WO2017209440A1 - Method for recovery of high-grade scheelite concentrate and facility for recovery of scheelite concentrate - Google Patents

Method for recovery of high-grade scheelite concentrate and facility for recovery of scheelite concentrate Download PDF

Info

Publication number
WO2017209440A1
WO2017209440A1 PCT/KR2017/005446 KR2017005446W WO2017209440A1 WO 2017209440 A1 WO2017209440 A1 WO 2017209440A1 KR 2017005446 W KR2017005446 W KR 2017005446W WO 2017209440 A1 WO2017209440 A1 WO 2017209440A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentrate
scheelite
recovery
inhibitor
quality
Prior art date
Application number
PCT/KR2017/005446
Other languages
French (fr)
Korean (ko)
Inventor
전호석
김병곤
김수강
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to CN201780001708.0A priority Critical patent/CN107922993B/en
Publication of WO2017209440A1 publication Critical patent/WO2017209440A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/28Washing granular, powdered or lumpy materials; Wet separating by sink-float separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/205Treatment or purification of solutions, e.g. obtained by leaching using adducts or inclusion complexes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/34Obtaining molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/34Obtaining molybdenum
    • C22B34/345Obtaining molybdenum from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/36Obtaining tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; specified applications
    • B03D2203/02Ores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for recovering high-quality scheelite concentrates and a recovery facility for scheelite concentrates.
  • scheelite is known as the most economical mineral, and has a specific gravity of about 6.0, and if only the separation of the group in the assembler can be obtained high quality and recovery rate by the specific gravity screening method.
  • stony is generally produced at the junction between granite tungsten-containing minerals and carbonate sedimentary rocks, which are found in Skarne deposits and are formed by alternating action, most of which are produced as particulates.
  • calcite is produced as a coarse granule, the brittleness is large and the generation of fine particles occurs during the crushing and grinding process. Therefore, for the beneficiation of scheelite, it is essential to develop floating screening technology that is effective for treating fine particles.
  • apatite including scheelite, fluorite, calcite is to have similar solubility, in interaction with the fatty acid catcher claim separate the mineral because Ca 2 + ions to the same action, without using the inhibitor nearly impossible.
  • Ca 2 + inhibitor is used to inhibit a mineral containing the ions because it also suppresses the auditorium, in recent years, but it is made many studies in order to selectively inhibit the minerals containing Ca 2 + ion, still greater There is difficulty.
  • the problem to be solved by the present invention is to provide a method for recovering a high-quality and high recovery rate of sintered concentrate and a high-quality sintered recovery facility.
  • One embodiment of the present invention the step of forming a mineral liquid by mixing the fine product of the feldspar ore with water; Flocculating the mineral liquid to obtain scheelite shipbuilding concentrate; And floating sorting the sintered shipbuilding concentrate to obtain the sintered mineral concentrate,
  • the step of obtaining the feldspar shipbuilding concentrate includes the step of sequentially adding a pH regulator and inhibitor to the mineral liquid, the pH regulator is Na 2 CO 3 , the addition amount of the pH regulator is more than 2 kg / t 3.5 kg / t
  • the inhibitor is Na 2 SiO 3
  • the addition amount of the inhibitor provides a recovery method of high-quality scheelite concentrate is 3.5 kg / t or more and 4.5 kg / t or less.
  • a mineral liquid forming apparatus for forming a mineral liquid by mixing the fine products of the feldspar ore with water;
  • a ship floating sorting device for sorting the mineral liquid to obtain a scheelite shipbuilding concentrate;
  • a sorting floatation sorting device for sorting the feldspar shipbuilding concentrate to obtain a slate concentrate concentrate,
  • the ship floating sorting device is a pH adjusting unit for adjusting the addition amount of Na 2 CO 3 pH adjuster to 2 kg / t or more to 3.5 kg / t or less, and the addition amount of the inhibitor Na 2 SiO 3 3.5 kg / t or more 4.5 kg Inhibitor control unit for controlling to / t or less is provided in order to provide a recovery facility for slagite concentrate to sequentially add a pH regulator and inhibitor to the mineral liquid.
  • the recovery method of high-grade scheelite concentrate according to one embodiment of the present invention can effectively suppress Ca-based gangue minerals, and improve the recovery rate of high-quality scheelite.
  • the method for recovering high-grade sinterite concentrate can be effectively suppressed and removed from silicate minerals, thereby obtaining high-quality sinterite concentrate.
  • the method for recovering high-grade sintered ore concentrate according to another embodiment of the present invention can obtain a high-quality sinterite concentrate with a high recovery rate, thereby increasing the added value of the mined ore and improving the development economic efficiency.
  • FIG. 1 shows a method of recovering high-quality scheelite concentrate according to one embodiment of the invention.
  • Figure 2 shows a method of recovering high-quality scheelite concentrate according to another embodiment of the present invention.
  • Figure 3 shows a refined embodiment of the scheelite concentrate according to the particle size of the particulate product of 1 (grade of WO 3) and recovery (recovery of WO 3).
  • Figure 4 shows the Example 2 and Comparative Example quality of scheelite concentrates according to the type of pH adjusting agent 1 (grade of WO 3) and recovery (recovery of WO 3).
  • Figure 5 shows a third embodiment and a comparative example 2 of the quality of the scheelite concentrate according to the addition amount of the pH adjusting agent (grade of WO 3) and recovery (recovery of WO 3).
  • Figure 6 shows a fourth embodiment and the comparative quality of the scheelite concentrate according to the added amount of the inhibitor of Example 3 (grade of WO 3) and recovery (recovery of WO 3).
  • Figure 7 shows a fifth embodiment and the quality of the scheelite concentrate according to the order of addition of the reagent of Comparative Example 4 (grade of WO 3) and recovery (recovery of WO 3).
  • Figure 8 shows a sixth embodiment according to the quality of the scheelite concentrate the reaction time after addition of the pH adjusting agent and the inhibitor (grade of WO 3) and recovery (recovery of WO 3).
  • FIG 9 illustrates a seventh embodiment of a catcher refined scheelite concentrates according to the type of (grade of WO 3) and recovery (recovery of WO 3).
  • Figure 10 shows a refined embodiment of the scheelite concentrate according to claim catcher amount of Example 8 (grade of WO 3) and recovery (recovery of WO 3).
  • Figure 11 shows a ninth embodiment catcher after the addition of the quality of the scheelite concentrate according to the reaction time (grade of WO 3) and recovery (recovery of WO 3).
  • Figure 12 shows a refined embodiment of the scheelite concentrate according to the type of foaming agent of Example 10 (grade of WO 3) and recovery (recovery of WO 3).
  • Figure 13 shows the exemplary quality of scheelite concentrates according to the addition amount of the foaming agent of Example 10 (grade of WO 3) and recovery (recovery of WO 3).
  • Figure 14 illustrates an exemplary quality of scheelite concentrate in accordance with the pulp density of Example 11 (grade of WO 3) and recovery (recovery of WO 3).
  • FIG. 15 is an XRD analysis of tailing, middleling and sackstone concentrates obtained according to Example 12.
  • FIG. 15 is an XRD analysis of tailing, middleling and sackstone concentrates obtained according to Example 12.
  • One embodiment of the present invention the step of forming a mineral liquid by mixing the fine product of the feldspar ore with water; Flocculating the mineral liquid to obtain scheelite shipbuilding concentrate; And floating sorting the sintered shipbuilding concentrate to obtain the sintered mineral concentrate,
  • Obtaining the scheelite shipbuilding concentrate includes the step of sequentially adding a pH regulator and inhibitor to the mineral liquid,
  • the pH adjusting agent is Na 2 CO 3 ,
  • the amount of the pH adjusting agent is more than 2 kg / t 3.5 kg / t,
  • the inhibitor is Na 2 SiO 3 , and the addition amount of the inhibitor provides a recovery method of high-quality scheelite concentrate is 3.5 kg / t or more and 4.5 kg / t or less.
  • Kg / t or g / t herein means the weight of the additive relative to the weight of the particulate product (solid material).
  • FIG. 1 and 2 illustrate a method for recovering high-quality scheelite concentrates according to one embodiment of the invention.
  • FIG. 1 illustrates a process of recovering sinter concentrate from three types of scouring shipbuilding concentrates, which are obtained by mixing the fine products of the feldspar ore with water, which is a suspension obtained through shipbuilding flotation.
  • the present invention is not limited to the process of FIG. 1, and additional steps may be further included or some steps may be excluded.
  • the middledling refers to a product in which scheelite and gangue are mixed together
  • tailing refers to a product that is not suspended during flotation and remains in the mineral liquid.
  • the concentrate is selected to enhance the economic quality of the ship's concentrate
  • the remaining product in the mineral solution is generated, which loses a small amount of gangue minerals as well as some slate minerals.
  • This product is called middleling.
  • the product suspended during the sorting of the scheelite should be slate minerals
  • the product that remains unfloated and remains in the mineral liquid should be gangue minerals, but in reality some small amounts of scheelite mineral particles may be lost in the tailings product.
  • the method may further include mixing the suspended solid obtained by performing scavenging flotation between the step of obtaining the sintered shipbuilding concentrate and the step of obtaining the sintered rock concentrate.
  • the precipitate obtained through the blue wire flotation may be tailing.
  • the pH adjusting agent is Na 2 CO 3 .
  • the pH of the mineral liquid may be adjusted to 9.5 to 10.5.
  • the pH adjuster when used as Na 2 CO 3 , it exhibits a better selection efficiency than other basic pH adjusters NaOH, CaO or Na 2 S, there is an advantage that the quality and recovery rate of the recovered scheelite concentrate.
  • the addition amount of Na 2 CO 3 as the pH adjuster is 2 kg / t or more and 3.5 kg / t or less, specifically 2.5 kg / t or more and 3.5 kg / t or less, or 2.8 kg / t or more and 3.2 kg / t or less Specifically, in the case of 3 kg / t, the optimum screening efficiency can be exhibited. If the addition amount of the pH adjusting agent is less than 2 kg / t, the recovery rate of salt concentrate may not be high. In addition, when the addition amount of the pH adjusting agent is more than 3.5 kg / t, the quality of the salt concentrate can be sharply lowered. Therefore, Na 2 CO 3 may act as an important parameter in slate suspension as well as the role of pH regulator.
  • the inhibitor is Na 2 SiO 3 .
  • the inhibitor effectively inhibits silicate-based and Ca-based gangue minerals, and helps to efficiently select scheelite. Furthermore, when the addition amount of the inhibitor Na 2 SiO 3 is 3.5 kg / t or more and 4.5 kg / t or less, specifically 3.8 kg / t or more and 4.2 kg / t or less, more specifically 4 kg / t, the optimum screening efficiency Can exert.
  • the addition amount of the inhibitor is less than 3.5 kg / t, it can be lowered the grade of salt concentrate without a noticeable increase in recovery because the silicate minerals, which are gangue minerals are not sufficiently inhibited.
  • the silicate mineral is more hydrophilized to suppress their floating, which increases the grade, but when the addition amount of the inhibitor is more than 4.5 kg / t, particles and some that are not separated from each other Scheelite can also be suppressed together, resulting in a sharp drop in the recovery of scheelite concentrate without a marked increase in dignity.
  • the order of adding the pH regulator and the inhibitor is to add the inhibitor after the pH regulator is added.
  • the addition of the pH adjusting agent may cause a sharp decrease in the recovery rate of the sackstone concentrate and a sharp drop in the quality of the sackstone concentrate.
  • the Na 2 SiO 3 When performed in the order of addition of the pH adjusting agent and the inhibitor, the Na 2 SiO 3 can maintain a strong inhibitory effect not only to silicate gangue minerals but also Ca ion-containing minerals, even if the pH adjusting agent Na 2 CO 3 is added. In the case of when Na 2 CO 3 is added, since the hydrophobic surface property by the catcher is maintained without the inhibitory effect of Na 2 SiO 3 , the recovery rate of scheelite concentrate can be greatly increased.
