WO2017209552A1 - Ultra-low emission combustion apparatus - Google Patents

Ultra-low emission combustion apparatus Download PDF

Info

Publication number
WO2017209552A1
WO2017209552A1 PCT/KR2017/005758 KR2017005758W WO2017209552A1 WO 2017209552 A1 WO2017209552 A1 WO 2017209552A1 KR 2017005758 W KR2017005758 W KR 2017005758W WO 2017209552 A1 WO2017209552 A1 WO 2017209552A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
main fuel
combustion furnace
fuel injector
curved portion
Prior art date
Application number
PCT/KR2017/005758
Other languages
French (fr)
Korean (ko)
Inventor
김세원
이창엽
김대해
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2017209552A1 publication Critical patent/WO2017209552A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/006Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber the recirculation taking place in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/06Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for completing combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/20Premixing fluegas with fuel

Definitions

  • the present invention relates to a combustion device, and in particular, through the structure of supplying fuel and oxidant of the combustion device to reduce the contaminants such as nitrogen oxides contained in the combustion gas through the optimum flame configuration and recombustion of the combustion gas.
  • An ultra low pollution combustion apparatus is provided.
  • the main environmental pollutants include nitrogen oxides (NOx) and carbon dioxide (CO 2 ), as well as carbon monoxide (CO) and soot caused by incomplete combustion of fuels.
  • NOx nitrogen oxides
  • Combustors using conventional fossil fuels inevitably generate nitrogen oxides (NOx) having a chemical formula of NO and NO2 by chemical reactions during combustion.
  • Low NOx combustion technology to suppress this occurrence is being developed to improve the structure of the combustor, such as the mixture of fuel and air, air-fuel ratio.
  • Nitrogen oxides generated during the combustion process react with other oxygen in the atmosphere, causing environmental problems such as smog and increased ozone in the atmosphere.
  • emissions from these combustion processes harm the environment and human health, so countries are tightening regulations on more and more stringent standards.
  • Types of nitrogen oxides may be classified into thermal NOx, prompt NOx, and fuel NOx depending on the cause.
  • Thermal nitrogen oxides are produced by the reaction of nitrogen in the air with oxygen at a high temperature of 1600 ° C or higher, rapid nitrogen oxides are produced at the beginning of combustion during the combustion of hydrocarbon-based fuels, and fuel nitrogen oxides are reactions of nitrogen components contained in the fuel. Is generated by Even in such a countermeasure against nitrogen oxides, since gaseous fuels such as natural gas do not contain nitrogen in the fuel, it may be effective to control matters related to Thermal NOx and Prompt NOx.
  • Nitrogen oxides are known to cause photochemical smog and acid rain and seriously affect plants and animals. For many years, many researchers have studied various ways to reduce NOx.
  • Patent Literature 1 supplies combustion air in three stages by mixing general air and exhaust gas in order to reduce the amount of nitrogen oxides (NOx) generated.
  • a three-stage burner for exhaust gas recirculation for liquid and gas is used to minimize the local high temperature generation by multi-stage combustion and to extend the combustion zone to achieve uniform heating in the boiler.
  • Patent Document 1 a plurality of exhaust gas supply pipes, a recirculation duct, and a damper are provided as elements for recirculating the exhaust gas so that the exhaust gas is re-introduced into the combustion furnace. Since it needs to be installed separately, there is a disadvantage that the required space increases.
  • Patent Document 2 referring to a registered patent filed by the present applicant, as shown in FIG. 4, the combustion gases 3 'and 4' generated in the combustion furnace 1 'are replaced by the combustion furnace. It provides an internal recirculation technology that allows the interior of the burner 2 'to be delivered to the burner 2' without a separate device inside the combustion furnace 1 'but not to an external connection passage, but the combustion gas 4' in some areas within the combustion furnace 1 '. The disadvantage is that it does not use flow effectively.
  • the configuration of the peripheral device is not required, but due to the additional configuration for inducing the recirculation of the combustion gas, the combustion device is relatively large in size, for example, a system other than a large specific combustion system such as a water tube boiler. There is a problem that it is difficult to apply.
  • Patent Document 1 KR 10-2005-0117417 A
  • Patent Document 2 KR 10-1512352 B1
  • the present invention has been made in view of the above-mentioned conventional problems and solves the problem, through the structure and shape of the combustion apparatus through the stable multi-stage flame formation in the combustion apparatus and effective re-burning of the combustion gas nitrogen oxides It is an object to provide a combustion apparatus that can be reduced.
  • a combustion furnace A burner having one side inserted into the combustion furnace; Located in the center of the burner, the main fuel injector for injecting the main fuel supplied to form a primary flame region in the combustion furnace; A plurality of auxiliary fuel injection bodies positioned to surround the main fuel injection body at predetermined intervals; And a curved portion configured to combine and spray the auxiliary fuels injected from the plurality of auxiliary fuel injectors, wherein the auxiliary fuel supplied to the auxiliary fuel injectors is injected into the combustion furnace along the surface of the curved portion.
  • the combustion apparatus forms a secondary flame zone and is combusted, and the combustion gas generated in the combustion furnace flows to the secondary flame zone along the outer surface of the curved portion to be reburned.
  • an oxidant supply unit positioned between the main fuel injector and the auxiliary fuel injector, wherein a part of the combustion gas generated in the combustion furnace by the oxidant supplied to the oxidant supply unit is along the inner surface of the curved portion 1. It is desirable to flow to the secondary flame zone and reburn.
  • a portion of the outer circumferential surface of the line through which the main fuel supplied to the main fuel injector flows is opened, and the oxidant supplied to the oxidant supply unit is injected through the opening by the flow rate of the supplied main fuel. It is preferable to enter the sieve and mix with the main fuel.
  • One side of the oxidant supply portion extending into the combustion furnace further comprises a recycle induction portion formed between the curved portion and the main fuel injector, the flow rate of the combustion gas is increased by the recycle induction portion in the curved portion It is preferred to flow to the primary flame zone along the side and reburn.
  • the ultra-low pollution combustion apparatus according to the present invention, by effectively controlling the flow of fuel, oxidant and combustion gas through the configuration and structure of the combustion apparatus, it is possible to promote the mixing of fuel and oxidant and the recombustion of combustion gas. It is possible to reduce the flame composition and the nitrogen oxides, so that complicated peripherals are not installed and the associated costs are not required and the basic combustion system can be maintained.
  • the miniaturization of the combustion apparatus has an advantage that it can be easily applied to various combustion systems.
  • FIG 1 schematically shows an ultra low pollution combustion apparatus according to an embodiment of the present invention.
  • Figure 2 is a perspective view of the burner of the ultra low pollution combustion apparatus according to an embodiment of the present invention.
  • FIG 3 schematically shows a combustion process of an ultra low pollution combustion apparatus according to an embodiment of the present invention.
  • Each component constituting the ultra low pollution combustion apparatus according to the present invention may be used integrally or separately separated as necessary. In addition, some components may be omitted depending on the form of use.
