WO2017210845A1 - 上行参考信号发送与接收方法及装置 - Google Patents

上行参考信号发送与接收方法及装置 Download PDF

Info

Publication number
WO2017210845A1
WO2017210845A1 PCT/CN2016/085003 CN2016085003W WO2017210845A1 WO 2017210845 A1 WO2017210845 A1 WO 2017210845A1 CN 2016085003 W CN2016085003 W CN 2016085003W WO 2017210845 A1 WO2017210845 A1 WO 2017210845A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
base station
signal resource
uplink
uplink reference
Prior art date
Application number
PCT/CN2016/085003
Other languages
English (en)
French (fr)
Inventor
张永平
李强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680086000.5A priority Critical patent/CN109196901B/zh
Priority to PCT/CN2016/085003 priority patent/WO2017210845A1/zh
Publication of WO2017210845A1 publication Critical patent/WO2017210845A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and an apparatus for transmitting and receiving an uplink reference signal.
  • the uplink reference signal is a set of user equipment (User Equipment, hereinafter referred to as UE) and a signal predicted by the base station.
  • UE User Equipment
  • the base station performs channel estimation according to the uplink reference signal sent by the UE to obtain the corresponding uplink channel quality, and performs uplink scheduling according to the uplink channel quality.
  • the upstream reference signal is extremely important for high frequency communication systems.
  • the uplink reference signal is called a Sounding Reference Signal (SRS), and the resource for transmitting the SRS is in the time domain on the last symbol of each subframe.
  • a subframe consists of 14 symbols or 12 symbols.
  • SRS Sounding Reference Signal
  • periodic transmission the UE uses the last symbol of the subframe every other fixed time interval (such as 2 milliseconds, that is, 2 subframes), and transmits the SRS in the frequency band notified by the base station through downlink signaling.
  • the base station sends the resource configuration for SRS transmission to all UEs through high-layer signaling, and the resources used for aperiodic SRS transmission are also on the last symbol of the subframe, and the base station passes downlink physical layer signaling.
  • the dynamic aperiodic triggering UE sends an SRS on the configured resource.
  • the UE receives the first trigger signaling, it sends an SRS signal on the last resource that can be used to send the SRS.
  • the corresponding frequency band will only be scanned once, whether it is periodic transmission or non-periodic transmission.
  • the existing SRS signal transmission method and the beamforming method are extremely sensitive to the rotation and displacement of the UE, and it is easy to cause the base station to receive the SRS failure.
  • the embodiment of the invention provides a method and a device for transmitting and receiving an uplink reference signal to optimize the problem of transmitting and receiving an uplink reference signal.
  • an embodiment of the present invention provides an uplink reference signal sending method, including:
  • the UE receives the first trigger signaling sent by the base station, where the first trigger signaling is used to instruct the UE to send multiple uplink reference signals, and the UE sends multiple uplink reference signals on the reference signal resources configured by the base station, and the reference signal resource is N symbols. , N is greater than or equal to 1.
  • the base station receives the uplink reference signal sent by the UE on the corresponding reference signal resource, so that the receiving rate of the uplink reference signal can be improved, and the uplink reference signal of the multi-beam triggering multi-beam can be transmitted, and the robustness of the uplink measurement process is improved.
  • the method further includes:
  • the UE Receiving, by the UE, an index value of a symbol of the first uplink reference signal sent by the base station, determining a first beam direction according to the index value, and continuing to send the next uplink reference signal by using the first beam direction, where the first uplink reference signal is a receiving quality received by the base station
  • the optimal uplink reference signal; or the UE receives the second trigger signaling sent by the base station, where the second trigger signaling is used to indicate that the UE continues to send multiple uplink reference signals. Therefore, it can be ensured that the base station can always receive the uplink reference signal with a higher signal to noise ratio in a subsequent period of time, so that the uplink channel can be better measured.
  • the method further includes:
  • the UE receives the reference signal resource configured by the base station.
  • the reference signal resource includes at least one of a symbol number N and a transmission bandwidth of the reference signal, a frequency domain start frequency, a comb region, and a time domain period of the subframe position occupied by the reference signal resource.
  • the reference signal resources in different periods occupy the same subframe position.
  • the first trigger signaling further includes indicating the number M of the uplink reference signals sent by the UE, and the M is greater than or equal to 1.
  • the first trigger signaling includes a reference signal resource configured by the base station, and the reference signal resource includes at least the symbol number N.
  • the reference signal resource further includes a transmission bandwidth of the reference signal, a frequency domain start frequency, a bandwidth of the frequency sweep, a comb region, and a time domain period of the subframe position occupied by the reference signal resource. at least one.
  • the first trigger signaling further includes:
  • Information bits are used to indicate the number N of symbols of the reference signal resource, the number of subframes in which the reference signal resource is distributed, and the symbol position in the subframe in which the reference signal resource is distributed.
  • it also includes:
  • the UE receives a notification message broadcast by the base station that prohibits transmitting uplink data on the reference signal resource. Signal interference can be avoided.
  • an uplink reference signal receiving method including:
  • the base station sends the first trigger signaling to the UE, so that after receiving the first trigger signaling, the UE sends multiple uplink reference signals on the reference signal resources configured by the base station, and the base station receives the uplink reference sent by the UE on the corresponding reference signal resource.
  • the signal and reference signal resources are N symbols, and N is greater than or equal to 1. Therefore, the receiving rate of the uplink reference signal can be improved, and the uplink reference signal of the multi-beam triggering multi-beam can be transmitted, and the robustness of the uplink measurement process is improved.
  • the method further includes:
  • the base station determines the first uplink reference signal, where the first uplink reference signal is an uplink reference signal with the best reception quality among all the uplink reference signals received by the base station, and the base station sends the index value of the symbol of the first uplink reference signal to the UE, so that The UE determines the first beam direction according to the index value, and continues to send the next uplink reference signal by using the first beam direction; or the base station sends the second trigger signaling to the UE, so that the UE continues to send the second trigger signaling after receiving the second trigger signaling.
  • Uplink reference signals Therefore, it can be ensured that the base station can always receive the uplink reference signal with a higher signal to noise ratio in a subsequent period of time, so that the uplink channel can be better measured.
  • the method further includes:
  • the base station transmits a reference signal resource to the UE.
  • the reference signal resource includes at least one of a symbol number N and a transmission bandwidth of the reference signal, a frequency domain start frequency, a comb region, and a time domain period of the subframe position occupied by the reference signal resource.
  • the reference signal resources occupy the same sub-frame position.
  • the first trigger signaling further includes instructing the UE to send an uplink reference signal.
  • the number M, M is greater than or equal to 1.
  • the base station does not schedule all UEs served by the base station to send uplink data on the configured reference signal resources, which can avoid signal interference.
  • the first trigger signaling includes a reference signal resource configured by the base station, and the reference signal resource includes at least the symbol number N.
  • the reference signal resource further includes at least one of a transmission bandwidth of the reference signal, a frequency domain start frequency, a frequency of the frequency sweep, a combo, and a time domain period of the subframe position occupied by the reference signal resource.
  • the first trigger signaling includes:
  • Information bits are used to indicate the number N of symbols of the reference signal resource, the number of subframes in which the reference signal resource is distributed, and the symbol position in the subframe in which the reference signal resource is distributed.
  • it also includes:
  • the base station broadcasts to all UEs serving the base station a notification message prohibiting transmission of uplink data on the reference signal resource. Signal interference can be avoided.
  • an embodiment of the present invention provides a user equipment, including:
  • the receiving module is configured to receive the first trigger signaling sent by the base station, where the first trigger signaling is used to instruct the UE to send multiple uplink reference signals, and the sending module is configured to send multiple uplink reference signals on the reference signal resources configured by the base station.
  • the reference signal resource is N symbols, and N is greater than or equal to 1. Therefore, the receiving rate of the uplink reference signal can be improved, and the uplink reference signal of the multi-beam triggering multi-beam can be transmitted, and the robustness of the uplink measurement process is improved.
  • the receiving module is further configured to receive an index value of a symbol of the first uplink reference signal sent by the base station, and determine the first according to the index value.
  • the transmitting module is further configured to continue to send the next uplink reference signal by using the first beam direction, where the first uplink reference signal is an uplink reference signal that is received by the base station, and the receiving module is further configured to send the base station to send
  • the second trigger signaling is used to indicate that the UE continues to send multiple uplink reference signals. Therefore, it can be ensured that the base station can always receive the uplink reference signal with a higher signal to noise ratio in a subsequent period of time, so that the uplink channel can be better measured.
  • the receiving module is also used to:
  • the reference signal resource includes at least one of a symbol number N and a transmission bandwidth of the reference signal, a frequency domain start frequency, a comb region, and a time domain period of the subframe position occupied by the reference signal resource.
  • the reference signal resources in different periods occupy the same subframe position.
  • the first trigger signaling further includes indicating the number M of the uplink reference signals sent by the UE, and the M is greater than or equal to 1.
  • the first trigger signaling includes a reference signal resource configured by the base station, and the reference signal resource includes at least the symbol number N.
  • the reference signal resource further includes at least one of a transmission bandwidth of the reference signal, a frequency domain start frequency, a frequency of the frequency sweep, a combo, and a time domain period of the subframe position occupied by the reference signal resource.
  • the first trigger signaling further includes:
  • Information bits are used to indicate the number N of symbols of the reference signal resource, the number of subframes in which the reference signal resource is distributed, and the symbol position in the subframe in which the reference signal resource is distributed.
  • the receiving module is also used to:
  • Receiving a notification message broadcast by the base station that prohibits transmitting uplink data on the reference signal resource can avoid signal interference.
  • an embodiment of the present invention provides a base station, including:
  • a sending module configured to send the first trigger signaling to the UE, to enable the UE to send multiple uplink reference signals on the reference signal resources configured by the base station after receiving the first trigger signaling, and the receiving module is configured to use the corresponding reference signal
  • the uplink reference signal sent by the UE is received on the resource, and the reference signal resource is N symbols, and N is greater than or equal to 1. Therefore, the receiving rate of the uplink reference signal can be improved, and the uplink reference signal of the multi-beam triggering multi-beam can be transmitted, and the robustness of the uplink measurement process is improved.
  • the method further includes:
  • a processing module configured to determine a first uplink reference signal, where the first uplink reference signal is an uplink reference signal with the best reception quality among all uplink reference signals received by the base station, and the sending module is further used by Sending, to the UE, an index value of a symbol where the first uplink reference signal is located, so that the UE determines the first beam direction according to the index value, and continues to send the next uplink reference signal by using the first beam direction; or sends the second trigger signaling to the UE. So that the UE continues to send multiple uplink reference signals after receiving the second trigger signaling. Therefore, it can be ensured that the base station can always receive the uplink reference signal with a higher signal to noise ratio in a subsequent period of time, so that the uplink channel can be better measured.
  • the sending module is further configured to:
  • a reference signal resource is sent to the UE.
  • the reference signal resource includes at least one of a symbol number N and a transmission bandwidth of the reference signal, a frequency domain start frequency, a comb region, and a time domain period of the subframe position occupied by the reference signal resource.
  • the reference signal resources occupy the same sub-frame position.
  • the first trigger signaling further includes indicating the number M of the uplink reference signals sent by the UE, and the M is greater than or equal to 1.
  • the base station does not schedule all UEs served by the base station to send uplink data on the configured reference signal resources, which can avoid signal interference.
  • the first trigger signaling includes a reference signal resource configured by the base station, and the reference signal resource includes at least the symbol number N.
  • the reference signal resource further includes at least one of a transmission bandwidth of the reference signal, a frequency domain start frequency, a frequency of the frequency sweep, a combo, and a time domain period of the subframe position occupied by the reference signal resource.
  • the first trigger signaling includes:
  • Information bits are used to indicate the number N of symbols of the reference signal resource, the number of subframes in which the reference signal resource is distributed, and the symbol position in the subframe in which the reference signal resource is distributed.
  • the sending module is also used to:
  • All UEs serving the base station broadcast a notification message that prohibits transmitting uplink data on the reference signal resource, and signal interference can be avoided.
  • an embodiment of the present invention provides a user equipment, including:
  • a receiver configured to receive first trigger signaling sent by the base station, where the first trigger signaling is used to indicate the UE And sending, by the transmitter, a plurality of uplink reference signals, where the reference signal resource is N symbols, and N is greater than or equal to 1. Therefore, the receiving rate of the uplink reference signal can be improved, and the uplink reference signal of the multi-beam triggering multi-beam can be transmitted, and the robustness of the uplink measurement process is improved.
  • the receiver is further configured to receive an index value of a symbol of the first uplink reference signal sent by the base station, and determine the first according to the index value.
  • the transmitter is further configured to continue to transmit the next uplink reference signal by using the first beam direction, where the first uplink reference signal is the uplink quality reference signal received by the base station; or the receiver is further configured to send the base station to send
  • the second trigger signaling is used to indicate that the UE continues to send multiple uplink reference signals. Therefore, it can be ensured that the base station can always receive the uplink reference signal with a higher signal to noise ratio in a subsequent period of time, so that the uplink channel can be better measured.
  • the receiver is further configured to:
  • the reference signal resource includes at least one of a symbol number N and a transmission bandwidth of the reference signal, a frequency domain start frequency, a comb region, and a time domain period of the subframe position occupied by the reference signal resource.
  • the reference signal resources in different periods occupy the same subframe position.
  • the first trigger signaling further includes indicating the number M of the uplink reference signals sent by the UE, and the M is greater than or equal to 1.
  • the first trigger signaling includes a reference signal resource configured by the base station, and the reference signal resource includes at least the symbol number N.
  • the reference signal resource further includes at least one of a transmission bandwidth of the reference signal, a frequency domain start frequency, a frequency of the frequency sweep, a combo, and a time domain period of the subframe position occupied by the reference signal resource.
  • the first trigger signaling further includes:
  • Information bits are used to indicate the number N of symbols of the reference signal resource, the number of subframes in which the reference signal resource is distributed, and the symbol position in the subframe in which the reference signal resource is distributed.
  • the receiver is also used to:
  • Receiving a notification message broadcast by the base station that prohibits transmitting uplink data on the reference signal resource can avoid signal interference.
  • an embodiment of the present invention provides a base station, including:
  • a transmitter configured to send first trigger signaling to the UE, to enable the UE to send multiple uplink reference signals on the reference signal resource configured by the base station after receiving the first trigger signaling, and the receiver is configured to use the corresponding reference signal
  • the uplink reference signal sent by the UE is received on the resource, and the reference signal resource is N symbols, and N is greater than or equal to 1. Therefore, the receiving rate of the uplink reference signal can be improved, and the uplink reference signal of the multi-beam triggering multi-beam can be transmitted, and the robustness of the uplink measurement process is improved.
  • the method further includes:
  • the processor is configured to determine a first uplink reference signal, where the first uplink reference signal is an uplink reference signal with the best reception quality among all the uplink reference signals received by the base station, and the transmitter is further configured to send the first uplink reference signal to the UE.
  • An index value of the symbol so that the UE determines the first beam direction according to the index value, and continues to send the next uplink reference signal by using the first beam direction; or sends the second trigger signaling to the UE, so that the UE receives the second After the signaling is triggered, multiple uplink reference signals are continuously transmitted. Therefore, it can be ensured that the base station can always receive the uplink reference signal with a higher signal to noise ratio in a subsequent period of time, so that the uplink channel can be better measured.
  • the transmitter is further configured to:
  • a reference signal resource is sent to the UE.
  • the reference signal resource includes at least one of a symbol number N and a transmission bandwidth of the reference signal, a frequency domain start frequency, a comb region, and a time domain period of the subframe position occupied by the reference signal resource.
  • the reference signal resources occupy the same sub-frame position.
  • the first trigger signaling further includes indicating the number M of the uplink reference signals sent by the UE, and the M is greater than or equal to 1.
  • the base station does not schedule all UEs served by the base station to send uplink data on the configured reference signal resources, which can avoid signal interference.
  • the first trigger signaling includes a reference signal resource configured by the base station, and the reference signal resource includes at least the number N of symbols.
  • the reference signal resource further includes at least one of a transmission bandwidth of the reference signal, a frequency domain start frequency, a frequency of the frequency sweep, a combo, and a time domain period of the subframe position occupied by the reference signal resource.
