WO2017210261A1 - Deuterated fevipiprant - Google Patents
Deuterated fevipiprant Download PDFInfo
- Publication number
- WO2017210261A1 WO2017210261A1 PCT/US2017/035141 US2017035141W WO2017210261A1 WO 2017210261 A1 WO2017210261 A1 WO 2017210261A1 US 2017035141 W US2017035141 W US 2017035141W WO 2017210261 A1 WO2017210261 A1 WO 2017210261A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- deuterium
- hydrogen
- compounds
- atom
- Prior art date
Links
- GFPPXZDRVCSVNR-UHFFFAOYSA-N 2-[2-methyl-1-[[4-methylsulfonyl-2-(trifluoromethyl)phenyl]methyl]pyrrolo[2,3-b]pyridin-3-yl]acetic acid Chemical class CC1=C(CC(O)=O)C2=CC=CN=C2N1CC1=CC=C(S(C)(=O)=O)C=C1C(F)(F)F GFPPXZDRVCSVNR-UHFFFAOYSA-N 0.000 title abstract description 18
- 150000001875 compounds Chemical class 0.000 claims abstract description 188
- 238000000034 method Methods 0.000 claims abstract description 51
- 239000000203 mixture Substances 0.000 claims abstract description 49
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 38
- 150000003839 salts Chemical class 0.000 claims abstract description 33
- 201000010099 disease Diseases 0.000 claims abstract description 28
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 19
- 102100024218 Prostaglandin D2 receptor 2 Human genes 0.000 claims abstract description 18
- 101710201263 Prostaglandin D2 receptor 2 Proteins 0.000 claims abstract description 4
- 229910052805 deuterium Inorganic materials 0.000 claims description 132
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 claims description 121
- 238000010348 incorporation Methods 0.000 claims description 50
- 229910052739 hydrogen Inorganic materials 0.000 claims description 40
- 239000001257 hydrogen Substances 0.000 claims description 39
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 34
- 125000004429 atom Chemical group 0.000 claims description 32
- 208000006673 asthma Diseases 0.000 claims description 27
- 230000000155 isotopic effect Effects 0.000 claims description 14
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 12
- UCHDWCPVSPXUMX-TZIWLTJVSA-N Montelukast Chemical compound CC(C)(O)C1=CC=CC=C1CC[C@H](C=1C=C(\C=C\C=2N=C3C=C(Cl)C=CC3=CC=2)C=CC=1)SCC1(CC(O)=O)CC1 UCHDWCPVSPXUMX-TZIWLTJVSA-N 0.000 claims description 10
- 206010039085 Rhinitis allergic Diseases 0.000 claims description 10
- 201000010105 allergic rhinitis Diseases 0.000 claims description 10
- 229960005127 montelukast Drugs 0.000 claims description 10
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 claims description 8
- 206010012438 Dermatitis atopic Diseases 0.000 claims description 6
- 201000008937 atopic dermatitis Diseases 0.000 claims description 6
- 239000003937 drug carrier Substances 0.000 claims description 6
- 230000003042 antagnostic effect Effects 0.000 claims description 3
- 239000005557 antagonist Substances 0.000 abstract description 19
- 229950003562 fevipiprant Drugs 0.000 abstract description 13
- 108050000258 Prostaglandin D receptors Proteins 0.000 abstract description 9
- MVXVYAKCVDQRLW-UHFFFAOYSA-N 1h-pyrrolo[2,3-b]pyridine Chemical class C1=CN=C2NC=CC2=C1 MVXVYAKCVDQRLW-UHFFFAOYSA-N 0.000 abstract description 5
- 101001117314 Homo sapiens Prostaglandin D2 receptor 2 Proteins 0.000 abstract description 4
- 239000003814 drug Substances 0.000 description 78
- 239000000543 intermediate Substances 0.000 description 57
- 229940079593 drug Drugs 0.000 description 37
- 229940124597 therapeutic agent Drugs 0.000 description 35
- 238000011282 treatment Methods 0.000 description 35
- -1 for example Chemical group 0.000 description 33
- 235000002639 sodium chloride Nutrition 0.000 description 30
- 239000003153 chemical reaction reagent Substances 0.000 description 24
- 238000002360 preparation method Methods 0.000 description 18
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 239000000126 substance Substances 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 13
- 230000004060 metabolic process Effects 0.000 description 13
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 13
- 150000001975 deuterium Chemical group 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 238000009472 formulation Methods 0.000 description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 11
- 238000003786 synthesis reaction Methods 0.000 description 11
- 125000000217 alkyl group Chemical group 0.000 description 10
- 125000003118 aryl group Chemical group 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 10
- 208000035475 disorder Diseases 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- 239000002253 acid Substances 0.000 description 9
- 230000002757 inflammatory effect Effects 0.000 description 9
- 239000002585 base Substances 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 239000002552 dosage form Substances 0.000 description 7
- 230000002503 metabolic effect Effects 0.000 description 7
- 125000001424 substituent group Chemical group 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 125000003342 alkenyl group Chemical group 0.000 description 6
- 125000004452 carbocyclyl group Chemical group 0.000 description 6
- 210000003979 eosinophil Anatomy 0.000 description 6
- ZCSHNCUQKCANBX-UHFFFAOYSA-N lithium diisopropylamide Chemical compound [Li+].CC(C)[N-]C(C)C ZCSHNCUQKCANBX-UHFFFAOYSA-N 0.000 description 6
- MZRVEZGGRBJDDB-UHFFFAOYSA-N n-Butyllithium Substances [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 6
- BHMBVRSPMRCCGG-OUTUXVNYSA-N prostaglandin D2 Chemical compound CCCCC[C@H](O)\C=C\[C@@H]1[C@@H](C\C=C/CCCC(O)=O)[C@@H](O)CC1=O BHMBVRSPMRCCGG-OUTUXVNYSA-N 0.000 description 6
- LOUPRKONTZGTKE-LHHVKLHASA-N quinidine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@H]2[C@@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-LHHVKLHASA-N 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- FPGGTKZVZWFYPV-UHFFFAOYSA-M tetrabutylammonium fluoride Chemical compound [F-].CCCC[N+](CCCC)(CCCC)CCCC FPGGTKZVZWFYPV-UHFFFAOYSA-M 0.000 description 6
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 6
- 0 C*C(C*)C*(C)N Chemical compound C*C(C*)C*(C)N 0.000 description 5
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 5
- 208000027771 Obstructive airways disease Diseases 0.000 description 5
- 230000000172 allergic effect Effects 0.000 description 5
- 230000003110 anti-inflammatory effect Effects 0.000 description 5
- 208000010668 atopic eczema Diseases 0.000 description 5
- 239000002775 capsule Substances 0.000 description 5
- 150000001721 carbon Chemical group 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 125000000753 cycloalkyl group Chemical group 0.000 description 5
- 125000001072 heteroaryl group Chemical group 0.000 description 5
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 5
- 150000002430 hydrocarbons Chemical group 0.000 description 5
- 208000027866 inflammatory disease Diseases 0.000 description 5
- 210000000056 organ Anatomy 0.000 description 5
- 239000000546 pharmaceutical excipient Substances 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 231100000331 toxic Toxicity 0.000 description 5
- 230000002588 toxic effect Effects 0.000 description 5
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical class OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 4
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 230000001154 acute effect Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000001363 autoimmune Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 206010006451 bronchitis Diseases 0.000 description 4
- 230000003182 bronchodilatating effect Effects 0.000 description 4
- 230000001684 chronic effect Effects 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 125000004431 deuterium atom Chemical group 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 4
- 239000002207 metabolite Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- BHMBVRSPMRCCGG-UHFFFAOYSA-N prostaglandine D2 Natural products CCCCCC(O)C=CC1C(CC=CCCCC(O)=O)C(O)CC1=O BHMBVRSPMRCCGG-UHFFFAOYSA-N 0.000 description 4
- 125000006413 ring segment Chemical group 0.000 description 4
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 230000002194 synthesizing effect Effects 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 4
- 210000002268 wool Anatomy 0.000 description 4
- VSCBATMPTLKTOV-UHFFFAOYSA-N 2-tert-butylimino-n,n-diethyl-1,3-dimethyl-1,3,2$l^{5}-diazaphosphinan-2-amine Chemical compound CCN(CC)P1(=NC(C)(C)C)N(C)CCCN1C VSCBATMPTLKTOV-UHFFFAOYSA-N 0.000 description 3
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 102100035875 C-C chemokine receptor type 5 Human genes 0.000 description 3
- 101710149870 C-C chemokine receptor type 5 Proteins 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 206010014950 Eosinophilia Diseases 0.000 description 3
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- 229940123932 Phosphodiesterase 4 inhibitor Drugs 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 206010047924 Wheezing Diseases 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 239000000556 agonist Substances 0.000 description 3
- 125000000304 alkynyl group Chemical group 0.000 description 3
- 229940124623 antihistamine drug Drugs 0.000 description 3
- 239000000739 antihistaminic agent Substances 0.000 description 3
- 125000003710 aryl alkyl group Chemical group 0.000 description 3
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 3
- 125000002619 bicyclic group Chemical group 0.000 description 3
- LOUPRKONTZGTKE-UHFFFAOYSA-N cinchonine Natural products C1C(C(C2)C=C)CCN2C1C(O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-UHFFFAOYSA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000002648 combination therapy Methods 0.000 description 3
- 238000010511 deprotection reaction Methods 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthene Chemical compound C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 229940093915 gynecological organic acid Drugs 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 239000002502 liposome Substances 0.000 description 3
- 210000001853 liver microsome Anatomy 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000007522 mineralic acids Chemical class 0.000 description 3
- 125000002950 monocyclic group Chemical group 0.000 description 3
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 235000005985 organic acids Nutrition 0.000 description 3
- 238000009521 phase II clinical trial Methods 0.000 description 3
- 239000002587 phosphodiesterase IV inhibitor Substances 0.000 description 3
- 230000000069 prophylactic effect Effects 0.000 description 3
- 229960001404 quinidine Drugs 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000009097 single-agent therapy Methods 0.000 description 3
- 150000003431 steroids Chemical class 0.000 description 3
- 239000000375 suspending agent Substances 0.000 description 3
- 208000011580 syndromic disease Diseases 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 230000000699 topical effect Effects 0.000 description 3
- DTQVDTLACAAQTR-UHFFFAOYSA-N trifluoroacetic acid Substances OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 3
- MWKJTNBSKNUMFN-UHFFFAOYSA-N trifluoromethyltrimethylsilane Chemical compound C[Si](C)(C)C(F)(F)F MWKJTNBSKNUMFN-UHFFFAOYSA-N 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical compound C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 2
- ICSNLGPSRYBMBD-UHFFFAOYSA-N 2-aminopyridine Chemical class NC1=CC=CC=N1 ICSNLGPSRYBMBD-UHFFFAOYSA-N 0.000 description 2
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 2
- 125000006163 5-membered heteroaryl group Chemical group 0.000 description 2
- LIFAQMGORKPVDH-UHFFFAOYSA-N 7-ethoxycoumarin Chemical compound C1=CC(=O)OC2=CC(OCC)=CC=C21 LIFAQMGORKPVDH-UHFFFAOYSA-N 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 2
- 206010027654 Allergic conditions Diseases 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 102100024167 C-C chemokine receptor type 3 Human genes 0.000 description 2
- 101710149862 C-C chemokine receptor type 3 Proteins 0.000 description 2
- 101150015280 Cel gene Proteins 0.000 description 2
- 102100031265 Chromodomain-helicase-DNA-binding protein 2 Human genes 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- 208000003556 Dry Eye Syndromes Diseases 0.000 description 2
- 206010013774 Dry eye Diseases 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 101000777079 Homo sapiens Chromodomain-helicase-DNA-binding protein 2 Proteins 0.000 description 2
- 101000880945 Homo sapiens Down syndrome cell adhesion molecule Proteins 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 208000009319 Keratoconjunctivitis Sicca Diseases 0.000 description 2
- MKXZASYAUGDDCJ-SZMVWBNQSA-N LSM-2525 Chemical compound C1CCC[C@H]2[C@@]3([H])N(C)CC[C@]21C1=CC(OC)=CC=C1C3 MKXZASYAUGDDCJ-SZMVWBNQSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 2
- 240000007472 Leucaena leucocephala Species 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 2
- NCDNCNXCDXHOMX-UHFFFAOYSA-N Ritonavir Natural products C=1C=CC=CC=1CC(NC(=O)OCC=1SC=NC=1)C(O)CC(CC=1C=CC=CC=1)NC(=O)C(C(C)C)NC(=O)N(C)CC1=CSC(C(C)C)=N1 NCDNCNXCDXHOMX-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 206010069351 acute lung injury Diseases 0.000 description 2
- 125000002015 acyclic group Chemical group 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 208000011341 adult acute respiratory distress syndrome Diseases 0.000 description 2
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 2
- NDAUXUAQIAJITI-UHFFFAOYSA-N albuterol Chemical compound CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=C1 NDAUXUAQIAJITI-UHFFFAOYSA-N 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 230000001078 anti-cholinergic effect Effects 0.000 description 2
- 229940124599 anti-inflammatory drug Drugs 0.000 description 2
- CUFNKYGDVFVPHO-UHFFFAOYSA-N azulene Chemical compound C1=CC=CC2=CC=CC2=C1 CUFNKYGDVFVPHO-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 2
- CSKNSYBAZOQPLR-UHFFFAOYSA-N benzenesulfonyl chloride Chemical compound ClS(=O)(=O)C1=CC=CC=C1 CSKNSYBAZOQPLR-UHFFFAOYSA-N 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- KDPAWGWELVVRCH-UHFFFAOYSA-N bromoacetic acid Chemical class OC(=O)CBr KDPAWGWELVVRCH-UHFFFAOYSA-N 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- CFBUZOUXXHZCFB-OYOVHJISSA-N chembl511115 Chemical compound COC1=CC=C([C@@]2(CC[C@H](CC2)C(O)=O)C#N)C=C1OC1CCCC1 CFBUZOUXXHZCFB-OYOVHJISSA-N 0.000 description 2
- 125000003636 chemical group Chemical group 0.000 description 2
- 239000000812 cholinergic antagonist Substances 0.000 description 2
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical compound C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 229940099112 cornstarch Drugs 0.000 description 2
- VPUGDVKSAQVFFS-UHFFFAOYSA-N coronene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3)C4=C4C3=CC=C(C=C3)C4=C2C3=C1 VPUGDVKSAQVFFS-UHFFFAOYSA-N 0.000 description 2
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- INQOMBQAUSQDDS-MICDWDOJSA-N deuterio(iodo)methane Chemical compound [2H]CI INQOMBQAUSQDDS-MICDWDOJSA-N 0.000 description 2
- 229960001985 dextromethorphan Drugs 0.000 description 2
- INQOMBQAUSQDDS-DICFDUPASA-N dideuterio(iodo)methane Chemical compound [2H]C([2H])I INQOMBQAUSQDDS-DICFDUPASA-N 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 229940000406 drug candidate Drugs 0.000 description 2
- 238000002651 drug therapy Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 201000001155 extrinsic allergic alveolitis Diseases 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 125000005456 glyceride group Chemical group 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 125000004446 heteroarylalkyl group Chemical group 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 230000035874 hyperreactivity Effects 0.000 description 2
- 208000022098 hypersensitivity pneumonitis Diseases 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- PQNFLJBBNBOBRQ-UHFFFAOYSA-N indane Chemical compound C1=CC=C2CCCC2=C1 PQNFLJBBNBOBRQ-UHFFFAOYSA-N 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- YEESKJGWJFYOOK-IJHYULJSSA-N leukotriene D4 Chemical compound CCCCC\C=C/C\C=C/C=C/C=C/[C@H]([C@@H](O)CCCC(O)=O)SC[C@H](N)C(=O)NCC(O)=O YEESKJGWJFYOOK-IJHYULJSSA-N 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- DLEDOFVPSDKWEF-UHFFFAOYSA-N lithium butane Chemical compound [Li+].CCC[CH2-] DLEDOFVPSDKWEF-UHFFFAOYSA-N 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 2
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 2
- 210000001589 microsome Anatomy 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 238000011294 monotherapeutic Methods 0.000 description 2
- 239000003149 muscarinic antagonist Substances 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 239000000346 nonvolatile oil Substances 0.000 description 2
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 2
- 230000000414 obstructive effect Effects 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 2
- 125000000160 oxazolidinyl group Chemical group 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 238000001050 pharmacotherapy Methods 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- GBROPGWFBFCKAG-UHFFFAOYSA-N picene Chemical compound C1=CC2=C3C=CC=CC3=CC=C2C2=C1C1=CC=CC=C1C=C2 GBROPGWFBFCKAG-UHFFFAOYSA-N 0.000 description 2
- 206010035653 pneumoconiosis Diseases 0.000 description 2
- 229920001983 poloxamer Polymers 0.000 description 2
- 239000008057 potassium phosphate buffer Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- GRJJQCWNZGRKAU-UHFFFAOYSA-N pyridin-1-ium;fluoride Chemical compound F.C1=CC=NC=C1 GRJJQCWNZGRKAU-UHFFFAOYSA-N 0.000 description 2
- NCDNCNXCDXHOMX-XGKFQTDJSA-N ritonavir Chemical compound N([C@@H](C(C)C)C(=O)N[C@H](C[C@H](O)[C@H](CC=1C=CC=CC=1)NC(=O)OCC=1SC=NC=1)CC=1C=CC=CC=1)C(=O)N(C)CC1=CSC(C(C)C)=N1 NCDNCNXCDXHOMX-XGKFQTDJSA-N 0.000 description 2
- 229960000311 ritonavir Drugs 0.000 description 2
- 229960002052 salbutamol Drugs 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000012354 sodium borodeuteride Substances 0.000 description 2
- 239000012279 sodium borohydride Substances 0.000 description 2
- 229910000033 sodium borohydride Inorganic materials 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229910000104 sodium hydride Inorganic materials 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000012453 solvate Chemical group 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- DYHSDKLCOJIUFX-UHFFFAOYSA-N tert-butoxycarbonyl anhydride Chemical compound CC(C)(C)OC(=O)OC(=O)OC(C)(C)C DYHSDKLCOJIUFX-UHFFFAOYSA-N 0.000 description 2
- YBRBMKDOPFTVDT-UHFFFAOYSA-N tert-butylamine Chemical compound CC(C)(C)N YBRBMKDOPFTVDT-UHFFFAOYSA-N 0.000 description 2
- 238000011200 topical administration Methods 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- INQOMBQAUSQDDS-FIBGUPNXSA-N trideuterio(iodo)methane Chemical compound [2H]C([2H])([2H])I INQOMBQAUSQDDS-FIBGUPNXSA-N 0.000 description 2
- 150000003751 zinc Chemical class 0.000 description 2
- 239000011592 zinc chloride Substances 0.000 description 2
- 235000005074 zinc chloride Nutrition 0.000 description 2
- XWTYSIMOBUGWOL-UHFFFAOYSA-N (+-)-Terbutaline Chemical compound CC(C)(C)NCC(O)C1=CC(O)=CC(O)=C1 XWTYSIMOBUGWOL-UHFFFAOYSA-N 0.000 description 1
- CNPVJJQCETWNEU-CYFREDJKSA-N (4,6-dimethyl-5-pyrimidinyl)-[4-[(3S)-4-[(1R)-2-methoxy-1-[4-(trifluoromethyl)phenyl]ethyl]-3-methyl-1-piperazinyl]-4-methyl-1-piperidinyl]methanone Chemical compound N([C@@H](COC)C=1C=CC(=CC=1)C(F)(F)F)([C@H](C1)C)CCN1C(CC1)(C)CCN1C(=O)C1=C(C)N=CN=C1C CNPVJJQCETWNEU-CYFREDJKSA-N 0.000 description 1
- PDVFSPNIEOYOQL-UHFFFAOYSA-N (4-methylphenyl)sulfonyl 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)OS(=O)(=O)C1=CC=C(C)C=C1 PDVFSPNIEOYOQL-UHFFFAOYSA-N 0.000 description 1
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 description 1
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- 125000006584 (C3-C10) heterocycloalkyl group Chemical group 0.000 description 1
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 description 1
- 125000006708 (C5-C14) heteroaryl group Chemical group 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- PMGQWSIVQFOFOQ-BDUVBVHRSA-N (e)-but-2-enedioic acid;(2r)-2-[2-[1-(4-chlorophenyl)-1-phenylethoxy]ethyl]-1-methylpyrrolidine Chemical compound OC(=O)\C=C\C(O)=O.CN1CCC[C@@H]1CCOC(C)(C=1C=CC(Cl)=CC=1)C1=CC=CC=C1 PMGQWSIVQFOFOQ-BDUVBVHRSA-N 0.000 description 1
- MVXVYAKCVDQRLW-QNKSCLMFSA-N 1,2,3,4,5,6-hexadeuteriopyrrolo[2,3-b]pyridine Chemical compound [2H]C1=C([2H])N=C2N([2H])C([2H])=C([2H])C2=C1[2H] MVXVYAKCVDQRLW-QNKSCLMFSA-N 0.000 description 1
- GETTZEONDQJALK-RALIUCGRSA-N 1,2,3,4,5-pentadeuterio-6-(trifluoromethyl)benzene Chemical compound [2H]C1=C([2H])C([2H])=C(C(F)(F)F)C([2H])=C1[2H] GETTZEONDQJALK-RALIUCGRSA-N 0.000 description 1
- UHOVQNZJYSORNB-RALIUCGRSA-N 1,2,3,4,5-pentadeuteriobenzene Chemical compound [2H]C1=CC([2H])=C([2H])C([2H])=C1[2H] UHOVQNZJYSORNB-RALIUCGRSA-N 0.000 description 1
- UHOVQNZJYSORNB-VTBMLFEUSA-N 1,2,3,5-tetradeuteriobenzene Chemical compound [2H]C1=CC([2H])=C([2H])C([2H])=C1 UHOVQNZJYSORNB-VTBMLFEUSA-N 0.000 description 1
- UHOVQNZJYSORNB-FYFKOAPZSA-N 1,2,4-trideuteriobenzene Chemical compound [2H]C1=CC=C([2H])C([2H])=C1 UHOVQNZJYSORNB-FYFKOAPZSA-N 0.000 description 1
- ZMXDDKWLCZADIW-WFVSFCRTSA-N 1-deuterio-n,n-dimethylformamide Chemical compound [2H]C(=O)N(C)C ZMXDDKWLCZADIW-WFVSFCRTSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- FXHOOIRPVKKKFG-FIBGUPNXSA-N 2,2,2-trideuterio-n,n-dimethylacetamide Chemical compound [2H]C([2H])([2H])C(=O)N(C)C FXHOOIRPVKKKFG-FIBGUPNXSA-N 0.000 description 1
- ITQTTZVARXURQS-AAYPNNLASA-N 2,3,4,6-tetradeuterio-5-(trideuteriomethyl)pyridine Chemical compound [2H]C1=NC([2H])=C(C([2H])([2H])[2H])C([2H])=C1[2H] ITQTTZVARXURQS-AAYPNNLASA-N 0.000 description 1
- HCSBTDBGTNZOAB-UHFFFAOYSA-N 2,3-dinitrobenzoic acid Chemical compound OC(=O)C1=CC=CC([N+]([O-])=O)=C1[N+]([O-])=O HCSBTDBGTNZOAB-UHFFFAOYSA-N 0.000 description 1
- CHHHXKFHOYLYRE-UHFFFAOYSA-M 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- Chemical compound [K+].CC=CC=CC([O-])=O CHHHXKFHOYLYRE-UHFFFAOYSA-M 0.000 description 1
- 125000005916 2-methylpentyl group Chemical group 0.000 description 1
- BSKHPKMHTQYZBB-UHFFFAOYSA-N 2-methylpyridine Chemical class CC1=CC=CC=N1 BSKHPKMHTQYZBB-UHFFFAOYSA-N 0.000 description 1
- LEACJMVNYZDSKR-UHFFFAOYSA-N 2-octyldodecan-1-ol Chemical compound CCCCCCCCCCC(CO)CCCCCCCC LEACJMVNYZDSKR-UHFFFAOYSA-N 0.000 description 1