  • the combustion furnace 1 the burner 100, the main fuel injector 10, the auxiliary fuel injector and the curved portion 22.
  • the combustion furnace 1 is a hollow form in which the space where combustion takes place is provided.
  • the burner 100 is positioned with a portion of one side inserted into the combustion furnace 1.
  • the main fuel injector 10 is positioned at the center of the burner 100 to inject the supplied main fuel from the front end into the combustion furnace 1 to be combusted.
  • a swirler 11 may be provided at the front end of the main fuel injector 10.
  • the main fuel injector 10 is provided with an opening in which at least a part of the periphery of the line through which the main fuel supplied to the main fuel injector 10 flows.
  • the auxiliary fuel injectors 20 are provided in plural numbers so as to be spaced apart from each other by a predetermined interval, and the plurality of auxiliary fuel injectors 20 are spaced apart from each other in a radially outward direction around the main fuel injector 10 and thus, the main fuel It is positioned to surround the injection body (10).
  • auxiliary fuel injector 20 injects the auxiliary fuel supplied from the front-end
  • the curved portion 22 is positioned at a tip spaced apart from the tube 21 positioned at the tip portion of the auxiliary fuel injector 20 by a predetermined distance, and communicates with the tip of each auxiliary fuel injector 20.
  • the fuel injected from each of the auxiliary fuel injectors 20 is mixed in the curved portion 22 and the tube 21 and discharged between the spaced portions, and flows along the surface of the curved portion 22 so as to be inside the combustion furnace 1. To be sprayed.
  • the curved portion 22 includes a curved portion inner surface 24 facing the main fuel injector 10 side, and a curved portion outer surface 23 positioned on the other side thereof.
  • the oxidant supply unit 30 is located in a partitioned form between the main fuel injector 10 and the auxiliary fuel injector 20, and supplies the oxidant to the front end of each fuel injector through the partitioned space, thereby providing each fuel injector. It is mixed with the fuel injected in the combustion to make the combustion in the furnace (1).
  • the oxidant supply unit 30 may be divided into two stages through partition walls 31 therein, and each of the main fuel injector 10 and the auxiliary fuel injector 20 through the divided oxidant supply unit 30.
  • the oxidant can be supplied.
  • a recirculation induction part 33 which is a space formed by extending to the inner side (a front end side of the auxiliary fuel injector 20) and positioned near the front end of the auxiliary fuel injector 20, is located.
  • a configuration for supplying fuel to each of the fuel injectors (10, 20) and the configuration for supplying an oxidant to the oxidant supply unit 30 may be provided, the supply amount of these fuels and oxidant valves or dampers It can be adjusted through the control means such as.
  • the oxidant and the fuel are supplied to the oxidant supply unit 30 and the respective fuel injectors 10 and 20.
  • Part of the oxidant supplied to the oxidant supply unit 30 (an oxidant flowing toward the main fuel injector 10 side of the oxidant supply unit 30 divided into the partition walls 31) is supplied to the main fuel injector 10 and injected. Due to the flow of fuel, the fuel is introduced into the main fuel injector 10 through the opening 12 provided in the main fuel injector 10.
  • the oxidant introduced into the main fuel injector 10 through the opening 12 is mixed with fuel in a turbulent flow in the main fuel injector 10. .
  • the main fuel and the oxidant mixed in the main fuel injector 10 are injected into the combustion furnace 1 to form a primary flame region 51 and combust.
  • the opening 12 facilitates the mixing of fuel and air in the main fuel injector 10, thereby facilitating control of the air-fuel ratio, and obtaining stable flame formation and primary reduction of nitrogen oxides. Can be.
  • auxiliary fuel injector 20 fuel is injected from the tip of the auxiliary fuel injector 20.
  • the auxiliary fuel supplied to the auxiliary fuel injector 20 is mixed and discharged in the tube 21 and the curved portion 22 and injected into the combustion furnace 1 along the surface of the curved portion 22. do.
  • coanda effect is a characteristic that shows the tendency for the fluid to be attached to the flow flows, as described above, the auxiliary fuel is injected through the surface of the curved portion 22, the curved surface Low pressure is formed on the surface of the part 22.
  • the remaining part of the oxidant supplied to the oxidant supply unit 30 (the oxidant flowing toward the auxiliary fuel injector 20 side of the oxidant supply unit 30 divided into the partition walls 31) is supplied to the auxiliary fuel injector 20. And, due to the flow of the auxiliary fuel is injected, it is mixed with the auxiliary fuel on the surface of the curved portion 22 is injected into the combustion furnace (1) to form a secondary flame zone 52 is burned.
  • the flame region is formed in the primary and secondary stages by the combustion of the fuel injected by the main fuel injector 10 and the auxiliary fuel injector 20.
  • Combustion gas generated by the combustion furnace 1 in the flame region as described above flows along the inner surface of the combustion furnace 1 in the combustion furnace 1 toward the tip of the burner 100 under the combustion furnace 1.
  • the portion 61 of the combustion gas flowing in this way is curved by the auxiliary fuel injector 20 and the curved surface of the auxiliary fuel injector 20 due to the flow rate of the fuel flowing along the curved portion 22 as described above. It flows into the secondary flame zone 52 along the secondary outer surface 23 and is reburned.
  • the remaining portion 62 of the combustion gas is returned to the lower portion of the curved portion 22 by the flow rate of the recirculation induction portion 33 and the flowing oxidant between the auxiliary fuel injector 20 and the oxidant supply portion 30 and the recirculation induction portion ( 33 flows into the primary flame zone 51 along the curved inner surface 24 and is reburned.
  • the combustion gas is subjected to a multi-type induction process in which the recombustion through the curved outer surface 23 and the recombustion through the recirculation induction portion and the curved inner surface 24 are recycled and recycled.
  • the optimum flame zone in the combustion furnace 1 is formed, and ultra-low pollution combustion is possible by reducing nitrogen oxide contained in the combustion gas generated therefrom through recombustion.
  • the ultra-low pollution combustion apparatus according to the present invention, by effectively controlling the flow of fuel, oxidant and combustion gas through the configuration and structure of the combustion apparatus, it is optimal to promote the mixing of fuel and oxidant and recombustion of combustion gas. It is possible to reduce the flame composition and the nitrogen oxides, so that no complicated installation and no additional costs are required and the basic combustion system can be maintained.
  • the miniaturization of the combustion apparatus has an advantage that it can be easily applied to various combustion systems.

Abstract

The present invention relates to an ultra-low emission combustion apparatus for reducing pollutants, such as nitrogen oxides contained in a combustion gas, through an optimal flame structure and the re-burning of the combustion gas through a structure for supplying fuel of the combustion apparatus and an oxidant, the apparatus comprising: a combustion furnace; a burner having one side inserted into the combustion furnace; a main fuel injector, located at a central portion of the burner, for injecting a main fuel supplied to form a primary flame region in the combustion furnace; a plurality of auxiliary fuel injectors which are positioned so as to surround the periphery of the main fuel injector at predetermined intervals; and a curved portion configured such that an auxiliary fuel injected from the plurality of auxiliary fuel injectors are combined and injected into the combustion furnace, wherein auxiliary fuel supplied to the auxiliary fuel injectors are injected into the combustion furnace along the curved portion while forming a secondary flame region, and the combustion gas generated in the combustion furnace flows along the outer surface of the curved portion to the secondary flame region and is re-burned.