  • the first trigger signaling includes:
  • Information bits are used to indicate the number N of symbols of the reference signal resource, the number of subframes in which the reference signal resource is distributed, and the symbol position in the subframe in which the reference signal resource is distributed.
  • the transmitter is also used to:
  • All UEs serving the base station broadcast a notification message that prohibits transmitting uplink data on the reference signal resource, and signal interference can be avoided.
  • the uplink reference signal transmitting and receiving method and device provided by the embodiment of the present invention, the base station sends the trigger signaling to the UE, and the UE sends multiple uplink reference signals on the reference signal resources configured by the base station according to the received trigger signaling, and the base station is configured.
  • the reference signal resource is N symbols, and N is greater than or equal to 1.
  • the base station receives the uplink reference signal sent by the UE on the corresponding reference signal resource, thereby improving the receiving rate of the uplink reference signal, and implementing the aperiodic triggering of the multi-beam uplink.
  • the transmission of the reference signal improves the robustness of the uplink measurement process.
  • Embodiment 1 is a schematic flowchart of Embodiment 1 of an uplink reference signal transmitting and receiving method according to the present invention
  • Embodiment 2 is a schematic diagram of an interaction process of Embodiment 2 of an uplink reference signal sending method according to the present invention
  • Embodiment 3 is a schematic diagram showing the same number of symbols of reference signal resources in different time domain periods in Embodiment 2 of the method for transmitting an uplink reference signal according to the present invention
  • Embodiment 4 is a schematic diagram showing different numbers of symbols of reference signal resources in different time domain periods in Embodiment 2 of the method for transmitting an uplink reference signal according to the present invention
  • 5 is a schematic diagram of distribution of reference signal resources
  • FIG. 6 is a schematic diagram of an interaction process of Embodiment 3 of an uplink reference signal sending method according to the present invention.
  • FIG. 7 is a schematic diagram of a process of triggering, transmitting, and beam direction updating of a multi-beam uplink reference signal in Embodiment 3 of an uplink reference signal transmission method according to the present invention
  • FIG. 8 is a schematic structural diagram of Embodiment 1 of a UE according to the present invention.
  • Embodiment 9 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
  • Embodiment 2 of a base station according to the present invention is a schematic structural diagram of Embodiment 2 of a base station according to the present invention.
  • FIG. 11 is a schematic structural diagram of Embodiment 2 of a UE according to the present invention.
  • Embodiment 3 of a base station according to the present invention is a schematic structural diagram of Embodiment 3 of a base station according to the present invention.
  • FIG. 13 is a schematic structural diagram of Embodiment 4 of a base station according to the present invention.
  • the technical solution of the embodiment of the present invention can be applied to various communication systems of a wireless cellular network, for example, a Global System of Mobile communication (GSM) system, Code Division Multiple Access (CDMA). System, Wideband Code Division Multiple Access Wireless (WCDMA) system, General Packet Radio Service (GPRS) system, LTE system, Universal Mobile Telecommunications System (Universal Mobile Telecommunications System, referred to as: UMTS) and the like, the embodiment of the present invention is not limited.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • Universal Mobile Telecommunications System Universal Mobile Telecommunications System
  • UMTS Universal Mobile Telecommunications System
  • the technical solution of the embodiment of the present invention is mainly applied to a high-frequency communication system.
  • the network element involved is a base station (also referred to as an access network device) and a UE, and mainly involves multiple configurations. Antenna transmitter and receiver.
  • the beamforming method is adopted to ensure that the base station can receive the uplink reference signal with a high signal-to-noise ratio. If the existing SRS signal transmission mode is used, the base station may fail to receive the SRS.
  • High frequency signals are subject to severe transmission losses during transmission. This will cause the base station to receive a SRS with a low signal-to-noise ratio, even lower than the receiver threshold, causing reception failure.
  • a large number of antennas are often configured at both ends of the transceiver, and power gain is obtained by beamforming at both ends of the transceiver to combat transmission loss.
  • the UE in order to ensure that the base station can receive the uplink reference signal with a high signal-to-noise ratio, the UE also uses beamforming to concentrate the reference signal on a beam with a small width to increase the signal energy density. Therefore, in order to improve the SRS receiving performance, the most direct method is: the UE uses the beamforming method to concentrate the SRS on a beam with a small width during the SRS transmission, but since the SRS can only measure the frequency band resources at a time. That is to say, only one SRS of the beam direction can be transmitted at a time, so when the UE rotates or a large displacement occurs, that is, the optimal beamforming direction of the SRS transmitted by the UE changes, the receiving performance of the SRS is weakened. Especially when the zero line direction is aligned with the base station after the rotation, the base station will not receive any SRS signal from the UE at all.
  • the method and device for transmitting and receiving an uplink reference signal are used to solve the above problem.
  • the trigger condition is, for example, that the base station does not receive the uplink reference signal sent by the UE on the specific resource, or the receiving quality of the uplink reference signal received by the base station is less than a preset threshold
  • the base station Sending trigger signaling to the UE, the UE sends multiple uplink reference signals on the reference signal resources configured by the base station according to the received trigger signaling, and the base station receives the uplink reference signal sent by the UE on the corresponding reference signal resource, thereby improving the uplink.
  • the receiving rate of the reference signal can be used to transmit the uplink reference signal of the multi-beam triggered multi-beam, and improve the robustness of the uplink measurement process.
  • Embodiment 1 is a schematic flowchart of Embodiment 1 of an uplink reference signal sending and receiving method according to the present invention. As shown in FIG. 1, the method includes:
  • the base station sends a first trigger signaling to the UE, where the first trigger signaling is used to instruct the UE to send uplink reference signals of different beam directions.
  • the base station sends the first trigger signaling to the UE when it is determined that the preset trigger condition is met.
  • the trigger condition is, for example, that the base station does not receive the uplink reference signal sent by the UE on the specific resource, where the specific resource may be the latest one.
  • the base station sends the first trigger signaling to the UE, and triggers the UE to send multiple uplink reference signals.
  • the first trigger signaling may be downlink signaling.
  • the multiple uplink reference signals sent by the UE may be the same beam direction, or may be different beam directions, or may be, for example, sending 5 uplink reference signals, 2 identical, and 3 other Similarly, when the UE transmits multiple uplink reference signals of different beam directions, the base station can more easily receive the uplink reference signal sent by the UE, and the receiving rate is higher.
  • the UE After receiving the first trigger signaling, the UE sends multiple uplink reference signals on the reference signal resources configured by the base station.
  • the reference signal resource configured by the base station is N symbols, and N is greater than or equal to 1.
  • the N symbols as reference signal resources may be consecutive N symbols in one subframe, or may be N symbols spaced within one subframe, or may be N symbols located in multiple subframes.
  • the number of uplink reference signals sent by the UE is less than or equal to N.
  • the base station receives multiple uplink reference signals sent by the UE on the corresponding reference signal resource.
  • the UE may further include: after the UE sends the multiple uplink reference signals on the reference signal resources configured by the base station in S102,
  • the base station determines the first uplink reference signal, where the first uplink reference signal is the uplink reference signal with the best reception quality among all the uplink reference signals received by the base station, and then the base station sends the index value of the symbol of the first uplink reference signal to the UE.
  • the UE determines the first beam direction according to the index value, and continues to transmit the next uplink reference signal using the first beam direction.
  • the base station determines an uplink reference signal in which the receiving quality is optimal, or may be an uplink reference signal with the highest received signal strength, and the receiving quality of the uplink reference signal is the most
  • the base station sends the index value of the symbol of the uplink reference signal to the UE, and the UE can obtain the beam direction on the symbol corresponding to the index value, and the base station has better receiving quality for the uplink reference signal in the beam direction.
  • the UE uses the optimal beam direction transmission when transmitting subsequent uplink data and uplink reference signals. Therefore, it can be ensured that the base station can always receive the uplink reference signal with a higher signal to noise ratio in a subsequent period of time, so that the uplink channel can be better measured.
  • the base station sends the second trigger signaling to the UE, and after receiving the second trigger signaling, the UE continues to send the multiple uplink reference signals. Specifically, after receiving the multiple uplink reference signals sent by the UE, the base station determines that the preset re-trigger condition is met according to the receiving quality of all the uplink reference signals, for example, the receiving quality of all the uplink reference signals is lower than the pre- After the threshold is set, the trigger signaling is sent to the UE, and the UE continues to send multiple uplink reference signals on the reference signal resource until the receiving quality of the largest uplink reference signal in all the uplink reference signals is greater than a preset threshold. Triggering this again is also applicable when multiple uplink reference signals are uplink reference signals of the same beam direction. of.
  • the base station configuration reference signal resource has two implementable manners, which are described in detail below.
  • the base station sends the reference signal resource to the UE before sending the first trigger signaling to the UE.
  • the base station may be configured to send, by using downlink signaling, a reference signal resource configured for the UE, where the reference signal resource includes a symbol number N and a reference signal transmission bandwidth, a frequency domain start frequency, a comb tooth, and a reference signal resource occupying a subframe position. At least one of the time domain periods.
  • the time domain period of the subframe position occupied by the reference signal resource refers to the period of the subframe position occupied by the reference signal resource, and the reference signal resource occupied by each period has the same subframe position, and the symbol of the reference signal resource in different periods
  • the number is the same or different, for example, the reference signal resource of each period is on the last N symbols of the subframe (this is the same case), and the period of the subframe position occupied by the reference signal resource configured by the base station to UE1 is 3,
  • the number of symbols of the reference signal resources in different periods is 3, that is, for UE1, the subframe occupied by the reference signal resource is the third subframe, the sixth subframe, the ninth subframe, etc. .
  • the first trigger signaling further includes a number M of uplink reference signals indicating that the UE sends different beam directions, and M is greater than or equal to 1. Of course, M is less than or equal to the number N of symbols of the reference signal resource.
  • the base station does not schedule all UEs served by the base station to send uplink data on the configured reference signal resources, so that signal interference can be avoided.
  • the base station sends the reference signal resource to the UE while transmitting the first trigger signaling to the UE, where the first trigger signaling includes the reference signal resource configured by the base station, and the reference signal resource. At least the number of symbols N is included.
  • the reference signal resource further includes at least one of a transmission bandwidth of the reference signal, a frequency domain start frequency, a frequency of the frequency sweep, a combo period, and a time domain period of the subframe position occupied by the reference signal resource.
  • the first trigger signaling may further include: an information bit, where the information bit is used to indicate the number N of symbols of the reference signal resource, the number of subframes of the reference signal resource distribution, and the symbol position in the subframe of the reference signal resource distribution. For example, whether the information is distributed in one subframe or distributed in multiple subframes, etc., all the above information may be numbered.
  • An example is given in the following table. In this example, the UE may transmit up to 8 uplink references in different directions. Signals, a coding table of 3-bit information is given in Table 1 below. Table 1 is an embodiment and does not limit the scope of protection of the embodiments of the present invention.
  • the signaling overhead can be effectively reduced by configuring the reference signal resource by means of information bits and triggering the UE to send uplink reference signals of different beam directions.
  • the method further includes: the base station broadcasts, to all UEs served by the base station, a notification message that prohibits sending uplink data on the reference signal resource, and may avoid signal interference.
  • the uplink reference signal transmitting and receiving method when the base station determines that the preset trigger condition is met, sends the trigger signaling to the UE, and the UE sends the reference signal resource configured by the base station according to the received trigger signaling.
  • the uplink reference signal of different beam directions, the reference signal resource configured by the base station is N symbols, and N is greater than or equal to 1.
  • the base station receives the uplink reference signal sent by the UE on the corresponding reference signal resource, thereby improving the receiving of the uplink reference signal.
  • the rate can be used to trigger the transmission of the uplink reference signal of the multi-beam triggered by the aperiod, and improve the robustness of the uplink measurement process.
  • FIG. 2 is a schematic diagram of an interaction process of a method for transmitting an uplink reference signal according to a second embodiment of the present invention.
  • the present embodiment uses a reference signal resource for a UE to send uplink reference signals of different beam directions in advance, as shown in FIG.
  • the method includes:
  • the base station sends downlink signaling that carries the reference signal resource to the UE.
  • the reference signal resource includes the number of symbols N, N is greater than or equal to 1, and further includes a time domain period of the reference signal's transmission bandwidth, the frequency domain start frequency, the comb and the reference signal resource occupying the subframe position.
  • FIG. 3 In the second embodiment of the method for transmitting the uplink reference signal of the present invention A schematic diagram of the same number of symbols of reference signal resources in different time domain periods, as shown in FIG. 3, the period M is the same as the number of symbols of the reference signal resource in the period M+1, and all of the four subframes occupy the subframe position. The same, all on the last four symbols of the sub-frame.
  • FIG. 4 is a schematic diagram showing different symbol numbers of reference signal resources in different time domain periods in the second embodiment of the method for transmitting an uplink reference signal according to the present invention.
  • the number of symbols of the reference signal resource in the period M is 2
  • the number of symbols of the reference signal resource in the period M+1 is 4, on the last 4 symbols of the subframe.
  • the reference signal resources shown in FIG. 3 and FIG. 4 are consecutive multiple symbols.
  • the reference signal resources in one time domain period may also be non-contiguous multiple symbols, or may be distributed in multiple subframes.
  • 5 is a schematic diagram of the distribution of reference signal resources, FIG. 5(a) shows that the reference signal resource is a plurality of consecutive symbols in one subframe, and FIG. 5(b) shows that the reference signal resource is discontinuous in one subframe.
  • the symbols, Figure 5(c) are reference signal resources that are discrete symbols within multiple subframes.
  • the base station does not schedule all UEs served by the base station to send uplink data on the configured reference signal resources, thereby avoiding signal interference.
  • the base station sends trigger signaling to the UE, where the trigger signaling is used to instruct the UE to send uplink reference signals of different beam directions.
  • the base station sends the trigger signaling to the UE when it is determined that the preset trigger condition is met, where the trigger signaling may include a trigger type indication, such as using a bit indication, to indicate that the UE sends multiple uplinks in different beam directions.
  • the reference signal may further include an uplink reference signal that specifically triggers M beam directions, where M is less than or equal to N.
  • the UE After receiving the trigger signaling, the UE sends uplink reference signals of different beam directions on the reference signal resources configured by the base station.
  • the uplink reference signal is a periodic transmission mode or an aperiodic transmission mode, as long as the UE receives the trigger signaling sent by the base station, the reference signal resource pre-configured by the base station is used in the latest one of the reference signals that can be used to transmit multiple different beam directions. A plurality of uplink reference signals are transmitted on the reference signal resource.
  • the base station receives multiple uplink reference signals sent by the UE on the corresponding reference signal resource.
  • the channel measurement is performed to determine the uplink reference signal with the best reception quality among all the uplink reference signals received by the base station.
  • the trigger signaling is continued to be sent to the UE, and the UE continues. Transmitting uplink reference signals of different beam directions on the reference signal resource until the reception quality of the optimal uplink reference signal in all uplink reference signals is greater than Set a threshold.
  • the UE receives an index value sent by the base station, and determines, according to the index value, a beam direction on a symbol corresponding to the index value, and the UE uses the beam direction to transmit when the subsequent uplink data and the uplink reference signal are sent.
  • FIG. 6 is a schematic diagram of the interaction process of the third embodiment of the method for transmitting the uplink reference signal according to the present invention.
  • the present embodiment uses the reference signal resource of the uplink reference signal of different beam directions to be sent to the UE at the same time as the base station sends the trigger signaling as an example.
  • the method includes:
  • the base station sends trigger signaling to the UE, where the trigger signaling is used to instruct the UE to send uplink reference signals of different beam directions.
  • the trigger signaling includes a reference signal resource configured by the base station, and the reference signal resource includes at least a symbol number N, and the reference signal resource further includes a transmission bandwidth of the reference signal, a frequency domain start frequency, a frequency bandwidth of the frequency sweep, a comb tooth, and a reference signal resource.
  • the triggering signaling includes: information bits, where the information bits are used to indicate the number N of symbols of the reference signal resource, the number of subframes of the reference signal resource distribution, and the symbol position in the subframe of the reference signal resource distribution. For example, whether it is concentrated in one subframe or distributed in multiple subframes, and the like.