  • the reaction time of adding the inhibitor after adding the pH adjusting agent may be 3 minutes or more and 7 minutes or less after the addition of the inhibitor. Specifically, the reaction time of adding the inhibitor after adding the pH adjusting agent may be 4 minutes or more and 6 minutes or less after the addition of the inhibitor. Specifically, the reaction time of adding the inhibitor after adding the pH adjusting agent may be 5 minutes after the addition of the inhibitor. If the reaction time is shorter than 3 minutes can be lower the grade of low gangue minerals, the lower the grade, and if the reaction time is longer than 7 minutes may not be effective because the recovery rate is reduced without a noticeable increase in grade. Furthermore, when the reaction time is within 5 minutes, Na 2 CO 3 and Na 2 SiO 3 Reagents may be the most efficient time for suppressing gangue minerals and recovering tungsten.
  • the step of flocculating the mineral liquid to remove molybdenum, and the step of flocculating the mineral liquid from which molybdenum is removed further comprising the step of removing sulfides Can be.
  • FIG. 2 illustrates a case of performing the sorting for removing molybdenum and sulfides prior to the sorting of the suspended solids in the method of recovering the high-grade sintered concentrate of FIG. 1.
  • the selection line for the concentration of shipbuilding floating and sintered stone concentrate for sintered shipbuilding concentrate is shown.
  • the present invention is not limited to the process of FIG. 2, and additional steps may be further included or some steps may be excluded.
  • removing the molybdenum and removing the sulfide may be performed sequentially. If, unlike the above sequence, after performing the flotation screen to remove the sulfide, and performs the flotation screen to remove molybdenum, the quality and recovery rate of the scheelite can be greatly reduced. Specifically, in the case of molybdenum, it is more effective to recover before the removal of sulfide due to the high natural abundance. In addition, if the sulfide is recovered prior to molybdenum, a considerable amount of tungsten can be removed together with the sulfide, which may cause a decrease in the recovery rate of tungsten.
  • the step of obtaining the feldspar shipbuilding concentrate may further include adding a catcher and a foaming agent after adding the inhibitor.
  • the order of adding reagents in the step of obtaining the feldspar shipbuilding concentrate may be to sequentially add a pH regulator, an inhibitor, a catcher, and a foaming agent.
  • the catcher may be a fishery catcher.
  • the catcher may be oleic acid, AERO 726 of CYTEC, FS-2 of CLARIANT or sodium oleate. More specifically, the catcher may be oleic acid.
  • oleic acid When oleic acid is used as a catcher, it exhibits better screening efficiency than CYTEC's AERO 726, CLARIANT's FS-2 or sodium oleate, and has the advantage of high quality and recovery of recovered slate concentrate.
  • the addition amount of the catcher may exhibit an optimal screening efficiency when the amount of the catcher is 200 g / t or more and 300 g / t or less, specifically 230 g / t or more and 270 g / t or less, and more specifically 250 g / t.
  • the selectivity to the desired mineral is low and the sinterite is gradually collected with Ca-containing minerals and Fe oxide minerals, so that the suspended solids of the sinterite is not sufficient. Problems with low recovery rates may occur. Furthermore, when the amount of the catcher is less than 200 g / t, the reason why the concentration of the sinter concentrate is low is that the sinter collected by the catcher forms a weak floc, and gangue minerals present between them are trapped in the concentrate. Because it can be recovered.
  • the addition amount of the catcher is more than 300 g / t, only the quality of the feldspar concentrate can be slightly reduced without a clear increase in recovery, there may be a problem that only the amount of reagent used increases without a noticeable difference in screening efficiency. .
  • the reaction time of the catcher may be 30 seconds or more and 2 minutes or less after the addition of the catcher.
  • the reaction time of the catcher may be 50 seconds or more and 80 seconds or less, more specifically 1 minute after the addition of the catcher.
  • the reaction time of the catcher is within the above range, the optimum screening efficiency can be exhibited.
  • the reaction time of the catcher exceeds 2 minutes after the addition of the catcher, a slight increase in the recovery rate of the feldspar concentrate may occur, but the quality may decrease rapidly. This is because oleic acid, a fatty acid-based catcher, has low selectivity for the desired mineral, and the longer the reaction time, the more calcite minerals such as Ca-containing minerals and Fe oxide minerals are recovered.
  • the foaming agent may be a neutral foaming agent.
  • a neutral foaming agent there is an advantage that can effectively perform the pH control of the mineral liquid.
  • the foaming agent may be Lankropol-8300, Fine Oil, AF 65 (Aerofroth 65) or MIBC (Methyl isobutyl carbinol) from Akzonoble. More specifically, the foaming agent may be Lankropol-8300 manufactured by Akzonoble. When Lankropol-8300 is used as a foaming agent, it may exhibit better screening efficiency than fine oil, AF 65 (Aerofroth 65) or MIBC (Methyl isobutyl carbinol).
  • the amount of the foaming agent may be 30 g / t or more and 75 g / t or less. Specifically, the amount of the foaming agent may be 40 g / t or more and 60 g / t or less, more specifically 50 g / t.
  • the addition amount of the said foaming agent is 30 g / t or more and 75 g / t or less, optimal sorting efficiency can be exhibited.
  • the amount of the foaming agent is less than 30 g / t, the interfacial tension of the mineral liquid is not sufficiently lowered, so that a lot of coarse bubbles are generated, and the quality and recovery rate of the concentrate may be lowered.
  • the addition amount of the foaming agent exceeds 75 g / t, only the consumption of the foaming agent is increased without a clear increase in the screening efficiency can be increased only the treatment cost.
  • the reaction time of the foaming agent may be 30 seconds or more and 90 seconds or less after the addition of the foaming agent.
  • the reaction time of the foaming agent may be 50 seconds or more and 70 seconds or less, more specifically 1 minute after the addition of the foaming agent.
  • the particle size of the particulate product of the feldspar ore may be -170 mesh to -260 mesh. Specifically, the particle size of the particulate product of the feldspar ore may be -180 mesh to -220 mesh, more specifically -200 mesh. When the particle size of the particulate product of the feldspar ore is within the above range, an optimal sorting efficiency can be exhibited.
  • the particles of the particulate product may be particles used for flotation through a mesh.
  • the particle size unit (-mesh) of the particulate product herein may refer to the size of the particles passing through the mesh.
  • the particle size is -170 mesh, it may mean the size of the particles passing through the 170 mesh. Therefore, "-" in the mesh unit does not mean a general negative value, which is generally used in the art.
  • the particle size of the granular product of the feldspar ore exceeds -260 mesh, that is, when the particle size is smaller than 260 mesh, a large amount of fine particles are generated and the selectivity is lowered so that a large amount of gangue minerals move to the foam layer.
  • the problem of deterioration of concentrate may occur.
  • the particles of the particulate product are too small, the degree of separation is improved, but the hydrophilic gangue minerals are trapped in the water layer between the bubble and the bubble layer and are likely to move to the foam layer. This is because it is moved to the concentrate by the vacuum flow generated after the rising bubbles.
  • the particle size of the particulate product of the feldspar ore is less than -170 mesh, that is, when the particle size is thicker than 170 mesh, the sinterite concentrate is relatively thick and part of it is not suspended and is treated with light or heavy light, so that the recovery rate of the feldspar concentrate is treated. This low problem can occur.
  • the stirring speed at the time of sintered shipbuilding concentrate may be 1,300 rpm or more and 1,800 rpm or less.
  • the stirring speed during the sintered shipbuilding concentrate may be 1,500 rpm or more and 1,700 rpm or less.
  • the stirring speed is in the above range can be effectively carried out shipbuilding concentrate. If the stirring speed is slower than 1,300 rpm, the recovery rate may be reduced, and if the stirring speed is faster than 1,800 rpm, the mixing of gangue minerals in shipbuilding concentrate may increase.
  • the particulate product may be formed by crushing and pulverizing feldspar ore.
  • the crushing and crushing method may be crushed scheelite ore using a jaw crusher, a roll crusher or a rod mill.
  • the concentration of the mineral liquid may be 25% solids or more and 40% solids or less. Specifically, the concentration of the mineral liquid may be 33% solids or more and 37% solids or less, more specifically 35% solids.
  • % Solids means the concentration of the solid phase in the mineral liquid. Specifically, the% solids may be the content of the particulate product in the mineral liquid, and more specifically, may refer to the weight ratio of the particulate product to the weight of the mineral liquid.
  • the concentration of the mineral liquid is more than 40% solids, there may be a problem that the quality of the sinter concentrate is lowered without a significant increase in recovery rate. This is because the lack of free space between the gangue mineral and the stalactite particles, the selectivity of the catcher is lowered to capture not only the slate, but also the gangue mineral.
  • An exemplary embodiment of the present invention provides a recovery device for the following slate concentrate that can implement the recovery method of the high-quality scheelite concentrate.
  • a mineral liquid forming apparatus for forming a mineral liquid by mixing the fine products of the feldspar ore with water
  • a ship floating sorting device for sorting the mineral liquid to obtain a scheelite shipbuilding concentrate
  • Floating sorting the feldspar shipbuilding concentrates includes a sorting floating screening device to obtain a slate concentrate concentrates
  • the ship floating sorting device is a pH adjusting unit for adjusting the addition amount of Na 2 CO 3 pH adjuster to 2 kg / t or more to 3.5 kg / t or less, and the addition amount of the inhibitor Na 2 SiO 3 3.5 kg / t or more 4.5 kg Inhibitor control unit for controlling to / t or less is provided in order to provide a recovery facility for slagite concentrate to sequentially add a pH regulator and inhibitor to the mineral liquid.
  • the photoliquid forming apparatus is a device that implements the above-described forming of the photoliquid.
  • the ship floating sorting device is a device that implements the step of obtaining the above-described scheelite shipbuilding concentrate.
  • the above-mentioned floatation sorting device is a device for implementing the above-described slate concentrate concentrate.
  • a molybdenum flotation screening device for removing molybdenum by flotation of the mineral liquid, and the mineral liquid from which molybdenum is removed Sulfide flotation device to remove may be provided sequentially.
  • the molybdenum flotation screening device is a device for implementing the step of removing the molybdenum by flotation of the above-described mineral liquid.
  • the sulfide flotation screening apparatus is a device for implementing the step of removing the sulfides by flotation of the above-described mineral liquid.
  • the mineral liquid forming apparatus, the shipbuilding floating sorting device, the sorting floating sorting device, the molybdenum floating sorting device and the sulfide floating sorting device can be applied to the float sorting device in the art.
  • the raw ore of the tungsten sample thus obtained was prepared using a jaw crusher, a roll crusher, and a rod mill to a particle size of a desired fine product after crushing and crushing.
  • Float screening experiments were carried out using a laboratory Denver sub-A flotation screener and flotation screening to remove molybdenum and sulfides prior to shipbuilding screening.
  • reagents were added in the order of pH adjuster (Na 2 CO 3 ) -inhibitor (Na 2 SiO 3 ) -occasion agent (Oleic acid) -foaming agent (Lankropol-8300), where the concentration of the mineral solution was 35% solids and the particle size was -200.
  • the mesh and the stirring speed were 1,500 rpm.
  • the stirring speed was lowered to 1,200 rpm, and the experiment was performed without the addition of a pH regulator, inhibitor, catcher, and foaming agent.
  • the oleic acid which is a catcher, began to solidify from 14 or less, and thus, all experiments were conducted while maintaining the temperature of the mineral liquid at 25 ° C or higher.
  • Figure 3 shows a refined embodiment of the scheelite concentrate according to the particle size of the particulate product of 1 (grade of WO 3) and recovery (recovery of WO 3).
  • the particle size of the particulate product showed excellent efficiency when the particle size was -170 to -260 mesh, and the best efficiency when the -200 mesh.
  • the sintered concentrate was 67.6% WO 3 and the recovery was 88.16%.
  • Example 2 The experiment was conducted in the same manner as in Example 1, except that the particle size of the particulate product was -200 mesh.
  • Figure 4 shows the Example 2 and Comparative Example quality of scheelite concentrates according to the type of pH adjusting agent 1 (grade of WO 3) and recovery (recovery of WO 3).
