WO2017212533A1 - Vertical shaft pump - Google Patents

Vertical shaft pump Download PDF

Info

Publication number
WO2017212533A1
WO2017212533A1 PCT/JP2016/066820 JP2016066820W WO2017212533A1 WO 2017212533 A1 WO2017212533 A1 WO 2017212533A1 JP 2016066820 W JP2016066820 W JP 2016066820W WO 2017212533 A1 WO2017212533 A1 WO 2017212533A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
vertical shaft
bearing
sliding
liquid
Prior art date
Application number
PCT/JP2016/066820
Other languages
French (fr)
Japanese (ja)
Inventor
裕輔 渡邊
正治 石井
真 小宮
内田 義弘
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Priority to PCT/JP2016/066820 priority Critical patent/WO2017212533A1/en
Priority to JP2018522192A priority patent/JP6749393B2/en
Publication of WO2017212533A1 publication Critical patent/WO2017212533A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings

Definitions

  • the present invention relates to a vertical shaft pump. More specifically, operation management is performed under dry conditions such as a vertical shaft pump that performs management operation by rotating the rotary shaft of the pump while water is not filled into the pump casing of the vertical shaft pump or a preceding standby operation pump.
  • the present invention relates to a vertical shaft pump.
  • drainage pumps installed in the drainage pump station should have rainwater before reaching the drainage pump station in order to prevent inundation damage due to delays in starting. Pre-standby operation to be started is performed.
  • FIG. 1 is a partial schematic diagram of a vertical shaft pump that performs a preliminary standby operation. Even if the water level of the water tank 100 is equal to or lower than the minimum operating water level LWL, the water tank 100 of the drainage pump station is provided with an impeller 22 at the tip of the rotary shaft 10 arranged vertically and the air is sucked into the impeller 22 together with water.
  • a vertical shaft pump 3 capable of continuing the operation (preceding standby operation) is disposed.
  • This vertical shaft pump 3 is provided with a through hole 5 in the side surface of the suction bell 27 on the inlet side of the impeller 22, and an air pipe 6 having an opening 6 a in contact with outside air is attached to the through hole 5. ing.
  • this vertical shaft pump 3 the supply amount of the air supplied into the vertical shaft pump 3 through the through hole 5 is changed according to the water level, and the drainage amount of the vertical pump 3 is controlled below the minimum operating water level LWL.
  • FIG. 2 is a diagram for explaining the operating state of the preceding standby operation.
  • a vertical shaft pump is started in advance based on rainfall information or the like regardless of the suction water level (A: air operation).
  • the pump start is started from the water level LLLWL lower than the lower end of the casing.
  • FIG. 3 is a cross-sectional view showing an entire conventional vertical shaft pump 3 that performs the preliminary standby operation shown in FIG.
  • the through hole 5 and the air pipe 6 shown in FIG. 2 are not shown.
  • the vertical shaft pump 3 includes a discharge elbow 30 installed and fixed on the pump installation floor, a casing 29 connected to the lower end of the discharge elbow 30, and a lower end of the casing 29 and an impeller 22. And a suction bell 27 that is connected to the lower end of the discharge bowl 28 and sucks water.
  • a single rotating shaft 10 formed by connecting two upper and lower shafts to each other by a shaft coupling 26 is provided at substantially the center in the radial direction of the casing 29, the discharge bowl 28, and the suction bell 27 of the vertical shaft pump 3.
  • the rotary shaft 10 is supported by an upper slide bearing device 32 fixed to the casing 29 via a support member, and a lower slide bearing device 33 fixed to the discharge bowl 28 via a support member.
  • An impeller 22 for sucking water into the pump is connected to one end side (suction bell 27 side) of the rotating shaft 10.
  • the other end of the rotating shaft 10 extends to the outside of the vertical shaft pump 3 through a hole provided in the discharge elbow 30 and is connected to a driving machine such as an engine or a motor that rotates the impeller 22.
  • a shaft seal 34 such as a floating seal, a gland packing, or a mechanical seal is provided between the rotary shaft 10 and a hole provided in the discharge elbow 30, and the water handled by the vertical pump 3 by the shaft seal 34 is supplied to the vertical pump. 3 is prevented from flowing out.
  • the drive will be installed on land so that maintenance and inspection can be performed easily.
  • the rotation of the driving machine is transmitted to the rotary shaft 10 and the impeller 22 can be rotated.
  • the water is sucked from the suction bell 27 by the rotation of the impeller 22, passes through the discharge bowl 28 and the casing 29, and is discharged from the discharge elbow 30.
  • FIG. 4 is an enlarged view of the sliding bearing device used in the sliding bearing devices 32 and 33 shown in FIG.
  • FIG. 5 is a perspective view of a plain bearing installed in the plain bearing device shown in FIG.
  • the rotating shaft 10 has a sleeve 11 made of stainless steel, ceramics, sintered metal, or surface-modified metal on the outer periphery thereof.
  • a slide bearing 1 made of a hollow cylindrical resin material, ceramics, sintered metal, or surface-modified metal is provided on the outer peripheral side of the sleeve 11.
  • the outer peripheral surface of the sleeve 11 faces the inner peripheral surface (slide surface) of the slide bearing 1 through a very narrow clearance, and is configured to slide with respect to the slide bearing 1.
  • the slide bearing 1 is fixed to a support member 13 connected to a pump casing 29 (see FIG. 3) or the like via a collar portion 12a by a bearing case 12 made of metal or resin.
  • the plain bearing 1 has a hollow cylindrical shape, the inner peripheral surface 1 a faces the outer peripheral surface of the sleeve 11, and the outer peripheral surface 1 b is fitted in the bearing case 12.
  • the vertical shaft pump 3 shown in FIG. 3 is operated in the atmosphere when the pump is started.
  • the sliding bearing devices 32 and 33 are operated under dry conditions without liquid lubrication.
  • the dry condition refers to a condition in which the atmosphere of the sliding portion of the slide bearing 1 and the sleeve 11 of the slide bearing devices 32 and 33 during the pump operation is in the air without liquid lubrication. Driving under conditions.
  • the plain bearing devices 32 and 33 shown in FIG. 4 are operated even under drainage conditions.
  • the drainage condition refers to a condition in which the atmosphere of the slide bearing devices 32 and 33 during the pump operation is in water mixed with foreign matter (slurry) such as earth and sand, and the drainage operation is to operate under that condition, For example, it refers to air-water mixing operation, full-volume operation, air lock operation and the like.
  • slurry foreign matter
  • the plain bearing devices 32 and 33 are used.
  • the slide bearing devices 32 and 33 are arranged at two locations on the rotary shaft 10. However, if the length of the rotary shaft 10 increases, more bearings are arranged accordingly. Is done.
  • FIG. 6 is a schematic cross-sectional view showing a state of the rotary shaft 10, the sleeve 11, and the slide bearing 1 in a pump in which the slide bearing devices 32 and 33 are arranged in a portion where the shaft swings heavily.
  • the frictional force at the contact portion portion indicated by hatching
  • the frictional heat generated at the same time is increased. Therefore, there is a concern about damage to the slide bearing 1 and the sleeve 11.
  • the rotary shaft and the slide bearing have been conventionally surrounded by a protective tube so that the pump can be operated with the sliding surface of the slide bearing existing in water even during dry operation.
  • a protective tube when a protective tube is used, a facility for supplying water to the protective tube is required, and maintenance of the slide bearing device is difficult.
  • the structure of the slide bearing device becomes complicated, which increases the cost and makes maintenance difficult.
  • there is a problem that there is a problem and since the size of the slide bearing device is increased, there is a problem that the resistance of the water flow is caused and the pump performance is lowered.
  • the inventors have a sliding bearing device that has a mechanism that, when the rotating shaft slides in dry operation, generates a couple of frictional forces that are opposite to each other to cancel the frictional force and suppress the swinging of the rotating shaft. (See Patent Document 1).
  • the canceling force depends on the magnitude of the deflection width (radial deflection width) perpendicular to the axial direction of the rotating shaft. That is, when this slide bearing device is arranged in a place (antinode) where the swing of the rotating shaft is large, the effect of suppressing the swing is great, but this slide bearing device is installed in a place (node) where the swing of the rotating shaft is small. If this is arranged, this effect is difficult to obtain.
  • the present invention has been made in view of the above problems, and is more likely to occur when the rotating shaft becomes longer when operating in a state where the water surface does not reach the pump casing of the vertical shaft pump.
  • An object of the present invention is to provide a vertical shaft pump that appropriately reduces the swaying of a rotating shaft as a whole as a whole.
  • a vertical shaft pump including a rotary shaft, a pump casing that houses at least a part of the rotary shaft, and an impeller attached to the rotary shaft.
  • the vertical shaft pump includes a plurality of sliding bearing devices that support the rotating shaft, and a part of the plurality of sliding bearing devices is used in a state where a sliding surface is in an air atmosphere during an air operation. It is a slide bearing device, and the rest of the plurality of slide bearing devices is a second slide bearing device that is used in a state where the sliding surface is always in a liquid atmosphere.
  • the second plain bearing device includes a perfect circle bearing or a multi-arc bearing.
  • the vertical shaft pump has a discharge bowl that houses the impeller, and the second sliding bearing device is provided at a height higher than the discharge bowl.
  • the second slide bearing device includes a slide bearing that supports the rotating shaft, and a liquid receiving tank that holds the liquid so that a sliding portion of the slide bearing contacts the liquid.
  • the second sliding bearing device is disposed above the sliding bearing and has a plate member for holding the liquid together with the liquid receiving tank.
  • the plate member has a cylindrical shape and is configured such that the inner diameter gradually decreases from the upstream side toward the downstream side.
  • the vertical shaft has a sliding surface of the lowest slide bearing device of the first slide bearing device and the second slide bearing device in the pump casing that is not immersed in pumped water. Drive in the state.
  • the pump casing includes an air pipe upstream of the impeller.
  • One aspect of the present invention has the effects listed below.
  • the plate member is configured such that the inner diameter gradually decreases from the upstream side toward the downstream side, the liquid receiving tank and the plate member even if centrifugal force is applied to the liquid held in the liquid receiving tank. It is possible to suppress the liquid from being scattered from the space formed by the above.
  • FIG. 4 is an enlarged view of a sliding bearing device used in the sliding bearing device shown in FIG. 3. It is a perspective view of the slide bearing installed in the slide bearing apparatus shown in FIG. It is a typical sectional view showing the state of a rotating shaft, a sleeve, and a sliding bearing in a vertical shaft pump in which a sliding bearing device is arranged in a portion where the shaft swing becomes intense.
  • FIGS. 7 to 12 an embodiment of a vertical shaft pump and a plain bearing device used therefor according to the present invention will be described with reference to FIGS. 7 to 12, the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted.
  • “upper part” and “lower part” are described as meaning the downstream side (“discharge” side in the figure) and the upstream side (“suction” side in the figure) of the liquid transferred by the vertical shaft pump, respectively. To do.
  • FIG. 7 is a longitudinal sectional view of the vertical shaft pump 3 according to the present embodiment.
  • the vertical shaft pump 3 is a pump that may operate a rotating shaft in a state where there is no pumping target water in the pump casing. Some vertical shaft pumps perform a management operation in such a state, and others perform an aerial operation in a preceding standby operation.
  • FIG. 7 illustrates a vertical shaft pump that performs a preliminary standby operation.
  • the management operation is an operation to check whether the pump can be operated normally when the pump is stopped due to the rainy season, and the inside of the pump casing is not dry. It is an operation performed in a state.
  • the operation time may be several ten minutes to several tens of minutes.
  • the vertical shaft pump 3 includes a discharge elbow 30 installed and fixed on the pump installation floor, a casing 29 connected to the lower end of the discharge elbow 30, and connected to the lower end of the casing 29 and the impeller 22.
  • a discharge bowl 28 that stores therein (corresponding to an example of an impeller) and a suction bell 27 that is connected to the lower end of the discharge bowl 28 and sucks water are provided.
  • the lower end of the suction bell 27 to the discharge end of the discharge elbow 30 is called a pump casing.
  • a through hole is provided in a side surface portion of the suction bell 27 on the inlet side of the impeller 22, and an air pipe 6 having an opening in contact with outside air is attached to the through hole.
  • Rotating shaft 10 is arranged at a substantially central portion in the radial direction of casing 29, discharge bowl 28, and suction bell 27 of vertical shaft pump 3.
  • An impeller 22 for sucking water into the pump is connected to one end side (suction bell 27 side) of the rotating shaft 10.
  • the rotary shaft 10 is a slide bearing device 32 fixed to the casing 29 via a support member at an appropriate position in the axial direction, and a slide bearing device fixed to the inner cylinder of the discharge bowl 28 via the support member. 33 and / or in the case of the rotating shaft 10 penetrating the impeller 22, the lower end portion of the rotating shaft 10 is supported by a plain bearing device 33 fixed to the casing 29 via a support member.
  • One or more of the slide bearing device 33 and the slide bearing device 32 are arranged at one place, and a plurality of the slide bearing devices are combined.
  • the other end of the rotating shaft 10 extends to the outside of the vertical shaft pump 3 through a hole provided in the discharge elbow 30 and is connected to a driving machine such as an engine or a motor that rotates the impeller 22.
  • a shaft seal 34 such as a floating seal, a gland packing, or a mechanical seal is provided between the rotary shaft 10 and a hole provided in the discharge elbow 30, and the water handled by the vertical pump 3 by the shaft seal 34 is supplied to the vertical pump. 3 is prevented from flowing out.
  • the drive will be installed on land so that maintenance and inspection can be performed easily.
  • the rotation of the driving machine is transmitted to the rotary shaft 10 and the impeller 22 can be rotated.
  • water is sucked from the suction bell 27, passes through the discharge bowl 28 and the casing 29, and is discharged from the discharge elbow 30.
  • the rotary shaft 10 of the vertical pump extends a long distance from the shaft seal 34 to the impeller in the casing.
  • plain bearing devices 32 and 33 are provided to support the rotary shaft 10 so as to suppress this run-out.
  • the design of the rotating shaft 10 can be determined based on conditions such as the thickness, length, rotational speed, weight of the impeller, and the number of impellers based on experience or expedient calculation in the design stage. A position with a large run-out is determined, and based on this, a certain number of positions in the axial direction is determined.
  • the arrangement position of the sliding bearing device 32 predicted as a position where the swing of the rotating shaft 10 is large may deviate from a position where the actual swing is large. Further, the arrangement position of the plain bearing device 32 cannot be corrected after the vertical shaft pump 3 is assembled.
  • the slide bearing device 32 provided in a place where the swing of the rotary shaft 10 is large has a larger bearing load. Therefore, the sleeve 11 attached to the sliding rotary shaft 10 is likely to be locally heated, and the vertical shaft Vibration and bearing load due to interference between the rotating body (rotating shaft 10 and sleeve 11) of the pump 3 and the fixed body (slide bearing 1) increase.
  • the vertical shaft pump 3 includes a slide bearing device that is used as a part of the slide bearing devices 32 and 33 in a state where the sliding surface is in an atmospheric atmosphere during atmospheric operation, and the rest is the atmospheric operation. Even so, a sliding bearing device is provided which is used in a state where the sliding surface is always in an underwater atmosphere. In other words, some of the slide bearing devices 32 and 33 support the rotary shaft 10 in a state where there is no liquid on the sliding surface (bearing surface) of the slide bearing 1, and the remaining slide bearing devices 32 and 33 are slide bearings.
  • the rotating shaft 10 is configured to be supported in a state where liquid exists on one sliding surface (bearing surface).
  • the sliding bearing device in which the sliding surface is used in an atmospheric atmosphere during the atmospheric operation is the sliding bearing device shown in FIGS.
  • the plain bearing device has a sleeve 11 made of stainless steel, ceramics, sintered metal, surface-modified metal, or the like on the outer periphery of the rotating shaft 10.
  • a slide bearing 1 made of a hollow cylindrical resin material, ceramics, sintered metal, or surface-modified metal is provided on the outer peripheral side of the sleeve 11.
  • the outer peripheral surface of the sleeve 11 faces the inner peripheral surface (slide surface) of the slide bearing 1 through a very narrow clearance, and is configured to slide with respect to the slide bearing 1.
  • the plain bearing 1 is fixed to a support member 13 connected to a pump casing 29 and the like through a collar portion 12a by a bearing case 12 made of metal or resin.
  • the plain bearing 1 has a hollow cylindrical shape, the inner peripheral surface 1 a faces the outer peripheral surface of the sleeve 11, and the outer peripheral surface 1 b is fitted in the bearing case 12.
  • a slide bearing device in which the sliding surface is always used in an underwater atmosphere even during atmospheric operation is known in addition to a slide bearing described later (see FIGS. 9 and 10A to 10D), for example, as disclosed in Japanese Patent Laid-Open No. Hei.
  • a plain bearing device disclosed in Japanese Patent Laid-Open No. 6-94035, Japanese Patent Laid-Open No. 2000-2190, Japanese Patent Laid-Open No. 2000-2191, or the like may be used.
  • the vertical shaft pump 3 shown in FIG. 7 performs the preceding standby operation described in FIG. That is, the vertical shaft pump 3 is operated in the state of the atmosphere in the casing 29, the discharge bowl 28, and the suction bell 27 when the pump is activated. At this time, some of the sliding bearing devices 32 and 33 of the vertical shaft pump 3 are used in a state where the sliding surface is in an air atmosphere, and the rest are used in a state where the sliding surface is in an underwater atmosphere.
  • the sliding bearing devices 32 and 33 used in a state where the sliding surface is in an air atmosphere during the atmospheric operation and the sliding bearing devices 32 and 33 used in a state where the sliding surface is in an underwater atmosphere. explain whether such a phenomenon occurs.
  • FIG. 8 is a cross-sectional view schematically showing a force acting on a sliding portion of a sliding bearing device operated in an air atmosphere without liquid lubrication on a sliding surface during an atmospheric operation.
  • FIG. 8 shows a cross section perpendicular to the axial direction of the rotating shaft 10.
  • the rotating side is the rotating shaft 10 and the sleeve 11 fitted to the rotating shaft 10.
  • the fixed side is a slide bearing 1 that slides on the sleeve 11 and a bearing case 12 that supports the slide bearing 1.
  • the dimension of the clearance between the sleeve 11 and the slide bearing 1 is shown enlarged for convenience.
  • the magnitude of the frictional force F AF that is the destabilizing force is the swing width perpendicular to the axial direction of the rotating shaft 10 (that is, the swing width in the radial direction of the rotating shaft 10).
  • the magnitude of the frictional force F AF is relatively sensitive to whether the swing of the rotating shaft 10 is belly or node.
  • FIG. 9 is a diagram schematically showing the force acting on the sliding portion of the sliding bearing device used in a state where the sliding surface is always in an underwater atmosphere.
  • FIG. 9 shows a cross section perpendicular to the axial direction of the rotating shaft 10.
  • the rotating side is the rotating shaft 10 and the sleeve 11 fitted thereto.
  • the fixed side is a slide bearing 1 that slides on the sleeve 11 and a bearing case 12 that supports the slide bearing 1.
  • the slide bearing device of FIG. 9 differs from the slide bearing device shown in FIG. 8 in that the atmosphere of the sliding portion of the sleeve 11 and the slide bearing 1 is underwater.
  • the vertical shaft pump 3 of the present embodiment includes a plain bearing device that is used in a state where the sliding surface is in an atmospheric atmosphere during atmospheric operation as a part of the plurality of sliding bearing devices 32 and 33, and the rest is the atmospheric operation. Even so, the sliding bearing device is used in a state where the sliding surface is always in an underwater atmosphere. As a result, during the atmospheric operation, the frictional force shown in FIG. 8 and the circumferential fluid force shown in FIG. 9 are generated simultaneously. For this reason, the forces that destabilize the rotating shaft 10 cancel each other in opposite directions, so that the swinging of the rotating shaft 10 is suppressed. Therefore, even when the sliding parts of the lowermost sliding bearings of the plurality of sliding bearing devices 32 and 33 in the pump casing are not immersed in the pumping target pumping water, a pump that can be stably operated without problems is provided. Can be provided.
  • the canceling force depends on the magnitude of the swing width perpendicular to the axial direction of the rotating shaft 10, that is, due to frictional forces opposite to each other disclosed in Patent Document 1 invented by the present inventors.
  • the slip is applied so that the offset is applied to the portion with the maximum swing width perpendicular to the axial direction.
  • a bearing device should be arranged.
  • a part of the plurality of slide bearing devices 32 and 33 is a slide bearing device in which the sliding portion of the slide bearing 1 is always in a liquid state, thereby rotating
  • the countervailing couple acting on the shaft 10 is the circumferential fluid force.
  • this canceling force does not depend very much on the swing width perpendicular to the axial direction of the rotating shaft 10, but rather depends on the rotational speed, so that the installation position is rotated. Regardless of whether the shaft is an antinode or a node, a suitable canceling force can be generated regardless of where the sliding bearing devices 32 and 33 are arranged on the rotating shaft 10.
  • FIG. 10A to FIG. 10D are diagrams illustrating typical types of bearings according to a cross-sectional shape cut in the radial direction of the slide bearing 1.
  • FIG. 10A shows a perfect circle bearing
  • FIGS. 10B and 10C show a multi-arc bearing
  • FIG. 10D shows a tilting pad bearing.
  • FIG. 10B shows a two-arc bearing
  • FIG. 10C shows an offset bearing.
  • the hatched portion represents the rotation shaft 10.
  • the 10A has a groove 41 substantially along the axial direction on the sliding surface, and quickly supplies water and lubricating oil in the axial direction of the slide bearing 2 through the groove 41.
  • the perfect circle bearing shown in FIG. 13A may not include the groove 41.
  • the radius of the sliding surface of the portion where the groove 41 of the perfect circle bearing in FIG. 10A is not formed is r and the center is O.
  • a perfect circle bearing is most likely to have a liquid film effect in the bearing, and therefore is also likely to generate a force.
  • the two-arc bearing shown in FIG. 10B also has a groove 41 on the sliding surface along the axial direction in the same manner as the perfect circle bearing in FIG. 10A.
  • the radius of the slide bearing surface on which the rotary shaft 10 slides is basically r. It is configured.
  • the two arc bearing shown in FIG. 10B and the offset bearing shown in FIG. 10C have centers O 1 and O 2 with respect to the two arcs.
  • a multi-arc bearing having two or more arcs can also be constructed. Multi-arc bearings are not as good as perfect circle bearings among these three types, but they can still produce a liquid film effect in the bearings.
  • the tilting pad bearing shown in FIG. 10D has a plurality of sliding bearing surfaces called pads 43 that can be tilted around the rotating shaft 10 with the pivot 42 as a fulcrum, and surrounds the rotating shaft 10.
  • the tilting pad bearing does not produce a liquid film effect in the bearing.
  • FIG. 11 is a longitudinal sectional view of the sliding bearing device 32.
  • the rotary shaft 10 extends above and below the slide bearing device 32, and a sleeve holding member 44 that holds the sleeve 11 is provided on the outer periphery of the rotary shaft 10.
  • the sleeve 11 is provided on the outer periphery of the sleeve holding member 44.
  • the sleeve 11 has an outer peripheral surface as a sliding surface, and at least its outer surface is made of stainless steel, ceramics, sintered metal, or surface-modified metal.
  • a slide bearing 1 made of a hollow cylindrical resin material, ceramics, sintered metal, or surface-modified metal is disposed on the outer peripheral side of the sleeve 11.
  • the slide bearing 1 is a perfect circle bearing or a multi-arc bearing.
  • the outer peripheral surface of the sleeve 11 faces the inner peripheral surface (slide surface) of the slide bearing 1 through a very narrow clearance, and is configured to slide with respect to the slide bearing 1.
  • the plain bearing 1 is fixed to a support member 13 connected to a casing 29 (see FIG. 7) of a pump or an inner cylinder of a discharge bowl 28 by a bearing case 12 made of metal or resin.
  • the sleeve 11 and the sliding bearing 1 are further surrounded by a liquid receiving tank 45 and an inclined plate 46 (corresponding to an example of a plate member), and the sliding portion of the sleeve 11 and the sliding bearing 1 may be submerged in the liquid.
  • a liquid reservoir 47 is formed.
  • the liquid receiving tank 45 is positioned below the sleeve 11 and the slide bearing 1, and includes a rotating shaft side wall surface 45 a that is a substantially cylindrical wall having a diameter slightly larger than the diameter of the rotating shaft 10, and a substantially cylindrical wall having a larger diameter. It has a certain casing side wall surface 45b. The lower part of the rotating shaft side wall surface 45a and the casing side wall surface 45b are connected to each other to form a liquid receiving tank 45 that holds liquid.
  • the upper portion of the casing side wall surface 45b is watertightly connected to the bearing case 12 that supports the slide bearing 1, and there is no water flow between the inside and the outside of the liquid receiving tank 45 at the height level of the connecting portion.
  • the outer shape of the casing side wall surface 45b has a convex spindle shape or a conical tip downward so as not to become resistance of pumping water that flows along the pumping, and gradually toward the upper side (downstream side).
  • the outer diameter is expanding. With this shape, the streamlines of the water stream are less likely to be disturbed such as vortices, and pressure loss and fluid loss can be reduced.
  • the upper end of the rotating shaft side wall surface 45a extends to a position higher than the upper end portions of the sliding portions of the sleeve 11 and the slide bearing 1.
  • the sleeve holding member 44 described above has a passage 48 so as not to interfere with the upper end of the rotary shaft side wall surface 45a of the liquid receiving tank 45.
  • the sleeve holding member 44 includes an extending portion that extends downward from the attachment position of the sleeve 11.
  • the inclined plate 46 is a plate member configured in a substantially cylindrical shape as a whole, and is positioned above the sleeve 11 and the slide bearing 1 and has a structure in which the inner diameter of the inclined plate 46 gradually decreases from the lower part to the upper part.
  • the lower part of the inclined plate 46 is watertightly connected to the bearing case 12 that supports the slide bearing 1, and there is no water flow between the inner side and the outer side of the inclined plate 46 at the height level of the connecting portion.
  • the upper portion of the inclined plate 46 is opposed to a rotating body such as the sleeve holding member 44 with a slight clearance.
  • the upper end portion of the inclined plate 46 is located higher than the upper end of the rotary shaft side wall surface 45a described above.
  • the outer shape of the inclined plate 46 and the sleeve holding member 44 has a convex spindle shape or a conical tip toward the upper side, and the outer diameter gradually increases downward (upstream side). .
  • the streamline of the pumped water flowing along it during pumping is less likely to cause turbulence and the like, and pressure loss and fluid loss can be reduced. Since the pumped water flows along the outer shape of the inclined plate 46 and the sleeve holding member 44 while suppressing disturbance of streamlines, foreign matters such as sand mixed in the pumped water flow upward (downstream) with the water flow. It becomes easy, and it can prevent flowing into the space surrounded by the liquid receiving tank 45 and the inclined plate 46 from the clearance between the inclined plate 46 and the sleeve holding member 44.
  • the liquid in the liquid receiving tank 45 is prevented from being scattered by centrifugal force. Further, since the atmosphere in the liquid receiving tank 45 is high in humidity, there is little decrease in liquid due to vaporization. Even if the liquid in the liquid reservoir 47 is reduced and the liquid level is lowered because the pump has not been operated for a long time, the pump is started by the extending portion extending downward from the mounting position of the sleeve 11 of the sleeve holding member 44. Since the liquid in the liquid reservoir 47 is initially subjected to centrifugal action and advances in the circumferential direction due to the centrifugal force, it is bent toward the bearing portion by the inner wall surface of the casing side wall surface 45b, so that water quickly reaches the bearing portion. be able to.
  • the outer shape formed by the casing side wall surface 45b, the inclined plate 46 and the sleeve holding member 44 is preferably substantially spindle-shaped as a whole.
  • the slide bearing 1 can be replaced by removing the liquid receiving tank 45.
  • a hole for injecting liquid into the liquid receiving tank 45 or discharging the liquid from the liquid receiving tank 45 and a detachable plug for closing the hole are provided in the lower part of the liquid receiving tank 45 or the inclined plate 46. The liquid may be easily injected or discharged when necessary. Thereby, the inside of the liquid receiving tank 45 can be cleaned.
  • slide bearing device 32 has been described above, the same configuration can be adopted for the slide bearing device 33 that is fixed to the inner cylinder of the discharge bowl 28 via a support member.
  • FIG. 12 is a longitudinal sectional view of the sliding bearing device 33.
  • the rotary shaft 10 passes through the impeller 22 (see FIG. 7) above the slide bearing device 33, and the position of the slide bearing device shown in FIG. 12 is located at the lower end of the rotary shaft 10.
  • a sleeve holding member 44 for holding the sleeve 11 is provided on the outer periphery of the lower end portion of the rotary shaft 10.
  • the sleeve 11 is provided on the outer periphery of the sleeve holding member 44.
  • the sleeve holding member 44 includes an extending portion that extends downward from the attachment position of the sleeve 11. As the rotary shaft 10 rotates, the sleeve holding member 44 and the sleeve 11 rotate.
  • the sleeve 11 has an outer peripheral surface as a sliding surface, and at least its outer surface is made of stainless steel, ceramics, sintered metal, or surface-modified metal.
  • a slide bearing 1 made of a hollow cylindrical resin material, ceramics, sintered metal, or surface-modified metal is provided on the outer peripheral side of the sleeve 11.
  • the slide bearing 1 is a perfect circle bearing or a multi-arc bearing.
  • the outer peripheral surface of the sleeve 11 faces the inner peripheral surface (slide surface) of the slide bearing 1 through a very narrow clearance, and is configured to slide with respect to the slide bearing 1.
  • the plain bearing 1 is fixed to a support member 13 connected to a pump casing 29 (see FIG. 7) and the like by a bearing case 12 made of metal or resin.
  • the sleeve 11 and the slide bearing 1 are further surrounded by a liquid receiving tank 45 and an inclined plate 46, thereby forming a liquid reservoir 47 in which the sliding portion of the sleeve 11 and the slide bearing 1 is submerged.
  • the liquid receiving tank 45 is positioned below the sleeve 11 and the slide bearing 1 and has a circular container shape that is depressed in the center.
  • the peripheral edge of the liquid receiving tank 45 is connected and fixed to the support member 13 and / or the bearing case 12 in a watertight manner.
  • the outer shape of the water receiving tank 45 has a convex spindle shape or a conical tip toward the bottom (upstream side) so as not to resist the pumping of the water flowing along the pumping pump, and the top (downstream side).
  • the outer diameter is gradually expanding. With this shape, the streamlines of the water stream are less likely to be disturbed such as vortices, and pressure loss and fluid loss can be reduced.
  • the inclined plate 46 is positioned so as to cover the upper part from the sleeve 11 and the slide bearing 1 and has a structure in which the inner diameter of the inclined plate gradually decreases from the lower part to the upper part.
  • the lower part of the inclined plate 46 is fixed to the bearing case 12 in a watertight manner, and there is no water flow between the inner side and the outer side of the inclined plate 46 at the height level of the connecting portion.
  • the upper part of the inclined plate 46 is opposed to the foreign matter intrusion prevention plate 49 with a slight clearance.
  • the foreign matter intrusion prevention plate 49 is a disk-shaped member fixed to the outer peripheral surface of the rotary shaft 10 and is disposed so as to cover the inclined plate 46 from above. Thereby, the penetration
  • a liquid such as water can be injected up to the height of FL in the figure that overflows the upper end of the inclined plate 46.
  • the liquid can be injected so as to fill the space formed by the inclined plate 46 and the liquid receiving tank 45.
  • the outer shape of the inclined plate 46 and the foreign matter intrusion prevention plate 49 has a spindle shape or a conical tip that protrudes upward (downstream side), and gradually decreases in outer diameter toward the lower side (upstream side). Is expanding. With this shape, the streamline of the pumped water flowing along it during pumping is less likely to cause turbulence and the like, and pressure loss and fluid loss can be reduced.
  • the water in the liquid receiving tank 45 is prevented from being scattered by centrifugal force. Further, since the atmosphere of the liquid receiving tank 45 is high in humidity, there is little decrease in the liquid due to vaporization. Even if the liquid in the liquid reservoir 47 is reduced and the liquid level is lowered because the pump has not been operated for a long time, the pump is started by the extending portion extending downward from the mounting position of the sleeve 11 of the sleeve holding member 44. Since the liquid in the liquid reservoir 47 is initially subjected to centrifugal action and advances in the circumferential direction due to the centrifugal force, it is bent toward the bearing portion by the inner wall surface of the casing side wall surface 45b, so that water quickly reaches the bearing portion.
  • the outer shape formed by the liquid receiving tank 45, the inclined plate 46, and the foreign matter intrusion prevention plate 49 is substantially a spindle shape as a whole. By doing so, the water flow of the pumped water is hardly disturbed and the pressure loss can be reduced.
  • the slide bearing 1 can be replaced by removing the liquid receiving tank 45.
  • a hole for injecting liquid into the liquid receiving tank 45 or discharging the liquid from the liquid receiving tank 45 and a detachable plug for closing the hole are provided in the lower part of the liquid receiving tank 45 or the inclined plate 46. The liquid may be easily injected or discharged when necessary. Thereby, the inside of the liquid receiving tank 45 can be cleaned.
  • the plurality of plain bearing devices 32 and 33 that support the rotating shaft 10 are provided, and a part of the plurality of plain bearing devices 32 and 33 is in an air (dry) atmosphere during the air operation.
  • the vertical shaft pump 3 for standby standby has been described as a sliding bearing device to be used, and the rest as a sliding bearing device to be used in a state where the sliding surface is always in a liquid (underwater) atmosphere.
  • the sliding bearing devices 32 and 33 used in a state where the sliding surface is always in a liquid (underwater) atmosphere (1) an example in which the sliding surface is disposed inside the casing 29, and (2) the rotating shaft 10 The example arrange
  • sliding bearing devices 32 and 33 used in a liquid (underwater) atmosphere always have sliding surfaces when the rotary shaft 10 of the vertical pump 3 swings at any position of the rotary shaft 10 of the vertical pump 3. It is possible to cancel the couple of forces generated on the sliding surface of the slide bearing device used in a state where the air is in an air (dry) atmosphere.
  • this plain bearing device is suitable for the vertical pump 3 for the advance standby operation in which the number of rotations is increased and the length of the rotation shaft is increased.
  • the plain bearing devices 32 and 33 shown in FIG. 11 and FIG. 12 do not require any additional equipment such as equipment for supplying water to the protective pipe and maintain it, compared to the case where the conventional protective pipe is used. It becomes easy.
  • the vertical shaft pump 3 according to the present embodiment also uses a sliding bearing device in which the sliding surface is in a dry state during dry operation. Therefore, all the sliding bearing devices are stored in the water so that the sliding surface is underwater. Compared with the case of replacing with a plain bearing device in a state existing in the above, the cost can be reduced, maintenance is facilitated, and the influence on the pump performance can be reduced.
  • a plain bearing device used in a state where the sliding surface is always in a liquid (in water) atmosphere requires a certain size in order to maintain its function. Therefore, there is a problem that such a plain bearing device tends to narrow the flow passage area of the vertical shaft pump 3 or become a fluid resistance.
  • the sliding bearing device shown in FIG. 12 is arranged at the lower end of the rotary shaft 10, the swing of the rotary shaft 10 during the dry operation of the vertical shaft pump 3 for preceding standby operation can be suppressed, and maintenance is facilitated. Although it is excellent in terms of making it, the flow passage area of the suction port of the vertical shaft pump 3 is narrowed.
  • the sliding bearing 1 is a perfect circle bearing shown in FIG. 10A or a multi-circular bearing shown in FIG. 10B, the sliding bearing 1 can be made more compact than the tilting pad bearing shown in FIG. 10D.
  • the slide bearing device 32 when the slide bearing device 32 is arranged at a position higher than the discharge bowl 28 (downstream position), the slide bearing device 32 narrows the flow path area of the vertical shaft pump 3, but this position is under discharge pressure. Therefore, there is no concern about the reduction of the suction pressure and the occurrence of cavitation described above. Further, the slide bearing devices 32 and 33 arranged in the inner cylinder of the discharge bowl 28, a portion immediately above the discharge bowl 28, and the like do not significantly affect the flow. Even if the arrangement position is limited in this way, it is possible to sufficiently generate a couple that cancels the couple generated in the sliding bearing device having a dry sliding surface during the dry operation.
  • the slide bearing devices 32 and 33 whose sliding surfaces are always used in a liquid (underwater) atmosphere are disposed at the position where the rotary shaft 10 is swung during the dry operation of the vertical shaft pump 3 for the preliminary standby operation. From the viewpoint of suppressing the rotation and not affecting the pump performance at the time of pumping, it is preferable to arrange in the discharge bowl 28 or higher.
  • the embodiment of the present invention has been described mainly using the vertical shaft pump that performs the preliminary standby operation as an example, but the vertical shaft pump 3 rotates the rotating shaft in a state where there is no water to be pumped in the pump casing.
  • a pump that may be operated in such a state, and a pump that performs a management operation in such a state is also included.
  • the above-described embodiments of the present invention are intended to facilitate understanding of the present invention, and do not limit the present invention.
  • the present invention can be changed and improved without departing from the gist thereof, and the present invention includes the equivalents thereof.
  • any combination or omission of each component described in the claims and the specification is possible within a range where at least a part of the above-described problems can be solved or a range where at least a part of the effect can be achieved. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Provided is a vertical shaft pump in which the centrifugal whirling of a rotational shaft, which occurs with increased frequency and intensity as rotational shafts are lengthened, has been appropriately reduced for the entire rotational shaft. Specifically provided is a vertical shaft pump for standby operation, said pump comprising a rotational shaft, an impeller attached to the rotational shaft, and an air pipe upstream from the impeller. The vertical shaft pump further comprises a plurality of slide bearing devices that support the rotational shaft, wherein some of the plurality of slide bearing devices are first slide bearing devices that are used when the sliding surface is in an air environment during in-air operation, and the remainder of the plurality of slide bearing devices are second slide bearing devices that are normally used when the sliding surface is in a liquid environment.