Description

초저공해 연소장치Ultra low pollution combustion device
본 발명은 연소장치에 관한 것으로, 상세하게는 연소장치의 연료 및 산화제를 공급하는 구조를 통하여 최적의 화염구성 및 연소가스의 재연소를 통하여 연소가스에 포함된 질소산화물 등의 오염물질을 감소시키는 초저공해 연소장치에 관한 것이다.The present invention relates to a combustion device, and in particular, through the structure of supplying fuel and oxidant of the combustion device to reduce the contaminants such as nitrogen oxides contained in the combustion gas through the optimum flame configuration and recombustion of the combustion gas. An ultra low pollution combustion apparatus.
현재 인류의 주된 에너지원은 탄화수소계열의 화석 연료이다. 그러나 이러한 화석연료의 연소 후 생성물에 의한 환경오염 문제가 심각하게 제기되고 있다. 주된 환경 오염원으로는 질소 산화물(NOx), 이산화탄소(CO2) 외에 연료의 불완전 연소로 인해 생기는 일산화탄소(CO)와 매연(soot) 등이 있다.At present, mankind's main energy source is hydrocarbon-based fossil fuels. However, the problem of environmental pollution by the product after combustion of fossil fuels has been seriously raised. The main environmental pollutants include nitrogen oxides (NOx) and carbon dioxide (CO 2 ), as well as carbon monoxide (CO) and soot caused by incomplete combustion of fuels.
기존의 화석 연료를 사용하는 연소기는 연소시의 화학적 반응에 의해 NO 및 NO2 의 화학식을 갖는 질소 산화물(NOx)의 생성이 불가피하다. 이의 발생을 억제하기 위한 저NOx 연소기술은 연료와 공기의 혼합형태, 공연비 등 연소기의 구조 개선을 통해 이루어지도록 발전하고 있다. 연소과정에서 발생하는 질소 산화물은 대기 중의 다른 산소와 반응하여 스모그 및 대기의 오존 증가 등 환경문제를 발생시킨다. 특히 이러한 연소과정에서 발생하는 배출물(emission)의 경우 환경 및 인체의 건강에 해를 끼치므로 각국에서는 점점 더 엄격한 기준으로 규제를 강화하고 있다.Combustors using conventional fossil fuels inevitably generate nitrogen oxides (NOx) having a chemical formula of NO and NO2 by chemical reactions during combustion. Low NOx combustion technology to suppress this occurrence is being developed to improve the structure of the combustor, such as the mixture of fuel and air, air-fuel ratio. Nitrogen oxides generated during the combustion process react with other oxygen in the atmosphere, causing environmental problems such as smog and increased ozone in the atmosphere. In particular, emissions from these combustion processes harm the environment and human health, so countries are tightening regulations on more and more stringent standards.
질소산화물의 종류에는 발생 원인에 따라 열적 질소산화물(Thermal NOx), 급속 질소산화물(Prompt NOx), 및 연료 질소산화물(Fuel NOx)로 분류될 수 있다. 열적 질소산화물은 공기 중의 질소가 산소와 1600℃ 이상의 고온에서 반응하여 생성되는 것이고, 급속 질소산화물은 탄화수소계 연료의 연소시 연소 초기에 생성되는 것이며, 연료 질소산화물은 연료 중에 함유된 질소 성분의 반응에 의해 생성된다. 이와 같은 질소 산화물의 대책에 있어서도 천연가스와 같은 기체연료에는 연료 중에 질소성분이 함유되어 있지 않기 때문에 Thermal NOx 및 Prompt NOx에 관련된 사항을 제어하는 것이 효과적일 수 있다.Types of nitrogen oxides may be classified into thermal NOx, prompt NOx, and fuel NOx depending on the cause. Thermal nitrogen oxides are produced by the reaction of nitrogen in the air with oxygen at a high temperature of 1600 ° C or higher, rapid nitrogen oxides are produced at the beginning of combustion during the combustion of hydrocarbon-based fuels, and fuel nitrogen oxides are reactions of nitrogen components contained in the fuel. Is generated by Even in such a countermeasure against nitrogen oxides, since gaseous fuels such as natural gas do not contain nitrogen in the fuel, it may be effective to control matters related to Thermal NOx and Prompt NOx.
질소산화물은 광화학 스모그 및 산성비의 원인이 되며 동식물에 심각한 영향을 미치는 것으로 알려져 있으며, 오랫동안 많은 연구자들은 NOx를 감소시키는 다양한 방법을 연구하였다.Nitrogen oxides are known to cause photochemical smog and acid rain and seriously affect plants and animals. For many years, many researchers have studied various ways to reduce NOx.
이로 인해 현재 시도되고 있는 저 NOx 방법으로는 배기가스 재순환, 물 또는 스팀분사, 공기 및 연료의 다단 연소, 선택적 비촉매 환원반응(SNCR, selective non-catalytic reduction), 선택적 촉매 환원반응(SCR, selective catalytic reduction) 등이 있다. 최근 선진국에서는 후연소 영역에서 NOx를 제거하는 재연소 방법이 시도되고 있으며, NOx 저감율이나 경제성에 있어서 효율성이 높다고 알려져 있다.Because of this, low NOx methods currently being tried include exhaust gas recirculation, water or steam injection, multistage combustion of air and fuel, selective non-catalytic reduction (SNCR), and selective catalytic reduction (SCR). catalytic reduction). Recently, developed countries have tried to re-burn NOx in the post-combustion area, and are known to have high efficiency in terms of NOx reduction rate and economic efficiency.
상기와 같이 NOx를 저감하기 위한 종래의 방법으로서, 특허문헌 1에는 질소 산화물(NOx)의 발생량을 저감할 수 있게 하기 위하여 연소용 공기를 일반공기와 배가스를 혼합하여 3단계로 나누어 공급하되 각 단의 혼합비를 각각 다르게 함으로써, 다단 연소에 의한 국부고온영역 생성을 최소화하고, 연소영역을 확장하여 보일러 내부의 균일가열을 이루기 위한, 액체 및 가스용 배가스 재순환 3단버너가 사용된다.As a conventional method for reducing NOx as described above, Patent Literature 1 supplies combustion air in three stages by mixing general air and exhaust gas in order to reduce the amount of nitrogen oxides (NOx) generated. By varying the mixing ratios of the two, a three-stage burner for exhaust gas recirculation for liquid and gas is used to minimize the local high temperature generation by multi-stage combustion and to extend the combustion zone to achieve uniform heating in the boiler.
상기 특허문헌 1에서는 배기가스를 재순환시키기 위한 요소로서 복수의 배가스 공급관, 재순환덕트, 및 댐퍼 등의 별도의 장치들을 구비함으로써 배기가스를 연소로 내로 재유입되도록 하지만, 상기 장치들이 연소로의 외부에 별도로 장치되어야 하므로 필요 공간이 많아진다는 단점이 있다.In Patent Document 1, a plurality of exhaust gas supply pipes, a recirculation duct, and a damper are provided as elements for recirculating the exhaust gas so that the exhaust gas is re-introduced into the combustion furnace. Since it needs to be installed separately, there is a disadvantage that the required space increases.
한편, 특허문헌 2로서, 본 출원인에 의해 선출원된 등록 특허를 참조하면, 도 4에 도시된 바와 같이, 연소로(1') 내에서 발생하는 연소가스(3', 4')를 연소로의 외부 연결통로가 아닌 연소로(1') 내부에서 별도의 장치 없이 버너(2') 내부로 전달되도록 하는 내부 재순환 기술을 제공하지만, 연소로(1') 내의 일부 영역에서의 연소가스(4') 유동을 효과적으로 이용하고 있지는 못하는 단점이 있다.On the other hand, as Patent Document 2, referring to a registered patent filed by the present applicant, as shown in FIG. 4, the combustion gases 3 'and 4' generated in the combustion furnace 1 'are replaced by the combustion furnace. It provides an internal recirculation technology that allows the interior of the burner 2 'to be delivered to the burner 2' without a separate device inside the combustion furnace 1 'but not to an external connection passage, but the combustion gas 4' in some areas within the combustion furnace 1 '. The disadvantage is that it does not use flow effectively.
또한, 주변장치의 구성은 요구되지 않으나, 연소가스의 재순환을 유도하기 위한 부가적인 구성으로 인하여 연소장치의 크기가 비교적 크기에, 예를 들면, 수관식 보일러와 같은 대용량의 특정 연소 시스템 이외의 시스템에는 적용이 어렵다는 문제가 있다.In addition, the configuration of the peripheral device is not required, but due to the additional configuration for inducing the recirculation of the combustion gas, the combustion device is relatively large in size, for example, a system other than a large specific combustion system such as a water tube boiler. There is a problem that it is difficult to apply.