  • the most effective pH control agent was Na 2 CO 3 according to Example 2, and the grade and recovery rate of the sintered concentrate were 67.6% WO 3 and 88.16%, respectively. Furthermore, in the case of NaOH and Na 2 S according to Comparative Example 1, it was found that the grade and recovery rate of sintered concentrate were low. In addition, in the case of CaO according to Comparative Example 1, the grade and recovery of the sintered concentrate were 1.21% WO 3 and 12.62%, respectively, which did not show a clear screening efficiency.
  • Example 2 The experiment was conducted in the same manner as in Example 2, except that the addition amount of Na 2 CO 3 , which is a pH regulator, was adjusted to 2 kg / t to 3 kg / t.
  • Na 2 CO 3 which is a pH regulator
  • Example 3 The experiment was conducted in the same manner as in Example 3 except that the addition amount of Na 2 CO 3 , which is a pH regulator, was adjusted to 1 kg / t or 4 kg /.
  • Figure 5 shows a third embodiment and a comparative example 2 of the quality of the scheelite concentrate according to the addition amount of the pH adjusting agent (grade of WO 3) and recovery (recovery of WO 3).
  • Example 2 The experiment was conducted in the same manner as in Example 1 except that the particle size of the particulate product was -200 mesh and the amount of the inhibitor Na 2 SiO 3 added was 4 kg / t.
  • the experiment was conducted in the same manner as in Example 4, except that the addition amount of the inhibitor, Na 2 SiO 3 , was set to 1 kg / t to 3 kg / t and 5 kg / t.
  • Figure 6 shows a fourth embodiment and the comparative quality of the scheelite concentrate according to the added amount of the inhibitor of Example 3 (grade of WO 3) and recovery (recovery of WO 3).
  • FIG. 6 it can be seen that as the amount of the inhibitor is increased, the quality of the feldspar concentrate increases and the recovery rate decreases. Specifically, when the addition amount of Na 2 SiO 3 according to Comparative Example 3 is 1 kg / t to 3 kg / t, it can be seen that the grade of the feldspar concentrate is lower than 50% WO 3 , the addition amount of Na 2 SiO 3 At 5 kg / t, it can be seen that the recovery rate of sinter concentrate sharply dropped. Furthermore, when the addition amount of Na 2 SiO 3 according to Example 4 is 4 kg / t, it can be seen that the critical point of the quality and recovery rate of sinterite concentrate.
  • the experiment was conducted in the same manner as in Example 1, except that the particle size of the particulate product was -200 mesh. Specifically, the reagent addition order at this time was in the order of the pH regulator-inhibitor-aquatic agent-foaming agent.
  • Example 5 The experiment was conducted in the same manner as in Example 5, except that the addition order of the reagents was performed in the order of the inhibitor-pH regulator- catcher-foaming agent.
  • Figure 7 shows a fifth embodiment and the quality of the scheelite concentrate according to the order of addition of the reagent of Comparative Example 4 (grade of WO 3) and recovery (recovery of WO 3). Specifically, (A) in FIG. 7 shows the scheelite concentrate and grade and recovery rate according to Example 5, and (B) shows the scheelite concentrate and grade and recovery rate according to Comparative Example 4. FIG.
  • the grade of the sintered concentrate according to Example 5 was 67.6% WO 3 , the recovery rate was 88.16%, and the grade of the sintered concentrate according to Comparative Example 4 was 1.21% WO 3 , the recovery rate was 0.17%.
  • Example 5 shows an excellent effect compared to the case of Comparative Example 4 in which the pH adjustment agent is added after the addition of the inhibitor.
  • Example 2 Experiment was carried out in the same manner as in Example 1 except that the particle size of the particulate product was -200 mesh, and the pH adjusting agent and the inhibitor were sequentially added and the reaction time thereof was changed from 1 minute to 7 minutes.
  • Figure 8 shows a sixth embodiment according to the quality of the scheelite concentrate the reaction time after addition of the pH adjusting agent and the inhibitor (grade of WO 3) and recovery (recovery of WO 3).
  • Example 2 the experiment was conducted in the same manner as in Example 1, except that the catcher was oleic acid, AERO 726, FS-2 or sodium oleate, and the particle size of the particulate product was -200 mesh.
  • FIG 9 illustrates a seventh embodiment of a catcher refined scheelite concentrates according to the type of (grade of WO 3) and recovery (recovery of WO 3).
  • the most efficient screening agent was oleic acid, and the grade and recovery rate of sinter concentrate were the highest at 67.6% WO 3 and 88.16%, respectively. Furthermore, in the case of sodium oleate, the grade of sinter concentrate was 65.74% WO 3 and the recovery rate was 68.47%, showing good results. In the case of AERO 726 and Fs-2, AERO 726 has a relatively good grade and recovery rate of 62.58% WO 3 and 75.05%, respectively, while FS-2 has 34.82% grade and recovery rate, respectively. The recovery rate was good at% WO 3 and 73.55%, but the quality was lower than that of other catchers.
  • Example 1 In order to investigate the effect of the addition amount of the catcher on the slate sorting, Example 1 was changed except that the amount of the catcher was changed from 100 g / t to 300 g / t, and the particle size of the particulate product was -200 mesh. The experiment was performed in the same manner.
  • Figure 10 shows a refined embodiment of the scheelite concentrate according to claim catcher amount of Example 8 (grade of WO 3) and recovery (recovery of WO 3).
  • reaction time was changed from 30 seconds to 5 minutes after the addition of the catcher, except that the particle size of the particulate product was -200 mesh.
  • the experiment was conducted in the same manner as in Example 1.
  • Figure 11 shows a ninth embodiment catcher after the addition of the quality of the scheelite concentrate according to the reaction time (grade of WO 3) and recovery (recovery of WO 3).
  • the neutral foaming agent is Lankropol-8300 (Akzonoble), Pine oil, AF 65 (Aerofroth 65), or MIBC (Methyl isobutyl carbinol), The experiment was conducted in the same manner as in Example 1, except that the particle size of the particulate product was -200 mesh.
  • Figure 12 shows a refined embodiment of the scheelite concentrate according to the type of foaming agent of Example 10 (grade of WO 3) and recovery (recovery of WO 3).
  • Lankropol-8300 was found to be the most effective foaming agent in the grade and recovery rate of sintered concentrate was 67.6% WO 3 and 88.16%, respectively.
  • the grade and recovery rate of sintered concentrate were relatively low compared to Lankropol-8300, but showed a good screening efficiency.
  • the AF 65 showed a good recovery rate of sintered concentrate, but showed a lower quality than other foaming agents. This is due to the strong surface activation function of AF 65, which has a catching ability, compared to other foams, and it is believed to be collected by collecting hydrite and hydrophilic minerals.
  • experiment was conducted in the same manner while adjusting the amount of the Lankropol-8300 foaming agent was adjusted from 25 g / t to 100 g / t.
  • Figure 13 shows the exemplary quality of scheelite concentrates according to the addition amount of the foaming agent of Example 10 (grade of WO 3) and recovery (recovery of WO 3).
  • Example 2 In order to determine the effect of mineral solution concentration on scheelite flotation, experiment was the same as in Example 1 except that the mineral solution concentration was changed from 15% solids to 45% solids, and the particle size of the particulate product was -200 mesh. Proceeded.
  • Figure 14 illustrates an exemplary quality of scheelite concentrate in accordance with the pulp density of Example 11 (grade of WO 3) and recovery (recovery of WO 3).
  • the grade of sinter concentrate concentrates similarly, but when the concentration of mineral solution is higher than 35% solids, the grade tends to decrease.
  • the recovery rate of sinter concentrate is gradually increased as the concentration of mineral solution increases.
  • the feldspar concentrate quality was the highest at 71.55% WO 3 but the recovery was the lowest at 58.14% at 15% solids.
  • the recovery of sinter concentrate is 88.16% at 35% solids at 25% solids. Higher than 76.98% of the time.
  • Example 1 Except that the particle size of the fine particles to -200 mesh, XRD analysis of the tailing, middle ring and scheelite concentrate obtained during the experiment as in Example 1 was carried out.
  • FIG. 15 is an XRD analysis of tailing, middleling and sackstone concentrates obtained according to Example 12.
  • FIG. 15 is an XRD analysis of tailing, middleling and sackstone concentrates obtained according to Example 12.
  • FIG. 15 is a result of XRD analysis of tailing, and in the case of tailing, only peaks of silicate minerals appear, and quartz (Quartz) occupies the highest ratio. On the other hand, the peak of Scheelite did not appear, indicating that the screening efficiency was good.
  • FIG. 15B is a result of XRD analysis of the middle ring. In the case of the middle ring, the peak of the sputum is shown to be insignificant, and the peak of many silicate gangue minerals still appears. Furthermore, FIG.
  • 15C is the result of XRD literite of the final sinter concentrate, and quartz (quartz), chlornochlore, feldspar (Albite), and Hornblende, which are silicate gangue minerals that were present in the ore in the case of sinter concentrate As the peak of disappeared, it can be seen that the suppression and removal of silicate minerals was effective.
  • the scheelite concentrate fluorite (Fluorite) was found to be that, if any, which the organic acid anion ionized by the oleic acid used zero catcher (C 17 H 33 COO -) is adsorbed on a metal ion (Ca 2+) After insoluble metal salts are formed, the mineral surface is hydrophobic, which is believed to have been recovered with scheelite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Provided are a method for recovery of a high-grade scheelite concentrate and a facility for recovery of a scheelite concentrate. Specifically, provided is a method for recovery of a high-grade scheelite concentrate, the method comprising the steps of: mixing particulate products of scheelite ore with water to form an ore solution; subjecting the ore solution to froth flotation to obtain a rougher scheelite concentrate; and subjecting the rougher scheelite concentrate to froth flotation to obtain a selective scheelite concentrate, wherein the step for obtaining a rougher scheelite concentrate comprises a step for sequentially adding a pH adjuster and an inhibitor to the ore solution, and wherein the pH adjuster is Na2CO3 and the amount of the pH adjuster added is equal to or more than 2 kg/t and equal to or less than 3.5 kg/t; and the inhibitor is Na2SiO3 and the amount of the inhibitor added is equal to or more than 3.5 kg/t and equal to or less than 4.5 kg/t or less.

Description

고품위 회중석 정광의 회수방법 및 회중석 정광의 회수 설비Recovery method of high quality sinter concentrate and recovery facilities
본 발명은 고품위 회중석 정광의 회수방법 및 회중석 정광의 회수 설비에 관한 것이다.The present invention relates to a method for recovering high-quality scheelite concentrates and a recovery facility for scheelite concentrates.
지구상에 텅스텐을 함유하고 있는 광물은 약 20가지 정도로 알려져 있으나, 경제적으로 개발가치가 있는 것은 회중석(scheelite)과 철망간중석(wolframite) 이다. 이 중 회중석이 가장 경제성이 있는 광물로 알려져 있으며, 6.0 정도의 비중을 갖고 있어, 조립자에서 단체분리만 이루어지면 비중선별법에 의해 높은 품위와 회수율을 얻을 수 있다. 그러나 회중석은 일반적으로 화강암 모양의 텅스텐 함유 광물과 탄산 퇴적암 사이의 접점에서 생산되어 스카른광상에서 발견되며 교대작용에 의해 형성이 됨으로, 대부분 미립자로 산출된다. 뿐만 아니라 회중석이 조립자로 산출된다 하더라도 취성(brittleness)이 커 파·분쇄 과정에서 미립자의 발생이 많기 때문에 비중선별법을 적용한다면 회수율이 감소된다는 것은 잘 알려져 있는 사실이다. 따라서, 회중석의 선광을 위해서는 미립자 처리에 효과적인 부유선별 기술개발이 필수적이다.There are about twenty known minerals on earth, but the economically valuable developments are scheelite and wolframite. Among them, scheelite is known as the most economical mineral, and has a specific gravity of about 6.0, and if only the separation of the group in the assembler can be obtained high quality and recovery rate by the specific gravity screening method. But stony is generally produced at the junction between granite tungsten-containing minerals and carbonate sedimentary rocks, which are found in Skarne deposits and are formed by alternating action, most of which are produced as particulates. In addition, it is well known that even if the calcite is produced as a coarse granule, the brittleness is large and the generation of fine particles occurs during the crushing and grinding process. Therefore, for the beneficiation of scheelite, it is essential to develop floating screening technology that is effective for treating fine particles.
