substrate side or the second electrode layer side, if [L1] is the front luminance, [L2] is the luminance at the viewing angle of 20° and [L3] is the luminance at the viewing angle of 60°, 0.85 ≤ [L2]/[L1] ≤ 1.20 and [L3]/[L1] ≤ 0.50 are satisfied.

Description

有機エレクトロルミネッセンス素子及び車両用灯具Organic electroluminescence device and vehicle lamp
 本発明は、有機エレクトロルミネッセンス素子、及びこの有機エレクトロルミネッセンス素子を用いた車両用灯具に関する。 The present invention relates to an organic electroluminescence element and a vehicular lamp using the organic electroluminescence element.
 従来、一重項励起子と三重項励起子のすべてをエレクトロルミネッセンス(electroluminescence:以下ELともいう。)に利用し、高発光効率を実現する発光材料を用いた有機EL素子が提案されている。有機EL素子においては、高い発光効率と発光寿命の両方で実用域の材料が開発され、ディスプレイや照明に利用されている。 Conventionally, an organic EL element using a light emitting material that realizes high luminous efficiency by using all of singlet excitons and triplet excitons for electroluminescence (hereinafter also referred to as EL) has been proposed. In the organic EL element, a material in a practical range has been developed with both high light emission efficiency and light emission lifetime, and is used for display and illumination.
 また、近年では、有機EL素子の面発光や可撓性といった特性を活かし、デザイン性の高い車両用灯具(例えば、テールランプ等)に適用することが提案されている(例えば、特許文献1参照。)。 In recent years, it has been proposed to apply characteristics such as surface light emission and flexibility of an organic EL element to a vehicular lamp (for example, a tail lamp) having high design (see, for example, Patent Document 1). ).
 しかしながら、従来の有機EL素子を車両用灯具に用いる場合、後方車両からの視認性が低いといった課題がある。そのため、後方車両からの高い視認性を有する有機EL素子が必要とされている。 However, when a conventional organic EL element is used for a vehicle lamp, there is a problem that visibility from a rear vehicle is low. Therefore, an organic EL element having high visibility from the rear vehicle is required.
特開2015-5552号公報Japanese Patent Laying-Open No. 2015-5552
 上記問題に対し、発明者による鋭意努力の結果、下記のようなことが分かった。 As a result of diligent efforts by the inventor with respect to the above problems, the following was found.
 面発光源である有機EL素子を湾曲させた状態で車両に搭載する場合、後続車両への視認性及び明るさの均一性を確保するために、湾曲された部分からも強い発光光が必要となる。そのため、正面だけでなく視野角20°程度までの発光光強度が要求されることが分かった。一方で、後続車両への視認性及び明るさの均一性の観点から、視野角60°~90°付近からの発光光強度は必要とされないという事が判明した。従来公知の有機EL素子においては、発光光をいずれの方向から見てもある一定の視認性が得られるようになっているが、視野角60°~90°付近の発光光も多く、無駄になっている発光光も多かった。 When mounting an organic EL element, which is a surface light source, on a vehicle in a curved state, strong light emission from the curved portion is required to ensure visibility to the following vehicle and uniformity of brightness. Become. For this reason, it has been found that not only the front surface but also the emitted light intensity up to a viewing angle of about 20 ° is required. On the other hand, it was found that the intensity of emitted light from a viewing angle of 60 ° to 90 ° is not required from the viewpoint of visibility to the following vehicle and uniformity of brightness. Conventionally known organic EL elements can obtain a certain level of visibility even when the emitted light is viewed from any direction, but there is a lot of emitted light near a viewing angle of 60 ° to 90 °, which is useless. There was also a lot of emitted light.
 本発明は、上記問題・状況に鑑みてなされたものであり、車両用灯具に適する高い視認性を有する有機エレクトロルミネッセンス素子を提供すること、及びこの有機エレクトロルミネッセンス素子を用いたことにより視認性の向上が図られた車両用灯具を提供することを目的とする。 The present invention has been made in view of the above problems and situations, and provides an organic electroluminescence element having high visibility suitable for a vehicle lamp, and visibility by using this organic electroluminescence element. An object of the present invention is to provide an improved vehicular lamp.
 以上のような目的を達成するための本発明は、フレキシブル基板と、前記フレキシブル基板上に設けられた第1電極層と、前記第1電極層の上方に設けられた第2電極層と、有機材料を用いて構成された発光層を有し前記第1電極層と前記第2電極層との間に重ねて配置された少なくとも2つの発光ユニットと、前記発光ユニット間に配置された中間電極層とを備え、前記少なくとも2つの発光ユニットは、ぞれぞれの発光光の色度が異なるものであり、前記少なくとも2つの発光ユニットのうち少なくとも1つの発光ユニットから前記フレキシブル基板側又は前記第2電極層側に取り出される発光光の配光特性が、正面輝度を[L1]、視野角20°の輝度を[L2]、及び視野角60°の輝度を[L3]とした場合に、0.85≦[L2]/[L1]≦1.20であり、かつ[L3]/[L1]≦0.50となる有機エレクトロルミネッセンス素子である。また本発明は、このような有機エレクトロルミネッセンス素子を用いた車両用灯具でもある。 To achieve the above object, the present invention includes a flexible substrate, a first electrode layer provided on the flexible substrate, a second electrode layer provided above the first electrode layer, an organic At least two light emitting units having a light emitting layer made of a material and disposed so as to overlap each other between the first electrode layer and the second electrode layer, and an intermediate electrode layer disposed between the light emitting units And the at least two light emitting units have different chromaticities of the respective emitted light, and at least one of the at least two light emitting units is connected to the flexible substrate side or the second light emitting unit. When the light distribution characteristic of the emitted light extracted to the electrode layer side is [L1] for the front luminance, [L2] for the luminance at a viewing angle of 20 °, and [L3] for the luminance at a viewing angle of 60 °. 85 ≦ [L2 ] / [L1] ≦ 1.20 and [L3] / [L1] ≦ 0.50. Moreover, this invention is also a vehicle lamp using such an organic electroluminescent element.
 このような構成の本発明によれば、車両用灯具に適する高い視認性を有する有機エレクトロルミネッセンス素子を得ることが可能であり、またこの有機エレクトロルミネッセンス素子を用いたことにより視認性の向上が図られた車両用灯具を得ることが可能である。 According to the present invention having such a configuration, it is possible to obtain an organic electroluminescence element having high visibility suitable for a vehicle lamp, and the use of this organic electroluminescence element improves visibility. The obtained vehicle lamp can be obtained.
実施形態に係る有機エレクトロルミネッセンス素子の概略を示す断面図である。It is sectional drawing which shows the outline of the organic electroluminescent element which concerns on embodiment. 実施形態に係る有機エレクトロルミネッセンス素子の配光特性を説明するための模式図である。It is a schematic diagram for demonstrating the light distribution characteristic of the organic electroluminescent element which concerns on embodiment. 実施形態に係る車両用灯具の概略構成を説明するための車両の上面図である。It is a top view of the vehicle for demonstrating schematic structure of the vehicle lamp which concerns on embodiment.
 以下本発明の実施の形態を、有機エレクトロルミネッセンス素子、この有機エレクトロルミネッセンス素子を用いた車両用灯具の順に説明する。なお、以降に説明する実施の形態において「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, embodiments of the present invention will be described in the order of an organic electroluminescence element and a vehicular lamp using the organic electroluminescence element. In the embodiments described below, “˜” is used in the sense of including numerical values described before and after it as lower and upper limits.
≪有機エレクトロルミネッセンス素子≫
 図1は、実施形態に係る有機エレクトロルミネッセンス素子1の概略を示す断面図である。この図に示すように、有機エレクトロルミネッセンス素子1は、フレキシブル基板10、第1電極層11、第1発光ユニット21、中間電極層30、第2発光ユニット22、及び第2電極層12をこの順に積層したタンデム構造のものである。この有機エレクトロルミネッセンス素子1は、第1発光ユニット21及び第2発光ユニット22で発生させた発光光h1及び発光光h2を、図示したようにフレキシブル基板10側から取り出すボトムエミッション型のものであるか、又はこの逆から取り出すトップエミッション型であってもよい。
≪Organic electroluminescence element≫
FIG. 1 is a cross-sectional view schematically showing an organic electroluminescence element 1 according to the embodiment. As shown in this figure, the organic electroluminescence element 1 includes a flexible substrate 10, a first electrode layer 11, a first light emitting unit 21, an intermediate electrode layer 30, a second light emitting unit 22, and a second electrode layer 12 in this order. It is a laminated tandem structure. Is this organic electroluminescence device 1 of the bottom emission type that extracts the emitted light h1 and the emitted light h2 generated by the first light emitting unit 21 and the second light emitting unit 22 from the flexible substrate 10 side as shown in the figure? Alternatively, the top emission type may be taken out from the reverse.
 ここでは、一例として図示したようなボトムエミッション型の有機エレクトロルミネッセンス素子1を説明する。この場合、光取り出し側の第1電極層11、及び中間電極層30は、光透過性を有する透明電極として構成される。またマイクロキャビティ効果によって、発光光h1,h2を干渉させて取り出す場合であれば、第1電極層11及び中間電極層30は、半透過半反射性を有する電極として構成される。一方、第2電極層12は、反射電極として構成される。 Here, a bottom emission type organic electroluminescence element 1 as illustrated as an example will be described. In this case, the first electrode layer 11 and the intermediate electrode layer 30 on the light extraction side are configured as transparent electrodes having optical transparency. If the emitted light h1 and h2 are extracted by interference due to the microcavity effect, the first electrode layer 11 and the intermediate electrode layer 30 are configured as electrodes having transflective properties. On the other hand, the second electrode layer 12 is configured as a reflective electrode.
 実施形態に係る有機エレクトロルミネッセンス素子1は、第1電極層11と中間電極層30とに対して外部電源から電圧が印加され、これによって第1発光ユニット21において発光光h1が発生する。また、中間電極層30と第2電極層12とに対して、外部電源から電圧が印加され、これによって第2発光ユニット22において発光光h2が発生する。発光光h1と発光光h2との発生は、第1電極層11、中間電極層30、及び第2電極層12への電圧印加の調整により、個々に制御される。 In the organic electroluminescence element 1 according to the embodiment, a voltage is applied from the external power source to the first electrode layer 11 and the intermediate electrode layer 30, and thereby, emitted light h <b> 1 is generated in the first light emitting unit 21. In addition, a voltage is applied from the external power source to the intermediate electrode layer 30 and the second electrode layer 12, whereby emitted light h <b> 2 is generated in the second light emitting unit 22. Generation of the emitted light h <b> 1 and the emitted light h <b> 2 is individually controlled by adjusting voltage application to the first electrode layer 11, the intermediate electrode layer 30, and the second electrode layer 12.
 ここで、以上のように外部電源に接続されて電圧が印加される第1電極層11、第2電極層12、及び中間電極層30は、シート抵抗をある程度低く抑える必要がある。したがって、光透過性を有して構成される第1電極層11及び中間電極層30は、ある程度の膜厚が必要となるため、半透過半反射電極として構成されることになる。 Here, as described above, the first electrode layer 11, the second electrode layer 12, and the intermediate electrode layer 30 to which a voltage is applied by being connected to an external power source needs to suppress sheet resistance to some extent. Therefore, the first electrode layer 11 and the intermediate electrode layer 30 configured to have light transmittance need to have a certain thickness, and thus are configured as semi-transmissive and semi-reflective electrodes.
 このような構成の有機エレクトロルミネッセンス素子1において、第1発光ユニット21で発生する発光光h1と、第2発光ユニット22で発生する発光光h2とは、色度が異なる。また発光光h1と発光光h2とは、最大ピーク波長も異なる。このような発光光h1及び発光光h2の違いは、第1発光ユニット21及び第2発光ユニット22の構成の差によるものであり、以降に詳細に説明する。 In the organic electroluminescence element 1 having such a configuration, the emitted light h1 generated by the first light emitting unit 21 and the emitted light h2 generated by the second light emitting unit 22 have different chromaticities. The emitted light h1 and the emitted light h2 are also different in maximum peak wavelength. The difference between the emitted light h1 and the emitted light h2 is due to the difference in the configuration of the first light emitting unit 21 and the second light emitting unit 22, and will be described in detail later.
 以上のような第1発光ユニット21及び第2発光ユニット22を備えた有機エレクトロルミネッセンス素子1は、フレキシブル基板10側の最表面を光取り出し面Sとした場合、この光取り出し面Sから取り出される発光光h1,h2の配光特性が特徴的である。また、発光光h1,h2の色度にも特徴がある。以下、発光光h1,h2の配光特性、発光光h1,h2の色度、有機エレクトロルミネッセンス素子1を構成する構成要素の詳細を、この順に説明する。 The organic electroluminescent element 1 including the first light emitting unit 21 and the second light emitting unit 22 as described above emits light extracted from the light extraction surface S when the outermost surface on the flexible substrate 10 side is the light extraction surface S. The light distribution characteristics of the lights h1 and h2 are characteristic. Further, the chromaticity of the emitted lights h1 and h2 is also characteristic. Hereinafter, the light distribution characteristics of the emitted lights h1 and h2, the chromaticity of the emitted lights h1 and h2, and the details of the components constituting the organic electroluminescent element 1 will be described in this order.
<発光光h1,h2の配光特性>
 発光光h1及び発光光h2の少なくとも一方は、次のような配光特性を有する。すなわち、光取り出し面Sの法線N方向を正面とし、正面輝度を[L1]、法線Nに対する視野角20°の輝度を[L2]、法線[N]に対する視野角60°の輝度を[L3]とする。この場合において、発光光h1及び発光光h2の少なくとも一方の配光特性は、0.85≦[L2]/[L1]≦1.20であり、かつ[L3]/[L1]≦0.50である。
<Light distribution characteristics of emitted light h1 and h2>
At least one of the emitted light h1 and the emitted light h2 has the following light distribution characteristics. That is, the normal N direction of the light extraction surface S is the front, the front luminance is [L1], the luminance at a viewing angle of 20 ° with respect to the normal N is [L2], and the luminance at a viewing angle of 60 ° with respect to the normal [N]. Let [L3]. In this case, the light distribution characteristics of at least one of the emitted light h1 and the emitted light h2 are 0.85 ≦ [L2] / [L1] ≦ 1.20 and [L3] / [L1] ≦ 0.50. It is.
 以上は、図2に示すように、光取り出し面Sが湾曲している場合であっても同様であり、凸方向に湾曲した光取り出し面Sの各部において、発光光h1及び発光光h2の少なくとも一方の配光特性は、上述した関係が成り立つこととする。 The above is the same even when the light extraction surface S is curved as shown in FIG. 2, and at each part of the light extraction surface S curved in the convex direction, at least the emitted light h1 and the emitted light h2 One light distribution characteristic is assumed to hold the above-described relationship.
 このような関係が成り立つことにより、例えば、この有機エレクトロルミネッセンス素子1を、車両用灯具として車両の後部コーナー部に、例えば光取り出し面Sを凸方向に湾曲させて設けた場合、その車を後方車両から見たときの光取り出し面Sにおける発光光h1,h2の取り出し強度を均一化させることが可能である。またこれにより、その車を後方車両から見たときの発光光h1,h2の視認性の向上を図ることができる。より詳しくは、発光光h1が、上述の関係を満たしていれば、発光光h1についてこのような効果を得ることができ、発光光h2が、上述の関係を満たしていれば、発光光h2についてこのような効果を得ることができる。 When this relationship is established, for example, when the organic electroluminescence element 1 is provided as a vehicular lamp at the rear corner portion of the vehicle, for example, with the light extraction surface S curved in a convex direction, the vehicle is moved backward. It is possible to make uniform the extraction intensity of the emitted lights h1 and h2 on the light extraction surface S when viewed from the vehicle. This also makes it possible to improve the visibility of the emitted lights h1 and h2 when the vehicle is viewed from the rear vehicle. More specifically, if the emitted light h1 satisfies the above relationship, such an effect can be obtained for the emitted light h1, and if the emitted light h2 satisfies the above relationship, the emitted light h2 can be obtained. Such an effect can be obtained.
 また、以上のような配光特性は、0.90≦[L2]/[L1]≦1.10であり、かつ[L3]/[L1]≦0.45であることが好ましく、これにより上述の効果をさらに高めることができる。また以上のような配光特性は、発光光h1及び発光光h2の両方に兼ね備えられていることが好ましい。 The light distribution characteristics as described above are preferably 0.90 ≦ [L2] / [L1] ≦ 1.10 and [L3] / [L1] ≦ 0.45. The effect of can be further enhanced. Moreover, it is preferable that the above light distribution characteristics are provided for both the emitted light h1 and the emitted light h2.