(특허문헌 1) KR 10-2005-0117417 A(Patent Document 1) KR 10-2005-0117417 A
(특허문헌 2) KR 10-1512352 B1(Patent Document 2) KR 10-1512352 B1
이에, 본 발명은 상기한 종래의 문제점에 착안하여 이를 해결하기 위하여 안출된 것으로서, 연소장치의 구조 및 형상을 통하여 연소장치에 있어서의 안정적인 다단 화염형성 및 연소가스의 효과적인 재연소를 통하여 질소산화물을 저감시킬 수 있는 연소장치를 제공하는 것을 목적으로 한다.Accordingly, the present invention has been made in view of the above-mentioned conventional problems and solves the problem, through the structure and shape of the combustion apparatus through the stable multi-stage flame formation in the combustion apparatus and effective re-burning of the combustion gas nitrogen oxides It is an object to provide a combustion apparatus that can be reduced.
상기한 목적을 달성하기 위하여 본 발명은, 연소로; 일측이 상기 연소로 내에 삽입되어 위치하는 버너; 상기 버너의 중앙부에 위치하며, 공급되는 주연료를 분사하여 상기 연소로 내에 1차 화염영역을 형성하는 주연료 분사체; 소정간격을 두고 상기 주연료 분사체의 주위를 둘러싸도록 위치하는 복수의 보조연료분사체; 및 상기 복수의 보조연료 분사체들에서 분사되는 보조연료가 합쳐져 분사되도록 하는 곡면부;를 포함하며, 상기 보조연료 분사체들로 공급되는 보조연료는 상기 곡면부의 표면을 따라 상기 연소로 내로 분사되어 2차 화염영역을 형성하며 연소되며, 상기 연소로에서 발생하는 연소가스는 상기 곡면부의 외측면을 따라 상기 2차 화염영역으로 유동하여 재연소되는 초저공해 연소장치를 제공한다.The present invention to achieve the above object, a combustion furnace; A burner having one side inserted into the combustion furnace; Located in the center of the burner, the main fuel injector for injecting the main fuel supplied to form a primary flame region in the combustion furnace; A plurality of auxiliary fuel injection bodies positioned to surround the main fuel injection body at predetermined intervals; And a curved portion configured to combine and spray the auxiliary fuels injected from the plurality of auxiliary fuel injectors, wherein the auxiliary fuel supplied to the auxiliary fuel injectors is injected into the combustion furnace along the surface of the curved portion. The combustion apparatus forms a secondary flame zone and is combusted, and the combustion gas generated in the combustion furnace flows to the secondary flame zone along the outer surface of the curved portion to be reburned.
상기 주연료 분사체와 상기 보조연료 분사체 사이에 위치하는 산화제 공급부를 더 포함하며, 상기 산화제 공급부로 공급되는 산화제에 의해 상기 연소로에서 발생하는 연소가스 일부가 상기 곡면부의 내측면을 따라 상기 1차 화염영역으로 유동하여 재연소되는 것이 바람직하다.And an oxidant supply unit positioned between the main fuel injector and the auxiliary fuel injector, wherein a part of the combustion gas generated in the combustion furnace by the oxidant supplied to the oxidant supply unit is along the inner surface of the curved portion 1. It is desirable to flow to the secondary flame zone and reburn.
상기 주연료 분사체로 공급되는 주연료가 유동하는 라인의 외주면 일부가 개방된 개구부를 더 포함하며, 공급되는 상기 주연료의 유속에 의해 상기 산화제 공급부로 공급되는 산화제가 상기 개구부를 통하여 상기 주연료 분사체로 유입되어 상기 주연료와 혼합되는 것이 바람직하다.A portion of the outer circumferential surface of the line through which the main fuel supplied to the main fuel injector flows is opened, and the oxidant supplied to the oxidant supply unit is injected through the opening by the flow rate of the supplied main fuel. It is preferable to enter the sieve and mix with the main fuel.
상기 산화제 공급부의 일측이 상기 연소로 내측으로 연장됨으로써 상기 곡면부와 상기 주연료 분사체 사이에 형성되는 재순환 유도부를 더 포함하고, 상기 재순환 유도부에 의해 상기 연소가스의 유속이 증가되어 상기 곡면부의 내측면을 따라 상기 1차 화염영역으로 유동하여 재연소되는 것이 바람직하다.One side of the oxidant supply portion extending into the combustion furnace further comprises a recycle induction portion formed between the curved portion and the main fuel injector, the flow rate of the combustion gas is increased by the recycle induction portion in the curved portion It is preferred to flow to the primary flame zone along the side and reburn.
상기한 바와 같이, 본 발명에 따른 초저공해 연소장치에 의하면, 연소장치 구성 및 구조를 통하여 연료, 산화제 및 연소가스의 유동을 효과적으로 제어함으로써 연료와 산화제의 혼합촉진 및 연소가스의 재연소를 통한 최적의 화염구성 및 질소산화물의 저감이 가능하기에, 복잡한 주변장치의 설치 및 이를 위한 부대비용이 요구되지 않으며 기본적인 연소 시스템을 유지할 수 있다.As described above, according to the ultra-low pollution combustion apparatus according to the present invention, by effectively controlling the flow of fuel, oxidant and combustion gas through the configuration and structure of the combustion apparatus, it is possible to promote the mixing of fuel and oxidant and the recombustion of combustion gas. It is possible to reduce the flame composition and the nitrogen oxides, so that complicated peripherals are not installed and the associated costs are not required and the basic combustion system can be maintained.
따라서, 연소장치의 소형화를 통하여 여러 연소 시스템에 쉽게 적용이 가능하다는 장점을 갖는다.Therefore, the miniaturization of the combustion apparatus has an advantage that it can be easily applied to various combustion systems.
도 1은, 본 발명의 일 실시예에 따른 초저공해 연소장치를 개략적으로 나타낸다.1 schematically shows an ultra low pollution combustion apparatus according to an embodiment of the present invention.
도 2는, 본 발명의 일 실시예에 따른 초저공해 연소장치의 버너의 사시도이다.Figure 2 is a perspective view of the burner of the ultra low pollution combustion apparatus according to an embodiment of the present invention.
도 3은, 본 발명의 일 실시예에 따른 초저공해 연소장치의 연소과정을 개략적으로 나타낸다.3 schematically shows a combustion process of an ultra low pollution combustion apparatus according to an embodiment of the present invention.
도 4는, 종래의 연소장치를 개략적으로 나타낸다.4 schematically shows a conventional combustion apparatus.
본 발명의 상기와 같은 목적, 특징 및 다른 장점들은 첨부도면을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명함으로써 더욱 명백해질 것이다. 기술되는 실시예는 발명의 설명을 위해 예시적으로 제공되는 것이며, 본 발명의 기술적 범위를 한정하는 것은 아니다.The above objects, features and other advantages of the present invention will become more apparent by describing the preferred embodiments of the present invention in detail with reference to the accompanying drawings. The described embodiments are provided by way of example for purposes of illustration, and do not limit the technical scope of the present invention.
본 발명에 따른 초저공해 연소장치를 이루는 각 구성요소들은 필요에 따라 일체형으로 사용되거나 각각 분리되어 사용될 수 있다. 또한, 사용 형태에 따라 일부 구성요소를 생략하여 사용이 가능하다.Each component constituting the ultra low pollution combustion apparatus according to the present invention may be used integrally or separately separated as necessary. In addition, some components may be omitted depending on the form of use.
이하, 첨부된 도면을 참조하여 본 발명의 일 실시예에 따른 초저공해 연소장치를 상세히 설명한다.Hereinafter, an ultra low pollution combustion apparatus according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
초저공해 연소장치의 전체적인 구성 설명Description of overall composition of ultra low pollution combustion device