회중석 부유선별에서, 회중석을 비롯하여 인회석, 형석, 방해석은 유사한 용해도를 가지고, 지방산 포수제와의 상호작용에 있어 Ca2 + 이온이 동일하게 활동하기 때문에, 억제제를 사용하지 않고 광물을 분리하는 것은 거의 불가능하다. In the scheelite flotation, apatite, including scheelite, fluorite, calcite is to have similar solubility, in interaction with the fatty acid catcher claim separate the mineral because Ca 2 + ions to the same action, without using the inhibitor nearly impossible.
다만, Ca2 + 이온을 함유한 광물을 억제하기 위해 사용되는 억제제들은 회중석을 또한 억제시키기 때문에, 최근에는 Ca2 + 이온을 함유한 광물을 선택적으로 억제시키기 위한 연구가 많이 이루어지고 있지만, 여전히 큰 어려움이 있다.However, Ca 2 + inhibitor is used to inhibit a mineral containing the ions because it also suppresses the auditorium, in recent years, but it is made many studies in order to selectively inhibit the minerals containing Ca 2 + ion, still greater There is difficulty.
본 발명이 해결하고자 하는 과제는 고품위와 높은 회수율의 회중석 정광의 회수방법 및 고품위 회중석의 회수 설비를 제공하는 것이다.SUMMARY OF THE INVENTION The problem to be solved by the present invention is to provide a method for recovering a high-quality and high recovery rate of sintered concentrate and a high-quality sintered recovery facility.
본 발명의 일 실시상태는, 회중석 원광석의 미립 산물을 물과 혼합하여 광액을 형성하는 단계; 상기 광액을 부유선별하여 회중석 조선 정광을 얻는 단계; 및 상기 회중석 조선 정광을 부유선별하여 회중석 정선 정광을 얻는 단계를 포함하고, One embodiment of the present invention, the step of forming a mineral liquid by mixing the fine product of the feldspar ore with water; Flocculating the mineral liquid to obtain scheelite shipbuilding concentrate; And floating sorting the sintered shipbuilding concentrate to obtain the sintered mineral concentrate,
상기 회중석 조선 정광을 얻는 단계는 상기 광액에 pH 조절제 및 억제제를 순차적으로 첨가하는 단계를 포함하며, 상기 pH 조절제는 Na2CO3이고, 상기 pH 조절제의 첨가량은 2 kg/t 이상 3.5 kg/t 이하이며, 상기 억제제는 Na2SiO3이고, 상기 억제제의 첨가량은 3.5 kg/t 이상 4.5 kg/t 이하인 것인 고품위 회중석 정광의 회수방법을 제공한다. The step of obtaining the feldspar shipbuilding concentrate includes the step of sequentially adding a pH regulator and inhibitor to the mineral liquid, the pH regulator is Na 2 CO 3 , the addition amount of the pH regulator is more than 2 kg / t 3.5 kg / t Hereinafter, the inhibitor is Na 2 SiO 3 , and the addition amount of the inhibitor provides a recovery method of high-quality scheelite concentrate is 3.5 kg / t or more and 4.5 kg / t or less.
본 발명의 일 실시상태는, 회중석 원광석의 미립 산물을 물과 혼합하여 광액을 형성하는 광액 형성 장치; 상기 광액을 부유선별하여 회중석 조선 정광을 얻는 조선 부유선별 장치; 및 상기 회중석 조선 정광을 부유선별하여 회중석 정선 정광을 얻는 정선 부유선별 장치를 포함하고, One embodiment of the present invention, a mineral liquid forming apparatus for forming a mineral liquid by mixing the fine products of the feldspar ore with water; A ship floating sorting device for sorting the mineral liquid to obtain a scheelite shipbuilding concentrate; And a sorting floatation sorting device for sorting the feldspar shipbuilding concentrate to obtain a slate concentrate concentrate,
상기 조선 부유선별 장치는 pH 조절제인 Na2CO3의 첨가량을 2 kg/t 이상 3.5 kg/t 이하로 조절하는 pH 조절부, 및 억제제인 Na2SiO3의 첨가량을 3.5 kg/t 이상 4.5 kg/t 이하로 조절하는 억제제 조절부가 순차적으로 구비되어 상기 광액에 pH 조절제 및 억제제를 순차적으로 첨가하는 것인 회중석 정광의 회수 설비를 제공한다. The ship floating sorting device is a pH adjusting unit for adjusting the addition amount of Na 2 CO 3 pH adjuster to 2 kg / t or more to 3.5 kg / t or less, and the addition amount of the inhibitor Na 2 SiO 3 3.5 kg / t or more 4.5 kg Inhibitor control unit for controlling to / t or less is provided in order to provide a recovery facility for slagite concentrate to sequentially add a pH regulator and inhibitor to the mineral liquid.
본 발명의 일 실시상태에 따른 고품위 회중석 정광의 회수방법은 Ca계 맥석광물들을 효과적으로 억제하며, 고품위의 회중석의 회수율을 높일 수 있다. The recovery method of high-grade scheelite concentrate according to one embodiment of the present invention can effectively suppress Ca-based gangue minerals, and improve the recovery rate of high-quality scheelite.
본 발명의 다른 실시상태에 따른 고품위 회중석 정광의 회수방법은 규산염 광물들의 억제 및 제거가 효과적으로 이루어질 수 있으며, 이에 따라 고품위의 회중석 정광을 얻을 수 있다. According to another exemplary embodiment of the present invention, the method for recovering high-grade sinterite concentrate can be effectively suppressed and removed from silicate minerals, thereby obtaining high-quality sinterite concentrate.
또한, 본 발명의 다른 실시상태에 따른 고품위 회중석 정광의 회수방법은 고품위의 회중석 정광을 높은 회수율로 얻을 수 있으므로, 채굴된 원광석의 부가가치를 높일 수 있으며, 개발 경제성의 향상을 도모할 수 있다. In addition, the method for recovering high-grade sintered ore concentrate according to another embodiment of the present invention can obtain a high-quality sinterite concentrate with a high recovery rate, thereby increasing the added value of the mined ore and improving the development economic efficiency.
도 1은 본 발명의 일 실시상태에 따른 고품위 회중석 정광의 회수방법을 도시한 것이다. 1 shows a method of recovering high-quality scheelite concentrate according to one embodiment of the invention.
도 2는 본 발명의 다른 실시상태에 따른 고품위 회중석 정광의 회수방법을 도시한 것이다.Figure 2 shows a method of recovering high-quality scheelite concentrate according to another embodiment of the present invention.
도 3은 실시예 1의 미립 산물의 입자 크기에 따른 회중석 정광의 품위(grade of WO3) 및 회수율(recovery of WO3)을 나타낸 것이다. Figure 3 shows a refined embodiment of the scheelite concentrate according to the particle size of the particulate product of 1 (grade of WO 3) and recovery (recovery of WO 3).
도 4는 실시예 2 및 비교예 1의 pH 조절제의 종류에 따른 회중석 정광의 품위(grade of WO3) 및 회수율(recovery of WO3)을 나타낸 것이다.Figure 4 shows the Example 2 and Comparative Example quality of scheelite concentrates according to the type of pH adjusting agent 1 (grade of WO 3) and recovery (recovery of WO 3).
도 5는 실시예 3 및 비교예 2의 pH 조절제의 첨가량에 따른 회중석 정광의 품위(grade of WO3) 및 회수율(recovery of WO3)을 나타낸 것이다.Figure 5 shows a third embodiment and a comparative example 2 of the quality of the scheelite concentrate according to the addition amount of the pH adjusting agent (grade of WO 3) and recovery (recovery of WO 3).
도 6은 실시예 4 및 비교예 3의 억제제의 첨가량에 따른 회중석 정광의 품위(grade of WO3) 및 회수율(recovery of WO3)을 나타낸 것이다.Figure 6 shows a fourth embodiment and the comparative quality of the scheelite concentrate according to the added amount of the inhibitor of Example 3 (grade of WO 3) and recovery (recovery of WO 3).
도 7은 실시예 5 및 비교예 4의 시약의 첨가 순서에 따른 회중석 정광의 품위(grade of WO3) 및 회수율(recovery of WO3)을 나타낸 것이다.Figure 7 shows a fifth embodiment and the quality of the scheelite concentrate according to the order of addition of the reagent of Comparative Example 4 (grade of WO 3) and recovery (recovery of WO 3).
도 8은 실시예 6의 pH 조절제 및 억제제 첨가 후의 반응 시간에 따른 회중석 정광의 품위(grade of WO3) 및 회수율(recovery of WO3)을 나타낸 것이다.Figure 8 shows a sixth embodiment according to the quality of the scheelite concentrate the reaction time after addition of the pH adjusting agent and the inhibitor (grade of WO 3) and recovery (recovery of WO 3).
도 9는 실시예 7의 포수제 종류에 따른 회중석 정광의 품위(grade of WO3) 및 회수율(recovery of WO3)을 나타낸 것이다.9 illustrates a seventh embodiment of a catcher refined scheelite concentrates according to the type of (grade of WO 3) and recovery (recovery of WO 3).
도 10은 실시예 8의 포수제 첨가량에 따른 회중석 정광의 품위(grade of WO3) 및 회수율(recovery of WO3)을 나타낸 것이다.Figure 10 shows a refined embodiment of the scheelite concentrate according to claim catcher amount of Example 8 (grade of WO 3) and recovery (recovery of WO 3).
도 11은 실시예 9의 포수제 첨가 후 반응 시간에 따른 회중석 정광의 품위(grade of WO3) 및 회수율(recovery of WO3)을 나타낸 것이다.Figure 11 shows a ninth embodiment catcher after the addition of the quality of the scheelite concentrate according to the reaction time (grade of WO 3) and recovery (recovery of WO 3).
도 12는 실시예 10의 기포제의 종류에 따른 회중석 정광의 품위(grade of WO3) 및 회수율(recovery of WO3)을 나타낸 것이다.Figure 12 shows a refined embodiment of the scheelite concentrate according to the type of foaming agent of Example 10 (grade of WO 3) and recovery (recovery of WO 3).
도 13은 실시예 10의 기포제의 첨가량에 따른 회중석 정광의 품위(grade of WO3) 및 회수율(recovery of WO3)을 나타낸 것이다.Figure 13 shows the exemplary quality of scheelite concentrates according to the addition amount of the foaming agent of Example 10 (grade of WO 3) and recovery (recovery of WO 3).
도 14는 실시예 11의 광액 농도에 따른 회중석 정광의 품위(grade of WO3) 및 회수율(recovery of WO3)을 나타낸 것이다.Figure 14 illustrates an exemplary quality of scheelite concentrate in accordance with the pulp density of Example 11 (grade of WO 3) and recovery (recovery of WO 3).
도 15는 실시예 12에 따라 얻어지는 테일링, 미들링 및 회중석 정광의 XRD 분석 결과이다.15 is an XRD analysis of tailing, middleling and sackstone concentrates obtained according to Example 12. FIG.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. In the present specification, when a part "contains" a certain component, this means that the component may further include other components, except for the case where there is no contrary description.
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.Hereinafter, this specification is demonstrated in detail.
본 발명의 일 실시상태는, 회중석 원광석의 미립 산물을 물과 혼합하여 광액을 형성하는 단계; 상기 광액을 부유선별하여 회중석 조선 정광을 얻는 단계; 및 상기 회중석 조선 정광을 부유선별하여 회중석 정선 정광을 얻는 단계를 포함하고, One embodiment of the present invention, the step of forming a mineral liquid by mixing the fine product of the feldspar ore with water; Flocculating the mineral liquid to obtain scheelite shipbuilding concentrate; And floating sorting the sintered shipbuilding concentrate to obtain the sintered mineral concentrate,
상기 회중석 조선 정광을 얻는 단계는 상기 광액에 pH 조절제 및 억제제를 순차적으로 첨가하는 단계를 포함하며, Obtaining the scheelite shipbuilding concentrate includes the step of sequentially adding a pH regulator and inhibitor to the mineral liquid,
상기 pH 조절제는 Na2CO3이고, 상기 pH 조절제의 첨가량은 2 kg/t 이상 3.5 kg/t 이하이며, The pH adjusting agent is Na 2 CO 3 , The amount of the pH adjusting agent is more than 2 kg / t 3.5 kg / t,
상기 억제제는 Na2SiO3이고, 상기 억제제의 첨가량은 3.5 kg/t 이상 4.5 kg/t 이하인 것인 고품위 회중석 정광의 회수방법을 제공한다. The inhibitor is Na 2 SiO 3 , and the addition amount of the inhibitor provides a recovery method of high-quality scheelite concentrate is 3.5 kg / t or more and 4.5 kg / t or less.