 実施形態に係る有機エレクトロルミネッセンス素子1の配光特性は、均等拡散光源からの光の強度であるランバーシアンに対し、これよりも法線N方向への配光度合いが強い配光形状であっても、弱い配光形状であってもよい。下記表1には、実施形態に係る有機エレクトロルミネッセンス素子1の配光特性の例として、法線N方向への配光度合いが強い場合の配光形状1,2および法線N方向への配光度合いが弱い場合の配光形状3,4についての、[L2]/[L1]および[L3]/[L1]の例を示す。ただし、配光形状1は、法線N方向への配光度合いが強く、[L2]/[L1]の値が0.85≦[L2]/[L1]≦1.20の範囲から外れる。 The light distribution characteristic of the organic electroluminescence element 1 according to the embodiment is a light distribution shape having a light distribution degree in the normal N direction stronger than Lambertian which is the intensity of light from the uniform diffusion light source. Alternatively, the light distribution shape may be weak. Table 1 below shows, as an example of the light distribution characteristics of the organic electroluminescence element 1 according to the embodiment, the light distribution shapes 1 and 2 and the distribution in the normal N direction when the degree of light distribution in the normal N direction is strong. Examples of [L2] / [L1] and [L3] / [L1] for the light distribution shapes 3 and 4 when the degree of light is weak are shown. However, the light distribution shape 1 has a strong light distribution degree in the normal N direction, and the value of [L2] / [L1] is out of the range of 0.85 ≦ [L2] / [L1] ≦ 1.20.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[輝度の測定方法]
 上述した配光特性を得るための輝度[L1]~[L3]の測定方法としては、次の方法を用いることができる。
[Brightness measurement method]
As a method for measuring the luminance [L1] to [L3] for obtaining the above-mentioned light distribution characteristics, the following method can be used.
 有機エレクトロルミネッセンス素子1を自動的に回転させる回転ステージにセットし、分光輝度計(コニカミノルタ社製、CS-2000)を用いて光量分布及びスペクトルを測定することにより輝度[L1]~[L3]を求めることができる。これらの測定は、第1発光ユニット21及び第2発光ユニット22のそれぞれに対して、個別に一定の電流量(5mA/cm)を流して発光させた状態で、法線Nに対して±80°の範囲で実施する。測定結果のうち、法線[N]方向の測定値、法線Nに対する視野角20°の測定値、法線Nに対する視野角60°の測定値のそれぞれから、各輝度[L1]~[L3]を求める。 Luminance [L1] to [L3] is set by setting the organic electroluminescence device 1 on a rotating stage that automatically rotates and measuring the light intensity distribution and spectrum using a spectral luminance meter (CS-2000, manufactured by Konica Minolta). Can be requested. These measurements are performed with respect to the normal line N in a state in which each of the first light emitting unit 21 and the second light emitting unit 22 is caused to emit light by individually flowing a constant current amount (5 mA / cm 2 ). It is carried out in the range of 80 °. Among the measurement results, the luminance values [L1] to [L3] are measured from the measured value in the normal [N] direction, the measured value at a viewing angle of 20 ° with respect to the normal N, and the measured value at a viewing angle of 60 ° with respect to the normal N. ].
[輝度の調整方法]
 発光光h1,h2の輝度[L1]~[L3]を、上記の配光特性の範囲内に調整する方法としては、例えば次の二つの方法を挙げることができる。
[Brightness adjustment method]
Examples of a method for adjusting the luminance [L1] to [L3] of the emitted lights h1 and h2 within the range of the above light distribution characteristics include the following two methods.
 一つ目の方法は、第1電極層11、中間電極層30、及び第2電極層12間のマイクロキャビティ効果を利用する方法である。この場合、第1発光ユニット21及び第2発光ユニット22を構成する各層、さらには中間電極層30の膜厚設計により、第1発光ユニット21及び第2発光ユニット22における各発光点D1,D2から、第1電極層11、中間電極層30、及び第2電極層12までの各距離を調整する。これにより、各発光波長の発光光h1,h2を、第1電極層11、中間電極層30、及び第2電極層12間において干渉させて光取り出し面Sから取り出す。 The first method uses a microcavity effect between the first electrode layer 11, the intermediate electrode layer 30, and the second electrode layer 12. In this case, from the light emitting points D1 and D2 in the first light emitting unit 21 and the second light emitting unit 22, depending on the film thickness design of each layer constituting the first light emitting unit 21 and the second light emitting unit 22, and further the intermediate electrode layer 30. The distances to the first electrode layer 11, the intermediate electrode layer 30, and the second electrode layer 12 are adjusted. Thereby, the emitted lights h1 and h2 of each emission wavelength are taken out from the light extraction surface S by causing interference between the first electrode layer 11, the intermediate electrode layer 30, and the second electrode layer 12.
 この際、第1発光ユニット21及び第2発光ユニット22を構成する各層、さらには中間電極層30の膜厚設計によって発光光h1,h2の干渉度合いを調整することで、光取り出し方向の指向性が制御される。これにより、上述した配光特性を満たすように発光光h1,h2の各輝度[L1]~[L3]が調整される。 At this time, the directivity in the light extraction direction is adjusted by adjusting the degree of interference between the emitted lights h1 and h2 according to the thickness design of each layer constituting the first light emitting unit 21 and the second light emitting unit 22 and the intermediate electrode layer 30. Is controlled. Thereby, the luminances [L1] to [L3] of the emitted lights h1 and h2 are adjusted so as to satisfy the above-described light distribution characteristics.
 二つ目の方法は、有機エレクトロルミネッセンス素子1の光取り出し面S側に、ここでの図示を省略した光学フィルムを設ける方法である。光学フィルムは、例えば透光性樹脂材料からなり、複数の凸部からなるマイクロレンズアレイやドットパターン、若しくは回折格子や凹凸構造を有するシート状の光学フィルムや光学シート、又は屈折率の異なる光学多層膜からなる光学フィルム等を用いることができる。 The second method is a method of providing an optical film, not shown here, on the light extraction surface S side of the organic electroluminescence element 1. The optical film is made of a translucent resin material, for example, a microlens array or dot pattern having a plurality of convex portions, or a sheet-like optical film or optical sheet having a diffraction grating or an uneven structure, or an optical multilayer having different refractive indexes. An optical film made of a film can be used.
 ただし、光学フィルムとして十分な透過率を有するものを用意できない場合は、発光光h1,h2の輝度[L1]~[L3]は、上述した一つ目の方法を適用して上記の配光特性の範囲内に調整されていることが好ましい。 However, when an optical film having sufficient transmittance cannot be prepared, the luminance [L1] to [L3] of the emitted lights h1 and h2 is obtained by applying the first method described above to the above light distribution characteristics. It is preferable to adjust within the range.
<発光光h1,h2の色度>
 発光光h1及び発光光h2の色度は、何れか一方が赤色であり、何れか他方がアンバー色であることが好ましい。より好ましくは、光取り出し側に配置される第1発光ユニット21からの発光光h1を、より長波長の赤色の発光光とする一方、第2電極層12側に配置される第2発光ユニット22からの発光光h2を、より短波長のアンバー色の発光光とする方がよい。これにより、長波長の赤色の、プラズモン吸収による衰弱を抑制することができるため、有機エレクトロルミネッセンス素子として、高効率化が見込まれる。
<Chromaticity of emitted light h1, h2>
Regarding the chromaticity of the emitted light h1 and the emitted light h2, it is preferable that one of them is red and the other is amber. More preferably, the emitted light h1 from the first light emitting unit 21 disposed on the light extraction side is set to the longer wavelength red emitted light, while the second light emitting unit 22 disposed on the second electrode layer 12 side. The emitted light h <b> 2 from the light is preferably amber-colored light having a shorter wavelength. As a result, it is possible to suppress the attenuation due to plasmon absorption of red having a long wavelength, so that high efficiency is expected as an organic electroluminescence element.
 本発明の有機エレクトロルミネッセンス素子の色度は特に限定はなく、種々の範囲の色度を適用することができる。車両用灯具として、適用する場合は赤色とアンバー色が好ましい。ここで赤色の発光光とは、正面の色度が、CIE-xy色度図において0.29≦y≦0.34、y+x≧0.98であることが好ましい。またアンバー色の発光光とは、CIE-xy色度図においてy≧0.39、y≧0.79-0.67x、y≦x-0.12であることが好ましい。なお、上記色度範囲におけるx及びyは、CIE1931表色系における色度x及びyである。 The chromaticity of the organic electroluminescence element of the present invention is not particularly limited, and various ranges of chromaticity can be applied. When applied as a vehicular lamp, red and amber are preferred. Here, the red emitted light preferably has a front chromaticity of 0.29 ≦ y ≦ 0.34 and y + x ≧ 0.98 in the CIE-xy chromaticity diagram. The amber-colored emitted light preferably satisfies y ≧ 0.39, y ≧ 0.79−0.67x, and y ≦ x−0.12 in the CIE-xy chromaticity diagram. Note that x and y in the chromaticity range are chromaticity x and y in the CIE 1931 color system.
[色度の測定方法]
 発光光h1,h2の色度は、例えば、分光放射輝度計CS-2000(コニカミノルタ社製)を用いて測定することができる。この際、第1発光ユニット21及び第2発光ユニット22のそれぞれに対して、個別に所定値の電流密度を与え、発生する発光光h1,h2の色度を測定する。
[Measurement method of chromaticity]
The chromaticity of the emitted lights h1 and h2 can be measured using, for example, a spectral radiance meter CS-2000 (manufactured by Konica Minolta). At this time, each of the first light emitting unit 21 and the second light emitting unit 22 is individually given a predetermined current density, and the chromaticities of the generated emitted lights h1 and h2 are measured.
 本発明の有機エレクトロルミネッセンス素子の正面輝度[L1]としては、使用する面積によって任意に調整可能で特に限定はないが、例えば100~50000cd/mの範囲で適用できる。 The front luminance [L1] of the organic electroluminescent device of the present invention can be arbitrarily adjusted depending on the area to be used and is not particularly limited, but can be applied in the range of 100 to 50000 cd / m 2 , for example.
<有機エレクトロルミネッセンス素子1の各構成要素の詳細>
 次に、以上のような配光特性を有する有機エレクトロルミネッセンス素子1の各構成要素の詳細を説明する。なお、以下に説明する有機エレクトロルミネッセンス素子1の各構成要素は、実施形態を説明するための一例であり、上述した配光特性及び色度を有する発光光h1及び発光光h2の何れか一方が得られる範囲で適宜その他構成を適用することが可能である。
<Details of each component of organic electroluminescence element 1>
Next, the detail of each component of the organic electroluminescent element 1 which has the above light distribution characteristics is demonstrated. In addition, each component of the organic electroluminescence element 1 described below is an example for describing the embodiment, and any one of the emitted light h1 and the emitted light h2 having the above-described light distribution characteristics and chromaticity is included. Other configurations can be applied as appropriate within the range obtained.
[第1電極層11及び第2電極層12]
 第1電極層11及び第2電極層12のそれぞれは、中間電極層30との間に挟持される第1発光ユニット21又は第2発光ユニット22に対して、正孔を供給するための陽極として機能するか、又は電子を供給するための陰極として機能する。
[First electrode layer 11 and second electrode layer 12]
Each of the first electrode layer 11 and the second electrode layer 12 serves as an anode for supplying holes to the first light emitting unit 21 or the second light emitting unit 22 sandwiched between the first electrode layer 11 and the intermediate electrode layer 30. It functions as a cathode for supplying electrons.
 第1電極層11を例にとると、第1電極層11及び中間電極層30は、何れか一方が第1発光ユニット21に正孔を供給するための陽極として機能し、何れか他方が第1発光ユニット21に電子を供給するための陰極として機能する。ここでは一例として、第1発光ユニット21に対して、第1電極層11が陽極、中間電極層30が陰極として用いられる場合を図示している。 Taking the first electrode layer 11 as an example, one of the first electrode layer 11 and the intermediate electrode layer 30 functions as an anode for supplying holes to the first light emitting unit 21, and the other is the first. It functions as a cathode for supplying electrons to one light emitting unit 21. Here, as an example, the case where the first electrode layer 11 is used as an anode and the intermediate electrode layer 30 is used as a cathode for the first light emitting unit 21 is illustrated.
 また第2電極層12を例にとると、第2電極層12及び中間電極層30は、何れか一方が第2発光ユニット22に正孔を供給するための陽極として機能し、何れか他方が第2発光ユニット22に電子を供給するための陰極として機能する。ここでは一例として、第2発光ユニット22に対して、第2電極層12が陰極、中間電極層30が陽極として用いられる場合を図示している。 Taking the second electrode layer 12 as an example, one of the second electrode layer 12 and the intermediate electrode layer 30 functions as an anode for supplying holes to the second light emitting unit 22, and the other is It functions as a cathode for supplying electrons to the second light emitting unit 22. Here, as an example, the case where the second light emitting unit 22 is used with the second electrode layer 12 as a cathode and the intermediate electrode layer 30 as an anode is illustrated.
 以上のような第1電極層11及び第2電極層12は、陽極として用いられるか、又は陰極として用いられるかによって、下記に示すようにそれぞれに適する材料を用いて構成される。さらに、第1電極層11及び第2電極層12は、光取り出し側に配置された電極であるか否かによって、下記に示す材料の中から光透過性又は光反射性に優れた材料が選択して用いられる。以下に、第1電極層11又は第2電極層12を構成する陽極及び陰極について説明する。 The first electrode layer 11 and the second electrode layer 12 as described above are configured using materials suitable for each as shown below, depending on whether they are used as an anode or a cathode. Further, the first electrode layer 11 and the second electrode layer 12 are selected from materials having excellent light transmittance or light reflectivity from the following materials depending on whether or not the electrodes are arranged on the light extraction side. Used. Below, the anode and cathode which comprise the 1st electrode layer 11 or the 2nd electrode layer 12 are demonstrated.
(陽極)
 有機エレクトロルミネッセンス素子1に用いられる陽極材料としては、仕事関数の大きい(4eV以上、好ましくは4.3V以上)金属、合金、電気伝導性化合物、及び、これらの混合物からなる電極物質が用いられる。このような電極物質の具体例としては、AuやAg等の金属及びこれらの合金、CuI、インジウムチタンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(登録商標:In-ZnO)等の非晶質で透明導電膜を作製可能な材料を用いてもよい。
(anode)
As an anode material used for the organic electroluminescent element 1, an electrode material made of a metal, an alloy, an electrically conductive compound, and a mixture thereof having a high work function (4 eV or more, preferably 4.3 V or more) is used. Specific examples of such an electrode substance include metals such as Au and Ag, alloys thereof, and conductive transparent materials such as CuI, indium titanium oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (registered trademark: In 2 O 3 —ZnO) that can form a transparent conductive film may be used.
 陽極は、蒸着やスパッタリング等の方法を用いて上記陽極材料を基材上に成膜することによって作製することができる。陽極側から発光光を取り出す構成である場合には、陽極の透過率を10%より大きくするか、または半透過半反射電極とする。また、陽極のシート抵抗は数百Ω/sq.以下が好ましい。また、陽極の厚さは、材料にもよるが、通常10nm~1μm、好ましくは10~200nmの範囲で選ばれる。 The anode can be produced by depositing the anode material on a substrate using a method such as vapor deposition or sputtering. In the case where the emitted light is extracted from the anode side, the transmittance of the anode is set to be greater than 10%, or a semi-transmissive / semi-reflective electrode is formed. The sheet resistance of the anode is several hundred Ω / sq. The following is preferred. The thickness of the anode is usually selected in the range of 10 nm to 1 μm, preferably 10 to 200 nm, although it depends on the material.
(陰極)
 有機エレクトロルミネッセンス素子1に用いられる陰極材料としては、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物、及び、これらの混合物からなる電極物質が用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、アルミニウム、銀、銀を主成分とする合金、アルミニウム/銀混合物、希土類金属等が挙げられる。
(cathode)
As a cathode material used for the organic electroluminescence element 1, an electrode substance made of a metal, an alloy, an electrically conductive compound, and a mixture thereof having a small work function (4 eV or less) is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, aluminum, silver, silver-based alloys, aluminum / silver mixtures, rare earth metals, and the like.
 陰極は、蒸着やスパッタリング等の方法を用いて上記陰極材料を基材上に成膜することによって作製することができる。陰極側から発光光を取り出す場合には、陰極の透過率を10%より大きくするか、または半透過半反射電極とする。また、陰極のシート抵抗は、数百Ω/sq.以下が好ましい。また、陰極の厚さは、通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。 The cathode can be produced by depositing the cathode material on a substrate using a method such as vapor deposition or sputtering. In the case where emitted light is extracted from the cathode side, the transmittance of the cathode is made larger than 10%, or a semi-transmissive and semi-reflective electrode is used. The sheet resistance of the cathode is several hundred Ω / sq. The following is preferred. The thickness of the cathode is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm.
[第1発光ユニット21、第2発光ユニット22]
 第1発光ユニット21は、第1電極層11と中間電極層30の間に設けられ、発光性を有する有機材料を含む発光層を少なくとも1層以上備える。また、第2発光ユニット22は、中間電極層30と第2電極層12との間に設けられ、発光性を有する有機材料を含む発光層を少なくとも1層以上備える。