  • FIG. 7 is a schematic diagram of a process of triggering, transmitting, and beam direction updating of a multi-beam uplink reference signal in Embodiment 3 of the method for transmitting an uplink reference signal according to the present invention.
  • SRS SRS
  • the SRS beam direction sent by the UE before the trigger is as shown in "A" in FIG. 7.
  • the UE receives the trigger signaling in the subframe n, and the reference signal resource indicated in the trigger signaling is the last 4 symbols of the subframe n+1. .
  • the base station broadcasts, to all UEs served by the base station, a notification message that prohibits sending uplink data on the reference signal resource indicated in the trigger signaling.
  • the UE After receiving the trigger signaling, the UE sends an uplink reference signal of different beam directions on the reference signal resource indicated by the trigger signaling.
  • the uplink reference signal is a periodic transmission mode or a non-periodic transmission mode, as long as the UE receives the trigger signaling sent by the base station, according to the reference signal resource indicated in the trigger signaling, the latest one can be used to transmit multiple different beam directions.
  • a plurality of uplink reference signals are transmitted on the reference signal resource of the signal. As shown in FIG. 7, the UE transmits 4 different waves on the last 4 symbols of the subframe n+1.
  • the uplink reference signal in the beam direction, FIG. 7 shows that 1, 2, 3, and 4 are beam directions for transmitting the SRS by the UE on the four symbols, respectively.
  • the base station receives multiple uplink reference signals sent by the UE on the corresponding reference signal resource.
  • the channel measurement is performed to determine the uplink reference signal with the best reception quality among all the uplink reference signals received by the base station.
  • the trigger signaling is continued to be sent to the UE, and the UE continues.
  • the uplink reference signals of different beam directions are sent on the reference signal resource until the reception quality of the largest uplink reference signal in all the uplink reference signals is greater than a preset threshold.
  • the UE receives an index value sent by the base station, and determines, according to the index value, a beam direction on a symbol corresponding to the index value, and the UE uses the beam direction to transmit when the subsequent uplink data and the uplink reference signal are sent.
  • the base station determines that the beam direction on the symbol corresponding to the index value of the symbol of the uplink reference signal with the best reception quality of all the uplink reference signals is 1, and the UE transmits the subsequent uplink data and the uplink reference signal.
  • the beam direction 1 is transmitted.
  • the beam direction shown in Fig. 7 is updated from "A" to "1".
  • FIG. 8 is a schematic structural diagram of Embodiment 1 of a UE according to the present invention.
  • the UE in this embodiment may include: a receiving module 11 and a sending module 12, where the receiving module 11 is configured to receive a first trigger signal sent by a base station.
  • the first trigger signaling is used to instruct the UE to send multiple uplink reference signals
  • the sending module 12 is configured to send multiple uplink reference signals on the reference signal resources configured by the base station, where the reference signal resource is N symbols, and N is greater than or equal to 1. .
  • the receiving module 11 is further configured to receive an index value of a symbol of the first uplink reference signal sent by the base station, determine a first beam direction according to the index value, and the sending module 12 is further configured to continue to send the next uplink reference by using the first beam direction.
  • the first uplink reference signal is the uplink quality reference signal that is received by the base station; or the receiving module 11 is configured to receive the second trigger signaling sent by the base station, where the second trigger signaling is used to indicate that the UE continues to send more Uplink reference signals. Therefore, it can be ensured that the base station can always receive the uplink reference signal with a higher signal to noise ratio in a subsequent period of time, so that the uplink channel can be better measured.
  • the receiving module 11 is further configured to: receive the reference signal resource configured by the base station.
  • the reference signal resource includes at least one of a symbol number N and a transmission bandwidth of the reference signal, a frequency domain start frequency, a combo, and a time domain period of the subframe position occupied by the reference signal resource.
  • the reference signal resources in different periods occupy the same subframe position.
  • the first trigger signaling further includes indicating, by the UE, the number M of uplink reference signals, where M is greater than or equal to 1.
  • the first trigger signaling includes a reference signal resource configured by the base station, and the reference signal resource includes at least the symbol number N.
  • the reference signal resource further includes at least one of a transmission bandwidth of the reference signal, a frequency domain start frequency, a frequency of the frequency sweep, a combo period, and a time domain period of the subframe position occupied by the reference signal resource.
  • the first trigger signaling further includes: information bits, where the information bits are used to indicate the number of symbols N of the reference signal resource, the number of subframes in which the reference signal resource is distributed, and the symbol position in the subframe in which the reference signal resource is distributed. .
  • the receiving module 11 is further configured to: receive, by the base station, a notification message that prohibits sending uplink data on the reference signal resource, and may avoid signal interference.
  • the UE in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 1 , and the implementation principle is similar, and details are not described herein again.
  • the UE provided by the embodiment receives the first trigger signaling sent by the base station by using the receiving module, where the first trigger signaling is used to instruct the UE to send multiple uplink reference signals, and the sending module sends multiple uplinks on the reference signal resources configured by the base station.
  • the reference signal resource is N symbols, and N is greater than or equal to 1. Therefore, the receiving rate of the uplink reference signal can be improved, and the uplink reference signal of the multi-beam triggering multi-beam can be transmitted, and the robustness of the uplink measurement process is improved.
  • FIG. 9 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
  • the base station in this embodiment may include: a sending module 21 and a receiving module 22, where the sending module 21 is configured to send a first trigger signaling to the UE. After the UE receives the first trigger signaling, and sends a plurality of uplink reference signals on the reference signal resources configured by the base station, the receiving module 22 is configured to receive the uplink reference signals sent by the UE, and reference signal resources, on the corresponding reference signal resources. For N symbols, N is greater than or equal to 1.
  • the base station of this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 1 , and the implementation principle is similar, and details are not described herein again.
  • the base station provided by the embodiment sends the first trigger signaling to the UE by using the sending module, so that the UE sends multiple uplink references on the reference signal resources configured by the base station after receiving the first trigger signaling.
  • the receiving module receives the uplink reference signal sent by the UE on the corresponding reference signal resource, where the reference signal resource is N symbols, and N is greater than or equal to 1. Therefore, the receiving rate of the uplink reference signal can be improved, and the uplink reference signal of the multi-beam triggering multi-beam can be transmitted, and the robustness of the uplink measurement process is improved.
  • FIG. 10 is a schematic structural diagram of Embodiment 2 of a base station according to the present invention.
  • the apparatus of this embodiment is further configured to include: a processing module 23, the processing module 23, based on the apparatus structure shown in FIG.
  • the first uplink reference signal is used to determine the first uplink reference signal
  • the first uplink reference signal is the uplink reference signal with the best received quality in all the uplink reference signals received by the base station
  • the sending module 21 is further configured to send the symbol of the first uplink reference signal to the UE.
  • the index value is such that the UE determines the first beam direction according to the index value, and continues to transmit the next uplink reference signal by using the first beam direction; or sends the second trigger signaling to the UE, so that the UE receives the second trigger signal.
  • the base station can always receive the uplink reference signal with a higher signal to noise ratio in a subsequent period of time, so that the uplink channel can be better measured.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 2 or FIG. 6.
  • the implementation principle is similar, and details are not described herein again.
  • the sending module 21 is further configured to: send the reference signal resource to the UE.
  • the reference signal resource includes at least one of a symbol number N and a transmission bandwidth of the reference signal, a frequency domain start frequency, a combo, and a time domain period of the subframe position occupied by the reference signal resource.
  • the reference signal resource occupies the same subframe position, and the number of symbols of the reference signal resource in different periods is the same or different.
  • the first trigger signaling further includes indicating, by the UE, the number M of uplink reference signals, where M is greater than or equal to 1.
  • the base station does not schedule all UEs served by the base station to send uplink data on the configured reference signal resources, so as to avoid signal interference.
  • the first trigger signaling includes a reference signal resource configured by the base station, and the reference signal resource includes at least the symbol number N.
  • the reference signal resource further includes at least one of a transmission bandwidth of the reference signal, a frequency domain start frequency, a frequency of the frequency sweep, a combo period, and a time domain period of the subframe position occupied by the reference signal resource.
  • the first trigger signaling includes: an information bit, where the information bit is used to indicate the reference signal The symbol number N of the resource, the number of subframes in which the reference signal resource is distributed, and the symbol position in the subframe in which the reference signal resource is distributed.
  • the sending module 21 is further configured to: broadcast, to all UEs served by the base station, a notification message that prohibits sending uplink data on the reference signal resource, and may avoid signal interference.
  • FIG. 11 is a schematic structural diagram of Embodiment 2 of a UE according to the present invention.
  • the UE in this embodiment may include: a receiver 31 and a transmitter 32, where the receiver 31 is configured to receive a first trigger signal sent by the base station.
  • the first trigger signaling is used to instruct the UE to send multiple uplink reference signals
  • the transmitter 32 is configured to send multiple uplink reference signals on the reference signal resources configured by the base station, where the reference signal resources are N symbols, and N is greater than or equal to 1. .
  • the receiver 31 is further configured to receive an index value of a symbol of the first uplink reference signal sent by the base station, determine a first beam direction according to the index value, and the transmitter 32 is further configured to continue to send the next uplink reference by using the first beam direction.
  • the first uplink reference signal is the uplink reference signal that is received by the base station
  • the receiver 31 is further configured to receive the second trigger signaling sent by the base station, where the second trigger signaling is used to indicate that the UE continues to send more Uplink reference signals. Therefore, it can be ensured that the base station can always receive the uplink reference signal with a higher signal to noise ratio in a subsequent period of time, so that the uplink channel can be better measured.
  • the receiver 31 is further configured to: receive the reference signal resource configured by the base station.
  • the reference signal resource includes at least one of a symbol number N and a transmission bandwidth of the reference signal, a frequency domain start frequency, a combo, and a time domain period of the subframe position occupied by the reference signal resource.
  • the reference signal resources in different periods occupy the same subframe position.
  • the first trigger signaling further includes indicating, by the UE, the number M of uplink reference signals, where M is greater than or equal to 1.
  • the first trigger signaling includes a reference signal resource configured by the base station, and the reference signal resource includes at least the symbol number N.
  • the reference signal resource further includes at least one of a transmission bandwidth of the reference signal, a frequency domain start frequency, a frequency of the frequency sweep, a combo period, and a time domain period of the subframe position occupied by the reference signal resource.
  • the first trigger signaling further includes: information bits, where the information bits are used to indicate the number of symbols N of the reference signal resource, the number of subframes in which the reference signal resource is distributed, and the symbol position in the subframe in which the reference signal resource is distributed. .
  • the receiver 31 is further configured to: receive, by the base station, a notification message that prohibits sending uplink data on the reference signal resource, and may avoid signal interference.
  • the UE in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 1 , and the implementation principle is similar, and details are not described herein again.
  • the UE provided by the embodiment receives the first trigger signaling sent by the base station by using the receiver, where the first trigger signaling is used to instruct the UE to send multiple uplink reference signals, and the transmitter sends multiple uplinks on the reference signal resources configured by the base station.
  • the reference signal resource is N symbols, and N is greater than or equal to 1. Therefore, the receiving rate of the uplink reference signal can be improved, and the uplink reference signal of the multi-beam triggering multi-beam can be transmitted, and the robustness of the uplink measurement process is improved.
  • FIG. 12 is a schematic structural diagram of Embodiment 3 of a base station according to the present invention.
  • the base station in this embodiment may include: a transmitter 41 and a receiver 42, where the transmitter 41 is configured to send a first trigger signaling to the UE. After the UE receives the first trigger signaling, and sends a plurality of uplink reference signals on the reference signal resources configured by the base station, the receiver 42 is configured to receive, by using the reference signal resources, the uplink reference signals sent by the UE, and the reference signal resources. For N symbols, N is greater than or equal to 1.
  • the base station of this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 1 , and the implementation principle is similar, and details are not described herein again.
  • the base station provided by the embodiment sends the first trigger signaling to the UE by using the transmitter, so that after receiving the first trigger signaling, the UE sends multiple uplink reference signals on the reference signal resources configured by the base station, and the receiver is in the corresponding
  • the reference signal resource receives the uplink reference signal sent by the UE, and the reference signal resource is N symbols, and N is greater than or equal to 1. Therefore, the receiving rate of the uplink reference signal can be improved, and the uplink reference signal of the multi-beam triggering multi-beam can be transmitted, and the robustness of the uplink measurement process is improved.
  • FIG. 13 is a schematic structural diagram of Embodiment 4 of a base station according to the present invention.
  • the apparatus of this embodiment is further configured to include a processor 43 and a processor 43.
  • the first uplink reference signal is used to determine the first uplink reference signal
  • the first uplink reference signal is the uplink reference signal with the best received quality in all the uplink reference signals received by the base station
  • the transmitter 41 is further configured to send the symbol of the first uplink reference signal to the UE.
  • the index value is such that the UE determines the first beam direction according to the index value, and continues to transmit the next uplink reference signal by using the first beam direction; or sends the second trigger signaling to the UE, so that the UE receives the second trigger signal.
  • the uplink reference signal is received, so that the uplink channel can be measured better.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 2 or FIG. 6.
  • the implementation principle is similar, and details are not described herein again.
  • the transmitter 41 is further configured to: send the reference signal resource to the UE.
  • the reference signal resource includes at least one of a symbol number N and a transmission bandwidth of the reference signal, a frequency domain start frequency, a combo, and a time domain period of the subframe position occupied by the reference signal resource.
  • the reference signal resource occupies the same subframe position, and the number of symbols of the reference signal resource in different periods is the same or different.
  • the first trigger signaling further includes indicating, by the UE, the number M of uplink reference signals, where M is greater than or equal to 1.
  • the base station does not schedule all UEs served by the base station to send uplink data on the configured reference signal resources, so as to avoid signal interference.
  • the first trigger signaling includes a reference signal resource configured by the base station, and the reference signal resource includes at least the symbol number N.
  • the reference signal resource further includes at least one of a transmission bandwidth of the reference signal, a frequency domain start frequency, a frequency of the frequency sweep, a combo period, and a time domain period of the subframe position occupied by the reference signal resource.
  • the first trigger signaling includes: an information bit, where the information bit is used to indicate the number N of symbols of the reference signal resource, the number of subframes of the reference signal resource distribution, and the symbol position in the subframe of the reference signal resource distribution.
  • the transmitter 41 is further configured to: broadcast, to all UEs served by the base station, a notification message that prohibits sending uplink data on the reference signal resource, and may avoid signal interference.
  • aspects of the present application, or possible implementations of various aspects can be embodied as a system, method, or computer program product.
  • aspects of the present application, or possible implementations of various aspects may employ an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, etc.), or a combination of software and hardware.
  • the form of the embodiment is collectively referred to herein as "circuit,” “module,” or “system.”
  • aspects of the present application, or possible implementations of various aspects may take the form of a computer program product, which is a computer readable program code stored in a computer readable medium.
  • the computer readable medium can be a computer readable signal medium or a computer readable storage medium.
  • the computer readable storage medium includes, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing, such as random access memory (RAM), read only memory (ROM), Erase programmable read-only memory (EPROM or flash memory), optical fiber, portable read-only memory (CD-ROM).
  • the processor in the computer reads the computer readable program code stored in the computer readable medium such that the processor is capable of performing the various functional steps specified in each step of the flowchart, or a combination of steps; A device that functions as specified in each block, or combination of blocks.
  • the computer readable program code can execute entirely on the user's local computer, partly on the user's local computer, as a separate software package, partly on the user's local computer and partly on the remote computer, or entirely on the remote computer or Executed on the server. It should also be noted that in some alternative implementations, the functions noted in the various steps in the flowcharts or in the blocks in the block diagrams may not occur in the order noted. For example, two steps, or two blocks, shown in succession may be executed substantially concurrently or the blocks may be executed in the reverse order.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种上行参考信号发送与接收方法及装置,该方法包括:UE接收基站发送的第一触发信令,UE在基站配置的参考信号资源上发送多个上行参考信号,参考信号资源为N个符号。从而就可以提高上行参考信号的接收率,可以实现非周期触发多波束的上行参考信号的发送,提高上行测量过程的鲁棒性。