본 명세서에서의 kg/t 또는 g/t은 미립 산물(고체물질)의 중량에 대한 첨가제의 중량을 의미하는 것이다.Kg / t or g / t herein means the weight of the additive relative to the weight of the particulate product (solid material).
도 1 및 도 2는 본 발명의 일 실시상태에 따른 고품위 회중석 정광의 회수방법을 도시한 것이다. 구체적으로, 도 1은 회중석 원광석의 미립 산물을 물과 혼합하여 형성된 광액을 조선 부유선별을 통하여 얻어지는 부유물인 회중석 조선 정광을 3차에 걸친 정선 부유선별을 통하여 회중석 정광을 회수하는 과정을 도시한 것이다. 다만, 본 발명은 도 1의 과정에 한정되지 않고, 추가의 단계가 더 포함되거나, 일부 단계가 제외될 수 있다. 1 and 2 illustrate a method for recovering high-quality scheelite concentrates according to one embodiment of the invention. In detail, FIG. 1 illustrates a process of recovering sinter concentrate from three types of scouring shipbuilding concentrates, which are obtained by mixing the fine products of the feldspar ore with water, which is a suspension obtained through shipbuilding flotation. . However, the present invention is not limited to the process of FIG. 1, and additional steps may be further included or some steps may be excluded.
도 1 및 도 2에서의 미들링(middling, 중광)은 회중석과 맥석이 함께 혼합되어 있는 산물을 의미하고, 테일링(tailing, 광미)은 부유선별시 부유되지 않고 광액 중에 남는 산물을 의미한다. 예를 들어, 조선 정광의 경제적 품위 향상을 위해 정광을 정선할 때 광액 중에 남는 산물이 발생하는데, 이 산물에는 맥석광물뿐만 아니라 일부 회중석 광물도 소량 유실된다. 이러한 산물을 미들링이라고 한다. 그리고, 이론적으로 회중석의 부유선별시 부유되는 산물은 회중석 광물들이어야 하는 반면 부유되지 않고 광액 중에 남는 산물이 맥석광물이어야 하지만, 실제로는 테일링 산물 중에도 일부 소량의 회중석 광물 입자들이 유실될 수 있다.1 and 2, the middledling (middling) refers to a product in which scheelite and gangue are mixed together, and tailing (tailing) refers to a product that is not suspended during flotation and remains in the mineral liquid. For example, when the concentrate is selected to enhance the economic quality of the ship's concentrate, the remaining product in the mineral solution is generated, which loses a small amount of gangue minerals as well as some slate minerals. This product is called middleling. And, in theory, the product suspended during the sorting of the scheelite should be slate minerals, whereas the product that remains unfloated and remains in the mineral liquid should be gangue minerals, but in reality some small amounts of scheelite mineral particles may be lost in the tailings product.
본 발명의 일 실시상태에 따르면, 상기 회중석 조선 정광을 얻는 단계 및 회중석 정선 정광을 얻는 단계 사이에 청선(scavenging) 부유선별을 하여 얻어지는 부유물을 상기 회중석 조선 정광과 혼합하는 단계를 더 포함할 수 있다. 상기 청선 부유선별을 통하여 얻어지는 침전물은 테일링일 수 있다. According to an exemplary embodiment of the present invention, the method may further include mixing the suspended solid obtained by performing scavenging flotation between the step of obtaining the sintered shipbuilding concentrate and the step of obtaining the sintered rock concentrate. . The precipitate obtained through the blue wire flotation may be tailing.
본 발명의 일 실시상태에 따르면, 상기 pH 조절제는 Na2CO3이다. 상기 pH 조절제에 의하여, 상기 광액의 pH는 9.5 내지 10.5로 조절될 수 있다. 나아가, 상기 pH 조절제를 Na2CO3으로 사용하는 경우, 다른 염기성 pH 조절제인 NaOH, CaO 또는 Na2S 보다 우수한 선별 효율을 나타내어, 회수된 회중석 정광의 품위 및 회수율이 높은 장점이 있다. 또한, 상기 pH 조절제인 Na2CO3의 첨가량이 2 kg/t 이상 3.5 kg/t 이하, 구체적으로 2.5 kg/t 이상 3.5 kg/t 이하, 또는 2.8 kg/t 이상 3.2 kg/t 이하, 보다 구체적으로 3 kg/t 인 경우, 최적의 선별 효율을 발휘할 수 있다. 상기 pH 조절제의 첨가량이 2 kg/t 미만인 경우, 회중석 정광의 회수율이 높지 않을 수 있다. 또한, 상기 pH 조절제의 첨가량이 3.5 kg/t 초과인 경우, 회중석 정광의 품위가 급격히 저하될 수 있다. 그러므로, 상기 Na2CO3는 pH 조절제의 역할 뿐만 아니라, 회중석 부유선별에 있어서 중요한 변수로 작용할 수 있다. According to an exemplary embodiment of the present invention, the pH adjusting agent is Na 2 CO 3 . By the pH adjusting agent, the pH of the mineral liquid may be adjusted to 9.5 to 10.5. Furthermore, when the pH adjuster is used as Na 2 CO 3 , it exhibits a better selection efficiency than other basic pH adjusters NaOH, CaO or Na 2 S, there is an advantage that the quality and recovery rate of the recovered scheelite concentrate. Further, the addition amount of Na 2 CO 3 as the pH adjuster is 2 kg / t or more and 3.5 kg / t or less, specifically 2.5 kg / t or more and 3.5 kg / t or less, or 2.8 kg / t or more and 3.2 kg / t or less Specifically, in the case of 3 kg / t, the optimum screening efficiency can be exhibited. If the addition amount of the pH adjusting agent is less than 2 kg / t, the recovery rate of salt concentrate may not be high. In addition, when the addition amount of the pH adjusting agent is more than 3.5 kg / t, the quality of the salt concentrate can be sharply lowered. Therefore, Na 2 CO 3 may act as an important parameter in slate suspension as well as the role of pH regulator.
본 발명의 일 실시상태에 따르면, 상기 억제제는 Na2SiO3이다. 상기 억제제는 규산염계와 Ca계 맥석광물을 효과적으로 억제하며, 회중석을 효율적으로 선별할 수 있게 돕는다. 나아가, 상기 억제제인 Na2SiO3의 첨가량이 3.5 kg/t 이상 4.5 kg/t 이하, 구체적으로 3.8 kg/t 이상 4.2 kg/t 이하, 보다 구체적으로 4 kg/t 인 경우, 최적의 선별 효율을 발휘할 수 있다. According to an exemplary embodiment of the present invention, the inhibitor is Na 2 SiO 3 . The inhibitor effectively inhibits silicate-based and Ca-based gangue minerals, and helps to efficiently select scheelite. Furthermore, when the addition amount of the inhibitor Na 2 SiO 3 is 3.5 kg / t or more and 4.5 kg / t or less, specifically 3.8 kg / t or more and 4.2 kg / t or less, more specifically 4 kg / t, the optimum screening efficiency Can exert.
상기 억제제의 첨가량이 3.5 kg/t 미만인 경우, 이는 맥석광물인 규산염광물들이 충분히 억제되지 못하였기 때문에 뚜렷한 회수율의 증가 없이 회중석 정광의 품위가 낮아질 수 있다. When the addition amount of the inhibitor is less than 3.5 kg / t, it can be lowered the grade of salt concentrate without a noticeable increase in recovery because the silicate minerals, which are gangue minerals are not sufficiently inhibited.
또한, 상기 억제제의 첨가량이 증가함에 따라 규산염광물이 보다 강하게 친수화 되어 이들의 부유가 억제되어 품위가 증가하지만 상기 억제제의 첨가량이 4.5 kg/t 초과인 경우, 단체분리가 안 된 입자들과 일부 회중석도 함께 억제되어 뚜렷한 품위의 증가 없이 회중석 정광의 회수율이 급격히 저하될 수 있다. In addition, as the addition amount of the inhibitor increases, the silicate mineral is more hydrophilized to suppress their floating, which increases the grade, but when the addition amount of the inhibitor is more than 4.5 kg / t, particles and some that are not separated from each other Scheelite can also be suppressed together, resulting in a sharp drop in the recovery of scheelite concentrate without a marked increase in dignity.
본 발명의 일 실시상태에 따르면, 상기 pH 조절제와 억제제의 첨가 순서는 pH 조절제 첨가 후, 억제제를 첨가하는 것이다. 구체적으로, 상기 첨가 순서와 다르게 억제제를 첨가한 후, pH 조절제를 첨가하면 회중석 정광의 회수율이 급격히 저하되고, 회중석 정광의 품위도 급격히 떨어지는 문제가 발생할 수 있다. According to one embodiment of the present invention, the order of adding the pH regulator and the inhibitor is to add the inhibitor after the pH regulator is added. Specifically, when the inhibitor is added differently from the above addition order, the addition of the pH adjusting agent may cause a sharp decrease in the recovery rate of the sackstone concentrate and a sharp drop in the quality of the sackstone concentrate.
이는 억제제인 Na2SiO3를 pH 조절제보다 먼저 광액에 첨가하는 경우, 첨가된 Na2SiO3이 광액 내에서 발생시킨 HSiO3 - 이온의 과잉 생성 영향으로, HSiO3 - 이온이 광물들의 표면에 먼저 강력하게 작용하여 나중에 첨가된 pH 조절제의 영향을 광물들이 전혀 받지 못하는 문제가 발생할 수 있다. This case is first added to the pulp an inhibitor of Na 2 SiO 3 than pH adjusting agent, the addition of Na 2 SiO 3 is caused in the pulp HSiO 3 - in excess of the ion generating effect, HSiO 3 - ions are first on the surface of the mineral It can work so strongly that minerals can't be affected by the pH regulator added later.
상기 pH 조절제와 억제제의 첨가 순서와 같이 수행하는 경우, 상기 Na2SiO3은 pH 조절제인 Na2CO3이 첨가 되더라도 규산염 맥석 광물뿐만 아니라 Ca 이온 함유광물들까지 억제효과를 강하게 유지할 수 있으며, 회중석의 경우에는 Na2CO3이 첨가되면 Na2SiO3의 억제효과를 받지 않고 포수제에 의한 소수성 표면 특성을 유지하므로, 회중석 정광의 회수율을 크게 상승시킬 수 있다.When performed in the order of addition of the pH adjusting agent and the inhibitor, the Na 2 SiO 3 can maintain a strong inhibitory effect not only to silicate gangue minerals but also Ca ion-containing minerals, even if the pH adjusting agent Na 2 CO 3 is added. In the case of when Na 2 CO 3 is added, since the hydrophobic surface property by the catcher is maintained without the inhibitory effect of Na 2 SiO 3 , the recovery rate of scheelite concentrate can be greatly increased.