- KRTGJZMJJVEKRX-UHFFFAOYSA-N 2-phenylethan-1-yl Chemical group [CH2]CC1=CC=CC=C1 KRTGJZMJJVEKRX-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- DDYUBCCTNHWSQM-UHFFFAOYSA-N 3-(3-cyclopentyloxy-4-methoxyphenyl)-3-(1,3-dioxoisoindol-2-yl)propanamide Chemical compound COC1=CC=C(C(CC(N)=O)N2C(C3=CC=CC=C3C2=O)=O)C=C1OC1CCCC1 DDYUBCCTNHWSQM-UHFFFAOYSA-N 0.000 description 1
- WHBMMWSBFZVSSR-UHFFFAOYSA-N 3-hydroxybutyric acid Chemical compound CC(O)CC(O)=O WHBMMWSBFZVSSR-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- GPLUUMAKBFSDIE-KRWDZBQOSA-N 4-[[[(2s)-4-[(3,4-dichlorophenyl)methyl]morpholin-2-yl]methylcarbamoylamino]methyl]benzamide Chemical compound C1=CC(C(=O)N)=CC=C1CNC(=O)NC[C@@H]1OCCN(CC=2C=C(Cl)C(Cl)=CC=2)C1 GPLUUMAKBFSDIE-KRWDZBQOSA-N 0.000 description 1
- XWNSFEAWWGGSKJ-UHFFFAOYSA-N 4-acetyl-4-methylheptanedinitrile Chemical compound N#CCCC(C)(C(=O)C)CCC#N XWNSFEAWWGGSKJ-UHFFFAOYSA-N 0.000 description 1
- PXACTUVBBMDKRW-UHFFFAOYSA-N 4-bromobenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=C(Br)C=C1 PXACTUVBBMDKRW-UHFFFAOYSA-N 0.000 description 1
- OBKXEAXTFZPCHS-UHFFFAOYSA-N 4-phenylbutyric acid Chemical compound OC(=O)CCCC1=CC=CC=C1 OBKXEAXTFZPCHS-UHFFFAOYSA-N 0.000 description 1
- LSLYOANBFKQKPT-DIFFPNOSSA-N 5-[(1r)-1-hydroxy-2-[[(2r)-1-(4-hydroxyphenyl)propan-2-yl]amino]ethyl]benzene-1,3-diol Chemical compound C([C@@H](C)NC[C@H](O)C=1C=C(O)C=C(O)C=1)C1=CC=C(O)C=C1 LSLYOANBFKQKPT-DIFFPNOSSA-N 0.000 description 1
- IHOXNOQMRZISPV-YJYMSZOUSA-N 5-[(1r)-1-hydroxy-2-[[(2r)-1-(4-methoxyphenyl)propan-2-yl]azaniumyl]ethyl]-2-oxo-1h-quinolin-8-olate Chemical compound C1=CC(OC)=CC=C1C[C@@H](C)NC[C@H](O)C1=CC=C(O)C2=C1C=CC(=O)N2 IHOXNOQMRZISPV-YJYMSZOUSA-N 0.000 description 1
- KMRQIJRSLWWZAM-UHFFFAOYSA-N 5-acetamidopyridine-3-carboxylic acid Chemical compound CC(=O)NC1=CN=CC(C(O)=O)=C1 KMRQIJRSLWWZAM-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 206010056508 Acquired epidermolysis bullosa Diseases 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 206010054196 Affect lability Diseases 0.000 description 1
- 208000032671 Allergic granulomatous angiitis Diseases 0.000 description 1
- 206010001889 Alveolitis Diseases 0.000 description 1
- ZHGNHOOVYPHPNJ-UHFFFAOYSA-N Amigdalin Chemical compound FC(F)(F)C(=O)OCC1OC(OCC2OC(OC(C#N)C3=CC=CC=C3)C(OC(=O)C(F)(F)F)C(OC(=O)C(F)(F)F)C2OC(=O)C(F)(F)F)C(OC(=O)C(F)(F)F)C(OC(=O)C(F)(F)F)C1OC(=O)C(F)(F)F ZHGNHOOVYPHPNJ-UHFFFAOYSA-N 0.000 description 1
- 208000032467 Aplastic anaemia Diseases 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 208000033116 Asbestos intoxication Diseases 0.000 description 1
- 206010003557 Asthma exercise induced Diseases 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 206010066091 Bronchial Hyperreactivity Diseases 0.000 description 1
- 206010006458 Bronchitis chronic Diseases 0.000 description 1
- 206010006473 Bronchopulmonary aspergillosis Diseases 0.000 description 1
- VOVIALXJUBGFJZ-KWVAZRHASA-N Budesonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H]3OC(CCC)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O VOVIALXJUBGFJZ-KWVAZRHASA-N 0.000 description 1
- 208000007596 Byssinosis Diseases 0.000 description 1
- 102100031172 C-C chemokine receptor type 1 Human genes 0.000 description 1
- 101710149814 C-C chemokine receptor type 1 Proteins 0.000 description 1
- 102100031174 C-C chemokine receptor type 10 Human genes 0.000 description 1
- 101710109563 C-C chemokine receptor type 10 Proteins 0.000 description 1
- 102100031151 C-C chemokine receptor type 2 Human genes 0.000 description 1
- 101710149815 C-C chemokine receptor type 2 Proteins 0.000 description 1
- 102100037853 C-C chemokine receptor type 4 Human genes 0.000 description 1
- 101710149863 C-C chemokine receptor type 4 Proteins 0.000 description 1
- 102100036302 C-C chemokine receptor type 6 Human genes 0.000 description 1
- 101710149871 C-C chemokine receptor type 6 Proteins 0.000 description 1
- 102100036301 C-C chemokine receptor type 7 Human genes 0.000 description 1
- 101710149858 C-C chemokine receptor type 7 Proteins 0.000 description 1
- 102100036305 C-C chemokine receptor type 8 Human genes 0.000 description 1
- 101710149872 C-C chemokine receptor type 8 Proteins 0.000 description 1
- 102100036303 C-C chemokine receptor type 9 Human genes 0.000 description 1
- 101710149857 C-C chemokine receptor type 9 Proteins 0.000 description 1
- 102100028989 C-X-C chemokine receptor type 2 Human genes 0.000 description 1
- 102100028990 C-X-C chemokine receptor type 3 Human genes 0.000 description 1
- 102100031650 C-X-C chemokine receptor type 4 Human genes 0.000 description 1
- 102100031658 C-X-C chemokine receptor type 5 Human genes 0.000 description 1
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 description 1
- 125000003601 C2-C6 alkynyl group Chemical group 0.000 description 1
- 125000001313 C5-C10 heteroaryl group Chemical group 0.000 description 1
- 125000006519 CCH3 Chemical group 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- ZKLPARSLTMPFCP-UHFFFAOYSA-N Cetirizine Chemical compound C1CN(CCOCC(=O)O)CCN1C(C=1C=CC(Cl)=CC=1)C1=CC=CC=C1 ZKLPARSLTMPFCP-UHFFFAOYSA-N 0.000 description 1
- 102000009410 Chemokine receptor Human genes 0.000 description 1
- 108050000299 Chemokine receptor Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 206010008909 Chronic Hepatitis Diseases 0.000 description 1
- 208000006344 Churg-Strauss Syndrome Diseases 0.000 description 1
- LUKZNWIVRBCLON-GXOBDPJESA-N Ciclesonide Chemical compound C1([C@H]2O[C@@]3([C@H](O2)C[C@@H]2[C@@]3(C[C@H](O)[C@@H]3[C@@]4(C)C=CC(=O)C=C4CC[C@H]32)C)C(=O)COC(=O)C(C)C)CCCCC1 LUKZNWIVRBCLON-GXOBDPJESA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 208000015943 Coeliac disease Diseases 0.000 description 1
- 206010009900 Colitis ulcerative Diseases 0.000 description 1
- 206010010741 Conjunctivitis Diseases 0.000 description 1
- 206010010744 Conjunctivitis allergic Diseases 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- 108010001237 Cytochrome P-450 CYP2D6 Proteins 0.000 description 1
- 208000007220 Cytochrome P-450 CYP2D6 Inhibitors Diseases 0.000 description 1
- 208000003311 Cytochrome P-450 Enzyme Inhibitors Diseases 0.000 description 1
- 108010015742 Cytochrome P-450 Enzyme System Proteins 0.000 description 1
- 102000002004 Cytochrome P-450 Enzyme System Human genes 0.000 description 1
- 102100021704 Cytochrome P450 2D6 Human genes 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- 206010012442 Dermatitis contact Diseases 0.000 description 1
- 206010012468 Dermatitis herpetiformis Diseases 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 208000000059 Dyspnea Diseases 0.000 description 1
- 206010013975 Dyspnoeas Diseases 0.000 description 1
- 229920005682 EO-PO block copolymer Polymers 0.000 description 1
- 206010014561 Emphysema Diseases 0.000 description 1
- 206010060742 Endocrine ophthalmopathy Diseases 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 208000018428 Eosinophilic granulomatosis with polyangiitis Diseases 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 206010015150 Erythema Diseases 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 208000004657 Exercise-Induced Asthma Diseases 0.000 description 1
- VIUDTWATMPPKEL-RHQRLBAQSA-N FC(C1=C(C(N)=C(C(=C1[2H])[2H])[2H])[2H])(F)F Chemical compound FC(C1=C(C(N)=C(C(=C1[2H])[2H])[2H])[2H])(F)F VIUDTWATMPPKEL-RHQRLBAQSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- RRJFVPUCXDGFJB-UHFFFAOYSA-N Fexofenadine hydrochloride Chemical compound Cl.C1=CC(C(C)(C(O)=O)C)=CC=C1C(O)CCCN1CCC(C(O)(C=2C=CC=CC=2)C=2C=CC=CC=2)CC1 RRJFVPUCXDGFJB-UHFFFAOYSA-N 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 102000011652 Formyl peptide receptors Human genes 0.000 description 1
- 108010076288 Formyl peptide receptors Proteins 0.000 description 1
- 108091006027 G proteins Proteins 0.000 description 1
- 102000030782 GTP binding Human genes 0.000 description 1
- 108091000058 GTP-Binding Proteins 0.000 description 1
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 206010018364 Glomerulonephritis Diseases 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-M Glycolate Chemical compound OCC([O-])=O AEMRFAOFKBGASW-UHFFFAOYSA-M 0.000 description 1
- 208000003807 Graves Disease Diseases 0.000 description 1
- 208000015023 Graves' disease Diseases 0.000 description 1
- 238000003747 Grignard reaction Methods 0.000 description 1
- 239000007818 Grignard reagent Substances 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 208000037357 HIV infectious disease Diseases 0.000 description 1
- 206010019755 Hepatitis chronic active Diseases 0.000 description 1
- 241001272567 Hominoidea Species 0.000 description 1
- 101000916050 Homo sapiens C-X-C chemokine receptor type 3 Proteins 0.000 description 1
- 101000922348 Homo sapiens C-X-C chemokine receptor type 4 Proteins 0.000 description 1
- 101000922405 Homo sapiens C-X-C chemokine receptor type 5 Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 206010061217 Infestation Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 108010018951 Interleukin-8B Receptors Proteins 0.000 description 1
- 208000029523 Interstitial Lung disease Diseases 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- PWWVAXIEGOYWEE-UHFFFAOYSA-N Isophenergan Chemical compound C1=CC=C2N(CC(C)N(C)C)C3=CC=CC=C3SC2=C1 PWWVAXIEGOYWEE-UHFFFAOYSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 206010069698 Langerhans' cell histiocytosis Diseases 0.000 description 1
- 208000034624 Leukocytoclastic Cutaneous Vasculitis Diseases 0.000 description 1
- 208000032514 Leukocytoclastic vasculitis Diseases 0.000 description 1
- 208000004883 Lipoid Nephrosis Diseases 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 208000019693 Lung disease Diseases 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-L Malonate Chemical compound [O-]C(=O)CC([O-])=O OFOBLEOULBTSOW-UHFFFAOYSA-L 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 244000245214 Mentha canadensis Species 0.000 description 1
- 235000016278 Mentha canadensis Nutrition 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 238000007126 N-alkylation reaction Methods 0.000 description 1
- PHSPJQZRQAJPPF-UHFFFAOYSA-N N-alpha-Methylhistamine Chemical compound CNCCC1=CN=CN1 PHSPJQZRQAJPPF-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- 125000000815 N-oxide group Chemical group 0.000 description 1
- XJLXINKUBYWONI-NNYOXOHSSA-N NADP zwitterion Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-NNYOXOHSSA-N 0.000 description 1
- JAUOIFJMECXRGI-UHFFFAOYSA-N Neoclaritin Chemical compound C=1C(Cl)=CC=C2C=1CCC1=CC=CN=C1C2=C1CCNCC1 JAUOIFJMECXRGI-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010029164 Nephrotic syndrome Diseases 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 229910020667 PBr3 Inorganic materials 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 206010034277 Pemphigoid Diseases 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- 206010065159 Polychondritis Diseases 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000004153 Potassium bromate Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 201000001263 Psoriatic Arthritis Diseases 0.000 description 1
- 208000036824 Psoriatic arthropathy Diseases 0.000 description 1
- 208000004430 Pulmonary Aspergillosis Diseases 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 208000037656 Respiratory Sounds Diseases 0.000 description 1
- RUOGJYKOQBFJIG-UHFFFAOYSA-N SCH-351591 Chemical compound C12=CC=C(C(F)(F)F)N=C2C(OC)=CC=C1C(=O)NC1=C(Cl)C=[N+]([O-])C=C1Cl RUOGJYKOQBFJIG-UHFFFAOYSA-N 0.000 description 1
- 206010039710 Scleroderma Diseases 0.000 description 1
- GIIZNNXWQWCKIB-UHFFFAOYSA-N Serevent Chemical compound C1=C(O)C(CO)=CC(C(O)CNCCCCCCOCCCCC=2C=CC=CC=2)=C1 GIIZNNXWQWCKIB-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 201000010001 Silicosis Diseases 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- GUGOEEXESWIERI-UHFFFAOYSA-N Terfenadine Chemical compound C1=CC(C(C)(C)C)=CC=C1C(O)CCCN1CCC(C(O)(C=2C=CC=CC=2)C=2C=CC=CC=2)CC1 GUGOEEXESWIERI-UHFFFAOYSA-N 0.000 description 1
- 210000004241 Th2 cell Anatomy 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- SLGBZMMZGDRARJ-UHFFFAOYSA-N Triphenylene Natural products C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 description 1
- 206010065258 Tropical eosinophilia Diseases 0.000 description 1
- 201000006704 Ulcerative Colitis Diseases 0.000 description 1
- 208000024780 Urticaria Diseases 0.000 description 1
- 206010046851 Uveitis Diseases 0.000 description 1
- 206010047642 Vitiligo Diseases 0.000 description 1
- 208000016807 X-linked intellectual disability-macrocephaly-macroorchidism syndrome Diseases 0.000 description 1
- ZZXDRXVIRVJQBT-UHFFFAOYSA-M Xylenesulfonate Chemical compound CC1=CC=CC(S([O-])(=O)=O)=C1C ZZXDRXVIRVJQBT-UHFFFAOYSA-M 0.000 description 1
- YEEZWCHGZNKEEK-UHFFFAOYSA-N Zafirlukast Chemical compound COC1=CC(C(=O)NS(=O)(=O)C=2C(=CC=CC=2)C)=CC=C1CC(C1=C2)=CN(C)C1=CC=C2NC(=O)OC1CCCC1 YEEZWCHGZNKEEK-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- AGEZXYOZHKGVCM-NCYHJHSESA-N [bromo(dideuterio)methyl]benzene Chemical compound [2H]C([2H])(Br)C1=CC=CC=C1 AGEZXYOZHKGVCM-NCYHJHSESA-N 0.000 description 1
- 229940124532 absorption promoter Drugs 0.000 description 1
- JDPAVWAQGBGGHD-UHFFFAOYSA-N aceanthrylene Chemical group C1=CC=C2C(C=CC3=CC=C4)=C3C4=CC2=C1 JDPAVWAQGBGGHD-UHFFFAOYSA-N 0.000 description 1
- 125000004054 acenaphthylenyl group Chemical group C1(=CC2=CC=CC3=CC=CC1=C23)* 0.000 description 1
- SQFPKRNUGBRTAR-UHFFFAOYSA-N acephenanthrylene Chemical group C1=CC(C=C2)=C3C2=CC2=CC=CC=C2C3=C1 SQFPKRNUGBRTAR-UHFFFAOYSA-N 0.000 description 1
- IPBVNPXQWQGGJP-UHFFFAOYSA-N acetic acid phenyl ester Natural products CC(=O)OC1=CC=CC=C1 IPBVNPXQWQGGJP-UHFFFAOYSA-N 0.000 description 1
- HXGDTGSAIMULJN-UHFFFAOYSA-N acetnaphthylene Natural products C1=CC(C=C2)=C3C2=CC=CC3=C1 HXGDTGSAIMULJN-UHFFFAOYSA-N 0.000 description 1
- YTIVTFGABIZHHX-UHFFFAOYSA-L acetylenedicarboxylate(2-) Chemical compound [O-]C(=O)C#CC([O-])=O YTIVTFGABIZHHX-UHFFFAOYSA-L 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- IAJILQKETJEXLJ-QTBDOELSSA-N aldehydo-D-glucuronic acid Chemical compound O=C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-QTBDOELSSA-N 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 201000009961 allergic asthma Diseases 0.000 description 1
- 208000002205 allergic conjunctivitis Diseases 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 208000004631 alopecia areata Diseases 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 208000028462 aluminosis Diseases 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- 238000005576 amination reaction Methods 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 150000001448 anilines Chemical class 0.000 description 1
- 208000010123 anthracosis Diseases 0.000 description 1
- 230000001387 anti-histamine Effects 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000003434 antitussive agent Substances 0.000 description 1
- 229940124584 antitussives Drugs 0.000 description 1
- IMOZEMNVLZVGJZ-QGZVFWFLSA-N apremilast Chemical compound C1=C(OC)C(OCC)=CC([C@@H](CS(C)(=O)=O)N2C(C3=C(NC(C)=O)C=CC=C3C2=O)=O)=C1 IMOZEMNVLZVGJZ-QGZVFWFLSA-N 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- GVTLDPJNRVMCAL-UHFFFAOYSA-N arofylline Chemical compound C1=2N=CNC=2C(=O)N(CCC)C(=O)N1C1=CC=C(Cl)C=C1 GVTLDPJNRVMCAL-UHFFFAOYSA-N 0.000 description 1
- 229950009746 arofylline Drugs 0.000 description 1
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 150000001499 aryl bromides Chemical class 0.000 description 1
- 150000001501 aryl fluorides Chemical class 0.000 description 1
- 125000005002 aryl methyl group Chemical group 0.000 description 1
- KNNXFYIMEYKHBZ-UHFFFAOYSA-N as-indacene Chemical compound C1=CC2=CC=CC2=C2C=CC=C21 KNNXFYIMEYKHBZ-UHFFFAOYSA-N 0.000 description 1
- 206010003441 asbestosis Diseases 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 125000005334 azaindolyl group Chemical class N1N=C(C2=CC=CC=C12)* 0.000 description 1
- 125000003725 azepanyl group Chemical group 0.000 description 1
- 125000002393 azetidinyl group Chemical group 0.000 description 1
- 125000004069 aziridinyl group Chemical group 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 210000003651 basophil Anatomy 0.000 description 1
- 229940092705 beclomethasone Drugs 0.000 description 1
- NBMKJKDGKREAPL-DVTGEIKXSA-N beclomethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O NBMKJKDGKREAPL-DVTGEIKXSA-N 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- UHOVQNZJYSORNB-MZWXYZOWSA-N benzene-d6 Chemical compound [2H]C1=C([2H])C([2H])=C([2H])C([2H])=C1[2H] UHOVQNZJYSORNB-MZWXYZOWSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 229940124748 beta 2 agonist Drugs 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 230000031709 bromination Effects 0.000 description 1
- 238000005893 bromination reaction Methods 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 230000036427 bronchial hyperreactivity Effects 0.000 description 1
- 239000004044 bronchoconstricting agent Substances 0.000 description 1
- 230000003435 bronchoconstrictive effect Effects 0.000 description 1
- 229960004436 budesonide Drugs 0.000 description 1
- 208000000594 bullous pemphigoid Diseases 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229940081733 cetearyl alcohol Drugs 0.000 description 1
- 229960004342 cetirizine hydrochloride Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000035605 chemotaxis Effects 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- KVSASDOGYIBWTA-UHFFFAOYSA-N chloro benzoate Chemical compound ClOC(=O)C1=CC=CC=C1 KVSASDOGYIBWTA-UHFFFAOYSA-N 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 208000007451 chronic bronchitis Diseases 0.000 description 1
- 229960003728 ciclesonide Drugs 0.000 description 1
- 229950001653 cilomilast Drugs 0.000 description 1
- 230000007882 cirrhosis Effects 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- 229960002689 clemastine fumarate Drugs 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 208000010247 contact dermatitis Diseases 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 208000018261 cutaneous leukocytoclastic angiitis Diseases 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- GHVNFZFCNZKVNT-UHFFFAOYSA-M decanoate Chemical compound CCCCCCCCCC([O-])=O GHVNFZFCNZKVNT-UHFFFAOYSA-M 0.000 description 1
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005595 deprotonation Effects 0.000 description 1
- 238000010537 deprotonation reaction Methods 0.000 description 1
- 201000001981 dermatomyositis Diseases 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-M dihydrogenphosphate Chemical compound OP(O)([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-M 0.000 description 1
- GXGAKHNRMVGRPK-UHFFFAOYSA-N dimagnesium;dioxido-bis[[oxido(oxo)silyl]oxy]silane Chemical compound [Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O GXGAKHNRMVGRPK-UHFFFAOYSA-N 0.000 description 1
- VDALIBWXVQVFGZ-UHFFFAOYSA-N dimethyl-[[4-[[3-(4-methylphenyl)-8,9-dihydro-7h-benzo[7]annulene-6-carbonyl]amino]phenyl]methyl]-(oxan-4-yl)azanium;chloride Chemical compound [Cl-].C1=CC(C)=CC=C1C1=CC=C(CCCC(=C2)C(=O)NC=3C=CC(C[N+](C)(C)C4CCOCC4)=CC=3)C2=C1 VDALIBWXVQVFGZ-UHFFFAOYSA-N 0.000 description 1
- ZZVUWRFHKOJYTH-UHFFFAOYSA-N diphenhydramine Chemical compound C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 ZZVUWRFHKOJYTH-UHFFFAOYSA-N 0.000 description 1
- 229960000525 diphenhydramine hydrochloride Drugs 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003136 dopamine receptor stimulating agent Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 229940088679 drug related substance Drugs 0.000 description 1
- 230000001729 effect on metabolism Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000008387 emulsifying waxe Substances 0.000 description 1
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940095399 enema Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002327 eosinophilic effect Effects 0.000 description 1
- 208000003401 eosinophilic granuloma Diseases 0.000 description 1
- 201000009580 eosinophilic pneumonia Diseases 0.000 description 1
- 201000011114 epidermolysis bullosa acquisita Diseases 0.000 description 1
- 231100000321 erythema Toxicity 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- PQJJJMRNHATNKG-SMZGMGDZSA-N ethyl 2-bromo-2,2-dideuterioacetate Chemical compound [2H]C([2H])(Br)C(=O)OCC PQJJJMRNHATNKG-SMZGMGDZSA-N 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005713 exacerbation Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 208000024695 exercise-induced bronchoconstriction Diseases 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 208000024711 extrinsic asthma Diseases 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 229960001022 fenoterol Drugs 0.000 description 1
- 229960000354 fexofenadine hydrochloride Drugs 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229960000289 fluticasone propionate Drugs 0.000 description 1
- WMWTYOKRWGGJOA-CENSZEJFSA-N fluticasone propionate Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)SCF)(OC(=O)CC)[C@@]2(C)C[C@@H]1O WMWTYOKRWGGJOA-CENSZEJFSA-N 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 229940013688 formic acid Drugs 0.000 description 1
- 229960002848 formoterol Drugs 0.000 description 1
- BPZSYCZIITTYBL-UHFFFAOYSA-N formoterol Chemical compound C1=CC(OC)=CC=C1CC(C)NCC(O)C1=CC=C(O)C(NC=O)=C1 BPZSYCZIITTYBL-UHFFFAOYSA-N 0.000 description 1
- 229940050411 fumarate Drugs 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 229960002598 fumaric acid Drugs 0.000 description 1
- 125000003838 furazanyl group Chemical group 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229940124750 glucocorticoid receptor agonist Drugs 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 229950006191 gluconic acid Drugs 0.000 description 1
- 229940097043 glucuronic acid Drugs 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 229960002989 glutamic acid Drugs 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 229960002449 glycine Drugs 0.000 description 1
- 150000004795 grignard reagents Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 208000014951 hematologic disease Diseases 0.000 description 1
- 208000007475 hemolytic anemia Diseases 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical compound CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QSQIGGCOCHABAP-UHFFFAOYSA-N hexacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC6=CC=CC=C6C=C5C=C4C=C3C=C21 QSQIGGCOCHABAP-UHFFFAOYSA-N 0.000 description 1
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- PKIFBGYEEVFWTJ-UHFFFAOYSA-N hexaphene Chemical compound C1=CC=C2C=C3C4=CC5=CC6=CC=CC=C6C=C5C=C4C=CC3=CC2=C1 PKIFBGYEEVFWTJ-UHFFFAOYSA-N 0.000 description 1
