WO2017211310A1 - 一种滤波器以及双工器 - Google Patents

一种滤波器以及双工器 Download PDF

Info

Publication number
WO2017211310A1
WO2017211310A1 PCT/CN2017/087522 CN2017087522W WO2017211310A1 WO 2017211310 A1 WO2017211310 A1 WO 2017211310A1 CN 2017087522 W CN2017087522 W CN 2017087522W WO 2017211310 A1 WO2017211310 A1 WO 2017211310A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
filter
resonant cavity
metal
resonant
Prior art date
Application number
PCT/CN2017/087522
Other languages
English (en)
French (fr)
Other versions
WO2017211310A9 (zh
Inventor
李秀萍
齐紫航
曾骏杰
道坚丁九
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017211310A1 publication Critical patent/WO2017211310A1/zh
Publication of WO2017211310A9 publication Critical patent/WO2017211310A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters

Definitions

  • the technical field of communication devices relates to a filter and a duplexer.
  • Filters are widely used in the field of communications as a frequency selective device, especially in the field of radio frequency communications.
  • a filter is used to select a communication signal to filter out clutter or interference signals outside the frequency of the communication signal.
  • the duplexer is usually composed of two different frequency bands of filters connected by an impedance matching network. Its main function is to separate the two frequency band signals received by the antenna in the RF circuit. Not only the signals in the respective frequency bands are required to pass through at low loss, but also to prevent mutual interference between the two signals, and in turn, to combine signals of different frequencies, which is one of the important devices for realizing multi-channel bidirectional communication.
  • filters in mobile communication systems mainly include waveguide filters, coaxial filters, dielectric filters, SAW filters, microstrip filters, and the like. But now each has its own defects, the cost of the waveguide filter is high, and the tuning is difficult; the coaxial filter is used in mobile communication and its volume is large; the dielectric resonator is designed by the repeated total reflection of electromagnetic waves inside the medium.
  • the high cost of the filter composed of it makes it widely obstructed;
  • the surface acoustic wave SAW filter utilizes the conversion of electrical signals and acoustic signals and the transmission processing of acoustic signals to complete the filtering function loss;
  • the filter has a low quality factor and a large loss.
  • Embodiments of the present invention provide a filter capable of achieving low insertion loss, miniaturization, easy fabrication, and easy implementation of a relatively complex filter circuit to obtain high selectivity.
  • a first aspect of the embodiments of the present invention provides a filter, comprising: a cavity and a cover plate disposed on the cavity, wherein the cavity is internally formed with N resonant cavities, wherein the resonant cavity is used for Fixedly setting a resonator, wherein N is a positive integer greater than one;
  • the resonator includes a metal spiral having a spiral structure, one end of the metal spiral is connected to the bottom of the cavity to be grounded, and the other end of the metal spiral is configured as an open circuit;
  • the metal spiral is wound into a helical structure such that the metal spiral resembles a quarter-wavelength coaxial resonator.
  • the metal spiral phase velocity using a spiral structure is reduced by the action of the spiral inner conductor (slow wave structure). This phenomenon is caused by the fact that the electromagnetic waves sequentially advance at the speed of light in the direction of the metal spiral, and the speed in the axial direction of the metal spiral is lowered. Therefore, the longer the wire wound around the metal spiral, the more the number of turns N, the more the speed of propagation along the axis of the metal spiral decreases as compared with the length of the metal spiral itself.
  • the reduction in the phase velocity is equivalent to the shortening of the wavelength, so that the length of the metal spiral can be greatly shortened by using a quarter-wave short circuit having a metal spiral as compared with a coaxial wire as a resonator.
  • the volume of the metal spiral can be made smaller, and the high unloaded Q value can be maintained, which is very advantageous for miniaturization of the filter, thereby making the system design more compact.
  • the resonator further includes a cavity tuning screw, each of the cavity tuning screws being respectively disposed opposite to an open end of each of the metal spirals;
  • the cavity tuning screw and the metal spiral shown in this embodiment do not contact each other.
  • the cavity tuning screw shown in this embodiment is opposite to the hollow cavity formed by the metal spiral.
  • the resonator has two structures, a first target resonator and a second target resonator, and the first target resonator is a resonator located at both ends of the filter.
  • the second target resonator is a resonator located between the ends of the filter.
  • a metal baffle is disposed between the first resonant cavity and the second resonant cavity, and the first resonant cavity and the second resonant cavity are any two adjacent ones of the N resonant cavities included in the filter And a winding direction of the metal spiral located in the first resonant cavity is different from a winding direction of the metal spiral located in the second resonant cavity.
  • the filter shown in this embodiment is made because the winding direction of the metal spiral located in the first cavity is different from the winding direction of the metal spiral located in the second cavity.
  • the anti-symmetric coupling structure is adopted, which can greatly improve the coupling coefficient between the resonant cavities, thereby realizing the design of the wideband filter.
  • An input and output port is disposed at two ends of the cavity, and the metal spiral in the resonant cavity at both ends of the cavity is configured with input and output taps, and the input and output taps are connected to the input and output ports. To achieve signal input and output.
  • the first target resonator and the second target resonator structure shown in this embodiment have different positions in which the first target resonator is provided with the input and output taps.
  • This embodiment can achieve the purpose of adjusting the external Q value of the filter by adjusting the position of the input and output taps.
  • a center frequency of the resonator and a length of the cavity tuning screw and/or a height of the resonant cavity, and/or a length of the metal spiral, and/or a pitch of the metal spiral, and / or the height of the metal spiral from the ground, and / or the diameter of the coil of the metal spiral, and / or the diameter of the cavity.
  • the length of the cavity tuning screw, and/or the height of the resonant cavity, and/or Or the length of the metal helix, and/or the pitch of the metal helix, and/or the height of the metal helix, and/or the coil diameter of the metal helix, and/or the The diameter of the cavity when the center frequency of the resonator needs to be adjusted, the length of the cavity tuning screw, and/or the height of the resonant cavity, and/or Or the length of the metal helix, and/or the pitch of the metal helix, and/or the height of the metal helix, and/or the coil diameter of the metal helix, and/or the The diameter of the cavity.
  • the filter shown in this embodiment when it is required to adjust the coupling coefficient between the first resonant cavity and the second resonant cavity, the first resonant cavity and the a distance between the second resonant cavity, and/or a height of the metal baffle between the first resonant cavity and the second resonant cavity, and/or a length of the cavity tuning screw.
  • the distance between the first resonant cavity and the second resonant cavity is the cavity tuning screw located in the first resonant cavity and the cavity tuning screw located in the second resonant cavity The distance between them.
  • the tap position of the input and output taps is related to the filter external quality factor Q value, and/or the manner in which the input and output ports are coupled.
  • Determining the tap position of the input and output taps may be: first determining an external quality factor Q value of the filter, and then calculating a group delay of the single resonant cavity according to an external quality factor Q value of the filter, and then according to The group delay simulation results for the single of the resonant cavities determine the position of the taps of the input and output taps on the metal spiral.
  • the filter according to any one of the first aspect of the present invention
  • the inner cavity wall of the resonant cavity and/or the outer peripheral wall of the metal spiral is provided with a conductive metal plating.
  • the quality factor of the resonator is effectively improved.
  • a filter according to any one of the first aspect of the present invention in a seventh implementation manner of the first aspect of the embodiments of the present invention,