[First light emitting unit 21, second light emitting unit 22]
The first light emitting unit 21 includes at least one light emitting layer that is provided between the first electrode layer 11 and the intermediate electrode layer 30 and contains a light emitting organic material. The second light emitting unit 22 includes at least one light emitting layer that is provided between the intermediate electrode layer 30 and the second electrode layer 12 and contains an organic material having a light emitting property.
 以下、これら第1発光ユニット21及び第2発光ユニット22を、総合して発光ユニットとして記載して説明する。 Hereinafter, the first light emitting unit 21 and the second light emitting unit 22 will be collectively described as a light emitting unit.
 発光ユニットの代表的な層構成としては、以下の構成を挙げることができるが、これらに限定されるものではない。
(1)正孔注入輸送層/発光層/電子注入輸送層
(2)正孔注入輸送層/発光層/正孔阻止層/電子注入輸送層
(3)正孔注入輸送層/電子阻止層/発光層/正孔阻止層/電子注入輸送層
(4)正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層
(5)正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層
(6)正孔注入層/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/電子注入層
Typical layer configurations of the light emitting unit include the following configurations, but are not limited thereto.
(1) Hole injection transport layer / light emitting layer / electron injection transport layer (2) Hole injection transport layer / light emitting layer / hole blocking layer / electron injection transport layer (3) Hole injection transport layer / electron blocking layer / Light emitting layer / hole blocking layer / electron injecting and transporting layer (4) hole injecting layer / hole transporting layer / light emitting layer / electron transporting layer / electron injecting layer (5) hole injecting layer / hole transporting layer / light emitting layer / Hole blocking layer / electron transport layer / electron injection layer (6) hole injection layer / hole transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer
 このうち発光層は、単層又は複数層で構成される。発光層が複数層で構成される場合、これらの発光層の間に中間層が設けられていてもよい。この中間層は、以降に説明する中間電極層と同じ構成の層であってよいが、外部電源には接続されていない層である。 Of these, the light emitting layer is composed of a single layer or a plurality of layers. When the light emitting layer is composed of a plurality of layers, an intermediate layer may be provided between these light emitting layers. This intermediate layer may be a layer having the same configuration as the intermediate electrode layer described below, but is a layer that is not connected to an external power source.
 電子輸送層は、電子を輸送する機能を有する層である。電子輸送層には、広い意味で電子注入層、及び正孔阻止層も含まれる。また、電子輸送層は、複数層で構成されていてもよい。 The electron transport layer is a layer having a function of transporting electrons. The electron transport layer includes an electron injection layer and a hole blocking layer in a broad sense. Further, the electron transport layer may be composed of a plurality of layers.
 正孔輸送層は、正孔を輸送する機能を有する層である。正孔輸送層には、広い意味で正孔注入層、及び、電子阻止層も含まれる。また、正孔輸送層は、複数層で構成されていてもよい。 The hole transport layer is a layer having a function of transporting holes. The hole transport layer includes a hole injection layer and an electron blocking layer in a broad sense. The hole transport layer may be composed of a plurality of layers.
 これら発光ユニットを構成する各層は、従来公知の材料、形成方法を用いることができる。 For each layer constituting these light emitting units, conventionally known materials and forming methods can be used.
 なお、有機エレクトロルミネッセンス素子1に設けられる少なくとも2つの発光ユニットは、発光層を除いて同一の層及び材料を用いた構成の発光ユニットであることが好ましい。さらに、各発光ユニットは、発光層数も同一であることが好ましい。これにより、使用材料数を少なくでき、コスト面、品質管理面等の生産面での利点がある。さらに、蒸着プロセスであれば、成膜チャンバーを各発光ユニットで共通化しやすいなどの生産効率面での利点がある。 In addition, it is preferable that at least two light emitting units provided in the organic electroluminescence element 1 are light emitting units having a configuration using the same layers and materials except the light emitting layer. Further, each light emitting unit preferably has the same number of light emitting layers. Thereby, the number of materials used can be reduced, and there are advantages in production such as cost and quality control. Furthermore, the vapor deposition process has an advantage in terms of production efficiency such that the film forming chamber can be easily shared by the light emitting units.
 ここで、各発光ユニットを構成する各層は、発光光h1,h2の輝度[L1]~[L3]がマイクロキャビティ効果を利用して調整されている場合、各発光光h1,h2の干渉度合いに合わせた膜厚設計がなされていることとする。 Here, when the luminance [L1] to [L3] of the emitted light h1 and h2 is adjusted using the microcavity effect, each layer constituting each light emitting unit has a degree of interference between the emitted lights h1 and h2. It is assumed that a combined film thickness design is made.
 また各発光ユニットを構成する各層は、以上のような膜厚設計と合わせて、又は以上のような膜厚設計とは別に、有機エレクトロルミネッセンス素子1に入射した外光の第1電極層11と第2電極層12との間においての干渉が抑えられるように膜厚設計されていることが好ましい。これにより、有機エレクトロルミネッセンス素子1を非発光とした場合の、外光の干渉による着色が防止される。 In addition, each layer constituting each light emitting unit includes the first electrode layer 11 of external light incident on the organic electroluminescence element 1 in combination with the thickness design as described above or separately from the thickness design as described above. It is preferable that the film thickness is designed so that interference with the second electrode layer 12 is suppressed. Thereby, the coloring by interference of external light at the time of making the organic electroluminescent element 1 non-light-emission is prevented.
 このような各層の膜厚は、従来公知の光取り出し計算ソフトを用いて導出することができる。光取り出し計算ソフトとしては、例えば、setfos(登録商標)(Fluxim AG社製)を用いることができ、各層の膜厚はこれによって導出された値に設定されていることとする。 The film thickness of each layer can be derived using conventionally known light extraction calculation software. As the light extraction calculation software, for example, setfos (registered trademark) (manufactured by Fluxim AG) can be used, and the film thickness of each layer is set to a value derived therefrom.
 具体的には、第1発光ユニット21及び第2発光ユニット22を構成する電子輸送層の膜厚は、数nm~200nmの間で適宜調整されていることが好ましい。なお、調整された電子輸送層の膜厚が、上記範囲内で厚目である場合においては、電子輸送層の電子移動度は10-5cm/Vs以上であることが好ましい。 Specifically, it is preferable that the film thickness of the electron transport layer constituting the first light emitting unit 21 and the second light emitting unit 22 is appropriately adjusted between several nm and 200 nm. In the case where the adjusted film thickness of the electron transport layer is thick within the above range, the electron mobility of the electron transport layer is preferably 10 −5 cm 2 / Vs or more.
 一方、発光光h1,h2の輝度[L1]~[L3]が、有機エレクトロルミネッセンス素子1の光取り出し面S側に設けた光学フィルムによって調整されている場合、発光ユニットを構成する各層の膜厚が特に制限されることはない。ただしこの場合、形成する膜の均質性の確保、駆動電圧の低電圧化、及び駆動電流に対する発光色の安定性向上の観点から、各発光ユニットの全体の膜厚を5~200nmの範囲内に調整することが好ましく、さらに10~100nm以下の範囲に調整することが好ましい。 On the other hand, when the luminances [L1] to [L3] of the emitted light h1 and h2 are adjusted by the optical film provided on the light extraction surface S side of the organic electroluminescence element 1, the film thickness of each layer constituting the light emitting unit Is not particularly limited. However, in this case, the entire film thickness of each light emitting unit is within the range of 5 to 200 nm from the viewpoint of ensuring the uniformity of the film to be formed, lowering the driving voltage, and improving the stability of the emission color with respect to the driving current. It is preferable to adjust, and it is more preferable to adjust in the range of 10 to 100 nm or less.
 次に、発光ユニットの構成層として必須である発光層について説明する。 Next, the light emitting layer that is essential as a constituent layer of the light emitting unit will be described.
[発光層]
 発光層は、第1電極層11、第2電極層12、中間電極層30、又は隣接する層から注入される電子と正孔とが再結合し、励起子を経由して発光する場を提供する層であり、発光性有機半導体薄膜を含む層である。発光層は、発光ドーパントと、ホスト化合物とを含有することが好ましい。発光ドーパントは、発光性ドーパント化合物、ドーパント化合物、又は単にドーパントともいう。またホスト化合物は、マトリックス材料、発光ホスト化合物、又は単にホストともいう。
[Light emitting layer]
The light emitting layer provides a field in which electrons and holes injected from the first electrode layer 11, the second electrode layer 12, the intermediate electrode layer 30, or an adjacent layer are recombined to emit light via excitons. And a layer including a light-emitting organic semiconductor thin film. The light emitting layer preferably contains a light emitting dopant and a host compound. The light-emitting dopant is also referred to as a light-emitting dopant compound, a dopant compound, or simply a dopant. The host compound is also called a matrix material, a light emitting host compound, or simply a host.
 発光層の形成方法は特に制限はなく、従来公知の例えば真空蒸着法、湿式法等により形成することができる。有機エレクトロルミネッセンス素子1の製造コストから湿式法で形成することが好ましい。発光層を構成する各化合物の詳細は、次のようである。 The formation method of the light emitting layer is not particularly limited, and can be formed by a conventionally known method such as a vacuum deposition method or a wet method. It is preferable to form by the wet method from the manufacturing cost of the organic electroluminescent element 1. FIG. Details of each compound constituting the light emitting layer are as follows.
(1.発光ドーパント)
 発光ドーパントとしては、蛍光発光性ドーパント(蛍光ドーパント、蛍光性化合物ともいう)、及び、リン光発光性ドーパント(リン光ドーパント、リン光性化合物ともいう)が好ましく用いられる。発光層中の発光ドーパントの濃度については、使用される特定のドーパント及びデバイスの必要条件に基づいて、任意に決定することができる。発光ドーパントの濃度は、発光層の膜厚方向に対し、均一な濃度で含有されていてもよく、また任意の濃度分布を有していてもよい。
(1. Luminescent dopant)
As the luminescent dopant, a fluorescent luminescent dopant (also referred to as a fluorescent dopant or a fluorescent compound) and a phosphorescent dopant (also referred to as a phosphorescent dopant or a phosphorescent compound) are preferably used. The concentration of the light-emitting dopant in the light-emitting layer can be arbitrarily determined based on the specific dopant used and the device requirements. The concentration of the light emitting dopant may be contained at a uniform concentration in the film thickness direction of the light emitting layer, or may have an arbitrary concentration distribution.
 また、発光層には、複数種の発光ドーパントが含まれていてもよい。例えば、構造の異なるドーパント同士を組み合わせて用いてもよいし、蛍光発光性ドーパントとリン光発光性ドーパントとを組み合わせて用いてもよい。これにより、任意の発光色を得ることができる。 Further, the light emitting layer may contain a plurality of kinds of light emitting dopants. For example, dopants having different structures may be used in combination, or a fluorescent luminescent dopant and a phosphorescent dopant may be used in combination. Thereby, arbitrary luminescent colors can be obtained.
 有機エレクトロルミネッセンス素子1は、上記したように発光光h1,h2の何れか一方が赤色の発光光であり、何れか他方がアンバー色の発光光で有ることが好ましい。例えば、フレキシブル基板10側に配置される第1発光ユニット21からの発光光h1が、赤色の発光光である場合、その発光層に赤色発光ドーパントを含有させることにより達成される。また第2電極層12側に配置される第2発光ユニット22からの発光光h2が、アンバー色の発光光である場合、その発光層にアンバー色に近い発光光を有する赤色もしくは緑色発光ドーパントを単独で含有させるか、または赤色及び緑色発光ドーパントを2、3種組み合わせて含有させることにより達成される。アンバー色に近い発光光を有する赤色もしくは緑色発光ドーパントを単独で含有させる場合、アンバー色付近の発光スペクトルのみが外部に取り出されるように、発光ユニットの光学設計を行う。また、赤色及び緑色発光ドーパントを組み合わせてアンバー色発光を得る場合には、当該赤色及び緑色発光ドーパントを2種組み合わせる場合が多い。 In the organic electroluminescence element 1, it is preferable that one of the emitted lights h1 and h2 is red emitted light and the other is amber emitted light as described above. For example, when the emitted light h1 from the first light emitting unit 21 arranged on the flexible substrate 10 side is red emitted light, this is achieved by including a red emitting dopant in the light emitting layer. Further, when the emitted light h2 from the second light emitting unit 22 arranged on the second electrode layer 12 side is amber-colored emitted light, a red or green light-emitting dopant having emitted light close to amber is added to the light-emitting layer. It is achieved by containing alone or a combination of two or three red and green light emitting dopants. When a red or green light emitting dopant having emission light close to amber color is contained alone, the light emitting unit is optically designed so that only the emission spectrum near the amber color is taken out. Further, when amber light emission is obtained by combining red and green light-emitting dopants, two kinds of red and green light-emitting dopants are often combined.
 また有機エレクトロルミネッセンス素子1が、さらに第3発光ユニットを有する場合、第3発光ユニットは、発光光として白色光を発生するものであってもよい。この場合、発光層中に発光色の異なる複数の発光ドーパントを含有させることにより、白色の発光光が得られる。白色を示す発光ドーパントの組み合わせについては特に限定はないが、例えば青と橙との組み合わせや、青と緑と赤との組み合わせ等が挙げられる。なお、ここでの白色とは、2°視野角正面輝度を前述の方法により測定した際に、1000cd/mでのCIE1931表色系における色度がx=0.39±0.09、y=0.38±0.08の領域内にあることが好ましい。 Moreover, when the organic electroluminescent element 1 has a 3rd light emission unit further, a 3rd light emission unit may generate | occur | produce white light as emitted light. In this case, white light emission can be obtained by including a plurality of light emission dopants having different light emission colors in the light emitting layer. There are no particular limitations on the combination of light-emitting dopants that exhibit white, but examples include a combination of blue and orange, a combination of blue, green, and red. In addition, white here means that the chromaticity in the CIE 1931 color system at 1000 cd / m 2 is x = 0.39 ± 0.09 when the 2 ° viewing angle front luminance is measured by the above-described method. = 0.38 ± 0.08 is preferable.
(1-1.リン光発光性ドーパント)
 リン光発光性ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、25℃においてリン光量子収率が0.01以上の化合物である。発光層に用いられるリン光発光性ドーパントにおいて、好ましいリン光量子収率は0.1以上である。
(1-1. Phosphorescent dopant)
The phosphorescent dopant is a compound in which light emission from an excited triplet is observed. Specifically, the phosphorescent dopant is a compound that emits phosphorescence at room temperature (25 ° C.), and has a phosphorescence quantum yield of 0 at 25 ° C. .01 or more compounds. In the phosphorescent dopant used for a light emitting layer, a preferable phosphorescence quantum yield is 0.1 or more.
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できる。発光層に用いるリン光発光性ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。 The phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. The phosphorescence quantum yield in a solution can be measured using various solvents. The phosphorescence emitting dopant used for the light emitting layer should just achieve the said phosphorescence quantum yield (0.01 or more) in any solvent.
 リン光発光性ドーパントは、有機エレクトロルミネッセンス素子1の発光層に使用される公知の材料から適宜選択して用いることができる。 The phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic electroluminescence element 1.
 中でも、好ましいリン光発光性ドーパントとしては、イリジウム(Ir)を中心金属に有する有機金属錯体が挙げられる。さらに好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも一つの配位様式を含む錯体が好ましい。 Among them, preferable phosphorescent dopants include organometallic complexes having iridium (Ir) as a central metal. More preferably, a complex containing at least one coordination mode of metal-carbon bond, metal-nitrogen bond, metal-oxygen bond, and metal-sulfur bond is preferable.
(1-2.蛍光発光性ドーパント)
 蛍光発光性ドーパントは、励起一重項からの発光が可能な化合物であり、励起一重項からの発光が観測される限り特に限定されない。
(1-2. Fluorescent luminescent dopant)
The fluorescent light-emitting dopant is a compound that can emit light from an excited singlet, and is not particularly limited as long as light emission from the excited singlet is observed.
