WO2017209489A1 - Method for producing magnetic mesoporous silica by using sodium borohydride - Google Patents

Method for producing magnetic mesoporous silica by using sodium borohydride Download PDF

Info

Publication number
WO2017209489A1
WO2017209489A1 PCT/KR2017/005639 KR2017005639W WO2017209489A1 WO 2017209489 A1 WO2017209489 A1 WO 2017209489A1 KR 2017005639 W KR2017005639 W KR 2017005639W WO 2017209489 A1 WO2017209489 A1 WO 2017209489A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesoporous silica
silica
magnetic
magnetic mesoporous
transition metal
Prior art date
Application number
PCT/KR2017/005639
Other languages
French (fr)
Korean (ko)
Inventor
장정호
이혜선
장서준
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Publication of WO2017209489A1 publication Critical patent/WO2017209489A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel

Definitions

  • the present invention relates to a method for producing magnetic mesoporous silica. More specifically, the present invention relates to magnetic mesoporous silica having a uniform pore distribution and excellent magnetism, including reacting mesoporous silica carrying transition metal ions with a reducing agent at a specific temperature.
  • Magnetic nanoparticles are ferromagnetic particles and generally have a size of about 10 nm. Magnetic nanoparticles are widely used in the separation process of biological or chemical substances using magnetic, and have been typically used to diagnose diseases with NMR (nuclear magnetic resonance) increasing reagents and to treat diseases with drug carriers. In addition, magnetic nanocrystals with supermagnetism may be used for magnetothermal treatment of diseases such as tumors. Recently, the functional material is immobilized and used in separation processes such as DNA and proteome. Magnetic nanoparticles have the advantage that functional reuse is possible by immobilizing materials such as enzymes, biological catalysts, as well as increasing efficiency according to time savings. However, there are problems in efficiency reduction due to problems such as aggregation of magnetic nanoparticles and low surface reactivity, and unstable bonding between magnetic nanoparticle surfaces and surface modifying materials in processing a large amount or reducing the time of separation process.
  • magnetic nanoparticles such as metal or iron oxide have been implanted into mesoporous silica.
  • the magnetic nanoparticles are present in the pores to remove pores, thereby reducing the surface area and susceptibility. Let's go.
  • some experiments have suggested a method of mixing magnetic nanoparticles in the wall portion of mesoporous silica, but the magnetic nanoparticles that can be applied thereto are limited.
  • Another method is hard-templating, in which magnetic nanoparticles are deposited after template deposition. And nano-casting method is applied in many ways to make metal oxide which is difficult to make by the conventional method. However, this treatment has a lower magnetization than when using pure metal.
  • the inventors of the present invention while searching for a method for supplementing the problems of the magnetic nanoparticles, when reacting with mesoporous silica and transition metal ions that can control the size of the pores and easy to functionalize the surface and then reduced to sodium borohydride
  • the present invention has been completed by confirming that magnetic mesoporous silica having a uniform pore distribution can be efficiently produced in a short time.
  • the present inventors have confirmed that the pore distribution of the magnetic mesoporous silica can be controlled by controlling the temperature in the reduction step using sodium borohydride, and completed the present invention.
  • An object of the present invention is to provide a magnetic mesoporous silica.
  • mesoporous silica refers to a porous material having a structure in which mesopores of uniform size are regularly arranged and having uniform pores as one of mesoporous molecular sieves, The mesoporous material has pores of 2 nm to 50 nm.
  • reducing agent refers to a substance having a high property of reducing other substances as it is oxidized.
  • the reducing agent is lithium aluminum hydride (LiAlH 4 ), hydrazine (N 2 H 4 H 2 O), sodium borohydride (NaBH 4 ), sodium chloride (NaCl ), it may be selected from sodium hydroxide (NaOH), aqueous ammonia (NH 4 OH), potassium bromide (KBr), and combinations thereof.
  • the reducing agent may be sodium borohydride (NaBH 4 ).
  • the method may further comprise (c) vacuum drying at room temperature after washing the mesoporous silica on which the transition metal ion is supported with alcohol.
  • the transition metal ion may be selected from the group consisting of Co, Fe, Ni, Mn, and combinations thereof.
  • the mesoporous silica may be prepared by hydrothermal synthesis.
  • the hydrothermal synthesis method is:
  • the surfactant is a carboxylate, sulfonate, sulfate ester salt, phosphate ester salt, phosphonate salt, amine salt, quaternary ammonium salt, phosphonium salt, sulfonium salt, fatty acid monoglycerine ester, fatty acid polyglycol ester, fatty acid sorbitan It may be any one or more selected from the group consisting of esters, fatty acid sucrose esters, fatty acid alkanolamides, polyethylene glycol condensed nonionic surfactants, polyethylene glycol-polypropylene glycol copolymers, but is not limited thereto.
  • the silica precursor may be tetraethylorthosilicate (TEOS), tetramethoxysilane (TMOS), or silicon tetrachloride, but is not limited thereto.
  • the magnetic mesoporous silica prepared by the method for producing magnetic mesoporous silica according to the present invention.
  • the magnetic mesoporous silica may have a uniform pore distribution and excellent magnetic properties.
  • the method for producing magnetic mesoporous silica according to the present invention is efficient in a short time when the mesoporous silica and transition metal ions, which can control the pore size and are easy to functionalize the surface, are reacted and reduced with sodium borohydride.
  • Magnetic mesoporous silica having a uniform pore distribution can be produced.
  • the pore distribution of the magnetic mesoporous silica can be easily adjusted by controlling the temperature in the reduction step using sodium borohydride.
  • Figure 1 shows the results of the BET analysis of mesoporous before reduction according to Experimental Example 1.
  • Figure 2 shows the results of the BET analysis of the reduced magnetic mesoporous silica at room temperature according to Experimental Example 1.
  • Figure 3 shows the results of the BET analysis of the magnetic mesoporous silica reduced at 50 °C in Experimental Example 1.
  • Figure 4 shows the results of the BET analysis of the reduced magnetic mesoporous silica at 75 °C in Experimental Example 1.
  • FIG. 5 is a photograph showing the magnetism of the magnetic mesoporous silica prepared according to the embodiment of the present invention.
  • nanoporous silica was first prepared.
  • the nanoporous silica was prepared by mixing Pluronic P123, 2M HCl and secondary distilled water in a weight ratio of 2:60:15.
  • the mixed solution became a transparent solution with stirring.
  • 8.5 g of tetraethyl ortho silica (TEOS) was added and stirred for 8 hours.
  • TEOS tetraethyl ortho silica
  • the solution was administered to a steel press and placed in an oven at 120 ° C. for 8 hours.
  • the solution was cooled to room temperature, washed with water, filtered and dried at room temperature to obtain a powder.
  • the dried powder was calcined at 550 ° C. for 6 hours to produce homogeneous mesoporous silica.
  • FeCl 2 ⁇ H 2 O (Iron (II) chloride tetrahydrate) was dissolved in distilled water to prepare 250 mL of an aqueous solution of iron precursor of 3 M, and 5 g of homogeneous mesoporous silica on the solid powder prepared above was mixed with the iron precursor solution. After stirring for an hour, the iron precursor was supported on mesoporous silica. Then, the mesoporous silica loaded with iron precursor was filtered and stored at -70 ° C for 1 hour and then vacuum dried at room temperature for 12 hours. 1 g of the dried sample and 30 mL of secondary distilled water are placed in a three neck flask, and the temperature is maintained at 50 ° C.
  • the method for producing magnetic mesoporous silica according to the present invention is efficient in a short time when the mesoporous silica and transition metal ions, which can control the pore size and are easy to functionalize the surface, are reacted and reduced with sodium borohydride. Magnetic mesoporous silica having a uniform pore distribution can be produced.