  • the cover plate is provided with N first fixing holes, and the bottoms of the cavity of the N resonant cavities are provided with N second fixing holes, and the N first fixing holes and the N second fixing holes respectively Corresponding to the N resonant cavities, the first fixing holes are for fixing the cavity tuning screws, and the second fixing holes are for fixing the metal spirals.
  • the inner circumferential surface of the first fixing hole is provided with a first thread segment for screwing the cavity tuning screw; the inner circumferential surface of the second fixing hole is provided with a second thread segment The second thread segment is for threaded connection at an end of the metal spiral.
  • a second aspect of the embodiments of the present invention provides a duplexer including at least one receive filter and at least one transmit filter, the receive filter and the transmit filter having the structure of any one of claims 1 to 8. As shown, the receiving port of the receiving filter is connected to an antenna terminal, and the transmitting port of the transmitting filter is connected to the antenna terminal.
  • the structure of the filter shown in this embodiment can effectively reduce the processing difficulty, thereby effectively improving the efficiency of processing the filter.
  • a common input port of the duplexer is connected to a resonant cavity at an end of the receiving filter through a metal line.
  • the duplexer A common input port is also coupled to the resonant cavity at the end of the transmit filter by the metal line.
  • a coupling coefficient between the receive filter and the transmit filter and the metal baffle located within the receive filter and/or the transmit filter, and/or located in the receive filter and/or Or the length of the cavity tuning screw within the transmit filter is related.
  • Embodiments of the present invention provide a filter and a duplexer, the filter including N resonant cavities, a resonator internally disposed therein, the resonator including a metal spiral, and the spiral structure is used Compared with the coaxial line as a resonator, the metal spiral can be shortened in length, small in volume, and can maintain a high unloaded Q value.
  • the winding direction of the metal spiral located in the first resonant cavity is different from the winding direction of the metal spiral located in the second resonant cavity, and the first resonant cavity and the second resonant cavity are the filtering Any two adjacent ones of the N resonant cavities included in the device enable the filter shown in this embodiment to adopt an antisymmetric coupling structure, which can greatly improve the coupling coefficient between the resonant cavities. Thereby achieving the design of the broadband filter.
  • FIG. 1 is a side view showing a structure of a filter according to an embodiment of the present invention.
  • FIG. 2 is a schematic top plan view of an embodiment of a filter according to an embodiment of the present invention.
  • FIG. 3 is a side view showing a structure of a resonant cavity according to an embodiment of the present invention.
  • FIG. 4 is a schematic top plan view of an embodiment of a resonant cavity according to an embodiment of the present invention.
  • FIG. 5 is a schematic side view showing a structure of an embodiment of a filter according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of S-parameter simulation results of a filter applied to a UHF band according to an embodiment of the present invention
  • FIG. 7 is a schematic side view showing an embodiment of a duplexer according to an embodiment of the present invention.
  • FIG. 8 is a schematic top plan view of an embodiment of a duplexer according to an embodiment of the present invention.
  • Embodiments of the present invention provide a filter capable of achieving low insertion loss, miniaturization, easy fabrication, and easy implementation of a relatively complex filter circuit to obtain high selectivity.
  • FIG. 1 is a filter provided by an embodiment of the present invention.
  • FIG. 2 is a schematic top plan view showing an embodiment of a filter according to an embodiment of the present invention.
  • the filter includes a cavity 100 and a cover plate 101 that is disposed on the cavity 100.
  • the cavity 100 is internally formed with N resonant cavities, and the N is a positive integer greater than one;
  • the specific number of the resonant cavity is not limited in this embodiment.
  • the number of the resonant cavity is 10 as shown in FIG. 1 as an example.
  • the filter provided in this embodiment includes a resonant cavity 12, a resonant cavity 13, a resonant cavity 14, a resonant cavity 15, a resonant cavity 16, a resonant cavity 17, and a resonant cavity 18 arranged in sequence.
  • Each of the resonant cavities provided in this embodiment is used for fixedly setting a resonator. It can be seen that the harmonics shown in this embodiment are The number of resonators is equal to the number of resonators.
  • the resonators of the N identical frequencies located within the cavity 100 are coupled in series to obtain the filter.
  • the resonator shown in this embodiment has two structures, a first target resonator and a second target resonator, and the first target resonator is a resonator located at both ends of the filter, as shown in FIG.
  • the first target resonator is located inside the resonant cavity 12 and the resonant cavity 21.
  • the second target resonator is a resonator located between the two ends of the filter. As shown in FIG. 1, the second target resonator is located in the resonant cavity 13, the resonant cavity 14, the resonant cavity 15, and the resonance. The cavity 16, the resonant cavity 17, the resonant cavity 18, the resonant cavity 19, and the interior of the resonant cavity 20.
  • FIG. 3 is a schematic side view showing an embodiment of a resonant cavity according to an embodiment of the present invention
  • FIG. 5 is a partial side structural view of an embodiment of a filter according to an embodiment of the present invention.
  • FIG. 3 is a schematic side view of the second target resonator
  • FIG. 4 is a schematic top view of the second target resonator
  • FIG. 5 is an adjacent two resonant cavity.
  • the resonator is a metal spiral 1 in a spiral configuration.
  • the metal spiral 1 is wound into a spiral structure such that the metal spiral 1 is similar to a quarter-wavelength coaxial resonator.
  • the difference between the two is that the metal spiral 1 is helically shaped while the inner conductor of the coaxial resonator is straight.
  • the metal spiral 1 can be made much smaller than the coaxial resonator and can maintain a high unloaded Q value. It is very advantageous for the miniaturization of the filter, which makes the system design more compact.
  • the metal spiral 1 phase velocity using a spiral structure is reduced by the action of the spiral inner conductor (slow wave structure). This phenomenon is caused by the fact that the electromagnetic waves sequentially advance at the speed of light in the direction of the metal spiral 1 and the speed in the axial direction of the metal spiral 1 is lowered. Therefore, the longer the wire wound around the metal spiral 1 is than the length of the metal spiral 1, the more the number of turns N, the more the speed of propagation along the axial direction of the metal spiral 1 decreases.
  • the reduction in the phase velocity is equivalent to the shortening of the wavelength, so that the length of the metal spiral 1 can be greatly shortened by using a quarter-wave short circuit having a metal spiral 1 as compared with a coaxial wire as a resonator.
  • One end 12 of the metal spiral 1 is connected to the bottom of the cavity to be grounded, and the other end 13 of the metal spiral 1 is configured to be open.
  • the resonator also includes a cavity tuning screw 2.
  • the cavity tuning screw 2 performs adjustment of the resonant frequency of the resonator.
  • the cover plate 101 is disposed with the N cavity tuning screws 2 extending in a direction toward the resonant cavity, and each of the cavity tuning screws 2 is opposite to an open end of each of the metal spirals 1 respectively. Settings.
  • the cavity tuning screw 2 and the metal spiral 1 shown in this embodiment do not contact each other.
  • a metal baffle 43 is disposed between the first resonant cavity 41 and the second resonant cavity 42 shown in this embodiment. Specifically, the first resonant cavity 41 and the second resonant cavity are respectively disposed.
  • the cavity 42 is any two adjacent ones of the N resonant cavities included in the filter.
  • the winding direction of the metal spiral 1 located in the first cavity 41 is different from the winding direction of the metal spiral 1 located in the second cavity 42.
  • the embodiment is The illustrated filter adopts an antisymmetric coupling structure, which can greatly improve the coupling coefficient between the resonant cavities, thereby realizing the design of the wideband filter.
  • the input and output ports 102 are disposed at both ends of the cavity 100.
  • the resonant cavity 12 at both ends of the cavity 100 and the metal spiral 1 in the resonant cavity 21 are provided with input and output taps 103.
  • the input/output tap 103 is connected to the input/output port 102 to implement input and output of signals.