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 229940071870 hydroiodic acid Drugs 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- DOUHZFSGSXMPIE-UHFFFAOYSA-N hydroxidooxidosulfur(.) Chemical class [O]SO DOUHZFSGSXMPIE-UHFFFAOYSA-N 0.000 description 1
- 208000016036 idiopathic nephrotic syndrome Diseases 0.000 description 1
- 125000002632 imidazolidinyl group Chemical group 0.000 description 1
- 125000002636 imidazolinyl group Chemical group 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229940102223 injectable solution Drugs 0.000 description 1
- 229940102213 injectable suspension Drugs 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229960001361 ipratropium bromide Drugs 0.000 description 1
- KEWHKYJURDBRMN-ZEODDXGYSA-M ipratropium bromide hydrate Chemical compound O.[Br-].O([C@H]1C[C@H]2CC[C@@H](C1)[N@@+]2(C)C(C)C)C(=O)C(CO)C1=CC=CC=C1 KEWHKYJURDBRMN-ZEODDXGYSA-M 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 206010023332 keratitis Diseases 0.000 description 1
- 201000010666 keratoconjunctivitis Diseases 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- VNYSSYRCGWBHLG-AMOLWHMGSA-N leukotriene B4 Chemical compound CCCCC\C=C/C[C@@H](O)\C=C\C=C\C=C/[C@@H](O)CCCC(O)=O VNYSSYRCGWBHLG-AMOLWHMGSA-N 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- AFRJJFRNGGLMDW-UHFFFAOYSA-N lithium amide Chemical compound [Li+].[NH2-] AFRJJFRNGGLMDW-UHFFFAOYSA-N 0.000 description 1
- JCCNYMKQOSZNPW-UHFFFAOYSA-N loratadine Chemical compound C1CN(C(=O)OCC)CCC1=C1C2=NC=CC=C2CCC2=CC(Cl)=CC=C21 JCCNYMKQOSZNPW-UHFFFAOYSA-N 0.000 description 1
- 229960003088 loratadine Drugs 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000004199 lung function Effects 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229940099273 magnesium trisilicate Drugs 0.000 description 1
- 229910000386 magnesium trisilicate Inorganic materials 0.000 description 1
- 235000019793 magnesium trisilicate Nutrition 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-M mandelate Chemical compound [O-]C(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-M 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- LMOINURANNBYCM-UHFFFAOYSA-N metaproterenol Chemical compound CC(C)NCC(O)C1=CC(O)=CC(O)=C1 LMOINURANNBYCM-UHFFFAOYSA-N 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- YDCHPLOFQATIDS-CBTSVUPCSA-N methyl 2-bromo-2,2-dideuterioacetate Chemical compound [2H]C([2H])(Br)C(=O)OC YDCHPLOFQATIDS-CBTSVUPCSA-N 0.000 description 1
- IZYBEMGNIUSSAX-UHFFFAOYSA-N methyl benzenecarboperoxoate Chemical compound COOC(=O)C1=CC=CC=C1 IZYBEMGNIUSSAX-UHFFFAOYSA-N 0.000 description 1
- 229940095102 methyl benzoate Drugs 0.000 description 1
- 229940102396 methyl bromide Drugs 0.000 description 1
- GZUXJHMPEANEGY-UHFFFAOYSA-N methyl bromide Substances BrC GZUXJHMPEANEGY-UHFFFAOYSA-N 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- SNVLJLYUUXKWOJ-UHFFFAOYSA-N methylidenecarbene Chemical compound C=[C] SNVLJLYUUXKWOJ-UHFFFAOYSA-N 0.000 description 1
- 230000003228 microsomal effect Effects 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229940042472 mineral oil Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229960002744 mometasone furoate Drugs 0.000 description 1
- WOFMFGQZHJDGCX-ZULDAHANSA-N mometasone furoate Chemical compound O([C@]1([C@@]2(C)C[C@H](O)[C@]3(Cl)[C@@]4(C)C=CC(=O)C=C4CC[C@H]3[C@@H]2C[C@H]1C)C(=O)CCl)C(=O)C1=CC=CO1 WOFMFGQZHJDGCX-ZULDAHANSA-N 0.000 description 1
- 230000002969 morbid Effects 0.000 description 1
- RPAWVEMNAJPPEL-UHFFFAOYSA-N morpholine;thiomorpholine Chemical compound C1COCCN1.C1CSCCN1 RPAWVEMNAJPPEL-UHFFFAOYSA-N 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 206010028417 myasthenia gravis Diseases 0.000 description 1
- DPHDSIQHVGSITN-UHFFFAOYSA-N n-(3,5-dichloropyridin-4-yl)-2-[1-[(4-fluorophenyl)methyl]-5-hydroxyindol-3-yl]-2-oxoacetamide Chemical compound C1=C(C(=O)C(=O)NC=2C(=CN=CC=2Cl)Cl)C2=CC(O)=CC=C2N1CC1=CC=C(F)C=C1 DPHDSIQHVGSITN-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-N naphthalene-2-sulfonic acid Chemical compound C1=CC=CC2=CC(S(=O)(=O)O)=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-N 0.000 description 1
- 125000004923 naphthylmethyl group Chemical group C1(=CC=CC2=CC=CC=C12)C* 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 208000004296 neuralgia Diseases 0.000 description 1
- 208000021722 neuropathic pain Diseases 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000004999 nitroaryl group Chemical group 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 125000003518 norbornenyl group Chemical group C12(C=CC(CC1)C2)* 0.000 description 1
- 208000007892 occupational asthma Diseases 0.000 description 1
- PFTXKXWAXWAZBP-UHFFFAOYSA-N octacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC6=CC7=CC8=CC=CC=C8C=C7C=C6C=C5C=C4C=C3C=C21 PFTXKXWAXWAZBP-UHFFFAOYSA-N 0.000 description 1
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 1
- OVPVGJFDFSJUIG-UHFFFAOYSA-N octalene Chemical compound C1=CC=CC=C2C=CC=CC=CC2=C1 OVPVGJFDFSJUIG-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-M octanoate Chemical compound CCCCCCCC([O-])=O WWZKQHOCKIZLMA-UHFFFAOYSA-M 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 229960002657 orciprenaline Drugs 0.000 description 1
- LSQODMMMSXHVCN-UHFFFAOYSA-N ovalene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3C5=C6C(C=C3)=CC=C3C6=C6C(C=C3)=C3)C4=C5C6=C2C3=C1 LSQODMMMSXHVCN-UHFFFAOYSA-N 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 229960001609 oxitropium bromide Drugs 0.000 description 1
- LCELQERNWLBPSY-KHSTUMNDSA-M oxitropium bromide Chemical compound [Br-].C1([C@@H](CO)C(=O)O[C@H]2C[C@@H]3[N+]([C@H](C2)[C@@H]2[C@H]3O2)(C)CC)=CC=CC=C1 LCELQERNWLBPSY-KHSTUMNDSA-M 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 229960005489 paracetamol Drugs 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- PMJHHCWVYXUKFD-UHFFFAOYSA-N penta-1,3-diene Chemical compound CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 1
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 1
- GUVXZFRDPCKWEM-UHFFFAOYSA-N pentalene Chemical compound C1=CC2=CC=CC2=C1 GUVXZFRDPCKWEM-UHFFFAOYSA-N 0.000 description 1
- 125000004817 pentamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- JQQSUOJIMKJQHS-UHFFFAOYSA-N pentaphene Chemical compound C1=CC=C2C=C3C4=CC5=CC=CC=C5C=C4C=CC3=CC2=C1 JQQSUOJIMKJQHS-UHFFFAOYSA-N 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 238000009522 phase III clinical trial Methods 0.000 description 1
- XDJOIMJURHQYDW-UHFFFAOYSA-N phenalene Chemical compound C1=CC(CC=C2)=C3C2=CC=CC3=C1 XDJOIMJURHQYDW-UHFFFAOYSA-N 0.000 description 1
- DYUMLJSJISTVPV-UHFFFAOYSA-N phenyl propanoate Chemical compound CCC(=O)OC1=CC=CC=C1 DYUMLJSJISTVPV-UHFFFAOYSA-N 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 229940049953 phenylacetate Drugs 0.000 description 1
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 1
- 229950009215 phenylbutanoic acid Drugs 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- IPNPIHIZVLFAFP-UHFFFAOYSA-N phosphorus tribromide Chemical compound BrP(Br)Br IPNPIHIZVLFAFP-UHFFFAOYSA-N 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- CFZKDDTWZYUZKS-UHFFFAOYSA-N picoline N-oxide Chemical class CC1=CC=CC=[N+]1[O-] CFZKDDTWZYUZKS-UHFFFAOYSA-N 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- AXIPBRXJGSXLHF-UHFFFAOYSA-N piperidine;pyrrolidine Chemical compound C1CCNC1.C1CCNCC1 AXIPBRXJGSXLHF-UHFFFAOYSA-N 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- DIJNSQQKNIVDPV-UHFFFAOYSA-N pleiadene Chemical compound C1=C2[CH]C=CC=C2C=C2C=CC=C3[C]2C1=CC=C3 DIJNSQQKNIVDPV-UHFFFAOYSA-N 0.000 description 1
- 229960000502 poloxamer Drugs 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 201000006292 polyarteritis nodosa Diseases 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 239000001818 polyoxyethylene sorbitan monostearate Substances 0.000 description 1
- 235000010989 polyoxyethylene sorbitan monostearate Nutrition 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229940113124 polysorbate 60 Drugs 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229940094037 potassium bromate Drugs 0.000 description 1
- 235000019396 potassium bromate Nutrition 0.000 description 1
- 235000010241 potassium sorbate Nutrition 0.000 description 1
- 239000004302 potassium sorbate Substances 0.000 description 1
- 229940069338 potassium sorbate Drugs 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 229960002288 procaterol Drugs 0.000 description 1
- FKNXQNWAXFXVNW-BLLLJJGKSA-N procaterol Chemical compound N1C(=O)C=CC2=C1C(O)=CC=C2[C@@H](O)[C@@H](NC(C)C)CC FKNXQNWAXFXVNW-BLLLJJGKSA-N 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 229960003910 promethazine Drugs 0.000 description 1
- KCXFHTAICRTXLI-UHFFFAOYSA-N propane-1-sulfonic acid Chemical compound CCCS(O)(=O)=O KCXFHTAICRTXLI-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- UORVCLMRJXCDCP-UHFFFAOYSA-M propynoate Chemical compound [O-]C(=O)C#C UORVCLMRJXCDCP-UHFFFAOYSA-M 0.000 description 1
- 229950008679 protamine sulfate Drugs 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 201000009732 pulmonary eosinophilia Diseases 0.000 description 1
- 210000004879 pulmonary tissue Anatomy 0.000 description 1
- LNKHTYQPVMAJSF-UHFFFAOYSA-N pyranthrene Chemical compound C1=C2C3=CC=CC=C3C=C(C=C3)C2=C2C3=CC3=C(C=CC=C4)C4=CC4=CC=C1C2=C34 LNKHTYQPVMAJSF-UHFFFAOYSA-N 0.000 description 1
- 125000003072 pyrazolidinyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 125000004621 quinuclidinyl group Chemical group N12C(CC(CC1)CC2)* 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 229940100618 rectal suppository Drugs 0.000 description 1
- 239000006215 rectal suppository Substances 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- MNDBXUUTURYVHR-UHFFFAOYSA-N roflumilast Chemical compound FC(F)OC1=CC=C(C(=O)NC=2C(=CN=CC=2Cl)Cl)C=C1OCC1CC1 MNDBXUUTURYVHR-UHFFFAOYSA-N 0.000 description 1
- 229960002586 roflumilast Drugs 0.000 description 1
- FMKFBRKHHLWKDB-UHFFFAOYSA-N rubicene Chemical compound C12=CC=CC=C2C2=CC=CC3=C2C1=C1C=CC=C2C4=CC=CC=C4C3=C21 FMKFBRKHHLWKDB-UHFFFAOYSA-N 0.000 description 1
- WEMQMWWWCBYPOV-UHFFFAOYSA-N s-indacene Chemical compound C=1C2=CC=CC2=CC2=CC=CC2=1 WEMQMWWWCBYPOV-UHFFFAOYSA-N 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229960004017 salmeterol Drugs 0.000 description 1
- 201000000306 sarcoidosis Diseases 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 229940116351 sebacate Drugs 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 208000004003 siderosis Diseases 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000001587 sorbitan monostearate Substances 0.000 description 1
- 235000011076 sorbitan monostearate Nutrition 0.000 description 1
- 229940035048 sorbitan monostearate Drugs 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003637 steroidlike Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- TYFQFVWCELRYAO-UHFFFAOYSA-L suberate(2-) Chemical compound [O-]C(=O)CCCCCCC([O-])=O TYFQFVWCELRYAO-UHFFFAOYSA-L 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 238000013269 sustained drug release Methods 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 229960000195 terbutaline Drugs 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- MHXBHWLGRWOABW-UHFFFAOYSA-N tetradecyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCC MHXBHWLGRWOABW-UHFFFAOYSA-N 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 125000004568 thiomorpholinyl group Chemical group 0.000 description 1
- 206010043554 thrombocytopenia Diseases 0.000 description 1
- LERNTVKEWCAPOY-DZZGSBJMSA-N tiotropium Chemical class O([C@H]1C[C@@H]2[N+]([C@H](C1)[C@@H]1[C@H]2O1)(C)C)C(=O)C(O)(C=1SC=CC=1)C1=CC=CS1 LERNTVKEWCAPOY-DZZGSBJMSA-N 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- QARBMVPHQWIHKH-FIBGUPNXSA-N trideuteriomethanesulfonyl chloride Chemical compound [2H]C([2H])([2H])S(Cl)(=O)=O QARBMVPHQWIHKH-FIBGUPNXSA-N 0.000 description 1
- 238000006692 trifluoromethylation reaction Methods 0.000 description 1
- PGXOVVAJURGPLL-UHFFFAOYSA-N trinaphthylene Chemical group C1=CC=C2C=C3C4=CC5=CC=CC=C5C=C4C4=CC5=CC=CC=C5C=C4C3=CC2=C1 PGXOVVAJURGPLL-UHFFFAOYSA-N 0.000 description 1
- 125000005580 triphenylene group Chemical group 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 201000005539 vernal conjunctivitis Diseases 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229940071104 xylenesulfonate Drugs 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229960004764 zafirlukast Drugs 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
Definitions
- ADME absorption, distribution, metabolism and/or excretion
- ADME limitation that affects many medicines is the formation of toxic or biologically reactive metabolites.
- some patients receiving the drug may experience toxicities, or the safe dosing of such drugs may be limited such that patients receive a suboptimal amount of the active agent.
- modifying dosing intervals or formulation approaches can help to reduce clinical adverse effects, but often the formation of such undesirable metabolites is intrinsic to the metabolism of the compound.
- a metabolic inhibitor will be co-administered with a drug that is cleared too rapidly.
- a drug that is cleared too rapidly.
- the FDA recommends that these drugs be co- dosed with ritonavir, an inhibitor of cytochrome P450 enzyme 3A4 (CYP3A4), the enzyme typically responsible for their metabolism (see Kempf, D.J. et al., Antimicrobial agents and chemotherapy, 1997, 41(3): 654-60).
- CYP3A4 cytochrome P450 enzyme 3A4
- Ritonavir causes adverse effects and adds to the pill burden for HIV patients who must already take a combination of different drugs.
- the CYP2D6 inhibitor quinidine has been added to dextromethorphan for the purpose of reducing rapid CYP2D6 metabolism of dextromethorphan in a treatment of pseudobulbar affect.
- Quinidine has unwanted side effects that greatly limit its use in potential combination therapy (see Wang, L et al., Clinical Pharmacology and Therapeutics, 1994, 56(6 Pt 1): 659-67; and FDA label for quinidine at www.accessdata.fda.gov).
- a potentially attractive strategy for improving a drug’s metabolic properties is deuterium modification.
- Deuterium is a safe, stable, non-radioactive isotope of hydrogen. Compared to hydrogen, deuterium forms stronger bonds with carbon. In select cases, the increased bond strength imparted by deuterium can positively impact the ADME properties of a drug, creating the potential for improved drug efficacy, safety, and/or tolerability.
- the size and shape of deuterium are essentially identical to those of hydrogen,
- biochemical potency and selectivity of the drug as compared to the original chemical entity that contains only hydrogen.
- This invention relates to deuterated forms of pyrrolo[2,3-b]pyridine compounds, and pharmaceutically acceptable salts thereof.
- this invention relates to novel deuterated pyrrolo[2,3-b]pyridine compounds that are structurally related to fevipiprant.
- each of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , Y 7 , and Y 8 is hydrogen or deuterium; each of R 1 and R 2 is independently selected from the group consisting of CH3, CH2D, CHD2, and CD 3 ; R 3 is H or C 1 -C 8 alkyl; provided that at least one of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , Y 7 , Y 8 , R 1 , and R 2 comprises deuterium.
- compositions comprising a compound of Formula I or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- Certain aspects of the present invention provide the use of such compounds and compositions in methods of treating diseases and conditions that are beneficially treated by administering a prostaglandin D 2 receptor 2 antagonist (e.g., a CRTH2, GPR44, or PTGDR2 antagonist).
- a prostaglandin D 2 receptor 2 antagonist e.g., a CRTH2, GPR44, or PTGDR2 antagonist.
- Some exemplary embodiments include a method of antagonizing the prostaglandin D2 receptor 2 in a cell, comprising contacting the cell with a compound of Formula I or a composition comprising a compound of Formula I.
- Some exemplary embodiments include a method of treating a disease or condition selected from the group consisting of asthma, allergic rhinitis, and atopic dermatitis, comprising the step of administering to a subject in need thereof a compound of Formula I or a pharmaceutical composition comprising a compound of Formula I.
- the method further comprises co- administering montelukast to the subject in need thereof.
- Fevipiprant also known as NVP-QAW039 or QAW-039, and by the chemical name 2-[2-methyl-1-[4-(methylsulfonyl)-2-(trifluoromethyl)benzyl]-1H-pyrrolo[2,3- b]pyridin-3-yl]acetic acid, is a selective antagonist of the prostaglandin D2 receptor 2 CRTH2.
- Prostaglandin D 2 receptor 2 (CRTH2) is a receptor also known as G protein- coupled receptor 44 (GPR44) that mediates chemotaxis of inflammatory cells in response to prostaglandin D2 (PGD2) binding.
- PGD2 is produced by T helper type 2 (Th2) cells and is an important mediator in allergic inflammatory diseases.
- Th2 antagonists may be beneficial in the treatment of allergic disorders including atopic dermatitis, allergic rhinitis, and asthma.
- Fevipiprant is currently in Phase II clinical trials for atopic dermatitis and Phase III clinical trials for asthma. Phase II clinical trials are also ongoing for treatment of allergic rhinitis with fevipiprant as monotherapy or in combination with montelukast (Singulair).
- treat means decrease, suppress, attenuate, diminish, arrest, or stabilize the development or progression of a disease (e.g., a disease or disorder delineated herein), lessen the severity of the disease or improve the symptoms associated with the disease.
- a disease e.g., a disease or disorder delineated herein
- Disease means any condition or disorder that damages or interferes with the normal function of a cell, tissue, or organ.
- the term“subject” includes humans and non-human mammals.
- Non-limiting examples of non-human mammals include mice, rats, guinea pigs, rabbits, dogs, cats, monkeys, apes, pigs, cows, sheep, horses, etc.
- alkyl refers to a monovalent saturated hydrocarbon group.
- C1-C 6 alkyl is an alkyl having from 1 to 6 carbon atoms.
- An alkyl may be linear or branched.
- alkyl groups include methyl; ethyl; propyl, including n-propyl and isopropyl; butyl, including n-butyl, isobutyl, sec-butyl, and t-butyl; pentyl, including, for example, n-pentyl, isopentyl, and neopentyl; and hexyl, including, for example, n-hexyl and 2-methylpentyl.
- “alkylene” by itself or as part of another substituent refers to a saturated straight-chain or branched divalent group having the stated number of carbon atoms and derived from the removal of two hydrogen atoms from the corresponding alkane.
- straight chained and branched alkylene groups include—CH2- (methylene), -CH2-CH2- (ethylene), -CH2-CH2- (propylene), -C(CH 3 ) 2 -, -CH 2 -CH(CH 3 )-, -CH 2 -CH 2 -CH 2 -, -CH 2 -CH 2 -CH 2 -CH 2 - CH 2 - (pentylene), -CH 2 -CH(CH 3 )-CH 2 -, and -CH 2 -C(CH 3 ) 2 -CH 2 -.
- alkenyl refers to a monovalent unsaturated hydrocarbon group where the unsaturation is represented by a double bond.
- C2-C6 alkenyl is an alkenyl having from 2 to 6 carbon atoms.
- alkynyl refers to a monovalent unsaturated hydrocarbon group where the unsaturation is represented by a triple bond.
- C 2 -C 6 alkynyl is an alkenyl having from 2 to 6 carbon atoms.
- An alkynyl may be linear or branched. Examples of alkynyl groups include CH ⁇ C-, -C ⁇ C-CH3, CH3-C ⁇ C-CH2-, CH3-C ⁇ C-CH2-CH2 and CH 3 -C ⁇ C-CH(CH 3 )-CH 2 -.
- cycloalkyl refers to a monocyclic or bicyclic monovalent saturated or non-aromatic unsaturated hydrocarbon ring system.
- C3-C10 cycloalkyl refers to a cycloalkyl wherein the number of ring carbon atoms is from 3 to 10.
- C 3 -C 10 cycloalkyl examples include C 3 -C 6 cycloalkyl.
- Bicyclic ring systems include fused, bridged, and spirocyclic ring systems. More particular examples of cycloalkyl groups include, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cis- and trans-decalinyl, norbornyl, and spiro[4.5]decanyl.
- Carbocyclyl refers to a monocyclic or bicyclic monovalent saturated or non-aromatic unsaturated hydrocarbon ring system.
- C3-C10 carbocyclyl refers to a carbocyclyl wherein the number of ring carbon atoms is from 3 to 10. Examples of C 3 -C 10 carbocyclyl include C 3 -C 6 carbocyclyl.
- Bicyclic ring systems include fused, bridged, and spirocyclic ring systems.
- carbocyclyl groups include, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, cis- and trans-decalinyl, norbornyl, norbornenyl, and spiro[4.5]decanyl.
- heterocycloalkyl refers to a monocyclic or bicyclic monovalent saturated or non-aromatic unsaturated ring system wherein from 1 to 4 ring atoms are heteroatoms independently selected from the group consisting of O, N and S.
- heterocycloalkyl refers to a heterocycloalkyl wherein the number of ring atoms is from 3 to 10. Examples of 3 to 10-membered
- heterocycloalkyl include 3 to 6-membered heterocycloalkyl.
- Bicyclic ring systems include fused, bridged, and spirocyclic ring systems.
- More particular examples of heterocycloalkyl groups include azepanyl, azetidinyl, aziridinyl, imidazolidinyl, morpholinyl, oxazolidinyl, oxazolidinyl, piperazinyl, piperidinyl, pyrazolidinyl, pyrrolidinyl, quinuclidinyl, and thiomorpholinyl.
- the nitrogen, phosphorus, carbon or sulfur atoms can be optionally oxidized to various oxidation states.
- the group -S(O) 0-2 - refers to -S-(sulfide), -S(O)-(sulfoxide), and -SO 2 - (sulfone) respectively.
- nitrogens, particularly but not exclusively, are meant to include their corresponding N-oxide form, although not explicitly defined as such in a particular example.
- annular nitrogen atoms can be optionally quaternized; and the ring substituent can be partially or fully saturated or aromatic.
- Aryl by itself or as part of another substituent refers to a monovalent aromatic hydrocarbon group having the stated number of carbon atoms (i.e., C5-C14 means from 5 to 14 carbon atoms).
- Typical aryl groups include, but are not limited to, groups derived from aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, coronene, fluoranthene, fluorene, hexacene, hexaphene, hexylene, as-indacene, s-indacene, indane, indene, naphthalene, octacene, octophene, octalene, ovalene, penta-2,4-diene, pentacene, pentalene, pentaphene, perylene, phenalene, phenant
- Arylalkyl by itself or as part of another substituent refers to an acyclic alkyl group in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp 3 carbon atom, is replaced with an aryl group.
