WO2017210125A1 - Composite body lock ring for a borehole plug with a lower slip assembly - Google Patents

Composite body lock ring for a borehole plug with a lower slip assembly Download PDF

Info

Publication number
WO2017210125A1
WO2017210125A1 PCT/US2017/034766 US2017034766W WO2017210125A1 WO 2017210125 A1 WO2017210125 A1 WO 2017210125A1 US 2017034766 W US2017034766 W US 2017034766W WO 2017210125 A1 WO2017210125 A1 WO 2017210125A1
Authority
WO
WIPO (PCT)
Prior art keywords
mandrel
sealing element
lock ring
slips
assembly
Prior art date
Application number
PCT/US2017/034766
Other languages
French (fr)
Inventor
Zachary S. SILVA
James S. Sanchez
Ryan M. ALLEN
Steve Rosenblatt
Original Assignee
Baker Hughes Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Incorporated filed Critical Baker Hughes Incorporated
Publication of WO2017210125A1 publication Critical patent/WO2017210125A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/129Packers; Plugs with mechanical slips for hooking into the casing

Definitions

  • the field of the invention is borehole barriers and more particularly designs that see pressure from above and use materials the mill easily for removal after use and which lock in a set position for use.
  • Borehole plugs are used in a variety of applications for zone isolation. In some applications the differential pressure experienced in the set position can come from opposed directions. These plug typically have a sealing element with mirror image slips above and below the sealing element. The plug is set with a setting tool that creates relative movement between a setting sleeve that is outside the mandrel and the plug mandrel. The slips have wickers oriented in opposed directions and ride out on cones to the surrounding tubular. The sealing element is axially compressed after the first set of slips bite followed by setting of the other set of slips on the opposite side of the sealing element from the first slip set to set. The set position of these elements is maintained by a body lock ring assembly.
  • Body lock ring assemblies are in essence a ratchet device that allows relative movement in one direction and prevents relative movement in the opposite direction. The relative movement that compresses the sealing element and drives the opposed slips out on respective cones is locked by a body lock ring.
  • Body lock rings are threaded inside and out and sit between tow relatively movable components. The thread forms are such that ratcheting in one direction only is enabled.
  • the trouble with such a design in applications where the plug needs to be quickly milled out after use such as in treating or fracturing is that the shear loading on the ratcheting patterns is so high that the ratchet teeth break at loads that are well within the needed operating pressure range for the plug.
  • the lock ring is preferably split to ease its movement when axial opposed forces are applied to set the plug.
  • the ring is tapered in cross section to allow it to act as a wedge against reaction force tending to relax the components from the set position.
  • the side of the ring facing the mandrel has a surface treatment that provides minimal resistance in the setting direction and digs into the mandrel to resist reaction forces from the compressed sealing element in the set position.
  • the surface treatment is a series of extending members oriented downhole with sharp ends that can dig into the mandrel for a firm grip.
  • Multicomponent body lock rings have been made of easily milled materials such as composites as illustrated in US 2014/0190685; US 8191633; US6167963; US 7036602; US 8002030 and US 7389823.
  • a borehole plug or packer for treating is designed to be milled out after use.
  • the plug handles differential pressure from above using a lower slip assembly under a sealing element.
  • a setting tool creates relative axial movement of a setting sleeve and a plug mandrel to compress the seal against the surrounding tubular and set the slips moving up a cone against the surrounding tubular to define the set position for the plug.
  • the set position is held by a split lock ring having a wedge or triangular sectional shape and a surface treatment facing the mandrel that slides along the mandrel during setting movement but resists opposed reaction force from the compressed sealing element.
  • the surface treatment can be a series of downhole oriented ridges such as a buttress thread that preferably penetrate the mandrel when holding the set position.
  • FIG. 1 is a section view of the plug in the run in position
  • FIG. 2 is a close up view of the lock ring shown in FIG. 1 and
  • FIG. 3 is an exterior view of the plug.
  • the plug or packer 10 has a mandrel 12 preferably made of a readily milled material such as a composite.
  • Mandrel 12 can optionally have a passage 13 that can be optionally closed with a ball landed on a seat or with a valve (not shown).
  • Shoulder 14 supports sealing element 16.
  • a cone 18 has individualized tapered surfaces 20 on which a slip 22 is guided between opposed surfaces 24 and 26.
  • the slips 22 are each connected to a slip ring 28 that has a triangular undercut 30 when viewed in section in FIG. 1 that extends for 360 degrees, preferably.
  • the undercut is defined by surfaces 32 and 34 as better seen in FIG. 2.