Description

立軸ポンプVertical shaft pump
 本発明は、立軸ポンプに関する。より具体的には、立軸ポンプのポンプケーシング内まで水が満たされていない状態でポンプの回転軸を回転して、管理運転を行う立軸ポンプや、先行待機運転ポンプのようなドライ条件で運転管理を行う立軸ポンプに関する。 The present invention relates to a vertical shaft pump. More specifically, operation management is performed under dry conditions such as a vertical shaft pump that performs management operation by rotating the rotary shaft of the pump while water is not filled into the pump casing of the vertical shaft pump or a preceding standby operation pump. The present invention relates to a vertical shaft pump.
 近年、都市化の進展により、緑地の減少及び路面のコンクリート化、アスファルト化の拡大が進むことでヒートアイランド現象が発生し、いわゆるゲリラ豪雨と呼ばれる局所的な集中豪雨が都市部で頻発している。局所的な大量の降雨は、コンクリート化、アスファルト化した路面では、地中に吸収されることなくそのまま水路に導かれる。その結果、大量の雨水が、短時間のうちに排水機場に流入する。 In recent years, due to the progress of urbanization, the heat island phenomenon has occurred due to the decrease in green space, the concrete on the road surface, and the expansion of asphalt. A large amount of local rainfall is introduced into the waterway without being absorbed into the ground on concrete and asphalt road surfaces. As a result, a large amount of rainwater flows into the drainage station in a short time.
 頻発するこのような集中豪雨によってもたらされる大量の雨水の速やかな排水に備えるために排水機場に設置する排水ポンプでは、始動遅れによる浸水被害が生じないよう、雨水が排水機場に到達する前に予め始動させておく先行待機運転が行われている。 In order to prepare for the rapid drainage of a large amount of rainwater caused by such frequent torrential rains, drainage pumps installed in the drainage pump station should have rainwater before reaching the drainage pump station in order to prevent inundation damage due to delays in starting. Pre-standby operation to be started is performed.
 図1は、先行待機運転を行う立軸ポンプの部分概略図である。排水機場の水槽100には、鉛直に配置された回転軸10の先端にインペラ22を備え、インペラ22に水と共に空気を吸い込ませることにより、水槽100の水位が最低運転水位LWL以下であっても運転(先行待機運転)を継続することが可能な立軸ポンプ3が配置されている。この立軸ポンプ3には、インペラ22の入口側の吸い込みベル27の側面部に貫通孔5が設けられており、この貫通孔5には、外気に接する開口6aを備えた空気管6が取付けられている。これにより、この立軸ポンプ3では貫通孔5を介して立軸ポンプ3内に供給する空気の供給量を水位に応じて変化させ、最低運転水位LWL以下で立軸ポンプ3の排水量がコントロールされる。 FIG. 1 is a partial schematic diagram of a vertical shaft pump that performs a preliminary standby operation. Even if the water level of the water tank 100 is equal to or lower than the minimum operating water level LWL, the water tank 100 of the drainage pump station is provided with an impeller 22 at the tip of the rotary shaft 10 arranged vertically and the air is sucked into the impeller 22 together with water. A vertical shaft pump 3 capable of continuing the operation (preceding standby operation) is disposed. This vertical shaft pump 3 is provided with a through hole 5 in the side surface of the suction bell 27 on the inlet side of the impeller 22, and an air pipe 6 having an opening 6 a in contact with outside air is attached to the through hole 5. ing. Thereby, in this vertical shaft pump 3, the supply amount of the air supplied into the vertical shaft pump 3 through the through hole 5 is changed according to the water level, and the drainage amount of the vertical pump 3 is controlled below the minimum operating water level LWL.
 図2は、先行待機運転の運転状態を説明する図である。前述したように始動遅れによる浸水被害が生じないよう、例えば大都市の雨水排水用として、吸込水位に関係なく降雨情報等により予め立軸ポンプを始動しておく(A:気中運転)。雨水が排水機場に到達すると、低水位の状態から水位が上昇するに従って、インペラの位置まで水位が達し、立軸ポンプは空運転(気中運転)からインペラで水を撹拌する運転(B:気水撹拌運転)、さらに貫通孔を経て供給される空気を水と共に吸い込ませつつ水量を徐々に増やす運転(C:気水混合運転)を経て100%水の排出を行う全量運転(D:定常運転)へ移行する。また、高水位から水位が低下するときは、全量運転から貫通孔を経て供給する空気を水と共に吸い込ませつつ水量を徐々に減らす運転(C:気水混合運転)へ移行する。水位がLLWL近くに至ると、水を吸い込まず排水もしない運転(E:エアロック運転)へ移行する。これら5つの特徴ある運転を総称して先行待機運転という。なお、ポンプ始動は、ケーシング下端よりも低い水位LLLWLから開始する。 FIG. 2 is a diagram for explaining the operating state of the preceding standby operation. As described above, in order to prevent inundation damage due to a delay in starting, for example, for a rainwater drainage in a large city, a vertical shaft pump is started in advance based on rainfall information or the like regardless of the suction water level (A: air operation). When rainwater reaches the drainage station, as the water level rises from a low water level, the water level reaches the impeller position, and the vertical shaft pump is an operation that stirs water with the impeller from an empty operation (air operation) (B: air water) Agitation operation), and a full amount operation (D: steady operation) in which 100% water is discharged through an operation of gradually increasing the amount of water (C: air-water mixing operation) while sucking in air supplied through the through-holes. Migrate to When the water level drops from the high water level, the operation shifts from the full operation to the operation of gradually reducing the water amount while sucking in the air supplied through the through holes together with the water (C: air-water mixing operation). When the water level reaches near LLWL, the operation shifts to an operation (E: air lock operation) in which water is not sucked and drained. These five characteristic operations are collectively referred to as advance standby operation. The pump start is started from the water level LLLWL lower than the lower end of the casing.
 図3は、図1に示した先行待機運転を行う従来の立軸ポンプ3の全体を示す断面図である。なお、図2に示した貫通孔5及び空気管6は図示省略されている。図3に示すように、立軸ポンプ3は、ポンプ設置床に設置固定される吐出エルボ30と、この吐出エルボ30の下端に接続されるケーシング29と、ケーシング29の下端に接続されるとともにインペラ22を内部に格納する吐出ボウル28と、吐出ボウル28の下端に接続されるとともに水を吸い込むための吸い込みベル27とを備えている。 FIG. 3 is a cross-sectional view showing an entire conventional vertical shaft pump 3 that performs the preliminary standby operation shown in FIG. The through hole 5 and the air pipe 6 shown in FIG. 2 are not shown. As shown in FIG. 3, the vertical shaft pump 3 includes a discharge elbow 30 installed and fixed on the pump installation floor, a casing 29 connected to the lower end of the discharge elbow 30, and a lower end of the casing 29 and an impeller 22. And a suction bell 27 that is connected to the lower end of the discharge bowl 28 and sucks water.
 立軸ポンプ3のケーシング29、吐出ボウル28、及び吸い込みベル27の径方向略中心部には、上下二本の軸が軸継手26によって互いに接続されることにより形成された一本の回転軸10が配置されている。回転軸10は、支持部材を介してケーシング29に固定されている上部すべり軸受装置32と、支持部材を介して吐出ボウル28に固定されている下部すべり軸受装置33によって支持されている。回転軸10の一端側(吸い込みベル27側)には、水をポンプ内に吸い込むためのインペラ22が接続されている。回転軸10の他端側は、吐出エルボ30に設けられた孔を通って立軸ポンプ3の外部へ延び、インペラ22を回転させるエンジンやモータ等の駆動機へ接続される。 A single rotating shaft 10 formed by connecting two upper and lower shafts to each other by a shaft coupling 26 is provided at substantially the center in the radial direction of the casing 29, the discharge bowl 28, and the suction bell 27 of the vertical shaft pump 3. Has been placed. The rotary shaft 10 is supported by an upper slide bearing device 32 fixed to the casing 29 via a support member, and a lower slide bearing device 33 fixed to the discharge bowl 28 via a support member. An impeller 22 for sucking water into the pump is connected to one end side (suction bell 27 side) of the rotating shaft 10. The other end of the rotating shaft 10 extends to the outside of the vertical shaft pump 3 through a hole provided in the discharge elbow 30 and is connected to a driving machine such as an engine or a motor that rotates the impeller 22.
 回転軸10と吐出エルボ30に設けられた孔との間には、フローティングシール、グランドパッキンまたはメカニカルシール等の軸シール34が設けられており、軸シール34により立軸ポンプ3が扱う水が立軸ポンプ3の外部に流出することを防止する。 A shaft seal 34 such as a floating seal, a gland packing, or a mechanical seal is provided between the rotary shaft 10 and a hole provided in the discharge elbow 30, and the water handled by the vertical pump 3 by the shaft seal 34 is supplied to the vertical pump. 3 is prevented from flowing out.
 駆動機は、保守点検を容易に行うことができるように陸上に設けられる。駆動機の回転は回転軸10に伝達され、インペラ22を回転させることができる。インペラ22の回転によって水は吸込みベル27から吸い込まれ、吐出ボウル28、ケーシング29を通過して吐出エルボ30から吐出される。 The drive will be installed on land so that maintenance and inspection can be performed easily. The rotation of the driving machine is transmitted to the rotary shaft 10 and the impeller 22 can be rotated. The water is sucked from the suction bell 27 by the rotation of the impeller 22, passes through the discharge bowl 28 and the casing 29, and is discharged from the discharge elbow 30.
 図4は、図3に示したすべり軸受装置32,33に用いられるすべり軸受装置の拡大図である。図5は、図4に示すすべり軸受装置に設置されたすべり軸受の斜視図である。図4に示すように、回転軸10は、その外周に、ステンレス鋼、セラミックス、焼結金属又は表面改質された金属からなるスリーブ11を有している。スリーブ11の外周側には、中空円筒の樹脂材料、セラミックス、焼結金属又は表面改質された金属からなるすべり軸受1が設けられている。スリーブ11の外周面は、すべり軸受1の内周面(すべり面)と非常に狭いクリアランスを介して対面し、すべり軸受1に対して摺動するように構成されている。すべり軸受1は、金属又は樹脂からなる軸受ケース12によりつば部12aを介してポンプのケーシング29(図3参照)等へ繋がる支持部材13に固定されている。図5に示すように、すべり軸受1は中空円筒状の形状を有しており、内周面1aがスリーブ11の外周面と対面し、外周面1bが軸受ケース12に嵌合される。 FIG. 4 is an enlarged view of the sliding bearing device used in the sliding bearing devices 32 and 33 shown in FIG. FIG. 5 is a perspective view of a plain bearing installed in the plain bearing device shown in FIG. As shown in FIG. 4, the rotating shaft 10 has a sleeve 11 made of stainless steel, ceramics, sintered metal, or surface-modified metal on the outer periphery thereof. A slide bearing 1 made of a hollow cylindrical resin material, ceramics, sintered metal, or surface-modified metal is provided on the outer peripheral side of the sleeve 11. The outer peripheral surface of the sleeve 11 faces the inner peripheral surface (slide surface) of the slide bearing 1 through a very narrow clearance, and is configured to slide with respect to the slide bearing 1. The slide bearing 1 is fixed to a support member 13 connected to a pump casing 29 (see FIG. 3) or the like via a collar portion 12a by a bearing case 12 made of metal or resin. As shown in FIG. 5, the plain bearing 1 has a hollow cylindrical shape, the inner peripheral surface 1 a faces the outer peripheral surface of the sleeve 11, and the outer peripheral surface 1 b is fitted in the bearing case 12.
 図3に示した立軸ポンプ3は、ポンプ起動時には大気中で運転される。このとき、すべり軸受装置32,33は液体の潤滑のないドライ条件で運転される。ここでドライ条件とは、ポンプ運転中のすべり軸受装置32,33のすべり軸受1とスリーブ11の摺動部の雰囲気が、液体の潤滑がない大気中である条件をいい、ドライ運転とはその条件で運転することをいう。また、図4に示したすべり軸受装置32,33は排水条件でも運転される。ここで、排水条件とは、ポンプ運転中のすべり軸受装置32,33の雰囲気が、土砂等の異物(スラリー)が混入した水中にある条件をいい、排水運転とはその条件で運転すること、例えば気水混合運転、全量運転、エアロック運転等をいう。このような条件ですべり軸受装置32,33が使用される。尚、図3における立軸ポンプ3は、回転軸10について、すべり軸受装置32,33が2箇所配置されているが、回転軸10の長さが長くなれば、それに応じてより多くの軸受が配置される。 The vertical shaft pump 3 shown in FIG. 3 is operated in the atmosphere when the pump is started. At this time, the sliding bearing devices 32 and 33 are operated under dry conditions without liquid lubrication. Here, the dry condition refers to a condition in which the atmosphere of the sliding portion of the slide bearing 1 and the sleeve 11 of the slide bearing devices 32 and 33 during the pump operation is in the air without liquid lubrication. Driving under conditions. Further, the plain bearing devices 32 and 33 shown in FIG. 4 are operated even under drainage conditions. Here, the drainage condition refers to a condition in which the atmosphere of the slide bearing devices 32 and 33 during the pump operation is in water mixed with foreign matter (slurry) such as earth and sand, and the drainage operation is to operate under that condition, For example, it refers to air-water mixing operation, full-volume operation, air lock operation and the like. Under these conditions, the plain bearing devices 32 and 33 are used. In the vertical shaft pump 3 in FIG. 3, the slide bearing devices 32 and 33 are arranged at two locations on the rotary shaft 10. However, if the length of the rotary shaft 10 increases, more bearings are arranged accordingly. Is done.
 ところで、近年、ポンプ機場はより深い地下に配置されるようになり、それに応じて先行待機ポンプも長軸化が進んでいる。回転軸を長くすればするほど、回転軸には軸の振れ回りが激しくなる部分が生じる。この軸の振れ回りを抑制するために、回転軸に沿ってすべり軸受を適切な位置により多く配置する必要が生まれてきた。 By the way, in recent years, pumping stations have been placed deeper underground, and advance standby pumps are also becoming longer shafts accordingly. The longer the rotating shaft is, the more the portion of the rotating shaft is swung around. In order to suppress the swinging of the shaft, it has become necessary to arrange more slide bearings at appropriate positions along the rotating shaft.
 しかしながら、このことにより、新たな技術的課題が発生する虞がある。図6は、軸の振れ回りが激しくなる部分にすべり軸受装置32,33を配置したポンプにおける回転軸10、スリーブ11、及びすべり軸受1の状態を示す模式的断面図である。ドライ運転においては、すべり軸受装置32,33のすべり軸受1と回転軸10に取り付けたスリーブ11とが摺動する際に、接触部(斜線で示される部分)での摩擦力が大きくなり摩耗が促進し、同時に発生する摩擦熱が大きくなる。そのため、すべり軸受1やスリーブ11の損傷が懸念される。 However, this may cause new technical problems. FIG. 6 is a schematic cross-sectional view showing a state of the rotary shaft 10, the sleeve 11, and the slide bearing 1 in a pump in which the slide bearing devices 32 and 33 are arranged in a portion where the shaft swings heavily. In the dry operation, when the slide bearing 1 of the slide bearing devices 32 and 33 and the sleeve 11 attached to the rotary shaft 10 slide, the frictional force at the contact portion (portion indicated by hatching) increases and wears. The frictional heat generated at the same time is increased. Therefore, there is a concern about damage to the slide bearing 1 and the sleeve 11.
 これに対して、ドライ運転時であっても、すべり軸受の摺動面が水中に存在する状態でポンプを運転することができるように、従来から、回転軸及びすべり軸受を保護管で囲繞して、保護管内に清水を通水させたり、全てのすべり軸受装置を、すべり軸受装置内に水を溜めて摺動面が水中に存在する状態にしたものに置き換えたりすることが提案されている。しかしながら、保護管を用いる場合は、保護管に水を供給する設備が必要になるし、すべり軸受装置のメインテナンスが困難である。また、すべり軸受装置に水を溜めて、摺動面が水中に存在する状態にしたものに置き換える場合は、すべり軸受装置の構造が複雑になるのでコストが割高になることや、メインテナンスが困難であるといった問題があり、また、すべり軸受装置のサイズが大きくなるので、水流の抵抗となり、ポンプ性能を低下させるという課題がある。 On the other hand, the rotary shaft and the slide bearing have been conventionally surrounded by a protective tube so that the pump can be operated with the sliding surface of the slide bearing existing in water even during dry operation. Thus, it has been proposed to allow fresh water to flow into the protective tube, or to replace all the sliding bearing devices with water that accumulates in the sliding bearing devices so that the sliding surface exists in the water. . However, when a protective tube is used, a facility for supplying water to the protective tube is required, and maintenance of the slide bearing device is difficult. In addition, when water is stored in the slide bearing device and replaced with one that has a sliding surface in the water, the structure of the slide bearing device becomes complicated, which increases the cost and makes maintenance difficult. In addition, there is a problem that there is a problem, and since the size of the slide bearing device is increased, there is a problem that the resistance of the water flow is caused and the pump performance is lowered.
 そもそも、回転軸の振れ回り自体を、全体として適切に低減すれば良いのであるが、これまで、立軸ポンプにおける対策は、どちらかといえば軸受負荷の大きい軸受に関する対策等、局部的な対策が多かった。 In the first place, it is only necessary to appropriately reduce the rotation of the rotating shaft as a whole, but until now, there have been many local measures such as measures for bearings with a large bearing load. It was.
 そこで、発明者等は、回転軸がドライ運転の摺動時に、互いに逆向きの摩擦力による偶力を生じさせて摩擦力を相殺し、回転軸の振れ回りを抑制する仕組みを有するすべり軸受装置を発明した(特許文献1参照)。 Therefore, the inventors have a sliding bearing device that has a mechanism that, when the rotating shaft slides in dry operation, generates a couple of frictional forces that are opposite to each other to cancel the frictional force and suppress the swinging of the rotating shaft. (See Patent Document 1).
 このすべり軸受装置は、相殺される力が、回転軸の軸方向に垂直な振れ幅(径方向の振れ幅)の大小に依存する。すなわち、回転軸の振れ回りの大きい場所(腹)にこのすべり軸受装置を配置した場合は、振れ回りを抑制する効果が大きいが、回転軸の振れ回りの小さい場所(節)にこのすべり軸受装置を配置した場合、この効果が得にくくなる。 In this plain bearing device, the canceling force depends on the magnitude of the deflection width (radial deflection width) perpendicular to the axial direction of the rotating shaft. That is, when this slide bearing device is arranged in a place (antinode) where the swing of the rotating shaft is large, the effect of suppressing the swing is great, but this slide bearing device is installed in a place (node) where the swing of the rotating shaft is small. If this is arranged, this effect is difficult to obtain.
 しかしながら、上下に長く伸びた立軸ポンプの回転軸のどの部分の振れ幅が最大(腹)であるか、最小(節)であるかを予め正確に把握することは難しく、回転軸の軸方向に垂直な振れ幅が小さい節の位置に、発明したすべり軸受け装置を誤って配置してしまう虞があった。このすべり軸受装置を節の位置に配置した場合には、回転軸の振れ回りを抑制することは困難となる。また、一度すべり軸受を立軸ポンプに取り付けた後は、その位置を修正変更できない。また、この発明のすべり軸受装置は、サイズが大きいので、ポンプ性能や流体の流れを阻害しないように配置する必要があり、その配置位置には制限がある。そのため、配置可能な位置によっては、十分な逆向きの偶力を発揮できない場合もあった。 However, it is difficult to know in advance exactly which part of the rotary shaft of the vertical pump that extends vertically is the maximum (antinode) or minimum (node), and the axial direction of the rotary shaft There is a possibility that the invented slide bearing device may be mistakenly arranged at a position of a node having a small vertical swing width. When this sliding bearing device is arranged at the position of the node, it is difficult to suppress the swing of the rotating shaft. Also, once the plain bearing is attached to the vertical shaft pump, its position cannot be modified. Moreover, since the slide bearing device of the present invention is large in size, it is necessary to arrange the plain bearing device so as not to hinder the pump performance and the fluid flow, and the arrangement position is limited. Therefore, depending on the position where it can be arranged, there is a case where a sufficient reverse couple cannot be exhibited.