Abstract

The present invention relates to a method for producing magnetic mesoporous silica. More specifically, the present invention relates to magnetic mesoporous silica having uniform pore distribution and excellent magnetism, the silica obtained by reacting mesoporous silica, having transition metal ions deposited therein, with a reducing agent at a specific temperature.

Description

소듐 보로하이드라이드를 이용한 자성 메조포러스 실리카 제조 방법Method for producing magnetic mesoporous silica using sodium borohydride
본 발명은 자성 메조포러스 실리카의 제조 방법에 관한 것이다. 보다 구체적으로, 본 발명은 전이금속 이온이 담지된 메조포러스 실리카를 특정의 온도에서 환원제와 반응시키는 것을 포함하는 균일한 기공 분포 및 우수한 자성을 갖는 자성 메조포러스 실리카에 관한 것이다. The present invention relates to a method for producing magnetic mesoporous silica. More specifically, the present invention relates to magnetic mesoporous silica having a uniform pore distribution and excellent magnetism, including reacting mesoporous silica carrying transition metal ions with a reducing agent at a specific temperature.
자성나노입자(Magnetic nanoparticles)란 강자성을 띠는 입자로서 일반적으로 10nm 내외의 크기를 가지는 입자들을 말한다. 자성나노입자는 자성을 이용한 생물학적 또는 화학적 물질의 분리 공정에 많이 사용되며, 대표적으로 NMR(nuclear magnetic resonance) 증가 시약으로 질병을 진단하고 또한 약물 운반체로 질병을 치료하는데 사용되어 왔다. 또한, 초자성을 가지고 있는 자성 나노 결정체는 종양 등 질병의 자기 열(magneto thermal) 치료에 사용되기도 한다. 최근에는 기능성 물질을 고정화시켜 DNA와 Proteome 등과 같은 분리공정에도 이용되고 있다. 자성나노입자는 시간 절약에 따른 효율 증대뿐만 아니라 생물학적 촉매인 효소 등과 같은 물질을 고정화시켜 기능적 재사용이 가능하다는 장점이 있다. 그러나 많은 양을 처리하거나 분리 공정의 시간을 줄이는 것에 있어 자성 나노입자의 응집 현상과 낮은 표면 반응성, 및 자성나노입자 표면과 표면 개질 물질 간의 불안정한 결합력 등의 문제로 인한 효율저하의 문제점이 존재한다.Magnetic nanoparticles are ferromagnetic particles and generally have a size of about 10 nm. Magnetic nanoparticles are widely used in the separation process of biological or chemical substances using magnetic, and have been typically used to diagnose diseases with NMR (nuclear magnetic resonance) increasing reagents and to treat diseases with drug carriers. In addition, magnetic nanocrystals with supermagnetism may be used for magnetothermal treatment of diseases such as tumors. Recently, the functional material is immobilized and used in separation processes such as DNA and proteome. Magnetic nanoparticles have the advantage that functional reuse is possible by immobilizing materials such as enzymes, biological catalysts, as well as increasing efficiency according to time savings. However, there are problems in efficiency reduction due to problems such as aggregation of magnetic nanoparticles and low surface reactivity, and unstable bonding between magnetic nanoparticle surfaces and surface modifying materials in processing a large amount or reducing the time of separation process.
한편, 기존 메조 다공성 실리카에 자성을 부여하기 위한 방법으로는 금속이나 산화철 같은 자성나노입자를 이용하여 메조 다공성 실리카에 착상시켜 왔었다. 그러나 이 방법의 경우 자성을 갖는 자성나노입자들이 메조 다공성 실리카의 잘 정렬된 기공에 균일하게 분포되는 것이 어렵고, 결과적으로 자성나노입자들이 기공 안에 존재해 기공을 없애는 역할을 불러와 표면적과 자화율을 감소시키게 된다. 이러한 문제점을 해결하고자 몇몇의 실험에서 메조 다공성 실리카의 벽 부분에 자성나노입자를 혼합시키는 방법이 나왔지만 여기에 응용할 수 있는 자성나노입자는 한정적이다. 또 다른 방법으로는 hard-templating 방법은 자성나노입자를 template 증착시킨 다음 제거하는 방법이 있다. 그리고 Nano-casting 방법은 종래의 방법으로 만들기 어려운 금속 산화물을 만들기 위해 여러모로 적용된다. 그러나 이런 처리방법은 순수한 금속을 사용했을 때보다 낮은 자화력을 갖게 된다.Meanwhile, as a method for imparting magnetism to existing mesoporous silica, magnetic nanoparticles such as metal or iron oxide have been implanted into mesoporous silica. In this method, however, it is difficult for the magnetic nanoparticles having magnetic properties to be uniformly distributed in the well-aligned pores of the mesoporous silica. As a result, the magnetic nanoparticles are present in the pores to remove pores, thereby reducing the surface area and susceptibility. Let's go. In order to solve this problem, some experiments have suggested a method of mixing magnetic nanoparticles in the wall portion of mesoporous silica, but the magnetic nanoparticles that can be applied thereto are limited. Another method is hard-templating, in which magnetic nanoparticles are deposited after template deposition. And nano-casting method is applied in many ways to make metal oxide which is difficult to make by the conventional method. However, this treatment has a lower magnetization than when using pure metal.