- Typical arylalkyl groups include, but are not limited to, benzyl, 2-phenylethan-1-yl, 2-phenylethen-1-yl, naphthylmethyl, 2-naphthylethan-1-yl, 2-naphthylethen-1-yl, naphthobenzyl, 2- naphthophenylethan-1-yl and the like.
- the alkyl moiety of the arylalkyl group is (C1-C6) and the aryl moiety is (C5-C14).
- the alkyl group is (C1-C3) and the aryl moiety is (C5-C10), such as (C6- [28]
- the term“heteroaryl” refers to a monovalent aromatic monocyclic
- 5-membered heteroaryl refers to a heteroaryl wherein the number of ring atoms is 5.
- Examples of 5-membered heteroaryl groups include pyrrolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, oxadiazolyl, thiadiazolyl, furazanyl, imidazolinyl, and triazolyl.
- Heteroarylalkyl by itself or as part of another substituent refers to an acyclic alkyl group in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp 3 carbon atom, is replaced with a heteroaryl group.
- the alkyl moiety of the heteroarylalkyl is (C 1 -C 6 ) alkyl and the heteroaryl moiety is a 5-14-membered heteroaryl.
- the alkyl moiety is (C 1 - C3) alkyl and the heteroaryl moiety is a 5-10 membered heteroaryl.
- Halogen or“Halo” by themselves or as part of another substituent refers to fluorine, chlorine, bromine and iodine, or fluoro, chloro, bromo and iodo.
- any atom not specifically designated as a particular isotope is meant to represent any stable isotope of that atom.
- a position is designated specifically as“H” or“hydrogen”, the position is understood to have hydrogen at its natural abundance isotopic composition.
- a position is designated specifically as“D” or “deuterium”, the position is understood to have deuterium at an abundance that is at least 3340 times greater than the natural abundance of deuterium, which is 0.015% (i.e., at least 50.1% incorporation of deuterium).
- isotopic enrichment factor means the ratio between the isotopic abundance and the natural abundance of a specified isotope.
- a compound of this invention has an isotopic enrichment factor for each designated deuterium atom of at least 3500 (52.5% deuterium incorporation at each designated deuterium atom), at least 4000 (60% deuterium incorporation), at least 4500 (67.5% deuterium incorporation), at least 5000 (75% deuterium), at least 5500 (82.5% deuterium incorporation), at least 6000 (90% deuterium incorporation), at least 6333.3 (95% deuterium incorporation), at least 6466.7 (97% deuterium incorporation), at least 6600 (99% deuterium incorporation), or at least 6633.3 (99.5% deuterium incorporation).
- each designated deuterium atom has deuterium incorporation of least 52.5%.
- each designated deuterium atom has deuterium incorporation of least 60%.
- each designated deuterium atom has deuterium incorporation of least 67.5%.
- each designated deuterium atom has deuterium incorporation of least 75%.
- each designated deuterium atom has deuterium incorporation of least 82.5%.
- each designated deuterium atom has deuterium incorporation of least 90%.
- each designated deuterium atom has deuterium incorporation of least 95%.
- each designated deuterium atom has deuterium incorporation of least 97.5%.
- each designated deuterium atom has deuterium incorporation of least 99%.
- each designated deuterium atom has deuterium incorporation of least 99.5%.
- isotopologue refers to a species in which the chemical structure differs from a specific compound of this invention only in the isotopic composition thereof.
- a compound represented by a particular chemical structure containing indicated deuterium atoms will also contain lesser amounts of isotopologues having hydrogen atoms at one or more of the designated deuterium positions in that structure.
- the relative amount of such isotopologues in a compound of this invention will depend upon a number of factors including the isotopic purity of deuterated reagents used to make the compound and the efficiency of incorporation of deuterium in the various synthesis steps used to prepare the compound.
- the invention also provides salts of the compounds of the invention.
- a salt of a compound of this invention is formed between an acid and a basic group of the compound, such as an amino functional group, or a base and an acidic group of the compound, such as a carboxyl functional group.
- the compound is a pharmaceutically acceptable acid addition salt.
- the acid addition salt may be a deuterated acid addition salt.
- pharmaceutically acceptable refers to a component that is, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and other mammals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio.
- pharmaceutically acceptable salt means any non-toxic salt that, upon administration to a recipient, is capable of providing, either directly or indirectly, a compound of this invention.
- pharmaceutically acceptable counterion is an ionic portion of a salt that is not toxic when released from the salt upon administration to a recipient.
- Acids commonly employed to form pharmaceutically acceptable salts include inorganic acids such as hydrogen bisulfide, hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid and phosphoric acid, as well as organic acids such as para-toluenesulfonic acid, salicylic acid, tartaric acid, bitartaric acid, ascorbic acid, maleic acid, besylic acid, fumaric acid, gluconic acid, glucuronic acid, formic acid, glutamic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, lactic acid, oxalic acid, para-bromophenylsulfonic acid, carbonic acid, succinic acid, citric acid, benzoic acid and acetic acid, as well as related inorganic and organic acids.
- inorganic acids such as hydrogen bisulfide, hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid and phosphoric acid
- Such pharmaceutically acceptable salts thus include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, propionate, decanoate, caprylate, acrylate, formate, isobutyrate, caprate, heptanoate, propiolate, oxalate, malonate, succinate, suberate, sebacate, fumarate, maleate, butyne-1,4-dioate, hexyne-l,6-dioate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, hydroxybenzoate, methoxybenzoate, phthalate, terephthalate, sulfonate, xylene sulfonate, phenylacetate, phenylpropionat
- pharmaceutically acceptable acid addition salts include those formed with mineral acids such as hydrochloric acid and hydrobromic acid, and especially those formed with organic acids such as maleic acid.
- the acids commonly employed to form pharmaceutically acceptable salts include the above- listed inorganic acids, wherein at least one hydrogen is replaced with deuterium.
- the pharmaceutically acceptable salt may also be a salt of a compound of the present invention having an acidic functional group, such as a carboxylic acid functional group, and a base.
- exemplary bases include, but are not limited to, hydroxide of alkali metals including sodium, potassium, and lithium; hydroxides of alkaline earth metals such as calcium and magnesium; hydroxides of other metals, such as aluminum and zinc; ammonia, organic amines such as unsubstituted or hydroxyl-substituted mono-, di-, or tri-alkylamines, dicyclohexylamine; tributyl amine; pyridine; N-methyl, N-ethylamine; diethylamine; triethylamine; mono-, bis-, or tris-(2-OH-(C 1 -C 6 )-alkylamine), such as N,N-dimethyl-N-(2-hydroxyethyl)amine or tri-(2-hydroxyethyl)amine; N-
- the compounds of the present invention may contain an asymmetric carbon atom, for example, as the result of deuterium substitution or otherwise.
- compounds of this invention can exist as either individual enantiomers, or mixtures of the two enantiomers.
- a compound of the present invention may exist as either a racemic mixture or a scalemic mixture, or as individual respective stereoisomers that are substantially free from another possible stereoisomer.“Stereoisomer” refers to both enantiomers and diastereomers.
- substantially free of other stereoisomers means less than 25% of other stereoisomers, preferably less than 10% of other stereoisomers, more preferably less than 5% of other stereoisomers and most preferably less than 2% of other stereoisomers are present.
- Methods of obtaining or synthesizing an individual enantiomer for a given compound are known in the art and may be applied as practicable to final compounds or to starting material or intermediates.
- stable compounds refers to compounds which possess stability sufficient to allow for their manufacture and which maintain the integrity of the compound for a sufficient period of time to be useful for the purposes detailed herein (e.g., formulation into therapeutic products, intermediates for use in production of therapeutic compounds, isolatable or storable intermediate compounds, treating a disease or condition responsive to therapeutic agents).
- Substituted with deuterium refers to the replacement of one or more hydrogen atoms with a corresponding number of deuterium atoms.
- each of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , Y 7 , and Y 8 is independently hydrogen or deuterium;
- each of R 1 and R 2 is independently selected from the group consisting of CH 3 , CH2D, CHD2, and CD3;
- R 3 is H or C 1 -C 8 alkyl
- Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , Y 7 , Y 8 , R 1 , and R 2 comprises deuterium.
- R 1 is CH3 or CD3.
- R 2 is CH3 or CD 3 .
- each of R 1 and R 2 is CH 3 .
- each of R 1 and R 2 is CD3.
- R 1 is CH3 and R 2 is CD3.
- R 1 is CD3 and R 2 is CH3.
- each Y 1 is the same. In some embodiments, each Y 1 is hydrogen. In some embodiments, each Y 1 is deuterium. In some embodiments, each Y 2 is the same. In some embodiments, each Y 2 is hydrogen. In some embodiments, each Y 2 is deuterium.
- Y 3 is hydrogen. In some embodiments, Y 3 is deuterium. In some embodiments, Y 4 is hydrogen. In some embodiments, Y 4 is deuterium. In some embodiments, Y 5 is hydrogen. In some embodiments, Y 5 is deuterium. In some embodiments, Y 6 is hydrogen. In some embodiments, Y 6 is deuterium. In some embodiments, Y 7 is hydrogen. In some embodiments, Y 7 is deuterium. In some embodiments, Y 8 is hydrogen. In some embodiments, Y 8 is deuterium. In some embodiments, each of Y 3 , Y 4 , and Y 5 is hydrogen.
- each of Y 3 , Y 4 , and Y 5 is deuterium.
- each of Y 6 , Y 7 , and Y 8 is hydrogen.
- each of Y 6 , Y 7 , and Y 8 is deuterium.
- each of Y 3 , Y 4 , Y 5 , Y 6 , Y 7 , and Y 8 is the same. In some embodiments, each of Y 3 , Y 4 , Y 5 , Y 6 , Y 7 , and Y 8 is hydrogen. In some embodiments, each of Y 3 , Y 4 , Y 5 , Y 6 , Y 7 , and Y 8 is deuterium.
- R 3 is H. In some embodiments, R 3 is C 1 -C 8 alkyl. In some embodiments, R 3 is C1-C8 alkyl, wherein the C1-C8 alkyl is substituted with one or more deuteriums.
- R 3 can be methyl substituted with 1-3 deuteriums (e.g., CH 2 D, CHD 2 , or CD 3 ), ethyl substituted with 1-5 deuteriums (e.g., CHDCH 3 , CD 2 CH 3 , CD 2 CH 2 D, CD 2 CHD 2 , CD 2 CD 3 , etc.), propyl substituted with 1-7 deuteriums, butyl substituted with 1-9 deuteriums, pentyl substituted with 1-11 deuteriums, hexyl substituted with 1-13 deuteriums, heptyl substituted with 1-15 deuteriums, or octyl substituted with 1-17 deuteriums.
- 1-3 deuteriums e.g., CH 2 D, CHD 2 , or CD 3
- ethyl substituted with 1-5 deuteriums e.g., CHDCH 3 , CD 2 CH 3 , CD 2 CH 2 D, CD 2 CHD 2 , CD 2 CD 3
- R 1 and R 2 when each Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , Y 7 , and Y 8 is deuterium, at least one of R 1 and R 2 comprises one or more hydrogens. In some embodiments of Formula I, when each Y 1 and each Y 2 is deuterium, at least one of R 1 and R 2 comprises one or more hydrogens. In some embodiments, at least one of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , Y 7 , Y 8 , R 1 , and R 2 comprises hydrogen.
- Y 3 , Y 4 , and Y 5 are the same, Y 6 , Y 7 , and Y 8 are the same, R 3 is H and the compound is selected from any one of the compounds set forth in Table 1 (below):
- any atom not designated as deuterium is present at its natural isotopic abundance.
- the level of deuterium incorporation at each Y 1 is at least 52.5%, at least 75%, at least 82.5%, at least 90%, at least 95%, at least 97%, or at least 99%.
- the level of deuterium incorporation at each Y 2 is at least 52.5%, at least 75%, at least 82.5%, at least 90%, at least 95%, at least 97%, or at least 99%.
- the level of deuterium incorporation at Y 3 is at least 52.5%, at least 75%, at least 82.5%, at least 90%, at least 95%, at least 97%, or at least 99%.
- the level of deuterium incorporation at Y 4 is at least 52.5%, at least 75%, at least 82.5%, at least 90%, at least 95%, at least 97%, or at least 99%.
- the level of deuterium incorporation at Y 5 is at least 52.5%, at least 75%, at least 82.5%, at least 90%, at least 95%, at least 97%, or at least 99%.
- the level of deuterium incorporation at Y 6 is at least 52.5%, at least 75%, at least 82.5%, at least 90%, at least 95%, at least 97%, or at least 99%.
- the level of deuterium incorporation at Y 7 is at least 52.5%, at least 75%, at least 82.5%, at least 90%, at least 95%, at least 97%, or at least 99%.
- the level of deuterium incorporation at Y 8 is at least 52.5%, at least 75%, at least 82.5%, at least 90%, at least 95%, at least 97%, or at least 99%.
- the level of deuterium incorporation at R 1 is at least 52.5%, at least 75%, at least 82.5%, at least 90%, at least 95%, at least 97%, or at least 99%.
- the level of deuterium incorporation at R 2 is at least 52.5%, at least 75%, at least 82.5%, at least 90%, at least 95%, at least 97%, or at least 99%.
- the level of deuterium incorporation at R 3 is at least 52.5%, at least 75%, at least 82.5%, at least 90%, at least 95%, at least 97%, or at least 99%.
- any atom not designated as deuterium in any of the embodiments set forth herein is present at its natural isotopic abundance.
- the synthesis of compounds of Formula I may be readily achieved by synthetic chemists of ordinary skill by reference to the Exemplary Synthesis and Examples disclosed herein. Relevant procedures analogous to those of use for the preparation of compounds of Formula I and intermediates thereof are disclosed, for instance in PCT patent publications WO 2005/123731 and WO 2007/068418.
- phenylsulfonyl chloride affords protected and appropriately deuterated sulfonyl azaindole intermediate (2).
- Subsequent deprotonation of (2) with a lithium amide base such as lithium diisopropylamide (LDA), followed by alkylation with appropriately deuterated alkyl halide intermediate (3) furnishes protected and appropriately deuterated alkyl azaindole intermediate (4).
- a lithium amide base such as lithium diisopropylamide (LDA)
- LDA lithium diisopropylamide
- TBAF tetrabutylammonium fluoride
- N-alkylation of (7) with appropriately deuterated aryl-methyl bromide intermediate (8) using sodium hydride or alternatively, 2-tert-butylimino-2- diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine (BEMP) as a base, produces appropriately deuterated N-aryl-methyl azaindole acetate compounds of Formula I, wherein R 3 C 1 -C 8 alkyl.
- appropriately deuterated (5) (for example, wherein R 2 is CH3, CH 2 D, CHD 2 or CD 3 ) may be directly prepared by analogy to a procedure described by Sandham, D. et al., Bioorganic & Medicinal Chemistry, 21(21), 6582-6591; 2013 using, for example, commercially available N,N-Dimethylacetamide-2,2,2-d3 (98 atom %D) for the introduction of R 2 moiety.
- compounds of Formula I can be prepared with greater than 90% or greater than 95% deuterium incorporation at each position designated as D (see below for details).
- Reagents and conditions (a) TMSCF3, AgO3SCF3, KF; (b) H2SO4, HNO3; (c) H2, Pd/C; (d) HF-pyridine, NaNO 2 , heat; (e) KBrO 3 , H 2 SO 4 ; (f) Mg, I 2 , DMF
- TMSCF3 trifluoromethyltrimethylsilane
- appropriately deuterated aniline intermediate (24) by analogy to a procedure described by Cai, C. et al., Nongyao, 41(9), 12-13; 2002.
- Sequential treatment of (24) with HF-pyridine and sodium nitrite followed by heating provides appropriately deuterated aryl fluoride intermediate (25), in a manner analogous to a procedure described by Fukuhara, T. et al., Synthetic Communications, 17(6), 685-92; 1987.
- Subsequent bromination using potassium bromate in the presence of sulfuric acid furnishes appropriately deuterated arylbromide (26), by analogy to a procedure described in CN104311386.
- Grignard reaction of (26) with magnesium in the presence of iodine results in the formation of the Grignard reagent, which is formylated with DMF producing appropriately deuterated aryl aldehyde intermediate (17), by analogy to a procedure described in CN 101759597.
- Certain intermediate (21) are commercially available: Benzene-d6 (99.6 atom %D) (21a); Benzene-d 5 (99 atom %D) (21b); Benzene-1,2,3,5-d 4 (99 atom %D) (21c); Benzene-1,2,4-d3 (99 atom %D) (21d). Additionally, ⁇ , ⁇ , ⁇ -Trifluorotoluene-d5 (99 atom %D) (22a) and 3-(Trifluoromethyl)aniline-2,4,5,6-d4 (98 atom %D) (24a) are commercially available.
- Methane-d3-sulfonyl chloride (98 atom %D) (27a) is commercially available, or may be prepared according to a procedure described by Burlingham, B. et al., Journal of the American Chemical Society, 123(13), 2937-2945; 2001, from
- Methane-d2-sulfonyl chloride (27b) and Methane-d-sulfonyl chloride (27c) may be prepared using said procedure for intermediate (27a), from Iodomethane-d2 (99 atom % D) (3b) and Iodomethane-d (99 atom % D) (3c), respectively.
- compositions comprising an effective amount of a compound of Formula I (e.g., including any of the formulae herein), or a pharmaceutically acceptable salt of said compound; and a pharmaceutically acceptable carrier.
- the carrier(s) are“acceptable” in the sense of being compatible with the other ingredients of the formulation and, in the case of a pharmaceutically acceptable carrier, not deleterious to the recipient thereof in an amount used in the medicament.
- Pharmaceutically acceptable carriers, adjuvants, excipients, and vehicles that may be used in the pharmaceutical compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates (e.g., phosphate- buffered saline, etc.), glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium
- carboxymethylcellulose polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.
- the solubility and bioavailability of the compounds of the present invention in pharmaceutical compositions may be enhanced by methods well-known in the art.
- One method includes the use of lipid excipients in the formulation. See “Oral Lipid-Based Formulations: Enhancing the Bioavailability of Poorly Water- Soluble Drugs (Drugs and the Pharmaceutical Sciences),” David J. Hauss, ed. Informa Healthcare, 2007; and“Role of Lipid Excipients in Modifying Oral and Parenteral Drug Delivery: Basic Principles and Biological Examples,” Kishor M. Wasan, ed. Wiley-Interscience, 2006.
- Another known method of enhancing bioavailability is the use of an amorphous form of a compound of this invention optionally formulated with a poloxamer, such as LUTROL TM and PLURONIC TM (BASF Corporation), or block copolymers of ethylene oxide and propylene oxide. See United States patent
- compositions of the invention include those suitable for oral, rectal, nasal, topical (including buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous and intradermal) administration.
- the compound of the formulae herein is administered transdermally (e.g., using a transdermal patch or iontophoretic techniques).
- Other formulations may conveniently be presented in unit dosage form, e.g., tablets, sustained release capsules, and in liposomes, and may be prepared by any methods well known in the art of pharmacy. See, for example, Remington: The Science and Practice of Pharmacy, Lippincott Williams & Wilkins, Baltimore, MD (20th ed. 2000).
- Such preparative methods include the step of bringing into association with the compound to be administered ingredients such as the carrier that constitutes one or more accessory ingredients.
- the compositions are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers, liposomes or finely divided solid carriers, or both, and then, if necessary, shaping the product.
- compositions of the present invention suitable for oral administration may be presented as discrete units such as capsules, sachets, or tablets each containing a predetermined amount of the active ingredient; a powder or granules; a solution or a suspension in an aqueous liquid or a non-aqueous liquid; an oil-in-water liquid emulsion; a water-in-oil liquid emulsion; packed in liposomes; or as a bolus, etc.
- Soft gelatin capsules can be useful for containing such suspensions, which may beneficially increase the rate of compound absorption.
- carriers that are commonly used include lactose and corn starch.
- Lubricating agents such as magnesium stearate, are also typically added.
- useful diluents include lactose and dried cornstarch.
- aqueous suspensions are administered orally, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening and/or flavoring and/or coloring agents may be added.
- compositions suitable for oral administration include lozenges comprising the ingredients in a flavored basis, usually sucrose and acacia or tragacanth; and pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia.
- compositions suitable for parenteral administration include aqueous and non- aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
- the formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampules and vials, and may be stored in a freeze dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use.
- injection solutions and suspensions may be prepared from sterile powders, granules and tablets.
- Such injection solutions may be in the form, for example, of a sterile injectable aqueous or oleaginous suspension.
- This suspension may be formulated according to techniques known in the art using suitable dispersing or wetting agents (such as, for example, Tween 80) and suspending agents.
- the sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example, as a solution in 1,3- butanediol.
- Suitable vehicles and solvents that may be employed are mannitol, water, Ringer's solution and isotonic sodium chloride solution.
- sterile, fixed oils are conventionally employed as a solvent or suspending medium.
- any bland fixed oil may be employed including synthetic mono- or diglycerides.
- Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions.
- These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant.
- compositions of this invention may be administered in the form of suppositories for rectal administration.
- These compositions can be prepared by mixing a compound of this invention with a suitable non-irritating excipient which is solid at room temperature but liquid at the rectal temperature and therefore will melt in the rectum to release the active components.
- suitable non-irritating excipient include, but are not limited to, cocoa butter, beeswax and polyethylene glycols.
- compositions of this invention may be administered by nasal aerosol or inhalation.
- Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art. See, e.g.: Rabinowitz JD and Zaffaroni AC, US Patent 6,803,031, assigned to Alexza Molecular Delivery Corporation.
- Topical administration of the pharmaceutical compositions of this invention is especially useful when the desired treatment involves areas or organs readily accessible by topical application.
- the pharmaceutical composition should be formulated with a suitable ointment containing the active components suspended or dissolved in a carrier.
- Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petroleum, white petroleum, propylene glycol, polyoxyethylene polyoxypropylene compound, emulsifying wax, and water.
- the pharmaceutical composition can be formulated with a suitable lotion or cream containing the active compound suspended or dissolved in a carrier.
- Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol, and water.
- the pharmaceutical compositions of this invention may also be topically applied to the lower intestinal tract by rectal suppository formulation or in a suitable enema formulation. Topically-transdermal patches and iontophoretic administration are also included in this invention.
- Application of the subject therapeutics may be local, so as to be administered at the site of interest.
- Various techniques can be used for providing the subject compositions at the site of interest, such as injection, use of catheters, trocars, projectiles, pluronic gel, stents, sustained drug release polymers or other device which provides for internal access.
- the compounds of this invention may be incorporated into compositions for coating an implantable medical device, such as prostheses, artificial valves, vascular grafts, stents, or catheters.
- an implantable medical device such as prostheses, artificial valves, vascular grafts, stents, or catheters.
- Suitable coatings and the general preparation of coated implantable devices are known in the art and are exemplified in US Patents 6,099,562; 5,886,026; and 5,304,121.
- the coatings are typically biocompatible polymeric materials such as a hydrogel polymer, polymethyldisiloxane, polycaprolactone, polyethylene glycol, polylactic acid, ethylene vinyl acetate, and mixtures thereof.
- the coatings may optionally be further covered by a suitable topcoat of fluorosilicone, polysaccharides, polyethylene glycol, phospholipids or combinations thereof to impart controlled release characteristics in the composition.
- Coatings for invasive devices are to be included within the definition of pharmaceutically acceptable carrier, adjuvant or vehicle, as those terms are used herein.
- the invention provides a method of coating an implantable medical device comprising the step of contacting said device with the coating composition described above. It will be obvious to those skilled in the art that the coating of the device will occur prior to implantation into a mammal.
- the invention provides a method of impregnating an implantable drug release device comprising the step of contacting said drug release device with a compound or composition of this invention.
- Implantable drug release devices include, but are not limited to, biodegradable polymer capsules or bullets, non-degradable, diffusible polymer capsules and biodegradable polymer wafers.
- the invention provides an implantable medical device coated with a compound or a composition comprising a compound of this invention, such that said compound is therapeutically active.
- the invention provides an implantable drug release device impregnated with or containing a compound or a composition comprising a compound of this invention, such that said compound is released from said device and is therapeutically active.
- composition of this invention may be painted onto the organ, or a composition of this invention may be applied in any other convenient way.
- a pharmaceutical composition of this invention further comprises a second therapeutic agent.
- the second therapeutic agent may be selected from any compound or therapeutic agent known to have or that demonstrates advantageous properties when administered with a compound having the same mechanism of action as fevipiprant.
- Such agents include those indicated as being useful in combination with fevipiprant, including but not limited to, those described in PCT patent publications WO 2005/123731 and WO 2007/068418.
- the second therapeutic agent is an agent useful in the treatment of a disease or condition selected from obstructive or inflammatory airways diseases, e.g., as anti-inflammatory, bronchodilatory or antihistamine drug substances.