 蛍光発光性ドーパントしては、例えば、アントラセン誘導体、ピレン誘導体、クリセン誘導体、フルオランテン誘導体、ペリレン誘導体、フルオレン誘導体、アリールアセチレン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、アリールアミン誘導体、ホウ素錯体、クマリン誘導体、ピラン誘導体、シアニン誘導体、クロコニウム誘導体、スクアリウム誘導体、オキソベンツアントラセン誘導体、フルオレセイン誘導体、ローダミン誘導体、ピリリウム誘導体、ペリレン誘導体、ポリチオフェン誘導体、又は希土類錯体系化合物等が挙げられる。 Examples of the fluorescent light-emitting dopant include anthracene derivatives, pyrene derivatives, chrysene derivatives, fluoranthene derivatives, perylene derivatives, fluorene derivatives, arylacetylene derivatives, styrylarylene derivatives, styrylamine derivatives, arylamine derivatives, boron complexes, coumarin derivatives, Examples include pyran derivatives, cyanine derivatives, croconium derivatives, squalium derivatives, oxobenzanthracene derivatives, fluorescein derivatives, rhodamine derivatives, pyrylium derivatives, perylene derivatives, polythiophene derivatives, rare earth complex compounds, and the like.
 また、蛍光発光性ドーパントとして、遅延蛍光を利用した発光ドーパント等を用いてもよい。遅延蛍光を利用した発光ドーパントの具体例としては、例えば、国際公開第2011/156793号、特開2011-213643号公報、特開2010-93181号公報等に記載の化合物が挙げられる。 Further, a light emitting dopant using delayed fluorescence may be used as the fluorescent light emitting dopant. Specific examples of the luminescent dopant using delayed fluorescence include compounds described in, for example, International Publication No. 2011/156793, Japanese Patent Application Laid-Open No. 2011-213643, Japanese Patent Application Laid-Open No. 2010-93181, and the like.
(2.ホスト化合物)
 ホスト化合物は、発光層において主に電荷の注入及び輸送を担う化合物であり、有機エレクトロルミネッセンス素子1においてそれ自体の発光は実質的に観測されない。
 好ましくは室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物であり、さらに好ましくは、リン光量子収率が0.01未満の化合物である。また、発光層に含有される化合物の内で、その層中での質量比が20%以上であることが好ましい。
(2. Host compound)
The host compound is a compound mainly responsible for charge injection and transport in the light emitting layer, and light emission of itself is not substantially observed in the organic electroluminescence device 1.
Preferably, it is a compound having a phosphorescence quantum yield of phosphorescence of less than 0.1 at room temperature (25 ° C.), more preferably a compound having a phosphorescence quantum yield of less than 0.01. Moreover, it is preferable that the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.
 また、ホスト化合物の励起状態エネルギーは、同一層内に含有される発光ドーパントの励起状態エネルギーよりも高いことが好ましい。
 ホスト化合物は、単独で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機エレクトロルミネッセンス素子1の高効率化が可能となる。
Moreover, it is preferable that the excited state energy of a host compound is higher than the excited state energy of the light emission dopant contained in the same layer.
A host compound may be used independently or may be used in combination of multiple types. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and it is possible to increase the efficiency of the organic electroluminescence element 1.
 発光層に用いられるホスト化合物としては、特に制限はなく、通常の有機エレクトロルミネッセンス素子に用いられる化合物を挙げることができる。例えば、低分子化合物や、繰り返し単位を有する高分子化合物でもよいし、ビニル基やエポキシ基のような反応性基を有する化合物でもよい。 There is no restriction | limiting in particular as a host compound used for a light emitting layer, The compound used for a normal organic electroluminescent element can be mentioned. For example, a low molecular compound, a high molecular compound having a repeating unit, or a compound having a reactive group such as a vinyl group or an epoxy group may be used.
 公知のホスト化合物としては、正孔輸送能又は電子輸送能を有しつつ、発光の長波長化を防ぎ、さらに有機エレクトロルミネッセンス素子を高温駆動時や素子駆動中の発熱に対する安定性の観点から、高いガラス転移温度(Tg)を有することが好ましい。ホスト化合物としては、Tgが90℃以上であることが好ましく、より好ましくは120℃以上である。
 ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS-K-7121に準拠した方法により求められる値である。
As a known host compound, while having a hole transport ability or an electron transport ability, it prevents the light emission from becoming longer wavelength, and further, from the viewpoint of stability against heat generation during driving of the organic electroluminescence element at a high temperature or during element driving, It is preferable to have a high glass transition temperature (Tg). As a host compound, it is preferable that Tg is 90 degreeC or more, More preferably, it is 120 degreeC or more.
Here, the glass transition point (Tg) is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
[中間電極層30]
 中間電極層30は、第1発光ユニット21及び第2発光ユニット22に対して、正孔を供給するための陽極として機能するか、又は電子を供給するための陰極として機能する。
[Intermediate electrode layer 30]
The intermediate electrode layer 30 functions as an anode for supplying holes to the first light emitting unit 21 and the second light emitting unit 22, or functions as a cathode for supplying electrons.
 例えば図示したように、第1電極層11が、第1発光ユニット21に対して陽極として機能する場合であれば、中間電極層30は、第1発光ユニット21に対して陰極として機能する。これに対して、第1電極層11が、第1発光ユニット21に対して陰極として機能する場合であれば、中間電極層30は、第1発光ユニット21に対して陽極として機能する。 For example, as illustrated, if the first electrode layer 11 functions as an anode for the first light emitting unit 21, the intermediate electrode layer 30 functions as a cathode for the first light emitting unit 21. On the other hand, if the first electrode layer 11 functions as a cathode with respect to the first light emitting unit 21, the intermediate electrode layer 30 functions as an anode with respect to the first light emitting unit 21.
 また図示したように、第2電極層12が、第2発光ユニット22に対して陰極として機能する場合であれば、中間電極層30は、第2発光ユニット22に対して陽極として機能する。これに対して、第2電極層12が、第2発光ユニット22に対して陽極として機能する場合であれば、中間電極層30は、第2発光ユニット22に対して陰極として機能する。 As shown in the figure, if the second electrode layer 12 functions as a cathode for the second light emitting unit 22, the intermediate electrode layer 30 functions as an anode for the second light emitting unit 22. On the other hand, if the second electrode layer 12 functions as an anode for the second light emitting unit 22, the intermediate electrode layer 30 functions as a cathode for the second light emitting unit 22.
 また、中間電極30は、電源を介して第1電極層11と電気的に接続され、電源を介して第2電極層12と電気的に接続されている。 Further, the intermediate electrode 30 is electrically connected to the first electrode layer 11 via a power source, and is electrically connected to the second electrode layer 12 via a power source.
 またこのような中間電極層30は、光透過性を有する透明導電性材料によって構成されていることとする。特に、発光光h1,h2の輝度[L1]~[L3]がマイクロキャビティ効果を利用して調整されている場合には、発光ユニットを構成する各層の膜厚と共に、中間電極層30の膜厚も、各発光ユニットの各発光光の干渉度合いに合わせた膜厚設計がなされていることとする。 Further, it is assumed that such an intermediate electrode layer 30 is made of a transparent conductive material having optical transparency. In particular, when the luminances [L1] to [L3] of the emitted light h1 and h2 are adjusted using the microcavity effect, the film thickness of the intermediate electrode layer 30 is as well as the film thickness of each layer constituting the light emitting unit. Also, it is assumed that the film thickness is designed in accordance with the degree of interference of each light emitted from each light emitting unit.
 さらに中間電極層30は、以上のような膜厚設計と合わせて、又は以上のような膜厚設計とは別に、有機エレクトロルミネッセンス素子1の入射した外光の干渉が抑えられるように膜厚設計されていることが好ましい。これにより、有機エレクトロルミネッセンス素子1を非発光とした場合の、外光の干渉による着色が防止される。 Further, the intermediate electrode layer 30 is designed so that interference with external light incident on the organic electroluminescence element 1 can be suppressed in combination with the above-described thickness design or separately from the above-described thickness design. It is preferable that Thereby, the coloring by interference of external light at the time of making the organic electroluminescent element 1 non-light-emission is prevented.
 上記により、中間電極層30の膜厚は、10nm以上が良く、より好ましくは15nm以上が望ましい。 As described above, the thickness of the intermediate electrode layer 30 is preferably 10 nm or more, more preferably 15 nm or more.
[フレキシブル基板10]
 フレキシブル基板10は、フレキシブル性を有するプラスチック又はガラス等の材料であれば特に限定はなく、好ましくは、樹脂フィルム等を挙げることができる。また有機エレクトロルミネッセンス素子1がフレキシブル基板10側から発光光h1,h2を取り出すボトムエミッション構造である場合、フレキシブル基板10は、光透過性を有することとする。
[Flexible substrate 10]
The flexible substrate 10 is not particularly limited as long as it is a flexible plastic or glass material, and a resin film or the like can be preferably used. Moreover, when the organic electroluminescent element 1 is a bottom emission structure which takes out emitted light h1, h2 from the flexible substrate 10 side, the flexible substrate 10 shall have a light transmittance.
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名、JSR社製)あるいはアペル(商品名、三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。 Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, arton (trade name, manufactured by JSR) or appel (trade name, manufactured by Mitsui Chemicals) Resin etc. are mentioned.
 樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜等によるガスバリアー膜が形成されていてもよい。ガスバリアー膜は、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、湿度90±2%RH)が0.01g/(m・24h)以下のガスバリアー性フィルムであることが好ましい。さらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、10-3mL/(m・24h・atm)以下、水蒸気透過度が、10-5g/(m・24h)以下の高ガスバリアー性フィルムであることが好ましい。 A gas barrier film may be formed on the surface of the resin film by using an inorganic film, an organic film, or a hybrid film of both. The gas barrier film has a water vapor permeability (25 ± 0.5 ° C., humidity 90 ± 2% RH) measured by a method according to JIS K 7129-1992, of 0.01 g / (m 2 · 24 h) or less. A gas barrier film is preferred. Furthermore, the oxygen permeability measured by a method according to JIS K 7126-1987 is 10 −3 mL / (m 2 · 24 h · atm) or less, and the water vapor permeability is 10 −5 g / (m 2 · 24h) The following high gas barrier films are preferred.
 ガスバリアー膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよい。例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。さらに、ガスバリアー膜の脆弱性を改良するために、これら無機層と有機材料からなる層との積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。ガスバリアー膜の形成方法については特に限定はなく、従来公知の方法を用いることができる。 As the material for forming the gas barrier film, any material may be used as long as it has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. Furthermore, in order to improve the brittleness of the gas barrier film, it is more preferable to have a laminated structure of these inorganic layers and layers made of organic materials. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times. There is no limitation in particular about the formation method of a gas barrier film | membrane, A conventionally well-known method can be used.
[その他の構成要素]
 有機エレクトロルミネッセンス素子1は、有機材料を用いて構成された発光ユニットを封止するための封止手段を有する。封止手段としては、有機エレクトロルミネッセンス素子1の可撓性を損なわない範囲内で公知の材料、形成方法を採用することができる。また、有機エレクトロルミネッセンス素子1の機械的強度を高めるために、可撓性を損なわない範囲内で封止手段の外側に公知の保護膜又は保護板を設けてもよい。
[Other components]
The organic electroluminescence element 1 has a sealing unit for sealing a light emitting unit configured using an organic material. As a sealing means, a well-known material and a formation method can be employ | adopted within the range which does not impair the flexibility of the organic electroluminescent element 1. FIG. Further, in order to increase the mechanical strength of the organic electroluminescence element 1, a known protective film or protective plate may be provided outside the sealing means within a range that does not impair flexibility.
 なお、上記実施形態においては、フレキシブル基板10側から、透明な第1電極層11となる陽極、第1発光ユニット21、中間電極層30、第2発光ユニット22、及び光反射性を有する第2電極層12となる陰極がこの順に積層された、ボトムエミッション型の有機エレクトロルミネッセンス素子1を例示した。しかしながら、本発明の有機エレクトロルミネッセンスは、このような構成に限定されない。例えば、各層の積層順は逆でもよいし、陽極と陰極とが逆の構成、すなわち、第1電極層11が陰極であって第2電極層12が陽極であってもよい。この場合には、陰極が透明電極、陽極が反射電極となる。
 さらに、発光ユニットの構成や積層数、発光層の積層数についても特に限定されず、所望の有機エレクトロルミネッセンス素子を実現することが可能な構成とすることができる。例えば、有機エレクトロルミネッセンス素子は、発光ユニットが三つ以上積層された構成であってもよい。
In the above-described embodiment, from the flexible substrate 10 side, the anode to be the transparent first electrode layer 11, the first light emitting unit 21, the intermediate electrode layer 30, the second light emitting unit 22, and the second light-reflecting second. The bottom emission type organic electroluminescence element 1 in which the cathode to be the electrode layer 12 was laminated in this order was illustrated. However, the organic electroluminescence of the present invention is not limited to such a configuration. For example, the stacking order of the layers may be reversed, or the anode and the cathode may be reversed, that is, the first electrode layer 11 may be a cathode and the second electrode layer 12 may be an anode. In this case, the cathode is a transparent electrode and the anode is a reflective electrode.
Further, the configuration of the light emitting unit, the number of stacked layers, and the number of stacked light emitting layers are not particularly limited, and a configuration capable of realizing a desired organic electroluminescence element can be obtained. For example, the organic electroluminescence element may have a configuration in which three or more light emitting units are stacked.
≪車両用灯具≫
 図3は、実施形態に係る車両用灯具の概略構成を説明するための車両の上面図である。この図を用いて説明する実施形態に係る車両用灯具2は、上記した実施形態の有機エレクトロルミネッセンス素子1を備えて構成されたもので、例えば車両200の、テールランプ、ストップランプ、バックランプ、ターンランプ等のいずれにも適用することができる。特に、有機エレクトロルミネッセンス素子1における第1発光ユニットと第2発光ユニットの発光光h1,h2が、赤色の発光光とアンバー色の発光光である場合、この有機エレクトロルミネッセンス素子1は、車両200のテールランプ、ストップランプ、及びターンランプとして好適に用いられる。
≪Vehicle lamp≫
FIG. 3 is a top view of the vehicle for explaining a schematic configuration of the vehicular lamp according to the embodiment. The vehicular lamp 2 according to the embodiment described with reference to this figure is configured to include the organic electroluminescence element 1 according to the above-described embodiment. For example, a tail lamp, a stop lamp, a back lamp, a turn of the vehicle 200 are provided. It can be applied to any lamp. In particular, when the emitted light h1 and h2 of the first light emitting unit and the second light emitting unit in the organic electroluminescent element 1 are red emitted light and amber colored emitted light, the organic electroluminescent element 1 is It is suitably used as a tail lamp, a stop lamp, and a turn lamp.
 次に、車両用灯具2の適用例について図3を参照して説明する。図3に示すように、車両200の前部にはヘッドランプ201が設けられ、車両200の後部コーナー部には車両用灯具2が設けられている。車両用灯具2は、発光光を車両200の後方に配光するように構成されている。なお、図3においては、車両200の運転者から見た方向を前方、後方、左方及び右方として説明する。 Next, an application example of the vehicular lamp 2 will be described with reference to FIG. As shown in FIG. 3, a headlamp 201 is provided at the front portion of the vehicle 200, and a vehicle lamp 2 is provided at the rear corner portion of the vehicle 200. The vehicular lamp 2 is configured to distribute emitted light to the rear of the vehicle 200. In FIG. 3, the directions viewed from the driver of the vehicle 200 are described as front, rear, left, and right.
 車両用灯具2は、車両200の後部コーナー部に形成された凹部に取り付けられるハウジング203、車両200の車体の形状に合わせて形成されハウジング203を覆う透光カバー204、ハウジング203と透光カバー204との間に形成される灯室205内に設けられる光源としての有機エレクトロルミネッセンス素子1を備えて構成されている。 The vehicular lamp 2 includes a housing 203 that is attached to a recess formed in a rear corner portion of the vehicle 200, a translucent cover 204 that is formed in accordance with the shape of the vehicle body of the vehicle 200 and covers the housing 203, and the housing 203 and the translucent cover 204. And the organic electroluminescence element 1 as a light source provided in the lamp chamber 205 formed between the two.
 有機エレクトロルミネッセンス素子1は、車両200の左右方向に延在する帯状に形成され、車両200の車体の形状に合わせて一部が凸状に湾曲された状態でハウジング203に保持されている。 The organic electroluminescence element 1 is formed in a belt shape extending in the left-right direction of the vehicle 200, and is held by the housing 203 in a state where a part thereof is curved in a convex shape according to the shape of the vehicle body of the vehicle 200.