먼저, 도 1 및 도 2를 참조하여 본 발명의 일 실시예에 따른 초저공해 연소장치의 전체적인 구성을 상세히 설명한다.First, with reference to Figures 1 and 2 will be described in detail the overall configuration of the ultra-low pollution combustion apparatus according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 초저공해 연소장치는, 연소로(1), 버너(100), 주연료 분사체(10), 보조연료 분사체 및 곡면부(22)를 포함한다.Ultra low pollution combustion apparatus according to an embodiment of the present invention, the combustion furnace 1, the burner 100, the main fuel injector 10, the auxiliary fuel injector and the curved portion 22.
연소로(1)는 그 내부에 연소가 이루어지는 공간이 마련되는 중공 형태이다.The combustion furnace 1 is a hollow form in which the space where combustion takes place is provided.
버너(100)는 그 일측의 일부가 연소로(1) 내부로 삽입되어 위치한다.The burner 100 is positioned with a portion of one side inserted into the combustion furnace 1.
주연료 분사체(10)는 버너(100)의 중앙부에 위치하여, 공급되는 주연료를 선단부로부터 연소로(1) 내부로 분사하여 연소되도록 한다.The main fuel injector 10 is positioned at the center of the burner 100 to inject the supplied main fuel from the front end into the combustion furnace 1 to be combusted.
주연료 분사체(10)의 선단부에는 스월러(11)가 구비될 수 있다.A swirler 11 may be provided at the front end of the main fuel injector 10.
한편, 주연료 분사체(10)에는, 주연료 분사체(10)로 공급되는 주연료가 유동하는 라인의 둘레부분의 적어도 일부가 개방된 개구가 구비된다.On the other hand, the main fuel injector 10 is provided with an opening in which at least a part of the periphery of the line through which the main fuel supplied to the main fuel injector 10 flows.
보조연료 분사체(20)는 서로 소정간격 이격되도록 복수개가 구비되며, 복수개의 보조연료 분사체(20)들이, 주연료 분사체(10) 주위에서 반경 방향의 외측으로 소정간격 이격되어, 주연료 분사체(10)를 둘러싸도록 위치한다.The auxiliary fuel injectors 20 are provided in plural numbers so as to be spaced apart from each other by a predetermined interval, and the plurality of auxiliary fuel injectors 20 are spaced apart from each other in a radially outward direction around the main fuel injector 10 and thus, the main fuel It is positioned to surround the injection body (10).
그리고, 보조연료 분사체(20)는 공급되는 보조연료를 그 선단부로부터 분사한다.And the auxiliary fuel injector 20 injects the auxiliary fuel supplied from the front-end | tip part.
곡면부(22)는 상기 보조연료 분사체(20)의 선단부에서, 이 선단부에 위치하는 튜브(21)와 소정간격 이격되어 위치하며, 각 보조연료 분사체(20)의 선단부를 연통되도록 함으로써, 각 보조연료 분사체(20)에서 분사되는 연료가 곡면부(22) 및 튜브(21) 내에서 혼합되어 상기 이격된 사이로 토출되며 곡면부(22)의 표면을 따라 유동하여 연소로(1) 내부로 분사되도록 한다.The curved portion 22 is positioned at a tip spaced apart from the tube 21 positioned at the tip portion of the auxiliary fuel injector 20 by a predetermined distance, and communicates with the tip of each auxiliary fuel injector 20. The fuel injected from each of the auxiliary fuel injectors 20 is mixed in the curved portion 22 and the tube 21 and discharged between the spaced portions, and flows along the surface of the curved portion 22 so as to be inside the combustion furnace 1. To be sprayed.
곡면부(22)는 주연료 분사체(10) 측을 향한 곡면부 내측면(24)과, 그 타측에 위치하는 곡면부 외측면(23)을 포함한다.The curved portion 22 includes a curved portion inner surface 24 facing the main fuel injector 10 side, and a curved portion outer surface 23 positioned on the other side thereof.
산화제 공급부(30)는 주연료 분사체(10)와 보조연료 분사체(20) 사이에 구획된 형태로 위치하며, 구획된 공간을 통하여 산화제를 각 연료 분사체 선단측으로 공급함으로써, 각 연료 분사체에서 분사되는 연료와 혼합되어 연소로(1) 내에서 연소가 이루어지도록 한다.The oxidant supply unit 30 is located in a partitioned form between the main fuel injector 10 and the auxiliary fuel injector 20, and supplies the oxidant to the front end of each fuel injector through the partitioned space, thereby providing each fuel injector. It is mixed with the fuel injected in the combustion to make the combustion in the furnace (1).
산화제 공급부(30)는 그 내부의 격벽(31)을 통하여 2단으로 나뉘어 구성될 수 있고, 이렇게 나뉜 산화제 공급부(30)를 통하여 주연료 분사체(10) 및 보조연료 분사체(20) 각각으로 산화제가 공급되도록 할 수 있다.The oxidant supply unit 30 may be divided into two stages through partition walls 31 therein, and each of the main fuel injector 10 and the auxiliary fuel injector 20 through the divided oxidant supply unit 30. The oxidant can be supplied.
산화제 공급부(30)와 보조연료 분사체(20)의 선단부 측 사이에는, 산화제 공급부(30)의 공간을 구획하는 면 중 보조연료 분사체(20) 측에 위치하는 면(32) 일측이 연소로(1) 내측(보조연료 분사체(20)의 선단부 측)으로 연장되어, 보조연료 분사체(20) 선단부 근방에 위치함으로써 형성되는 공간인 재순환 유도부(33)가 위치한다.Between the oxidant supply part 30 and the front end side of the auxiliary fuel injector 20, one side of the surface 32 which is located on the auxiliary fuel injector 20 side among the surfaces partitioning the space of the oxidant supply part 30 is the combustion furnace. (1) A recirculation induction part 33, which is a space formed by extending to the inner side (a front end side of the auxiliary fuel injector 20) and positioned near the front end of the auxiliary fuel injector 20, is located.
이러한 재순환 유도부(33)를 통하여 산화제 공급부(30)와 보조연료 분사체(20) 사이의 공간이 좁아지며, 따라서, 이 사이에서의 유체 유속이 빨라진다.Through this recirculation induction part 33, the space between the oxidant supply part 30 and the auxiliary fuel injector 20 is narrowed, so that the fluid flow rate therebetween is increased.
한편, 도시하지 않았으나, 상기 각 연료 분사체(10, 20)로 연료를 공급하는 구성 및 산화제 공급부(30)로 산화제를 공급하는 구성이 구비될 수 있고, 이들 연료 및 산화제의 공급량이 밸브나 댐퍼 등의 조절수단을 통하여 조절될 수 있다.On the other hand, although not shown, a configuration for supplying fuel to each of the fuel injectors (10, 20) and the configuration for supplying an oxidant to the oxidant supply unit 30 may be provided, the supply amount of these fuels and oxidant valves or dampers It can be adjusted through the control means such as.
초저공해 연소장치의 연소 과정 설명Explanation of combustion process of ultra low pollution combustion device
이하, 도 3을 더 참조하여 본 발명의 일 실시예에 따른 초저공해 연소장치의 연소 과정을 상세히 설명한다.Hereinafter, the combustion process of the ultra low pollution combustion apparatus according to an embodiment of the present invention will be described in detail with reference to FIG. 3.
산화제 공급부(30) 및 각 연료 분사체(10, 20)로 산화제 및 연료가 공급된다. The oxidant and the fuel are supplied to the oxidant supply unit 30 and the respective fuel injectors 10 and 20.
산화제 공급부(30)로 공급되는 산화제 중 일부(격벽(31)으로 나뉜 산화제 공급부(30)의 주연료 분사체(10) 측으로 유동하는 산화제)는, 주연료 분사체(10)로 공급되며 분사되는 연료의 유동으로 인하여, 주연료 분사체(10)에 구비된 개구부(12)를 통하여 주연료 분사체(10) 내부로 유입된다.Part of the oxidant supplied to the oxidant supply unit 30 (an oxidant flowing toward the main fuel injector 10 side of the oxidant supply unit 30 divided into the partition walls 31) is supplied to the main fuel injector 10 and injected. Due to the flow of fuel, the fuel is introduced into the main fuel injector 10 through the opening 12 provided in the main fuel injector 10.
이는 벤츄리 효과를 이용한 연료/산화제 혼합의 촉진 과정으로서, 개구부(12)를 통하여 주연료 분사체(10)로 유입된 산화제는 주연료 분사체(10) 내의 난류 상태의 유동으로 연료와 혼합이 이루어진다. This is a process of promoting fuel / oxidant mixing using the Venturi effect. The oxidant introduced into the main fuel injector 10 through the opening 12 is mixed with fuel in a turbulent flow in the main fuel injector 10. .