- a compound of the invention may be mixed with the second therapeutic agent in a fixed
- pharmaceutic composition or it may be administered separately, before,
- the invention includes a combination of a compound or composition of the invention as described herein with an anti-inflammatory, bronchodilatory, antihistamine or anti-tussive drug substance, said compound of the invention and said drug substance being in the same or different pharmaceutical composition.
- Anti-inflammatory drugs include steroids, in particular, glucocorticosteroids, such as budesonide, beclomethasone, dipropionate, fluticasone propionate, ciclesonide or mometasone furoate; or steroids, described in WO 02/88167, WO 02/12266, WO 02/100879, WO 02/00679 (especially those of Examples 3, 11, 14, 17, 19, 26, 34, 37, 39, 51, 60, 67, 50, 72, 73, 90, 99and101), WO 03/035668, WO
- non-steroidal glucocorticoid receptor agonists such as those described in WO 00/00531, WO 02/10143, WO 03/082280, WO 03/082787, WO 03/104195 and WO 04/005229; LTB455 antagonists, such as those described in U.S. Pat.
- LTD4 antagonists such as montelukast and zafirlukast
- PDE4 inhibitors such as cilomilast (Ariflo® GlaxoSmithKline), Roflumilast (Byk Gulden), V-11294A (Napp), BAY19- 8004 (Bayer), SCH-351591 (Schering-Plough), Arofylline (Almirall Prodesfarma), PD189659 (ParkeDavis), AWD-12-281 (Asta Medica), CDC-801 (Celgene),
- ⁇ -2-adrenoreceptor agonists include compounds, such as those described in WO 99/64035, WO 01/42193, WO 01/83462, WO 02/066422, WO 02/070490, WO 02/076933, WO 2004/011416 and US 2002/0055651.
- Bronchodilatory drugs include anticholinergic or antimuscarinic agents, in particular, ipratropium bromide, oxitropium bromide, tiotropium salts and CHF 4226 (Chiesi), but also those described in WO 01/04118, WO 02/51841, WO 02/53564, WO 03/00840, WO 03/87094, WO 04/05285, WO 02/00652, WO 03/33495, WO 03/53966, EP 0424021, U.S. Pat. No.5,171,744 and U.S. Pat. No.3,714,357.
- Co-therapeutic antihistamine drug substances include cetirizine hydrochloride, acetaminophen, clemastine fumarate, promethazine, loratidine, desloratidine, diphenhydramine and fexofenadine hydrochloride.
- Combinations of compounds of the invention and steroids, ⁇ -2 agonists, PDE4 inhibitors or LTD4 antagonists may be used, e.g., in the treatment of COPD or, particularly, asthma.
- anticholinergic or antimuscarinic agents PDE4 inhibitors, dopamine receptor agonists or LTB4 antagonists may be used, e.g., in the treatment of asthma or, particularly, COPD.
- CCR-5 antagonists such as Schering-Plough antagonists SC-351125, SCH-55700 and SCH-D; Takeda antagonists, such as N-[[4- [[[6, 7-dihydro-2-(4-methylphenyl )-5H-benzo-cyclohepten-8- yl]carbonyl]amino]phenyl]-methyl]tetrahydro-N,N-dimethyl-2H-pyran-4-aminium chloride (TAK-770); and CCR-5 antagonists, described in U.S. Pat. No.6,166,037, WO 00/66558 and WO 00/66559.
- TAK-770 Trigger-770
- the second therapeutic agent is montelukast (Singulair).
- Basulair Phase II clinical trials are ongoing for treatment of allergic rhinitis with a combination of fevipiprant and montelukast.
- the invention provides separate dosage forms of a compound of this invention and one or more of any of the above-described second therapeutic agents, wherein the compound and second therapeutic agent are associated with one another.
- the term“associated with one another” as used herein means that the separate dosage forms are packaged together or otherwise attached to one another such that it is readily apparent that the separate dosage forms are intended to be sold and administered together (within less than 24 hours of one another, consecutively or simultaneously).
- the compound of the present invention is present in an effective amount.
- the term “effective amount” refers to an amount which, when administered in a proper dosing regimen, is sufficient to treat the target disorder.
- an effective amount of a compound of this invention can range from about 1 mg to about 5000 mg per dose, from about 50 mg to about 2000 mg per dose, from about 100 mg to about 1000 mg per dose, from about 300 mg to about 600 mg per dose, or from about 400 mg to about 500 mg per dose. In some embodiments, an effective amount of a compound of this invention can range from about 10 mg to about 2000 mg per dose, from about 20 mg to about 1000 mg per dose, from about 25 mg to about 500 mg per dose, from about 50 mg to about 300 mg per dose, or from about 75 mg to about 150 mg per dose.
- Effective dosage amounts may be administered as a single dose once a day, or as split doses administered two, three or four times a day, e.g., about 450 mg once per day, or about 225 mg twice per day; about 300 mg once per day, or about 150 mg twice per day; about 200 mg once per day, or about 100 mg twice per day; about 150 mg once per day, or about 75 mg twice per day.
- an effective amount of a compound of this invention can range from about 0.15 mg to about 32 mg per kg of body weight, from about 0.5 mg to about 25 mg/kg, from about 1.5 mg to about 15 mg/kg, or from about 5 to about 10 mg/kg.
- an effective amount of the second therapeutic agent is between about 20% and 100% of the dosage normally utilized in a monotherapy regime using just that agent.
- an effective amount is between about 70% and 100% of the normal monotherapeutic dose.
- the normal monotherapeutic dosages of these second therapeutic agents are well known in the art. See, e.g., Wells et al., eds.,
- the invention provides a method of modulating (e.g., antagonizing) the activity of the prostaglandin D2 receptor 2 (e.g., CRTH2, GPR44, or PTGDR2) in a cell, comprising contacting a cell with one or more compounds of Formula I herein, or a pharmaceutically acceptable salt thereof.
- the prostaglandin D2 receptor 2 e.g., CRTH2, GPR44, or PTGDR2
- Compounds of Formula I in free or salt form are antagonists of the G-protein-coupled
- chemoattractant receptor CRTh2 expressed on Th2 cells, eosinophils and basophils.
- Prostaglandin D 2 (PGD 2 ) is the natural ligand for CRTh2.
- PGD 2 Prostaglandin D 2
- antagonists which inhibit the binding of CRTh2 and PGD2 are useful in the treatment of neuropathic pain as described, for example, in WO 05/102338, and in the treatment of allergic and anti-inflammatory conditions. Treatment in accordance with the invention may be symptomatic or prophylactic.
- the cell is contacted in vitro.
- the cell is contacted in vivo.
- the cell is contacted ex vivo.
- the invention provides a method of treating a disease that is beneficially treated by fevipiprant in a subject in need thereof, comprising the step of administering to the subject an effective amount of a compound or a composition of this invention.
- the subject is a patient in need of such treatment.
- diseases are well known in the art and are disclosed in, but not limited to the following patents and published applications: WO 2005/123731 and WO 2007/068418.
- Such diseases include, but are not limited to, inflammatory or obstructive airways diseases, resulting, e.g., in reduction of tissue damage, airways inflammation, bronchial hyperreactivity, remodeling or disease progression.
- Inflammatory or obstructive airways diseases to which the present invention is applicable include asthma of whatever type or genesis including both intrinsic (non-allergic) asthma and extrinsic (allergic) asthma, mild asthma, moderate asthma, severe asthma, bronchitis asthma, exercise induced asthma, occupational asthma and asthma induced following bacterial infection.
- Treatment of asthma is also to be understood as embracing treatment of subjects, e.g., of less than 4 or 5 years of age, exhibiting wheezing symptoms and diagnosed or diagnosable as "whez infants", an established patient category of major medical concern and now often identified as incipient or early- phase asthmatics. (For convenience this particular asthmatic condition is referred to as "whez-infant syndrome”.)
- Prophylactic efficacy in the treatment of asthma will be evidenced by reduced frequency or severity of symptomatic attack, e.g., of acute asthmatic or bronchoconstrictor attack, improvement in lung function or improved airways hyperreactivity.
- symptomatic therapy i.e., therapy for or intended to restrict or abort symptomatic attack when it occurs, e.g., anti-inflammatory (e.g., corticosteroid) or bronchodilatory.
- Prophylactic benefit in asthma may, in particular, be apparent in subjects prone to "morning dipping". "Morning dipping" is a recognized asthmatic syndrome, common to a substantial percentage of asthmatics and characterized by asthma attack, e.g., between the hours of about 4-6 a.m., i.e., at a time normally substantially distant from any previously administered symptomatic asthma therapy.
- inflammatory or obstructive airways diseases and conditions to which the present invention is applicable include acute lung injury (ALI), adult respiratory distress syndrome (ARDS), chronic obstructive pulmonary, airways or lung disease (COPD, COAD or COLD), including chronic bronchitis or dyspnea associated therewith, emphysema, as well as exacerbation of airways hyperreactivity consequent to other drug therapy, in particular, other inhaled drug therapy.
- the invention is also applicable to the treatment of bronchitis of whatever type or genesis including, e.g., acute, arachidic, catarrhal, croupus, chronic or phthinoid bronchitis.
- pneumoconiosis an inflammatory, commonly occupational, disease of the lungs, frequently accompanied by airways obstruction, whether chronic or acute, and occasioned by repeated inhalation of dusts
- pneumoconiosis an inflammatory, commonly occupational, disease of the lungs, frequently accompanied by airways obstruction, whether chronic or acute, and occasioned by repeated inhalation of dusts
- aluminosis an inflammatory, commonly occupational, disease of the lungs, frequently accompanied by airways obstruction, whether chronic or acute, and occasioned by repeated inhalation of dusts
- aluminosis an inflammatory, commonly occupational, disease of the lungs, frequently accompanied by airways obstruction, whether chronic or acute, and occasioned by repeated inhalation of dusts
- asbestosis e.g., asbestosis, chalicosis, ptilosis, siderosis, silicosis, tabacosis and byssinosis.
- agents of the invention are also useful in the treatment of eosinophil related disorders, e.g., eosinophilia, in particular, eosinophils-related disorders of the airways, e.g., involving morbid eosinophilic infiltration of pulmonary tissues including hypereosinophilia as it effects the airways and/or lungs, as well as, e.g., eosinophil-related disorders of the airways consequential or concomitant to Liiffler's syndrome; eosinophilic pneumonia;
- eosinophil related disorders e.g., eosinophilia
- eosinophils-related disorders of the airways e.g., involving morbid eosinophilic infiltration of pulmonary tissues including hypereosinophilia as it effects the airways and/or lungs, as well as, e.g., eosinophil-related disorders of the airways consequential or concom
- bronchopulmonary aspergillosis polyarteritis nodosa including Churg-Strauss syndrome; eosinophilic granuloma; and eosinophil-related disorders affecting the airways occasioned by drug-reaction.
- Agents of the invention are also useful in the treatment of inflammatory or allergic conditions of the skin, e.g., psoriasis, contact dermatitis, atopic dermatitis, alopecia areata, erythema multiforma, dermatitis herpetiformis, scleroderma, vitiligo, hypersensitivity angiitis, urticaria, bullous pemphigoid, lupus erythematosus, pemphisus, epidermolysis bullosa acquisita and other inflammatory or allergic conditions of the skin.
- Compounds of the invention may also be used for the treatment of other diseases or conditions, in particular, diseases or conditions having an inflammatory component, e.g., treatment of diseases and conditions of the eye, such as
- conjunctivitis conjunctivitis, keratoconjunctivitis sicca and vernal conjunctivitis; diseases affecting the nose including allergic rhinitis; and inflammatory disease, in which autoimmune reactions are implicated or having an autoimmune component or aetiology, including autoimmune hematological disorders, e.g., hemolytic anemia, aplastic anaemia, pure red cell anaemia and idiopathic
- thrombocytopenia systemic lupus erythematosus; polychondritis; sclerodoma; Wegener granulamatosis; dermatomyositis; chronic active hepatitis; myasthenia gravis; Steven Johnson syndrome; idiopathic sprue; autoimmune inflammatory bowel disease, e.g., ulcerative colitis and Crohn's disease; endocrine ophthalmopathy;
- Grave's disease sarcoidosis; alveolitis; chronic hypersensitivity pneu monitis;
- multiple sclerosis multiple sclerosis; primary billiary cirrhosis; uveitis (anterior and posterior);
- the method of this invention is used to treat a disease or condition selected from the group consisting of atopic dermatitis, asthma, and allergic rhinitis in a subject in need thereof.
- Identifying a subject in need of such treatment can be in the judgment of a subject or a health care professional and can be subjective (e.g. opinion) or objective (e.g. measurable by a test or diagnostic method).
- any of the above methods of treatment comprises the further step of co-administering to the subject in need thereof one or more second therapeutic agents.
- the choice of second therapeutic agent may be made from any second therapeutic agent known to be useful for co-administration with fevipiprant.
- the choice of second therapeutic agent is also dependent upon the particular disease or condition to be treated. Examples of second therapeutic agents that may be employed in the methods of this invention are those set forth above for use in combination compositions comprising a compound of this invention and a second therapeutic agent.
- the combination therapies of this invention include co- administering a compound of Formula I and montelukast as a second therapeutic agent to a subject in need thereof.
- the invention provides a method of treating allergic rhinitis, wherein the second therapeutic agent is montelukast.
- the term“co-administered” as used herein means that the second therapeutic agent may be administered together with a compound of this invention as part of a single dosage form (such as a composition of this invention comprising a compound of the invention and an second therapeutic agent as described above) or as separate, multiple dosage forms. Alternatively, the additional agent may be administered prior to, consecutively with, or following the administration of a compound of this invention. In such combination therapy treatment, both the compounds of this invention and the second therapeutic agent(s) are administered by conventional methods.
- composition of this invention comprising both a compound of the invention and a second therapeutic agent, to a subject does not preclude the separate administration of that same therapeutic agent, any other second therapeutic agent or any compound of this invention to said subject at another time during a course of treatment.
- the effective amount of the compound of this invention is less than its effective amount would be where the second therapeutic agent is not administered. In another embodiment, the effective amount of the second therapeutic agent is less than its effective amount would be where the compound of this invention is not administered. In this way, undesired side effects associated with high doses of either agent may be minimized. Other potential advantages (including without limitation improved dosing regimens and/or reduced drug cost) will be apparent to those of skill in the art.
- the invention provides the use of a compound of Formula I alone or together with one or more of the above-described second therapeutic agents in the manufacture of a medicament, either as a single composition or as separate dosage forms, for treatment in a subject of a disease, disorder or symptom set forth above.
- Another aspect of the invention is a compound of Formula I for use in the treatment in a subject of a disease, disorder or symptom thereof delineated herein.
- Microsomal Assay Human liver microsomes (20 mg/mL) are obtained from Xenotech, LLC (Lenexa, KS). ⁇ -nicotinamide adenine dinucleotide phosphate, reduced form (NADPH), magnesium chloride (MgCl 2 ), and dimethyl sulfoxide (DMSO) are purchased from Sigma-Aldrich.
- 7.5 mM stock solutions of test compounds are prepared in DMSO.
- the 7.5 mM stock solutions are diluted to 12.5- 50 ⁇ M in acetonitrile (ACN).
- ACN acetonitrile
- the 20 mg/mL human liver microsomes are diluted to 0.625 mg/mL in 0.1 M potassium phosphate buffer, pH 7.4, containing 3 mM MgCl 2 .
- the diluted microsomes are added to wells of a 96-well deep-well polypropylene plate in triplicate.
- a 10 ⁇ L aliquot of the 12.5-50 ⁇ M test compound is added to the microsomes and the mixture is pre-warmed for 10 minutes. Reactions are initiated by addition of pre-warmed NADPH solution.
- the final reaction volume is 0.5 mL and contains 0.5 mg/mL human liver microsomes, 0.25-1.0 ⁇ M test compound, and 2 mM NADPH in 0.1 M potassium phosphate buffer, pH 7.4, and 3 mM MgCl 2 .
- the reaction mixtures are incubated at 37 °C, and 50 ⁇ L aliquots are removed at 0, 5, 10, 20, and 30 minutes and added to shallow-well 96-well plates which contain 50 ⁇ L of ice-cold ACN with internal standard to stop the reactions.
- the plates are stored at 4 °C for 20 minutes after which 100 ⁇ L of water is added to the wells of the plate before centrifugation to pellet precipitated proteins.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
This invention relates to novel pyrrolo[2,3-b]pyridine compounds, and pharmaceutically acceptable salts thereof. For example, this invention relates to novel substituted pyrrolo[2,3-b]pyridine compounds that are structurally related to fevipiprant. This invention also provides pharmaceutical compositions comprising a compound of this invention and the use of such compositions in methods of treating diseases and conditions that are beneficially treated by administering a prostaglandin D2 receptor 2 antagonist (e.g., a CRTH2, GPR44, or PTGDR2 antagonist).
Description
DEUTERATED FEVIPIPRANT CROSS-REFERENCE TO RELATED APPLICATIONS
[1] This application claims priority to U.S. Provisional Application Serial No. 62/343,634, filed on May 31, 2016. The disclosure of the prior application is considered part of the disclosure of this application, and is incorporated in its entirety into this application.
BACKGROUND OF THE INVENTION
[2] Many current medicines suffer from poor absorption, distribution, metabolism and/or excretion (ADME) properties that prevent their wider use or limit their use in certain indications. Poor ADME properties are also a major reason for the failure of drug candidates in clinical trials. While formulation technologies and prodrug strategies can be employed in some cases to improve certain ADME properties, these approaches often fail to address the underlying ADME problems that exist for many drugs and drug candidates. One such problem is rapid metabolism that causes a number of drugs, which otherwise would be highly effective in treating a disease, to be cleared too rapidly from the body. A possible solution to rapid drug clearance is frequent or high dosing to attain a sufficiently high plasma level of drug. This, however, introduces a number of potential treatment problems such as poor patient compliance with the dosing regimen, side effects that become more acute with higher doses, and increased cost of treatment. A rapidly metabolized drug may also expose patients to undesirable toxic or reactive metabolites.
[3] Another ADME limitation that affects many medicines is the formation of toxic or biologically reactive metabolites. As a result, some patients receiving the drug may experience toxicities, or the safe dosing of such drugs may be limited such that patients receive a suboptimal amount of the active agent. In certain cases, modifying dosing intervals or formulation approaches can help to reduce clinical adverse effects, but often the formation of such undesirable metabolites is intrinsic to the metabolism of the compound.
[4] In some select cases, a metabolic inhibitor will be co-administered with a drug that is cleared too rapidly. Such is the case with the protease inhibitor class of drugs that are used to treat HIV infection. The FDA recommends that these drugs be co- dosed with ritonavir, an inhibitor of cytochrome P450 enzyme 3A4 (CYP3A4), the enzyme typically responsible for their metabolism (see Kempf, D.J. et al.,
Antimicrobial agents and chemotherapy, 1997, 41(3): 654-60). Ritonavir, however, causes adverse effects and adds to the pill burden for HIV patients who must already take a combination of different drugs. Similarly, the CYP2D6 inhibitor quinidine has been added to dextromethorphan for the purpose of reducing rapid CYP2D6 metabolism of dextromethorphan in a treatment of pseudobulbar affect. Quinidine, however, has unwanted side effects that greatly limit its use in potential combination therapy (see Wang, L et al., Clinical Pharmacology and Therapeutics, 1994, 56(6 Pt 1): 659-67; and FDA label for quinidine at www.accessdata.fda.gov).
[5] In general, combining drugs with cytochrome P450 inhibitors is not a satisfactory strategy for decreasing drug clearance. The inhibition of a CYP enzyme’s activity can affect the metabolism and clearance of other drugs metabolized by that same enzyme. CYP inhibition can cause other drugs to accumulate in the body to toxic levels.
[6] A potentially attractive strategy for improving a drug’s metabolic properties is deuterium modification. In this approach, one attempts to slow the CYP-mediated metabolism of a drug or to reduce the formation of undesirable metabolites by replacing one or more hydrogen atoms with deuterium atoms. Deuterium is a safe, stable, non-radioactive isotope of hydrogen. Compared to hydrogen, deuterium forms stronger bonds with carbon. In select cases, the increased bond strength imparted by deuterium can positively impact the ADME properties of a drug, creating the potential for improved drug efficacy, safety, and/or tolerability. At the same time, because the size and shape of deuterium are essentially identical to those of hydrogen,
replacement of hydrogen by deuterium would not be expected to affect the
biochemical potency and selectivity of the drug as compared to the original chemical entity that contains only hydrogen.
[7] Over the past 35 years, the effects of deuterium substitution on the rate of metabolism have been reported for a very small percentage of approved drugs (see, e.g., Blake, MI et al, J Pharm Sci, 1975, 64:367-91; Foster, AB, Adv Drug Res 1985, 14:1-40 (“Foster”); Kushner, DJ et al, Can J Physiol Pharmacol 1999, 79-88; Fisher, MB et al, Curr Opin Drug Discov Devel, 2006, 9:101-09 (“Fisher”)). The results have been variable and unpredictable. For some compounds deuteration caused decreased metabolic clearance in vivo. For others, there was no change in
metabolism. Still others demonstrated increased metabolic clearance. The variability in deuterium effects has also led experts to question or dismiss deuterium
modification as a viable drug design strategy for inhibiting adverse metabolism (see Foster at p.35 and Fisher at p.101).
[8] The effects of deuterium modification on a drug’s metabolic properties are not predictable even when deuterium atoms are incorporated at known sites of metabolism. Only by actually preparing and testing a deuterated drug can one determine if and how the rate of metabolism will differ from that of its non-deuterated counterpart. See, for example, Fukuto et al. (J. Med. Chem.1991, 34, 2871-76). Many drugs have multiple sites where metabolism is possible. The site(s) where deuterium substitution is required and the extent of deuteration necessary to see an effect on metabolism, if any, will be different for each drug. SUMMARY OF THE INVENTION
[9] This invention relates to deuterated forms of pyrrolo[2,3-b]pyridine compounds, and pharmaceutically acceptable salts thereof. For example, this invention relates to novel deuterated pyrrolo[2,3-b]pyridine compounds that are structurally related to fevipiprant.
[10] Certain aspects of the present invention provide a compound of Formula I:
(I), or a pharmaceutically acceptable salt thereof, wherein each of Y1, Y2, Y3, Y4, Y5, Y6, Y7, and Y8 is hydrogen or deuterium; each of R1 and R2 is independently selected from the group consisting of CH3, CH2D, CHD2, and CD3; R3 is H or C1-C8 alkyl; provided that at least one of Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, R1, and R2 comprises deuterium.
[11] Certain aspects of the present invention also provide compositions comprising a compound of Formula I or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier. Certain aspects of the present invention provide the use of such compounds and compositions in methods of treating diseases and conditions that are beneficially treated by administering a prostaglandin D2 receptor 2
antagonist (e.g., a CRTH2, GPR44, or PTGDR2 antagonist). Some exemplary embodiments include a method of antagonizing the prostaglandin D2 receptor 2 in a cell, comprising contacting the cell with a compound of Formula I or a composition comprising a compound of Formula I. Some exemplary embodiments include a method of treating a disease or condition selected from the group consisting of asthma, allergic rhinitis, and atopic dermatitis, comprising the step of administering to a subject in need thereof a compound of Formula I or a pharmaceutical composition comprising a compound of Formula I. In some exemplary embodiments, wherein the subject is suffering from allergic rhinitis, the method further comprises co- administering montelukast to the subject in need thereof. DETAILED DESCRIPTION OF THE INVENTION
[12] Fevipiprant, also known as NVP-QAW039 or QAW-039, and by the chemical name 2-[2-methyl-1-[4-(methylsulfonyl)-2-(trifluoromethyl)benzyl]-1H-pyrrolo[2,3- b]pyridin-3-yl]acetic acid, is a selective antagonist of the prostaglandin D2 receptor 2 CRTH2. Prostaglandin D2 receptor 2 (CRTH2) is a receptor also known as G protein- coupled receptor 44 (GPR44) that mediates chemotaxis of inflammatory cells in response to prostaglandin D2 (PGD2) binding. PGD2 is produced by T helper type 2 (Th2) cells and is an important mediator in allergic inflammatory diseases. Thus, CRTH2 antagonists may be beneficial in the treatment of allergic disorders including atopic dermatitis, allergic rhinitis, and asthma.
[13] Fevipiprant is currently in Phase II clinical trials for atopic dermatitis and Phase III clinical trials for asthma. Phase II clinical trials are also ongoing for treatment of allergic rhinitis with fevipiprant as monotherapy or in combination with montelukast (Singulair).