최근에는 이와 같은 단점을 보완하기 위하여 고온으로 수소화 환원시키는 방법이 존재하는데 고온 수소화 방법의 제조 방법의 경우 수소 분위기에서 300℃ 이상에 높은 온도를 통하여 환원시켜 자성을 부여하는 간단한 방법과 고온 수소화를 통한 금속물질을 가지고 기공의 붕괴를 일으키지 않고 높은 자화력을 가진 메조 다공성 실리카를 만들 수 있는 장점이 있다. 하지만 이 방법의 경우 긴 시간동안 수소 분위기를 유지시키면서 높은 온도가 필요하여 수소의 양을 조절하지 못하고 과다 사용하게 되면서 이에 따른 비용과 효율적인 측면이 떨어지고 또한 높은 온도 상태에서 수소 분위기를 유지해야 돼서 안정성에 문제가 많이 존재하며 제조과정의 위험도가 존재한다.  Recently, in order to compensate for such disadvantages, there is a method of reducing hydrogen to a high temperature. In the case of the manufacturing method of the high temperature hydrogenation method, a simple method of giving magnetism by reducing the temperature through a high temperature above 300 ° C. in a hydrogen atmosphere and through high temperature hydrogenation It has the advantage of being able to make mesoporous silica with a high magnetizing power without causing the collapse of pores with a metal material. However, this method requires a high temperature while maintaining a hydrogen atmosphere for a long time, and over-use without controlling the amount of hydrogen decreases the cost and efficiency accordingly, and also needs to maintain a hydrogen atmosphere at a high temperature. There are many problems and risks in the manufacturing process.
선행문헌Prior literature
1. 국제특허공개 WO2014-1423781. International Patent Publication WO2014-142378
2. 대한민국 특허출원 KR2011-0035414 2. Korean patent application KR2011-0035414
3. 대한민국 특허출원 KR2012-00636353. Korean patent application KR2012-0063635
본 발명자들은 자성나노입자의 문제점을 보완하기 위한 방법을 모색하던 중, 기공의 크기를 조절할 수 있고 표면을 기능화하기 용이한 메조포러스 실리카와 전이금속 이온을 반응시킨 후 소듐 보로하이드라이드로 환원시키는 경우, 짧은 시간에 효율적으로 기공 분포가 균일한 자성 메조포러스 실리카가 제조될 수 있음을 확인하고 본 발명을 완성하였다. 또한, 본 발명자들은 소듐 보로하이드라이드를 이용한 환원 단계에서 온도를 조절하는 것에 의해 자성 메조포러스 실리카의 기공 분포를 조절할 수 있음을 확인하고 본 발명을 완성하였다. The inventors of the present invention, while searching for a method for supplementing the problems of the magnetic nanoparticles, when reacting with mesoporous silica and transition metal ions that can control the size of the pores and easy to functionalize the surface and then reduced to sodium borohydride The present invention has been completed by confirming that magnetic mesoporous silica having a uniform pore distribution can be efficiently produced in a short time. In addition, the present inventors have confirmed that the pore distribution of the magnetic mesoporous silica can be controlled by controlling the temperature in the reduction step using sodium borohydride, and completed the present invention.
본 발명은 자성 메조포러스 실리카를 제공하는 것을 목적으로 한다. An object of the present invention is to provide a magnetic mesoporous silica.
본 명세서에서 사용된 용어 "메조포러스 실리카"는 메조포러스 분자체(mesoporous molecular sieve)의 하나로서 균일한 크기의 메조세공이 규칙적으로 배열되어 구조를 가지며, 균일한 기공을 갖는 다공성 물질을 의미하며, 메조포러스 물질은 2nm 내지 50nm의 기공을 가진다.As used herein, the term "mesoporous silica" refers to a porous material having a structure in which mesopores of uniform size are regularly arranged and having uniform pores as one of mesoporous molecular sieves, The mesoporous material has pores of 2 nm to 50 nm.
본 명세서에서 사용된 용어 "환원제"는 자신은 산화되면서 다른 물질을 환원시키는 성질이 큰 물질을 의미한다. As used herein, the term "reducing agent" refers to a substance having a high property of reducing other substances as it is oxidized.
일 구현예에 따르면, According to one embodiment,
(a) 전이금속 이온을 메조포러스 실리카에 담지시키는 단계; 및 (a) supporting transition metal ions on mesoporous silica; And
(b) 상기 전이금속 이온이 담지된 메조포러스 실리카를 40℃ 내지 65℃의 온도에서 환원제와 반응시키는 단계를 포함하는 자성 메조포러스 실리카의 제조 방법이 개시된다. (b) A method of producing magnetic mesoporous silica, comprising reacting the mesoporous silica carrying the transition metal ion with a reducing agent at a temperature of 40 ℃ to 65 ℃.
본 발명에 따른 자성 메조포러스 실리카의 제조방법에 있어서, 상기 환원제는 리튬 알루미늄하이드라이드 (LiAlH4), 하이드라진(N2H4H2O), 소듐 보로하이드라이드(NaBH4), 소듐 클로라이드(NaCl), 소듐 하이드록사이드(NaOH), 암모니아수(NH4OH), 브롬화 칼륨(KBr), 및 이들의 조합으로 이루어진 군으로부터 선택될 수 있다. 바람직하게는, 상기 환원제는 소듐 보로하이드라이드(NaBH4)일 수 있다. In the method for producing magnetic mesoporous silica according to the present invention, the reducing agent is lithium aluminum hydride (LiAlH 4 ), hydrazine (N 2 H 4 H 2 O), sodium borohydride (NaBH 4 ), sodium chloride (NaCl ), it may be selected from sodium hydroxide (NaOH), aqueous ammonia (NH 4 OH), potassium bromide (KBr), and combinations thereof. Preferably, the reducing agent may be sodium borohydride (NaBH 4 ).