  • first target resonator and the second target resonator structure shown in this embodiment have different positions, and the first target resonator is provided with the input/output tap 103.
  • the present embodiment can achieve the purpose of adjusting the external Q value of the filter by adjusting the position of the input/output tap 103.
  • the center frequency of the resonator shown in this embodiment is used, the length of the cavity tuning screw 2, and/or the height of the resonant cavity 3, and/or the metal spiral 1 a length 4, and/or a pitch 5 of the metal helix 1 and/or a ground height 6 of the metal helix 1 and/or a coil diameter 8 of the metal helix 1 and/or the The diameter of the cavity is 9 related.
  • the length of the cavity tuning screw 2 and/or the height of the resonant cavity can be adjusted. And/or the length 4 of the metal helix 1 and/or the pitch 5 of the metal helix 1 and/or the ground height 6 of the metal helix 1 and/or the metal helix 1
  • the coil diameter is 8, and/or the diameter 9 of the resonant cavity.
  • a coupling coefficient between the first resonant cavity 41 and the second resonant cavity 42 is different from a distance 10 between the first resonant cavity 41 and the second resonant cavity 42, and/or The height 6 of the metal baffle 43 between the first resonant cavity 41 and the second resonant cavity 42 and/or the length of the cavity tuning screw 2 is related.
  • the distance 10 between the first resonant cavity 41 and the second resonant cavity 42 shown in this embodiment is the cavity located in the first resonant cavity 41.
  • the distance between the tuning screw 2 and the cavity tuning screw 2 located within the second resonant cavity 42 is 10.
  • the first resonant cavity 41 when it is necessary to adjust the coupling coefficient between the first resonant cavity 41 and the second resonant cavity 42, the first resonant cavity 41 can be adjusted. a distance 10 between the second resonant cavity 42 and/or a height 6 of the metal baffle 43 between the first resonant cavity 41 and the second resonant cavity 42, and/or The length of the cavity tuning screw 2 is described.
  • the coupling coefficient size is described, for example, the distance 10 between the first resonant cavity 41 and the second resonant cavity 42 may be first determined, and then the first resonant cavity 41 and the The height 6 of the metal baffle 43 between the second resonant cavities 42 adjusts the coupling coefficient size.
  • the filter shown in this embodiment adopts an antisymmetric structure, so that the coupling coefficient of the filter shown in this embodiment is much larger than that of the symmetric structure, which is advantageous for the design of the wideband filter.
  • the tap position of the input/output tap 103 is related to the filter external quality factor Q value, and/or the coupling manner of the input and output ports.
  • the following is a specific application scenario for how to determine the tap position of the input and output tap 103, first determining the external quality factor Q value of the filter, and then calculating a single single according to the external quality factor Q value of the filter.
  • the group delay of the resonant cavity is determined based on the group delay simulation result of the single resonant cavity to determine the position of the tap of the input/output tap 103 on the metal spiral 1.
  • the inner cavity wall of the resonant cavity and/or the outer peripheral wall of the metal spiral 1 is provided with a conductive metal plating layer.
  • the conductive metal is not limited.
  • the conductive metal is used as the silver, that is, the inner cavity wall of the resonant cavity and/or the metal spiral may be used in this embodiment.
  • the outer peripheral wall of 1 is subjected to a silver plating treatment so that the inner cavity wall of the cavity and/or the outer peripheral wall of the metal spiral 1 is provided with a silver plating layer.
  • the quality factor of the resonator is effectively improved.
  • the cover plate 101 is provided with N first fixing holes, and the bottoms of the cavity of the N resonant cavities are provided with N second fixing holes.
  • the N first fixing holes and the N second fixing holes respectively correspond to the N resonant cavities, and the first fixing holes are used for fixing the cavity tuning screws 2,
  • the second fixing hole is for fixing the metal spiral 1.
  • the inner circumferential surface of the first fixing hole is provided with a first thread segment for screwing the cavity tuning screw 2; the inner circumferential surface of the second fixing hole is disposed There is a second thread segment for screwing the end of the metal spiral 1 .
  • the structure of the filter shown in this embodiment can effectively reduce the processing difficulty, thereby effectively improving the efficiency of processing the filter.
  • the diameter 7 of the cavity tuning screw 2 shown in this embodiment needs to be set within a preset range, and the diameter 7 of the cavity tuning screw 2 is smaller than the preset range. , will affect the adjustment process, too small cavity tuning screw 2 adjustment frequency is not sensitive, the adjustment range is small.
  • the oversized cavity tuning screw 2 is too sensitive.
  • the diameter 7 of the cavity tuning screw 2 can be set in the preset range by the manufacturer as needed at the factory.
  • the preset range is not limited in this embodiment, as long as the cavity is tuned.
  • the diameter 7 of the screw 2 is located within the predetermined range to effectively adjust the frequency of the filter.
  • the filter result of a frequency band in UHF is given here, and the HFSS three-dimensional power of Ansoft is used.
  • the present invention was simulated by magnetic simulation software.
  • the size of the filter is 170 mm ⁇ 50 mm ⁇ 30 mm
  • the metal spiral 1 and the cavity tuning screw 2 are made of brass
  • the metal spiral 1 and the inner surface of the cavity are silver plated as an example. .
  • Fig. 6 is a graph showing the results of S-parameter simulation of a filter applied to the UHF band. It can be seen from Fig. 6 that the 0.690-0.803 GHz band has better passband characteristics and high out-of-band rejection, which can meet engineering requirements.
  • the decibel value corresponding to the S parameter indicated by the ordinate shown in FIG. 6 is shown.
  • the S parameter is also the scattering parameter.
  • S21 is the transmission coefficient of the input port to the output port, and S11 is the reflection coefficient of the input port.
  • designing the filter in the RF front-end module is one of the keys to further reduce the volume when the performance index is satisfied. It can be seen that the filter shown in this embodiment can ensure the performance index. The volume of the filter is reduced, so that the filter shown in this embodiment can be better applied to mobile communication.
  • the embodiment of the present invention further provides a duplexer.
  • the specific structure of the duplexer is shown in FIG. 7 and FIG. 8.
  • FIG. 7 is an implementation of a duplexer according to an embodiment of the present invention.
  • FIG. 8 is a schematic top plan view showing an embodiment of a duplexer according to an embodiment of the present invention.
  • the duplexer shown in this embodiment includes at least one receive filter and at least one transmit filter.
  • the duplexer shown in this embodiment includes one of the receiving filter 801 and one of the transmitting filters 802.
  • the structure of the receiving filter 801 and the transmitting filter 802 is the same as that of the filter shown in the above embodiment. The specific structure is not described in this embodiment.
  • the receiving port of the receiving filter 801 is connected to an antenna terminal, and the transmitting port of the transmitting filter 802 is connected to an antenna terminal.
  • the common input port 803 of the duplexer is connected to the resonant cavity 12 at the end of the receiving filter 801 through a metal line 804, and the common input port 803 of the duplexer also passes through the metal line.
  • 804 is coupled to a resonant cavity 12 at an end of the transmit filter 802.
  • a coupling coefficient between the receiving filter 801 and the transmitting filter 802 is opposite to the metal baffle 43 located in the receiving filter 801 and/or the transmitting filter 802, and/ Or the length of the cavity tuning screw located within the receive filter 801 and/or the transmit filter 802 is related.
  • the position of the common input port 803 and/or the metal wire 804 can be adjusted.
  • the length, and/or the position of the input and output taps 103 on the metal spiral 1 adjusts the external Q values of the two filters, thereby matching the two filters.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division, and the actual implementation may have another division manner, such as multiple units or groups. Pieces can be combined or integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明实施例提供了一种滤波器以及双工器,所述滤波器包括N个谐振腔,所述谐振腔内部设置有谐振器,所述谐振器包括金属螺旋线,采用螺旋形结构的所述金属螺旋线与同轴线作谐振器相比,长度可大大缩短,体积较小,且能保持较高的无载Q值。位于第一谐振腔内的所述金属螺旋线的缠绕方向与位于第二谐振腔内的所述金属螺旋线的缠绕方向不同,所述第一谐振腔和所述第二谐振腔为所述滤波器所包括的所述N个谐振腔中任意相邻的两个,则使得本实施例所示的滤波器采用的是反对称的耦合结构,能够极大的提高谐振腔之间的耦合系数,从而实现宽带滤波器的设计。