[14] Despite the beneficial activities of fevipiprant, there is a continuing need for new compounds to treat the aforementioned diseases and conditions. Definitions
[15] The term“treat” means decrease, suppress, attenuate, diminish, arrest, or stabilize the development or progression of a disease (e.g., a disease or disorder delineated herein), lessen the severity of the disease or improve the symptoms associated with the disease.
[16] “Disease” means any condition or disorder that damages or interferes with the
normal function of a cell, tissue, or organ.
[17] As used herein, the term“subject” includes humans and non-human mammals. Non-limiting examples of non-human mammals include mice, rats, guinea pigs, rabbits, dogs, cats, monkeys, apes, pigs, cows, sheep, horses, etc.
[18] “The term“alkyl” refers to a monovalent saturated hydrocarbon group. C1-C 6 alkyl is an alkyl having from 1 to 6 carbon atoms. An alkyl may be linear or branched. Examples of alkyl groups include methyl; ethyl; propyl, including n-propyl and isopropyl; butyl, including n-butyl, isobutyl, sec-butyl, and t-butyl; pentyl, including, for example, n-pentyl, isopentyl, and neopentyl; and hexyl, including, for example, n-hexyl and 2-methylpentyl.
[19] Unless otherwise specified,“alkylene” by itself or as part of another substituent refers to a saturated straight-chain or branched divalent group having the stated number of carbon atoms and derived from the removal of two hydrogen atoms from the corresponding alkane. Examples of straight chained and branched alkylene groups include–CH2- (methylene), -CH2-CH2- (ethylene), -CH2-CH2-CH2- (propylene), -C(CH3)2-, -CH2-CH(CH3)-, -CH2-CH2-CH2-CH2-, -CH2-CH2-CH2-CH2- CH2- (pentylene), -CH2-CH(CH3)-CH2-, and -CH2-C(CH3)2-CH2-.
[20] The term“alkenyl” refers to a monovalent unsaturated hydrocarbon group where the unsaturation is represented by a double bond. C2-C6 alkenyl is an alkenyl having from 2 to 6 carbon atoms. An alkenyl may be linear or branched. Examples of alkenyl groups include CH2=CH-, CH2=C(CH3)-, CH2=CH-CH2-, CH3-CH=CH- CH2-, CH3-CH=C(CH3)- and CH3-CH=CH-CH(CH3)-CH2-. Where double bond stereoisomerism is possible, the stereochemistry of an alkenyl may be (E), (Z), or a mixture thereof.
[21] The term "alkynyl" refers to a monovalent unsaturated hydrocarbon group where the unsaturation is represented by a triple bond. C2-C6 alkynyl is an alkenyl having from 2 to 6 carbon atoms. An alkynyl may be linear or branched. Examples of alkynyl groups include CH≡C-, -C≡C-CH3, CH3-C≡C-CH2-, CH3-C≡C-CH2-CH2 and CH3-C≡C-CH(CH3)-CH2-.
[22] The term "cycloalkyl" refers to a monocyclic or bicyclic monovalent saturated or non-aromatic unsaturated hydrocarbon ring system. The term "C3-C10 cycloalkyl” refers to a cycloalkyl wherein the number of ring carbon atoms is from 3 to 10.
Examples of C3-C10 cycloalkyl include C3-C6 cycloalkyl. Bicyclic ring systems include fused, bridged, and spirocyclic ring systems. More particular examples of
cycloalkyl groups include, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cis- and trans-decalinyl, norbornyl, and spiro[4.5]decanyl.
[23] The term "carbocyclyl" refers to a monocyclic or bicyclic monovalent saturated or non-aromatic unsaturated hydrocarbon ring system. The term "C3-C10 carbocyclyl” refers to a carbocyclyl wherein the number of ring carbon atoms is from 3 to 10. Examples of C3-C10 carbocyclyl include C3-C6 carbocyclyl. Bicyclic ring systems include fused, bridged, and spirocyclic ring systems. More particular examples of carbocyclyl groups include, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, cis- and trans-decalinyl, norbornyl, norbornenyl, and spiro[4.5]decanyl.
[24] The term "heterocycloalkyl" refers to a monocyclic or bicyclic monovalent saturated or non-aromatic unsaturated ring system wherein from 1 to 4 ring atoms are heteroatoms independently selected from the group consisting of O, N and S. The term "3 to 10-membered heterocycloalkyl" refers to a heterocycloalkyl wherein the number of ring atoms is from 3 to 10. Examples of 3 to 10-membered
heterocycloalkyl include 3 to 6-membered heterocycloalkyl. Bicyclic ring systems include fused, bridged, and spirocyclic ring systems. More particular examples of heterocycloalkyl groups include azepanyl, azetidinyl, aziridinyl, imidazolidinyl, morpholinyl, oxazolidinyl, oxazolidinyl, piperazinyl, piperidinyl, pyrazolidinyl, pyrrolidinyl, quinuclidinyl, and thiomorpholinyl.
[25] In the above heterocycloalkyl substituents, the nitrogen, phosphorus, carbon or sulfur atoms can be optionally oxidized to various oxidation states. In a specific example, the group -S(O)0-2-, refers to -S-(sulfide), -S(O)-(sulfoxide), and -SO2- (sulfone) respectively. For convenience, nitrogens, particularly but not exclusively, are meant to include their corresponding N-oxide form, although not explicitly defined as such in a particular example. Thus, for a compound of the invention having, for example, a pyridyl ring; the corresponding pyridyl-N-oxide is meant to be included as another compound of the invention. In addition, annular nitrogen atoms can be optionally quaternized; and the ring substituent can be partially or fully saturated or aromatic.
[26] “Aryl” by itself or as part of another substituent refers to a monovalent aromatic hydrocarbon group having the stated number of carbon atoms (i.e., C5-C14 means from 5 to 14 carbon atoms). Typical aryl groups include, but are not limited to, groups derived from aceanthrylene, acenaphthylene, acephenanthrylene, anthracene,
azulene, benzene, chrysene, coronene, fluoranthene, fluorene, hexacene, hexaphene, hexylene, as-indacene, s-indacene, indane, indene, naphthalene, octacene, octophene, octalene, ovalene, penta-2,4-diene, pentacene, pentalene, pentaphene, perylene, phenalene, phenanthrene, picene, pleiadene, pyrene, pyranthrene, rubicene, triphenylene, trinaphthylene, and the like. In a specific embodiment, the aryl group is cyclopentadienyl, phenyl or naphthyl. In a more specific embodiment, the aryl group is phenyl or naphthyl.
[27] “Arylalkyl” by itself or as part of another substituent refers to an acyclic alkyl group in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp3 carbon atom, is replaced with an aryl group. Typical arylalkyl groups include, but are not limited to, benzyl, 2-phenylethan-1-yl, 2-phenylethen-1-yl, naphthylmethyl, 2-naphthylethan-1-yl, 2-naphthylethen-1-yl, naphthobenzyl, 2- naphthophenylethan-1-yl and the like. In one embodiment, the alkyl moiety of the arylalkyl group is (C1-C6) and the aryl moiety is (C5-C14). In a more specific embodiment the alkyl group is (C1-C3) and the aryl moiety is (C5-C10), such as (C6- [28] The term“heteroaryl” refers to a monovalent aromatic monocyclic
ring system wherein at least one ring atoms is a heteroatom independently selected from the group consisting of O, N and S. The term 5-membered heteroaryl refers to a heteroaryl wherein the number of ring atoms is 5. Examples of 5-membered heteroaryl groups include pyrrolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, oxadiazolyl, thiadiazolyl, furazanyl, imidazolinyl, and triazolyl.
[29] “Heteroarylalkyl” by itself or as part of another substituent refers to an acyclic alkyl group in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp3 carbon atom, is replaced with a heteroaryl group. In one embodiment, the alkyl moiety of the heteroarylalkyl is (C1-C6) alkyl and the heteroaryl moiety is a 5-14-membered heteroaryl. In a more specific embodiment, the alkyl moiety is (C1- C3) alkyl and the heteroaryl moiety is a 5-10 membered heteroaryl.
[30] “Halogen” or“Halo” by themselves or as part of another substituent refers to fluorine, chlorine, bromine and iodine, or fluoro, chloro, bromo and iodo.
[31] It will be recognized that some variation of natural isotopic abundance occurs in a synthesized compound depending upon the origin of chemical materials used in the synthesis. Thus, a preparation of fevipiprant will inherently contain small amounts of deuterated isotopologues. The concentration of naturally abundant stable
hydrogen and carbon isotopes, notwithstanding this variation, is small and immaterial as compared to the degree of stable isotopic substitution of compounds of this invention. See, for instance, Wada, E et al., Seikagaku, 1994, 66:15; Gannes, LZ et al., Comp Biochem Physiol Mol Integr Physiol, 1998, 119:725.
[32] In the compounds of this invention any atom not specifically designated as a particular isotope is meant to represent any stable isotope of that atom. Unless otherwise stated, when a position is designated specifically as“H” or“hydrogen”, the position is understood to have hydrogen at its natural abundance isotopic composition. Also unless otherwise stated, when a position is designated specifically as“D” or “deuterium”, the position is understood to have deuterium at an abundance that is at least 3340 times greater than the natural abundance of deuterium, which is 0.015% (i.e., at least 50.1% incorporation of deuterium).
[33] The term“isotopic enrichment factor” as used herein means the ratio between the isotopic abundance and the natural abundance of a specified isotope.
[34] In other embodiments, a compound of this invention has an isotopic enrichment factor for each designated deuterium atom of at least 3500 (52.5% deuterium incorporation at each designated deuterium atom), at least 4000 (60% deuterium incorporation), at least 4500 (67.5% deuterium incorporation), at least 5000 (75% deuterium), at least 5500 (82.5% deuterium incorporation), at least 6000 (90% deuterium incorporation), at least 6333.3 (95% deuterium incorporation), at least 6466.7 (97% deuterium incorporation), at least 6600 (99% deuterium incorporation), or at least 6633.3 (99.5% deuterium incorporation).
[35] In some embodiments, in a compound of this invention, each designated deuterium atom has deuterium incorporation of least 52.5%.
[36] In some embodiments, in a compound of this invention, each designated deuterium atom has deuterium incorporation of least 60%.
[37] In some embodiments, in a compound of this invention, each designated deuterium atom has deuterium incorporation of least 67.5%.
[38] In some embodiments, in a compound of this invention, each designated deuterium atom has deuterium incorporation of least 75%.
[39] In some embodiments, in a compound of this invention, each designated deuterium atom has deuterium incorporation of least 82.5%.
[40] In some embodiments, in a compound of this invention, each designated deuterium atom has deuterium incorporation of least 90%.
[41] In some embodiments, in a compound of this invention, each designated deuterium atom has deuterium incorporation of least 95%.
[42] In some embodiments, in a compound of this invention, each designated deuterium atom has deuterium incorporation of least 97.5%.
[43] In some embodiments, in a compound of this invention, each designated deuterium atom has deuterium incorporation of least 99%.
[44] In some embodiments, in a compound of this invention, each designated deuterium atom has deuterium incorporation of least 99.5%.
[45] The term“isotopologue” refers to a species in which the chemical structure differs from a specific compound of this invention only in the isotopic composition thereof.
[46] The term“compound,” when referring to a compound of this invention, refers to a collection of molecules having an identical chemical structure, except that there may be isotopic variation among the constituent atoms of the molecules. Thus, it will be clear to those of skill in the art that a compound represented by a particular chemical structure containing indicated deuterium atoms, will also contain lesser amounts of isotopologues having hydrogen atoms at one or more of the designated deuterium positions in that structure. The relative amount of such isotopologues in a compound of this invention will depend upon a number of factors including the isotopic purity of deuterated reagents used to make the compound and the efficiency of incorporation of deuterium in the various synthesis steps used to prepare the compound.
[47] The invention also provides salts of the compounds of the invention.
[48] A salt of a compound of this invention is formed between an acid and a basic group of the compound, such as an amino functional group, or a base and an acidic group of the compound, such as a carboxyl functional group. According to one embodiment, the compound is a pharmaceutically acceptable acid addition salt. In one embodiment the acid addition salt may be a deuterated acid addition salt.
[49] The term“pharmaceutically acceptable,” as used herein, refers to a component that is, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and other mammals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. A “pharmaceutically acceptable salt” means any non-toxic salt that, upon administration to a recipient, is capable of providing, either directly or indirectly, a compound of this
invention. A“pharmaceutically acceptable counterion” is an ionic portion of a salt that is not toxic when released from the salt upon administration to a recipient.
[50] Acids commonly employed to form pharmaceutically acceptable salts include inorganic acids such as hydrogen bisulfide, hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid and phosphoric acid, as well as organic acids such as para-toluenesulfonic acid, salicylic acid, tartaric acid, bitartaric acid, ascorbic acid, maleic acid, besylic acid, fumaric acid, gluconic acid, glucuronic acid, formic acid, glutamic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, lactic acid, oxalic acid, para-bromophenylsulfonic acid, carbonic acid, succinic acid, citric acid, benzoic acid and acetic acid, as well as related inorganic and organic acids. Such pharmaceutically acceptable salts thus include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, propionate, decanoate, caprylate, acrylate, formate, isobutyrate, caprate, heptanoate, propiolate, oxalate, malonate, succinate, suberate, sebacate, fumarate, maleate, butyne-1,4-dioate, hexyne-l,6-dioate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, hydroxybenzoate, methoxybenzoate, phthalate, terephthalate, sulfonate, xylene sulfonate, phenylacetate, phenylpropionate, phenylbutyrate, citrate, lactate, β- hydroxybutyrate, glycolate, maleate, tartrate, methanesu1fonate, propanesulfonate, naphthalene-1-sulfonate, naphthalene-2- sulfonate, mandelate and other salts. In one embodiment, pharmaceutically acceptable acid addition salts include those formed with mineral acids such as hydrochloric acid and hydrobromic acid, and especially those formed with organic acids such as maleic acid. In one embodiment, the acids commonly employed to form pharmaceutically acceptable salts include the above- listed inorganic acids, wherein at least one hydrogen is replaced with deuterium.
[51] The pharmaceutically acceptable salt may also be a salt of a compound of the present invention having an acidic functional group, such as a carboxylic acid functional group, and a base. Exemplary bases include, but are not limited to, hydroxide of alkali metals including sodium, potassium, and lithium; hydroxides of alkaline earth metals such as calcium and magnesium; hydroxides of other metals, such as aluminum and zinc; ammonia, organic amines such as unsubstituted or hydroxyl-substituted mono-, di-, or tri-alkylamines, dicyclohexylamine; tributyl amine; pyridine; N-methyl, N-ethylamine; diethylamine; triethylamine; mono-, bis-, or tris-(2-OH-(C1-C6)-alkylamine), such as N,N-dimethyl-N-(2-hydroxyethyl)amine
or tri-(2-hydroxyethyl)amine; N-methyl-D-glucamine; morpholine; thiomorpholine; piperidine; pyrrolidine; and amino acids such as arginine, lysine, and the like.
[52] The compounds of the present invention (e.g., compounds of Formula I), may contain an asymmetric carbon atom, for example, as the result of deuterium substitution or otherwise. As such, compounds of this invention can exist as either individual enantiomers, or mixtures of the two enantiomers. Accordingly, a compound of the present invention may exist as either a racemic mixture or a scalemic mixture, or as individual respective stereoisomers that are substantially free from another possible stereoisomer.“Stereoisomer” refers to both enantiomers and diastereomers. The term“substantially free of other stereoisomers” as used herein means less than 25% of other stereoisomers, preferably less than 10% of other stereoisomers, more preferably less than 5% of other stereoisomers and most preferably less than 2% of other stereoisomers are present. Methods of obtaining or synthesizing an individual enantiomer for a given compound are known in the art and may be applied as practicable to final compounds or to starting material or intermediates.
[53] Unless otherwise indicated, when a disclosed compound is named or depicted by a structure without specifying the stereochemistry and has one or more chiral centers, it is understood to represent all possible stereoisomers of the compound.
[54] The term“stable compounds,” as used herein, refers to compounds which possess stability sufficient to allow for their manufacture and which maintain the integrity of the compound for a sufficient period of time to be useful for the purposes detailed herein (e.g., formulation into therapeutic products, intermediates for use in production of therapeutic compounds, isolatable or storable intermediate compounds, treating a disease or condition responsive to therapeutic agents).
[55] “D” and“d” both refer to deuterium.“Tert” and“t-” each refer to tertiary. “US” refers to the United States of America.
[56] “Substituted with deuterium” refers to the replacement of one or more hydrogen atoms with a corresponding number of deuterium atoms.
[57] Throughout this specification, a variable may be referred to generally
(e.g.,"each R") or may be referred to specifically (e.g., R1, R2, R3, etc.). Unless otherwise indicated, when a variable is referred to generally, it is meant to include all specific embodiments of that particular variable.
Therapeutic Compounds
[58] Certain aspects of the present invention provide a compound of Formula I:
, or a pharmaceutically acceptable salt thereof, wherein each of Y1, Y2, Y3, Y4, Y5, Y6, Y7, and Y8 is independently hydrogen or deuterium;
each of R1 and R2 is independently selected from the group consisting of CH3, CH2D, CHD2, and CD3; and
R3 is H or C1-C8 alkyl;
provided that at least one of Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, R1, and R2 comprises deuterium.
[59] In some embodiments, R1 is CH3 or CD3. In some embodiments, R2 is CH3 or CD3. In some embodiments, each of R1 and R2 is CH3. In some embodiments, each of R1 and R2 is CD3. In some embodiments, R1 is CH3 and R2 is CD3. In some embodiments, R1 is CD3 and R2 is CH3.
[60] In some embodiments, each Y1 is the same. In some embodiments, each Y1 is hydrogen. In some embodiments, each Y1 is deuterium. In some embodiments, each Y2 is the same. In some embodiments, each Y2 is hydrogen. In some embodiments, each Y2 is deuterium.
[61] In some embodiments, Y3 is hydrogen. In some embodiments, Y3 is deuterium. In some embodiments, Y4 is hydrogen. In some embodiments, Y4 is deuterium. In some embodiments, Y5 is hydrogen. In some embodiments, Y5 is deuterium. In some embodiments, Y6 is hydrogen. In some embodiments, Y6 is deuterium. In some embodiments, Y7 is hydrogen. In some embodiments, Y7 is deuterium. In some embodiments, Y8 is hydrogen. In some embodiments, Y8 is deuterium. In some embodiments, each of Y3, Y4, and Y5 is hydrogen. In some embodiments, one of Y3, Y4, and Y5 is deuterium and the other two are hydrogen (e.g., Y3 = D and Y4 = Y5 = H; Y4 = D and Y3 = Y5 = H; or Y5 = D and Y3 = Y4 = H).
In some embodiments, two of Y3, Y4, and Y5 are deuterium and the other is hydrogen (e.g., Y3 = Y4 = D and Y5 = H; Y3 = Y5 = D and Y4 = H; or Y4 = Y5 = D and Y3 = H). In some embodiments, each of Y3, Y4, and Y5 is deuterium. In some embodiments, each of Y6, Y7, and Y8 is hydrogen. In some embodiments, one of Y6, Y7, and Y8 is deuterium and the other two are hydrogen (e.g., Y6 = D and Y7 = Y8 = H; Y7 = D and Y6 = Y8= H; or Y8 = D and Y6 = Y7 = H). In some embodiments, two of Y6, Y7, and Y8 are deuterium and the other is hydrogen (e.g., Y6 = Y7 = D and Y8 = H; Y6 = Y8 = D and Y7 = H; or Y7 = Y8 = D and Y6 = H). In some embodiments, each of Y6, Y7, and Y8 is deuterium.
[62] In some embodiments, each of Y3, Y4, Y5, Y6, Y7, and Y8 is the same. In some embodiments, each of Y3, Y4, Y5, Y6, Y7, and Y8 is hydrogen. In some embodiments, each of Y3, Y4, Y5, Y6, Y7, and Y8 is deuterium.
[63] In some embodiments, R3 is H. In some embodiments, R3 is C1-C8 alkyl. In some embodiments, R3 is C1-C8 alkyl, wherein the C1-C8 alkyl is substituted with one or more deuteriums. For example, R3 can be methyl substituted with 1-3 deuteriums (e.g., CH2D, CHD2, or CD3), ethyl substituted with 1-5 deuteriums (e.g., CHDCH3, CD2CH3, CD2CH2D, CD2CHD2, CD2CD3, etc.), propyl substituted with 1-7 deuteriums, butyl substituted with 1-9 deuteriums, pentyl substituted with 1-11 deuteriums, hexyl substituted with 1-13 deuteriums, heptyl substituted with 1-15 deuteriums, or octyl substituted with 1-17 deuteriums.
In some embodiments of Formula I, when each Y1, Y2, Y3, Y4, Y5, Y6, Y7, and Y8 is deuterium, at least one of R1 and R2 comprises one or more hydrogens. In some embodiments of Formula I, when each Y1and each Y2 is deuterium, at least one of R1 and R2 comprises one or more hydrogens. In some embodiments, at least one of Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, R1, and R2 comprises hydrogen.
[64] In some embodiments of a compound of Formula I, Y3, Y4, and Y5 are the same, Y6, Y7, and Y8 are the same, R3 is H and the compound is selected from any one of the compounds set forth in Table 1 (below):
Table 1: Exemplary Embodiments of Formula I
, or a pharmaceutically acceptable salt thereof.
[65] In some embodiments of Formula I, any atom not designated as deuterium is present at its natural isotopic abundance.
[66] In some embodiments, when Y1 is deuterium, the level of deuterium
incorporation at each Y1 is at least 52.5%, at least 75%, at least 82.5%, at least 90%, at least 95%, at least 97%, or at least 99%.
[67] In some embodiments, when Y2 is deuterium, the level of deuterium incorporation at each Y2 is at least 52.5%, at least 75%, at least 82.5%, at least 90%, at least 95%, at least 97%, or at least 99%.
[68] In some embodiments, when Y3 is deuterium, the level of deuterium incorporation at Y3 is at least 52.5%, at least 75%, at least 82.5%, at least 90%, at least 95%, at least 97%, or at least 99%.
[69] In some embodiments, when Y4 is deuterium, the level of deuterium incorporation at Y4 is at least 52.5%, at least 75%, at least 82.5%, at least 90%, at least 95%, at least 97%, or at least 99%.
[70] In some embodiments, when Y5 is deuterium, the level of deuterium incorporation at Y5 is at least 52.5%, at least 75%, at least 82.5%, at least 90%, at least 95%, at least 97%, or at least 99%.
[71] In some embodiments, when Y6 is deuterium, the level of deuterium incorporation at Y6 is at least 52.5%, at least 75%, at least 82.5%, at least 90%, at least 95%, at least 97%, or at least 99%.
[72] In some embodiments, when Y7 is deuterium, the level of deuterium incorporation at Y7 is at least 52.5%, at least 75%, at least 82.5%, at least 90%, at least 95%, at least 97%, or at least 99%.
[73] In some embodiments, when Y8 is deuterium, the level of deuterium incorporation at Y8 is at least 52.5%, at least 75%, at least 82.5%, at least 90%, at least 95%, at least 97%, or at least 99%.
[74] In some embodiments, when R1 comprises deuterium, the level of deuterium incorporation at R1 is at least 52.5%, at least 75%, at least 82.5%, at least 90%, at least 95%, at least 97%, or at least 99%.
[75] In some embodiments, when R2 comprises deuterium, the level of deuterium incorporation at R2 is at least 52.5%, at least 75%, at least 82.5%, at least 90%, at least 95%, at least 97%, or at least 99%.
[76] In some embodiments, when R3 comprises deuterium, the level of deuterium incorporation at R3 is at least 52.5%, at least 75%, at least 82.5%, at least 90%, at least 95%, at least 97%, or at least 99%.
[77] In some embodiments, any atom not designated as deuterium in any of the embodiments set forth herein is present at its natural isotopic abundance.
[78] The synthesis of compounds of Formula I may be readily achieved by synthetic chemists of ordinary skill by reference to the Exemplary Synthesis and Examples disclosed herein. Relevant procedures analogous to those of use for the preparation of compounds of Formula I and intermediates thereof are disclosed, for instance in PCT patent publications WO 2005/123731 and WO 2007/068418.
[79] Such methods can be carried out utilizing corresponding deuterated and optionally, other isotope-containing reagents and/or intermediates to synthesize the compounds delineated herein, or invoking standard synthetic protocols known in the art for introducing isotopic atoms to a chemical structure. Exemplary Synthesis
[80] A convenient method for synthesizing compounds of Formula I is depicted in Scheme I, below.