Description

上行参考信号发送与接收方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种上行参考信号发送与接收方法及装置。
背景技术
在当今无线局域网络技术发展中,以6GHz的频段为界,高频通信已被公认为是未来第五代移动通信技术(fifth-generation,简称:5G)的重要技术之一。上行参考信号是一组用户设备(User Equipment,以下简称:UE)和基站预知的信号,基站根据UE发送的上行参考信号,进行信道估计获得对应的上行信道质量,根据上行信道质量进行上行调度,上行参考信号对于高频通信系统极为重要。
在现有的3GPP LTE系统中,上行参考信号被称为探测参考信号(Sounding reference signal,以下简称:SRS),用于发送SRS的资源在时域上处于每个子帧的最后一个符号上,一个子帧由14个符号或12个符号组成。SRS的发送包括两种方式:周期发送和非周期发送。周期发送时,UE每隔一个固定的时间间隔(如2毫秒,即2个子帧)使用子帧的最后一个符号,在基站通过下行信令通知的频带范围内发送SRS。非周期发送时,基站会通过高层信令将用于SRS发送的资源配置发送给所有的UE,用于非周期SRS发送的资源也在子帧的最后一个符号上,基站通过下行物理层信令动态非周期的触发UE在配置的资源上发送SRS,当UE收到第一触发信令后,在最近的一个可用于发送SRS的资源上发送一次SRS信号。
在高频系统中,若仍然沿用上述现有的方式进行SRS的发送,无论是周期发送还是非周期发送,相应的频带只会被扫描一次。现有的SRS信号发送方式配合波束成形方法,对于UE的转动和位移极为敏感,很容易造成基站接收SRS失败。
发明内容
本发明实施例提供一种上行参考信号发送与接收方法及装置,以优化上行参考信号的收发的问题。
第一方面,本发明实施例提供一种上行参考信号发送方法,包括:
UE接收基站发送的第一触发信令,第一触发信令用于指示UE发送多个上行参考信号,UE在基站配置的参考信号资源上发送多个上行参考信号,参考信号资源为N个符号,N大于等于1。基站在相应的参考信号资源上接收UE发送的上行参考信号,从而就可以提高上行参考信号的接收率,可以实现非周期触发多波束的上行参考信号的发送,提高上行测量过程的鲁棒性。
在一种可能的设计中,所述多个上行参考信号为不同波束方向的上行参考信号时,还包括:
UE接收基站发送的第一上行参考信号所在符号的索引值,根据索引值确定第一波束方向,并使用第一波束方向继续发送下一个上行参考信号,第一上行参考信号为基站接收的接收质量最优的上行参考信号;或者,UE接收基站发送的第二触发信令,第二触发信令用于指示UE继续发送多个上行参考信号。从而能够保证基站在随后的一段时间能够一直以较高的信噪比接收到上行参考信号,从而能够较好的对上行信道进行测量。
在一种可能的设计中,作为基站配置参考信号资源的一种实施方式,还包括:
UE接收基站配置的参考信号资源。
在一种可能的设计中,参考信号资源包括符号个数N与参考信号的发射带宽、频域起点频率、梳齿和参考信号资源所占子帧位置的时域周期中的至少一个。
在一种可能的设计中,不同周期内的参考信号资源所占子帧位置相同。
在一种可能的设计中,第一触发信令还包括指示UE发送上行参考信号的个数M,M大于等于1。
在一种可能的设计中,作为基站配置参考信号资源的另一种实施方式,第一触发信令中包括基站配置的参考信号资源,参考信号资源至少包括符号数N。
在一种可能的设计中,参考信号资源还包括参考信号的发射带宽、频域起点频率、扫频的带宽、梳齿和参考信号资源所占子帧位置的时域周期中的 至少一个。
在一种可能的设计中,第一触发信令中还包括:
信息比特,信息比特用于指示参考信号资源的符号数N、参考信号资源分布的子帧个数和参考信号资源分布的子帧中的符号位置。
在一种可能的设计中,还包括:
UE接收基站广播的禁止在参考信号资源上发送上行数据的通知消息。可以避免信号干扰。
第二方面,本发明实施例提供一种上行参考信号接收方法,包括:
基站向UE发送第一触发信令,以使UE接收到第一触发信令后在基站配置的参考信号资源上发送多个上行参考信号,基站在相应的参考信号资源上接收UE发送的上行参考信号,参考信号资源为N个符号,N大于等于1。从而就可以提高上行参考信号的接收率,可以实现非周期触发多波束的上行参考信号的发送,提高上行测量过程的鲁棒性。
在一种可能的设计中,所述多个上行参考信号为不同波束方向的上行参考信号时,还包括:
基站确定出第一上行参考信号,第一上行参考信号为基站接收到的所有上行参考信号中接收质量最优的上行参考信号,基站向UE发送第一上行参考信号所在符号的索引值,以使UE根据索引值确定第一波束方向,并使用第一波束方向继续发送下一个上行参考信号;或者,基站向UE发送第二触发信令,以使UE接收到第二触发信令后继续发送多个上行参考信号。从而能够保证基站在随后的一段时间能够一直以较高的信噪比接收到上行参考信号,从而能够较好的对上行信道进行测量。
在一种可能的设计中,作为基站配置参考信号资源的一种实施方式,还包括:
基站向UE发送参考信号资源。
在一种可能的设计中,参考信号资源包括符号个数N与参考信号的发射带宽、频域起点频率、梳齿和参考信号资源所占子帧位置的时域周期中的至少一个。
在一种可能的设计中,参考信号资源所占子帧位置相同,。
在一种可能的设计中,第一触发信令还包括指示UE发送上行参考信号 的个数M,M大于等于1。
在一种可能的设计中,基站不调度基站服务的所有UE在配置的参考信号资源上发送上行数据,可以避免信号干扰。
在一种可能的设计中,作为基站配置参考信号资源的另一种实施方式,第一触发信令中包括基站配置的参考信号资源,参考信号资源至少包括符号数N。
在一种可能的设计中,参考信号资源还包括参考信号的发射带宽、频域起点频率、扫频的带宽、梳齿和参考信号资源所占子帧位置的时域周期中的至少一个。
在一种可能的设计中,第一触发信令中包括:
信息比特,信息比特用于指示参考信号资源的符号数N、参考信号资源分布的子帧个数和参考信号资源分布的子帧中的符号位置。
在一种可能的设计中,还包括:
基站向基站服务的所有UE广播禁止在参考信号资源上发送上行数据的通知消息。可以避免信号干扰。
第三方面,本发明实施例提供一种用户设备,包括:
接收模块,用于接收基站发送的第一触发信令,第一触发信令用于指示UE发送多个上行参考信号,发送模块,用于在基站配置的参考信号资源上发送多个上行参考信号,参考信号资源为N个符号,N大于等于1。从而就可以提高上行参考信号的接收率,可以实现非周期触发多波束的上行参考信号的发送,提高上行测量过程的鲁棒性。
在一种可能的设计中,所述多个上行参考信号为不同波束方向的上行参考信号时,接收模块还用于接收基站发送的第一上行参考信号所在符号的索引值,根据索引值确定第一波束方向,发送模块还用于使用第一波束方向继续发送下一个上行参考信号,第一上行参考信号为基站接收的接收质量最优的上行参考信号;或者,接收模块还用于接收基站发送的第二触发信令,第二触发信令用于指示UE继续发送多个上行参考信号。从而能够保证基站在随后的一段时间能够一直以较高的信噪比接收到上行参考信号,从而能够较好的对上行信道进行测量。
在一种可能的设计中,作为基站配置参考信号资源的一种实施方式,接 收模块还用于:
接收基站配置的参考信号资源。
在一种可能的设计中,参考信号资源包括符号个数N与参考信号的发射带宽、频域起点频率、梳齿和参考信号资源所占子帧位置的时域周期中的至少一个。
在一种可能的设计中,不同周期内的参考信号资源所占子帧位置相同。
在一种可能的设计中,第一触发信令还包括指示UE发送上行参考信号的个数M,M大于等于1。
在一种可能的设计中,作为基站配置参考信号资源的另一种实施方式,第一触发信令中包括基站配置的参考信号资源,参考信号资源至少包括符号数N。
在一种可能的设计中,参考信号资源还包括参考信号的发射带宽、频域起点频率、扫频的带宽、梳齿和参考信号资源所占子帧位置的时域周期中的至少一个。
在一种可能的设计中,第一触发信令中还包括:
信息比特,信息比特用于指示参考信号资源的符号数N、参考信号资源分布的子帧个数和参考信号资源分布的子帧中的符号位置。
在一种可能的设计中,接收模块还用于:
接收基站广播的禁止在参考信号资源上发送上行数据的通知消息,可以避免信号干扰。
第四方面,本发明实施例提供一种基站,包括:
发送模块,用于向UE发送第一触发信令,以使UE接收到第一触发信令后在基站配置的参考信号资源上发送多个上行参考信号,接收模块,用于在相应的参考信号资源上接收UE发送的上行参考信号,参考信号资源为N个符号,N大于等于1。从而就可以提高上行参考信号的接收率,可以实现非周期触发多波束的上行参考信号的发送,提高上行测量过程的鲁棒性。
在一种可能的设计中,所述多个上行参考信号为不同波束方向的上行参考信号时,还包括:
处理模块,用于确定出第一上行参考信号,第一上行参考信号为基站接收到的所有上行参考信号中接收质量最优的上行参考信号,发送模块还用于 向UE发送第一上行参考信号所在符号的索引值,以使UE根据索引值确定第一波束方向,并使用第一波束方向继续发送下一个上行参考信号;或者,向UE发送第二触发信令,以使UE接收到第二触发信令后继续发送多个上行参考信号。从而能够保证基站在随后的一段时间能够一直以较高的信噪比接收到上行参考信号,从而能够较好的对上行信道进行测量。
在一种可能的设计中,作为基站配置参考信号资源的一种实施方式,发送模块还用于:
向UE发送参考信号资源。
在一种可能的设计中,参考信号资源包括符号个数N与参考信号的发射带宽、频域起点频率、梳齿和参考信号资源所占子帧位置的时域周期中的至少一个。
在一种可能的设计中,参考信号资源所占子帧位置相同,。
在一种可能的设计中,第一触发信令还包括指示UE发送上行参考信号的个数M,M大于等于1。
在一种可能的设计中,基站不调度基站服务的所有UE在配置的参考信号资源上发送上行数据,可以避免信号干扰。
在一种可能的设计中,作为基站配置参考信号资源的另一种实施方式,第一触发信令中包括基站配置的参考信号资源,参考信号资源至少包括符号数N。
在一种可能的设计中,参考信号资源还包括参考信号的发射带宽、频域起点频率、扫频的带宽、梳齿和参考信号资源所占子帧位置的时域周期中的至少一个。
在一种可能的设计中,第一触发信令中包括:
信息比特,信息比特用于指示参考信号资源的符号数N、参考信号资源分布的子帧个数和参考信号资源分布的子帧中的符号位置。
在一种可能的设计中,发送模块还用于:
向基站服务的所有UE广播禁止在参考信号资源上发送上行数据的通知消息,可以避免信号干扰。
第五方面,本发明实施例提供一种用户设备,包括:
接收器,用于接收基站发送的第一触发信令,第一触发信令用于指示UE 发送多个上行参考信号,发送器,用于在基站配置的参考信号资源上发送多个上行参考信号,参考信号资源为N个符号,N大于等于1。从而就可以提高上行参考信号的接收率,可以实现非周期触发多波束的上行参考信号的发送,提高上行测量过程的鲁棒性。
在一种可能的设计中,所述多个上行参考信号为不同波束方向的上行参考信号时,接收器还用于接收基站发送的第一上行参考信号所在符号的索引值,根据索引值确定第一波束方向,发送器还用于使用第一波束方向继续发送下一个上行参考信号,第一上行参考信号为基站接收的接收质量最优的上行参考信号;或者,接收器还用于接收基站发送的第二触发信令,第二触发信令用于指示UE继续发送多个上行参考信号。从而能够保证基站在随后的一段时间能够一直以较高的信噪比接收到上行参考信号,从而能够较好的对上行信道进行测量。
在一种可能的设计中,作为基站配置参考信号资源的一种实施方式,接收器还用于:
接收基站配置的参考信号资源。
在一种可能的设计中,参考信号资源包括符号个数N与参考信号的发射带宽、频域起点频率、梳齿和参考信号资源所占子帧位置的时域周期中的至少一个。
在一种可能的设计中,不同周期内的参考信号资源所占子帧位置相同。
在一种可能的设计中,第一触发信令还包括指示UE发送上行参考信号的个数M,M大于等于1。
在一种可能的设计中,作为基站配置参考信号资源的另一种实施方式,第一触发信令中包括基站配置的参考信号资源,参考信号资源至少包括符号数N。
在一种可能的设计中,参考信号资源还包括参考信号的发射带宽、频域起点频率、扫频的带宽、梳齿和参考信号资源所占子帧位置的时域周期中的至少一个。
在一种可能的设计中,第一触发信令中还包括:
信息比特,信息比特用于指示参考信号资源的符号数N、参考信号资源分布的子帧个数和参考信号资源分布的子帧中的符号位置。
在一种可能的设计中,接收器还用于:
接收基站广播的禁止在参考信号资源上发送上行数据的通知消息,可以避免信号干扰。
第六方面,本发明实施例提供一种基站,包括:
发送器,用于向UE发送第一触发信令,以使UE接收到第一触发信令后在基站配置的参考信号资源上发送多个上行参考信号,接收器,用于在相应的参考信号资源上接收UE发送的上行参考信号,参考信号资源为N个符号,N大于等于1。从而就可以提高上行参考信号的接收率,可以实现非周期触发多波束的上行参考信号的发送,提高上行测量过程的鲁棒性。
在一种可能的设计中,所述多个上行参考信号为不同波束方向的上行参考信号时,还包括:
处理器,用于确定出第一上行参考信号,第一上行参考信号为基站接收到的所有上行参考信号中接收质量最优的上行参考信号,发送器还用于向UE发送第一上行参考信号所在符号的索引值,以使UE根据索引值确定第一波束方向,并使用第一波束方向继续发送下一个上行参考信号;或者,向UE发送第二触发信令,以使UE接收到第二触发信令后继续发送多个上行参考信号。从而能够保证基站在随后的一段时间能够一直以较高的信噪比接收到上行参考信号,从而能够较好的对上行信道进行测量。
在一种可能的设计中,作为基站配置参考信号资源的一种实施方式,发送器还用于:
向UE发送参考信号资源。
在一种可能的设计中,参考信号资源包括符号个数N与参考信号的发射带宽、频域起点频率、梳齿和参考信号资源所占子帧位置的时域周期中的至少一个。
在一种可能的设计中,参考信号资源所占子帧位置相同,。
在一种可能的设计中,第一触发信令还包括指示UE发送上行参考信号的个数M,M大于等于1。
在一种可能的设计中,基站不调度基站服务的所有UE在配置的参考信号资源上发送上行数据,可以避免信号干扰。
在一种可能的设计中,作为基站配置参考信号资源的另一种实施方式, 第一触发信令中包括基站配置的参考信号资源,参考信号资源至少包括符号数N。