国際公開第2015/012350号公報International Publication No. 2015/012350 特開2015-222117号公報Japanese Patent Laying-Open No. 2015-222117 特開平6-94035号公報JP-A-6-94035 特開2000-130390号公報JP 2000-130390 A 特開2001-289191号公報JP 2001-289191 A
 本発明は、上記の問題に鑑みてなされたもので、立軸ポンプのポンプケーシング内まで水面が及んでいない状態で運転するときに、回転軸の長軸化が進むことによってより発生しやすく、また激しくなる回転軸の振れ回りを回転軸全体として適切に低減する立軸ポンプを提供することを目的とする。 The present invention has been made in view of the above problems, and is more likely to occur when the rotating shaft becomes longer when operating in a state where the water surface does not reach the pump casing of the vertical shaft pump. An object of the present invention is to provide a vertical shaft pump that appropriately reduces the swaying of a rotating shaft as a whole as a whole.
 本発明の一形態によれば、回転軸と、前記回転軸の少なくとも一部を収容するポンプケーシングと、前記回転軸に取り付けられた羽根車と、を備えた立軸ポンプが提供される。この立軸ポンプは、前記回転軸を支持する複数のすべり軸受装置を備え、前記複数のすべり軸受装置の一部は、気中運転時に摺動面が大気雰囲気にある状態で使用される第1のすべり軸受装置であり、前記複数のすべり軸受装置の残りは、摺動面が常時液体雰囲気にある状態で使用される第2のすべり軸受装置である。 According to an aspect of the present invention, there is provided a vertical shaft pump including a rotary shaft, a pump casing that houses at least a part of the rotary shaft, and an impeller attached to the rotary shaft. The vertical shaft pump includes a plurality of sliding bearing devices that support the rotating shaft, and a part of the plurality of sliding bearing devices is used in a state where a sliding surface is in an air atmosphere during an air operation. It is a slide bearing device, and the rest of the plurality of slide bearing devices is a second slide bearing device that is used in a state where the sliding surface is always in a liquid atmosphere.
 本発明の一形態において、前記第2のすべり軸受装置は、真円軸受又は多円弧軸受を有する。 In one embodiment of the present invention, the second plain bearing device includes a perfect circle bearing or a multi-arc bearing.
 本発明の一形態において、立軸ポンプは、前記羽根車を収容する吐出ボウルを有し、前記第2のすべり軸受装置は、前記吐出ボウル以上の高さに設けられる。 In one embodiment of the present invention, the vertical shaft pump has a discharge bowl that houses the impeller, and the second sliding bearing device is provided at a height higher than the discharge bowl.
 本発明の一形態において、前記第2のすべり軸受装置は、前記回転軸を支持するすべり軸受と、前記すべり軸受の摺動部が前記液体に接触するように前記液体を保持する受液槽と、を有する。 In one aspect of the present invention, the second slide bearing device includes a slide bearing that supports the rotating shaft, and a liquid receiving tank that holds the liquid so that a sliding portion of the slide bearing contacts the liquid. Have.
 本発明の一形態において、前記第2すべり軸受装置は、前記すべり軸受よりも上方に配置され、前記受液槽とともに前記液体を保持するための板部材を有する。 In one embodiment of the present invention, the second sliding bearing device is disposed above the sliding bearing and has a plate member for holding the liquid together with the liquid receiving tank.
 本発明の一形態において、前記板部材は、筒状であり、上流側から下流側に向かって内径が徐々に小さくなるように構成される。 In one embodiment of the present invention, the plate member has a cylindrical shape and is configured such that the inner diameter gradually decreases from the upstream side toward the downstream side.
 本発明の一形態において、立軸ポンプは、前記ポンプケーシング内の第1のすべり軸受装置および第2のすべり軸受装置のうち、最下部のすべり軸受装置の摺動面が、揚水に浸されていない状態で運転する。 In one aspect of the present invention, the vertical shaft has a sliding surface of the lowest slide bearing device of the first slide bearing device and the second slide bearing device in the pump casing that is not immersed in pumped water. Drive in the state.
 本発明の一形態において、前記ポンプケーシングは、前記羽根車の上流側に空気管を備える。 In one embodiment of the present invention, the pump casing includes an air pipe upstream of the impeller.
 本発明のいずれかの一形態は、以下に列挙する効果を奏する。
(1)大気雰囲気で使用されるすべり軸受装置の摺動面で発生する摩擦力に対して、常時水中雰囲気で使用されるすべり軸受装置の摺動面で発生する軸受内液膜効果による上記摩擦力とは逆向きの力を発生させ、これにより減衰効果を利用して、立軸ポンプの回転軸の振れ回りを全体的に抑制することができる。
(2)常時水中雰囲気で使用されるすべり軸受装置を真円軸受または多円弧軸受としたことで、摺動面で発生する軸受内液膜効果の力がより効果的に発生するようになる。
(3)また、摺動面が常時液体(水中)雰囲気で使用されるすべり軸受装置を、立軸ポンプの吐出ボウル以上の高さに備えることで、このすべり軸受装置がポンプ性能に与える影響を低減することができる。
(4)第2のすべり軸受装置が受液槽を有するので、第2のすべり軸受装置のすべり軸受の摺動部を常に液体に接触させることができる。
(5)第2のすべり軸受装置がすべり軸受よりも上方に配置された板部材を有するので、すべり軸受の摺動部の全体に液体が接触するように、受液槽と板部材とで液体を保持することができる。
(6)板部材が、上流側から下流側に向かって内径が徐々に小さくなるように構成されるので、受液槽に保持された液体に遠心力が加わっても、受液槽及び板部材で形成された空間から液体が飛散することを抑制することができる。
One aspect of the present invention has the effects listed below.
(1) The above friction due to the liquid film effect in the bearing generated on the sliding surface of the sliding bearing device that is always used in an underwater atmosphere against the frictional force generated on the sliding surface of the sliding bearing device used in the atmospheric atmosphere. A force in the direction opposite to the force is generated, and thereby the swing effect of the rotary shaft of the vertical pump can be suppressed as a whole by using the damping effect.
(2) Since the plain bearing device that is always used in an underwater atmosphere is a perfect circle bearing or a multi-arc bearing, the force of the liquid film effect in the bearing generated on the sliding surface is more effectively generated.
(3) Also, by providing a sliding bearing device whose sliding surface is always used in a liquid (underwater) atmosphere at a height higher than the discharge bowl of a vertical shaft pump, the impact of this sliding bearing device on pump performance is reduced. can do.
(4) Since the second sliding bearing device has the liquid receiving tank, the sliding portion of the sliding bearing of the second sliding bearing device can always be brought into contact with the liquid.
(5) Since the second slide bearing device has a plate member disposed above the slide bearing, liquid is received between the liquid receiving tank and the plate member so that the liquid contacts the entire sliding portion of the slide bearing. Can be held.
(6) Since the plate member is configured such that the inner diameter gradually decreases from the upstream side toward the downstream side, the liquid receiving tank and the plate member even if centrifugal force is applied to the liquid held in the liquid receiving tank. It is possible to suppress the liquid from being scattered from the space formed by the above.
先行待機運転を行う立軸ポンプの部分概略図である。It is a partial schematic diagram of a vertical shaft pump that performs a preliminary standby operation. 先行待機運転の運転状態を説明する図である。It is a figure explaining the driving | running state of a prior | preceding standby driving | operation. 図1に示した先行待機運転を行う従来の立軸ポンプの全体を示す断面図である。It is sectional drawing which shows the whole conventional vertical shaft pump which performs the prior | preceding standby operation shown in FIG. 図3に示したすべり軸受装置に用いられるすべり軸受装置の拡大図である。FIG. 4 is an enlarged view of a sliding bearing device used in the sliding bearing device shown in FIG. 3. 図4に示すすべり軸受装置に設置されたすべり軸受の斜視図である。It is a perspective view of the slide bearing installed in the slide bearing apparatus shown in FIG. 軸の振れ回りが激しくなる部分にすべり軸受装置を配置した立軸ポンプにおける回転軸、スリーブ、及びすべり軸受の状態を示す模式的断面図である。It is a typical sectional view showing the state of a rotating shaft, a sleeve, and a sliding bearing in a vertical shaft pump in which a sliding bearing device is arranged in a portion where the shaft swing becomes intense. 本実施形態に係る立軸ポンプの縦断面図である。It is a longitudinal cross-sectional view of the vertical shaft pump which concerns on this embodiment. 大気運転時に、摺動面に液体の潤滑のない大気雰囲気で運転されるすべり軸受装置の摺動部分に働く力を模式的に示す断面図である。It is sectional drawing which shows typically the force which acts on the sliding part of the sliding bearing apparatus operated by the air atmosphere which does not lubricate a sliding surface at the time of atmospheric operation. 摺動面が常時水中雰囲気にある状態で使用されるすべり軸受装置の摺動部分に働く力を模式的に示す図である。It is a figure which shows typically the force which acts on the sliding part of the sliding bearing apparatus used in the state in which a sliding surface is always underwater atmosphere. すべり軸受の径方向に切断した断面形状による典型的な軸受の種類を説明する図である。It is a figure explaining the kind of typical bearing by the cross-sectional shape cut | disconnected in the radial direction of the slide bearing. すべり軸受の径方向に切断した断面形状による典型的な軸受の種類を説明する図である。It is a figure explaining the kind of typical bearing by the cross-sectional shape cut | disconnected in the radial direction of the slide bearing. すべり軸受の径方向に切断した断面形状による典型的な軸受の種類を説明する図である。It is a figure explaining the kind of typical bearing by the cross-sectional shape cut | disconnected in the radial direction of the slide bearing. すべり軸受の径方向に切断した断面形状による典型的な軸受の種類を説明する図である。It is a figure explaining the kind of typical bearing by the cross-sectional shape cut | disconnected in the radial direction of the slide bearing. すべり軸受装置の縦断面図である。It is a longitudinal cross-sectional view of a slide bearing apparatus. すべり軸受装置の縦断面図である。It is a longitudinal cross-sectional view of a slide bearing apparatus.
 以下、本発明に係る立軸ポンプおよび、それに用いるすべり軸受装置の実施形態を図7から図12を参照して説明する。図7から図12において、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。本明細書において、「上部」及び「下部」とは、立軸ポンプが移送する液体の下流側(図示において「吐出」側)及び上流側(図示において「吸込」側)をそれぞれ意味するものとして説明する。 Hereinafter, an embodiment of a vertical shaft pump and a plain bearing device used therefor according to the present invention will be described with reference to FIGS. 7 to 12, the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted. In the present specification, “upper part” and “lower part” are described as meaning the downstream side (“discharge” side in the figure) and the upstream side (“suction” side in the figure) of the liquid transferred by the vertical shaft pump, respectively. To do.
 図7は、本実施形態に係る立軸ポンプ3の縦断面図である。立軸ポンプ3はポンプケーシング内にポンプの揚水対象の水がない状態で回転軸を運転することがあるポンプである。立軸ポンプにはそのような状態で管理運転を行うものや、先行待機運転において、気中運転を行うものもある。図7では先行待機運転を行う立軸ポンプを例示している。なお、管理運転とは、降水が稀な季節のためポンプの停止状態が継続している時期に、ポンプが正常に運転できるかどうかを点検するための運転であって、ポンプケーシング内がドライな状態で行う運転である。その運転時間は、十数分から数十分になる場合もある。 FIG. 7 is a longitudinal sectional view of the vertical shaft pump 3 according to the present embodiment. The vertical shaft pump 3 is a pump that may operate a rotating shaft in a state where there is no pumping target water in the pump casing. Some vertical shaft pumps perform a management operation in such a state, and others perform an aerial operation in a preceding standby operation. FIG. 7 illustrates a vertical shaft pump that performs a preliminary standby operation. Note that the management operation is an operation to check whether the pump can be operated normally when the pump is stopped due to the rainy season, and the inside of the pump casing is not dry. It is an operation performed in a state. The operation time may be several ten minutes to several tens of minutes.
 図7に示すように、立軸ポンプ3は、ポンプ設置床に設置固定される吐出エルボ30と、この吐出エルボ30の下端に接続されるケーシング29と、ケーシング29の下端に接続されるとともにインペラ22(羽根車の一例に相当する)を内部に格納する吐出ボウル28と、吐出ボウル28の下端に接続されるとともに水を吸い込むための吸い込みベル27とを備えている。吸い込みベル27の下端から吐出エルボ30の吐出端部までをポンプケーシングと呼ぶ。 As shown in FIG. 7, the vertical shaft pump 3 includes a discharge elbow 30 installed and fixed on the pump installation floor, a casing 29 connected to the lower end of the discharge elbow 30, and connected to the lower end of the casing 29 and the impeller 22. A discharge bowl 28 that stores therein (corresponding to an example of an impeller) and a suction bell 27 that is connected to the lower end of the discharge bowl 28 and sucks water are provided. The lower end of the suction bell 27 to the discharge end of the discharge elbow 30 is called a pump casing.
 インペラ22の入口側の吸い込みベル27の側面部には貫通孔が設けられており、この貫通孔には、外気に接する開口を備えた空気管6が取り付けられている。これにより、この立軸ポンプ3は、貫通孔を介して立軸ポンプ3内に供給する空気の供給量を水位に応じて変化させ、立軸ポンプ3の排水量がコントロールされる。 A through hole is provided in a side surface portion of the suction bell 27 on the inlet side of the impeller 22, and an air pipe 6 having an opening in contact with outside air is attached to the through hole. Thereby, this vertical shaft pump 3 changes the supply amount of the air supplied in the vertical shaft pump 3 through a through-hole according to a water level, and the amount of drainage of the vertical shaft pump 3 is controlled.
 立軸ポンプ3のケーシング29、吐出ボウル28、及び吸い込みベル27の径方向略中心部には、回転軸10が配置されている。回転軸10の一端側(吸い込みベル27側)には、水をポンプ内に吸い込むためのインペラ22が接続されている。 Rotating shaft 10 is arranged at a substantially central portion in the radial direction of casing 29, discharge bowl 28, and suction bell 27 of vertical shaft pump 3. An impeller 22 for sucking water into the pump is connected to one end side (suction bell 27 side) of the rotating shaft 10.
 回転軸10は、軸方向の適当な位置で、支持部材を介してケーシング29に固定されているすべり軸受装置32と、吐出ボウル28の内筒に支持部材を介して固定されているすべり軸受装置33、及び/又はインペラ22を貫通した回転軸10の場合において回転軸10の下端部で、支持部材を介してケーシング29に固定されているすべり軸受装置33によって支持されている。すべり軸受装置33とすべり軸受装置32はともに1か所以上配置され、両者合わせて複数のすべり軸受装置となる。 The rotary shaft 10 is a slide bearing device 32 fixed to the casing 29 via a support member at an appropriate position in the axial direction, and a slide bearing device fixed to the inner cylinder of the discharge bowl 28 via the support member. 33 and / or in the case of the rotating shaft 10 penetrating the impeller 22, the lower end portion of the rotating shaft 10 is supported by a plain bearing device 33 fixed to the casing 29 via a support member. One or more of the slide bearing device 33 and the slide bearing device 32 are arranged at one place, and a plurality of the slide bearing devices are combined.
 回転軸10の他端側は、吐出エルボ30に設けられた孔を通って立軸ポンプ3の外部へ延び、インペラ22を回転させるエンジンやモータ等の駆動機へ接続される。回転軸10と吐出エルボ30に設けられた孔との間には、フローティングシール、グランドパッキンまたはメカニカルシール等の軸シール34が設けられており、軸シール34により立軸ポンプ3が扱う水が立軸ポンプ3の外部に流出することを防止する。 The other end of the rotating shaft 10 extends to the outside of the vertical shaft pump 3 through a hole provided in the discharge elbow 30 and is connected to a driving machine such as an engine or a motor that rotates the impeller 22. A shaft seal 34 such as a floating seal, a gland packing, or a mechanical seal is provided between the rotary shaft 10 and a hole provided in the discharge elbow 30, and the water handled by the vertical pump 3 by the shaft seal 34 is supplied to the vertical pump. 3 is prevented from flowing out.
 駆動機は、保守点検を容易に行うことができるように陸上に設けられる。駆動機の回転は回転軸10に伝達され、インペラ22を回転させることができる。インペラ22の回転によって水が吸込みベル27から吸い込まれ、吐出ボウル28、ケーシング29を通過して吐出エルボ30から吐出される。 The drive will be installed on land so that maintenance and inspection can be performed easily. The rotation of the driving machine is transmitted to the rotary shaft 10 and the impeller 22 can be rotated. As the impeller 22 rotates, water is sucked from the suction bell 27, passes through the discharge bowl 28 and the casing 29, and is discharged from the discharge elbow 30.
 ところで、立軸ポンプの回転軸10は、ケーシング内において、軸シール34からインペラまでの長い距離延びているので、そのまま回転させると振れ回りが生じる。振れ回りの程度は高さ方向の位置により異なるが、この振れ回りを抑制するように、すべり軸受装置32、33を設けて回転軸10を支持している。 By the way, the rotary shaft 10 of the vertical pump extends a long distance from the shaft seal 34 to the impeller in the casing. Although the degree of run-out varies depending on the position in the height direction, plain bearing devices 32 and 33 are provided to support the rotary shaft 10 so as to suppress this run-out.
 すべり軸受装置32の配置については、設計段階において、経験、あるいは便法的な計算により、回転軸10の太さ、長さ、回転数、インペラの重さや枚数等の条件から、回転軸10の振れ回りの大きい位置を割り出し、それに基づいて軸方向のどの辺りに、いくつ配置するかをある程度決めている。しかしながら、回転軸10の振れ回りの大きい位置として予測されたすべり軸受装置32の配置位置が、実際の振れ回りの大きい位置からずれてしまうことがある。また、このすべり軸受装置32の配置位置は、立軸ポンプ3を組み立てた後に修正することはできない。 With regard to the arrangement of the sliding bearing device 32, the design of the rotating shaft 10 can be determined based on conditions such as the thickness, length, rotational speed, weight of the impeller, and the number of impellers based on experience or expedient calculation in the design stage. A position with a large run-out is determined, and based on this, a certain number of positions in the axial direction is determined. However, the arrangement position of the sliding bearing device 32 predicted as a position where the swing of the rotating shaft 10 is large may deviate from a position where the actual swing is large. Further, the arrangement position of the plain bearing device 32 cannot be corrected after the vertical shaft pump 3 is assembled.
 特に、回転軸10が長くなるほど、回転軸10に振れ回りの大きい部分が複数の場所に生じやすくなる。それを抑制するために、回転軸10の軸方向に沿ってすべり軸受装置32をより多く配置する必要が生じる。しかしながら、これにより、すべり軸受装置32の配置位置が実際の回転軸10の振れ回りが大きい位置からずれるケースがますます多くなり、また、ずれの大きさも拡大している。すなわち、複数のすべり軸受装置の一部は、回転軸10の振れ回りの極端に小さい、いわゆる「節」の位置に配置されてしまうといったことが生じる。 In particular, as the rotating shaft 10 becomes longer, a portion with a large swing around the rotating shaft 10 is likely to occur at a plurality of locations. In order to suppress this, it is necessary to arrange more sliding bearing devices 32 along the axial direction of the rotary shaft 10. However, as a result, the number of cases where the arrangement position of the sliding bearing device 32 deviates from the position where the actual rotation of the rotary shaft 10 is large is increasing, and the size of the deviation is also increasing. That is, a part of the plurality of plain bearing devices is disposed at a so-called “node” position where the swing of the rotating shaft 10 is extremely small.