Scheme 1: General Synthesis of Compounds of Formula I
Reagents and conditions: (a) BnEt3NCl, NaOH, PhSO2Cl; (b) LDA; (c) TBAF; (d) n-BuLi, ZnCl2; (e) NaH or BEMP; (f) NaOH
[81] In a manner analogous to a procedure described in WO2005123731 and by Sandham, D. et al., Bioorganic & Medicinal Chemistry, 21(21), 6582-6591; 2013, sulfonation of appropriately deuterated azaindole intermediate (1) using
phenylsulfonyl chloride affords protected and appropriately deuterated sulfonyl azaindole intermediate (2). Subsequent deprotonation of (2) with a lithium amide base such as lithium diisopropylamide (LDA), followed by alkylation with appropriately deuterated alkyl halide intermediate (3) furnishes protected and appropriately deuterated alkyl azaindole intermediate (4). Deprotection of sulfonyl group in (4) using tetrabutylammonium fluoride (TBAF) affords appropriately deuterated alkyl azaindole (5), which is subsequently deprotonated with a strong base such as butyl lithium, followed by treatment with zinc chloride affording a zinc salt, which is directly C-alkylated with appropriately deuterated alkyl bromoacetate intermediate (6) at elevated temperature to afford appropriately deuterated azaindole acetate intermediate (7). N-alkylation of (7) with appropriately deuterated aryl-methyl bromide intermediate (8) using sodium hydride or alternatively, 2-tert-butylimino-2- diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine (BEMP) as a base, produces appropriately deuterated N-aryl-methyl azaindole acetate compounds of Formula I, wherein R3 =C1-C8 alkyl. Base hydrolysis of acetate in compounds of Formula I, wherein R3 =C1-C8 alkyl, using a base such as sodium hydroxide furnishes appropriately deuterated compounds of Formula I, wherein R3= H.
[82] Alternatively, appropriately deuterated (5) (for example, wherein R2 is CH3, CH2D, CHD2 or CD3) may be directly prepared by analogy to a procedure described by Sandham, D. et al., Bioorganic & Medicinal Chemistry, 21(21), 6582-6591; 2013 using, for example, commercially available N,N-Dimethylacetamide-2,2,2-d3 (98 atom %D) for the introduction of R2 moiety.
[83] Using commercially available reagents and deuterated reagents that can be readily prepared by known methods, compounds of Formula I can be prepared with greater than 90% or greater than 95% deuterium incorporation at each position designated as D (see below for details).
[84] Appropriately deuterated intermediate (1), for use in the preparation of compounds of Formula I according to Scheme 1, may be prepared from
corresponding deuterated reagents exemplified in Scheme 2.
Reagents and conditions: (a) (Boc)2O; (b) n-BuLi; (c) DMF, HCl or DMF-d1, DCl; (d) NaOH [85] By analogy to a procedure described by Hands, D. et al., Synthesis, (7), 877- 882; 1996, appropriately deuterated pyridylamine intermediate (9) is treated with di- tert-butyl dicarbonate affording appropriately deuterated pyridylamine-carbamate intermediate (10), which is subsequently treated with butyl lithium to furnish appropriately deuterated lithiated dianion intermediate (11). Quenching of dianion (11) with N,N-Dimethylformamide (DMF) followed by treatment with HCl or N,N- Dimethylformamide-d1 (DMF-d1) (99 atom %D) followed by treatment with DCl affords appropriately deuterated aldehyde (12). Finally, treatment of (12) with HCl followed by NaOH produces appropriately deuterated 7-azaindole intermediate (1). 1H-Pyrrolo[2,3-b]pyridine-1,2,3,4,5,6-d6 (98 atom %D) (1a) is commercially available.
[86] Use of appropriately deuterated reagents allows deuterium incorporation at the Y3, Y4, Y5 positions of a compound of Formula I or any appropriate intermediate herein, e.g., 90, 95, 97, or 99% deuterium incorporation at any Y3, Y4 and /or Y5.
[87] Appropriately deuterated intermediate (9), for use in the preparation of compounds of Formula I according to Scheme 1, may be prepared from
corresponding deuterated reagents exemplified in Scheme 3.
Scheme 3: Preparation of Intermediate (9)
Reagents and conditions: (a) H2O2; (b) t-BuNH2, Ts2O, TFA
[88] By analogy to a procedure described in WO 2012160464, oxidation of appropriately deuterated picoline intermediate (13) using hydrogen peroxide affords appropriately deuterated picoline N-oxide intermediate (14). Subsequent amination in a manner analogous to a procedure described by Yin, J. et al., Journal of Organic Chemistry, 72(12), 4554-4557; 2007, using t-butylamine and tosylic anhydride followed by in situ deprotection with trifluoroacetic acid produces appropriately deuterated pyridylamine intermediate (9). 3-Methylpyridine-d7 (98 atom % D) intermediate (13a) is commercially available.
[89] Use of appropriately deuterated reagents allows deuterium incorporation at the Y3, Y4, Y5 positions of a compound of Formula I or any appropriate intermediate herein, e.g., 90, 95, 97, or 99% deuterium incorporation at any Y3, Y4 and /or Y5.
[90] Certain intermediates (3), for use in the preparation of compounds of Formula I according to Scheme 1, are commercially available: Iodomethane-d3 (99 atom % D) (3a), Iodomethane-d2 (99 atom % D) (3b), Iodomethane-d (99 atom % D) (3c).
[91] Use of appropriately deuterated reagents allows deuterium incorporation at the R2 positions of a compound of Formula I or any appropriate intermediate herein, e.g., 90, 95, 97, or 99% deuterium incorporation at any R2.
[92] Appropriately deuterated intermediate (6), for use in the preparation of compounds of Formula I according to Scheme 1, may be prepared from
corresponding deuterated reagents exemplified in Scheme 4.
Scheme 4: Preparation of Intermediate (6)
[93] By analogy to a procedure described by Werkhoven, T. et al., European Journal of Organic Chemistry, (11), 2909-2914; 1999, esterification of appropriately
deuterated bromoacetic acid intermediate (15) with alcohol intermediate (16) using oxalyl chloride or other commonly known methods in the art, produces appropriately deuterated bromoacetate intermediate (6). Bromoacetic acid-d3 (98 atom % D) (15a) is commercially available. The following intermediates (6) are commercially available: Methyl bromoacetate-2, 2-d2 (98 atom % D) (6a) and Ethyl bromoacetate- 2, 2-d2 (97 atom % D) (6b).
[94] Use of appropriately deuterated reagents allows deuterium incorporation at the Y2 positions of a compound of Formula I or any appropriate intermediate herein, e.g., 90, 95, 97, or 99% deuterium incorporation at any or Y2.
[95] Appropriately deuterated intermediate (8), for use in the preparation of compounds of Formula I according to Scheme 1, may be prepared from
corresponding deuterated reagents exemplified in Scheme 5.
Scheme 5: Pre aration of Intermediate 8
[96] In a manner analogous to a procedure described in WO200512373, appropriately deuterated aryl aldehyde intermediate (17) is treated with appropriately deuterated sulfinate salt intermediate (18) to furnish appropriately deuterated aryl sulfonyl aldehyde intermediate (19). Reduction of aldehyde in (19) with reductant such as sodium borohydride or sodium borodeuteride affords correspondingly and appropriately deuterated benzyl alcohol intermediate (20) which is subsequently brominated with phosphorus tribromide to produce appropriately deuterated benzyl bromide intermediate (8).
[97] Use of appropriately deuterated reagents allows deuterium incorporation at the R1, Y1, Y6, Y7, Y8 positions of a compound of Formula I or any appropriate
intermediate herein, e.g., 90, 95, 97, or 99% deuterium incorporation at any R1, Y1, Y6, Y7 and /or Y8.
[98] Appropriately deuterated intermediate (17), for use in the preparation of compounds of Formula I according to Scheme 1, may be prepared from
corresponding deuterated reagents exemplified in Scheme 6 (wherein Y6a, Y7a and Y8a are independently selected from H and D).
Scheme 6: Preparation of Intermediate (17)
Reagents and conditions: (a) TMSCF3, AgO3SCF3, KF; (b) H2SO4, HNO3; (c) H2, Pd/C; (d) HF-pyridine, NaNO2, heat; (e) KBrO3, H2SO4; (f) Mg, I2, DMF
[99] In a manner analogous to a procedure described by Ye, Y. et al., Organic Letters, 13(20), 5464-5467; 2011, silver-mediated trifluoromethylation of
appropriately deuterated arene intermediate (21) using trifluoromethyltrimethylsilane (TMSCF3) furnishes appropriately deuterated aryltrifluoromethyl intermediate (22), which is subsequently nitrated using nitric acid to produce appropriately deuterated nitroaryl intermediate (23), by analogy to a procedure described by Ghaffarzadeh, M. et al., Journal of Chemical Research, 38(4), 200-201; 2014. Reduction of nitro moiety in (23) using hydrogen gas in the presence of palladium on carbon affords
appropriately deuterated aniline intermediate (24), by analogy to a procedure described by Cai, C. et al., Nongyao, 41(9), 12-13; 2002. Sequential treatment of (24) with HF-pyridine and sodium nitrite followed by heating, provides appropriately
deuterated aryl fluoride intermediate (25), in a manner analogous to a procedure described by Fukuhara, T. et al., Synthetic Communications, 17(6), 685-92; 1987. Subsequent bromination using potassium bromate in the presence of sulfuric acid furnishes appropriately deuterated arylbromide (26), by analogy to a procedure described in CN104311386. Finally, Grignard reaction of (26) with magnesium in the presence of iodine results in the formation of the Grignard reagent, which is formylated with DMF producing appropriately deuterated aryl aldehyde intermediate (17), by analogy to a procedure described in CN 101759597.
[100] Certain intermediate (21) are commercially available: Benzene-d6 (99.6 atom %D) (21a); Benzene-d5 (99 atom %D) (21b); Benzene-1,2,3,5-d4 (99 atom %D) (21c); Benzene-1,2,4-d3 (99 atom %D) (21d). Additionally, α,α,α-Trifluorotoluene-d5 (99 atom %D) (22a) and 3-(Trifluoromethyl)aniline-2,4,5,6-d4 (98 atom %D) (24a) are commercially available.
[101] Use of appropriately deuterated reagents allows deuterium incorporation at the Y6, Y7, Y8 positions of a compound of Formula I or any appropriate intermediate herein, e.g., 90, 95, 97, or 99% deuterium incorporation at any Y6, Y7 and /or Y8.
[102] Appropriately deuterated intermediate (18), for use in the preparation of compounds of Formula I according to Scheme 1, may be prepared from
corresponding deuterated reagents exemplified in Scheme 7.
Scheme 7: Preparation of Intermediate (18)
[103] In a manner analogous to a procedure described by Lacour, J. et al., Helvetica Chimica Acta, 86(1), 65-81; 2003, appropriately deuterated alkyl sulfonyl chloride (27) is treated with sodium sulfite in the presence of sodium bicarbonate to furnish appropriately deuterated sodium sulfinate intermediate (18).
[104] Methane-d3-sulfonyl chloride (98 atom %D) (27a) is commercially available, or may be prepared according to a procedure described by Burlingham, B. et al., Journal of the American Chemical Society, 123(13), 2937-2945; 2001, from
Iodomethane-d3 (99 atom % D) (3a). Additionally, Methane-d2-sulfonyl chloride (27b) and Methane-d-sulfonyl chloride (27c) may be prepared using said procedure
for intermediate (27a), from Iodomethane-d2 (99 atom % D) (3b) and Iodomethane-d (99 atom % D) (3c), respectively.
[105] Use of appropriately deuterated reagents allows deuterium incorporation at the R1 positions of a compound of Formula I or any appropriate intermediate herein, e.g., 90, 95, 97, or 99% deuterium incorporation at any R1.
[106] The specific approaches and compounds shown above are not intended to be limiting. The chemical structures in the schemes herein depict variables that are hereby defined commensurately with chemical group definitions (moieties, atoms, etc.) of the corresponding position in the compound formulae herein, whether identified by the same variable name (i.e., R1, R2, R3, etc.) or not. The suitability of a chemical group in a compound structure for use in the synthesis of another compound is within the knowledge of one of ordinary skill in the art.
[107] Additional methods of synthesizing compounds of Formula I and their synthetic precursors, including those within routes not explicitly shown in schemes herein, are within the means of chemists of ordinary skill in the art. Synthetic chemistry transformations and protecting group methodologies (protection and deprotection) useful in synthesizing the applicable compounds are known in the art and include, for example, those described in Larock R, Comprehensive Organic Transformations, VCH Publishers (1989); Greene, TW et al., Protective Groups in Organic Synthesis, 3rd Ed., John Wiley and Sons (1999); Fieser, L et al., Fieser and Fieser’s Reagents for Organic Synthesis, John Wiley and Sons (1994); and Paquette, L, ed., Encyclopedia of Reagents for Organic Synthesis, John Wiley and Sons (1995) and subsequent editions thereof.
[108] Combinations of substituents and variables envisioned by this invention are only those that result in the formation of stable compounds. Pharmaceutical Compositions
[109] Certain aspects of the present invention provide pharmaceutical compositions comprising an effective amount of a compound of Formula I (e.g., including any of the formulae herein), or a pharmaceutically acceptable salt of said compound; and a pharmaceutically acceptable carrier. The carrier(s) are“acceptable” in the sense of being compatible with the other ingredients of the formulation and, in the case of a pharmaceutically acceptable carrier, not deleterious to the recipient thereof in an amount used in the medicament.
[110] Pharmaceutically acceptable carriers, adjuvants, excipients, and vehicles that may be used in the pharmaceutical compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates (e.g., phosphate- buffered saline, etc.), glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium
carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.
[111] If required, the solubility and bioavailability of the compounds of the present invention in pharmaceutical compositions may be enhanced by methods well-known in the art. One method includes the use of lipid excipients in the formulation. See “Oral Lipid-Based Formulations: Enhancing the Bioavailability of Poorly Water- Soluble Drugs (Drugs and the Pharmaceutical Sciences),” David J. Hauss, ed. Informa Healthcare, 2007; and“Role of Lipid Excipients in Modifying Oral and Parenteral Drug Delivery: Basic Principles and Biological Examples,” Kishor M. Wasan, ed. Wiley-Interscience, 2006.
[112] Another known method of enhancing bioavailability is the use of an amorphous form of a compound of this invention optionally formulated with a poloxamer, such as LUTROLTM and PLURONICTM (BASF Corporation), or block copolymers of ethylene oxide and propylene oxide. See United States patent
7,014,866; and United States patent publications 20060094744 and 20060079502.
[113] The pharmaceutical compositions of the invention include those suitable for oral, rectal, nasal, topical (including buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous and intradermal) administration. In certain embodiments, the compound of the formulae herein is administered transdermally (e.g., using a transdermal patch or iontophoretic techniques). Other formulations may conveniently be presented in unit dosage form, e.g., tablets, sustained release capsules, and in liposomes, and may be prepared by any methods well known in the art of pharmacy. See, for example, Remington: The Science and Practice of Pharmacy, Lippincott Williams & Wilkins, Baltimore, MD (20th ed. 2000).
[114] Such preparative methods include the step of bringing into association with the compound to be administered ingredients such as the carrier that constitutes one or more accessory ingredients. In general, the compositions are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers, liposomes or finely divided solid carriers, or both, and then, if necessary, shaping the product.
[115] In certain embodiments, the compound is administered orally. Compositions of the present invention suitable for oral administration may be presented as discrete units such as capsules, sachets, or tablets each containing a predetermined amount of the active ingredient; a powder or granules; a solution or a suspension in an aqueous liquid or a non-aqueous liquid; an oil-in-water liquid emulsion; a water-in-oil liquid emulsion; packed in liposomes; or as a bolus, etc. Soft gelatin capsules can be useful for containing such suspensions, which may beneficially increase the rate of compound absorption.
[116] In the case of tablets for oral use, carriers that are commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried cornstarch. When aqueous suspensions are administered orally, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening and/or flavoring and/or coloring agents may be added.
[117] Compositions suitable for oral administration include lozenges comprising the ingredients in a flavored basis, usually sucrose and acacia or tragacanth; and pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia.
[118] Compositions suitable for parenteral administration include aqueous and non- aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampules and vials, and may be stored in a freeze dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use.
Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets.
[119] Such injection solutions may be in the form, for example, of a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to techniques known in the art using suitable dispersing or wetting agents (such as, for example, Tween 80) and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example, as a solution in 1,3- butanediol. Among the acceptable vehicles and solvents that may be employed are mannitol, water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed including synthetic mono- or diglycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant.
[120] The pharmaceutical compositions of this invention may be administered in the form of suppositories for rectal administration. These compositions can be prepared by mixing a compound of this invention with a suitable non-irritating excipient which is solid at room temperature but liquid at the rectal temperature and therefore will melt in the rectum to release the active components. Such materials include, but are not limited to, cocoa butter, beeswax and polyethylene glycols.
[121] The pharmaceutical compositions of this invention may be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art. See, e.g.: Rabinowitz JD and Zaffaroni AC, US Patent 6,803,031, assigned to Alexza Molecular Delivery Corporation.
[122] Topical administration of the pharmaceutical compositions of this invention is especially useful when the desired treatment involves areas or organs readily accessible by topical application. For topical application topically to the skin, the pharmaceutical composition should be formulated with a suitable ointment containing the active components suspended or dissolved in a carrier. Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petroleum, white petroleum, propylene glycol, polyoxyethylene
polyoxypropylene compound, emulsifying wax, and water. Alternatively, the pharmaceutical composition can be formulated with a suitable lotion or cream containing the active compound suspended or dissolved in a carrier. Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol, and water. The pharmaceutical compositions of this invention may also be topically applied to the lower intestinal tract by rectal suppository formulation or in a suitable enema formulation. Topically-transdermal patches and iontophoretic administration are also included in this invention.
[123] Application of the subject therapeutics may be local, so as to be administered at the site of interest. Various techniques can be used for providing the subject compositions at the site of interest, such as injection, use of catheters, trocars, projectiles, pluronic gel, stents, sustained drug release polymers or other device which provides for internal access.
[124] Thus, according to yet another embodiment, the compounds of this invention may be incorporated into compositions for coating an implantable medical device, such as prostheses, artificial valves, vascular grafts, stents, or catheters. Suitable coatings and the general preparation of coated implantable devices are known in the art and are exemplified in US Patents 6,099,562; 5,886,026; and 5,304,121. The coatings are typically biocompatible polymeric materials such as a hydrogel polymer, polymethyldisiloxane, polycaprolactone, polyethylene glycol, polylactic acid, ethylene vinyl acetate, and mixtures thereof. The coatings may optionally be further covered by a suitable topcoat of fluorosilicone, polysaccharides, polyethylene glycol, phospholipids or combinations thereof to impart controlled release characteristics in the composition. Coatings for invasive devices are to be included within the definition of pharmaceutically acceptable carrier, adjuvant or vehicle, as those terms are used herein.
[125] According to another embodiment, the invention provides a method of coating an implantable medical device comprising the step of contacting said device with the coating composition described above. It will be obvious to those skilled in the art that the coating of the device will occur prior to implantation into a mammal.
[126] According to another embodiment, the invention provides a method of impregnating an implantable drug release device comprising the step of contacting said drug release device with a compound or composition of this invention.
Implantable drug release devices include, but are not limited to, biodegradable polymer capsules or bullets, non-degradable, diffusible polymer capsules and biodegradable polymer wafers.
[127] According to another embodiment, the invention provides an implantable medical device coated with a compound or a composition comprising a compound of this invention, such that said compound is therapeutically active.
[128] According to another embodiment, the invention provides an implantable drug release device impregnated with or containing a compound or a composition comprising a compound of this invention, such that said compound is released from said device and is therapeutically active.
[129] Where an organ or tissue is accessible because of removal from the subject, such organ or tissue may be bathed in a medium containing a composition of this invention, a composition of this invention may be painted onto the organ, or a composition of this invention may be applied in any other convenient way.
[130] In another embodiment, a pharmaceutical composition of this invention further comprises a second therapeutic agent. The second therapeutic agent may be selected from any compound or therapeutic agent known to have or that demonstrates advantageous properties when administered with a compound having the same mechanism of action as fevipiprant. Such agents include those indicated as being useful in combination with fevipiprant, including but not limited to, those described in PCT patent publications WO 2005/123731 and WO 2007/068418.
[131] Preferably, the second therapeutic agent is an agent useful in the treatment of a disease or condition selected from obstructive or inflammatory airways diseases, e.g., as anti-inflammatory, bronchodilatory or antihistamine drug substances. A compound of the invention may be mixed with the second therapeutic agent in a fixed
pharmaceutic composition or it may be administered separately, before,
simultaneously with or after the second therapeutic agent. Accordingly the invention includes a combination of a compound or composition of the invention as described herein with an anti-inflammatory, bronchodilatory, antihistamine or anti-tussive drug substance, said compound of the invention and said drug substance being in the same or different pharmaceutical composition.
[132] Anti-inflammatory drugs include steroids, in particular, glucocorticosteroids, such as budesonide, beclomethasone, dipropionate, fluticasone propionate, ciclesonide or mometasone furoate; or steroids, described in WO 02/88167, WO
02/12266, WO 02/100879, WO 02/00679 (especially those of Examples 3, 11, 14, 17, 19, 26, 34, 37, 39, 51, 60, 67, 50, 72, 73, 90, 99and101), WO 03/035668, WO
03/048181, WO 03/062259, WO 03/064445 and WO 03/072592; non-steroidal glucocorticoid receptor agonists, such as those described in WO 00/00531, WO 02/10143, WO 03/082280, WO 03/082787, WO 03/104195 and WO 04/005229; LTB455 antagonists, such as those described in U.S. Pat. No.5,451, 700; LTD4 antagonists, such as montelukast and zafirlukast; PDE4 inhibitors, such as cilomilast (Ariflo® GlaxoSmithKline), Roflumilast (Byk Gulden), V-11294A (Napp), BAY19- 8004 (Bayer), SCH-351591 (Schering-Plough), Arofylline (Almirall Prodesfarma), PD189659 (ParkeDavis), AWD-12-281 (Asta Medica), CDC-801 (Celgene),
SelCID™ CC-10004 (Celgene), KW-4490 (Kyowa Hakka Kogyo), WO 03/104204, WO 03/104205, WO 04/000814, WO 04/000839 and WO 04/005258 (Merck), as well as those described in WO 98/18796 and WO 03/39544; A2a agonists, such as those described in EP 1052264, EP 1241176, EP 409595A2, WO 94/17090, WO 96/02543, WO 96/02553, WO 98/28319, WO 99/24449, WO 99/24450, WO 99/24451, WO 99/38877, WO 99/41267, WO 99/67263, WO 99/67264, WO 99/67265, WO
99/67266, WO 00/23457, WO 00/77018, W000/78774, WOOl/23399, WOOl/27130, WOOl/27131, WO 01/60835, WO 01/94368, WO 02/00676, WO 02/22630, WO 02/96462 and WO 03/086408; A2b antagonists, such as those described in WO 02/42298; and beta (~)-2-adrenoceptor agonists, such as albuterol (salbutamol), metaproterenol, terbutaline, salmeterol, fenoterol, procaterol, and especially, formoterol and pharmaceutically acceptable salts thereof, and compounds (in free or salt or solvate form) of formula (I) of WO 00/75114, which document is incorporated herein by reference, preferably compounds of the Examples thereof, and
pharmaceutically acceptable salts thereof, as well as compounds (in free or salt or solvate form) of formula (I) of WO 04/16601. Further ~-2-adrenoreceptor agonists include compounds, such as those described in WO 99/64035, WO 01/42193, WO 01/83462, WO 02/066422, WO 02/070490, WO 02/076933, WO 2004/011416 and US 2002/0055651.
[133] Bronchodilatory drugs include anticholinergic or antimuscarinic agents, in particular, ipratropium bromide, oxitropium bromide, tiotropium salts and CHF 4226 (Chiesi), but also those described in WO 01/04118, WO 02/51841, WO 02/53564, WO 03/00840, WO 03/87094, WO 04/05285, WO 02/00652, WO 03/33495, WO 03/53966, EP 0424021, U.S. Pat. No.5,171,744 and U.S. Pat. No.3,714,357.
[134] Co-therapeutic antihistamine drug substances include cetirizine hydrochloride, acetaminophen, clemastine fumarate, promethazine, loratidine, desloratidine, diphenhydramine and fexofenadine hydrochloride.
[135] Combinations of compounds of the invention and steroids, β-2 agonists, PDE4 inhibitors or LTD4 antagonists may be used, e.g., in the treatment of COPD or, particularly, asthma. Combinations of compounds of the invention and
anticholinergic or antimuscarinic agents, PDE4 inhibitors, dopamine receptor agonists or LTB4 antagonists may be used, e.g., in the treatment of asthma or, particularly, COPD.