在一种可能的设计中,参考信号资源还包括参考信号的发射带宽、频域起点频率、扫频的带宽、梳齿和参考信号资源所占子帧位置的时域周期中的至少一个。
在一种可能的设计中,第一触发信令中包括:
信息比特,信息比特用于指示参考信号资源的符号数N、参考信号资源分布的子帧个数和参考信号资源分布的子帧中的符号位置。
在一种可能的设计中,发送器还用于:
向基站服务的所有UE广播禁止在参考信号资源上发送上行数据的通知消息,可以避免信号干扰。
本发明实施例提供的上行参考信号发送与接收方法及装置,通过基站向UE发送触发信令,UE根据接收到触发信令后在基站配置的参考信号资源上发送多个上行参考信号,基站配置的参考信号资源为N个符号,N大于等于1,基站在相应的参考信号资源上接收UE发送的上行参考信号,从而就可以提高上行参考信号的接收率,可以实现非周期触发多波束的上行参考信号的发送,提高上行测量过程的鲁棒性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明上行参考信号发送与接收方法实施例一的流程示意图;
图2为本发明上行参考信号发送方法实施例二的交互流程示意图;
图3为本发明上行参考信号发送方法实施例二中不同时域周期内的参考信号资源的符号数相同的示意图;
图4为本发明上行参考信号发送方法实施例二中不同时域周期内的参考信号资源的符号数不同的示意图;
图5为参考信号资源的分布示意图;
图6为本发明上行参考信号发送方法实施例三的交互流程示意图;
图7为本发明上行参考信号发送方法实施例三中多波束上行参考信号的触发、发送和波束方向更新过程示意图;
图8为本发明UE实施例一的结构示意图;
图9为本发明基站实施例一的结构示意图;
图10为本发明基站实施例二的结构示意图;
图11为本发明UE实施例二的结构示意图;
图12为本发明基站实施例三的结构示意图;
图13为本发明基站实施例四的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例的技术方案,可以应用于无线蜂窝网络的各种通信系统,例如:全球移动通信(Global System of Mobile communication,简称GSM)系统,码分多址(Code Division Multiple Access,简称CDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,简称WCDMA)系统,通用分组无线业务(General Packet Radio Service,简称GPRS)系统,LTE系统,通用移动通信系统(Universal Mobile Telecommunications System,简称:UMTS)等,本发明实施例并不限定。
本发明实施例的技术方案主要应用于高频通信系统中,本发明实施例应用的高频通信系统中,涉及的网元是基站(也称接入网设备)和UE,主要涉及配置了多天线的发射机和接收机。
在高频通信系统中采用波束成形的方法保证基站能够以较高的信噪比接收到上行参考信号时,若按照现有的SRS信号发送方式易造成基站接收SRS失败,具体的原因如下:由于高频信号在传输过程中面临严重的传输损耗, 将使得基站在接收SRS时,接收信噪比很低,甚至低于接收机门限,造成接收失败。在高频通信系统中,收发两端往往会配置大量天线,通过收发两端的波束成形(beamforming)方式获得功率增益来对抗传输损耗。同样的,为了保证基站能够以较高的信噪比接收到上行参考信号,UE同样会采用波束成形的方式将参考信号集中在一个宽度很小的波束上发送,以提高信号能量密度。因此,为了提高SRS接收性能,最为直接的方法是:UE在SRS发送时采用波束成形方式将SRS集中在一个宽度很小的波束上发送,但是由于目前SRS每次只能对频带资源进行一次测量,也就是说,每次只能发送一个波束方向的SRS,因此当UE发生转动或者发生较大的位移时,即UE发送SRS的最佳波束成形方向发生改变,SRS的接收性能将被削弱,尤其是当转动后,零线方向对准基站时,基站将根本收不到任何来自UE的SRS信号。
本发明实施例提出的上行参考信号发送与接收方法及装置,用于解决上述问题。通过基站在确定满足预设的触发条件时,触发条件例如为基站在特定资源上未接收到UE发送的上行参考信号,或者基站接收到的上行参考信号的接收质量小于预设的门限,则基站向UE发送触发信令,UE根据接收到触发信令在基站配置的参考信号资源上发送多个上行参考信号,基站在相应的参考信号资源上接收UE发送的上行参考信号,从而就可以提高上行参考信号的接收率,可以实现非周期触发多波束的上行参考信号的发送,提高上行测量过程的鲁棒性。下面结合附图详细说明本发明实施例提供的技术方案。
图1为本发明上行参考信号发送与接收方法实施例一的流程示意图,如图1所示,该方法包括:
S101、基站向UE发送第一触发信令,第一触发信令用于指示UE发送多个不同波束方向的上行参考信号。
具体地,基站在确定满足预设的触发条件时向UE发送第一触发信令,触发条件例如为基站在特定资源上未接收到UE发送的上行参考信号,这里特定资源可以是最近一个用于发射上行参考信号的时频资源,或者基站接收到的上行参考信号的接收质量小于预设的门限等等,则基站向UE发送第一触发信令,触发UE发送多个上行参考信号。其中的第一触发信令可以是下行信令。其中,UE发送的多个上行参考信号可以是相同波束方向,也可以是不同波束方向,还可以是如发送5个上行参考信号中,2个相同,另外3个 相同,相对而言,UE发送多个不同波束方向的上行参考信号时,基站更容易接收到UE发送的上行参考信号,接收率更高。
S102、UE接收到第一触发信令后,在基站配置的参考信号资源上发送多个上行参考信号。
其中,基站配置的参考信号资源为N个符号,N大于等于1。作为参考信号资源的N个符号可以是一个子帧内连续的N个符号,也可以是一个子帧内间隔的N个符号,还可以是位于多个子帧内的N个符号。其中,UE发送的上行参考信号的个数小于等于N。
S103、基站在相应的参考信号资源上接收UE发送的多个上行参考信号。
进一步地,多个上行参考信号为不同波束方向的上行参考信号时,S102中UE在基站配置的参考信号资源上发送多个上行参考信号之后,还可以包括:
基站确定出第一上行参考信号,第一上行参考信号为基站接收到的所有上行参考信号中接收质量最优的上行参考信号,然后基站向UE发送第一上行参考信号所在符号的索引值。UE根据索引值确定第一波束方向,并使用第一波束方向继续发送下一个上行参考信号。具体来说,基站接收到UE发送的多个上行参考信号之后,确定出其中接收质量最优的上行参考信号,或者可以是接收信号强度最大的上行参考信号,该上行参考信号的接收质量是最优的,然后基站将该该上行参考信号所在符号的索引值发送给UE,UE就可获知该索引值对应的符号上的波束方向,基站对该波束方向的上行参考信号具有较好的接收质量,UE在随后的上行数据和上行参考信号的发送时,采用该最优的波束方向发送。从而能够保证基站在随后的一段时间能够一直以较高的信噪比接收到上行参考信号,从而能够较好的对上行信道进行测量。
或者,基站向UE发送第二触发信令,UE接收到第二触发信令后,继续发送多个上行参考信号。具体地,基站接收到UE发送的多个上行参考信号之后,根据所有的上行参考信号的接收质量,若确定出满足预设的再次触发的条件,如所有上行参考信号的接收质量都低于预设门限,则继续向UE发送触发信令,UE继续在参考信号资源上发送多个上行参考信号,直到所有的上行参考信号中的最大的上行参考信号的接收质量大于预设门限。再次触发这一点对于多个上行参考信号为同一波束方向的上行参考信号时也是适用 的。
在上述实施例中,基站配置参考信号资源有两种可实施的方式,具体接下来详细说明。
作为一种可实施的方式,基站向UE发送第一触发信令之前,向UE发送参考信号资源。具体地,基站可以是通过下行信令发送为UE配置的参考信号资源,参考信号资源包括符号个数N与参考信号的发射带宽、频域起点频率、梳齿和参考信号资源所占子帧位置的时域周期中的至少一个。这里的参考信号资源所占子帧位置的时域周期是指参考信号资源所占子帧位置的周期,每一周期的参考信号资源所占子帧位置相同,不同周期内的参考信号资源的符号数相同或者不同,比如每一周期的参考信号资源都在子帧的最后N个符号上(这是相同的情况),如基站配置给UE1的参考信号资源所占子帧位置的周期为3,不同周期内的参考信号资源的符号数都为3,即就是对于UE1来说,参考信号资源所占的子帧为第三个子帧、第六个子帧、第九个子帧…...等等。
进一步地,第一触发信令还包括指示UE发送不同波束方向的上行参考信号的个数M,M大于等于1。当然,M小于等于参考信号资源的符号数N。
在该实施方式中,基站不调度基站服务的所有UE在配置的参考信号资源上发送上行数据,可以避免信号干扰。
作为另一种可实施的方式,基站在向UE发送第一触发信令的同时,将参考信号资源发送给UE,具体可以是第一触发信令中包括基站配置的参考信号资源,参考信号资源至少包括符号数N。进一步地,参考信号资源还包括参考信号的发射带宽、频域起点频率、扫频的带宽、梳齿和参考信号资源所占子帧位置的时域周期中的至少一个。
还可以是第一触发信令中包括:信息比特,信息比特用于指示参考信号资源的符号数N、参考信号资源分布的子帧个数和参考信号资源分布的子帧中的符号位置。例如是集中分布在一个子帧中还是分布在多个子帧中等等,可以对上述所有信息进行编号,下表一中给出一示例,该例中,UE最多可以发射8个不同方向的上行参考信号,下表一中给出一张3比特信息的编码表,表一只是一种实施方式,不限定本发明实施例的保护范围。
表一触发信令
信令比特 方向数 分布式/集中式 分布的子帧个数
000 8 集中式 1
001 8 分布式 2
010 8 分布式 4
011 4 集中式 1
100 4 分布式 2
101 4 分布式 4
110 2 集中式 1
111 2 分布式 2
通过信息比特的方式配置参考信号资源以及触发UE发送多个不同波束方向的上行参考信号,可以有效减少信令开销。
在该实施方式中,还包括:基站向基站服务的所有UE广播禁止在参考信号资源上发送上行数据的通知消息,可以避免信号干扰。
本实施例提供的上行参考信号发送与接收方法,通过基站在确定满足预设的触发条件时,向UE发送触发信令,UE根据接收到触发信令后在基站配置的参考信号资源上发送多个不同波束方向的上行参考信号,基站配置的参考信号资源为N个符号,N大于等于1,基站在相应的参考信号资源上接收UE发送的上行参考信号,从而就可以提高上行参考信号的接收率,可以实现非周期触发多波束的上行参考信号的发送,提高上行测量过程的鲁棒性。
下面采用两个具体的实施例,对图1所示方法实施例的技术方案进行详细说明。
图2为本发明上行参考信号发送方法实施例二的交互流程示意图,本实施以基站预先配置用于UE发送多个不同波束方向的上行参考信号的参考信号资源为例,如图2所示,该方法包括:
S201、基站向UE发送携带参考信号资源的下行信令。参考信号资源包括符号个数N,N大于等于1,还包括参考信号的发射带宽、频域起点频率、梳齿和参考信号资源所占子帧位置的时域周期。
具体地,上行参考信号不论是周期发送模式还是非周期发送模式,每一时域周期的参考信号资源所占子帧位置相同,不同时域周期内的参考信号资源的符号数相同或者不同,图3为本发明上行参考信号发送方法实施例二中 不同时域周期内的参考信号资源的符号数相同的示意图,如图3所示,周期M与周期M+1内的参考信号资源的符号数相同,都为4个,且所占子帧位置相同,都在子帧的最后四个符号上。图4为本发明上行参考信号发送方法实施例二中不同时域周期内的参考信号资源的符号数不同的示意图,如图4所示,周期M内的参考信号资源的符号数为2,在子帧的最后2个符号上,周期M+1内的参考信号资源的符号数为4,在子帧的最后4个符号上。图3和图4所示的参考信号资源都是连续的多个符号,可选的,在一个时域周期内的参考信号资源还可以是非连续的多个符号,还可以是分布在多个子帧内,图5为参考信号资源的分布示意图,图5(a)为参考信号资源是一个子帧内连续的多个符号,图5(b)为参考信号资源是一个子帧内非连续的多个符号,图5(c)为参考信号资源是多个子帧内离散的多个符号。
在上述配置的参考信号传输资源上,基站不调度基站服务的所有UE在配置的参考信号资源上发送上行数据,可以避免信号干扰。
S202、基站向UE发送触发信令,触发信令用于指示UE发送多个不同波束方向的上行参考信号。
具体地,基站在确定满足预设的触发条件时向UE发送触发信令,其中,触发信令中可以包含触发类型指示,如用比特位指示,用于指示UE发送多个不同波束方向的上行参考信号,具体还可以包含具体触发M个波束方向的上行参考信号,M小于等于N。
S203、UE接收到触发信令后,在基站配置的参考信号资源上发送多个不同波束方向的上行参考信号。
不论上行参考信号是周期发送模式还是非周期发送模式,只要UE接收到基站发送的触发信令,就根据基站预先配置的参考信号资源在最近的一个可用于发送多个不同波束方向的参考信号的参考信号资源上发送多个上行参考信号。
S204、基站在相应的参考信号资源上接收UE发送的多个上行参考信号。并进行信道测量,确定出基站接收到的所有上行参考信号中接收质量最优的上行参考信号,当该上行参考信号的接收质量小于预设门限时,则继续向UE发送触发信令,UE继续在参考信号资源上发送多个不同波束方向的上行参考信号,直到所有的上行参考信号中的最优的上行参考信号的接收质量大于预 设门限。
S205、当该上行参考信号的接收质量大于预设门限时,向UE发送该上行参考信号所在符号的索引值,索引值也可以是标识。
S206、UE接收基站发送的索引值,根据该索引值,确定该索引值对应的符号上的波束方向,UE在随后的上行数据和上行参考信号的发送时,采用该波束方向发送。
图6为本发明上行参考信号发送方法实施例三的交互流程示意图,本实施以基站在发送触发信令时同时向UE发送多个不同波束方向的上行参考信号的参考信号资源为例,如图6所示,该方法包括:
S301、基站向UE发送触发信令,触发信令用于指示UE发送多个不同波束方向的上行参考信号。
其中,触发信令中包括基站配置的参考信号资源,参考信号资源至少符号数N,参考信号资源还包括参考信号的发射带宽、频域起点频率、扫频的带宽、梳齿和参考信号资源所占子帧位置的时域周期。或者,触发信令中包括:信息比特,信息比特用于指示参考信号资源的符号数N、参考信号资源分布的子帧个数和参考信号资源分布的子帧中的符号位置。例如是集中分布在一个子帧中还是分布在多个子帧中等等。