본 발명의 일 실시상태에 따르면, 상기 pH 조절제를 첨가한 후 억제제를 첨가하는 단계의 반응 시간은 상기 억제제의 첨가 후 3분 이상 7분 이하일 수 있다. 구체적으로, 상기 pH 조절제를 첨가한 후 억제제를 첨가하는 단계의 반응 시간은 상기 억제제의 첨가 후 4분 이상 6분 이하일 수 있다. 구체적으로, 상기 pH 조절제를 첨가한 후 억제제를 첨가하는 단계의 반응 시간은 상기 억제제의 첨가 후 5분일 수 있다. 상기 반응 시간이 3분보다 짧으면 맥석광물들의 억제효과가 낮아 품위가 낮아질 수 있고, 상기 반응 시간이 7분보다 길어지면 뚜렷한 품위증가 없이 회수율이 감소되어 효과적이지 못할 수 있다. 나아가, 반응 시간 5분 내외인 경우, Na2CO3와 Na2SiO3 시약이 맥석광물의 억제와 텅스텐의 회수에 가장 효율적인 시간이 될 수 있다.According to one embodiment of the present invention, the reaction time of adding the inhibitor after adding the pH adjusting agent may be 3 minutes or more and 7 minutes or less after the addition of the inhibitor. Specifically, the reaction time of adding the inhibitor after adding the pH adjusting agent may be 4 minutes or more and 6 minutes or less after the addition of the inhibitor. Specifically, the reaction time of adding the inhibitor after adding the pH adjusting agent may be 5 minutes after the addition of the inhibitor. If the reaction time is shorter than 3 minutes can be lower the grade of low gangue minerals, the lower the grade, and if the reaction time is longer than 7 minutes may not be effective because the recovery rate is reduced without a noticeable increase in grade. Furthermore, when the reaction time is within 5 minutes, Na 2 CO 3 and Na 2 SiO 3 Reagents may be the most efficient time for suppressing gangue minerals and recovering tungsten.
본 발명의 일 실시상태에 따르면, 상기 회중석 조선 정광을 얻는 단계 전에, 상기 광액을 부유선별하여 몰리브덴을 제거하는 단계, 및 몰리브덴이 제거된 상기 광액을 부유선별하여 황화물을 제거하는 단계를 더 포함할 수 있다. According to an exemplary embodiment of the present invention, before the step of obtaining the sintered shipbuilding concentrate, the step of flocculating the mineral liquid to remove molybdenum, and the step of flocculating the mineral liquid from which molybdenum is removed further comprising the step of removing sulfides Can be.
도 2는 도 1의 고품위 회중석 정광의 회수방법에서, 회중석의 조선 부유선별에 앞서 몰리브덴과 황화물을 제거하기 위한 부유선별을 실시하는 경우를 도시한 것이다. 구체적으로, 도 2는 광액 형성 후, 몰리브덴(Mo)의 제거를 위한 부유선별을 실시한 후, 황화물의 제거를 위한 부유선별을 한 후, 회중석 조선 정광을 위한 조선 부유선별 및 회중석 정선 정광을 위한 정선 부유선별을 하는 단계가 도시된 것이다. 다만, 본 발명은 도 2의 과정에 한정되지 않고, 추가의 단계가 더 포함되거나, 일부 단계가 제외될 수 있다.FIG. 2 illustrates a case of performing the sorting for removing molybdenum and sulfides prior to the sorting of the suspended solids in the method of recovering the high-grade sintered concentrate of FIG. 1. Specifically, after forming the mineral liquid, after performing the floating screening for the removal of molybdenum (Mo), after the floating screening for the removal of sulfides, the selection line for the concentration of shipbuilding floating and sintered stone concentrate for sintered shipbuilding concentrate The steps of floating screening are shown. However, the present invention is not limited to the process of FIG. 2, and additional steps may be further included or some steps may be excluded.
본 명세서의 일 실시상태에 따르면, 상기 몰리브덴을 제거하는 단계 및 상기 황화물을 제거하는 단계는 순차적으로 진행되는 것일 수 있다. 만약, 상기 순서와 달리 황화물을 제거하기 위한 부유선별을 수행한 후, 몰리브덴을 제거하기 위한 부유선별을 수행하는 경우에는 회중석의 품위 및 회수율이 크게 저하될 수 있다. 구체적으로, 몰리브덴의 경우 자연부유도가 높아 황화물의 제거 전에 회수하는 것이 보다 효과적일 수 있다. 또한, 황화물을 몰리브덴에 앞서 회수하게 되면 텅스텐의 상당량이 황화물과 함께 제거될 수 있으므로, 텅스텐의 회수율을 떨어뜨리는 원인이 될 수 있다. According to one embodiment of the present specification, removing the molybdenum and removing the sulfide may be performed sequentially. If, unlike the above sequence, after performing the flotation screen to remove the sulfide, and performs the flotation screen to remove molybdenum, the quality and recovery rate of the scheelite can be greatly reduced. Specifically, in the case of molybdenum, it is more effective to recover before the removal of sulfide due to the high natural abundance. In addition, if the sulfide is recovered prior to molybdenum, a considerable amount of tungsten can be removed together with the sulfide, which may cause a decrease in the recovery rate of tungsten.
본 발명의 일 실시상태에 따르면, 상기 회중석 조선 정광을 얻는 단계는 상기 억제제를 첨가한 후, 포수제 및 기포제를 첨가하는 것을 더 포함할 수 있다. According to one embodiment of the present invention, the step of obtaining the feldspar shipbuilding concentrate may further include adding a catcher and a foaming agent after adding the inhibitor.
본 발명의 일 실시상태에 따르면, 상기 회중석 조선 정광을 얻는 단계에서의 시약 첨가순서는 pH 조절제, 억제제, 포수제 및 기포제를 순차적으로 첨가하는 것일 수 있다. According to an exemplary embodiment of the present invention, the order of adding reagents in the step of obtaining the feldspar shipbuilding concentrate may be to sequentially add a pH regulator, an inhibitor, a catcher, and a foaming agent.
본 발명의 일 실시상태에 따르면, 상기 포수제는 수산형 포수제일 수 있다. 구체적으로, 상기 포수제는 올레산, CYTEC사의 AERO 726, CLARIANT사의 FS-2 또는 올레산나트륨일 수 있다. 보다 구체적으로, 상기 포수제는 올레산일 수 있다. 포수제로서 올레산을 사용하는 경우, CYTEC사의 AERO 726, CLARIANT사의 FS-2 또는 올레산나트륨을 사용하는 경우에 비하여 보다 우수한 선별 효율을 나타내어, 회수된 회중석 정광의 품위 및 회수율이 높은 장점이 있다. According to an exemplary embodiment of the present invention, the catcher may be a fishery catcher. Specifically, the catcher may be oleic acid, AERO 726 of CYTEC, FS-2 of CLARIANT or sodium oleate. More specifically, the catcher may be oleic acid. When oleic acid is used as a catcher, it exhibits better screening efficiency than CYTEC's AERO 726, CLARIANT's FS-2 or sodium oleate, and has the advantage of high quality and recovery of recovered slate concentrate.
나아가, 상기 포수제의 첨가량은 200 g/t 이상 300 g/t 이하, 구체적으로 230 g/t 이상 270 g/t 이하, 보다 구체적으로 250 g/t인 경우 최적의 선별 효율을 발휘할 수 있다. Furthermore, the addition amount of the catcher may exhibit an optimal screening efficiency when the amount of the catcher is 200 g / t or more and 300 g / t or less, specifically 230 g / t or more and 270 g / t or less, and more specifically 250 g / t.
상기 포수제의 첨가량이 200 g/t 미만인 경우, 목적하고자 하는 광물에 대한 선택성이 낮아 Ca 함유광물 및 Fe 산화광물과 함께 회중석을 점진적으로 포집하게 되어 회중석의 부유량이 충분하지 않아 회중석 정광의 품위 및 회수율이 낮은 문제가 발생할 수 있다. 나아가, 상기 포수제의 첨가량이 200 g/t 미만인 경우 회중석 정광의 품위가 낮은 이유로는 포수제에 의해 포집된 회중석이 약한 플록(floc)을 형성하여 이들 사이에 존재하는 맥석광물들이 정광 속에 포획되어 회수될 수 있기 때문이다. When the amount of the catcher is less than 200 g / t, the selectivity to the desired mineral is low and the sinterite is gradually collected with Ca-containing minerals and Fe oxide minerals, so that the suspended solids of the sinterite is not sufficient. Problems with low recovery rates may occur. Furthermore, when the amount of the catcher is less than 200 g / t, the reason why the concentration of the sinter concentrate is low is that the sinter collected by the catcher forms a weak floc, and gangue minerals present between them are trapped in the concentrate. Because it can be recovered.
또한, 상기 포수제의 첨가량이 300 g/t 초과인 경우, 뚜렷한 회수율의 증가 없이 회중석 정광의 품위만 미미하게 감소하게 될 수 있으므로, 선별효율의 뚜렷한 차이 없이 시약 사용량만 증가하는 문제가 발생할 수 있다. In addition, when the addition amount of the catcher is more than 300 g / t, only the quality of the feldspar concentrate can be slightly reduced without a clear increase in recovery, there may be a problem that only the amount of reagent used increases without a noticeable difference in screening efficiency. .
본 발명의 일 실시상태에 따르면, 상기 포수제의 반응 시간은 상기 포수제의 첨가 후 30초 이상 2분 이하일 수 있다. 구체적으로, 상기 포수제의 반응 시간은 상기 포수제의 첨가 후 50초 이상 80초 이하, 보다 구체적으로 1분일 수 있다. 상기 포수제의 반응 시간이 상기 범위 내인 경우, 최적의 선별 효율을 발휘할 수 있다. 상기 포수제의 반응 시간이 상기 포수제의 첨가 후 2분을 초과하는 경우, 회중석 정광의 회수율을 미미하게 증가하는 반면 품위는 급격하게 저하되는 문제가 발생할 수 있다. 이는 지방산계열의 포수제인 올레산은 목적하고자 하는 광물에 대한 선택성이 낮아 반응시간이 길어질수록 회중석뿐만 아니라 Ca 함유광물 및 Fe 산화광물등과 같은 맥석광물들까지도 같이 회수를 하기 때문인 것으로 파악된다. According to an exemplary embodiment of the present invention, the reaction time of the catcher may be 30 seconds or more and 2 minutes or less after the addition of the catcher. Specifically, the reaction time of the catcher may be 50 seconds or more and 80 seconds or less, more specifically 1 minute after the addition of the catcher. When the reaction time of the catcher is within the above range, the optimum screening efficiency can be exhibited. When the reaction time of the catcher exceeds 2 minutes after the addition of the catcher, a slight increase in the recovery rate of the feldspar concentrate may occur, but the quality may decrease rapidly. This is because oleic acid, a fatty acid-based catcher, has low selectivity for the desired mineral, and the longer the reaction time, the more calcite minerals such as Ca-containing minerals and Fe oxide minerals are recovered.
본 발명의 일 실시상태에 따르면, 상기 기포제는 중성 기포제일 수 있다. 중성 기포제를 사용하는 경우, 상기 광액의 pH 조절을 효과적으로 수행할 수 있는 장점이 있다. According to an exemplary embodiment of the present invention, the foaming agent may be a neutral foaming agent. When using a neutral foaming agent, there is an advantage that can effectively perform the pH control of the mineral liquid.
구체적으로, 상기 기포제는 Akzonoble사의 Lankropol-8300, 파인 오일, AF 65(Aerofroth 65) 또는 MIBC(Methyl isobutyl carbinol)일 수 있다. 보다 구체적으로, 상기 기포제는 Akzonoble사의 Lankropol-8300일 수 있다. 상기 Lankropol-8300을 기포제로 사용하는 경우, 파인 오일, AF 65(Aerofroth 65) 또는 MIBC(Methyl isobutyl carbinol)을 사용하는 경우에 비하여 보다 우수한 선별효율을 나타낼 수 있다. Specifically, the foaming agent may be Lankropol-8300, Fine Oil, AF 65 (Aerofroth 65) or MIBC (Methyl isobutyl carbinol) from Akzonoble. More specifically, the foaming agent may be Lankropol-8300 manufactured by Akzonoble. When Lankropol-8300 is used as a foaming agent, it may exhibit better screening efficiency than fine oil, AF 65 (Aerofroth 65) or MIBC (Methyl isobutyl carbinol).