 ところで、ドライ運転においては、すべり軸受装置32におけるすべり軸受1と、回転軸10に取り付けたスリーブ11が摺動する際に、接触部での摩擦力が大きくなり、摩擦熱が発生しやすくなり、その接触部におけるスリーブや軸受の損傷が懸念される。 By the way, in the dry operation, when the slide bearing 1 in the slide bearing device 32 and the sleeve 11 attached to the rotary shaft 10 slide, the frictional force at the contact portion increases, and frictional heat is likely to be generated. There is concern about damage to the sleeve and the bearing at the contact portion.
 特に、回転軸10の振れ回りの大きい所に備えたすべり軸受装置32ほど軸受荷重が大きいので、摺動する相手方の回転軸10に取り付けたスリーブ11の局所的な高温化が生じやすくなり、立軸ポンプ3の回転体(回転軸10及びスリーブ11)と固定体(すべり軸受1)との干渉による振動や軸受荷重が増加する。 In particular, the slide bearing device 32 provided in a place where the swing of the rotary shaft 10 is large has a larger bearing load. Therefore, the sleeve 11 attached to the sliding rotary shaft 10 is likely to be locally heated, and the vertical shaft Vibration and bearing load due to interference between the rotating body (rotating shaft 10 and sleeve 11) of the pump 3 and the fixed body (slide bearing 1) increase.
 そこで、本実施形態に係る立軸ポンプ3は、すべり軸受装置32、33の一部として大気運転時に摺動面が大気雰囲気にある状態で使用されるすべり軸受装置を備え、その残りとして大気運転時であっても摺動面が常時水中雰囲気にある状態で使用されるすべり軸受装置を備える。言い換えれば、すべり軸受装置32,33の一部は、すべり軸受1の摺動面(軸受面)に液体が無い状態で回転軸10を支持し、残りのすべり軸受装置32,33は、すべり軸受1の摺動面(軸受面)に液体が存在する状態で回転軸10を支持するように構成される。大気運転時に摺動面が大気雰囲気で使用されるすべり軸受装置は、図4および図5にて示したすべり軸受装置である。 Therefore, the vertical shaft pump 3 according to the present embodiment includes a slide bearing device that is used as a part of the slide bearing devices 32 and 33 in a state where the sliding surface is in an atmospheric atmosphere during atmospheric operation, and the rest is the atmospheric operation. Even so, a sliding bearing device is provided which is used in a state where the sliding surface is always in an underwater atmosphere. In other words, some of the slide bearing devices 32 and 33 support the rotary shaft 10 in a state where there is no liquid on the sliding surface (bearing surface) of the slide bearing 1, and the remaining slide bearing devices 32 and 33 are slide bearings. The rotating shaft 10 is configured to be supported in a state where liquid exists on one sliding surface (bearing surface). The sliding bearing device in which the sliding surface is used in an atmospheric atmosphere during the atmospheric operation is the sliding bearing device shown in FIGS.
 図4に示すように、このすべり軸受装置は、回転軸10の外周に、ステンレス鋼、セラミックス、焼結金属又は表面改質された金属等からなるスリーブ11を有している。スリーブ11の外周側には、中空円筒の樹脂材料、セラミックス、焼結金属又は表面改質された金属からなるすべり軸受1が設けられている。スリーブ11の外周面は、すべり軸受1の内周面(すべり面)と非常に狭いクリアランスを介して対面し、すべり軸受1に対して摺動するように構成されている。すべり軸受1は、金属又は樹脂からなる軸受ケース12によりつば部12aを介してポンプのケーシング29等へ繋がる支持部材13に固定されている。図5に示すように、すべり軸受1は中空円筒状の形状を有しており、内周面1aがスリーブ11の外周面と対面し、外周面1bが軸受ケース12に嵌合される。 As shown in FIG. 4, the plain bearing device has a sleeve 11 made of stainless steel, ceramics, sintered metal, surface-modified metal, or the like on the outer periphery of the rotating shaft 10. A slide bearing 1 made of a hollow cylindrical resin material, ceramics, sintered metal, or surface-modified metal is provided on the outer peripheral side of the sleeve 11. The outer peripheral surface of the sleeve 11 faces the inner peripheral surface (slide surface) of the slide bearing 1 through a very narrow clearance, and is configured to slide with respect to the slide bearing 1. The plain bearing 1 is fixed to a support member 13 connected to a pump casing 29 and the like through a collar portion 12a by a bearing case 12 made of metal or resin. As shown in FIG. 5, the plain bearing 1 has a hollow cylindrical shape, the inner peripheral surface 1 a faces the outer peripheral surface of the sleeve 11, and the outer peripheral surface 1 b is fitted in the bearing case 12.
 大気運転時であっても摺動面が常時水中雰囲気で使用されるすべり軸受装置は、後述するすべり軸受(図9、及び図10A-図10D参照)の他、既に知られている例えば特開平6-94035号公報、特開2000-2190号公報、又は特開2000-2191号公報等に開示されるすべり軸受装置が用いられても良い。 A slide bearing device in which the sliding surface is always used in an underwater atmosphere even during atmospheric operation is known in addition to a slide bearing described later (see FIGS. 9 and 10A to 10D), for example, as disclosed in Japanese Patent Laid-Open No. Hei. A plain bearing device disclosed in Japanese Patent Laid-Open No. 6-94035, Japanese Patent Laid-Open No. 2000-2190, Japanese Patent Laid-Open No. 2000-2191, or the like may be used.
 図7に示した立軸ポンプ3は、図2で説明した先行待機運転を行う。即ち、立軸ポンプ3は、ポンプ起動時には、ケーシング29、吐出ボウル28、及び吸い込みベル27の内部は大気の状態で運転される。このとき、立軸ポンプ3のすべり軸受装置32、33のうち、一部は、摺動面が大気雰囲気にある状態で使用され、残りは、摺動面が水中雰囲気にある状態で使用される。 The vertical shaft pump 3 shown in FIG. 7 performs the preceding standby operation described in FIG. That is, the vertical shaft pump 3 is operated in the state of the atmosphere in the casing 29, the discharge bowl 28, and the suction bell 27 when the pump is activated. At this time, some of the sliding bearing devices 32 and 33 of the vertical shaft pump 3 are used in a state where the sliding surface is in an air atmosphere, and the rest are used in a state where the sliding surface is in an underwater atmosphere.
 ここで、大気運転時に摺動面が大気雰囲気にある状態で使用されるすべり軸受装置32、33と、摺動面が水中雰囲気にある状態で使用されるすべり軸受装置32、33とで、どのような現象が生じているかを説明する。 Here, the sliding bearing devices 32 and 33 used in a state where the sliding surface is in an air atmosphere during the atmospheric operation and the sliding bearing devices 32 and 33 used in a state where the sliding surface is in an underwater atmosphere. Explain whether such a phenomenon occurs.
 図8は、大気運転時に、摺動面に液体の潤滑のない大気雰囲気で運転されるすべり軸受装置の摺動部分に働く力を模式的に示す断面図である。図8は、回転軸10の軸方向に垂直な断面を示す。ここで、回転側は、回転軸10、及びそれに嵌合するスリーブ11である。それに対して、固定側は、スリーブ11と摺動するすべり軸受1とそれを支える軸受ケース12である。なお、図8においては、スリーブ11とすべり軸受1の間のクリアランスの寸法は、便宜上拡大されて示されている。 FIG. 8 is a cross-sectional view schematically showing a force acting on a sliding portion of a sliding bearing device operated in an air atmosphere without liquid lubrication on a sliding surface during an atmospheric operation. FIG. 8 shows a cross section perpendicular to the axial direction of the rotating shaft 10. Here, the rotating side is the rotating shaft 10 and the sleeve 11 fitted to the rotating shaft 10. On the other hand, the fixed side is a slide bearing 1 that slides on the sleeve 11 and a bearing case 12 that supports the slide bearing 1. In FIG. 8, the dimension of the clearance between the sleeve 11 and the slide bearing 1 is shown enlarged for convenience.
 回転軸10が回転すると、回転軸10に固定されたスリーブ11が回転する。大気雰囲気でこのすべり軸受装置が使用される場合、回転軸10の振れ回りによりスリーブ11の外周面がすべり軸受1に点Aにて接触したときに、回転軸10には軸受反力FANが発生する。この軸受反力FANによって、回転軸10の回転方向とは逆方向に摩擦力FAFが発生し、この摩擦力FAFが回転軸10に回転方向とは逆方向の振れ回り振動を引き起こす不安定化力となる。 When the rotating shaft 10 rotates, the sleeve 11 fixed to the rotating shaft 10 rotates. When this sliding bearing device is used in an air atmosphere, when the outer peripheral surface of the sleeve 11 comes into contact with the sliding bearing 1 at point A due to the swinging of the rotating shaft 10, the bearing reaction force F AN is applied to the rotating shaft 10. appear. By this bearing reaction force FAN , a frictional force FAF is generated in a direction opposite to the rotational direction of the rotary shaft 10, and this frictional force FAF causes a whirling vibration in the direction opposite to the rotational direction on the rotary shaft 10. Stabilization power.
 ここで注意すべきことは、不安定化力である摩擦力FAFの大きさの程度は、回転軸10の軸方向に垂直な振れ幅(即ち、回転軸10の径方向の振れ幅)の大きさに依存する。すなわち、摩擦力FAFの大きさは、この回転軸10の振れが腹であるか節であるかに比較的敏感である。 It should be noted here that the magnitude of the frictional force F AF that is the destabilizing force is the swing width perpendicular to the axial direction of the rotating shaft 10 (that is, the swing width in the radial direction of the rotating shaft 10). Depends on size. That is, the magnitude of the frictional force F AF is relatively sensitive to whether the swing of the rotating shaft 10 is belly or node.
 図9は、摺動面が常時水中雰囲気にある状態で使用されるすべり軸受装置の摺動部分に働く力を模式的に示す図である。図9は、回転軸10の軸方向に垂直な断面を示す。このすべり軸受装置においても、回転側は、回転軸10、及びそれに嵌合するスリーブ11である。それに対して、固定側は、スリーブ11と摺動するすべり軸受1とそれを支える軸受ケース12である。図9のすべり軸受装置は、図8に示したすべり軸受装置と比べて、スリーブ11とすべり軸受1の摺動部の雰囲気が水中である点が異なる。 FIG. 9 is a diagram schematically showing the force acting on the sliding portion of the sliding bearing device used in a state where the sliding surface is always in an underwater atmosphere. FIG. 9 shows a cross section perpendicular to the axial direction of the rotating shaft 10. Also in this plain bearing device, the rotating side is the rotating shaft 10 and the sleeve 11 fitted thereto. On the other hand, the fixed side is a slide bearing 1 that slides on the sleeve 11 and a bearing case 12 that supports the slide bearing 1. The slide bearing device of FIG. 9 differs from the slide bearing device shown in FIG. 8 in that the atmosphere of the sliding portion of the sleeve 11 and the slide bearing 1 is underwater.
 回転軸10が回転すると、回転軸10に固定されたスリーブ11が回転する。摺動面が水中雰囲気にある場合には、スリーブ11とすべり軸受1の間に液膜が構成される。このとき、液膜には回転軸10の回転による周方向の圧力不均一が生じ、その結果、回転軸10に半径方向流体力FARと周方向流体力FATが発生する。この現象による効果を軸受内液膜効果といい、この周方向流体力FATは、図8に関連して説明したドライ運転で発生する摩擦力FAFとは逆回転方向(逆方向)の力である。 When the rotating shaft 10 rotates, the sleeve 11 fixed to the rotating shaft 10 rotates. When the sliding surface is in an underwater atmosphere, a liquid film is formed between the sleeve 11 and the slide bearing 1. At this time, the circumferential direction of the pressure nonuniformity due to the rotation of the rotary shaft 10 is generated in the liquid film, so that the radial fluid forces F AR and the circumferential fluid force F AT occurs in the rotation shaft 10. The effect of this phenomenon called the liquid film effect bearings, the force of the circumferential fluid force F AT is the reverse rotation direction (reverse direction) to the frictional force F AF generated by dry operation described in connection with FIG. 8 It is.
 ここで注意すべきことは、回転軸10の軸方向に垂直な振れ幅の大きさへの周方向流体力FATの依存性は、図8におけるドライ運転時の摩擦力FAFに比べて小さいことである。すなわち、周方向流体力FATは、回転軸10の振れが腹であるか節であるかでなく、むしろ回転数の大きさに影響する。 It should be noted that, dependent of circumferential fluid forces F AT to the magnitude of the vertical deflection width in the axial direction of the rotary shaft 10 is smaller than the frictional force F AF during dry operation in FIG. 8 That is. That is, the circumferential fluid force F AT is runout of the rotating shaft 10 is not whether a clause or a belly, but rather affects the magnitude of the rotational speed.
 本実施形態の立軸ポンプ3は、複数のすべり軸受装置32、33の一部として、大気運転時に摺動面が大気雰囲気にある状態で使用されるすべり軸受装置を備え、その残りとして大気運転時であっても摺動面が常時水中雰囲気にある状態で使用されるすべり軸受装置とを備えている。これにより、大気運転時において、図8に示した摩擦力と、図9に示した周方向流体力が同時に発生する。そのため、回転軸10を不安定化する力が互いに逆向きに相殺するので回転軸10の振れ回りが抑制される。したがって、ポンプケーシング内の複数のすべり軸受装置32、33の最下部のすべり軸受の摺動部が、ポンピング対象の揚水に浸されていない状態の時でも、安定的に問題なく運転可能なポンプを提供することができる。 The vertical shaft pump 3 of the present embodiment includes a plain bearing device that is used in a state where the sliding surface is in an atmospheric atmosphere during atmospheric operation as a part of the plurality of sliding bearing devices 32 and 33, and the rest is the atmospheric operation. Even so, the sliding bearing device is used in a state where the sliding surface is always in an underwater atmosphere. As a result, during the atmospheric operation, the frictional force shown in FIG. 8 and the circumferential fluid force shown in FIG. 9 are generated simultaneously. For this reason, the forces that destabilize the rotating shaft 10 cancel each other in opposite directions, so that the swinging of the rotating shaft 10 is suppressed. Therefore, even when the sliding parts of the lowermost sliding bearings of the plurality of sliding bearing devices 32 and 33 in the pump casing are not immersed in the pumping target pumping water, a pump that can be stably operated without problems is provided. Can be provided.
 仮に、相殺する力が、回転軸10の軸方向に垂直な振れ幅の大小に依存する場合、すなわち、本発明者等が発明した特許文献1等に開示された、互いに逆向きの摩擦力による偶力を生じさせて相殺し、回転軸10の振れ回りを抑制する仕組みのすべり軸受装置などを用いる場合には、軸方向に垂直な振れ幅が最大の部分に相殺力がかかるように、すべり軸受装置を配置するべきである。しかしながら、先に述べたように回転軸10のどの部分の振れ幅が最大(腹)であるか、最小(節)であるかを予め正確に把握して配置することは難しく、回転軸10の軸方向に垂直な振れ幅がない節の位置に配置する可能性がある。そして、一旦、節の位置に配置した場合には、回転軸の振れ回りを止めることは困難となってしまい、また後から位置を修正変更できない。 If the canceling force depends on the magnitude of the swing width perpendicular to the axial direction of the rotating shaft 10, that is, due to frictional forces opposite to each other disclosed in Patent Document 1 invented by the present inventors. When using a plain bearing device or the like that has a mechanism that generates a couple of forces to cancel and suppresses the swiveling of the rotating shaft 10, the slip is applied so that the offset is applied to the portion with the maximum swing width perpendicular to the axial direction. A bearing device should be arranged. However, as described above, it is difficult to accurately determine in advance which portion of the rotation shaft 10 has the maximum (antinode) or minimum (node) swing width, and the rotation shaft 10 There is a possibility that it is arranged at the position of a node having no runout width perpendicular to the axial direction. Once it is arranged at the node position, it becomes difficult to stop the rotation of the rotating shaft, and the position cannot be corrected and changed later.
 しかし、本実施形態に係る立軸ポンプ3においては、複数のすべり軸受装置32,33のうち、一部をすべり軸受1の摺動部が常時液中状態にあるすべり軸受装置とすることで、回転軸10に働く相殺偶力を周方向流体力としている。この相殺力は、摩擦力による相殺力の発生とは異なり、回転軸10の軸方向に垂直な振れ幅の大小にあまり依存せず、むしろ回転数の大小に依存するので、設置する位置が回転軸の腹か節かに関係なく、回転軸10のどの場所にこのすべり軸受装置32,33を配置してもそれなりの相殺力を生じさせることができる。そして、回転軸10の高回転数化や、高周速化に応じてその相殺効果は大きい。したがって、本実施形態によれば、回転軸10の振れ回りが抑制されるので、回転軸10の摺動部の局所的な摩耗や摩擦熱による軸受やスリーブの損傷の虞はなくなった。 However, in the vertical shaft pump 3 according to this embodiment, a part of the plurality of slide bearing devices 32 and 33 is a slide bearing device in which the sliding portion of the slide bearing 1 is always in a liquid state, thereby rotating The countervailing couple acting on the shaft 10 is the circumferential fluid force. Unlike the generation of the canceling force due to the frictional force, this canceling force does not depend very much on the swing width perpendicular to the axial direction of the rotating shaft 10, but rather depends on the rotational speed, so that the installation position is rotated. Regardless of whether the shaft is an antinode or a node, a suitable canceling force can be generated regardless of where the sliding bearing devices 32 and 33 are arranged on the rotating shaft 10. And the cancellation effect is large according to the high rotational speed of the rotating shaft 10 or high peripheral speed. Therefore, according to this embodiment, since the swing of the rotating shaft 10 is suppressed, there is no possibility of damage to the bearing and the sleeve due to local wear of the sliding portion of the rotating shaft 10 and frictional heat.
 ところで、軸受内液膜効果は、すべり軸受1の径方向に切断した断面形状にも依存する。図10Aから図10Dは、すべり軸受1の径方向に切断した断面形状による典型的な軸受の種類を説明する図である。図10Aは真円軸受を示し、図10B及び図10Cは多円弧軸受を示し、図10Dはティルティングパッド軸受を示す。また、具体的には、図10Bは、2円弧軸受を示し、図10Cはオフセット軸受を示す。なお、図10Aから図10Dにおいて、斜線部は回転軸10を表している。 Incidentally, the liquid film effect in the bearing also depends on the cross-sectional shape of the slide bearing 1 cut in the radial direction. FIG. 10A to FIG. 10D are diagrams illustrating typical types of bearings according to a cross-sectional shape cut in the radial direction of the slide bearing 1. FIG. 10A shows a perfect circle bearing, FIGS. 10B and 10C show a multi-arc bearing, and FIG. 10D shows a tilting pad bearing. Specifically, FIG. 10B shows a two-arc bearing, and FIG. 10C shows an offset bearing. In FIG. 10A to FIG. 10D, the hatched portion represents the rotation shaft 10.
 図10Aに示す真円軸受は、概ね軸方向に沿った溝41を摺動面に有し、溝41により水や潤滑油をすべり軸受2の軸方向に速やかに供給する。なお、図13Aに示す真円軸受は、溝41を備えない場合もある。図10Aの真円軸受の溝41が形成されていない部分の摺動面の半径はrで、中心はOである。真円軸受はこれら3種類の軸受中で一番軸受内液膜効果が生じやすく、したがってそれによる力も生じやすい。 10A has a groove 41 substantially along the axial direction on the sliding surface, and quickly supplies water and lubricating oil in the axial direction of the slide bearing 2 through the groove 41. Note that the perfect circle bearing shown in FIG. 13A may not include the groove 41. The radius of the sliding surface of the portion where the groove 41 of the perfect circle bearing in FIG. 10A is not formed is r and the center is O. Of these three types of bearings, a perfect circle bearing is most likely to have a liquid film effect in the bearing, and therefore is also likely to generate a force.