  • Lock ring 36 has an outer surface 38 that is preferably parallel to surface 32 of undercut 30. Bottom surface 40 of ring 36 is contacted by surface 34 of undercut 30 during the setting process.
  • a shear pin or some other breakable member 42 allows the sealing element 16 to be compressed against a surrounding tubular that is not shown before the slips 22 are released to move up ramp surfaces 20 by the breaking of the shear pin 42. Movement of ring 28 relative to mandrel 12 brings together surfaces 34 and 40 to push the lock ring 36 in tandem with ring 28 during setting with a setting tool that is well known and is not shown and which serves as the force to brace the mandrel 12 while applying compressive force to the sealing element 16 and then extending the slips 22 against the surrounding tubular.
  • the slips 22 have a surface treatment such as wickers 44 that resist reaction force from the compressed sealing element 16 as well as applied pressure loads from uphole applied in the direction of arrow 46.
  • the lock ring 36 has a surface treatment 48 on bottom surface 50 that faces the mandrel 12.
  • the surface treatment 48 rides along surface 54 of mandrel 12 without penetration of surface 54.
  • the reaction force from the sealing element 16 causes the downhole oriented ribs 56 to penetrate the surface of the mandrel 12 to brace the lock ring 36 so that it can act as a wedge using surface 38 to prevent motion of ring 28 in the direction of arrow 46.
  • Lock ring 36 can run continuously for nearly 360 with a single split to facilitate assembly to the mandrel 12.
  • Undercut 30 can be continuous or discontinuous for 360 degrees to retain lock ring 36 when lock ring 36 is formed of discrete segments.
  • the wedging action between surfaces 32 and 38 reduces the stress in an axial direction parallel to surface 54 to discourage shear failure of the ribs 56 while the preferred composite construction of the mandrel 12 encourages penetration through surface 54.
  • the wedging action creates a radial and axial component forces to the ribs 56 to increase the penetration into the mandrel 12 and to decrease the axial shear force component acting on the ribs 56 at the outer surface of said mandrel 12.
  • the ribs 56 can be parallel or one or more spiral patterns or a thread form such as a buttress thread.
  • the rib spacing can be equal or variable.
  • the lock ring 36 can preferably be made of composite material or a soft metallic that can be easily drilled.
  • lock ring 36 is a continuous split ring
  • faces 58 and 60 that define the split can be placed on opposed sides of a tab 62 on mandrel 12 to rotationally lock the two together to prevent lock ring relative rotation with respect to the mandrel 12 when milling out.
  • segments are used for the lock ring 36 each segment can be rotationally retained in a dedicated undercut 30 in ring 28 to rotationally secure the components when milling out.
  • some or all of the above described plug 10 apart from sealing element 16 can be made of a disintegrating controlled electrolytic material to forgo the milling out altogether.
  • the ribs 56 can be omitted so that bottom surface 50 can make frictional contact with surface 54 with no or minimal penetration so that the retaining force is principally or entirely a frictional contact.
  • Surface 50 can have surface roughening or it can even be smooth. While the ability to hold reaction force may be somewhat decreased without the ribs 50 there is still enough resistance to reaction force to hold the set position for some applications. Wedging action creates the frictional retention force.
  • the teachings of the present disclosure may be used in a variety of well operations. These operations may involve using one or more treatment agents to treat a formation, the fluids resident in a formation, a wellbore, and / or equipment in the wellbore, such as production tubing.
  • the treatment agents may be in the form of liquids, gases, solids, semi-solids, and mixtures thereof.
  • Illustrative treatment agents include, but are not limited to, fracturing fluids, acids, steam, water, brine, anti-corrosion agents, cement, permeability modifiers, drilling muds, emulsifiers, demulsifiers, tracers, flow improvers etc.
  • Illustrative well operations include, but are not limited to, hydraulic fracturing, stimulation, tracer injection, cleaning, acidizing, steam injection, water flooding, cementing, etc.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Abstract

A borehole plug or packer for treating is designed to be milled out after use. The plug handles differential pressure from above using a lower slip assembly under a sealing element. A setting tool creates relative axial movement of a setting sleeve and a plug mandrel to compress the seal against the surrounding tubular and set the slips moving up a cone against the surrounding tubular to define the set position for the plug. The set position is held by a split lock ring having a wedge or triangular sectional shape and a surface treatment facing the mandrel that slides along the mandrel during setting movement but resists opposed reaction force from the compressed sealing element. The surface treatment can be a series of downhole oriented ridges such as a buttress thread that preferably penetrate the mandrel when holding the set position.