본 발명에 따른 자성 메조포러스 실리카의 제조방법에 있어서, 상기 제조방법은 (c) 상기 전이금속 이온이 담지된 메조포러스 실리카를 알코올로 세척 후 상온에서 진공 건조시키는 단계를 더욱 포함할 수 있다. In the method for producing magnetic mesoporous silica according to the present invention, the method may further comprise (c) vacuum drying at room temperature after washing the mesoporous silica on which the transition metal ion is supported with alcohol.
본 발명에 따른 자성 메조포러스 실리카의 제조방법에 있어서, 상기 전이금속 이온은 Co, Fe, Ni, Mn, 및 이들의 조합으로 이루어진 군으로부터 선택될 수 있다. In the method for producing magnetic mesoporous silica according to the present invention, the transition metal ion may be selected from the group consisting of Co, Fe, Ni, Mn, and combinations thereof.
본 발명에 따른 자성 메조포러스 실리카의 제조방법에 있어서, 상기 메조포러스 실리카는 수열합성법에 의해 제조될 수 있다. 상기 수열합성법은:In the method for producing magnetic mesoporous silica according to the present invention, the mesoporous silica may be prepared by hydrothermal synthesis. The hydrothermal synthesis method is:
a) 계면활성제를 물과 산을 포함하는 용매와 혼합하는 단계; a) mixing the surfactant with a solvent comprising water and an acid;
b) 상기 혼합용액에 실리카 전구체를 첨가하는 단계; 및b) adding a silica precursor to the mixed solution; And
c) 상기 실리카 전구체가 혼합된 용액을 에이징, 건조 및 하소시키는 단계를 포함할 수 있다. 상기 계면활성제는 카르복실산염, 술폰산염, 황산에스테르염, 인산에스테르염, 포스폰산염, 아민염, 4차 암모늄염, 포스포늄염, 술포늄염, 지방산 모노글리세린 에스테르, 지방산 폴리글리콜에스테르, 지방산 소르비탄에스테르, 지방산 자당에스테르, 지방산 알칸올아미드, 폴리에틸렌글리콜 축합형 비이온 계면 활성제, 폴리에틸렌글리콜-폴리프로필렌글리콜 공중합체로 이루어진 군에서 선택된 어느 하나 이상일 수 있으나, 이에 한정되는 것은 아니다. 상기 실리카 전구체는 테트라에틸 오르쏘 실리케이트(tetraethylorthosilicate (TEOS)), 테트라 메톡시 실란(tetramethoxysilane (TMOS)) 또는 실리콘 테트라클로라이드(sililcon tetrachloride)일 수 있으나, 이에 한정되는 것은 아니다. c) aging, drying and calcining the solution mixed with the silica precursor. The surfactant is a carboxylate, sulfonate, sulfate ester salt, phosphate ester salt, phosphonate salt, amine salt, quaternary ammonium salt, phosphonium salt, sulfonium salt, fatty acid monoglycerine ester, fatty acid polyglycol ester, fatty acid sorbitan It may be any one or more selected from the group consisting of esters, fatty acid sucrose esters, fatty acid alkanolamides, polyethylene glycol condensed nonionic surfactants, polyethylene glycol-polypropylene glycol copolymers, but is not limited thereto. The silica precursor may be tetraethylorthosilicate (TEOS), tetramethoxysilane (TMOS), or silicon tetrachloride, but is not limited thereto.
다른 구현예에 따르면, According to another embodiment,
상기 본 발명에 따른 자성 메조포러스 실리카의 제조 방법에 의해 제조된 자성 메조포러스 실리카가 개시된다. 상기 자성 메조포러스 실리카는 균일한 기공 분포 및 뛰어난 자성을 가질 수 있다. Disclosed is a magnetic mesoporous silica prepared by the method for producing magnetic mesoporous silica according to the present invention. The magnetic mesoporous silica may have a uniform pore distribution and excellent magnetic properties.
본 발명에 따른 자성 메조포러스 실리카의 제조 방법은 기공의 크기를 조절할 수 있고 표면을 기능화하기 용이한 메조포러스 실리카와 전이금속 이온을 반응시킨 후 소듐 보로하이드라이드로 환원시키는 경우, 짧은 시간에 효율적으로 기공 분포가 균일한 자성 메조포러스 실리카가 제조가 가능하다. 또한, 소듐 보로하이드라이드를 이용한 환원 단계에서 온도를 조절하는 것에 의해 자성 메조포러스 실리카의 기공 분포를 용이하게 조절 가능하다.The method for producing magnetic mesoporous silica according to the present invention is efficient in a short time when the mesoporous silica and transition metal ions, which can control the pore size and are easy to functionalize the surface, are reacted and reduced with sodium borohydride. Magnetic mesoporous silica having a uniform pore distribution can be produced. In addition, the pore distribution of the magnetic mesoporous silica can be easily adjusted by controlling the temperature in the reduction step using sodium borohydride.
도 1은 실험예 1에 따른 환원전 메조포러스의 BET 분석 결과를 나타낸다.Figure 1 shows the results of the BET analysis of mesoporous before reduction according to Experimental Example 1.
도 2는 실험예 1에 따른 상온에서 환원된 자성 메조포러스 실리카의 BET 분석 결과를 나타낸다.Figure 2 shows the results of the BET analysis of the reduced magnetic mesoporous silica at room temperature according to Experimental Example 1.