Description

一种滤波器以及双工器
本申请要求于2016年6月8日提交中国专利局、申请号为201610403854.3、发明名称为“一种滤波器以及双工器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
通信装置技术领域,具体涉及一种滤波器以及双工器。
背景技术
滤波器作为一种频率选择装置被广泛应用于通信领域,尤其是射频通信领域。在基站中,滤波器用于选择通信信号,滤除通信信号频率外的杂波或干扰信号。而双工器通常由两个不同频段的滤波器通过阻抗匹配网络连组成的,其主要作用是在射频电路中分离天线接收的两个频段信号。不仅要求各自频段内的信号能够低损耗通过,而且要防止两个信号间的相互干扰,反过来亦可将不同频率的讯号合在一起,它是实现多信道事实双向通信的重要器件之一。
目前,移动通信系统中的滤波器主要包括波导滤波器、同轴滤波器、介质滤波器、SAW滤波器、微带滤波器等。但现在每种都有自己的缺陷,波导滤波器成本较高,调谐困难;同轴滤波器应用于移动通信其体积较大;介质谐振器是利用由电磁波在介质内部进行反复全反射所来设计的,由它构成的滤波器的高成本使其广泛应用受到阻碍;声表面波SAW滤波器是利用电信号与声信号的转换和对声信号的传输处理来完成滤波功能损耗较大;微带滤波器品质因数低,损耗较大。
发明内容
本发明实施例提供了一种能够实现低插入损耗,小型化,制作容易,易于实现较复杂滤波器电路从而获得高选择性的滤波器。
本发明实施例第一方面提供了一种滤波器,其中,包括腔体和盖设在所述腔体上的盖板,所述腔体内部形成有N个谐振腔,所述谐振腔用于固定设置谐振器,所述N为大于1的正整数;
其中,位于所述腔体内的N个相同频率的所述谐振器耦合级联得到所述滤波器。
所述谐振器包括呈螺旋形结构的金属螺旋线,所述金属螺旋线的一端与所述谐振腔底部连接以接地,所述金属螺旋线的另一端配置为开路;
所述金属螺旋线缠绕成螺旋结构,以使所述金属螺旋线类似于一个四分之一波长的同轴线谐振器。
采用螺旋形结构的所述金属螺旋线相速由于螺旋内导体的作用降低(慢波结构)。这种现象是由于电磁波依次沿金属螺旋线方向以光速前进,而金属螺旋线的轴线方向上的速度则降低了。因此,与金属螺旋线的本身长度相比,绕制金属螺旋线的导线越长,则圈数N越多,沿金属螺旋线的轴线方向上传播的速度降低的也就越多。相速的降低等效于波长缩短,故采用具有金属螺旋线的四分之一波长短路与同轴线作谐振器相比,所述金属螺旋线的长度可以大大缩短。
所述金属螺旋线的体积可做得比较小,且能保持较高的无载Q值,非常有利于滤波器的小型化,从而使得在系统设计更为紧凑。
所述谐振器还包括腔体调谐螺钉,各所述腔体调谐螺钉分别与各所述金属螺旋线的开路端相对设置;
本实施例所示的所述腔体调谐螺钉与所述金属螺旋线相互之间互不接触。
本实施例所示的所述腔体调谐螺钉与所述金属螺旋线所形成的中空腔体相对。
所述谐振器有两种结构,即第一目标谐振器和第二目标谐振器,所述第一目标谐振器为位于所述滤波器两端的谐振器。
所述第二目标谐振器为位于所述滤波器两端之间的谐振器。
所有所述第二目标谐振器的结构相同。
第一谐振腔和第二谐振腔之间设置有金属挡板,所述第一谐振腔和所述第二谐振腔为所述滤波器所包括的所述N个谐振腔中任意相邻的两个,且位于所述第一谐振腔内的所述金属螺旋线的缠绕方向与位于所述第二谐振腔内的所述金属螺旋线的缠绕方向不同。
可见,因位于所述第一谐振腔内的所述金属螺旋线的缠绕方向与位于所述第二谐振腔内的所述金属螺旋线的缠绕方向不同,则使得本实施例所示的滤波器采用的是反对称的耦合结构,能够极大的提高谐振腔之间的耦合系数,从而实现宽带滤波器的设计。
结合本发明实施例第一方面,本发明实施例第一方面的第一种实现方式中,
所述腔体的两端设置有输入输出端口,位于所述腔体两端的所述谐振腔内的所述金属螺旋线配置有输入输出抽头,所述输入输出抽头同所述输入输出端口相连接,以实现信号的输入输出。
本实施例所示的第一目标谐振器和所述第二目标谐振器结构不同的位置为所述第一目标谐振器设置有所述输入输出抽头。
本实施例可通过调节所述输入输出抽头的位置以达到调节滤波器的外部Q值的目的。
结合本发明实施例第一方面或本发明实施例第一方面的第一种实现方式,本发明实施例第一方面的第二种实现方式中,
所述谐振器的中心频率与所述腔体调谐螺钉的长度、和/或所述谐振腔的高度、和/或所述金属螺旋线的长度、和/或所述金属螺旋线的螺距、和/或所述金属螺旋线的离地高度、和/或所述金属螺旋线的线圈直径、和/或所述谐振腔的直径相关。
具体的,采用本实施例所示的滤波器的结构,当需要调节所述谐振器的中心频率时,可调节所述腔体调谐螺钉的长度、和/或所述谐振腔的高度、和/或所述金属螺旋线的长度、和/或所述金属螺旋线的螺距、和/或所述金属螺旋线的离地高度、和/或所述金属螺旋线的线圈直径、和/或所述谐振腔的直径。
结合本发明实施例第一方面或本发明实施例第一方面的第一种实现方式,本发明实施例第一方面的第三种实现方式中,
所述第一谐振腔和所述第二谐振腔之间的耦合系数大小与所述第一谐振腔和所述第二谐振腔之间的距离,和/或位于所述第一谐振腔和所述第二谐振腔之间的所述金属挡板的高度,和/或所述腔体调谐螺钉的长度相关。
具体的,采用本实施例所示的滤波器的结构,当需要调节所述第一谐振腔和所述第二谐振腔之间的耦合系数大小时,可调节所述第一谐振腔和所述第二谐振腔之间的距离,和/或位于所述第一谐振腔和所述第二谐振腔之间的所述金属挡板的高度,和/或所述腔体调谐螺钉的长度。
结合本发明实施例第一方面的第三种实现方式,本发明实施例第一方面的第四种实现方式中,
所述第一谐振腔和所述第二谐振腔之间的距离为位于所述第一谐振腔内的所述腔体调谐螺钉和位于所述第二谐振腔内的所述腔体调谐螺钉之间的距离。
结合本发明实施例第一方面的第一种实现方式,本发明实施例第一方面的第五种实现方式中,
所述输入输出抽头的抽头位置与所述滤波器外部品质因数Q值,和/或所述输入输出端口的耦合方式相关。
确定所述输入输出抽头的抽头位置可为:首先确定所述滤波器的外部品质因数Q值,再根据所述滤波器的外部品质因数Q值计算单个所述谐振腔的群时延,再根据所述单个所述谐振腔的群时延仿真结果确定输入输出抽头的抽头在所述金属螺旋线上的位置。
结合本发明实施例第一方面至本发明实施例第一方面的第五种实现方式任一项所述的滤波器,本发明实施例第一方面的第六种实现方式中,
所述谐振腔的内腔壁和/或所述金属螺旋线的外周壁设置有导电金属镀层。
因本实施例所示的所述谐振腔的内腔壁和/或所述金属螺旋线的外周壁设置有导电金属镀层,则有效的提高了谐振器的品质因数。
结合本发明实施例第一方面至本发明实施例第一方面的第六种实现方式任一项所述的滤波器,本发明实施例第一方面的第七种实现方式中,
所述盖板设置有N个第一固定孔,所述N个谐振腔的腔体底部设置有N个第二固定孔,所述N个第一固定孔以及所述N个第二固定孔分别与所述N个谐振腔对应,所述第一固定孔用于固定设置所述腔体调谐螺钉,所述第二固定孔用于固定所述金属螺旋线。
结合本发明实施例第一方面的第七种实现方式,本发明实施例第一方面的第八种实现方式中,