 また、有機エレクトロルミネッセンス素子1の発光層の材料が適宜選択されていることで、テールランプ及びストップランプ用の赤色の発光光h1、及びターンランプ用のアンバー色の発光光h2を発生するように構成されている。なお、有機エレクトロルミネッセンス素子1として、さらに白色光を示すものを用い、カラーフィルターを設けることで、上記各色の発光光を発生するものとしてもよい。 In addition, the material of the light emitting layer of the organic electroluminescence element 1 is appropriately selected, so that red light h1 for tail lamps and stop lamps and amber light h2 for turn lamps are generated. Has been. In addition, it is good also as what emits the emitted light of said each color by using what shows white light as the organic electroluminescent element 1, and providing a color filter.
 以上のように車両用灯具2として設けられる有機エレクトロルミネッセンス素子1は、第1発光ユニット21と第2発光ユニット22の発光領域が異なるものであってもよい。すなわち第1発光ユニット21の発光領域は、第1電極層11と中間電極層30とで第1発光ユニット21が挟持された部分である。また第2発光ユニット22の発光領域は、中間電極層30と第2電極層12とで第2発光ユニット22が挟持された部分である。そして、これらの2つの発光領域は、フレキシブル基板10の上部において一部の重なりを持ってずらして配置されていてもよい。 As described above, the organic electroluminescence element 1 provided as the vehicular lamp 2 may have different light emitting areas of the first light emitting unit 21 and the second light emitting unit 22. That is, the light emitting region of the first light emitting unit 21 is a portion where the first light emitting unit 21 is sandwiched between the first electrode layer 11 and the intermediate electrode layer 30. The light emitting region of the second light emitting unit 22 is a portion where the second light emitting unit 22 is sandwiched between the intermediate electrode layer 30 and the second electrode layer 12. And these two light emission area | regions may be shifted and arrange | positioned in the upper part of the flexible substrate 10 with a partial overlap.
≪実施形態の効果≫
 以上説明した実施形態の有機エレクトロルミネッセンス素子1によれば、フレキシブル基板10を用いて構成したことにより、光取り出し面Sを湾曲させて用いることができるため、車のボディデザインに合わせたデザイン性の高い車両用灯具2を構成することができる。しかも、フレキシブル基板10の上部に積層された第1発光ユニット21と第2発光ユニット22からの発光光h1,h2の配光特性を上述したように限定した。これにより、例えばこの有機エレクトロルミネッセンス素子1の光取り出し面Sを凸方向に湾曲させて、車両用灯具として車両の後部コーナー部に設けた場合に、発光光h1,h2の視認性の向上を図ることができる。
<< Effects of Embodiment >>
According to the organic electroluminescent element 1 of the embodiment described above, since the light extraction surface S can be used by being curved by using the flexible substrate 10, the design characteristics according to the vehicle body design can be improved. A high vehicle lamp 2 can be configured. In addition, the light distribution characteristics of the emitted lights h1 and h2 from the first light emitting unit 21 and the second light emitting unit 22 stacked on the flexible substrate 10 are limited as described above. Thereby, for example, when the light extraction surface S of the organic electroluminescence element 1 is curved in a convex direction and provided at the rear corner portion of the vehicle as a vehicle lamp, the visibility of the emitted light h1 and h2 is improved. be able to.
 また、第1発光ユニット21と第2発光ユニット22との間に、外部電極に接続される中間電極層30を設けることで、第1発光ユニット21と第2発光ユニット22とから個別に発光光h1,h2を取り出して調色発光させる構成とした。これにより、テールランプ用赤色の発光とターンランプ用のアンバー色の発光とを同一の灯具から発光させることができ、これによっても、車両用灯具2のデザイン性の向上を図ることができる。 In addition, by providing an intermediate electrode layer 30 connected to the external electrode between the first light emitting unit 21 and the second light emitting unit 22, the emitted light is individually emitted from the first light emitting unit 21 and the second light emitting unit 22. h1 and h2 were taken out and the toned light was emitted. As a result, red light for the tail lamp and amber light for the turn lamp can be emitted from the same lamp, and the design of the vehicular lamp 2 can also be improved.
 さらに中間電極層30を半透過半反射とすることで、発光光h1,h2を特定の配光特性とするための膜厚設計に際し、第1発光ユニット21および第2発光ユニット22を構成する各層の膜厚、さらには中間電極層30の膜厚を変更することができ、膜厚設計の自由度が向上する。また膜厚設計の自由度が向上したことにより、有機エレクトロルミネッセンス素子1に入射した外光の干渉を抑える構成とすることもできるため、外光の干渉による車両用灯具2の着色を防止することも可能になる。 Further, by making the intermediate electrode layer 30 semi-transparent and semi-reflective, each layer constituting the first light emitting unit 21 and the second light emitting unit 22 in designing the film thickness to make the emitted light h1 and h2 have specific light distribution characteristics. The film thickness of the intermediate electrode layer 30 can be changed, and the degree of freedom in designing the film thickness is improved. In addition, since the degree of freedom in designing the film thickness is improved, it is possible to adopt a configuration that suppresses interference of external light incident on the organic electroluminescence element 1, thereby preventing coloring of the vehicular lamp 2 due to interference of external light. Is also possible.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
≪有機エレクトロルミネッセンス素子101の作製≫
 下記の方法に従って、図1に記載の構成の有機エレクトロルミネッセンス素子101を作製した。
<< Production of Organic Electroluminescence Element 101 >>
According to the following method, the organic electroluminescent element 101 having the configuration shown in FIG. 1 was produced.
(ガスバリアー層付のフレキシブル基材の準備)
 ポリエチレンナフタレートフィルム(帝人デュポン社製フィルムであり、以下PENフィルムと記す)を用意した。特開2004-68143号公報に記載の構成よりなる大気圧プラズマ放電処理装置を用いて、このPENフィルムの一主面上に、酸化シリコン(SiOx)より構成される無機ガスバリアー層を、膜厚500nmとなるように形成し、ガスバリアー層付のフレキシブル基板10を作製した。
(Preparation of flexible base material with gas barrier layer)
A polyethylene naphthalate film (a film made by Teijin DuPont Co., Ltd., hereinafter referred to as a PEN film) was prepared. An inorganic gas barrier layer made of silicon oxide (SiOx) is formed on one main surface of the PEN film using an atmospheric pressure plasma discharge treatment apparatus having a configuration described in Japanese Patent Application Laid-Open No. 2004-68143. A flexible substrate 10 with a gas barrier layer was formed to a thickness of 500 nm.
(下地層の形成)
 ガスバリアー層付きのフレキシブル基板10を、市販の真空蒸着装置の基材ホルダーに固定し、基板ホルダーを真空蒸着装置の真空槽に取り付けた。次に、真空槽内を4×10-4Paまで減圧した後、窒素含有化合物である下記化合物1の入った加熱ボートを通電して加熱した。これにより、フレキシブル基板10のガスバリアー層上に、蒸着速度0.1~0.2nm/秒で化合物1を蒸着し、膜厚15nmの下地層を形成した。
(Formation of underlayer)
The flexible substrate 10 with a gas barrier layer was fixed to a base material holder of a commercially available vacuum deposition apparatus, and the substrate holder was attached to a vacuum chamber of the vacuum deposition apparatus. Next, after reducing the pressure in the vacuum chamber to 4 × 10 −4 Pa, a heating boat containing the following compound 1 which is a nitrogen-containing compound was energized and heated. Thus, Compound 1 was deposited on the gas barrier layer of the flexible substrate 10 at a deposition rate of 0.1 to 0.2 nm / second to form a base layer having a thickness of 15 nm.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(第1電極層11の形成)
 下地層までが形成されたフレキシブル基板10を、真空蒸着装置の真空槽内に装着した。次に、真空槽内を4×10-4Paまで減圧した後、銀(Ag)の入った加熱ボートを通電して加熱した。これにより、蒸着速度0.1~0.2nm/秒で膜厚13nmの銀(Ag)からなる第1電極層11を形成した。この第1電極層11は、透明電極であり、陽極として形成した。
(Formation of the first electrode layer 11)
The flexible substrate 10 on which the base layer was formed was mounted in a vacuum chamber of a vacuum deposition apparatus. Next, after reducing the pressure in the vacuum chamber to 4 × 10 −4 Pa, the heating boat containing silver (Ag) was energized and heated. Thus, the first electrode layer 11 made of silver (Ag) having a film thickness of 13 nm was formed at a deposition rate of 0.1 to 0.2 nm / second. The first electrode layer 11 was a transparent electrode and formed as an anode.
(第1発光ユニット21の形成)
 陽極としての第1電極層11上に、下記に示す手順に従って、第1発光ユニット21を形成した。なお、第1電極層11まで形成したフレキシブル基板10は、露点-80℃以下、酸素濃度1ppm以下のグローブボックスにおいて乾燥させた後、グローブボックスから大気に晒すことなく第1発光ユニット21を形成する真空蒸着装置の真空槽内に移送した。
(Formation of the first light emitting unit 21)
On the 1st electrode layer 11 as an anode, the 1st light emission unit 21 was formed in accordance with the procedure shown below. The flexible substrate 10 formed up to the first electrode layer 11 is dried in a glove box having a dew point of −80 ° C. or less and an oxygen concentration of 1 ppm or less, and then the first light emitting unit 21 is formed without being exposed to the atmosphere from the glove box. It transferred to the vacuum chamber of a vacuum evaporation system.
 真空蒸着装置の真空槽内に、各層の構成材料を最適の量で充填した抵抗加熱ボートを取り付けた。抵抗加熱ボートは、モリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。 In the vacuum chamber of the vacuum deposition apparatus, a resistance heating boat filled with the optimum amount of the constituent materials of each layer was attached. The resistance heating boat used was made of a resistance heating material made of molybdenum or tungsten.
 続いて、真空蒸着装置の真空槽内を1×10-4Paにまで減圧し、先ず下記化学式で表される化合物M-1(MTDATA)の入った抵抗加熱ボートを通電して加熱した。これにより、第1電極層11上に、蒸着速度0.1nm/秒で化合物M-1(MTDATA)を蒸着し、膜厚17nmの正孔注入層を形成した。 Subsequently, the inside of the vacuum chamber of the vacuum evaporation apparatus was depressurized to 1 × 10 −4 Pa, and first, a resistance heating boat containing a compound M-1 (MTDATA) represented by the following chemical formula was energized and heated. As a result, Compound M-1 (MTDATA) was deposited on the first electrode layer 11 at a deposition rate of 0.1 nm / second to form a 17 nm-thick hole injection layer.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 次いで、下記化学式で表される化合物M-2(α-NPD)の入った抵抗加熱ボートを通電して加熱した。これにより、正孔注入層上に、化合物M-2(α-NPD)を蒸着し、膜厚20nmの正孔輸送層(HTL)を形成した。 Next, a resistance heating boat containing a compound M-2 (α-NPD) represented by the following chemical formula was heated by energization. Thereby, the compound M-2 (α-NPD) was vapor-deposited on the hole injection layer to form a 20 nm-thick hole transport layer (HTL).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 次いで、下記化学式で表される化合物GD-1、化合物RD-1、及び化合物H-2を、化合物GD-1が体積比で10%、化合物RD-1が体積比で10%の濃度になるように蒸着速度0.1nm/秒で共蒸着し、正孔輸送層(HTL)上に膜厚35nmの赤色を呈するリン光発光層を形成した。なお、化合物RD-1は、620nmの最大ピーク波長を有する。 Next, the compound GD-1, the compound RD-1, and the compound H-2 represented by the following chemical formula have a concentration of 10% by volume for the compound GD-1 and 10% by volume for the compound RD-1. As described above, co-evaporation was performed at a deposition rate of 0.1 nm / second to form a phosphorescent light emitting layer having a thickness of 35 nm on the hole transport layer (HTL). Compound RD-1 has a maximum peak wavelength of 620 nm.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 その後、上記化合物1の入った抵抗加熱ボートを通電して加熱した。これにより、リン光発光層上に、蒸着速度0.1nm/秒で化合物1を蒸着し、膜厚22nmの電子輸送層(ETL)を形成した。 Thereafter, the resistance heating boat containing the compound 1 was energized and heated. Thereby, Compound 1 was deposited on the phosphorescent light emitting layer at a deposition rate of 0.1 nm / second to form an electron transport layer (ETL) having a film thickness of 22 nm.
 次いで、フッ化リチウム(LiF)入った抵抗加熱ボートを通電して加熱した。これにより、フッ化リチウム(LiF)を、電子輸送層(ETL)上に蒸着速度0.1nm/秒で蒸着し、膜厚1nmの電子注入層を形成した。
 以上により、赤色のリン光発光層を有する第1発光ユニット21を形成した。
Next, a resistance heating boat containing lithium fluoride (LiF) was energized and heated. Thereby, lithium fluoride (LiF) was deposited on the electron transport layer (ETL) at a deposition rate of 0.1 nm / second to form an electron injection layer having a thickness of 1 nm.
Thus, the first light emitting unit 21 having a red phosphorescent light emitting layer was formed.
(中間電極層30の形成)
 次に、第1発光ユニット21上に、次のようにして中間電極層30を形成した。まず、タングステン製の各抵抗加熱ボートのそれぞれに、アルミニウム(Al)と銀(Ag)を入れ、これらの抵抗加熱ボートと、第1発光ユニット21が形成されたフレキシブル基板10とを、真空蒸着装置の真空槽内に取り付けた。この真空槽内を4×10-4Paにまで減圧した後、抵抗加熱ボートをそれぞれ独立に通電して加熱した。これにより、第1発光ユニット21上に、アルミニウム(Al)と銀(Ag)とをこの順に蒸着し、アルミニウム(Al)1nm及び銀(Ag)15nmの膜厚比率からなる中間電極層30を形成した。
(Formation of the intermediate electrode layer 30)
Next, the intermediate electrode layer 30 was formed on the first light emitting unit 21 as follows. First, aluminum (Al) and silver (Ag) are put in each resistance heating boat made of tungsten, and these resistance heating boats and the flexible substrate 10 on which the first light emitting unit 21 is formed are vacuum-deposited. In a vacuum chamber. The inside of the vacuum chamber was depressurized to 4 × 10 −4 Pa, and then each resistance heating boat was independently energized and heated. Thereby, aluminum (Al) and silver (Ag) are vapor-deposited in this order on the 1st light emission unit 21, and the intermediate electrode layer 30 which consists of a film thickness ratio of aluminum (Al) 1nm and silver (Ag) 15nm is formed. did.
(第2発光ユニット22の形成)
 次いで、中間電極層30上に、以下のようにして第2発光ユニット22を形成した。上記した化合物M-1を、蒸着速度0.1nm/秒で中間電極層30上に蒸着し、膜厚18nmの正孔注入層を形成した。
(Formation of the second light emitting unit 22)
Next, the second light emitting unit 22 was formed on the intermediate electrode layer 30 as follows. The above compound M-1 was deposited on the intermediate electrode layer 30 at a deposition rate of 0.1 nm / second to form a hole injection layer having a thickness of 18 nm.
 次いで、上記した化合物M-2を、正孔注入層上に蒸着し、膜厚95nmの正孔輸送層を形成した。 Next, the above-described compound M-2 was deposited on the hole injection layer to form a 95 nm-thick hole transport layer.
 次いで、上記した化合物GD-1、下記化合物RD-2、及び上記した化合物H-2を、化合物GD-1が体積比で10%、化合物RD-2が体積比で10%の濃度になるように蒸着速度0.1nm/秒で共蒸着し、膜厚35nmのアンバー色を呈するリン光発光層を形成した。なお、化合物RD-2は、605nmの最大ピーク波長を有する。 Next, the above-mentioned compound GD-1, the following compound RD-2, and the above-mentioned compound H-2 are adjusted so that the compound GD-1 has a volume ratio of 10% and the compound RD-2 has a volume ratio of 10%. Were co-evaporated at a deposition rate of 0.1 nm / second to form a phosphorescent light emitting layer having an amber color with a film thickness of 35 nm. Compound RD-2 has a maximum peak wavelength of 605 nm.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 その後、上記した化合物1を蒸着速度0.1nm/秒で蒸着し、膜厚55nmの電子輸送層を形成した。 Thereafter, the above-described compound 1 was deposited at a deposition rate of 0.1 nm / second to form an electron transport layer having a thickness of 55 nm.
 さらにフッ化リチウム(LiF)を蒸着速度0.1nm/秒で蒸着し、膜厚1nmの電子注入層を形成した。
 以上により、アンバー色のリン光発光層を有する第2発光ユニット22を形成した。
Further, lithium fluoride (LiF) was deposited at a deposition rate of 0.1 nm / second to form an electron injection layer having a thickness of 1 nm.
Thus, the second light emitting unit 22 having an amber phosphorescent light emitting layer was formed.
(第2電極層12の形成)
 次に、第2発光ユニット22上に、アルミニウム(Al)を膜厚100nmで蒸着して第2電極層12を形成した。この第2電極層12は、光不透過性の反射電極であり、陰極として形成した。
(Formation of the second electrode layer 12)
Next, on the 2nd light emission unit 22, aluminum (Al) was vapor-deposited with the film thickness of 100 nm, and the 2nd electrode layer 12 was formed. The second electrode layer 12 is a light impermeable reflective electrode, and was formed as a cathode.
(封止構造の作製)
 次のようにして、第1電極層11から第2電極層12までの積層体を被覆するように、フレキシブル基板10に封止フィルムを貼り合わせて封止した。
(Production of sealing structure)
In the following manner, a sealing film was bonded to the flexible substrate 10 and sealed so as to cover the laminated body from the first electrode layer 11 to the second electrode layer 12.