도 3은 실험예 1에 따른 50℃에서 환원된 자성 메조포러스 실리카의 BET 분석 결과를 나타낸다.Figure 3 shows the results of the BET analysis of the magnetic mesoporous silica reduced at 50 ℃ in Experimental Example 1.
도 4는 실험예 1에 따른 75℃에서 환원된 자성 메조포러스 실리카의 BET 분석 결과를 나타낸다.Figure 4 shows the results of the BET analysis of the reduced magnetic mesoporous silica at 75 ℃ in Experimental Example 1.
도 5는 본 발명의 실시예에 따라 제조된 자성 메조포러스 실리카의 자성을 나타내는 사진이다.5 is a photograph showing the magnetism of the magnetic mesoporous silica prepared according to the embodiment of the present invention.
도 6는 실험예 2에 따른 XRD 분석 결과를 나타낸다.6 shows the results of XRD analysis according to Experimental Example 2.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 이들 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples.
<실시예> <Example>
실시예 1. 소듐 보로하이드라이드를 이용한 자성 메조포러스 실리카 제조 Example 1. Preparation of magnetic mesoporous silica using sodium borohydride
메조포러스 실리카를 합성하기 위하여, 먼저 나노 다공성 실리카(MS)를 준비하였다. 상기 나노 다공성 실리카는 Pluronic P123, 2M HCl 및 2차 증류수를 2:60:15의 중량비로 혼합하여 제조하였다. 상기 혼합용액은 교반되면서 점점 투명한 용액으로 되는데, 항온수조를 이용하여 40℃에서 24시간 교반한 후 8.5 g의 테트라에틸 오쏘 실리케이트 (tecraethyl ortho silica, TEOS)를 첨가하고 8시간 교반하였다. 교반이 끝난 용액을 스틸 가압기에 투여한 후 120℃의 오븐에 넣고 8시간 동안 에이징(aging)시켰다. 에이징이 끝나면 용액을 상온으로 식힌 후 물로 세척하고, 여과하여 상온에서 건조시켜 분말을 획득하였다. 상기 건조된 분말을 550℃에서 6시간 동안 하소시켜 균일 메조포러스 실리카를 제조하였다.In order to synthesize mesoporous silica, nanoporous silica (MS) was first prepared. The nanoporous silica was prepared by mixing Pluronic P123, 2M HCl and secondary distilled water in a weight ratio of 2:60:15. The mixed solution became a transparent solution with stirring. After stirring for 24 hours at 40 ℃ using a constant temperature bath, 8.5 g of tetraethyl ortho silica (TEOS) was added and stirred for 8 hours. After stirring, the solution was administered to a steel press and placed in an oven at 120 ° C. for 8 hours. After aging, the solution was cooled to room temperature, washed with water, filtered and dried at room temperature to obtain a powder. The dried powder was calcined at 550 ° C. for 6 hours to produce homogeneous mesoporous silica.
FeCl2 ·H2O(Iron(II) chloride tetrahydrate)를 증류수에 용해하여 3M의 철 전구체 수용액 250mL를 제조하고, 상기 철 전구체 수용액에 상기에서 제조한 고체 분말 상의 균일 메조포러스 실리카 5g을 혼합하여 2시간 동안 교반한 후, 철 전구체를 메조포러스 실리카에 담지 시켰다. 그 다음, 철 전구체가 담지 된 메조포러스 실리카를 여과하여 -70℃에서 1시간 동안 보관 후 상온에서 12시간 동안 진공 건조시켰다. 건조 단계를 거친 시료 1g과 2차 증류수 30mL를 3넥 플라스크에 넣고 온도를 50℃ 유지시켜 주며, 1M의 수소화붕소나트(NaBH4)를 100mL를 만들어 드롭핑 펀넬를 이용하여 1초에 한 방울씩 떨어트렸다. 이때, 온도에 따른 기공 상태 및 철 전구체의 담지 상태를 확인하기 위하여, 상온, 50℃ 및 75℃에서 각각 상기 소듐 보로하이드라이드에 의한 환원 반응을 수행하였다. 이 상태를 6시간 유지해주고 에탄올로 여과를 통해 세척 후 12시간 상온에서 진공 건조시켰다. FeCl 2 · H 2 O (Iron (II) chloride tetrahydrate) was dissolved in distilled water to prepare 250 mL of an aqueous solution of iron precursor of 3 M, and 5 g of homogeneous mesoporous silica on the solid powder prepared above was mixed with the iron precursor solution. After stirring for an hour, the iron precursor was supported on mesoporous silica. Then, the mesoporous silica loaded with iron precursor was filtered and stored at -70 ° C for 1 hour and then vacuum dried at room temperature for 12 hours. 1 g of the dried sample and 30 mL of secondary distilled water are placed in a three neck flask, and the temperature is maintained at 50 ° C. 100 mL of 1M boron hydride (NaBH 4 ) is made and used as a dropping funnel every second. Dropped. At this time, in order to confirm the pore state and the supported state of the iron precursor according to the temperature, the reduction reaction by the sodium borohydride was performed at room temperature, 50 ℃ and 75 ℃, respectively. The state was maintained for 6 hours, washed with ethanol, and then vacuum dried at room temperature for 12 hours.
<실험예>Experimental Example
실험예 1. BET(Bruner-Emmet-Teller) 분석 및 자성확인Experimental Example 1.BET (Bruner-Emmet-Teller) analysis and magnetic confirmation