图7为本发明上行参考信号发送方法实施例三中多波束上行参考信号的触发、发送和波束方向更新过程示意图,以SRS为例,结合图7,SRS周期发送模式或者非周期发送模式下,触发前的UE发送的SRS波束方向如图7中“A”所示,UE在子帧n接收到触发信令,触发信令中指示的参考信号资源为子帧n+1的最后4个符号。
S302、基站向基站服务的所有UE广播禁止在触发信令中指示的参考信号资源上发送上行数据的通知消息。
S303、UE接收到触发信令后,在触发信令中指示的参考信号资源上发送多个不同波束方向的上行参考信号。
不论上行参考信号是周期发送模式还是非周期发送模式,只要UE接收到基站发送的触发信令,就根据触发信令中指示的参考信号资源在最近的一个可用于发送多个不同波束方向的参考信号的参考信号资源上发送多个上行参考信号。结合图7所示,UE在子帧n+1的最后4个符号上发送4个不同波 束方向的上行参考信号,图7示1、2、3、4为分别为4个符号上UE发送SRS的波束方向。
S304、基站在相应的参考信号资源上接收UE发送的多个上行参考信号。并进行信道测量,确定出基站接收到的所有上行参考信号中接收质量最优的上行参考信号,当该上行参考信号的接收质量小于预设门限时,则继续向UE发送触发信令,UE继续在参考信号资源上发送多个不同波束方向的上行参考信号,直到所有的上行参考信号中的最大的上行参考信号的接收质量大于预设门限。
S305、当该上行参考信号的接收质量大于预设门限时,向UE发送该上行参考信号所在符号的索引值,索引值也可以是标识。
S306、UE接收基站发送的索引值,根据该索引值,确定该索引值对应的符号上的波束方向,UE在随后的上行数据和上行参考信号的发送时,采用该波束方向发送。结合图7所示,基站确定出所有上行参考信号中接收质量最优的上行参考信号所在符号的索引值对应的符号上的波束方向为1,UE在随后的上行数据和上行参考信号的发送时,采用该波束方向1发送。图7所示的波束方向由“A”更新为“1”。
图8为本发明UE实施例一的结构示意图,如图8所示,本实施例的UE可以包括:接收模块11和发送模块12,其中,接收模块11用于接收基站发送的第一触发信令,第一触发信令用于指示UE发送多个上行参考信号,发送模块12用于在基站配置的参考信号资源上发送多个上行参考信号,参考信号资源为N个符号,N大于等于1。
进一步地,接收模块11还用于接收基站发送的第一上行参考信号所在符号的索引值,根据索引值确定第一波束方向,发送模块12还用于使用第一波束方向继续发送下一个上行参考信号,第一上行参考信号为基站接收的接收质量最优的上行参考信号;或者,接收模块11还用于接收基站发送的第二触发信令,第二触发信令用于指示UE继续发送多个上行参考信号。从而能够保证基站在随后的一段时间能够一直以较高的信噪比接收到上行参考信号,从而能够较好的对上行信道进行测量。
进一步地,作为基站配置参考信号资源的一种实施方式,接收模块11还用于:接收基站配置的参考信号资源。
其中,参考信号资源包括符号个数N与参考信号的发射带宽、频域起点频率、梳齿和参考信号资源所占子帧位置的时域周期中的至少一个。其中,不同周期内的参考信号资源所占子帧位置相同。
可选的,第一触发信令还包括指示UE发送上行参考信号的个数M,M大于等于1。
作为基站配置参考信号资源的另一种实施方式,第一触发信令中包括基站配置的参考信号资源,参考信号资源至少包括符号数N。
进一步地,参考信号资源还包括参考信号的发射带宽、频域起点频率、扫频的带宽、梳齿和参考信号资源所占子帧位置的时域周期中的至少一个。
可选的,第一触发信令中还包括:信息比特,信息比特用于指示参考信号资源的符号数N、参考信号资源分布的子帧个数和参考信号资源分布的子帧中的符号位置。
可选的,接收模块11还用于:接收基站广播的禁止在参考信号资源上发送上行数据的通知消息,可以避免信号干扰。
本实施例的UE,可以用于执行图1所示方法实施例的技术方案,其实现原理类似,此处不再赘述。
本实施例提供的UE,通过接收模块接收基站发送的第一触发信令,第一触发信令用于指示UE发送多个上行参考信号,发送模块在基站配置的参考信号资源上发送多个上行参考信号,参考信号资源为N个符号,N大于等于1。从而就可以提高上行参考信号的接收率,可以实现非周期触发多波束的上行参考信号的发送,提高上行测量过程的鲁棒性。
图9为本发明基站实施例一的结构示意图,如图9所示,本实施例的基站可以包括:发送模块21和接收模块22,其中,发送模块21用于向UE发送第一触发信令,以使UE接收到第一触发信令后在基站配置的参考信号资源上发送多个上行参考信号,接收模块22用于在相应的参考信号资源上接收UE发送的上行参考信号,参考信号资源为N个符号,N大于等于1。
本实施例的基站,可以用于执行图1所示方法实施例的技术方案,其实现原理类似,此处不再赘述。
本实施例提供的基站,通过发送模块向UE发送第一触发信令,以使UE接收到第一触发信令后在基站配置的参考信号资源上发送多个上行参考 信号,接收模块在相应的参考信号资源上接收UE发送的上行参考信号,参考信号资源为N个符号,N大于等于1。从而就可以提高上行参考信号的接收率,可以实现非周期触发多波束的上行参考信号的发送,提高上行测量过程的鲁棒性。
图10为本发明基站实施例二的结构示意图,如图10所示,本实施例的装置在图9所示装置结构的基础上,进一步地,还可以包括:处理模块23,该处理模块23用于确定出第一上行参考信号,第一上行参考信号为基站接收到的所有上行参考信号中接收质量最优的上行参考信号,发送模块21还用于向UE发送第一上行参考信号所在符号的索引值,以使UE根据索引值确定第一波束方向,并使用第一波束方向继续发送下一个上行参考信号;或者,向UE发送第二触发信令,以使UE接收到第二触发信令后继续发送多个上行参考信号。从而能够保证基站在随后的一段时间能够一直以较高的信噪比接收到上行参考信号,从而能够较好的对上行信道进行测量。
本实施例的装置,可以用于执行图2或图6所示方法实施例的技术方案,其实现原理类似,此处不再赘述。
在图9或图10所示的实施例中,作为基站配置参考信号资源的一种实施方式,发送模块21还用于:向UE发送参考信号资源。
其中,参考信号资源包括符号个数N与参考信号的发射带宽、频域起点频率、梳齿和参考信号资源所占子帧位置的时域周期中的至少一个。
可选的,参考信号资源所占子帧位置相同,不同周期内的参考信号资源的符号数相同或者不同。
可选的,第一触发信令还包括指示UE发送上行参考信号的个数M,M大于等于1。
进一步地,基站不调度基站服务的所有UE在配置的参考信号资源上发送上行数据,可以避免信号干扰。
作为基站配置参考信号资源的另一种实施方式,第一触发信令中包括基站配置的参考信号资源,参考信号资源至少包括符号数N。
进一步地,参考信号资源还包括参考信号的发射带宽、频域起点频率、扫频的带宽、梳齿和参考信号资源所占子帧位置的时域周期中的至少一个。
可选的,第一触发信令中包括:信息比特,信息比特用于指示参考信号 资源的符号数N、参考信号资源分布的子帧个数和参考信号资源分布的子帧中的符号位置。
在上述实施例中,发送模块21还用于:向基站服务的所有UE广播禁止在参考信号资源上发送上行数据的通知消息,可以避免信号干扰。
图11为本发明UE实施例二的结构示意图,如图11所示,本实施例的UE可以包括:接收器31和发送器32,其中,接收器31用于接收基站发送的第一触发信令,第一触发信令用于指示UE发送多个上行参考信号,发送器32用于在基站配置的参考信号资源上发送多个上行参考信号,参考信号资源为N个符号,N大于等于1。
进一步地,接收器31还用于接收基站发送的第一上行参考信号所在符号的索引值,根据索引值确定第一波束方向,发送器32还用于使用第一波束方向继续发送下一个上行参考信号,第一上行参考信号为基站接收的接收质量最优的上行参考信号;或者,接收器31还用于接收基站发送的第二触发信令,第二触发信令用于指示UE继续发送多个上行参考信号。从而能够保证基站在随后的一段时间能够一直以较高的信噪比接收到上行参考信号,从而能够较好的对上行信道进行测量。
进一步地,作为基站配置参考信号资源的一种实施方式,接收器31还用于:接收基站配置的参考信号资源。
其中,参考信号资源包括符号个数N与参考信号的发射带宽、频域起点频率、梳齿和参考信号资源所占子帧位置的时域周期中的至少一个。其中,不同周期内的参考信号资源所占子帧位置相同。
可选的,第一触发信令还包括指示UE发送上行参考信号的个数M,M大于等于1。
作为基站配置参考信号资源的另一种实施方式,第一触发信令中包括基站配置的参考信号资源,参考信号资源至少包括符号数N。
进一步地,参考信号资源还包括参考信号的发射带宽、频域起点频率、扫频的带宽、梳齿和参考信号资源所占子帧位置的时域周期中的至少一个。
可选的,第一触发信令中还包括:信息比特,信息比特用于指示参考信号资源的符号数N、参考信号资源分布的子帧个数和参考信号资源分布的子帧中的符号位置。
可选的,接收器31还用于:接收基站广播的禁止在参考信号资源上发送上行数据的通知消息,可以避免信号干扰。
本实施例的UE,可以用于执行图1所示方法实施例的技术方案,其实现原理类似,此处不再赘述。
本实施例提供的UE,通过接收器接收基站发送的第一触发信令,第一触发信令用于指示UE发送多个上行参考信号,发送器在基站配置的参考信号资源上发送多个上行参考信号,参考信号资源为N个符号,N大于等于1。从而就可以提高上行参考信号的接收率,可以实现非周期触发多波束的上行参考信号的发送,提高上行测量过程的鲁棒性。
图12为本发明基站实施例三的结构示意图,如图12所示,本实施例的基站可以包括:发送器41和接收器42,其中,发送器41用于向UE发送第一触发信令,以使UE接收到第一触发信令后在基站配置的参考信号资源上发送多个上行参考信号,接收器42用于在相应的参考信号资源上接收UE发送的上行参考信号,参考信号资源为N个符号,N大于等于1。
本实施例的基站,可以用于执行图1所示方法实施例的技术方案,其实现原理类似,此处不再赘述。
本实施例提供的基站,通过发送器向UE发送第一触发信令,以使UE接收到第一触发信令后在基站配置的参考信号资源上发送多个上行参考信号,接收器在相应的参考信号资源上接收UE发送的上行参考信号,参考信号资源为N个符号,N大于等于1。从而就可以提高上行参考信号的接收率,可以实现非周期触发多波束的上行参考信号的发送,提高上行测量过程的鲁棒性。
图13为本发明基站实施例四的结构示意图,如图13所示,本实施例的装置在图12所示装置结构的基础上,进一步地,还可以包括:处理器43,该处理器43用于确定出第一上行参考信号,第一上行参考信号为基站接收到的所有上行参考信号中接收质量最优的上行参考信号,发送器41还用于向UE发送第一上行参考信号所在符号的索引值,以使UE根据索引值确定第一波束方向,并使用第一波束方向继续发送下一个上行参考信号;或者,向UE发送第二触发信令,以使UE接收到第二触发信令后继续发送多个上行参考信号。从而能够保证基站在随后的一段时间能够一直以较高的信噪比接 收到上行参考信号,从而能够较好的对上行信道进行测量。
本实施例的装置,可以用于执行图2或图6所示方法实施例的技术方案,其实现原理类似,此处不再赘述。
在图12或图13所示的实施例中,作为基站配置参考信号资源的一种实施方式,发送器41还用于:向UE发送参考信号资源。
其中,参考信号资源包括符号个数N与参考信号的发射带宽、频域起点频率、梳齿和参考信号资源所占子帧位置的时域周期中的至少一个。
可选的,参考信号资源所占子帧位置相同,不同周期内的参考信号资源的符号数相同或者不同。
可选的,第一触发信令还包括指示UE发送上行参考信号的个数M,M大于等于1。
进一步地,基站不调度基站服务的所有UE在配置的参考信号资源上发送上行数据,可以避免信号干扰。
作为基站配置参考信号资源的另一种实施方式,第一触发信令中包括基站配置的参考信号资源,参考信号资源至少包括符号数N。
进一步地,参考信号资源还包括参考信号的发射带宽、频域起点频率、扫频的带宽、梳齿和参考信号资源所占子帧位置的时域周期中的至少一个。
可选的,第一触发信令中包括:信息比特,信息比特用于指示参考信号资源的符号数N、参考信号资源分布的子帧个数和参考信号资源分布的子帧中的符号位置。
在上述实施例中,发送器41还用于:向基站服务的所有UE广播禁止在参考信号资源上发送上行数据的通知消息,可以避免信号干扰。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本领域普通技术人员将会理解,本申请的各个方面、或各个方面的可能实现方式可以被具体实施为系统、方法或者计算机程序产品。因此,本申请的各方面、或各个方面的可能实现方式可以采用完全硬件实施例、完全软件实施例(包括固件、驻留软件等等),或者组合软件和硬件方面的实 施例的形式,在这里都统称为“电路”、“模块”或者“系统”。此外,本申请的各方面、或各个方面的可能实现方式可以采用计算机程序产品的形式,计算机程序产品是指存储在计算机可读介质中的计算机可读程序代码。
计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质包含但不限于电子、磁性、光学、电磁、红外或半导体系统、设备或者装置,或者前述的任意适当组合,如随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或者快闪存储器)、光纤、便携式只读存储器(CD-ROM)。
计算机中的处理器读取存储在计算机可读介质中的计算机可读程序代码,使得处理器能够执行在流程图中每个步骤、或各步骤的组合中规定的功能动作;生成实施在框图的每一块、或各块的组合中规定的功能动作的装置。
计算机可读程序代码可以完全在用户的本地计算机上执行、部分在用户的本地计算机上执行、作为单独的软件包、部分在用户的本地计算机上并且部分在远程计算机上,或者完全在远程计算机或者服务器上执行。也应该注意,在某些替代实施方案中,在流程图中各步骤、或框图中各块所注明的功能可能不按图中注明的顺序发生。例如,依赖于所涉及的功能,接连示出的两个步骤、或两个块实际上可能被大致同时执行,或者这些块有时候可能被以相反顺序执行。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (42)