 図10Bに示す2円弧軸受も、図10Aの真円軸受と同様に軸方向に沿った溝41を摺動面に有する。図10B及び図10Cに示す多円弧軸受は、基本的に、回転軸10が摺動するすべり軸受面の半径はrであるが、このすべり軸受面は、中心が異なる複数の円弧が組み合わさって構成されている。図10Bに示す2円弧軸受と図10Cに示すオフセット軸受は、2つの円弧に対する中心OとOを有する。2以上の円弧を有する多円弧軸受も構成され得る。多円弧軸受は、これら3種類の中で真円軸受ほどではないが、それでも軸受内液膜効果が生じ得る。 The two-arc bearing shown in FIG. 10B also has a groove 41 on the sliding surface along the axial direction in the same manner as the perfect circle bearing in FIG. 10A. In the multi-arc bearing shown in FIGS. 10B and 10C, the radius of the slide bearing surface on which the rotary shaft 10 slides is basically r. It is configured. The two arc bearing shown in FIG. 10B and the offset bearing shown in FIG. 10C have centers O 1 and O 2 with respect to the two arcs. A multi-arc bearing having two or more arcs can also be constructed. Multi-arc bearings are not as good as perfect circle bearings among these three types, but they can still produce a liquid film effect in the bearings.
 図10Dに示すティルティングパッド軸受は、回転軸10の周りにピボット42を支点として傾斜運動ができるようなパッド43と呼ばれるすべり軸受面を複数有し、回転軸10の周囲を囲んでいる。ティルティングパッド軸受は、軸受内液膜効果が生じない。 The tilting pad bearing shown in FIG. 10D has a plurality of sliding bearing surfaces called pads 43 that can be tilted around the rotating shaft 10 with the pivot 42 as a fulcrum, and surrounds the rotating shaft 10. The tilting pad bearing does not produce a liquid film effect in the bearing.
 従来は、すべり軸受1の摺動面に回転軸10が液中で摺動することで液膜効果が生じると、立軸ポンプ3の回転軸10に不安定力がかかるので、液膜効果の生じないようにティルティングパッド軸受を用いることも多かった。しかしながら、本実施形態においては、すべり軸受装置の一部を、摺動部が常時液中にある状態で使用することで、先行待機運転のドライ運転時に、ドライな摺動面のすべり軸受1によって回転軸10に生じる摩擦力FAFに対向する力を、摺動面が常時水中にあるすべり軸受1における液膜効果によって生じさせている。このため、本実施形態では、多円弧軸受、より好ましくは真円軸受が用いられる。 Conventionally, when the liquid film effect is caused by the sliding of the rotary shaft 10 in the liquid on the sliding surface of the slide bearing 1, an unstable force is applied to the rotary shaft 10 of the vertical pump 3, so that the liquid film effect is generated. In many cases, tilting pad bearings were used. However, in this embodiment, by using a part of the sliding bearing device in a state where the sliding portion is always in the liquid, the sliding bearing 1 having a dry sliding surface can be used during the dry operation of the preceding standby operation. A force opposite to the frictional force FAF generated on the rotating shaft 10 is generated by the liquid film effect in the sliding bearing 1 whose sliding surface is always in water. For this reason, in this embodiment, a multi-arc bearing, more preferably a perfect circle bearing is used.
 次に、ポンプケーシング内のすべり軸受装置32,33のうち、常時水中雰囲気で使用されるすべり軸受装置を図11及び図12を用いて説明する。図11は、すべり軸受装置32の縦断面図である。図11に示すように、回転軸10はすべり軸受装置32の上下に延びており、回転軸10の外周には、スリーブ11を保持するスリーブ保持部材44が設けられている。スリーブ11はスリーブ保持部材44の外周に備えられている。回転軸10の回転に伴い、スリーブ保持部材44及びスリーブ11は回転する。スリーブ11は外周面を摺動面とし、少なくともその外表面は、ステンレス鋼、セラミックス、焼結金属又は表面改質された金属から構成されている。 Next, of the sliding bearing devices 32 and 33 in the pump casing, a sliding bearing device that is always used in an underwater atmosphere will be described with reference to FIGS. FIG. 11 is a longitudinal sectional view of the sliding bearing device 32. As shown in FIG. 11, the rotary shaft 10 extends above and below the slide bearing device 32, and a sleeve holding member 44 that holds the sleeve 11 is provided on the outer periphery of the rotary shaft 10. The sleeve 11 is provided on the outer periphery of the sleeve holding member 44. As the rotary shaft 10 rotates, the sleeve holding member 44 and the sleeve 11 rotate. The sleeve 11 has an outer peripheral surface as a sliding surface, and at least its outer surface is made of stainless steel, ceramics, sintered metal, or surface-modified metal.
 スリーブ11の外周側には、中空円筒の樹脂材料、セラミックス、焼結金属又は表面改質された金属からなるすべり軸受1が配置されている。すべり軸受1は真円軸受または多円弧軸受である。スリーブ11の外周面は、すべり軸受1の内周面(すべり面)と非常に狭いクリアランスを介して対面し、すべり軸受1に対して摺動するように構成されている。すべり軸受1は、金属又は樹脂からなる軸受ケース12により、ポンプのケーシング29(図7参照)又は吐出ボウル28の内筒等へ繋がる支持部材13に固定されている。 A slide bearing 1 made of a hollow cylindrical resin material, ceramics, sintered metal, or surface-modified metal is disposed on the outer peripheral side of the sleeve 11. The slide bearing 1 is a perfect circle bearing or a multi-arc bearing. The outer peripheral surface of the sleeve 11 faces the inner peripheral surface (slide surface) of the slide bearing 1 through a very narrow clearance, and is configured to slide with respect to the slide bearing 1. The plain bearing 1 is fixed to a support member 13 connected to a casing 29 (see FIG. 7) of a pump or an inner cylinder of a discharge bowl 28 by a bearing case 12 made of metal or resin.
 スリーブ11とすべり軸受1は、さらに受液槽45と傾斜板46(板部材の一例に相当する)により囲まれ、これらによってスリーブ11とすべり軸受1の摺動部が液中に没することができる液溜り47が形成される。受液槽45は、スリーブ11及びすべり軸受1より下方に位置し、回転軸10の径よりやや大きい径の略円筒壁である回転軸側壁面45aと、更にそれより大きい径の略円筒壁であるケーシング側壁面45bを有する。回転軸側壁面45aとケーシング側壁面45bの下部が互いに接続され、液体を保持する受液槽45が形成されている。ケーシング側壁面45bの上部は、すべり軸受1を支える軸受ケース12と水密に接続しており、この接続部の高さレベルにおいては、受液槽45内と外とで水の行き来はない。また、ケーシング側壁面45bの外形は、ポンピング時にそれに沿って流れる揚水の抵抗とならないように下に向けて凸の紡錘形状や円錐形状の先端を有し、上(下流側)に向けて徐々に外径が拡大している。この形状により、水流の流線は、渦などの乱れを生じにくくなり、圧力損失、流体損失を低減することができる。 The sleeve 11 and the sliding bearing 1 are further surrounded by a liquid receiving tank 45 and an inclined plate 46 (corresponding to an example of a plate member), and the sliding portion of the sleeve 11 and the sliding bearing 1 may be submerged in the liquid. A liquid reservoir 47 is formed. The liquid receiving tank 45 is positioned below the sleeve 11 and the slide bearing 1, and includes a rotating shaft side wall surface 45 a that is a substantially cylindrical wall having a diameter slightly larger than the diameter of the rotating shaft 10, and a substantially cylindrical wall having a larger diameter. It has a certain casing side wall surface 45b. The lower part of the rotating shaft side wall surface 45a and the casing side wall surface 45b are connected to each other to form a liquid receiving tank 45 that holds liquid. The upper portion of the casing side wall surface 45b is watertightly connected to the bearing case 12 that supports the slide bearing 1, and there is no water flow between the inside and the outside of the liquid receiving tank 45 at the height level of the connecting portion. Further, the outer shape of the casing side wall surface 45b has a convex spindle shape or a conical tip downward so as not to become resistance of pumping water that flows along the pumping, and gradually toward the upper side (downstream side). The outer diameter is expanding. With this shape, the streamlines of the water stream are less likely to be disturbed such as vortices, and pressure loss and fluid loss can be reduced.
 回転軸側壁面45aの上端は、スリーブ11とすべり軸受1の摺動部の上端部より高い位置まで延びている。前述したスリーブ保持部材44は、受液槽45の回転軸側壁面45aの上端と干渉しないように通路48を有している。スリーブ保持部材44は、スリーブ11の取付位置より下方に延びた延伸部を備えている。 The upper end of the rotating shaft side wall surface 45a extends to a position higher than the upper end portions of the sliding portions of the sleeve 11 and the slide bearing 1. The sleeve holding member 44 described above has a passage 48 so as not to interfere with the upper end of the rotary shaft side wall surface 45a of the liquid receiving tank 45. The sleeve holding member 44 includes an extending portion that extends downward from the attachment position of the sleeve 11.
 傾斜板46は、全体として略筒状に構成された板部材であり、スリーブ11とすべり軸受1より上部に位置し、その下部から上部につれて傾斜板46の内径が徐々に小さくなる構造を有する。傾斜板46の下部はすべり軸受1を支える軸受ケース12と水密に接続しており、この接続部の高さレベルにおいては傾斜板46の内側と外側とで水の行き来はない。傾斜板46の上部は、わずかなクリアランスを有してスリーブ保持部材44等の回転体と相対している。ここで、傾斜板46の上端部は、前述した回転軸側壁面45aの上端より高い位置にある。 The inclined plate 46 is a plate member configured in a substantially cylindrical shape as a whole, and is positioned above the sleeve 11 and the slide bearing 1 and has a structure in which the inner diameter of the inclined plate 46 gradually decreases from the lower part to the upper part. The lower part of the inclined plate 46 is watertightly connected to the bearing case 12 that supports the slide bearing 1, and there is no water flow between the inner side and the outer side of the inclined plate 46 at the height level of the connecting portion. The upper portion of the inclined plate 46 is opposed to a rotating body such as the sleeve holding member 44 with a slight clearance. Here, the upper end portion of the inclined plate 46 is located higher than the upper end of the rotary shaft side wall surface 45a described above.
 このようにすべり軸受装置32,33を構成することで、受液槽45と傾斜板46により囲まれた空間に水等の液体を注入すると、液面は、回転軸側壁面45aの上端の高さで満水状態となり、図中FLの高さまで達する。これよりさらに液体を注入しても回転軸側壁面45aの上端を溢流してしまう。このとき、回転軸側壁面45aの上端は、スリーブ11とすべり軸受1の摺動部の上端部より高い位置まで延びているので、スリーブ11とすべり軸受1は水没している。 By configuring the plain bearing devices 32 and 33 in this way, when a liquid such as water is injected into the space surrounded by the liquid receiving tank 45 and the inclined plate 46, the liquid level is higher than the upper end of the rotary shaft side wall surface 45a. Now it is full, reaching the height of FL in the figure. Even if liquid is further injected, the upper end of the rotating shaft side wall surface 45a overflows. At this time, since the upper end of the rotating shaft side wall surface 45a extends to a position higher than the upper end of the sliding portion of the sleeve 11 and the slide bearing 1, the sleeve 11 and the slide bearing 1 are submerged.
 この状態で、回転軸10、スリーブ保持部材44、及びスリーブ11を回転させると、その回転に伴って液体は回転し、回転による遠心力を得る。ところが、液面の外周には、傾斜板46が設けられているので液体の遠心力による外部への飛散を防止することができる。遠心力の圧力により傾斜板46の内壁面において液面は上昇するが、傾斜板46により回転軸10側に液体の向きを変える上、傾斜板46の上部は、わずかなクリアランスでスリーブ保持部材44等の回転体と相対しているので、液体が傾斜板46を乗り越えて外部に飛散することが抑制される。 In this state, when the rotating shaft 10, the sleeve holding member 44, and the sleeve 11 are rotated, the liquid is rotated along with the rotation, and a centrifugal force due to the rotation is obtained. However, since the inclined plate 46 is provided on the outer periphery of the liquid surface, scattering of the liquid to the outside due to the centrifugal force can be prevented. Although the liquid level rises on the inner wall surface of the inclined plate 46 due to the pressure of the centrifugal force, the direction of the liquid is changed to the rotating shaft 10 side by the inclined plate 46, and the upper portion of the inclined plate 46 has a slight clearance at the sleeve holding member 44. Therefore, it is possible to prevent the liquid from getting over the inclined plate 46 and being scattered outside.
 また、傾斜板46とスリーブ保持部材44による外形の形状は、上に向けて凸の紡錘形状や円錐形状の先端を有し、下(上流側)に向けて徐々に外径が拡大している。この形状により、ポンピング時にそれに沿って流れる揚水の水流の流線は、渦などの乱れを生じにくくなり、圧力損失、流体損失を低減することができる。揚水が、傾斜板46とスリーブ保持部材44による外形に沿って流線の乱れを抑制しつつ流れるので、揚水に混入している砂などの異物は、水流に伴って上方(下流側)に流れやすくなり、傾斜板46とスリーブ保持部材44のクリアランスから受液槽45と傾斜板46により囲まれた空間に流入することを防止できる。 Further, the outer shape of the inclined plate 46 and the sleeve holding member 44 has a convex spindle shape or a conical tip toward the upper side, and the outer diameter gradually increases downward (upstream side). . With this shape, the streamline of the pumped water flowing along it during pumping is less likely to cause turbulence and the like, and pressure loss and fluid loss can be reduced. Since the pumped water flows along the outer shape of the inclined plate 46 and the sleeve holding member 44 while suppressing disturbance of streamlines, foreign matters such as sand mixed in the pumped water flow upward (downstream) with the water flow. It becomes easy, and it can prevent flowing into the space surrounded by the liquid receiving tank 45 and the inclined plate 46 from the clearance between the inclined plate 46 and the sleeve holding member 44.
 以上のように、受液槽45の液体が、遠心力により飛散することが防止される。また、受液槽45内の雰囲気は湿度が高いので、気化による液体の減少が少ない。長期的にポンプの運転をしていないことで、液溜り47の液体が減少して液面が低下したとしても、スリーブ保持部材44のスリーブ11の取付位置より下方に延びた延伸部により、起動初期に液溜り47の液体が遠心作用を受け、遠心力により周方向に進んだのちにケーシング側壁面45bの内壁面により軸受部方向に曲げられて進むので、速やかに軸受部に水が到達することができる。その後まもなく立軸ポンプ3が揚水する際に受液槽45内に揚水の一部が供給されて、順次液体が補充されるので、受液槽45に液体を供給する特別な給水設備や装置を要さずに、常時液体を溜めた状態で、即ち摺動面が液体に浸された状態で回転体の回転を継続することが可能である。 As described above, the liquid in the liquid receiving tank 45 is prevented from being scattered by centrifugal force. Further, since the atmosphere in the liquid receiving tank 45 is high in humidity, there is little decrease in liquid due to vaporization. Even if the liquid in the liquid reservoir 47 is reduced and the liquid level is lowered because the pump has not been operated for a long time, the pump is started by the extending portion extending downward from the mounting position of the sleeve 11 of the sleeve holding member 44. Since the liquid in the liquid reservoir 47 is initially subjected to centrifugal action and advances in the circumferential direction due to the centrifugal force, it is bent toward the bearing portion by the inner wall surface of the casing side wall surface 45b, so that water quickly reaches the bearing portion. be able to. Shortly thereafter, when the vertical shaft pump 3 pumps up, a part of the pumped water is supplied into the liquid receiving tank 45 and the liquid is replenished in sequence, so that special water supply equipment and devices for supplying the liquid to the liquid receiving tank 45 are required. In addition, it is possible to continue the rotation of the rotating body in a state where the liquid is always accumulated, that is, in a state where the sliding surface is immersed in the liquid.
 また、ケーシング側壁面45bと、傾斜板46とスリーブ保持部材44により、形成される外形の形状は、全体として略紡錘形状とすることが好ましい。そうすることで、揚水の水流を乱すことが少なく、圧力損失を少なくできる。 The outer shape formed by the casing side wall surface 45b, the inclined plate 46 and the sleeve holding member 44 is preferably substantially spindle-shaped as a whole. By doing so, the water flow of the pumped water is hardly disturbed and the pressure loss can be reduced.
 また、このすべり軸受装置32,33では、受液槽45と傾斜板46が別々の部品であるので、受液槽45を取り外すことにより、すべり軸受1を交換することができる。なお、受液槽45の下部や傾斜板46に、受液槽45内に液体を注入し又は受液槽45から液体を排出するための孔と、この孔を塞ぐ脱着可能なプラグを設けて、必要なときに液体の注入や排出をし易くしてもよい。これにより、受液槽45内の洗浄を行うことができる。 Further, in the slide bearing devices 32 and 33, since the liquid receiving tank 45 and the inclined plate 46 are separate parts, the slide bearing 1 can be replaced by removing the liquid receiving tank 45. A hole for injecting liquid into the liquid receiving tank 45 or discharging the liquid from the liquid receiving tank 45 and a detachable plug for closing the hole are provided in the lower part of the liquid receiving tank 45 or the inclined plate 46. The liquid may be easily injected or discharged when necessary. Thereby, the inside of the liquid receiving tank 45 can be cleaned.
 以上、すべり軸受装置32に関して説明したが、吐出ボウル28の内筒に支持部材を介して固定されているすべり軸受装置33にも同様の構成を採用することができる。 Although the slide bearing device 32 has been described above, the same configuration can be adopted for the slide bearing device 33 that is fixed to the inner cylinder of the discharge bowl 28 via a support member.
 次に、図7に示す回転軸10の下端部のすべり軸受装置33に、常時水中雰囲気で使用されるすべり軸受装置が用いられる場合を説明する。図12は、すべり軸受装置33の縦断面図である。回転軸10はすべり軸受装置33の上方でインペラ22(図7参照)を貫通しており、図12に示すすべり軸受装置の位置は、回転軸10の下端部に位置している。 Next, the case where a sliding bearing device that is always used in an underwater atmosphere is used as the sliding bearing device 33 at the lower end of the rotating shaft 10 shown in FIG. FIG. 12 is a longitudinal sectional view of the sliding bearing device 33. The rotary shaft 10 passes through the impeller 22 (see FIG. 7) above the slide bearing device 33, and the position of the slide bearing device shown in FIG. 12 is located at the lower end of the rotary shaft 10.
 回転軸10の下端部には、その外周にスリーブ11を保持するスリーブ保持部材44が備えられている。スリーブ11はスリーブ保持部材44の外周に備えられている。スリーブ保持部材44は、スリーブ11の取付位置より下方に延びた延伸部を備えている。回転軸10の回転に伴い、スリーブ保持部材44、スリーブ11は回転する。スリーブ11は外周面を摺動面とし、少なくともその外表面は、ステンレス鋼、セラミックス、焼結金属又は表面改質された金属から構成されている。 A sleeve holding member 44 for holding the sleeve 11 is provided on the outer periphery of the lower end portion of the rotary shaft 10. The sleeve 11 is provided on the outer periphery of the sleeve holding member 44. The sleeve holding member 44 includes an extending portion that extends downward from the attachment position of the sleeve 11. As the rotary shaft 10 rotates, the sleeve holding member 44 and the sleeve 11 rotate. The sleeve 11 has an outer peripheral surface as a sliding surface, and at least its outer surface is made of stainless steel, ceramics, sintered metal, or surface-modified metal.
 スリーブ11の外周側には、中空円筒の樹脂材料、セラミックス、焼結金属又は表面改質された金属からなるすべり軸受1が設けられている。すべり軸受1は真円軸受または多円弧軸受である。スリーブ11の外周面は、すべり軸受1の内周面(すべり面)と非常に狭いクリアランスを介して対面し、すべり軸受1に対して摺動するように構成されている。すべり軸受1は、金属又は樹脂からなる軸受ケース12により、ポンプのケーシング29(図7参照)等へ繋がる支持部材13に固定されている。 On the outer peripheral side of the sleeve 11, a slide bearing 1 made of a hollow cylindrical resin material, ceramics, sintered metal, or surface-modified metal is provided. The slide bearing 1 is a perfect circle bearing or a multi-arc bearing. The outer peripheral surface of the sleeve 11 faces the inner peripheral surface (slide surface) of the slide bearing 1 through a very narrow clearance, and is configured to slide with respect to the slide bearing 1. The plain bearing 1 is fixed to a support member 13 connected to a pump casing 29 (see FIG. 7) and the like by a bearing case 12 made of metal or resin.