상기 실시예 1에서 제조된 자성 메조포러스 실리카에 대하여 BET 분석을 수행하였다. 상기 분석에 사용된 장치는 Quantachrome Nova e-4000 Bruner-Emmet-Teller(Surface area range: 0.01~2,000 m2/g; Adsorption and desorption isotherm; Pore diameter range: 3.5~500nm)이었다. 그 결과를 도 1-4에 나타내었다. 또한, 상기 자성 메조포러스 실리카에 자석을 가까이하여 자성을 확인한 후, 그 결과를 도 5에 나타내었다. BET analysis was performed on the magnetic mesoporous silica prepared in Example 1 above. The device used for the analysis was Quantachrome Nova e-4000 Bruner-Emmet-Teller (Surface area range: 0.01-2,000 m 2 / g; Adsorption and desorption isotherm; Pore diameter range: 3.5-500 nm). The results are shown in FIGS. 1-4. In addition, after confirming the magnetism close to the magnet to the mesoporous silica, the results are shown in FIG.
도 1-5로부터 알 수 있듯이, 환원 전 메조포러스 실리카의 경우 흡착선과 탈착선이 다른 형태를 띠는 히스테레시스 현상이 있는 것을 보아 메조포러스 상태임이 확인되었으며, 상온에서 환원된 경우도 환원 전과 마찬가지로 메조포러스 기공의 형태를 나타냈으나, 상온에서 환원된 경우에는 자성이 존재하지 않았다. 50℃에서 환원된 경우 기공의 형태를 나타내는 히스테레시스의 결과는 달라졌지만, 흡착선과 탈착선의 차이가 있는 것으로 보아 기공이 존재한다는 것을 알 수 있으며, 또한 자석이 붙는 것을 볼 때 자성체가 잘 담지되었음이 확인되었다. 75℃에서 환원된 경우 기공의 상태를 봤을 때 균일한 기공의 형태를 가지고 있는 것이 거의 없었으며, 자석과 반응하는 결과를 보았을 때도 기공이 없는 Fe 상태로 존재하고 있음이 확인되었다. As can be seen from Figure 1-5, it was confirmed that the mesoporous silica before the reduction has a hysteresis phenomenon in which the adsorption line and the desorption line have a different form, it was confirmed that the mesoporous state, even when reduced at room temperature as before The mesoporous pores were shown in the form, but when they were reduced at room temperature, no magnetism was present. The result of hysteresis, which shows the form of pores when reduced at 50 ℃, was different, but the difference between the adsorption line and the desorption line indicates that the pores exist, and the magnetic body was well supported when the magnets were attached. This was confirmed. When reduced at 75 ° C., the pores had almost no uniform pore morphology, and even when the result of reacting with the magnet, it was confirmed that the pores were present in the form of Fe without pores.
실험예 2. XRD 분석Experimental Example 2 XRD Analysis
실시예 1에서 제조된 자성 메조포러스 실리카에 대하여 Rigaku 2311-B(상온~1400 ℃진공 중(10-3 Torr); He gas 중 발열체: Pt wire; 열전대: R-type)를 사용하여 XRD분석을 수행하고, 그 결과를 도 6에 나타내었다. XRD analysis was performed on the magnetic mesoporous silica prepared in Example 1 using Rigaku 2311-B (at room temperature to 1400 ° C. in vacuum (10-3 Torr); heating element in He gas: Pt wire; thermocouple: R-type). The results are shown in FIG. 6.
도 6으로부터 알 수 있듯이, 환원 전에는 메조포러스의 전형적인 2θ=22°피크가 나타나는 것을 볼 수 있지만 철(Fe)의 피크인 2θ=11°가 거의 확인되지 않았으며, 상온에서 환원된 경우에도 마찬가지로 철 피크가 관찰되지 않았다. 한편, 50℃에서 환원된 경우 철(Fe)의 피크인 2θ=11°가 나타났고 또한 실리카의 피크인 2θ=22°도 관찰되었다. 75℃에서 환원된 경우 실리카의 피크인 2θ=22°가 나타나지 않았다. As can be seen from Figure 6, before the reduction can be seen that the typical 2θ = 22 ° peak of mesoporous, but the peak of iron (Fe) 2θ = 11 ° was hardly confirmed, even when reduced at room temperature No peak was observed. On the other hand, when reduced at 50 ° C., 2θ = 11 °, which is a peak of iron (Fe), appeared, and 2θ = 22 °, which is a peak of silica, was also observed. When reduced at 75 ° C., the peak of 2θ = 22 ° of silica did not appear.
특정한 구조적 내지 기능적 설명들은 단지 본 발명의 실시예들을 설명하기 위한 목적으로 예시된 것으로, 본 발명의 실시예들은 다양한 형태로 실시될 수 있으며 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Specific structural to functional descriptions are merely illustrated for the purpose of describing the embodiments of the present invention, and the embodiments of the present invention may be embodied in various forms and include all modifications and equivalents included in the spirit and scope of the present invention. It is to be understood to include to substitutes.
본 발명에 따른 자성 메조포러스 실리카의 제조 방법은 기공의 크기를 조절할 수 있고 표면을 기능화하기 용이한 메조포러스 실리카와 전이금속 이온을 반응시킨 후 소듐 보로하이드라이드로 환원시키는 경우, 짧은 시간에 효율적으로 기공 분포가 균일한 자성 메조포러스 실리카가 제조가 가능하다.The method for producing magnetic mesoporous silica according to the present invention is efficient in a short time when the mesoporous silica and transition metal ions, which can control the pore size and are easy to functionalize the surface, are reacted and reduced with sodium borohydride. Magnetic mesoporous silica having a uniform pore distribution can be produced.