所述第一固定孔的内周面设置有第一螺纹段,所述第一螺纹段用于螺纹连接所述腔体调谐螺钉;所述第二固定孔的内周面设置有第二螺纹段,所述第二螺纹段用于螺纹连接设置在所述金属螺旋线的端部。
本发明实施例第二方面提供了一种双工器,包括至少一个接收滤波器和至少一个发射滤波器,所述接收滤波器以及所述发射滤波器的结构如权利要求1至8任一项所示,所述接收滤波器的接收端口与天线端子连接,所述发射滤波器的发射端口与天线端子连接。
可见,采用本实施例所示的滤波器的结构能够有效的降低加工难度,从而有效的提升了加工所述滤波器的效率。
结合本发明实施例第二方面,本发明实施例第二方面的第一种实现方式中,所述双工器的公共输入端口通过金属线与位于所述接收滤波器端部的谐振腔连接,所述双工器的公 共输入端口还通过所述金属线与位于所述发射滤波器端部的谐振腔连接。
结合本发明实施例第二方面或本发明实施例第二方面的第一种实现方式
所述接收滤波器和所述发射滤波器之间的耦合系数与位于所述接收滤波器和/或所述发射滤波器内的所述金属挡板,和/或位于所述接收滤波器和/或所述发射滤波器内的所述腔体调谐螺钉的长度相关。
本发明实施例提供了一种滤波器以及双工器,该滤波器包括N个谐振腔,所述谐振腔内部设置有谐振器,所述谐振器包括金属螺旋线,采用螺旋形结构的所述金属螺旋线与同轴线作谐振器相比,长度可大大缩短,体积较小,且能保持较高的无载Q值。位于第一谐振腔内的所述金属螺旋线的缠绕方向与位于第二谐振腔内的所述金属螺旋线的缠绕方向不同,所述第一谐振腔和所述第二谐振腔为所述滤波器所包括的所述N个谐振腔中任意相邻的两个,则使得本实施例所示的滤波器采用的是反对称的耦合结构,能够极大的提高谐振腔之间的耦合系数,从而实现宽带滤波器的设计。
附图说明
图1为本发明实施例所提供的滤波器的一种实施例侧视结构示意图;
图2为本发明实施例所提供的滤波器的一种实施例俯视结构示意图;
图3为本发明实施例所提供的谐振腔的一种实施例侧视结构示意图;
图4为本发明实施例所提供的谐振腔的一种实施例俯视结构示意图;
图5为本发明实施例所提供的滤波器的一种实施例局部侧视结构示意图;
图6为本发明实施例所提供的应用于UHF频段的滤波器的S参数仿真结果图;
图7为本发明实施例所提供的双工器的一种实施例侧视结构示意图;
图8为本发明实施例所提供的双工器的一种实施例俯视结构示意图。
具体实施方式
本发明实施例提供了一种能够实现低插入损耗,小型化,制作容易,易于实现较复杂滤波器电路从而获得高的选择性的滤波器。
为了解决现有技术中无法满足的低插入损耗、小型化、低成本、便于加工等要求,首先请参见图1和图2所示,其中,图1为本发明实施例所提供的滤波器的一种实施例侧视结构示意图,图2为本发明实施例所提供的滤波器的一种实施例俯视结构示意图。
所述滤波器包括腔体100和盖设在所述腔体100上的盖板101。
所述腔体100内部形成有N个谐振腔,所述N为大于1的正整数;
具体的,本实施例对所述谐振腔的具体数目不做限定,本实施例以所述谐振腔的数目为图1所示的10个为例进行示例性说明。
以图1和图2所示可知,本实施例所提供的滤波器包括依次排列设置的谐振腔12、谐振腔13、谐振腔14、谐振腔15、谐振腔16、谐振腔17、谐振腔18、谐振腔19、谐振腔20以及谐振腔21。
本实施例所提供的各所述谐振腔用于固定设置谐振器,可见,本实施例所示的所述谐 振腔的数目与所述谐振器的数目相等。
更具体的,位于所述腔体100内的N个相同频率的所述谐振器耦合级联得到所述滤波器。
本实施例所示的谐振器有两种结构,即第一目标谐振器和第二目标谐振器,所述第一目标谐振器为位于所述滤波器两端的谐振器,以图1所示为例,所述第一目标谐振器位于所述谐振腔12和所述谐振腔21内部。
所述第二目标谐振器为位于所述滤波器两端之间的谐振器,以图1所示为例,所述第二目标谐振器位于谐振腔13、谐振腔14、谐振腔15、谐振腔16、谐振腔17、谐振腔18、谐振腔19以及谐振腔20内部。
本实施例所示的所有所述第二目标谐振器的结构相同。
以下结合图3、图4和图5所示对所述谐振腔的具体结构进行说明,其中,图3为本发明实施例所提供的谐振腔的一种实施例侧视结构示意图,图4为本发明实施例所提供的谐振腔的一种实施例俯视结构示意图,图5为本发明实施例所提供的滤波器的一种实施例局部侧视结构示意图。
具体的,图3所示的为所述第二目标谐振器的侧视结构示意图,图4所示的为所述第二目标谐振器的俯视结构示意图,图5为相邻的两个谐振腔之间的耦合结构侧视结构示意图。
所述谐振器为呈螺旋形结构的金属螺旋线1。
具体的,所述金属螺旋线1缠绕成螺旋结构,以使所述金属螺旋线1类似于一个四分之一波长的同轴线谐振器。两者不同之处在于,所述金属螺旋线1是螺旋管形的,而同轴线谐振器的内导体是直的。对于工作在同一频率上的金属螺旋线1和同轴线谐振器相比,金属螺旋线1的体积可做得比同轴线谐振器小得多,且能保持较高的无载Q值,非常有利于滤波器的小型化,从而使得在系统设计更为紧凑。
采用螺旋形结构的所述金属螺旋线1相速由于螺旋内导体的作用降低(慢波结构)。这种现象是由于电磁波依次沿金属螺旋线1方向以光速前进,而金属螺旋线1的轴线方向上的速度则降低了。因此,与金属螺旋线1的本身长度相比,绕制金属螺旋线1的导线越长,则圈数N越多,沿金属螺旋线1的轴线方向上传播的速度降低的也就越多。相速的降低等效于波长缩短,故采用具有金属螺旋线1的四分之一波长短路与同轴线作谐振器相比,所述金属螺旋线1的长度可以大大缩短。
所述金属螺旋线1的一端12与所述谐振腔底部连接以接地,所述金属螺旋线1的另一端13配置为开路。
所述谐振器还包括腔体调谐螺钉2。
具体的,所述腔体调谐螺钉2进行谐振器的谐振频率的调整。
具体的,所述盖板101沿朝向所述谐振腔的方向延伸设置有所述N个腔体调谐螺钉2,各所述腔体调谐螺钉2分别与各所述金属螺旋线1的开路端相对设置。
具体的,本实施例所示的所述腔体调谐螺钉2与所述金属螺旋线1相互之间互不接触。
更具体的,本实施例所示的所述腔体调谐螺钉2与所述金属螺旋线1所形成的中空腔 体相对。
以图4所示为例,本实施例所示的第一谐振腔41和第二谐振腔42之间设置有金属挡板43,具体的,所述第一谐振腔41和所述第二谐振腔42为所述滤波器所包括的所述N个谐振腔中任意相邻的两个。
位于所述第一谐振腔41内的所述金属螺旋线1的缠绕方向与位于所述第二谐振腔42内的所述金属螺旋线1的缠绕方向不同。
可见,因位于所述第一谐振腔41内的所述金属螺旋线1的缠绕方向与位于所述第二谐振腔42内的所述金属螺旋线1的缠绕方向不同,则使得本实施例所示的滤波器采用的是反对称的耦合结构,能够极大的提高谐振腔之间的耦合系数,从而实现宽带滤波器的设计。
进一步如图2所示,所述腔体100的两端设置有输入输出端口102。
如图1和图2所示,位于所述腔体100两端的所述谐振腔12以及谐振腔21内的所述金属螺旋线1配置有输入输出抽头103。
具体的,所述输入输出抽头103同所述输入输出端口102相连接,以实现信号的输入输出。
可见,本实施例所示的第一目标谐振器和所述第二目标谐振器结构不同的位置为所述第一目标谐振器设置有所述输入输出抽头103。