 スリーブ11とすべり軸受1は、更に受液槽45と傾斜板46により囲まれ、それらによりスリーブ11とすべり軸受1の摺動部が液中に没せられる液溜り47を形成する。 The sleeve 11 and the slide bearing 1 are further surrounded by a liquid receiving tank 45 and an inclined plate 46, thereby forming a liquid reservoir 47 in which the sliding portion of the sleeve 11 and the slide bearing 1 is submerged.
 受液槽45は、スリーブ11とすべり軸受1より下部に位置し、中央の窪んだ円形容器形状で、その周辺縁部は支持部材13及び/又は軸受ケース12と水密に接続し固定されており、その接続部の高さレベルにおいては、受液槽45内と外とで水の行き来はない。また、受水槽45の外形は、ポンピング時にそれに沿って流れる揚水の抵抗とならないように下(上流側)に向けて凸の紡錘形状や円錐形状の先端を有し、上(下流側)に向けて徐々に外径が拡大している。この形状により、水流の流線は、渦などの乱れを生じにくくなり、圧力損失、流体損失を低減することができる。 The liquid receiving tank 45 is positioned below the sleeve 11 and the slide bearing 1 and has a circular container shape that is depressed in the center. The peripheral edge of the liquid receiving tank 45 is connected and fixed to the support member 13 and / or the bearing case 12 in a watertight manner. At the height level of the connecting portion, there is no water going in and out of the liquid receiving tank 45. Further, the outer shape of the water receiving tank 45 has a convex spindle shape or a conical tip toward the bottom (upstream side) so as not to resist the pumping of the water flowing along the pumping pump, and the top (downstream side). The outer diameter is gradually expanding. With this shape, the streamlines of the water stream are less likely to be disturbed such as vortices, and pressure loss and fluid loss can be reduced.
 傾斜板46は、スリーブ11及びすべり軸受1より上部を覆うように位置し、その下部から上部につれて傾斜板の内径が徐々に小さくなる構造を有する。傾斜板46の下部は軸受ケース12に水密に接続し固定され、この接続部の高さレベルにおいては傾斜板46の内側と外側とで水の行き来はない。傾斜板46の上部には、わずかなクリアランスを有して異物侵入防止板49と相対している。異物侵入防止板49は、回転軸10の外周面に固定された円盤状の部材であり、傾斜板46を上部から覆うように配置される。これにより、傾斜板46の内側及び受液槽45内に、スリーブ11とすべり軸受1の摺動を阻害するような砂等の侵入を抑止している。 The inclined plate 46 is positioned so as to cover the upper part from the sleeve 11 and the slide bearing 1 and has a structure in which the inner diameter of the inclined plate gradually decreases from the lower part to the upper part. The lower part of the inclined plate 46 is fixed to the bearing case 12 in a watertight manner, and there is no water flow between the inner side and the outer side of the inclined plate 46 at the height level of the connecting portion. The upper part of the inclined plate 46 is opposed to the foreign matter intrusion prevention plate 49 with a slight clearance. The foreign matter intrusion prevention plate 49 is a disk-shaped member fixed to the outer peripheral surface of the rotary shaft 10 and is disposed so as to cover the inclined plate 46 from above. Thereby, the penetration | invasion of the sand etc. which inhibits the sliding of the sleeve 11 and the slide bearing 1 into the inner side of the inclination board 46 and the liquid receiving tank 45 is suppressed.
 受液槽45と傾斜板46により囲まれた空間には、水等の液体を、傾斜板46の上端を越流する図中FLの高さまで注入できる。言い換えれば、液体は、傾斜板46及び受液槽45によって形成された空間内に満水状態になるように注入され得る。スリーブ11とすべり軸受1の摺動部の上端部より高い位置に液面を位置させることで、スリーブ11とすべり軸受1を水没させることができる。 In the space surrounded by the liquid receiving tank 45 and the inclined plate 46, a liquid such as water can be injected up to the height of FL in the figure that overflows the upper end of the inclined plate 46. In other words, the liquid can be injected so as to fill the space formed by the inclined plate 46 and the liquid receiving tank 45. By positioning the liquid level higher than the upper end of the sliding portion of the sleeve 11 and the slide bearing 1, the sleeve 11 and the slide bearing 1 can be submerged.
 この状態で、回転軸10、スリーブ保持部材44、及びスリーブ11を回転させると、その回転に同伴して水は回転し、回転による遠心力を得る。ところが、液面の外周側には、傾斜板46があるので、遠心力による液体の外部への飛散を防止することができる。遠心力の圧力により傾斜板46の内壁面において液面は上昇するが、傾斜板46により回転軸10側に水の向きを変える上、傾斜板46の上部は、わずかなクリアランスで異物侵入防止板49等の回転体と相対しているので、水が傾斜板46を乗り越えて外部に飛散することが抑制される。 In this state, when the rotating shaft 10, the sleeve holding member 44, and the sleeve 11 are rotated, the water is rotated along with the rotation, and a centrifugal force due to the rotation is obtained. However, since there is an inclined plate 46 on the outer peripheral side of the liquid surface, scattering of the liquid to the outside due to centrifugal force can be prevented. Although the liquid level rises on the inner wall surface of the inclined plate 46 due to the pressure of the centrifugal force, the direction of water is changed to the rotating shaft 10 side by the inclined plate 46, and the upper part of the inclined plate 46 is a foreign matter intrusion prevention plate with a slight clearance. Since it is opposed to a rotating body such as 49, it is possible to prevent water from getting over the inclined plate 46 and splashing outside.
 また、傾斜板46と異物侵入防止板49による外形の形状は、上(下流側)に向けて凸の紡錘形状や円錐形状の先端を有し、下(上流側)に向けて徐々に外径が拡大している。この形状により、ポンピング時にそれに沿って流れる揚水の水流の流線は、渦などの乱れを生じにくくなり、圧力損失、流体損失を低減することができる。揚水が、傾斜板46と異物侵入防止板49による外形に沿って流線の乱れを抑制しつつ流れるので、揚水に混入している砂などの異物は、水流に伴って上方に流れやすくなり、傾斜板46と異物侵入防止板49のクリアランスから受液槽45と傾斜板46により囲まれた空間に流入することを防止できる。 In addition, the outer shape of the inclined plate 46 and the foreign matter intrusion prevention plate 49 has a spindle shape or a conical tip that protrudes upward (downstream side), and gradually decreases in outer diameter toward the lower side (upstream side). Is expanding. With this shape, the streamline of the pumped water flowing along it during pumping is less likely to cause turbulence and the like, and pressure loss and fluid loss can be reduced. Since the pumping water flows while suppressing the disturbance of the streamline along the outer shape of the inclined plate 46 and the foreign matter intrusion prevention plate 49, foreign matters such as sand mixed in the pumped water easily flow upward along with the water flow, The clearance between the inclined plate 46 and the foreign matter intrusion preventing plate 49 can be prevented from flowing into the space surrounded by the liquid receiving tank 45 and the inclined plate 46.
 以上のように、受液槽45の水が、遠心力により飛散することが防止される。また、受液槽45の雰囲気は湿度が高いので、気化による液体の減少が少ない。長期的にポンプの運転をしていないことで、液溜り47の液体が減少して液面が低下したとしても、スリーブ保持部材44のスリーブ11の取付位置より下方に延びた延伸部により、起動初期に液溜り47の液体が遠心作用を受け、遠心力により周方向に進んだのちにケーシング側壁面45bの内壁面により軸受部方向に曲げられて進むので、速やかに軸受部に水が到達することができる。その後まもなく立軸ポンプ3が揚水する際に受液槽45内に揚水の一部が供給されて、順次液体が補充されるので、受液槽45に液体を供給する特別な給水設備や装置を要さずに、常時液体を溜めた状態で、即ち摺動面が水に浸された状態で、回転体の回転を継続することが可能である。 As described above, the water in the liquid receiving tank 45 is prevented from being scattered by centrifugal force. Further, since the atmosphere of the liquid receiving tank 45 is high in humidity, there is little decrease in the liquid due to vaporization. Even if the liquid in the liquid reservoir 47 is reduced and the liquid level is lowered because the pump has not been operated for a long time, the pump is started by the extending portion extending downward from the mounting position of the sleeve 11 of the sleeve holding member 44. Since the liquid in the liquid reservoir 47 is initially subjected to centrifugal action and advances in the circumferential direction due to the centrifugal force, it is bent toward the bearing portion by the inner wall surface of the casing side wall surface 45b, so that water quickly reaches the bearing portion. be able to. Shortly thereafter, when the vertical shaft pump 3 pumps up, a part of the pumped water is supplied into the liquid receiving tank 45 and the liquid is replenished in sequence, so that special water supply equipment and devices for supplying the liquid to the liquid receiving tank 45 are required. In addition, it is possible to continue the rotation of the rotating body in a state where liquid is always accumulated, that is, in a state where the sliding surface is immersed in water.
 また、受液槽45と、傾斜板46と異物侵入防止板49により、形成される外形の形状は、全体として略紡錘形状とすることが好ましい。そうすることで、揚水の水流を乱すことが少なく、圧力損失が少なくできる。 Further, it is preferable that the outer shape formed by the liquid receiving tank 45, the inclined plate 46, and the foreign matter intrusion prevention plate 49 is substantially a spindle shape as a whole. By doing so, the water flow of the pumped water is hardly disturbed and the pressure loss can be reduced.
 また、このすべり軸受装置32,33では、受液槽45と傾斜板46が別々の部品であるので、受液槽45を取り外すことにより、すべり軸受1を交換することができる。なお、受液槽45の下部や傾斜板46に、受液槽45内に液体を注入し又は受液槽45から液体を排出するための孔と、この孔を塞ぐ脱着可能なプラグを設けて、必要なときに液体の注入や排出をし易くしてもよい。これにより、受液槽45内の洗浄を行うことができる。 Further, in the slide bearing devices 32 and 33, since the liquid receiving tank 45 and the inclined plate 46 are separate parts, the slide bearing 1 can be replaced by removing the liquid receiving tank 45. A hole for injecting liquid into the liquid receiving tank 45 or discharging the liquid from the liquid receiving tank 45 and a detachable plug for closing the hole are provided in the lower part of the liquid receiving tank 45 or the inclined plate 46. The liquid may be easily injected or discharged when necessary. Thereby, the inside of the liquid receiving tank 45 can be cleaned.
 以上、回転軸10を支持する複数のすべり軸受装置32,33を備え、気中運転時に複数のすべり軸受装置32,33のうち一部を、摺動面が大気(ドライ)雰囲気にある状態で使用されるすべり軸受装置とし、その残りを摺動面が常時液体(水中)雰囲気にある状態で使用されるすべり軸受装置とした先行待機用の立軸ポンプ3を説明した。また、摺動面が常時液体(水中)雰囲気にある状態で使用されるすべり軸受装置32,33の実施例として、(1)ケーシング29の内部に配置する例、及び(2)回転軸10の下端部に配置する例を説明した。これらの常時液体(水中)雰囲気で使用されるすべり軸受装置32,33は、立軸ポンプ3の回転軸10のどの位置においても、立軸ポンプ3の回転軸10が振れ回ったときに、摺動面が大気(ドライ)雰囲気にある状態で使用されるすべり軸受装置の摺動面で生じる偶力を相殺することができる。特に、液膜効果は回転数の高速化に対応できるので、このすべり軸受装置は、回転数の高速化と、回転軸の長軸化が進む先行待機運転用の立軸ポンプ3に好適である。 As described above, the plurality of plain bearing devices 32 and 33 that support the rotating shaft 10 are provided, and a part of the plurality of plain bearing devices 32 and 33 is in an air (dry) atmosphere during the air operation. The vertical shaft pump 3 for standby standby has been described as a sliding bearing device to be used, and the rest as a sliding bearing device to be used in a state where the sliding surface is always in a liquid (underwater) atmosphere. Further, as examples of the sliding bearing devices 32 and 33 used in a state where the sliding surface is always in a liquid (underwater) atmosphere, (1) an example in which the sliding surface is disposed inside the casing 29, and (2) the rotating shaft 10 The example arrange | positioned in a lower end part was demonstrated. These sliding bearing devices 32 and 33 used in a liquid (underwater) atmosphere always have sliding surfaces when the rotary shaft 10 of the vertical pump 3 swings at any position of the rotary shaft 10 of the vertical pump 3. It is possible to cancel the couple of forces generated on the sliding surface of the slide bearing device used in a state where the air is in an air (dry) atmosphere. In particular, since the liquid film effect can cope with an increase in the number of rotations, this plain bearing device is suitable for the vertical pump 3 for the advance standby operation in which the number of rotations is increased and the length of the rotation shaft is increased.
 また、図11及び図12に示したすべり軸受装置32,33は、従来の保護管を用いる場合に比べて、保護管に水を供給する設備のような付帯設備は不要であるし、メインテナンスもしやすくなる。また、本実施形態に係る立軸ポンプ3は、ドライ運転時に摺動面がドライな状態であるすべり軸受装置も併用するので、全てのすべり軸受装置を、内部に水を溜めて摺動面が水中に存在する状態にしたすべり軸受装置に置き換える場合に比べ、コストを抑えられ、メインテナンスもしやすくなり、ポンプ性能に与える影響も低減させることができる。 Further, the plain bearing devices 32 and 33 shown in FIG. 11 and FIG. 12 do not require any additional equipment such as equipment for supplying water to the protective pipe and maintain it, compared to the case where the conventional protective pipe is used. It becomes easy. Further, the vertical shaft pump 3 according to the present embodiment also uses a sliding bearing device in which the sliding surface is in a dry state during dry operation. Therefore, all the sliding bearing devices are stored in the water so that the sliding surface is underwater. Compared with the case of replacing with a plain bearing device in a state existing in the above, the cost can be reduced, maintenance is facilitated, and the influence on the pump performance can be reduced.
 但し、上記2つの例では、他との影響に関して考慮すべきことがある。摺動面が常時液体(水中)雰囲気にある状態で使用されるすべり軸受装置は、その機能を保つためにそれなりの大きさを必要とする。したがって、このようなすべり軸受装置は、立軸ポンプ3の流路面積を狭めたり、流体の抵抗となったりしやすいという課題がある。回転軸10の下端部に図12に示したすべり軸受装置を配置する場合は、先行待機運転用の立軸ポンプ3のドライ運転時の回転軸10の振れ回りを抑えることができるとともに、メインテナンスを容易にする観点では優れているが、立軸ポンプ3の吸込口の流路面積を狭めることになる。このため、揚水時の吸込み圧力の低下や、キャビテーションの発生による性能の低下が懸念される。しかしながら、すべり軸受1を図10Aに示した真円軸受や図10Bに示した多円弧軸受とすることで、図10Dに示したティルティングパッド軸受に比べて大幅にコンパクト化が図れる。 However, in the above two examples, there are things to consider regarding the influence of others. A plain bearing device used in a state where the sliding surface is always in a liquid (in water) atmosphere requires a certain size in order to maintain its function. Therefore, there is a problem that such a plain bearing device tends to narrow the flow passage area of the vertical shaft pump 3 or become a fluid resistance. When the sliding bearing device shown in FIG. 12 is arranged at the lower end of the rotary shaft 10, the swing of the rotary shaft 10 during the dry operation of the vertical shaft pump 3 for preceding standby operation can be suppressed, and maintenance is facilitated. Although it is excellent in terms of making it, the flow passage area of the suction port of the vertical shaft pump 3 is narrowed. For this reason, we are anxious about the fall of the performance by the fall of the suction pressure at the time of pumping, and generation | occurrence | production of cavitation. However, if the sliding bearing 1 is a perfect circle bearing shown in FIG. 10A or a multi-circular bearing shown in FIG. 10B, the sliding bearing 1 can be made more compact than the tilting pad bearing shown in FIG. 10D.
 一方、吐出ボウル28よりも高い位置(下流側の位置)にすべり軸受装置32を配置する場合は、すべり軸受装置32が立軸ポンプ3の流路面積を狭めるが、この位置は吐出圧力下にあるので、前述した吸込み圧力の低下やキャビテーションの発生の懸念はなくなる。また、吐出ボウル28の内筒の内部や、吐出ボウル28の直上の部分等に配置されたすべり軸受装置32,33は、流れにあまり影響を与えない。そして、このように配置位置が制限されても、ドライ運転時にドライな摺動面のすべり軸受装置で生ずる偶力をキャンセルする偶力を十分に生じることができる。 On the other hand, when the slide bearing device 32 is arranged at a position higher than the discharge bowl 28 (downstream position), the slide bearing device 32 narrows the flow path area of the vertical shaft pump 3, but this position is under discharge pressure. Therefore, there is no concern about the reduction of the suction pressure and the occurrence of cavitation described above. Further, the slide bearing devices 32 and 33 arranged in the inner cylinder of the discharge bowl 28, a portion immediately above the discharge bowl 28, and the like do not significantly affect the flow. Even if the arrangement position is limited in this way, it is possible to sufficiently generate a couple that cancels the couple generated in the sliding bearing device having a dry sliding surface during the dry operation.
 以上のように、摺動面が常時液体(水中)雰囲気で使用されるすべり軸受装置32,33が配置される位置は、先行待機運転用の立軸ポンプ3のドライ運転時の回転軸10の振れ回りを抑え、且つ揚水時のポンプ性能に影響を与えないという観点では、吐出ボウル28内およびそれ以上の高さに配置することが好ましい。 As described above, the slide bearing devices 32 and 33 whose sliding surfaces are always used in a liquid (underwater) atmosphere are disposed at the position where the rotary shaft 10 is swung during the dry operation of the vertical shaft pump 3 for the preliminary standby operation. From the viewpoint of suppressing the rotation and not affecting the pump performance at the time of pumping, it is preferable to arrange in the discharge bowl 28 or higher.
 以上、本発明の実施形態について、主に先行待機運転を行う立軸ポンプを例として説明したが、立軸ポンプ3は、ポンプケーシング内に、ポンプが揚水する対象の水がない状態で回転軸を回転して運転することがあるポンプであって、そのような状態で管理運転を行うポンプも含まれる。上述した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物が含まれることはもちろんである。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲及び明細書に記載された各構成要素の任意の組み合わせ、又は省略が可能である。 As described above, the embodiment of the present invention has been described mainly using the vertical shaft pump that performs the preliminary standby operation as an example, but the vertical shaft pump 3 rotates the rotating shaft in a state where there is no water to be pumped in the pump casing. A pump that may be operated in such a state, and a pump that performs a management operation in such a state is also included. The above-described embodiments of the present invention are intended to facilitate understanding of the present invention, and do not limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes the equivalents thereof. In addition, any combination or omission of each component described in the claims and the specification is possible within a range where at least a part of the above-described problems can be solved or a range where at least a part of the effect can be achieved. is there.
  1…すべり軸受
  3…立軸ポンプ
  6…空気管
  10…回転軸
  11…スリーブ
  22…インペラ
  29…ケーシング
  30…吐出エルボ
  32…すべり軸受装置
  33…すべり軸受装置
  34…軸シール
  44…スリーブ保持部材
  45…受液槽
  46…傾斜板
DESCRIPTION OF SYMBOLS 1 ... Slide bearing 3 ... Vertical shaft pump 6 ... Air pipe 10 ... Rotating shaft 11 ... Sleeve 22 ... Impeller 29 ... Casing 30 ... Discharge elbow 32 ... Slide bearing device 33 ... Slide bearing device 34 ... Shaft seal 44 ... Sleeve holding member 45 ... Receiving tank 46 ... Inclined plate