 厚さ0.7mmの無アルカリガラス基板に接着剤を塗布し、120℃で2分間乾燥し、厚さ20μmの接着層を形成した。また、厚さ100μmのアルミニウム箔に対して、厚さ50μmのポリエチレンテレフタレートフィルムが貼り合わせられたアルミラミネートフィルムを用意した。先の接着層に対して、アルミラミネートフィルムのポリエチレンテレフタレートフィルム側を貼り合わせ、封止フィルムとした。その後、アルミニウム箔、ポリエチレンテレフタレートフィルム、および接着層の積層体を、無アルカリガラス基板から剥がし取り、接着層側を剥離シートで覆って封止フィルムとした。 An adhesive was applied to a non-alkali glass substrate having a thickness of 0.7 mm and dried at 120 ° C. for 2 minutes to form an adhesive layer having a thickness of 20 μm. Also, an aluminum laminate film was prepared in which a polyethylene terephthalate film having a thickness of 50 μm was bonded to an aluminum foil having a thickness of 100 μm. The polyethylene terephthalate film side of the aluminum laminate film was bonded to the previous adhesive layer to obtain a sealing film. Thereafter, the laminate of the aluminum foil, the polyethylene terephthalate film, and the adhesive layer was peeled off from the alkali-free glass substrate, and the adhesive layer side was covered with a release sheet to obtain a sealing film.
 この封止フィルムを、窒素雰囲気下に24時間以上放置した後、剥離シートを除去し、封止フィルムにおける接着層側を第2電極層12と対向させるように配置し、80℃に加熱した真空ラミネーターによってフレキシブル基板10に貼り合わせた。さらに、120℃で30分間加熱して封止した。これにより、フレキシブル基板10と封止フィルムとの間に第1電極層11から第2電極層12までの積層体を封止した有機エレクトロルミネッセンス素子101を作製した。作製された有機エレクトロルミネッセンス素子101は、200mm×40mmの発光領域を有するものとなった。 After leaving this sealing film in a nitrogen atmosphere for 24 hours or more, the release sheet is removed, the adhesive film side of the sealing film is disposed so as to face the second electrode layer 12, and a vacuum heated to 80 ° C. It bonded to the flexible substrate 10 with the laminator. Furthermore, it sealed by heating for 30 minutes at 120 degreeC. Thereby, the organic electroluminescent element 101 which sealed the laminated body from the 1st electrode layer 11 to the 2nd electrode layer 12 between the flexible substrate 10 and the sealing film was produced. The produced organic electroluminescence element 101 has a light emitting region of 200 mm × 40 mm.
≪有機エレクトロルミネッセンス素子102~108の作製≫
 上記有機エレクトロルミネッセンス素子101の作製において、下記表2に示すように、第1発光ユニット21と第2発光ユニット22の正孔輸送層(HTL)の膜厚及び電子輸送層(ETL)の膜厚を変更したこと以外は、同様にして各有機エレクトロルミネッセンス素子102~108を作製した。
<< Production of organic electroluminescence elements 102 to 108 >>
In the production of the organic electroluminescent element 101, as shown in Table 2 below, the film thicknesses of the hole transport layer (HTL) and the electron transport layer (ETL) of the first light emitting unit 21 and the second light emitting unit 22 are shown. Each of the organic electroluminescent elements 102 to 108 was produced in the same manner except that the above was changed.
≪有機エレクトロルミネッセンス素子109~111の作製≫
 上記有機エレクトロルミネッセンス素子101の作製において、下記表2に示すように、中間電極層30を構成するアルミニウム(Al)と銀(Ag)の膜厚を変更したこと以外は、同様にして各有機エレクトロルミネッセンス素子109~111を作製した。
<< Production of organic electroluminescence elements 109-111 >>
In the production of the organic electroluminescent element 101, as shown in Table 2 below, each of the organic electroluminescence elements was similarly made except that the film thicknesses of aluminum (Al) and silver (Ag) constituting the intermediate electrode layer 30 were changed. Luminescence elements 109 to 111 were produced.
≪有機エレクトロルミネッセンス素子112(比較例)の作製≫
 上記有機エレクトロルミネッセンス素子101の作製において、下記表2に示すように、第1発光ユニット21における正孔輸送層(HTL)の膜厚及び電子輸送層(ETL)の膜厚を変更したこと以外は、同様にして各有機エレクトロルミネッセンス素子112を作製した。
<< Production of Organic Electroluminescence Element 112 (Comparative Example) >>
In preparation of the said organic electroluminescent element 101, as shown in following Table 2, except having changed the film thickness of the positive hole transport layer (HTL) in the 1st light emission unit 21, and the film thickness of the electron transport layer (ETL). In the same manner, each organic electroluminescence element 112 was produced.
≪有機エレクトロルミネッセンス素子101~112の評価≫
 上記のようにして作製した有機エレクトロルミネッセンス素子101~112について下記の評価を行った。評価結果を下記表2に合わせて示す。
<< Evaluation of organic electroluminescence elements 101-112 >>
The organic EL elements 101 to 112 produced as described above were evaluated as follows. The evaluation results are shown in Table 2 below.
(1)配光特性の測定
 上記作製した有機エレクトロルミネッセンス素子101~112を自動的に回転させる回転ステージにセットし、分光輝度計(コニカミノルタ社製、CS-2000)を用いて光量分布及びスペクトルを測定した。測定においては、第1電極層11-中間電極層30間、及び中間電極層30-第2電極層12間に対して、個別に一定の電流量(5mA/cm)を流し、第1発光ユニット21と第2発光ユニット22とを個別に発光させ、各有機エレクトロルミネッセンス素子101~112の光取り出し面Sに対する法線N方向を0°とし、±80°の範囲で複数回測定した。なお、回転ステージは手製のものを用いた。この時の正面輝度[L1]を1000cd/mに調整し、評価した。
(1) Measurement of light distribution characteristics The organic electroluminescence elements 101 to 112 produced as described above are set on a rotating stage that automatically rotates, and a light intensity distribution and spectrum are measured using a spectral luminance meter (CS-2000, manufactured by Konica Minolta). Was measured. In the measurement, a constant amount of current (5 mA / cm 2 ) is separately supplied between the first electrode layer 11 and the intermediate electrode layer 30 and between the intermediate electrode layer 30 and the second electrode layer 12 to thereby generate the first light emission. The unit 21 and the second light emitting unit 22 were made to emit light individually, and the normal N direction with respect to the light extraction surface S of each of the organic electroluminescence elements 101 to 112 was set to 0 °, and the measurement was performed a plurality of times within a range of ± 80 °. The rotation stage used was a handmade one. The front luminance [L1] at this time was adjusted to 1000 cd / m 2 and evaluated.
 上記したようにして得られた各有機エレクトロルミネッセンス素子101~112の配光特性から、各有機エレクトロルミネッセンス素子101~112について、[L2]/[L1]及び[L3]/[L1]の値を求めた。 From the light distribution characteristics of the organic electroluminescence elements 101 to 112 obtained as described above, the values of [L2] / [L1] and [L3] / [L1] are determined for each of the organic electroluminescence elements 101 to 112. Asked.
(2)明るさ均一性評価
 上記作製した有機エレクトロルミネッセンス素子101~112を、曲率50mmで光取り出し面Sが凸となるように湾曲させた状態で固定した。この状態で、第1電極層11-中間電極層30間、及び中間電極層30-第2電極層12間に対して、個別に一定の電流量(5mA/cm)を流し、第1発光ユニット21と第2発光ユニット22とを個別に発光させ、1m離れた観測位置から光取り出し面Sの中心位置を正面(法線N方向)から目視により観察した。各有機エレクトロルミネッセンス素子101~112の光取り出し面S全体の明るさの均一性を一般モニター10人により以下の基準に従って評価した。なお、○又は△であれば、明るさの均一性としては実用上可と判断した。
  ○:9人以上のモニターが、発光領域の明るさは均一であると判定した
  △:5~8人のモニターが、発光領域の明るさは均一であると判定した
  ×:4人以下のモニターが、発光領域の明るさは均一であると判定した
(2) Brightness Uniformity Evaluation The organic electroluminescence elements 101 to 112 produced as described above were fixed in a curved state so that the light extraction surface S was convex with a curvature of 50 mm. In this state, a constant amount of current (5 mA / cm 2 ) is separately supplied between the first electrode layer 11 and the intermediate electrode layer 30 and between the intermediate electrode layer 30 and the second electrode layer 12 to thereby generate the first light emission. The unit 21 and the second light emitting unit 22 emit light individually, and the center position of the light extraction surface S was visually observed from the front (normal N direction) from an observation position 1 m away. The uniformity of the brightness of the entire light extraction surface S of each of the organic electroluminescence elements 101 to 112 was evaluated by 10 general monitors according to the following criteria. In addition, if it was (circle) or (triangle | delta), it was judged that the uniformity of brightness was practically possible.
○: Nine or more monitors determined that the brightness of the light emitting area was uniform. Δ: Five to eight monitors determined that the brightness of the light emitting area was uniform. However, the brightness of the light-emitting area was determined to be uniform
(3)非発光時の外観の評価
 上記作製した有機エレクトロルミネッセンス素子101~112について、第1発光ユニット21及び第2発光ユニット22の両方を非発光とした状態で、1m離れた観測位置から光取り出し面Sの中心位置を正面(法線N方向)から目視により観察した。各有機エレクトロルミネッセンス素子101~112の非発光時の外観を一般モニター10人により以下の基準に従って評価した。なお、○又は△であれば、外光反射の干渉による着色はないと判断した。
  ○:9人以上のモニターが、第2電極層のアルミニウムの色であると判定した
  △:5~8人のモニターが、第2電極層のアルミニウムの色であると判定した
  ×:4人以下のモニターが、第2電極層のアルミニウムの色であると判定した
ただし、×であっても使用上の問題はない。
(3) Evaluation of appearance when not emitting light With respect to the organic electroluminescent elements 101 to 112 produced as described above, light is emitted from an observation position 1 m away with both the first light emitting unit 21 and the second light emitting unit 22 not emitting light. The center position of the extraction surface S was visually observed from the front (normal N direction). The appearance of each of the organic electroluminescent elements 101 to 112 when not emitting light was evaluated by 10 general monitors according to the following criteria. In addition, if it was (circle) or (triangle | delta), it judged that there was no coloring by interference of external light reflection.
○: Nine or more monitors determined that the color of the aluminum of the second electrode layer Δ: Five to eight monitors determined that the color of the aluminum of the second electrode layer ×: Four or less However, even if it is x, there is no problem in use.
 ここで、有機エレクトロルミネッセンス素子101の第1発光ユニットの発光光の正面の色度は、CIE-xy色度図においてx=0.70、y=0.30であった。また有機エレクトロルミネッセンス素子102~112の第1発光ユニットの発光光の正面の色度は、有機エレクトロルミネッセンス素子101に対して、x=±0.02、y=±0.02の範囲であった。
また、有機エレクトロルミネッセンス素子101の第2発光ユニットの発光光の正面の色度は、CIE-xy色度図においてx=0.58、y=0.41であった。また有機エレクトロルミネッセンス素子102~112の第2発光ユニットの発光光の正面の色度は、有機エレクトロルミネッセンス素子101に対して、x=±0.02、y=±0.02の範囲であった。
Here, the chromaticity of the front surface of the light emitted from the first light emitting unit of the organic electroluminescence element 101 was x = 0.70 and y = 0.30 in the CIE-xy chromaticity diagram. Further, the chromaticity of the front surface of the emitted light of the first light emitting units of the organic electroluminescent elements 102 to 112 was in the range of x = ± 0.02 and y = ± 0.02 with respect to the organic electroluminescent element 101. .
Further, the chromaticity of the front surface of the light emitted from the second light emitting unit of the organic electroluminescence element 101 was x = 0.58 and y = 0.41 in the CIE-xy chromaticity diagram. Further, the chromaticity of the front surface of the emitted light of the second light emitting units of the organic electroluminescent elements 102 to 112 was in the range of x = ± 0.02 and y = ± 0.02 with respect to the organic electroluminescent element 101. .
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表2に示すように、発光光の配光特性が、0.85≦[L2]/[L1]≦1.20であり、かつ[L3]/[L1]≦0.50である関係を満たす発光ユニットは、この関係を満たさない発光ユニットと比較して、凸方向に湾曲させた光取り出し面Sを中心位置から観察した場合の明るさの均一性に優れていることが確認された。 As shown in Table 2, the light distribution characteristics of the emitted light satisfy the relationship of 0.85 ≦ [L2] / [L1] ≦ 1.20 and [L3] / [L1] ≦ 0.50. It was confirmed that the light emitting unit is superior in brightness uniformity when the light extraction surface S curved in the convex direction is observed from the center position, as compared with the light emitting unit that does not satisfy this relationship.
 具体的には、有機エレクトロルミネッセンス素子105の第1発光ユニット、有機エレクトロルミネッセンス素子106の第2発光ユニット、有機エレクトロルミネッセンス素子107の第2発光ユニット、有機エレクトロルミネッセンス素子108の第1発光ユニット、有機エレクトロルミネッセンス素子112の第1発光ユニット及び第2発光ユニットは、上記関係を満たしておらず、その他の上記関係を満たす発光ユニットと比較して明るさの均一性に劣っていた。 Specifically, the first light emitting unit of the organic electroluminescent element 105, the second light emitting unit of the organic electroluminescent element 106, the second light emitting unit of the organic electroluminescent element 107, the first light emitting unit of the organic electroluminescent element 108, the organic The first light emitting unit and the second light emitting unit of the electroluminescence element 112 did not satisfy the above relationship, and were inferior in brightness uniformity as compared with other light emitting units satisfying the above relationship.
 さらに、上記発光光の配光特性が、0.90≦[L2]/[L1]≦1.10であり、かつ[L3]/[L1]≦0.45である関係を満たす発光ユニットは、凸方向に湾曲させた光取り出し面Sを中心位置から観察した場合の明るさの均一性が、さらに優れていることが確認された。 Furthermore, a light emitting unit satisfying a relationship in which the light distribution characteristics of the emitted light satisfy 0.90 ≦ [L2] / [L1] ≦ 1.10 and [L3] / [L1] ≦ 0.45, It was confirmed that the uniformity of brightness when the light extraction surface S curved in the convex direction was observed from the center position was further excellent.
 また表2に示す明るさ均一性の評価結果から、第1発光ユニット及び第2発光ユニットの両方からの発光光の配光特性が、0.85≦[L2]/[L1]≦1.06であり、かつ0.15≦[L3]/[L1]≦0.47である関係を満たせば、第1発光ユニットからの赤色の発光光、及び第2発光ユニットからのアンバー色の発光光の両方ともが、凸方向に湾曲させた光取り出し面Sから、より確実に均一性を保って取り出されることが確認された。 Moreover, from the brightness uniformity evaluation results shown in Table 2, the light distribution characteristics of the emitted light from both the first light emitting unit and the second light emitting unit are 0.85 ≦ [L2] / [L1] ≦ 1.06. And satisfying the relationship of 0.15 ≦ [L3] / [L1] ≦ 0.47, the red emission light from the first light emission unit and the amber emission light from the second light emission unit It was confirmed that both were more reliably extracted from the light extraction surface S curved in the convex direction while maintaining uniformity.
 以上の結果、少なくとも2つの発光ユニットの全てが、上記関係を満たす構成の有機エレクトロルミネッセンスであれば、赤色に発光する車両のテールランプ及びストップランプ、及びアンバー色に発光する車両のターンランプとして、この有機エレクトロルミネッセンス素子1を用いることにより、車両を後方車両から見たときの赤色発光、及びアンバー色発光の両方を、均一の明るさで視認することができる。このため、テールランプ及びストップランプ、さらにはターンランプの視認性の向上を図ることが可能であることが確認された。 As a result, if all of the at least two light emitting units are organic electroluminescence having a configuration satisfying the above relationship, the vehicle tail lamp and the stop lamp that emit red light, and the vehicle turn lamp that emits amber light can be used. By using the organic electroluminescence element 1, it is possible to visually recognize both red light emission and amber light emission when the vehicle is viewed from the rear vehicle with uniform brightness. For this reason, it was confirmed that the visibility of the tail lamp, the stop lamp, and further the turn lamp can be improved.
 また表2に示す非発光時の電極色の評価結果から、外部電源に接続される程度に厚い膜厚を有する中間電極層30を有することにより、発光光の配光特性が特定の関係を満たすような膜厚設計と、外光の干渉による非発光時の着色が抑えられるような膜厚設計とを両立させることが可能であることが確認された。 Further, from the evaluation results of the electrode colors at the time of non-light emission shown in Table 2, by having the intermediate electrode layer 30 having a film thickness that is thick enough to be connected to an external power source, the light distribution characteristics of the emitted light satisfy a specific relationship. It was confirmed that such a film thickness design can be compatible with a film thickness design that suppresses coloring during non-light emission due to external light interference.
 1…有機エレクトロルミネッセンス素子。
  10…フレキシブル基板
  11…第1電極層
  12…第2電極層
  21…第1発光ユニット(発光ユニット)
  22…第2発光ユニット(発光ユニット)
  30…中間電極層
 [L1]…正面輝度
 [L2]…視野角20°の輝度
 [L3]…視野角60°の輝度
 2…車両用灯具
1 ... Organic electroluminescence element.
DESCRIPTION OF SYMBOLS 10 ... Flexible substrate 11 ... 1st electrode layer 12 ... 2nd electrode layer 21 ... 1st light emission unit (light emission unit)
22 ... Second light emitting unit (light emitting unit)
30 ... Intermediate electrode layer [L1] ... Front luminance [L2] ... Luminance with a viewing angle of 20 ° [L3] ... Luminance with a viewing angle of 60 ° 2 ... Vehicle lamp