具体的,本实施例可通过调节所述输入输出抽头103的位置以达到调节滤波器的外部Q值的目的。
可选的,采用本实施例所示的所述谐振器的中心频率与所述腔体调谐螺钉2的长度、和/或所述谐振腔的高度3、和/或所述金属螺旋线1的长度4、和/或所述金属螺旋线1的螺距5、和/或所述金属螺旋线1的离地高度6、和/或所述金属螺旋线1的线圈直径8、和/或所述谐振腔的直径9相关。
具体的,采用本实施例所示的滤波器的结构,当需要调节所述谐振器的中心频率时,可调节所述腔体调谐螺钉2的长度、和/或所述谐振腔的高度3、和/或所述金属螺旋线1的长度4、和/或所述金属螺旋线1的螺距5、和/或所述金属螺旋线1的离地高度6、和/或所述金属螺旋线1的线圈直径8、和/或所述谐振腔的直径9。
可选的,所述第一谐振腔41和所述第二谐振腔42之间的耦合系数大小与所述第一谐振腔41和所述第二谐振腔42之间的距离10,和/或位于所述第一谐振腔41和所述第二谐振腔42之间的所述金属挡板43的高度6,和/或所述腔体调谐螺钉2的长度相关。
具体的,如图5所示,本实施例所示的所述第一谐振腔41和所述第二谐振腔42之间的距离10为位于所述第一谐振腔41内的所述腔体调谐螺钉2和位于所述第二谐振腔42内的所述腔体调谐螺钉2之间的距离10。
具体的,采用本实施例所示的滤波器的结构,当需要调节所述第一谐振腔41和所述第二谐振腔42之间的耦合系数大小时,可调节所述第一谐振腔41和所述第二谐振腔42之间的距离10,和/或位于所述第一谐振腔41和所述第二谐振腔42之间的所述金属挡板43的高度6,和/或所述腔体调谐螺钉2的长度。
以下例举一个具体应用场景对如何调节所述第一谐振腔41和所述第二谐振腔42之间 的耦合系数大小的进行说明,例如,可首先确定所述第一谐振腔41和所述第二谐振腔42之间的距离10,然后即可通过调节位于所述第一谐振腔41和所述第二谐振腔42之间的所述金属挡板43的高度6来调节耦合系数大小。
因本实施例所示的滤波器采用的是反对称结构,以使本实施例所示的滤波器的耦合系数比对称结构的耦合系数要大得多,有利于宽带滤波器的设计。
可选的,所述输入输出抽头103的抽头位置与所述滤波器外部品质因数Q值,和/或所述输入输出端口的耦合方式相关。
以下具一个具体应用场景对如何确定所述输入输出抽头103的抽头位置进行说明,首先确定所述滤波器的外部品质因数Q值,再根据所述滤波器的外部品质因数Q值计算单个所述谐振腔的群时延,再根据所述单个所述谐振腔的群时延仿真结果确定输入输出抽头103的抽头在所述金属螺旋线1上的位置。
可选的,所述谐振腔的内腔壁和/或所述金属螺旋线1的外周壁设置有导电金属镀层。
具体的,本实施例对所述导电金属不做限定,本实施例以所述导电金属为银为例,即本实施例可在所述谐振腔的内腔壁和/或所述金属螺旋线1的外周壁进行镀银处理,以使所述谐振腔的内腔壁和/或所述金属螺旋线1的外周壁设置有镀银层。
因本实施例所示的所述谐振腔的内腔壁和/或所述金属螺旋线1的外周壁设置有导电金属镀层,则有效的提高了谐振器的品质因数。
可选的,所述盖板101设置有N个第一固定孔,所述N个谐振腔的腔体底部设置有N个第二固定孔。
本实施例以所述N为10进行示例性说明。
具体的,所述N个第一固定孔以及所述N个第二固定孔分别与所述N个谐振腔对应,所述第一固定孔用于固定设置所述腔体调谐螺钉2,所述第二固定孔用于固定所述金属螺旋线1。
更具体的,所述第一固定孔的内周面设置有第一螺纹段,所述第一螺纹段用于螺纹连接所述腔体调谐螺钉2;所述第二固定孔的内周面设置有第二螺纹段,所述第二螺纹段用于螺纹连接设置在所述金属螺旋线1的端部。
可见,采用本实施例所示的滤波器的结构能够有效的降低加工难度,从而有效的提升了加工所述滤波器的效率。
具体的,如图4所示,本实施例所示的所述腔体调谐螺钉2的直径7需设置在预设范围内,所述腔体调谐螺钉2的直径7若小于所述预设范围,会对调节过程产生影响,太细的腔体调谐螺钉2调节时频率变化不敏感,调节范围小。
所述腔体调谐螺钉2的直径7若大于所述预设范围,则过粗的腔体调谐螺钉2又会过于敏感。
具体的,可在出厂时由制造商根据需要将所述腔体调谐螺钉2的直径7设置在所述预设范围内,本实施例对所述预设范围不作限定,只要所述腔体调谐螺钉2的直径7位于所述预设范围内能够有效的调节滤波器的频率即可。
本实施例这里给出一个频段在UHF的滤波器结果,采用了Ansoft公司的HFSS三维电 磁仿真软件对本发明进行了仿真。本实施例以滤波器的尺寸为170mm×50mm×30mm谐振腔、金属螺旋线1以及腔体调谐螺钉2材料采用黄铜,并且金属螺旋线1及谐振腔内表面进行镀银处理为例进行说明。
图6是应用于UHF频段的滤波器的S参数仿真结果图。从图6中可以看到0.690-0.803GHz频段有较好的通带特性,并且带外抑制度高,能够满足工程要求。
具体的,图6所示的纵坐标表示的S参数对应的分贝值。S参数也就是散射参数。S21为输入端口到输出端口的传输系数,S11为输入端口的反射系数。
因在射频前端模块的设计中一般是由通过射频开关与滤波器的组合完成分频、通道切换、收发切换等功能。所以,在射频前端模块中设计好滤波器,在满足性能指标的情况下,是使得体积进一步减小的关键之一,可见,采用本实施例所示的滤波器能够在保证性能指标的前提下,减少滤波器的体积,从而使得本实施例所示的滤波器能够较好的应用至移动通信。
本发明实施例还提供了一种双工器,所述双工器的具体结构请参见图7和图8所示,其中,图7为本发明实施例所提供的双工器的一种实施例侧视结构示意图,图8为本发明实施例所提供的双工器的一种实施例俯视结构示意图。
本实施例所示的双工器包括至少一个接收滤波器和至少一个发射滤波器。
本实施例以图8所示为例,本实施例所示的双工器包括一个所述接收滤波器801和一个所述发射滤波器802。
所述接收滤波器801以及所述发射滤波器802的结构如上述实施例所示的滤波器的结构,具体结构在本实施例中不做赘述。
所述接收滤波器801的接收端口与天线端子连接,所述发射滤波器802的发射端口与天线端子连接。
可选的,所述双工器的公共输入端口803通过金属线804与位于所述接收滤波器801端部的谐振腔12连接,所述双工器的公共输入端口803还通过所述金属线804与位于所述发射滤波器802端部的谐振腔12连接。
可选的,所述接收滤波器801和所述发射滤波器802之间的耦合系数与位于所述接收滤波器801和/或所述发射滤波器802内的所述金属挡板43,和/或位于所述接收滤波器801和/或所述发射滤波器802内的所述腔体调谐螺钉的长度相关。
具体的,采用本实施例所示的双工器的结构,在对所述双工器进行匹配的过程中,可通过调节所述公共输入端口803的位置,和/或所述金属线804的长度,和/或所述输入输出抽头103在所述金属螺旋线1上的位置来调节两个滤波器的外部Q值,从而使两滤波器匹配。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组 件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (12)