Claims (8)

  1.  回転軸と、前記回転軸の少なくとも一部を収容するポンプケーシングと、前記回転軸に取り付けられた羽根車と、を備えた立軸ポンプであって、
     前記回転軸を支持する複数のすべり軸受装置を備え、
     前記複数のすべり軸受装置の一部は、気中運転時に摺動面が大気雰囲気にある状態で使用される第1のすべり軸受装置であり、
     前記複数のすべり軸受装置の残りは、摺動面が常時液体雰囲気にある状態で使用される第2のすべり軸受装置である、立軸ポンプ。
    A vertical shaft pump comprising: a rotary shaft; a pump casing that houses at least a part of the rotary shaft; and an impeller attached to the rotary shaft,
    A plurality of plain bearing devices for supporting the rotating shaft;
    A part of the plurality of plain bearing devices is a first plain bearing device that is used in a state where the sliding surface is in an air atmosphere during air operation,
    The remainder of the plurality of plain bearing devices is a vertical shaft pump that is a second plain bearing device that is used in a state where the sliding surface is always in a liquid atmosphere.
  2.  請求項1に記載された立軸ポンプにおいて、
     前記第2のすべり軸受装置は、真円軸受又は多円弧軸受を有する、立軸ポンプ。
    The vertical shaft pump according to claim 1,
    The second plain bearing device is a vertical shaft pump having a perfect circle bearing or a multi-arc bearing.
  3.  請求項1又は2に記載された立軸ポンプにおいて、
     前記羽根車を収容する吐出ボウルを有し、
     前記第2のすべり軸受装置は、前記吐出ボウル以上の高さに設けられる、立軸ポンプ。
    In the vertical shaft pump according to claim 1 or 2,
    A discharge bowl containing the impeller,
    The second sliding bearing device is a vertical shaft pump provided at a height higher than the discharge bowl.
  4.  請求項1から3に記載された立軸ポンプにおいて、
     前記第2のすべり軸受装置は、
      前記回転軸を支持するすべり軸受と、
      前記すべり軸受の摺動部が前記液体に接触するように前記液体を保持する受液槽と、を有する、立軸ポンプ。
    In the vertical shaft pump according to claims 1 to 3,
    The second plain bearing device is:
    A plain bearing for supporting the rotating shaft;
    A vertical shaft pump comprising: a liquid receiving tank that holds the liquid so that a sliding portion of the slide bearing contacts the liquid.
  5.  請求項4に記載された立軸ポンプにおいて、
     前記第2すべり軸受装置は、前記すべり軸受よりも上方に配置され、前記受液槽とともに前記液体を保持するための板部材を有する、立軸ポンプ。
    In the vertical shaft pump according to claim 4,
    The second sliding bearing device is a vertical shaft pump disposed above the sliding bearing and having a plate member for holding the liquid together with the liquid receiving tank.
  6.  請求項5に記載された立軸ポンプにおいて、
     前記板部材は、筒状であり、上流側から下流側に向かって内径が徐々に小さくなるように構成される、立軸ポンプ。
    In the vertical shaft pump according to claim 5,
    The plate member has a cylindrical shape, and is configured to have an inner diameter that gradually decreases from the upstream side toward the downstream side.
  7.  請求項1から6のいずれか一項に記載の立軸ポンプにおいて、
     前記ポンプケーシング内の第1のすべり軸受装置および第2のすべり軸受装置のうち、最下部のすべり軸受装置の摺動面が、揚水に浸されていない状態で運転する、立軸ポンプ。
    In the vertical shaft pump according to any one of claims 1 to 6,
    A vertical shaft pump that operates in a state in which the sliding surface of the lowest slide bearing device of the first slide bearing device and the second slide bearing device in the pump casing is not immersed in pumped water.
  8.  請求項1から7のいずれか一項に記載された立軸ポンプにおいて、
     前記ポンプケーシングは、前記羽根車の上流側に空気管を備える、立軸ポンプ。
    In the vertical shaft pump according to any one of claims 1 to 7,
    The pump casing is a vertical pump including an air pipe on the upstream side of the impeller.
PCT/JP2016/066820 2016-06-07 2016-06-07 Vertical shaft pump WO2017212533A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/066820 WO2017212533A1 (en) 2016-06-07 2016-06-07 Vertical shaft pump
JP2018522192A JP6749393B2 (en) 2016-06-07 2016-06-07 Vertical pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/066820 WO2017212533A1 (en) 2016-06-07 2016-06-07 Vertical shaft pump