주연료 분사체(10) 내에서 혼합된 주연료 및 산화제가 연소로(1) 내로 분사되며 1차 화염영역(51)을 이루며 연소가 이루어진다.The main fuel and the oxidant mixed in the main fuel injector 10 are injected into the combustion furnace 1 to form a primary flame region 51 and combust.
이때, 혼합된 주연료 분사체(10)의 선단에 구비된 스월러(11)를 통해 축방향 모멘텀(Axial momentum) 및 접선 방향 모멘텀(Tangential momentum)을 가진 상태로 연소로(1) 내로 분사될 수 있다.At this time, through the swirler 11 provided at the tip of the mixed main fuel injector 10 to be injected into the combustion furnace 1 with axial momentum and tangential momentum. Can be.
상기한 개구부(12)를 통하여 주연료 분사체(10) 내에서의 연료와 공기의 혼합을 촉진시키고, 이를 통해 공연비 제어가 용이해지며, 안정된 화염 형성 및 질소산화물의 1차적인 저감 효과를 얻을 수 있다. The opening 12 facilitates the mixing of fuel and air in the main fuel injector 10, thereby facilitating control of the air-fuel ratio, and obtaining stable flame formation and primary reduction of nitrogen oxides. Can be.
한편, 보조연료 분사체(20)의 선단부로부터 연료가 분사된다. 상기한 바와 같이, 보조연료 분사체(20)로 공급되는 보조연료는, 튜브(21)와 곡면부(22) 내에서 혼합되어 토출되며 곡면부(22) 표면을 따라 연소로(1) 내로 분사된다. On the other hand, fuel is injected from the tip of the auxiliary fuel injector 20. As described above, the auxiliary fuel supplied to the auxiliary fuel injector 20 is mixed and discharged in the tube 21 and the curved portion 22 and injected into the combustion furnace 1 along the surface of the curved portion 22. do.
이는 코안다(coanda) 효과를 이용한 것으로, 코안다 효과는 유동하는 유체가 표면에 부착하여 유동하는 경향을 나타내는 특성으로, 이와 같이 보조연료가 곡면부(22)의 표면을 흐르며 분사됨으로 인하여, 곡면부(22)의 표면에는 낮은 압력이 형성되게 된다.This is a coanda (coanda) effect, the coanda effect is a characteristic that shows the tendency for the fluid to be attached to the flow flows, as described above, the auxiliary fuel is injected through the surface of the curved portion 22, the curved surface Low pressure is formed on the surface of the part 22.
그리고, 산화제 공급부(30)로 공급되는 산화제 중 나머지 일부(격벽(31)으로 나뉜 산화제 공급부(30)의 보조연료 분사체(20) 측으로 유동하는 산화제)는, 보조연료 분사체(20)로 공급되며 분사되는 보조연료의 유동으로 인하여, 곡면부(22) 표면에서 보조연료와 혼합되어 연소로(1) 내부로 분사되어 2차 화염영역(52)을 형성하며 연소된다.The remaining part of the oxidant supplied to the oxidant supply unit 30 (the oxidant flowing toward the auxiliary fuel injector 20 side of the oxidant supply unit 30 divided into the partition walls 31) is supplied to the auxiliary fuel injector 20. And, due to the flow of the auxiliary fuel is injected, it is mixed with the auxiliary fuel on the surface of the curved portion 22 is injected into the combustion furnace (1) to form a secondary flame zone 52 is burned.
이로써, 연소로(1) 내에는 주연료 분사체(10) 및 보조연료 분사체(20)에 의해 분사되는 연료의 연소에 의해 1차 및 2차의 다단으로 화염 영역이 형성된다.Thereby, in the combustion furnace 1, the flame region is formed in the primary and secondary stages by the combustion of the fuel injected by the main fuel injector 10 and the auxiliary fuel injector 20.
상기와 같은 화염 영역에서의 연소로(1) 인하여 발생하는 연소가스는 연소로(1) 내에서 연소로(1) 내면을 따라 연소로(1) 하부의 버너(100) 선단부 측으로 유동하게 된다.Combustion gas generated by the combustion furnace 1 in the flame region as described above flows along the inner surface of the combustion furnace 1 in the combustion furnace 1 toward the tip of the burner 100 under the combustion furnace 1.
이와 같이 유동하는 연소가스 중 일부(61)는, 상기와 같이 보조연료 분사체(20)에서 분사되어 곡면부(22)를 따라 유동하는 연료의 유속에 의해, 보조연료 분사체(20)의 곡면부 외측면(23)을 따라 2차 화염영역(52)으로 유입되어 재연소된다.The portion 61 of the combustion gas flowing in this way is curved by the auxiliary fuel injector 20 and the curved surface of the auxiliary fuel injector 20 due to the flow rate of the fuel flowing along the curved portion 22 as described above. It flows into the secondary flame zone 52 along the secondary outer surface 23 and is reburned.
한편, 연소가스 중 나머지 일부(62)는 보조연료 분사체(20)와 산화제 공급부(30) 사이의 재순환 유도부(33)와 유동하는 산화제의 유속에 의해 곡면부(22) 하부를 돌아 재순환 유도부(33)로 유동하여 곡면부 내측면(24)을 따라 1차 화염영역(51)으로 유입되어 재연소된다.Meanwhile, the remaining portion 62 of the combustion gas is returned to the lower portion of the curved portion 22 by the flow rate of the recirculation induction portion 33 and the flowing oxidant between the auxiliary fuel injector 20 and the oxidant supply portion 30 and the recirculation induction portion ( 33 flows into the primary flame zone 51 along the curved inner surface 24 and is reburned.
즉, 연소가스가 재순환하여 재연소 되기까지 곡면부 외측면(23)을 통한 재연소와, 재순화 유도부 및 곡면부 내측면(24)을 통한 재연소가 이루어지는 멀티형 유도 과정을 거친다. 이를 통해 연소로(1) 내 최적의 화염영역을 구성하고 이로부터 발생하는 연소가스에 포함된 질소산화물을 재연소를 통하여 저감함으로써 초저공해 연소가 가능하도록 한다. That is, the combustion gas is subjected to a multi-type induction process in which the recombustion through the curved outer surface 23 and the recombustion through the recirculation induction portion and the curved inner surface 24 are recycled and recycled. Through this configuration, the optimum flame zone in the combustion furnace 1 is formed, and ultra-low pollution combustion is possible by reducing nitrogen oxide contained in the combustion gas generated therefrom through recombustion.
상기와 같이, 본 발명에 따른 초저공해 연소장치에 의하면, 연소장치 구성 및 구조를 통하여 연료, 산화제 및 연소가스의 유동을 효과적으로 제어함으로써 연료와 산화제의 혼합촉진 및 연소가스의 재연소를 통한 최적의 화염구성 및 질소산화물의 저감이 가능하기에, 복잡한 주변장치의 설치 및 이를 위한 부대비용이 요구되지 않으며 기본적인 연소 시스템을 유지할 수 있다.As described above, according to the ultra-low pollution combustion apparatus according to the present invention, by effectively controlling the flow of fuel, oxidant and combustion gas through the configuration and structure of the combustion apparatus, it is optimal to promote the mixing of fuel and oxidant and recombustion of combustion gas. It is possible to reduce the flame composition and the nitrogen oxides, so that no complicated installation and no additional costs are required and the basic combustion system can be maintained.
따라서, 연소장치의 소형화를 통하여 여러 연소 시스템에 쉽게 적용이 가능하다는 장점을 갖는다.Therefore, the miniaturization of the combustion apparatus has an advantage that it can be easily applied to various combustion systems.
이상에서 본 발명의 바람직한 실시 예에 대하여 설명하였으나, 본 발명은 상술한 특정의 실시예에 한정되지 아니한다. 즉, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 첨부된 특허청구범위의 사상 및 범주를 일탈함이 없이 본 발명에 대한 다수의 변경 및 수정이 가능하며, 그러한 모든 적절한 변경 및 수정의 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다.While preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described specific embodiments. That is, those skilled in the art to which the present invention pertains can make many changes and modifications to the present invention without departing from the spirit and scope of the appended claims, and all such appropriate changes and modifications are possible. Equivalents should be considered to be within the scope of the present invention.