  1. 一种上行参考信号发送方法,其特征在于,包括:
    用户设备UE接收基站发送的第一触发信令,所述第一触发信令用于指示所述UE发送多个上行参考信号;
    所述UE在所述基站配置的参考信号资源上发送多个上行参考信号,所述参考信号资源为N个符号,N大于等于1。
  2. 根据权利要求1所述的方法,其特征在于,所述多个上行参考信号为上行参考信号时,还包括:
    所述UE接收所述基站发送的第一上行参考信号所在符号的索引值,根据所述索引值确定第一波束方向,并使用所述第一波束方向继续发送下一个上行参考信号,所述第一上行参考信号为所述基站接收的接收质量最优的上行参考信号;或者,
    所述UE接收所述基站发送的第二触发信令,所述第二触发信令用于指示所述UE继续发送多个上行参考信号。
  3. 根据权利要求1或2所述的方法,其特征在于,还包括:
    所述UE接收所述基站配置的所述参考信号资源。
  4. 根据权利要求3所述的方法,其特征在于,所述参考信号资源包括符号个数N与参考信号的发射带宽、频域起点频率、梳齿和所述参考信号资源所占子帧位置的时域周期中的至少一个。
  5. 根据权利要求4所述的方法,其特征在于,不同周期内的所述参考信号资源所占子帧位置相同。
  6. 根据权利要求3-5任一项所述的方法,其特征在于,所述第一触发信令还包括指示所述UE发送上行参考信号的个数M,M大于等于1。
  7. 根据权利要求1或2所述的方法,其特征在于,所述第一触发信令中包括所述基站配置的所述参考信号资源,所述参考信号资源至少包括符号数N。
  8. 根据权利要求7所述的方法,其特征在于,所述参考信号资源还包括参考信号的发射带宽、频域起点频率、扫频的带宽、梳齿和所述参考信号资源所占子帧位置的时域周期中的至少一个。
  9. 根据权利要求1或2所述的方法,其特征在于,所述第一触发信令中 还包括:
    信息比特,所述信息比特用于指示所述参考信号资源的符号数N、所述参考信号资源分布的子帧个数和所述参考信号资源分布的子帧中的符号位置。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,还包括:
    所述UE接收所述基站广播的禁止在所述参考信号资源上发送上行数据的通知消息。
  11. 一种上行参考信号接收方法,其特征在于,包括:
    基站向用户设备UE发送第一触发信令,以使所述UE接收到所述第一触发信令后在所述基站配置的参考信号资源上发送多个上行参考信号;
    所述基站在相应的参考信号资源上接收所述UE发送的上行参考信号,所述参考信号资源为N个符号,N大于等于1。
  12. 根据权利要求11所述的方法,其特征在于,所述多个上行参考信号为不同波束方向的上行参考信号时,还包括:
    所述基站确定出第一上行参考信号,所述第一上行参考信号为所述基站接收到的所有上行参考信号中接收质量最优的上行参考信号;
    所述基站向所述UE发送第一上行参考信号所在符号的索引值,以使所述UE根据所述索引值确定第一波束方向,并使用所述第一波束方向继续发送下一个上行参考信号;或者,
    所述基站向所述UE发送第二触发信令,以使所述UE接收到所述第二触发信令后继续发送多个上行参考信号。
  13. 根据权利要求11或12所述的方法,其特征在于,还包括:
    所述基站向所述UE发送所述参考信号资源。
  14. 根据权利要求13所述的方法,其特征在于,所述参考信号资源包括符号个数N与参考信号的发射带宽、频域起点频率、梳齿和所述参考信号资源所占子帧位置的时域周期中的至少一个。
  15. 根据权利要求14所述的方法,其特征在于,所述参考信号资源所占子帧位置相同,。
  16. 根据权利要求13-15任一项所述的方法,其特征在于,所述第一触发信令还包括指示所述UE发送上行参考信号的个数M,M大于等于1。
  17. 根据权利要求13-16任一项所述的方法,其特征在于,所述基站不调度所述基站服务的所有UE在配置的所述参考信号资源上发送上行数据。
  18. 根据权利要求11或12所述的方法,其特征在于,所述第一触发信令中包括所述基站配置的所述参考信号资源,所述参考信号资源至少包括符号数N。
  19. 根据权利要求18所述的方法,其特征在于,所述参考信号资源还包括参考信号的发射带宽、频域起点频率、扫频的带宽、梳齿和所述参考信号资源所占子帧位置的时域周期中的至少一个。
  20. 根据权利要求11或12所述的方法,其特征在于,所述第一触发信令中包括:
    信息比特,所述信息比特用于指示所述参考信号资源的符号数N、所述参考信号资源分布的子帧个数和所述参考信号资源分布的子帧中的符号位置。
  21. 根据权利要求18-20任一项所述的方法,其特征在于,还包括:
    所述基站向所述基站服务的所有UE广播禁止在所述参考信号资源上发送上行数据的通知消息。
  22. 一种用户设备,其特征在于,包括:
    接收模块,用于接收基站发送的第一触发信令,所述第一触发信令用于指示所述UE发送多个上行参考信号;
    发送模块,用于在所述基站配置的参考信号资源上发送多个上行参考信号,所述参考信号资源为N个符号,N大于等于1。
  23. 根据权利要求22所述的用户设备,其特征在于,所述多个上行参考信号为不同波束方向的上行参考信号时,所述接收模块还用于接收所述基站发送的第一上行参考信号所在符号的索引值,根据所述索引值确定第一波束方向;
    所述发送模块还用于使用所述第一波束方向继续发送下一个上行参考信号,所述第一上行参考信号为所述基站接收的接收质量最优的上行参考信号;或者,
    所述接收模块还用于接收所述基站发送的第二触发信令,所述第二触发信令用于指示所述UE继续发送多个上行参考信号。
  24. 根据权利要求22或23所述的用户设备,其特征在于,所述接收模块还用于:
    接收所述基站配置的所述参考信号资源。
  25. 根据权利要求24所述的用户设备,其特征在于,所述参考信号资源包括符号个数N与参考信号的发射带宽、频域起点频率、梳齿和所述参考信号资源所占子帧位置的时域周期中的至少一个。
  26. 根据权利要求25所述的用户设备,其特征在于,不同周期内的所述参考信号资源所占子帧位置相同。
  27. 根据权利要求24-26任一项所述的用户设备,其特征在于,所述第一触发信令还包括指示所述UE发送上行参考信号的个数M,M大于等于1。
  28. 根据权利要求22或23所述的用户设备,其特征在于,所述第一触发信令中包括所述基站配置的所述参考信号资源,所述参考信号资源至少包括符号数N。
  29. 根据权利要求28所述的用户设备,其特征在于,所述参考信号资源还包括参考信号的发射带宽、频域起点频率、扫频的带宽、梳齿和所述参考信号资源所占子帧位置的时域周期中的至少一个。
  30. 根据权利要求22或23所述的用户设备,其特征在于,所述第一触发信令中还包括:
    信息比特,所述信息比特用于指示所述参考信号资源的符号数N、所述参考信号资源分布的子帧个数和所述参考信号资源分布的子帧中的符号位置。
  31. 根据权利要求28-30任一项所述的用户设备,其特征在于,所述接收模块还用于:
    接收所述基站广播的禁止在所述参考信号资源上发送上行数据的通知消息。
  32. 一种基站,其特征在于,包括:
    发送模块,用于向用户设备UE发送第一触发信令,以使所述UE接收到所述第一触发信令后在所述基站配置的参考信号资源上发送多个上行参考信号;
    接收模块,用于在相应的参考信号资源上接收所述UE发送的上行参考 信号,所述参考信号资源为N个符号,N大于等于1。
  33. 根据权利要求32所述的基站,其特征在于,所述多个上行参考信号为不同波束方向的上行参考信号时,还包括:
    处理模块,用于确定出第一上行参考信号,所述第一上行参考信号为所述基站接收到的所有上行参考信号中接收质量最优的上行参考信号;
    所述发送模块还用于向所述UE发送第一上行参考信号所在符号的索引值,以使所述UE根据所述索引值确定第一波束方向,并使用所述第一波束方向继续发送下一个上行参考信号;或者,
    向所述UE发送第二触发信令,以使所述UE接收到所述第二触发信令后继续发送多个上行参考信号。
  34. 根据权利要求32或33所述的基站,其特征在于,所述发送模块还用于:
    向所述UE发送所述参考信号资源。
  35. 根据权利要求34所述的基站,其特征在于,所述参考信号资源包括符号个数N与参考信号的发射带宽、频域起点频率、梳齿和所述参考信号资源所占子帧位置的时域周期中的至少一个。
  36. 根据权利要求35所述的基站,其特征在于,所述参考信号资源所占子帧位置相同,。
  37. 根据权利要求34-36任一项所述的基站,其特征在于,所述第一触发信令还包括指示所述UE发送上行参考信号的个数M,M大于等于1。
  38. 根据权利要求34-37任一项所述的基站,其特征在于,所述基站不调度所述基站服务的所有UE在配置的所述参考信号资源上发送上行数据。
  39. 根据权利要求32或33所述的基站,其特征在于,所述第一触发信令中包括所述基站配置的所述参考信号资源,所述参考信号资源至少包括符号数N。
  40. 根据权利要求39所述的基站,其特征在于,所述参考信号资源还包括参考信号的发射带宽、频域起点频率、扫频的带宽、梳齿和所述参考信号资源所占子帧位置的时域周期中的至少一个。
  41. 根据权利要求32或33所述的基站,其特征在于,所述第一触发信令中包括:
    信息比特,所述信息比特用于指示所述参考信号资源的符号数N、所述参考信号资源分布的子帧个数和所述参考信号资源分布的子帧中的符号位置。
  42. 根据权利要求39-41任一项所述的基站,其特征在于,所述发送模块还用于:
    向所述基站服务的所有UE广播禁止在所述参考信号资源上发送上行数据的通知消息。
PCT/CN2016/085003 2016-06-06 2016-06-06 上行参考信号发送与接收方法及装置 WO2017210845A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680086000.5A CN109196901B (zh) 2016-06-06 2016-06-06 上行参考信号发送与接收方法及装置
PCT/CN2016/085003 WO2017210845A1 (zh) 2016-06-06 2016-06-06 上行参考信号发送与接收方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/085003 WO2017210845A1 (zh) 2016-06-06 2016-06-06 上行参考信号发送与接收方法及装置