Description

COMPOSITE BODY LOCK RING FOR A BOREHOLE PLUG WITH A LOWER SLIP ASSEMBLY
Inventor: Zachary S. Silva, James S. Sanchez, Ryan M. Allen
and Steve Rosenblatt
FIELD OF THE INVENTION
[0001] The field of the invention is borehole barriers and more particularly designs that see pressure from above and use materials the mill easily for removal after use and which lock in a set position for use.
BACKGROUND OF THE INVENTION
[0002] Borehole plugs are used in a variety of applications for zone isolation. In some applications the differential pressure experienced in the set position can come from opposed directions. These plug typically have a sealing element with mirror image slips above and below the sealing element. The plug is set with a setting tool that creates relative movement between a setting sleeve that is outside the mandrel and the plug mandrel. The slips have wickers oriented in opposed directions and ride out on cones to the surrounding tubular. The sealing element is axially compressed after the first set of slips bite followed by setting of the other set of slips on the opposite side of the sealing element from the first slip set to set. The set position of these elements is maintained by a body lock ring assembly. Body lock ring assemblies are in essence a ratchet device that allows relative movement in one direction and prevents relative movement in the opposite direction. The relative movement that compresses the sealing element and drives the opposed slips out on respective cones is locked by a body lock ring. Body lock rings are threaded inside and out and sit between tow relatively movable components. The thread forms are such that ratcheting in one direction only is enabled. A good view of such a design is shown in FIG. 13 of US 7080693. The trouble with such a design in applications where the plug needs to be quickly milled out after use such as in treating or fracturing is that the shear loading on the ratcheting patterns is so high that the ratchet teeth break at loads that are well within the needed operating pressure range for the plug. With fracturing pressures going up and the use of readily milled components such as composites a new approach to locking was need and provided by the present invention. The goal is to hold the differential pressure from above while keeping the design simple so as not to prolong the milling time for ultimate removal. A typical zone treatment can involve multiple plugs that need to be removed. Elimination of upper slips when using the lock ring of the present invention also shortens milling time.
[0003] The lock ring is preferably split to ease its movement when axial opposed forces are applied to set the plug. The ring is tapered in cross section to allow it to act as a wedge against reaction force tending to relax the components from the set position. The side of the ring facing the mandrel has a surface treatment that provides minimal resistance in the setting direction and digs into the mandrel to resist reaction forces from the compressed sealing element in the set position. Preferably the surface treatment is a series of extending members oriented downhole with sharp ends that can dig into the mandrel for a firm grip. These and other aspects of the present invention can be better understood by those skilled in the art from a review of the description of the preferred embodiment and the associated drawings while recognizing that the full scope of the invention is to be determined from the appended claims.
[0004] Multicomponent body lock rings have been made of easily milled materials such as composites as illustrated in US 2014/0190685; US 8191633; US6167963; US 7036602; US 8002030 and US 7389823.
SUMMARY OF THE INVENTION
[0005] A borehole plug or packer for treating is designed to be milled out after use. The plug handles differential pressure from above using a lower slip assembly under a sealing element. A setting tool creates relative axial movement of a setting sleeve and a plug mandrel to compress the seal against the surrounding tubular and set the slips moving up a cone against the surrounding tubular to define the set position for the plug. The set position is held by a split lock ring having a wedge or triangular sectional shape and a surface treatment facing the mandrel that slides along the mandrel during setting movement but resists opposed reaction force from the compressed sealing element. The surface treatment can be a series of downhole oriented ridges such as a buttress thread that preferably penetrate the mandrel when holding the set position.
[0006] BRIEF DESCRIPTION OF THE DRAWINGS
[0007] FIG. 1 is a section view of the plug in the run in position;
[0008] FIG. 2 is a close up view of the lock ring shown in FIG. 1 and
[0009] FIG. 3 is an exterior view of the plug.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