[136] Other useful combinations of compounds of the invention with anti- inflammatory drugs are those with antagonists of chemokine receptors, e.g., CCR-1, CCR-2, CCR-3, CCR-4, CCR-5, CCR-6, CCR-7, CCR-8, CCR-9, CCR-10, CXCRl, CXCR2, CXCR3, CXCR4 and CXCR5; particularly useful are CCR-3 antagonists, such as those described in WO 2002/026723, especially 4-{3-[(S)-4-(3,4- dichlorobenzyl)-morpholin-2-ylmethyl]-ureidomethyl}-benzamide and those described in WO 2003/077907, WO 2003/007939 and WO 2002/102775.
[137] Also especially useful are CCR-5 antagonists, such as Schering-Plough antagonists SC-351125, SCH-55700 and SCH-D; Takeda antagonists, such as N-[[4- [[[6, 7-dihydro-2-(4-methylphenyl )-5H-benzo-cyclohepten-8- yl]carbonyl]amino]phenyl]-methyl]tetrahydro-N,N-dimethyl-2H-pyran-4-aminium chloride (TAK-770); and CCR-5 antagonists, described in U.S. Pat. No.6,166,037, WO 00/66558 and WO 00/66559.
[138] In one embodiment, the second therapeutic agent is montelukast (Singulair). Phase II clinical trials are ongoing for treatment of allergic rhinitis with a combination of fevipiprant and montelukast.
[139] In another embodiment, the invention provides separate dosage forms of a compound of this invention and one or more of any of the above-described second therapeutic agents, wherein the compound and second therapeutic agent are associated with one another. The term“associated with one another” as used herein means that the separate dosage forms are packaged together or otherwise attached to one another such that it is readily apparent that the separate dosage forms are intended to be sold and administered together (within less than 24 hours of one another, consecutively or simultaneously).
[140] In the pharmaceutical compositions of the invention, the compound of the present invention is present in an effective amount. As used herein, the term “effective amount” refers to an amount which, when administered in a proper dosing regimen, is sufficient to treat the target disorder.
[141] The interrelationship of dosages for animals and humans (based on milligrams per meter squared of body surface) is described in Freireich et al., Cancer Chemother. Rep, 1966, 50: 219. Body surface area may be approximately determined from height and weight of the subject. See, e.g., Scientific Tables, Geigy Pharmaceuticals, Ardsley, N.Y., 1970, 537.
[142] In some embodiments, an effective amount of a compound of this invention can range from about 1 mg to about 5000 mg per dose, from about 50 mg to about 2000 mg per dose, from about 100 mg to about 1000 mg per dose, from about 300 mg to about 600 mg per dose, or from about 400 mg to about 500 mg per dose. In some embodiments, an effective amount of a compound of this invention can range from about 10 mg to about 2000 mg per dose, from about 20 mg to about 1000 mg per dose, from about 25 mg to about 500 mg per dose, from about 50 mg to about 300 mg per dose, or from about 75 mg to about 150 mg per dose. Effective dosage amounts may be administered as a single dose once a day, or as split doses administered two, three or four times a day, e.g., about 450 mg once per day, or about 225 mg twice per day; about 300 mg once per day, or about 150 mg twice per day; about 200 mg once per day, or about 100 mg twice per day; about 150 mg once per day, or about 75 mg twice per day.
[143] In some embodiments, an effective amount of a compound of this invention can range from about 0.15 mg to about 32 mg per kg of body weight, from about 0.5 mg to about 25 mg/kg, from about 1.5 mg to about 15 mg/kg, or from about 5 to about 10 mg/kg.
[144] Effective doses will also vary, as recognized by those skilled in the art, depending on the diseases treated, the severity of the disease, the route of
administration, the sex, age and general health condition of the subject, excipient usage, the possibility of co-usage with other therapeutic treatments such as use of other agents and the judgment of the treating physician. For example, guidance for selecting an effective dose can be determined by reference to the prescribing information for fevipiprant.
[145] For pharmaceutical compositions that comprise a second therapeutic agent, an effective amount of the second therapeutic agent is between about 20% and 100% of the dosage normally utilized in a monotherapy regime using just that agent.
Preferably, an effective amount is between about 70% and 100% of the normal monotherapeutic dose. The normal monotherapeutic dosages of these second therapeutic agents are well known in the art. See, e.g., Wells et al., eds.,
Pharmacotherapy Handbook, 2nd Edition, Appleton and Lange, Stamford, Conn. (2000); PDR Pharmacopoeia, Tarascon Pocket Pharmacopoeia 2000, Deluxe Edition, Tarascon Publishing, Loma Linda, Calif. (2000), each of which references are incorporated herein by reference in their entirety.
[146] It is expected that some of the second therapeutic agents referenced above will act synergistically with the compounds of this invention. When this occurs, it will allow the effective dosage of the second therapeutic agent and/or the compound of this invention to be reduced from that required in a monotherapy. This has the advantage of minimizing toxic side effects of either the second therapeutic agent of a compound of this invention, synergistic improvements in efficacy, improved ease of administration or use and/or reduced overall expense of compound preparation or formulation. Methods of Treatment
[147] In another aspect, the invention provides a method of modulating (e.g., antagonizing) the activity of the prostaglandin D2 receptor 2 (e.g., CRTH2, GPR44, or PTGDR2) in a cell, comprising contacting a cell with one or more compounds of Formula I herein, or a pharmaceutically acceptable salt thereof. Compounds of Formula I in free or salt form, are antagonists of the G-protein-coupled
chemoattractant receptor CRTh2, expressed on Th2 cells, eosinophils and basophils. Prostaglandin D2 (PGD2) is the natural ligand for CRTh2. Thus, antagonists which inhibit the binding of CRTh2 and PGD2 are useful in the treatment of neuropathic pain as described, for example, in WO 05/102338, and in the treatment of allergic and anti-inflammatory conditions. Treatment in accordance with the invention may be symptomatic or prophylactic. In some embodiments, the cell is contacted in vitro. In some embodiments, the cell is contacted in vivo. In some embodiments, the cell is contacted ex vivo.
[148] According to another aspect, the invention provides a method of treating a disease that is beneficially treated by fevipiprant in a subject in need thereof, comprising the step of administering to the subject an effective amount of a compound or a composition of this invention. In one embodiment the subject is a patient in need of such treatment. Such diseases are well known in the art and are disclosed in, but not limited to the following patents and published applications: WO 2005/123731 and WO 2007/068418.
[149] Such diseases include, but are not limited to, inflammatory or obstructive airways diseases, resulting, e.g., in reduction of tissue damage, airways inflammation, bronchial hyperreactivity, remodeling or disease progression. Inflammatory or obstructive airways diseases to which the present invention is applicable include asthma of whatever type or genesis including both intrinsic (non-allergic) asthma and extrinsic (allergic) asthma, mild asthma, moderate asthma, severe asthma, bronchitis asthma, exercise induced asthma, occupational asthma and asthma induced following bacterial infection. Treatment of asthma is also to be understood as embracing treatment of subjects, e.g., of less than 4 or 5 years of age, exhibiting wheezing symptoms and diagnosed or diagnosable as "wheezy infants", an established patient category of major medical concern and now often identified as incipient or early- phase asthmatics. (For convenience this particular asthmatic condition is referred to as "wheezy-infant syndrome".) Prophylactic efficacy in the treatment of asthma will be evidenced by reduced frequency or severity of symptomatic attack, e.g., of acute asthmatic or bronchoconstrictor attack, improvement in lung function or improved airways hyperreactivity. It may further be evidenced by reduced requirement for other, symptomatic therapy, i.e., therapy for or intended to restrict or abort symptomatic attack when it occurs, e.g., anti-inflammatory (e.g., corticosteroid) or bronchodilatory. Prophylactic benefit in asthma may, in particular, be apparent in subjects prone to "morning dipping". "Morning dipping" is a recognized asthmatic syndrome, common to a substantial percentage of asthmatics and characterized by asthma attack, e.g., between the hours of about 4-6 a.m., i.e., at a time normally substantially distant from any previously administered symptomatic asthma therapy. Other inflammatory or obstructive airways diseases and conditions to which the present invention is applicable include acute lung injury (ALI), adult respiratory distress syndrome (ARDS), chronic obstructive pulmonary, airways or lung disease (COPD, COAD or COLD), including chronic bronchitis or dyspnea associated
therewith, emphysema, as well as exacerbation of airways hyperreactivity consequent to other drug therapy, in particular, other inhaled drug therapy. The invention is also applicable to the treatment of bronchitis of whatever type or genesis including, e.g., acute, arachidic, catarrhal, croupus, chronic or phthinoid bronchitis. Further inflammatory or obstructive airways diseases to which the present invention is applicable include pneumoconiosis (an inflammatory, commonly occupational, disease of the lungs, frequently accompanied by airways obstruction, whether chronic or acute, and occasioned by repeated inhalation of dusts) of whatever type or genesis including, e.g., aluminosis, anthracosis, asbestosis, chalicosis, ptilosis, siderosis, silicosis, tabacosis and byssinosis. Having regard to their anti-inflammatory activity, in particular, in relation to inhibition of eosinophil activation, agents of the invention are also useful in the treatment of eosinophil related disorders, e.g., eosinophilia, in particular, eosinophils-related disorders of the airways, e.g., involving morbid eosinophilic infiltration of pulmonary tissues including hypereosinophilia as it effects the airways and/or lungs, as well as, e.g., eosinophil-related disorders of the airways consequential or concomitant to Liiffler's syndrome; eosinophilic pneumonia;
parasitic, in particular, metazoan, infestation including tropical eosinophilia;
bronchopulmonary aspergillosis; polyarteritis nodosa including Churg-Strauss syndrome; eosinophilic granuloma; and eosinophil-related disorders affecting the airways occasioned by drug-reaction. Agents of the invention are also useful in the treatment of inflammatory or allergic conditions of the skin, e.g., psoriasis, contact dermatitis, atopic dermatitis, alopecia areata, erythema multiforma, dermatitis herpetiformis, scleroderma, vitiligo, hypersensitivity angiitis, urticaria, bullous pemphigoid, lupus erythematosus, pemphisus, epidermolysis bullosa acquisita and other inflammatory or allergic conditions of the skin.
[150] Compounds of the invention may also be used for the treatment of other diseases or conditions, in particular, diseases or conditions having an inflammatory component, e.g., treatment of diseases and conditions of the eye, such as
conjunctivitis, keratoconjunctivitis sicca and vernal conjunctivitis; diseases affecting the nose including allergic rhinitis; and inflammatory disease, in which autoimmune reactions are implicated or having an autoimmune component or aetiology, including autoimmune hematological disorders, e.g., hemolytic anemia, aplastic anaemia, pure red cell anaemia and idiopathic
thrombocytopenia; systemic lupus erythematosus; polychondritis; sclerodoma;
Wegener granulamatosis; dermatomyositis; chronic active hepatitis; myasthenia gravis; Steven Johnson syndrome; idiopathic sprue; autoimmune inflammatory bowel disease, e.g., ulcerative colitis and Crohn's disease; endocrine ophthalmopathy;
Grave's disease; sarcoidosis; alveolitis; chronic hypersensitivity pneu monitis;
multiple sclerosis; primary billiary cirrhosis; uveitis (anterior and posterior);
keratoconjunctivitis sicca and vernal
keratoconjunctivitis; interstitial lung fibrosis; psoriatic arthritis; and
glomerulonephritis, with and without nephrotic syndrome, e.g., including idiopathic nephrotic syndrome or minimal change nephropathy. In one embodiment, the method of this invention is used to treat a disease or condition selected from the group consisting of atopic dermatitis, asthma, and allergic rhinitis in a subject in need thereof.
[151] Identifying a subject in need of such treatment can be in the judgment of a subject or a health care professional and can be subjective (e.g. opinion) or objective (e.g. measurable by a test or diagnostic method).
[152] In another embodiment, any of the above methods of treatment comprises the further step of co-administering to the subject in need thereof one or more second therapeutic agents. The choice of second therapeutic agent may be made from any second therapeutic agent known to be useful for co-administration with fevipiprant. The choice of second therapeutic agent is also dependent upon the particular disease or condition to be treated. Examples of second therapeutic agents that may be employed in the methods of this invention are those set forth above for use in combination compositions comprising a compound of this invention and a second therapeutic agent.
[153] In particular, the combination therapies of this invention include co- administering a compound of Formula I and montelukast as a second therapeutic agent to a subject in need thereof. In some embodiments, the invention provides a method of treating allergic rhinitis, wherein the second therapeutic agent is montelukast.
[154] The term“co-administered” as used herein means that the second therapeutic agent may be administered together with a compound of this invention as part of a single dosage form (such as a composition of this invention comprising a compound of the invention and an second therapeutic agent as described above) or as separate, multiple dosage forms. Alternatively, the additional agent may be administered prior
to, consecutively with, or following the administration of a compound of this invention. In such combination therapy treatment, both the compounds of this invention and the second therapeutic agent(s) are administered by conventional methods. The administration of a composition of this invention, comprising both a compound of the invention and a second therapeutic agent, to a subject does not preclude the separate administration of that same therapeutic agent, any other second therapeutic agent or any compound of this invention to said subject at another time during a course of treatment.
[155] Effective amounts of these second therapeutic agents are well known to those skilled in the art and guidance for dosing may be found in patents and published patent applications referenced herein, as well as in Wells et al., eds., Pharmacotherapy Handbook, 2nd Edition, Appleton and Lange, Stamford, Conn. (2000); PDR
Pharmacopoeia, Tarascon Pocket Pharmacopoeia 2000, Deluxe Edition, Tarascon Publishing, Loma Linda, Calif. (2000), and other medical texts. However, it is well within the skilled artisan’s purview to determine the second therapeutic agent’s optimal effective-amount range.
[156] In one embodiment of the invention, where a second therapeutic agent is administered to a subject, the effective amount of the compound of this invention is less than its effective amount would be where the second therapeutic agent is not administered. In another embodiment, the effective amount of the second therapeutic agent is less than its effective amount would be where the compound of this invention is not administered. In this way, undesired side effects associated with high doses of either agent may be minimized. Other potential advantages (including without limitation improved dosing regimens and/or reduced drug cost) will be apparent to those of skill in the art.
[157] In yet another aspect, the invention provides the use of a compound of Formula I alone or together with one or more of the above-described second therapeutic agents in the manufacture of a medicament, either as a single composition or as separate dosage forms, for treatment in a subject of a disease, disorder or symptom set forth above. Another aspect of the invention is a compound of Formula I for use in the treatment in a subject of a disease, disorder or symptom thereof delineated herein.
Example 1. Evaluation of Metabolic Stability
[158] Microsomal Assay: Human liver microsomes (20 mg/mL) are obtained from Xenotech, LLC (Lenexa, KS). β-nicotinamide adenine dinucleotide phosphate, reduced form (NADPH), magnesium chloride (MgCl2), and dimethyl sulfoxide (DMSO) are purchased from Sigma-Aldrich.
[159] Determination of Metabolic Stability: 7.5 mM stock solutions of test compounds are prepared in DMSO. The 7.5 mM stock solutions are diluted to 12.5- 50 µM in acetonitrile (ACN). The 20 mg/mL human liver microsomes are diluted to 0.625 mg/mL in 0.1 M potassium phosphate buffer, pH 7.4, containing 3 mM MgCl2. The diluted microsomes are added to wells of a 96-well deep-well polypropylene plate in triplicate. A 10 μL aliquot of the 12.5-50 µM test compound is added to the microsomes and the mixture is pre-warmed for 10 minutes. Reactions are initiated by addition of pre-warmed NADPH solution. The final reaction volume is 0.5 mL and contains 0.5 mg/mL human liver microsomes, 0.25-1.0 μM test compound, and 2 mM NADPH in 0.1 M potassium phosphate buffer, pH 7.4, and 3 mM MgCl2. The reaction mixtures are incubated at 37 °C, and 50 μL aliquots are removed at 0, 5, 10, 20, and 30 minutes and added to shallow-well 96-well plates which contain 50 μL of ice-cold ACN with internal standard to stop the reactions. The plates are stored at 4 °C for 20 minutes after which 100 μL of water is added to the wells of the plate before centrifugation to pellet precipitated proteins. Supernatants are transferred to another 96-well plate and analyzed for amounts of parent remaining by LC-MS/MS using an Applied Bio-systems API 4000 mass spectrometer. The same procedure is followed for the non-deuterated counterpart of the compound of Formula I and the positive control, 7-ethoxycoumarin (1 µM). Testing is done in triplicate.
[160] Data analysis: The in vitro t1/2s for test compounds are calculated from the slopes of the linear regression of % parent remaining (ln) vs incubation time relationship.
in vitro t ½ = 0.693/k
k = -[slope of linear regression of % parent remaining (ln) vs incubation time] [161] Data analysis is performed using Microsoft Excel Software.
[162] Without further description, it is believed that one of ordinary skill in the art can, using the preceding description and the illustrative examples, make and utilize the compounds of the present invention and practice the claimed methods. It should
be understood that the foregoing discussion and examples merely present a detailed description of certain preferred embodiments. It will be apparent to those of ordinary skill in the art that various modifications and equivalents can be made without departing from the spirit and scope of the invention. Any publication or patent cited herein is hereby incorporated by reference in its entirety.
Claims
1. A compound of Formula I:
(I), or a pharmaceutically acceptable salt thereof, wherein: each of Y1, Y2, Y3, Y4, Y5, Y6, Y7, and Y8 is independently hydrogen or deuterium; each of R1 and R2 is independently selected from the group consisting of CH3, CH2D, CHD2, and CD3; and
R3 is H or C1-C8 alkyl;
provided that at least one of Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, R1, and R2 comprises deuterium.
2. The compound of claim 1, wherein each Y1 is the same and each Y2 is the same.
3. The compound of claim 1 or 2, wherein R1 is CH3.
4. The compound of claim 1 or 2, wherein R1 is CD3.
5. The compound of any one of claims 1-4, wherein R2 is CH3.
6. The compound of any one of claims 1-4, wherein R2 is CD3.
7. The compound of any one of claims 1-6, wherein each Y1 is hydrogen.
8. The compound of any one of claims 1-6, wherein each Y1 is deuterium.
9. The compound of any one of claims 1-8, wherein each Y2 is hydrogen.
10. The compound of any one of claims 1-8, wherein each Y2 is deuterium.
11. The compound of any one of claims 1-10, wherein Y3 is hydrogen.
12. The compound of any one of claims 1-10, wherein Y3 is deuterium.
13. The compound of any one of claims 1-12, wherein Y4 is hydrogen.
14. The compound of any one of claims 1-12, wherein Y4 is deuterium.
15. The compound of any one of claims 1-14, wherein Y5 is hydrogen.
16. The compound of any one of claims 1-14, wherein Y5 is deuterium.
17. The compound of any one of claims 1-16, wherein Y6 is hydrogen.
18. The compound of any one of claims 1-16, wherein Y6 is deuterium.
19. The compound of any one of claims 1-18, wherein Y7 is hydrogen.
20. The compound of any one of claims 1-18, wherein Y7 is deuterium.
21. The compound of any one of claims 1-20, wherein Y8 is hydrogen.
22. The compound of any one of claims 1-20, wherein Y8 is deuterium.
23. The compound of any one of claims 1-22, wherein each of Y3, Y4, and Y5 is hydrogen.
24. The compound of any one of claims 1-22, wherein each of Y3, Y4, and Y5 is deuterium.
25. The compound of any one of claims 1-24, wherein each of Y6, Y7, and Y8 is hydrogen.
26. The compound of any one of claims 1-24, wherein each of Y6, Y7, and Y8 is deuterium.
27. The compound of claim 1, wherein Y3, Y4, and Y5 are the same, Y6, Y7, and Y8 are the same, R3 is H, and the compound is selected from the group consisting of the compounds of Table 1:
, or a pharmaceutically acceptable salt thereof, wherein any atom not designated as deuterium is present at its natural isotopic abundance.
28. The compound of any one of claims 1-26, wherein any atom not designated as deuterium is present at its natural isotopic abundance.
29. The compound of any one of claims 1-28, wherein deuterium incorporation at any atom designated as deuterium is at least 90%.
30. The compound of any one of claims 1-28, wherein deuterium incorporation at any atom designated as deuterium is at least 95%.
31. The compound of any one of claims 1-28, wherein deuterium incorporation at any atom designated as deuterium is at least 97%.
32. A pharmaceutical composition comprising a compound of any one of claims 1-31 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
33. A method of antagonizing the prostaglandin D2 receptor 2 in a cell, comprising contacting the cell with a compound of any one of claims 1-31 or a composition of claim 32.
34. A method of treating a disease or condition selected from the group consisting of asthma, allergic rhinitis, and atopic dermatitis, comprising the step of administering to a subject in need thereof a compound of any one of claims claims 1-31 or a composition of claim 32.
35. The method of claim 34, wherein the subject is suffering from allergic rhinitis, and further comprising co-administering montelukast to the subject in need thereof.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662343634P | 2016-05-31 | 2016-05-31 | |
US62/343,634 | 2016-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017210261A1 true WO2017210261A1 (en) | 2017-12-07 |
Family
ID=60479045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2017/035141 WO2017210261A1 (en) | 2016-05-31 | 2017-05-31 | Deuterated fevipiprant |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017210261A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019130166A1 (en) * | 2017-12-26 | 2019-07-04 | Mankind Pharma Ltd. | Preparation of 2-[2-methyl-1-[[4-methylsulfonyl-2-(trifluoro methyl)phenyl]methyl] pyrrolo[2,3-b]pyridin-3-yl]acetic acid |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080312230A1 (en) * | 2005-12-13 | 2008-12-18 | Novartis Ag | Organic Compounds |
US7666878B2 (en) * | 2004-06-17 | 2010-02-23 | Novartis Ag | Pyrrolopyridine derivatives and their use as Crth2 antagonists |
-
2017
- 2017-05-31 WO PCT/US2017/035141 patent/WO2017210261A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7666878B2 (en) * | 2004-06-17 | 2010-02-23 | Novartis Ag | Pyrrolopyridine derivatives and their use as Crth2 antagonists |
US20080312230A1 (en) * | 2005-12-13 | 2008-12-18 | Novartis Ag | Organic Compounds |
Non-Patent Citations (1)
Title |
---|
DATABASE PUBCHEM [O] 12 February 2015 (2015-02-12), XP055446966, Database accession no. 228103431 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019130166A1 (en) * | 2017-12-26 | 2019-07-04 | Mankind Pharma Ltd. | Preparation of 2-[2-methyl-1-[[4-methylsulfonyl-2-(trifluoro methyl)phenyl]methyl] pyrrolo[2,3-b]pyridin-3-yl]acetic acid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8471034B2 (en) | Niacin prodrugs and deuterated versions thereof | |
EP2443089B1 (en) | Deuterated isoindoline-1,3-dione derivatives as pde4 and tnf-alpha inhibitors | |
US8575221B2 (en) | Derivatives of dimethylcurcumin | |
WO2015179772A1 (en) | Deuterated phenylquinazolinone and phenylisoquinolinone compounds | |
JPWO2008038768A1 (en) | Compound having bicyclic pyrimidine structure and pharmaceutical composition containing the same | |
EP3492470A1 (en) | Deuterated palbociclib with improved metabolic stability | |
EP2872159A2 (en) | Deuterated carfilzomib | |
CA2897814A1 (en) | Deuterated momelotinib | |
WO2011017612A1 (en) | Substituted diphenylpyrazine derivatives | |
US20110313004A1 (en) | Deuterated pyridinones | |
WO2018005328A1 (en) | Deuterated bictegravir | |
AU2016257892A1 (en) | Deuterated filgotinib | |
WO2017210261A1 (en) | Deuterated fevipiprant | |
US8557815B2 (en) | Substituted triazolophthalazine derivatives | |
WO2018039521A1 (en) | Deuterated cenicriviroc | |
WO2014159511A1 (en) | Deuterated pacritinib | |
WO2010068480A1 (en) | Deuterated derivatives of dimeboline | |
US9181190B2 (en) | Deuterated vercirnon | |
US20090197899A1 (en) | 3-(Dihydro-1H-pyrazolo[4,3-d]pyrimidin-5-yl)-4-propoxybenzenesulfonamide Derivatives and Methods of Use | |
WO2012027579A1 (en) | Synthetic triterpenoid derivatives | |
WO2011159920A1 (en) | [5,6]-dihydro-2h-pyran-2-one derivatives | |
WO2018013686A1 (en) | Deuterated idalopirdine | |
WO2010005520A2 (en) | 2-alkyl-3-acylpyrazolo[1,5-a]pyridine derivatives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17807375 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17807375 Country of ref document: EP Kind code of ref document: A1 |