Claims (9)

  1.  フレキシブル基板と、
     前記フレキシブル基板上に設けられた第1電極層と、
     前記第1電極層の上方に設けられた第2電極層と、
     有機材料を用いて構成された発光層を有し前記第1電極層と前記第2電極層との間に重ねて配置された少なくとも2つの発光ユニットと、
     前記発光ユニット間に配置された中間電極層とを備え、
     前記2つの発光ユニットは、ぞれぞれの発光光の色度が異なるものであり、
     前記2つの発光ユニットのうち少なくとも1つの発光ユニットから前記フレキシブル基板側又は前記第2電極層側に取り出される発光光の配光特性が、正面輝度を[L1]、視野角20°の輝度を[L2]、及び視野角60°の輝度を[L3]とした場合に、0.85≦[L2]/[L1]≦1.20であり、かつ[L3]/[L1]≦0.50である 有機エレクトロルミネッセンス素子。
    A flexible substrate;
    A first electrode layer provided on the flexible substrate;
    A second electrode layer provided above the first electrode layer;
    At least two light emitting units having a light emitting layer configured using an organic material and disposed between the first electrode layer and the second electrode layer;
    An intermediate electrode layer disposed between the light emitting units,
    The two light emitting units are different from each other in chromaticity of emitted light,
    The light distribution characteristics of the emitted light extracted from at least one of the two light emitting units to the flexible substrate side or the second electrode layer side has a front luminance of [L1] and a luminance of a viewing angle of 20 ° [ L2] and the luminance at a viewing angle of 60 ° are [L3], 0.85 ≦ [L2] / [L1] ≦ 1.20 and [L3] / [L1] ≦ 0.50 There is an organic electroluminescence device.
  2.  前記少なくとも2つの発光ユニットは、ぞれぞれの発光光の最大ピーク波長が異なるものである 請求項1記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 1, wherein the at least two light emitting units have different maximum peak wavelengths of emitted light.
  3.  前記配光特性が、0.90≦[L2]/[L1]≦1.10であり、かつ[L3]/[L1]≦0.45である
     請求項1又は2に記載の有機エレクトロルミネッセンス素子。
    3. The organic electroluminescence device according to claim 1, wherein the light distribution characteristics are 0.90 ≦ [L2] / [L1] ≦ 1.10 and [L3] / [L1] ≦ 0.45. .
  4.  前記少なくとも2つの発光ユニットの全てにおける前記配光特性が、0.85≦[L2]/[L1]≦1.20でありであり、かつ[L3]/[L1]≦0.50である
     請求項1又は2に記載の有機エレクトロルミネッセンス素子。
    The light distribution characteristics in all of the at least two light emitting units are 0.85 ≦ [L2] / [L1] ≦ 1.20 and [L3] / [L1] ≦ 0.50. Item 3. The organic electroluminescence device according to Item 1 or 2.
  5.  前記少なくとも2つの発光ユニットの全てにおける前記配光特性が、0.90≦[L2]/[L1]≦1.10であり、かつ[L3]/[L1]≦0.45である
     請求項1~4の何れか1項に記載の有機エレクトロルミネッセンス素子。
    2. The light distribution characteristics in all of the at least two light emitting units are 0.90 ≦ [L2] / [L1] ≦ 1.10 and [L3] / [L1] ≦ 0.45. 5. The organic electroluminescence device according to any one of 1 to 4.
  6.  前記少なくとも2つの発光ユニットのうちの1つは、発光光の正面の色度が、CIE-xy色度図において0.29≦y≦0.34、y+x≧0.98である
     請求項1~5の何れか1項に記載の有機エレクトロルミネッセンス素子。
    One of the at least two light emitting units has a front chromaticity of emitted light such that 0.29 ≦ y ≦ 0.34 and y + x ≧ 0.98 in the CIE-xy chromaticity diagram. 6. The organic electroluminescence device according to any one of 5 above.
  7.  前記少なくとも2つの発光ユニットのうちの1つは、発光光の正面の色度が、CIE-xy色度図においてy≧0.39、y≧0.79-0.67x、y≦x-0.12である 請求項1~5の何れか1項に記載の有機エレクトロルミネッセンス素子。 One of the at least two light emitting units has a front chromaticity of emitted light such that y ≧ 0.39, y ≧ 0.79-0.67x, y ≦ x-0 in the CIE-xy chromaticity diagram. The organic electroluminescence device according to any one of claims 1 to 5, wherein the organic electroluminescence device is .12.
  8.  前記第1電極層、前記第2電極層、及び前記中間電極層には外部電源が接続され、
     前記少なくとも2つの発光ユニットおよび前記中間電極層は、前記第1電極層と前記第2電極層との間においての外光の干渉が防止されるように膜厚設計されている
     請求項1~7の何れかに記載の有機エレクトロルミネッセンス素子。
    An external power source is connected to the first electrode layer, the second electrode layer, and the intermediate electrode layer,
    The thickness of the at least two light emitting units and the intermediate electrode layer is designed so that interference of external light between the first electrode layer and the second electrode layer is prevented. An organic electroluminescence device according to any one of the above.
  9.  請求項1~8の何れか1項に記載の有機エレクトロルミネッセンス素子を用いた車両用灯具。 A vehicular lamp using the organic electroluminescence element according to any one of claims 1 to 8.
PCT/JP2017/017675 2016-06-06 2017-05-10 Organic electroluminescent element and lighting fixture for vehicles WO2017212852A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018522380A JP6913088B2 (en) 2016-06-06 2017-05-10 Organic electroluminescence elements and vehicle lamps