[0010] Referring to FIG. 1 the plug or packer 10 has a mandrel 12 preferably made of a readily milled material such as a composite. Mandrel 12 can optionally have a passage 13 that can be optionally closed with a ball landed on a seat or with a valve (not shown). Shoulder 14 supports sealing element 16. A cone 18 has individualized tapered surfaces 20 on which a slip 22 is guided between opposed surfaces 24 and 26. The slips 22 are each connected to a slip ring 28 that has a triangular undercut 30 when viewed in section in FIG. 1 that extends for 360 degrees, preferably. The undercut is defined by surfaces 32 and 34 as better seen in FIG. 2. Lock ring 36 has an outer surface 38 that is preferably parallel to surface 32 of undercut 30. Bottom surface 40 of ring 36 is contacted by surface 34 of undercut 30 during the setting process. A shear pin or some other breakable member 42 allows the sealing element 16 to be compressed against a surrounding tubular that is not shown before the slips 22 are released to move up ramp surfaces 20 by the breaking of the shear pin 42. Movement of ring 28 relative to mandrel 12 brings together surfaces 34 and 40 to push the lock ring 36 in tandem with ring 28 during setting with a setting tool that is well known and is not shown and which serves as the force to brace the mandrel 12 while applying compressive force to the sealing element 16 and then extending the slips 22 against the surrounding tubular. The slips 22 have a surface treatment such as wickers 44 that resist reaction force from the compressed sealing element 16 as well as applied pressure loads from uphole applied in the direction of arrow 46.
[0011] The lock ring 36 has a surface treatment 48 on bottom surface 50 that faces the mandrel 12. During setting when the ring 28 takes lock ring 36 with it the surface treatment 48 rides along surface 54 of mandrel 12 without penetration of surface 54. However, after the set and release from the plug by the setting tool the reaction force from the sealing element 16 causes the downhole oriented ribs 56 to penetrate the surface of the mandrel 12 to brace the lock ring 36 so that it can act as a wedge using surface 38 to prevent motion of ring 28 in the direction of arrow 46.
[0012] Lock ring 36 can run continuously for nearly 360 with a single split to facilitate assembly to the mandrel 12. Alternatively, there can be discrete spaced segments for the majority of the 360 degree extent of the undercut 30. Undercut 30 can be continuous or discontinuous for 360 degrees to retain lock ring 36 when lock ring 36 is formed of discrete segments. The wedging action between surfaces 32 and 38 reduces the stress in an axial direction parallel to surface 54 to discourage shear failure of the ribs 56 while the preferred composite construction of the mandrel 12 encourages penetration through surface 54. The wedging action creates a radial and axial component forces to the ribs 56 to increase the penetration into the mandrel 12 and to decrease the axial shear force component acting on the ribs 56 at the outer surface of said mandrel 12. The ribs 56 can be parallel or one or more spiral patterns or a thread form such as a buttress thread. The rib spacing can be equal or variable. The lock ring 36 can preferably be made of composite material or a soft metallic that can be easily drilled. Optionally, if lock ring 36 is a continuous split ring the faces 58 and 60 that define the split can be placed on opposed sides of a tab 62 on mandrel 12 to rotationally lock the two together to prevent lock ring relative rotation with respect to the mandrel 12 when milling out. When segments are used for the lock ring 36 each segment can be rotationally retained in a dedicated undercut 30 in ring 28 to rotationally secure the components when milling out. Alternatively, some or all of the above described plug 10 apart from sealing element 16 can be made of a disintegrating controlled electrolytic material to forgo the milling out altogether.
[0013] Optionally the ribs 56 can be omitted so that bottom surface 50 can make frictional contact with surface 54 with no or minimal penetration so that the retaining force is principally or entirely a frictional contact. Surface 50 can have surface roughening or it can even be smooth. While the ability to hold reaction force may be somewhat decreased without the ribs 50 there is still enough resistance to reaction force to hold the set position for some applications. Wedging action creates the frictional retention force. [0014] The teachings of the present disclosure may be used in a variety of well operations. These operations may involve using one or more treatment agents to treat a formation, the fluids resident in a formation, a wellbore, and / or equipment in the wellbore, such as production tubing. The treatment agents may be in the form of liquids, gases, solids, semi-solids, and mixtures thereof. Illustrative treatment agents include, but are not limited to, fracturing fluids, acids, steam, water, brine, anti-corrosion agents, cement, permeability modifiers, drilling muds, emulsifiers, demulsifiers, tracers, flow improvers etc. Illustrative well operations include, but are not limited to, hydraulic fracturing, stimulation, tracer injection, cleaning, acidizing, steam injection, water flooding, cementing, etc.
[0015] The above description is illustrative of the preferred embodiment and many modifications may be made by those skilled in the art without departing from the invention whose scope is to be determined from the literal and equivalent scope of the claims below:

Claims

We claim:
1. A plug or packer assembly for borehole use, comprising:
a mandrel (12) supporting a sealing element (16) and slips (22) disposed between said sealing element (16) and one of opposed ends of said mandrel (12); characterized by
a lock ring (36) having a surface treatment (48) facing said mandrel (12), said surface treatment (48) oriented toward a second of said ends of said mandrel (12), said surface treatment (48) configured for sliding contact with an outer surface of said mandrel (12) when moving toward a first of said ends for setting said sealing element (16) and said slips (22) and said surface treatment (48) configured to penetrate said outer surface of said mandrel (12) when moving toward said second end.
2. The assembly of claim 1, wherein:
said lock ring (36) comprising a tapered surface opposite said surface treatment (48).
3. The assembly of claim 1, wherein:
said lock ring (36) comprises a split ring.
4. The assembly of claim 1, wherein:
said lock ring (36) comprises spaced segments.
5. The assembly of claim 1, wherein:
said lock ring (36) is rotationally locked to said mandrel (12).
6. The assembly of claim 1, wherein:
said surface treatment (48) comprises a plurality of ribs (56) oriented toward said second end, said second end oriented downhole from said first end.
7. The assembly of claim 1, wherein:
said lock ring (36) comprises a triangle shape in section.
8. The assembly of claim 7, wherein:
said slips (22) are retained to said mandrel (12) by a slip retainer (28) ring defining at least one undercut (30) conforming to the shape of said lock ring (36).
9. The assembly of claim 8, wherein:
said undercut (30) and lock ring (36) comprise aligned tapered surfaces with respect to said outer surface of said mandrel (12) such that movement of said slip retainer (28) ring against said lock ring (36) in response to a reaction force from a set said sealing element (16) pushes said surface treatment (48) to penetrate said outer surface of said mandrel (12).
10. The assembly of claim 9, wherein:
said tapered surfaces apply a radial and axial component forces to said surface treatment (48).
11. The assembly of claim 10, wherein:
said surface treatment (48) comprises a plurality of ribs (48) oriented toward said second end, said second end oriented downhole from said first end.
12. The assembly of claim 11, wherein:
said ribs (48) are parallel.
13. A treatment method for borehole use, comprising
running in a packer or plug mandrel (12) supporting a sealing element (16) and slips (22) disposed between said sealing element (16) and one of opposed ends of said mandrel (12) and characterized by a lock ring (36) having a surface treatment (48) facing said mandrel (12), said surface treatment (48) oriented toward a second of said ends of said mandrel (12), said surface treatment (48) configured for sliding contact with an outer surface of said mandrel (12) when moving toward a first of said ends for setting said sealing element (16) and said slips (22) and said surface treatment (48) configured to penetrate said outer surface of said mandrel (12) when moving toward said second end;
setting said sealing element (16) and slips (22);
pumping a treatment into the borehole against said packer or plug.
14. A plug or packer assembly for borehole use, comprising:
a mandrel (12) supporting a sealing element (16) and slips disposed between said sealing element (16) and one of opposed ends of said mandrel (12); characterized by
a lock ring (36) facing said mandrel (12), comprising a surface configured for sliding contact with an outer surface of said mandrel (12) when moving toward a first of said ends for setting said sealing element (16) and said slips (22) and said surface configured to frictionally engage using wedging action said outer surface of said mandrel (12) when moving toward said second end.
15. A treatment method for borehole use, comprising
running in a packer or plug mandrel (12) supporting a sealing element (16) and slips (22) disposed between said sealing element (16) and one of opposed ends of said mandrel (12) and characterized by a lock ring (36) facing said mandrel (12), comprising a surface configured for sliding contact with an outer surface of said mandrel (12) when moving toward a first of said ends for setting said sealing element (16) and said slips (22) and said surface configured to frictionally engage using wedging action said outer surface of said mandrel (12) when moving toward said second end setting said sealing element (16) and slips (22);
pumping a treatment into the borehole against said packer or plug.
PCT/US2017/034766 2016-05-31 2017-05-26 Composite body lock ring for a borehole plug with a lower slip assembly WO2017210125A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/168,658 2016-05-31
US15/168,658 US20170342794A1 (en) 2016-05-31 2016-05-31 Composite Body Lock Ring for a Borehole Plug with a Lower Slip Assembly

Publications (1)

Publication Number Publication Date
WO2017210125A1 true WO2017210125A1 (en) 2017-12-07