  1. 一种滤波器,其特征在于,包括腔体和盖设在所述腔体上的盖板,所述腔体内部形成有N个谐振腔,所述谐振腔用于固定设置谐振器,所述N为大于1的正整数;
    所述谐振器包括呈螺旋形结构的金属螺旋线,所述金属螺旋线的一端与所述谐振腔底部连接以接地,所述金属螺旋线的另一端配置为开路;
    所述谐振器还包括腔体调谐螺钉,各所述腔体调谐螺钉分别与各所述金属螺旋线的开路端相对设置;
    第一谐振腔和第二谐振腔之间设置有金属挡板,所述第一谐振腔和所述第二谐振腔为所述滤波器所包括的所述N个谐振腔中任意相邻的两个,且位于所述第一谐振腔内的所述金属螺旋线的缠绕方向与位于所述第二谐振腔内的所述金属螺旋线的缠绕方向不同。
  2. 根据权利要求1所述的滤波器,其特征在于,所述腔体的两端设置有输入输出端口,位于所述腔体两端的所述谐振腔内的所述金属螺旋线配置有输入输出抽头,所述输入输出抽头同所述输入输出端口相连接,以实现信号的输入输出。
  3. 根据权利要求1或2所述的滤波器,其特征在于,所述谐振器的中心频率与所述腔体调谐螺钉的长度、和/或所述谐振腔的高度、和/或所述金属螺旋线的长度、和/或所述金属螺旋线的螺距、和/或所述金属螺旋线的离地高度、和/或所述金属螺旋线的线圈直径、和/或所述谐振腔的直径相关。
  4. 根据权利要求1或2所述的滤波器,其特征在于,所述第一谐振腔和所述第二谐振腔之间的耦合系数大小与所述第一谐振腔和所述第二谐振腔之间的距离,和/或位于所述第一谐振腔和所述第二谐振腔之间的所述金属挡板的高度,和/或所述腔体调谐螺钉的长度相关。
  5. 根据权利要求4所述的滤波器,其特征在于,所述第一谐振腔和所述第二谐振腔之间的距离为位于所述第一谐振腔内的所述腔体调谐螺钉和位于所述第二谐振腔内的所述腔体调谐螺钉之间的距离。
  6. 根据权利要求2所述的滤波器,其特征在于,所述输入输出抽头的抽头位置与所述滤波器外部品质因数Q值,和/或所述输入输出端口的耦合方式相关。
  7. 根据权利要求1至6任一项所述的滤波器,其特征在于,所述谐振腔的内腔壁和/或所述金属螺旋线的外周壁设置有导电金属镀层。
  8. 根据权利要求1至7任一项所述的滤波器,其特征在于,所述盖板设置有N个第一固定孔,所述N个谐振腔的腔体底部设置有N个第二固定孔,所述N个第一固定孔以及所述N个第二固定孔分别与所述N个谐振腔对应,所述第一固定孔用于固定设置所述腔体调谐螺钉,所述第二固定孔用于固定所述金属螺旋线。
  9. 根据权利要求8所述的滤波器,其特征在于,所述第一固定孔的内周面设置有第一螺纹段,所述第一螺纹段用于螺纹连接所述腔体调谐螺钉;所述第二固定孔的内周面设置有第二螺纹段,所述第二螺纹段用于螺纹连接设置在所述金属螺旋线的端部。
  10. 一种双工器,其特征在于,包括至少一个接收滤波器和至少一个发射滤波器,所述接收滤波器以及所述发射滤波器的结构如权利要求1至8任一项所示,所述接收滤波器 的接收端口与天线端子连接,所述发射滤波器的发射端口与天线端子连接。
  11. 根据权利要求10所述的双工器,其特征在于,所述双工器的公共输入端口通过金属线与位于所述接收滤波器端部的谐振腔连接,所述双工器的公共输入端口还通过所述金属线与位于所述发射滤波器端部的谐振腔连接。
  12. 根据权利要求10或11所述的双工器,其特征在于,所述接收滤波器和所述发射滤波器之间的耦合系数与位于所述接收滤波器和/或所述发射滤波器内的所述金属挡板,和/或位于所述接收滤波器和/或所述发射滤波器内的所述腔体调谐螺钉的长度相关。
PCT/CN2017/087522 2016-06-08 2017-06-08 一种滤波器以及双工器 WO2017211310A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610403854.3 2016-06-08
CN201610403854.3A CN106025466A (zh) 2016-06-08 2016-06-08 一种滤波器以及双工器