Claims (6)

  1. (a) 전이금속 이온을 메조포러스 실리카에 담지시키는 단계; 및(a) supporting transition metal ions on mesoporous silica; And
    (b) 상기 전이금속 이온이 담지된 메조포러스 실리카를 40℃ 내지 65℃의 온도에서 환원제와 반응시키는 단계를 포함하는, 자성 메조포러스 실리카의 제조방법.(b) reacting the mesoporous silica on which the transition metal ion is supported with a reducing agent at a temperature of 40 ° C. to 65 ° C., wherein the mesoporous silica is prepared.
  2. 제1항에 있어서,The method of claim 1,
    상기 환원제는 리튬 알루미늄하이드라이드 (LiAlH4), 하이드라진(N2H4H2O), 소듐 보로하이드라이드(NaBH4), 소듐 클로라이드(NaCl), 소듐 하이드록사이드(NaOH), 암모니아수(NH4OH), 브롬화 칼륨(KBr), 및 이들의 조합으로 이루어진 군으로부터 선택되는 것인, 자성 메조포러스 실리카의 제조방법. The reducing agent is lithium aluminum hydride (LiAlH 4 ), hydrazine (N 2 H 4 H 2 O), sodium borohydride (NaBH 4 ), sodium chloride (NaCl), sodium hydroxide (NaOH), ammonia water (NH 4 OH), potassium bromide (KBr), and a combination thereof, the method of producing magnetic mesoporous silica.
  3. 제1항에 있어서,The method of claim 1,
    (c) 상기 전이금속이 담지된 메조포러스 실리카를 알코올로 세척 후 상온에서 진공 건조시키는 단계를 더욱 포함하는 것인, 자성 메조포러스 실리카의 제조방법.(C) the method of producing a magnetic mesoporous silica further comprising the step of vacuum drying at room temperature after washing the mesoporous silica carrying the transition metal with alcohol.
  4. 제1항에 있어서,The method of claim 1,
    상기 전이금속 이온은 Co, Fe, Ni, Mn, 및 이들의 조합으로 이루어진 군으로부터 선택되는 것인, 자성 메조포러스 실리카의 제조방법.The transition metal ion is selected from the group consisting of Co, Fe, Ni, Mn, and combinations thereof, a method for producing magnetic mesoporous silica.
  5. 제1항에 있어서,The method of claim 1,
    상기 메조포러스 실리카는 수열합성법에 의해 제조되는 것인, 자성 메조포러스 실리카의 제조방법. The mesoporous silica is prepared by hydrothermal synthesis method, a method for producing magnetic mesoporous silica.
  6. 제5항에 있어서, The method of claim 5,
    상기 수열합성법은,The hydrothermal synthesis method,
    a) 계면활성제를 물과 산을 포함하는 용매와 혼합하는 단계; a) mixing the surfactant with a solvent comprising water and an acid;
    b) 상기 혼합용액에 실리카 전구체를 첨가하는 단계; 및b) adding a silica precursor to the mixed solution; And
    c) 상기 실리카 전구체가 혼합된 용액을 에이징, 건조 및 하소시키는 단계를 포함하는 것인, 자성 메조포러스 실리카의 제조방법. c) aging, drying and calcining the solution in which the silica precursor is mixed, the method of producing magnetic mesoporous silica.
PCT/KR2017/005639 2016-05-30 2017-05-30 Method for producing magnetic mesoporous silica by using sodium borohydride WO2017209489A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0066161 2016-05-30
KR20160066161 2016-05-30