Family

ID=60421062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/034766 WO2017210125A1 (en) 2016-05-31 2017-05-26 Composite body lock ring for a borehole plug with a lower slip assembly

Country Status (2)

Country Link
US (1) US20170342794A1 (en)
WO (1) WO2017210125A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111206900A (en) * 2020-01-08 2020-05-29 王成军 Bidirectional anchoring packer for oil field

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12006793B2 (en) 2020-01-30 2024-06-11 Advanced Upstream Ltd. Devices, systems, and methods for selectively engaging downhole tool for wellbore operations
WO2021151211A1 (en) 2020-01-30 2021-08-05 Advanced Upstream Limited Devices, systems, and methods for selectively engaging downhole tool for wellbore operations
CN112780227B (en) * 2021-02-20 2023-06-23 中海油能源发展股份有限公司 Infinite-level well cementation sliding sleeve capable of preventing cement from being solidified and assembling and operating method thereof
CN115288670A (en) * 2022-07-11 2022-11-04 重庆伟耘科技发展有限公司 Oil field tracer medium release

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6167963B1 (en) * 1998-05-08 2001-01-02 Baker Hughes Incorporated Removable non-metallic bridge plug or packer
US20020121379A1 (en) * 2001-03-01 2002-09-05 Doane James Christopher Lock ring for pipe slip pick-up ring
US20050077053A1 (en) * 2003-10-14 2005-04-14 Baker Hughes Incorporated Retrievable packer assembly and system with releasable body lock ring
US20140190685A1 (en) * 2008-12-23 2014-07-10 Frazier Technologies, L.L.C. Downhole tools having non-toxic degradable elements and methods of using the same
US20150027724A1 (en) * 2013-07-26 2015-01-29 Weatherford/Lamb, Inc. Electronically-Actuated, Multi-Set Straddle Borehole Treatment Apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6167963B1 (en) * 1998-05-08 2001-01-02 Baker Hughes Incorporated Removable non-metallic bridge plug or packer
US20020121379A1 (en) * 2001-03-01 2002-09-05 Doane James Christopher Lock ring for pipe slip pick-up ring
US20050077053A1 (en) * 2003-10-14 2005-04-14 Baker Hughes Incorporated Retrievable packer assembly and system with releasable body lock ring
US20140190685A1 (en) * 2008-12-23 2014-07-10 Frazier Technologies, L.L.C. Downhole tools having non-toxic degradable elements and methods of using the same
US20150027724A1 (en) * 2013-07-26 2015-01-29 Weatherford/Lamb, Inc. Electronically-Actuated, Multi-Set Straddle Borehole Treatment Apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111206900A (en) * 2020-01-08 2020-05-29 王成军 Bidirectional anchoring packer for oil field
CN111206900B (en) * 2020-01-08 2020-10-09 王成军 Bidirectional anchoring packer for oil field

Also Published As

Publication number Publication date
US20170342794A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
US20210381337A1 (en) Downhole assembly for selectively sealing off a wellbore
WO2017210125A1 (en) Composite body lock ring for a borehole plug with a lower slip assembly
CA2873198C (en) Multi-stage well isolation and fracturing
US8763686B2 (en) Downhole packer tool with antifracture means
US8469088B2 (en) Drillable bridge plug for high pressure and high temperature environments
US9683423B2 (en) Degradable plug with friction ring anchors
US20110005779A1 (en) Composite downhole tool with reduced slip volume
US20110308819A1 (en) Hydraulicaly fracturable downhole valve assembly and method for using same
AU2015406992B2 (en) Bidirectional slips
US10927638B2 (en) Wellbore isolation device with telescoping setting system
US10400539B2 (en) Flow back retrieval method for borehole plug with a lower slip assembly through tubulars of different sizes
WO2018071122A1 (en) Anchor and seal system
US11377923B2 (en) Isolation device with inner mandrel removed after setting
US10392897B2 (en) Flow back retrieval method for borehole plug with a lower slip assembly
US11976532B2 (en) Slip assembly for downhole tool and method therefor
US20180045017A1 (en) Slip Assembly for Anchoring Downhole Plugs and Retainers
US10450827B2 (en) Capture method for flow back retrieval of borehole plug with a lower slip assembly
US9719319B2 (en) Disintegrating packer slip/seal
CA3009385A1 (en) Capture method for flow back retrieval of borehole plug with a lower slip assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17807292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17807292

Country of ref document: EP

Kind code of ref document: A1