Publications (2)

Publication Number Publication Date
WO2017211310A1 true WO2017211310A1 (zh) 2017-12-14
WO2017211310A9 WO2017211310A9 (zh) 2018-01-11

Family

ID=57090007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087522 WO2017211310A1 (zh) 2016-06-08 2017-06-08 一种滤波器以及双工器

Country Status (2)

Country Link
CN (1) CN106025466A (zh)
WO (1) WO2017211310A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106025466A (zh) * 2016-06-08 2016-10-12 上海华为技术有限公司 一种滤波器以及双工器
CN107528107A (zh) * 2017-01-19 2017-12-29 陕西索飞电子科技有限公司 一种跨数倍频程收发多工器
CN109509946B (zh) * 2018-12-05 2024-01-05 广东通宇通讯股份有限公司 一种安装螺钉连接式腔体滤波器
CN116799459B (zh) * 2023-08-29 2023-11-07 成都世源频控技术股份有限公司 一种变距变径式螺旋滤波器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2185955Y (zh) * 1993-09-25 1994-12-21 四川大学 超高频超小型螺旋滤波器
US5432489A (en) * 1992-03-09 1995-07-11 Lk-Products Oy Filter with strip lines
CN2717043Y (zh) * 2004-06-28 2005-08-10 熊猫电子集团有限公司 腔体螺旋滤波器
CN104934669A (zh) * 2015-06-15 2015-09-23 华南理工大学 一种带宽可控的双频螺旋腔滤波器
CN105428764A (zh) * 2015-12-10 2016-03-23 西安市索飞微波技术有限公司 一种宽带大功率螺旋滤波器
CN106025466A (zh) * 2016-06-08 2016-10-12 上海华为技术有限公司 一种滤波器以及双工器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101252215A (zh) * 2008-03-06 2008-08-27 上海交通大学 带有螺旋刻槽结构内导体的微波谐振腔
CN201204243Y (zh) * 2008-06-18 2009-03-04 中国航天科技集团公司第五研究院第五〇四研究所 双带通螺旋滤波器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432489A (en) * 1992-03-09 1995-07-11 Lk-Products Oy Filter with strip lines
CN2185955Y (zh) * 1993-09-25 1994-12-21 四川大学 超高频超小型螺旋滤波器
CN2717043Y (zh) * 2004-06-28 2005-08-10 熊猫电子集团有限公司 腔体螺旋滤波器
CN104934669A (zh) * 2015-06-15 2015-09-23 华南理工大学 一种带宽可控的双频螺旋腔滤波器
CN105428764A (zh) * 2015-12-10 2016-03-23 西安市索飞微波技术有限公司 一种宽带大功率螺旋滤波器
CN106025466A (zh) * 2016-06-08 2016-10-12 上海华为技术有限公司 一种滤波器以及双工器

Also Published As

Publication number Publication date
CN106025466A (zh) 2016-10-12
WO2017211310A9 (zh) 2018-01-11

Similar Documents

Publication Publication Date Title
WO2017211310A9 (zh) 一种滤波器以及双工器
Chen et al. Compact dual-band bandpass filter with controllable bandwidths using stub-loaded multiple-mode resonator
Sekar et al. A novel compact dual-band half-mode substrate integrated waveguide bandpass filter
Chen et al. An evanescent-mode tunable dual-band filter with independently-controlled center frequencies
Chu et al. Dual-band helical filters based on nonuniform pitch helical resonators
US9007150B2 (en) TM mode RF filter having dielectric rod resonators with cylindrical parts of different diameter
Kumar et al. Design of improved quadruple-mode bandpass filter using cavity resonator for 5G mid-band applications
JP2821567B2 (ja) 高周波信号伝送装置
CN111403861B (zh) 一种uir加载的三阶双通带基片集成波导滤波器
CN110729538B (zh) 一种具有可重构陷波带的小型化超宽带带通滤波器
US10673111B2 (en) Filtering unit and filter
CN105789791A (zh) 一种大范围频带可调的腔体滤波器
CN103151582A (zh) 一种小型化大双频比宽带微波微带带通滤波器
US4284966A (en) Wide bandwidth helical resonator filter
US8729980B2 (en) Band-pass filter based on CRLH resonator and duplexer using the same
Martínez et al. Compact SIW filter with asymmetric frequency response for C-band wireless applications
CN210326063U (zh) 双模介质带条谐振器及包含所述谐振器的差分双通带滤波器
CN110416670B (zh) 具有小型化双模带通滤波器及其组成的多阶带通滤波器
US5105174A (en) Wave-guide band rejection filter having a short circuited coaxial tuning screw
KR101468409B1 (ko) 홈이 파인 도체판을 포함하는 이중 모드 공진기 및 이를 이용한 필터
US9166266B1 (en) Compact stripline and air-cavity based radio frequency filter
TW201639228A (zh) 一種微小化雙頻雙工器
Neethu et al. Microstrip bandpass filter using fractal based hexagonal loop resonator
Dad et al. Novel high Q coaxial resonator filter for millimeter wave application
CN211238454U (zh) 一种uir加载的三阶双通带基片集成波导滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17809749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17809749

Country of ref document: EP

Kind code of ref document: A1