Publications (1)

Publication Number Publication Date
WO2017209489A1 true WO2017209489A1 (en) 2017-12-07

Family

ID=60478734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005639 WO2017209489A1 (en) 2016-05-30 2017-05-30 Method for producing magnetic mesoporous silica by using sodium borohydride

Country Status (1)

Country Link
WO (1) WO2017209489A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172845A1 (en) * 2018-03-05 2019-09-12 Agency For Science, Technology And Research A composite material and a method for preparing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100128128A (en) * 2009-05-27 2010-12-07 한국세라믹기술원 Preparation method for mesoporous silica nanoparticles using transition metal salt
KR20110064934A (en) * 2009-12-09 2011-06-15 한국세라믹기술원 Multi-modal nanoporous silicas with magnetism, and manufacturing method thereof
JP2012081391A (en) * 2010-10-08 2012-04-26 Univ Of Miyazaki Catalyst particle, carbon-supported catalyst particle and fuel cell catalyst, and method of manufacturing the catalyst particle and the carbon-supported catalyst particle
KR20130140341A (en) * 2012-06-14 2013-12-24 한국세라믹기술원 Method for manufacturing the magnetic mesoporous silica, the high efficient bacteria separation and detection method using thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100128128A (en) * 2009-05-27 2010-12-07 한국세라믹기술원 Preparation method for mesoporous silica nanoparticles using transition metal salt
KR20110064934A (en) * 2009-12-09 2011-06-15 한국세라믹기술원 Multi-modal nanoporous silicas with magnetism, and manufacturing method thereof
JP2012081391A (en) * 2010-10-08 2012-04-26 Univ Of Miyazaki Catalyst particle, carbon-supported catalyst particle and fuel cell catalyst, and method of manufacturing the catalyst particle and the carbon-supported catalyst particle
KR20130140341A (en) * 2012-06-14 2013-12-24 한국세라믹기술원 Method for manufacturing the magnetic mesoporous silica, the high efficient bacteria separation and detection method using thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM, HYUM-JONG ET AL.: "Synthesis and Characterization of Mesoporous Fe/Si02 for Magnetic Drug Targeting", JOURNAL OF MATERIALS CHEMISTRY, vol. 16, 13 February 2006 (2006-02-13), pages 1617 - 1621, XP055445734 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172845A1 (en) * 2018-03-05 2019-09-12 Agency For Science, Technology And Research A composite material and a method for preparing the same
US20200398246A1 (en) * 2018-03-05 2020-12-24 Agency For Science, Technology And Research Composite material and a method for preparing the same

Similar Documents

Publication Publication Date Title
Kumar et al. Synthesis methods of mesoporous silica materials
Fang et al. Self-templating synthesis of hollow mesoporous silica and their applications in catalysis and drug delivery
Sarkar et al. Design of a new nanostructure comprising mesoporous ZrO 2 shell and magnetite core (Fe 3 O 4@ mZrO 2) and study of its phosphate ion separation efficiency
Deng et al. Synthesis of core/shell colloidal magnetic zeolite microspheres for the immobilization of trypsin
Guan et al. Highly ordered periodic mesoporous organosilica nanoparticles with controllable pore structures
Shamzhy et al. Synthesis of isomorphously substituted extra-large pore UTL zeolites
Deng et al. Magnetically responsive ordered mesoporous materials: A burgeoning family of functional composite nanomaterials
Yu et al. Synthesis of fibrous monodisperse core–shell Fe3O4/SiO2/KCC-1
Wu et al. Synthesis of teicoplanin-modified hybrid magnetic mesoporous silica nanoparticles and their application in chiral separation of racemic compounds
Liu et al. Templated preparation of porous magnetic microspheres and their application in removal of cationic dyes from wastewater
US20100304139A1 (en) Method of preparing highly ordered mesoporous silica nanoparticles using the addition of transition metal salts
CN107394125B (en) Manganese-doped lithium iron silicate/graphene hollow nanosphere positive electrode material and preparation method thereof
Mekawy et al. Mesoporous silica hybrid membranes for precise size-exclusive separation of silver nanoparticles
Liu et al. Hierarchical magnetic core–shell nanoarchitectures: non-linker reagent synthetic route and applications in a biomolecule separation system
Wang et al. Superhydrophobic magnetic core–shell mesoporous organosilica nanoparticles with dendritic architecture for oil–water separation
Hao et al. Hierarchical flower-like Co 3− x Fe x O 4 ferrite hollow spheres: facile synthesis and catalysis in the degradation of methylene blue
Mu et al. Facile fabrication of superparamagnetic coaxial gold/halloysite nanotubes/Fe 3 O 4 nanocomposites with excellent catalytic property for 4-nitrophenol reduction
Jin et al. A General Route to Hollow Mesoporous Rare‐Earth Silicate Nanospheres as a Catalyst Support
Woo et al. Synthesis of magnetic/silica nanoparticles with a core of magnetic clusters and their application for the immobilization of His-tagged enzymes
CN111889066A (en) PH response controlled release hollow mesoporous silica nanoparticle and preparation method thereof
CN111013524A (en) Synthesis device and synthesis method of iron oxide magnetic nano material
Zhang et al. Porous and hollow metal-layer@ SiO 2 nanocomposites as stable nanoreactors for hydrocarbon selective oxidation
WO2012167593A1 (en) Preparation of disordered porous silicon dioxide material and use of peregal in preparation thereof
CN113548684A (en) Mesoporous alumina-based core-shell composite material and single micelle guiding interface assembly method and application thereof
KR20100137822A (en) Hollow mesoporous silica capsule and method for preparing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806982

Country of ref document: EP

Kind code of ref document: A1