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016112356 2016-06-06
JP2016-112356 2016-06-06

Publications (1)

Publication Number Publication Date
WO2017212852A1 true WO2017212852A1 (en) 2017-12-14

Family

ID=60578559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017675 WO2017212852A1 (en) 2016-06-06 2017-05-10 Organic electroluminescent element and lighting fixture for vehicles

Country Status (2)

Country Link
JP (1) JP6913088B2 (en)
WO (1) WO2017212852A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080132A1 (en) * 2018-10-19 2020-04-23 株式会社小糸製作所 Light emitting device and series of light emitting devices for vehicle lighting fixtures

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227122A (en) * 2011-04-04 2012-11-15 Rohm Co Ltd Organic el device
WO2013024787A1 (en) * 2011-08-12 2013-02-21 パナソニック株式会社 Organic electroluminescent element
JP2015032367A (en) * 2013-07-31 2015-02-16 Lumiotec株式会社 Organic electroluminescent element and lighting system
JP2015195173A (en) * 2014-03-24 2015-11-05 株式会社小糸製作所 vehicle marker lamp
JP2015230841A (en) * 2014-06-05 2015-12-21 コニカミノルタ株式会社 Surface light emitting unit
WO2016009958A1 (en) * 2014-07-18 2016-01-21 コニカミノルタ株式会社 Organic electroluminescent element
JP2016012417A (en) * 2014-06-27 2016-01-21 コニカミノルタ株式会社 Organic electroluminescent element, and electronic device
JP2016225221A (en) * 2015-06-02 2016-12-28 コニカミノルタ株式会社 Electroluminescence device
JP2017054869A (en) * 2015-09-08 2017-03-16 コニカミノルタ株式会社 Organic electroluminescent element and vehicle lamp

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227122A (en) * 2011-04-04 2012-11-15 Rohm Co Ltd Organic el device
WO2013024787A1 (en) * 2011-08-12 2013-02-21 パナソニック株式会社 Organic electroluminescent element
JP2015032367A (en) * 2013-07-31 2015-02-16 Lumiotec株式会社 Organic electroluminescent element and lighting system
JP2015195173A (en) * 2014-03-24 2015-11-05 株式会社小糸製作所 vehicle marker lamp
JP2015230841A (en) * 2014-06-05 2015-12-21 コニカミノルタ株式会社 Surface light emitting unit
JP2016012417A (en) * 2014-06-27 2016-01-21 コニカミノルタ株式会社 Organic electroluminescent element, and electronic device
WO2016009958A1 (en) * 2014-07-18 2016-01-21 コニカミノルタ株式会社 Organic electroluminescent element
JP2016225221A (en) * 2015-06-02 2016-12-28 コニカミノルタ株式会社 Electroluminescence device
JP2017054869A (en) * 2015-09-08 2017-03-16 コニカミノルタ株式会社 Organic electroluminescent element and vehicle lamp

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080132A1 (en) * 2018-10-19 2020-04-23 株式会社小糸製作所 Light emitting device and series of light emitting devices for vehicle lighting fixtures
CN111089265A (en) * 2018-10-19 2020-05-01 株式会社小糸制作所 Light emitting device, light emitting device series of vehicle lamp, and vehicle lamp

Also Published As

Publication number Publication date
JPWO2017212852A1 (en) 2019-04-11
JP6913088B2 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
JP5098645B2 (en) Organic electroluminescence element, liquid crystal display device and lighting device
JP5889730B2 (en) Organic electroluminescent device and lighting device
WO2014178282A1 (en) Organic electroluminescent element
JP5735162B1 (en) Organic electroluminescent device and lighting device
US8823030B2 (en) Light-emitting device and lighting device
WO2017179692A1 (en) Organic electroluminescent element and lighting device
JP5857006B2 (en) Organic electroluminescent device and lighting device
JP6728603B2 (en) Organic electroluminescence element and vehicle lamp
WO2017212852A1 (en) Organic electroluminescent element and lighting fixture for vehicles
JP6142070B1 (en) Organic electroluminescent device and lighting device
JP6151845B1 (en) Organic electroluminescent device, lighting device, display device
JP6151874B1 (en) Organic electroluminescent device and lighting device
JP6022015B2 (en) Organic electroluminescent device and lighting device
WO2016152792A1 (en) Organic electroluminescence panel module
JP6151847B1 (en) Organic electroluminescent device and lighting device
US20110084288A1 (en) Organic light emitting diode display and method of manufacturing the same
WO2012105349A1 (en) Vacuum vapor deposition device, vacuum vapor deposition method, and organic electroluminescence element formed using said vacuum vapor deposition device or vacuum vapor deposition method
WO2018051617A1 (en) Organic electroluminescent element
JP2023041855A (en) Organic el element, organic el lighting device, and light extraction film suppressing coloring of organic el element
WO2012105333A1 (en) Production method for organic electroluminescence element and organic electroluminescence element
JP2004063189A (en) Organic electroluminescent element and display panel
WO2012105348A1 (en) Vacuum vapor deposition device, vacuum vapor deposition method, and organic electroluminescence element formed using said vacuum vapor deposition device or vacuum vapor deposition method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018522380

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810034

Country of ref document: EP

Kind code of ref document: A1