Publications (1)

Publication Number Publication Date
WO2017212533A1 true WO2017212533A1 (en) 2017-12-14

Family

ID=60578526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066820 WO2017212533A1 (en) 2016-06-07 2016-06-07 Vertical shaft pump

Country Status (2)

Country Link
JP (1) JP6749393B2 (en)
WO (1) WO2017212533A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417850A (en) * 1982-12-20 1983-11-29 Allis-Chalmers Corporation Vertical column pump
JP2000002191A (en) * 1998-06-15 2000-01-07 Kubota Corp Slide bearing device of vertical shaft pump
JP2000130390A (en) * 1998-10-28 2000-05-12 Ebara Corp Vertical shaft pump device
WO2015012350A1 (en) * 2013-07-25 2015-01-29 株式会社 荏原製作所 Vertical shaft pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417850A (en) * 1982-12-20 1983-11-29 Allis-Chalmers Corporation Vertical column pump
JP2000002191A (en) * 1998-06-15 2000-01-07 Kubota Corp Slide bearing device of vertical shaft pump
JP2000130390A (en) * 1998-10-28 2000-05-12 Ebara Corp Vertical shaft pump device
WO2015012350A1 (en) * 2013-07-25 2015-01-29 株式会社 荏原製作所 Vertical shaft pump

Also Published As

Publication number Publication date
JP6749393B2 (en) 2020-09-02
JPWO2017212533A1 (en) 2019-04-11

Similar Documents

Publication Publication Date Title
JP6603382B2 (en) Vertical shaft pump
US20170276176A1 (en) Bearing apparatus and pump
JP6411902B2 (en) Vertical shaft pump
JP6745876B2 (en) Vertical pump
WO2017212533A1 (en) Vertical shaft pump
JP6936061B2 (en) Vertical pump
JP6491215B2 (en) Vertical shaft pump
JP6781020B2 (en) Vertical pump
JP6936060B2 (en) Vertical pump
JP7158256B2 (en) Vertical shaft pump
JP6320208B2 (en) Vertical shaft pump
JP3187659B2 (en) Pump operating method and pump bearing device
JP3969554B2 (en) Vertical axis pump device
JP6936062B2 (en) Vertical pump
JP2017166590A (en) Bearing assembly and rotating machine
JP4709878B2 (en) Vertical shaft pump
JP4704066B2 (en) Vertical shaft pump
JP7025961B2 (en) Horizontal axis pump
JP2019183754A (en) Prior standby operation pump
JP2001289191A (en) Pump bearing device
JP2020190241A (en) Preceding standby operation pump
JP2005083357A (en) Protection device for machine element of vertical shaft type pump
JP2020020292A (en) Preceding standby operation pump
JP2022169190A (en) Submerged bearing structure, vertical shaft pump, pump system, and lubricating liquid supply method
JP2017032134A (en) Bearing device and rotary machine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018522192

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16904568

Country of ref document: EP

Kind code of ref document: A1