본 발명의 일 실시상태에 따르면, 상기 기포제의 첨가량은 30 g/t 이상 75 g/t 이하일 수 있다. 구체적으로, 상기 기포제의 첨가량은 40 g/t 이상 60 g/t 이하, 보다 구체적으로 50 g/t일 수 있다. 상기 기포제의 첨가량이 30 g/t 이상 75 g/t 이하 인 경우, 최적의 선별 효율을 발휘할 수 있다. 상기 기포제의 첨가량이 30 g/t 미만이면 광액의 계면장력을 충분히 낮추지 못해 굵은 기포의 발생이 많게 되어 정광의 품위와 회수율이 낮아질 수 있다. 또한, 상기 기포제의 첨가량이 75 g/t을 초과하는 경우, 뚜렷한 선별효율의 증가 없이 기포제의 소모만 증가되어 처리비용만 높아질 수 있다.According to the exemplary embodiment of the present invention, the amount of the foaming agent may be 30 g / t or more and 75 g / t or less. Specifically, the amount of the foaming agent may be 40 g / t or more and 60 g / t or less, more specifically 50 g / t. When the addition amount of the said foaming agent is 30 g / t or more and 75 g / t or less, optimal sorting efficiency can be exhibited. When the amount of the foaming agent is less than 30 g / t, the interfacial tension of the mineral liquid is not sufficiently lowered, so that a lot of coarse bubbles are generated, and the quality and recovery rate of the concentrate may be lowered. In addition, when the addition amount of the foaming agent exceeds 75 g / t, only the consumption of the foaming agent is increased without a clear increase in the screening efficiency can be increased only the treatment cost.
본 발명의 일 실시상태에 따르면, 상기 기포제의 반응 시간은 상기 기포제의 첨가 후 30초 이상 90초 이하일 수 있다. 구체적으로, 상기 기포제의 반응 시간은 상기 기포제의 첨가 후 50초 이상 70초 이하, 보다 구체적으로 1분일 수 있다. According to an exemplary embodiment of the present invention, the reaction time of the foaming agent may be 30 seconds or more and 90 seconds or less after the addition of the foaming agent. Specifically, the reaction time of the foaming agent may be 50 seconds or more and 70 seconds or less, more specifically 1 minute after the addition of the foaming agent.
본 발명의 일 실시상태에 따르면, 상기 회중석 원광석의 미립 산물의 입자 크기는 -170 메쉬 내지 -260 메쉬일 수 있다. 구체적으로, 상기 회중석 원광석의 미립 산물의 입자 크기는 -180 메쉬 내지 -220 메쉬, 보다 구체적으로 -200 메쉬일 수 있다. 상기 회중석 원광석의 미립 산물의 입자 크기가 상기 범위 내인 경우, 최적의 선별 효율을 발휘할 수 있다. According to an exemplary embodiment of the present invention, the particle size of the particulate product of the feldspar ore may be -170 mesh to -260 mesh. Specifically, the particle size of the particulate product of the feldspar ore may be -180 mesh to -220 mesh, more specifically -200 mesh. When the particle size of the particulate product of the feldspar ore is within the above range, an optimal sorting efficiency can be exhibited.
본 명세서에서 상기 미립 산물의 입자는 메쉬를 통과하여 부유선별에 사용되는 입자일 수 있다. 나아가, 본 명세서에서의 미립 산물의 입자 크기 단위(-메쉬)는 해당 메쉬를 통과하는 입자들의 크기를 의미할 수 있다. 예를 들어, 입자 크기가 -170 메쉬인 경우, 170 메쉬를 통과하는 입자들의 크기를 의미할 수 있다. 그러므로, 상기 메쉬 단위의 "-"는 일반적인 음의 값을 의미하는 것이 아니며, 이는 당업계에서 일반적으로 사용되는 것이다. In the present specification, the particles of the particulate product may be particles used for flotation through a mesh. Furthermore, the particle size unit (-mesh) of the particulate product herein may refer to the size of the particles passing through the mesh. For example, when the particle size is -170 mesh, it may mean the size of the particles passing through the 170 mesh. Therefore, "-" in the mesh unit does not mean a general negative value, which is generally used in the art.
상기 회중석 원광석의 미립 산물의 입자 크기가 -260 메쉬를 초과하는 경우, 즉 260 메쉬보다 입경이 작은 입자인 경우, 미립자의 발생이 많아 선택성이 낮아지면서 다량의 맥석광물들이 포말층으로 이동하게 되어 회중석 정광의 품위가 저하되는 문제가 발생할 수 있다. 즉, 미립 산물의 입자가 너무 작아지면 단체분리도는 향상되지만 기포와 기포층 사이의 수층에 미립의 친수성 맥석 광물들이 포획되어 포말층으로 이동될 확률이 높고, 또한 미립의 맥석광물들이 교반기의 와류현상과 상승하는 기포 후단에서 발생되는 진공흐름에 이끌려 정광산물로 이동되기 때문이다. When the particle size of the granular product of the feldspar ore exceeds -260 mesh, that is, when the particle size is smaller than 260 mesh, a large amount of fine particles are generated and the selectivity is lowered so that a large amount of gangue minerals move to the foam layer. The problem of deterioration of concentrate may occur. In other words, if the particles of the particulate product are too small, the degree of separation is improved, but the hydrophilic gangue minerals are trapped in the water layer between the bubble and the bubble layer and are likely to move to the foam layer. This is because it is moved to the concentrate by the vacuum flow generated after the rising bubbles.
또한, 상기 회중석 원광석의 미립 산물의 입자 크기가 -170 메쉬 미만인 경우, 즉 170 메쉬 보다 입경이 굵은 입자인 경우, 회중석 입자가 비교적 굵어 일부가 부유되지 못하고 광미나 중광으로 처리되기 때문에 회중석 정광의 회수율이 낮은 문제가 발생할 수 있다. In addition, when the particle size of the particulate product of the feldspar ore is less than -170 mesh, that is, when the particle size is thicker than 170 mesh, the sinterite concentrate is relatively thick and part of it is not suspended and is treated with light or heavy light, so that the recovery rate of the feldspar concentrate is treated. This low problem can occur.
본 발명의 일 실시상태에 따르면, 상기 회중석 조선 정광시의 교반속도는 1,300 rpm 이상 1,800rpm 이하일 수 있다. 구체적으로, 상기 회중석 조선 정광시의 교반속도는 1,500 rpm 이상 1,700 rpm 이하일 수 있다. 상기 교반속도가 상기 범위 내인 경우 조선정광을 효과적으로 수행할 수 있다. 교반속도가 1,300 rpm 보다 느리면 회수율이 감소하는 문제가 발생할 수 있고, 교반속도가 1,800 rpm 보다 빠르면 조선정광 중 맥석광물들의 혼입이 증가하는 문제가 발생할 수 있다.According to one embodiment of the present invention, the stirring speed at the time of sintered shipbuilding concentrate may be 1,300 rpm or more and 1,800 rpm or less. Specifically, the stirring speed during the sintered shipbuilding concentrate may be 1,500 rpm or more and 1,700 rpm or less. When the stirring speed is in the above range can be effectively carried out shipbuilding concentrate. If the stirring speed is slower than 1,300 rpm, the recovery rate may be reduced, and if the stirring speed is faster than 1,800 rpm, the mixing of gangue minerals in shipbuilding concentrate may increase.
본 명세서의 일 실시상태에 따르면, 상기 미립 산물은 회중석 원광석을 파쇄 및 분쇄하여 형성될 수 있다. 상기 파쇄 및 분쇄하는 방법은 조 크러셔, 롤 크러셔 또는 롯드밀을 이용하여 회중석 원광석을 파분쇄 할 수 있다. According to one embodiment of the present specification, the particulate product may be formed by crushing and pulverizing feldspar ore. The crushing and crushing method may be crushed scheelite ore using a jaw crusher, a roll crusher or a rod mill.
본 발명의 일 실시상태에 따르면, 상기 광액의 농도는 25 %solids 이상 40 %solids 이하일 수 있다. 구체적으로, 상기 광액의 농도는 33 %solids 이상 37 %solids 이하, 보다 구체적으로 35 %solids일 수 있다.According to an exemplary embodiment of the present invention, the concentration of the mineral liquid may be 25% solids or more and 40% solids or less. Specifically, the concentration of the mineral liquid may be 33% solids or more and 37% solids or less, more specifically 35% solids.
상기 %solids는 광액 중의 고체 상의 농도를 의미한다. 구체적으로, 상기 %solids는 광액 내의 미립 산물의 함량일 수 있으며, 보다 구체적으로, 광액 중량에 대한 미립 산물의 중량 비율을 의미할 수 있다. % Solids means the concentration of the solid phase in the mineral liquid. Specifically, the% solids may be the content of the particulate product in the mineral liquid, and more specifically, may refer to the weight ratio of the particulate product to the weight of the mineral liquid.
상기 광액의 농도가 상기 범위 내인 경우, 최적의 선별 효율을 발휘할 수 있다. When the concentration of the mineral liquid is within the above range, it is possible to exhibit the optimum sorting efficiency.
상기 광액의 농도가 40 %solids 초과인 경우, 뚜렷한 회수율의 증가 없이, 회중석 정광의 품위가 낮아지는 문제가 발생할 수 있다. 이는 맥석광물과 회중석 입자 간의 자유공간이 충분하지 않아 포수제의 선택성이 낮아져 회중석뿐만 아니라 맥석 광물까지 포집하기 때문인 것으로 파악된다. When the concentration of the mineral liquid is more than 40% solids, there may be a problem that the quality of the sinter concentrate is lowered without a significant increase in recovery rate. This is because the lack of free space between the gangue mineral and the stalactite particles, the selectivity of the catcher is lowered to capture not only the slate, but also the gangue mineral.
본 발명의 일 실시상태는 상기 고품위 회중석 정광의 회수방법을 구현할 수 있는 하기의 회중석 정광의 회수 설비를 제공한다. An exemplary embodiment of the present invention provides a recovery device for the following slate concentrate that can implement the recovery method of the high-quality scheelite concentrate.
본 발명의 일 실시상태는, 회중석 원광석의 미립 산물을 물과 혼합하여 광액을 형성하는 광액 형성 장치;One embodiment of the present invention, a mineral liquid forming apparatus for forming a mineral liquid by mixing the fine products of the feldspar ore with water;
상기 광액을 부유선별하여 회중석 조선 정광을 얻는 조선 부유선별 장치; 및 A ship floating sorting device for sorting the mineral liquid to obtain a scheelite shipbuilding concentrate; And
상기 회중석 조선 정광을 부유선별하여 회중석 정선 정광을 얻는 정선 부유선별 장치를 포함하고, Floating sorting the feldspar shipbuilding concentrates, and includes a sorting floating screening device to obtain a slate concentrate concentrates,
상기 조선 부유선별 장치는 pH 조절제인 Na2CO3의 첨가량을 2 kg/t 이상 3.5 kg/t 이하로 조절하는 pH 조절부, 및 억제제인 Na2SiO3의 첨가량을 3.5 kg/t 이상 4.5 kg/t 이하로 조절하는 억제제 조절부가 순차적으로 구비되어 상기 광액에 pH 조절제 및 억제제를 순차적으로 첨가하는 것인 회중석 정광의 회수 설비를 제공한다. The ship floating sorting device is a pH adjusting unit for adjusting the addition amount of Na 2 CO 3 pH adjuster to 2 kg / t or more to 3.5 kg / t or less, and the addition amount of the inhibitor Na 2 SiO 3 3.5 kg / t or more 4.5 kg Inhibitor control unit for controlling to / t or less is provided in order to provide a recovery facility for slagite concentrate to sequentially add a pH regulator and inhibitor to the mineral liquid.
상기 광액 형성 장치는 전술한 광액을 형성하는 단계를 구현하는 장치이다. The photoliquid forming apparatus is a device that implements the above-described forming of the photoliquid.
상기 조선 부유선별 장치는 전술한 회중석 조선 정광을 얻는 단계를 구현하는 장치이다. The ship floating sorting device is a device that implements the step of obtaining the above-described scheelite shipbuilding concentrate.
상기 정선 부유선별장치는 전술한 회중석 정선 정광을 얻는 단계를 구현하는 장치이다. The above-mentioned floatation sorting device is a device for implementing the above-described slate concentrate concentrate.
본 발명의 일 실시상태에 따르면, 상기 광액 형성 장치와 상기 조선 부유선별 장치 사이에, 상기 광액을 부유선별하여 몰리브덴을 제거하는 몰리브덴 부유선별 장치, 및 몰리브덴이 제거된 상기 광액을 부유선별하여 황화물을 제거하는 황화물 부유선별 장치가 순차적으로 구비될 수 있다. According to an exemplary embodiment of the present invention, between the mineral liquid forming apparatus and the shipbuilding flotation device, a molybdenum flotation screening device for removing molybdenum by flotation of the mineral liquid, and the mineral liquid from which molybdenum is removed Sulfide flotation device to remove may be provided sequentially.