Publications (1)

Publication Number Publication Date
WO2017210845A1 true WO2017210845A1 (zh) 2017-12-14

Family

ID=60578372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085003 WO2017210845A1 (zh) 2016-06-06 2016-06-06 上行参考信号发送与接收方法及装置

Country Status (2)

Country Link
CN (1) CN109196901B (zh)
WO (1) WO2017210845A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115550948A (zh) * 2022-11-25 2022-12-30 北京九天微星科技发展有限公司 一种上行探测参考信号传输方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101795145A (zh) * 2010-02-08 2010-08-04 中兴通讯股份有限公司 测量参考信号的发送方法及系统
US20120294273A1 (en) * 2010-07-26 2012-11-22 Ahn Joonkui Method and device for transmitting extended uplink control information in wireless communication system
CN103096346A (zh) * 2011-11-03 2013-05-08 华为技术有限公司 测量参考信号srs发送和信道检测的方法、装置及终端
CN103312444A (zh) * 2012-03-16 2013-09-18 中兴通讯股份有限公司 指示信息的发送和接收方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101764261B1 (ko) * 2011-07-15 2017-08-04 삼성전자주식회사 무선 통신 시스템에서 빔 고정 장치 및 방법
KR101839386B1 (ko) * 2011-08-12 2018-03-16 삼성전자주식회사 무선 통신 시스템에서의 적응적 빔포밍 장치 및 방법
CN103812546B (zh) * 2012-11-07 2017-08-25 华为技术有限公司 一种基于天线阵列的参考信号映射方法、装置及系统
WO2014194474A1 (zh) * 2013-06-04 2014-12-11 华为技术有限公司 数据传输方法、装置和用户设备
CN105451255B (zh) * 2014-09-26 2020-08-18 南京中兴新软件有限责任公司 小区干扰的处理方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101795145A (zh) * 2010-02-08 2010-08-04 中兴通讯股份有限公司 测量参考信号的发送方法及系统
US20120294273A1 (en) * 2010-07-26 2012-11-22 Ahn Joonkui Method and device for transmitting extended uplink control information in wireless communication system
CN103096346A (zh) * 2011-11-03 2013-05-08 华为技术有限公司 测量参考信号srs发送和信道检测的方法、装置及终端
CN103312444A (zh) * 2012-03-16 2013-09-18 中兴通讯股份有限公司 指示信息的发送和接收方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115550948A (zh) * 2022-11-25 2022-12-30 北京九天微星科技发展有限公司 一种上行探测参考信号传输方法及设备
CN115550948B (zh) * 2022-11-25 2023-08-18 北京九天微星科技发展有限公司 一种上行探测参考信号传输方法及设备

Also Published As

Publication number Publication date
CN109196901B (zh) 2021-05-07
CN109196901A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
US11582712B2 (en) Methods and apparatus of timing/frequency tracking for receiving paging
US11218353B2 (en) Paging in beamformed wireless communication system
CN109391986B (zh) 一种辅小区激活方法、接入网设备、通信装置以及系统
US20210091900A1 (en) Communication method and communications apparatus
US20210067258A1 (en) Radio Resource Management Measurement Method and Apparatus
EP3531787A1 (en) Wave beam-based multi-connection communication method, terminal device, and network device
JP6896061B2 (ja) ビームトラッキング方法、端末装置、及びネットワーク側装置
US11546889B2 (en) Signal transmission method and apparatus
JP2020503803A (ja) 通信方法、ネットワークデバイス、および端末デバイス
US11424964B2 (en) Sounding reference signal receiving method, apparatus, and system
US10952168B2 (en) Method for transmitting downlink control signal and apparatus
CN111343717B (zh) 一种寻呼消息的接收方法、发送方法、终端设备及网络设备
WO2018099328A1 (zh) 通信方法、基站和终端设备
WO2019174453A1 (zh) 信息发送的方法和装置
CN112188622A (zh) 一种协作传输方法及通信装置
CN114071503B (zh) 下行定位参考信号收发方法、终端、基站、设备及装置
CN109803439B (zh) 随机接入方法和设备
US11082960B2 (en) Method and device for transmitting or receiving channel state information
CN111148144B (zh) 一种rrm测量方法及装置
CN115066851B (zh) 时域资源确定方法及装置
WO2018059309A1 (zh) 接入信息的发送、接收方法及装置,传输系统和存储介质
US20180152882A1 (en) Apparatus and Methods for Providing and Receiving System Information in a Wireless Communications Network
WO2017210845A1 (zh) 上行参考信号发送与接收方法及装置
WO2019085911A1 (en) Window-based scheduling method, device and computer readable medium
US11284419B2 (en) Communication method, terminal device and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16904298

Country of ref document: EP

Kind code of ref document: A1