Claims (4)

  1. 연소로(1);Combustion furnace 1;
    일측이 상기 연소로(1) 내에 삽입되어 위치하는 버너(100);A burner 100 having one side inserted into the combustion furnace 1;
    상기 버너(100)의 중앙부에 위치하며, 공급되는 주연료를 분사하여 상기 연소로(1) 내에 1차 화염영역을 형성하는 주연료 분사체(10);Located in the center of the burner 100, the main fuel injector 10 for injecting the main fuel supplied to form a primary flame region in the combustion furnace (1);
    소정간격을 두고 상기 주연료 분사체(10)의 주위를 둘러싸도록 위치하는 복수의 보조연료 분사체(20); 및A plurality of auxiliary fuel injectors 20 positioned to surround the main fuel injectors 10 at predetermined intervals; And
    상기 복수의 보조연료 분사체(20)들에서 분사되는 보조연료가 합쳐져 분사되도록 하는 곡면부(22);를 포함하며,And a curved portion 22 configured to combine and spray the auxiliary fuels injected from the plurality of auxiliary fuel injectors 20.
    상기 보조연료 분사체(20)들로 공급되는 보조연료는 상기 곡면부(22)의 표면을 따라 상기 연소로(1) 내로 분사되어 2차 화염영역을 형성하며 연소되며, 상기 연소로(1)에서 발생하는 연소가스는 상기 곡면부의 외측면(23)을 따라 상기 2차 화염영역으로 유동하여 재연소되는,The auxiliary fuel supplied to the auxiliary fuel injectors 20 is injected into the combustion furnace 1 along the surface of the curved portion 22 to be combusted to form a secondary flame region, and the combustion furnace 1 Combustion gas generated in the flow along the outer surface 23 of the curved portion to the secondary flame zone is reburned,
    초저공해 연소장치.Ultra low pollution combustion device.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 주연료 분사체(10)와 상기 보조연료 분사체(20) 사이에 위치하는 산화제 공급부(30)를 더 포함하며,Further comprising an oxidant supply unit 30 located between the main fuel injector 10 and the auxiliary fuel injector 20,
    상기 산화제 공급부(30)로 공급되는 산화제에 의해 상기 연소로(1)에서 발생하는 연소가스 일부가 상기 곡면부의 내측면(24)을 따라 상기 1차 화염영역으로 유동하여 재연소되는,Part of the combustion gas generated in the combustion furnace (1) by the oxidant supplied to the oxidant supply unit 30 flows to the primary flame region along the inner surface 24 of the curved portion to be reburned,
    초저공해 연소장치.Ultra low pollution combustion device.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 주연료 분사체(10)로 공급되는 주연료가 유동하는 라인의 외주면 일부가 개방된 개구부(12)를 더 포함하며,Further comprising an opening 12 in which a portion of the outer circumferential surface of the line through which the main fuel supplied to the main fuel injector 10 flows, is opened.
    공급되는 상기 주연료의 유속에 의해 상기 산화제 공급부(30)로 공급되는 산화제가 상기 개구부(12)를 통하여 상기 주연료 분사체(10)로 유입되어 상기 주연료와 혼합되는,The oxidant supplied to the oxidant supply unit 30 by the flow rate of the main fuel supplied into the main fuel injector 10 through the opening 12 is mixed with the main fuel,
    초저공해 연소장치.Ultra low pollution combustion device.
  4. 제 2 항에 있어서,The method of claim 2,
    상기 산화제 공급부(30)의 일측이 상기 연소로(1) 내측으로 연장됨으로써 상기 곡면부(22)와 상기 주연료 분사체(10) 사이에 형성되는 재순환 유도부(33)를 더 포함하고,One side of the oxidant supply unit 30 further includes a recycle induction unit 33 formed between the curved portion 22 and the main fuel injector 10 by extending into the combustion furnace 1,
    상기 재순환 유도부(33)에 의해 상기 연소가스의 유속이 증가되어 상기 곡면부의 내측면(24)을 따라 상기 1차 화염영역으로 유동하여 재연소되는,Flow rate of the combustion gas is increased by the recirculation induction part 33 flows to the primary flame region along the inner surface 24 of the curved part to be reburned,
    초저공해 연소장치.Ultra low pollution combustion device.
PCT/KR2017/005758 2016-06-03 2017-06-02 Ultra-low emission combustion apparatus WO2017209552A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160069482A KR101822997B1 (en) 2016-06-03 2016-06-03 Low NOx burner
KR10-2016-0069482 2016-06-03

Publications (1)

Publication Number Publication Date
WO2017209552A1 true WO2017209552A1 (en) 2017-12-07

Family

ID=60478791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005758 WO2017209552A1 (en) 2016-06-03 2017-06-02 Ultra-low emission combustion apparatus

Country Status (2)

Country Link
KR (1) KR101822997B1 (en)
WO (1) WO2017209552A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080058848A (en) * 2006-12-22 2008-06-26 재단법인 포항산업과학연구원 Oxygen enriched combustion burner using forced internal recirculation
KR101110144B1 (en) * 2011-06-28 2012-02-20 한국기계연구원 Premixed type gas-turbine combustor having double mixing structure for reducing nox
KR101203189B1 (en) * 2012-03-29 2012-11-21 한국생산기술연구원 Burner for generating reduced nitrogen oxide through forced internal recirculation of flue gas
KR101254928B1 (en) * 2013-02-15 2013-04-19 주식회사 수국 Low nitrogen oxide burner
WO2015036914A1 (en) * 2013-09-11 2015-03-19 Atzeni Christian Combustion method and industrial burner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080058848A (en) * 2006-12-22 2008-06-26 재단법인 포항산업과학연구원 Oxygen enriched combustion burner using forced internal recirculation
KR101110144B1 (en) * 2011-06-28 2012-02-20 한국기계연구원 Premixed type gas-turbine combustor having double mixing structure for reducing nox
KR101203189B1 (en) * 2012-03-29 2012-11-21 한국생산기술연구원 Burner for generating reduced nitrogen oxide through forced internal recirculation of flue gas
KR101254928B1 (en) * 2013-02-15 2013-04-19 주식회사 수국 Low nitrogen oxide burner
WO2015036914A1 (en) * 2013-09-11 2015-03-19 Atzeni Christian Combustion method and industrial burner

Also Published As

Publication number Publication date
KR101822997B1 (en) 2018-02-01
KR20170137988A (en) 2017-12-14

Similar Documents

Publication Publication Date Title
KR101992413B1 (en) Low NOx Burner
JP6466142B2 (en) Ultra-low nitrogen oxide combustion apparatus by internal recirculation of combustion gas and operation method thereof
CN105509071B (en) A kind of industrial combustion furnace and processing method for handling waste gas and waste liquid
KR101203189B1 (en) Burner for generating reduced nitrogen oxide through forced internal recirculation of flue gas
US20130244187A1 (en) HIGH EFFICIENCY LOW NOx EMISSION BURNER APPARATUS
WO2017209503A1 (en) Ultra-low nitrogen oxide combustion apparatus
WO2016195195A1 (en) Burner system
WO2020050598A1 (en) Thermal power station exhaust gas processing device
US4157890A (en) NOx abatement in gas burning where air is premixed with gaseous fuels prior to burning
WO2011010867A2 (en) Lean-rich burner
WO2023121107A1 (en) Internal exhaust gas recirculation pre-mixed industrial gas combustor and operating method therefor
WO2023121108A1 (en) Industrial gas combustor using fuel concentration gradient and operation method thereof
KR101730545B1 (en) Low NOx burner
WO2017209552A1 (en) Ultra-low emission combustion apparatus
KR102115576B1 (en) Low NOx Burner
WO2020122336A1 (en) Combustion device capable of minimizing hazardous materials
KR102317704B1 (en) Low NOx Burner comprising recirculation ports
CN211176841U (en) Tail gas direct-fired furnace with multiple air inlets
JP2662175B2 (en) Cyclone combustion method and apparatus
CN210179628U (en) Ultralow-nitrogen combustion system for low-calorific-value gas
CN113007707A (en) Internal flue gas recirculation low NOx burner
RU2797080C1 (en) Method for reducing nitrogen oxide emissions and a dual-flow burner for its implementation
CN111336516A (en) Two-stage backflow low-nitrogen combustor and heating furnace heat supply system
CN205332210U (en) Module boiler low NOx burner
RU222802U1 (en) Burner with two-channel gas manifold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17807045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17807045

Country of ref document: EP

Kind code of ref document: A1