상기 몰리브덴 부유선별 장치는 전술한 광액을 부유선별하여 몰리브덴을 제거하는 단계를 구현하는 장치이다. The molybdenum flotation screening device is a device for implementing the step of removing the molybdenum by flotation of the above-described mineral liquid.
상기 황화물 부유선별 장치는 전술한 광액을 부유선별하여 황화물을 제거하는 단계를 구현하는 장치이다. The sulfide flotation screening apparatus is a device for implementing the step of removing the sulfides by flotation of the above-described mineral liquid.
상기 광액 형성 장치, 상기 조선 부유선별 장치, 상기 정선 부유선별장치, 상기 몰리브덴 부유선별 장치 및 상기 황화물 부유선별 장치의 구성은 당업계의 부유선별을 위한 장치를 적용할 수 있다. The mineral liquid forming apparatus, the shipbuilding floating sorting device, the sorting floating sorting device, the molybdenum floating sorting device and the sulfide floating sorting device can be applied to the float sorting device in the art.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 기술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to Examples. However, the embodiments according to the present invention may be modified in various other forms, and the scope of the present invention is not interpreted to be limited to the embodiments described below. The embodiments of the present specification are provided to more completely explain the present invention to those skilled in the art.
[시료 및 실험 방법][Sample and Experiment Method]
하기 실시예의 수행을 위한 시료로서, 강원도 영월군 상동에 위치한 상동광산에서 채취한 텅스텐 시료를 이용하였다. ICP와 XRF를 이용하여 상기 텅스텐 시료의 성분을 분석한 결과, 하기 표 1과 같은 결과를 얻었다.As a sample for performing the following example, a tungsten sample collected from the Sangdong mine located in Sangdong, Yeongwol-gun, Gangwon-do was used. As a result of analyzing the components of the tungsten sample using ICP and XRF, the results shown in Table 1 were obtained.
화학 조성(%)Chemical composition (%)
WO3 WO 3 SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 CaOCaO MgOMgO K2OK 2 O Na2ONa 2 O TiO2 TiO 2 MnOMnO P2O5 P 2 O 5 IglossIgloss
0.750.75 52.5652.56 9.939.93 17.1717.17 12.2912.29 2.562.56 0.820.82 0.110.11 0.730.73 0.870.87 0.730.73 1.481.48
상기 채취한 텅스텐 시료의 원광석을 조 크러셔와 롤 크러셔 그리고 로드밀을 이용하여 파·분쇄 후 목적한 미립 산물의 입자 크기로 제조하였다. 부유선별 실험은 실험실용 Denver sub-A 부유선별기를 사용하였으며, 조선 부유선별에 앞서 몰리브덴과 황화물을 제거하기 위한 부유선별을 실시하였다. 그리고 pH 조절제(Na2CO3)-억제제(Na2SiO3)-포수제(Oleic acid)-기포제(Lankropol-8300)의 순으로 시약을 첨가하였으며, 이때 광액농도 35 %solids, 입자크기 -200 메쉬, 교반속도 1,500 rpm으로 하였다. 정선 부유선별에서는 교반속도를 1,200 rpm으로 낮추고, pH 조절제, 억제제, 포수제, 기포제의 첨가 없이 실험을 수행하였다. 나아가, 포수제인 올레산은 14 이하부터 고화되기 시작하므로 모든 실험에서는 광액의 온도를 25 ℃이상 유지하면서 실험을 실시하였다.The raw ore of the tungsten sample thus obtained was prepared using a jaw crusher, a roll crusher, and a rod mill to a particle size of a desired fine product after crushing and crushing. Float screening experiments were carried out using a laboratory Denver sub-A flotation screener and flotation screening to remove molybdenum and sulfides prior to shipbuilding screening. Then, reagents were added in the order of pH adjuster (Na 2 CO 3 ) -inhibitor (Na 2 SiO 3 ) -occasion agent (Oleic acid) -foaming agent (Lankropol-8300), where the concentration of the mineral solution was 35% solids and the particle size was -200. The mesh and the stirring speed were 1,500 rpm. In the case of selected flotation, the stirring speed was lowered to 1,200 rpm, and the experiment was performed without the addition of a pH regulator, inhibitor, catcher, and foaming agent. Furthermore, the oleic acid, which is a catcher, began to solidify from 14 or less, and thus, all experiments were conducted while maintaining the temperature of the mineral liquid at 25 ° C or higher.
[실시예 1] - 미립 산물의 입자 크기Example 1 Particle Size of Particle Product
미립 산물의 입자 크기가 회중석 부유선별에 미치는 영향을 관찰하기 위하여, -100 메쉬에서 -325 메쉬까지의 입자를 제조한 후, 각각 광액농도 35 %solids, 교반속도 1,500 rpm에서 pH 조절제(Na2CO3) 3 kg/t, 억제제(Na2SiO3) 4 kg/t, 포수제(Oleic acid) 250 g/t 및 기포제(Lankropol-8300) 50 g/t 순으로 시약을 첨가하여 실험을 수행하였다. 시약첨가 후 반응 시간은 pH조절제와 억제제를 순서대로 넣고 5분, 포수제와 기포제 첨가 후 각 1분씩을 부여하였다.In order to observe the effect of the particle size of the particulate product on the sputum suspension screening, particles from -100 mesh to -325 mesh were prepared, and then pH regulators (Na 2 CO) at a mineral solution concentration of 35% solids and a stirring speed of 1,500 rpm, respectively. 3 ) The experiment was performed by adding reagents in the order of 3 kg / t, 4 kg / t of inhibitor (Na 2 SiO 3 ), 250 g / t of oleic acid and 50 g / t of foaming agent (Lankropol-8300). . After the addition of the reagent, the reaction time was added to the pH adjuster and inhibitor in order, 5 minutes, each one minutes after the addition of the catcher and the foaming agent was given.
도 3은 실시 예 1의 미립 산물의 입자 크기에 따른 회중석 정광의 품위(grade of WO3) 및 회수율(recovery of WO3)을 나타낸 것이다. Figure 3 shows a refined embodiment of the scheelite concentrate according to the particle size of the particulate product of 1 (grade of WO 3) and recovery (recovery of WO 3).
도 3에 따르면, 회중석 정광의 회수율은 -200 메쉬 입자까지는 크게 증가하다가 이를 기점으로 입자가 더 작아지면 감소하는 것을 알 수 있다. 이는 -200 메쉬 입자의 경우 굵은 입자에서 부유하지 못했던 회중석이 효과적으로 부유하였기 때문에 회수율이 증가된 것으로 판단된다. According to Figure 3, it can be seen that the recovery of sinter concentrate is greatly increased up to -200 mesh particles, but decreases as the particles become smaller from this point. In the case of -200 mesh particles, it is thought that the recovery rate was increased because the sintered stone which was not suspended in the coarse particles was effectively suspended.
그러므로, 회중석 정광의 품위와 회수율을 고려하면, 미립 산물의 입자 크기는 -170 메쉬 내지 -260 메쉬의 입자 크기인 경우 우수한 효율을 나타냈고, -200 메쉬인 경우 가장 우수한 효율을 나타내었다. 미립 산물의 입자크기가 -200 메쉬일 때 회중석 정광의 품위는 67.6 %WO3, 회수율은 88.16 %였다. Therefore, in consideration of the quality and recovery of scheelite concentrate, the particle size of the particulate product showed excellent efficiency when the particle size was -170 to -260 mesh, and the best efficiency when the -200 mesh. When the particle size of the particulate product was -200 mesh, the sintered concentrate was 67.6% WO 3 and the recovery was 88.16%.
[실시예 2] - pH 조절제의 종류Example 2 Types of pH Control Agents
미립산물의 입자 크기를 -200 메쉬로 한 것을 제외하고, 실시예 1과 동일하게 실험을 진행하였다.The experiment was conducted in the same manner as in Example 1, except that the particle size of the particulate product was -200 mesh.
[비교예 1] - pH 조절제의 종류Comparative Example 1 Types of pH Control Agent
본 발명에 따른 pH 조절제인 Na2CO3의 성능을 평가하기 위하여, 대표적인 염기성 pH조절제인 NaOH, CaO 및 Na2S을 선택하여 부유선별에 미치는 영향을 비교하였다. 실험조건은 pH 조절제를 NaOH, CaO 또는 Na2S으로 한 것을 제외하고, 실시예 2와 동일하게 실험을 진행하였다. In order to evaluate the performance of Na 2 CO 3 pH adjuster according to the present invention, the effects of on the sorting by selecting the representative basic pH regulators NaOH, CaO and Na 2 S was compared. Experimental conditions were conducted in the same manner as in Example 2, except that the pH adjusting agent was NaOH, CaO or Na 2 S.
도 4는 실시예 2 및 비교예 1의 pH 조절제의 종류에 따른 회중석 정광의 품위(grade of WO3) 및 회수율(recovery of WO3)을 나타낸 것이다.Figure 4 shows the Example 2 and Comparative Example quality of scheelite concentrates according to the type of pH adjusting agent 1 (grade of WO 3) and recovery (recovery of WO 3).
도 4에 따르면, 가장 선별 효율이 우수한 pH 조절제는 실시예 2에 따른 Na2CO3이었으며, 회중석 정광의 품위와 회수율이 각각 67.6 %WO3와 88.16 %로 가장 높은 결과를 나타내었다. 나아가, 비교예 1에 따른 NaOH와 Na2S의 경우, 회중석 정광의 품위 및 회수율이 저조한 것을 알 수 있었다. 또한, 비교예 1에 따른 CaO의 경우, 회중석 정광의 품위와 회수율이 각각 1.21 %WO3와 12.62 %로써, 뚜렷한 선별효율을 보여주지 못하였다.According to FIG. 4, the most effective pH control agent was Na 2 CO 3 according to Example 2, and the grade and recovery rate of the sintered concentrate were 67.6% WO 3 and 88.16%, respectively. Furthermore, in the case of NaOH and Na 2 S according to Comparative Example 1, it was found that the grade and recovery rate of sintered concentrate were low. In addition, in the case of CaO according to Comparative Example 1, the grade and recovery of the sintered concentrate were 1.21% WO 3 and 12.62%, respectively, which did not show a clear screening efficiency.
[실시예 3] - pH 조절제의 첨가량Example 3-Added amount of pH adjusting agent
pH 조절제인 Na2CO3 의 첨가량을 2 kg/t 내지 3 kg/t로 조절한 것을 제외하고, 실시예 2와 동일한 방법으로 실험을 진행하였다. The experiment was conducted in the same manner as in Example 2, except that the addition amount of Na 2 CO 3 , which is a pH regulator, was adjusted to 2 kg / t to 3 kg / t.
[비교예 2] - pH 조절제의 첨가량 [Comparative Example 2] -Added amount of pH adjusting agent
pH 조절제인 Na2CO3 의 첨가량을 1 kg/t 또는 4 kg/으로 조절한 것을 제외하고, 실시예 3과 동일한 방법으로 실험을 진행하였다. The experiment was conducted in the same manner as in Example 3 except that the addition amount of Na 2 CO 3 , which is a pH regulator, was adjusted to 1 kg / t or 4 kg /.
도 5는 실시예 3 및 비교예 2의 pH 조절제의 첨가량에 따른 회중석 정광의 품위(grade of WO3) 및 회수율(recovery of WO3)을 나타낸 것이다.Figure 5 shows a third embodiment and a comparative example 2 of the quality of the scheelite concentrate according to the addition amount of the pH adjusting agent (grade of WO 3) and recovery (recovery of WO 3).
도 5에 따르면, Na2CO3이 증가함에 따라 회중석 정광의 회수율 또한 증가하는 것을 알 수 있었으며, 품위는 3 kg/t까지는 비슷한 경향을 보이다 이보다 첨가량이 증가하면 급격히 떨어지는 것을 알 수 있다. 구체적으로, 비교예 2에 따른 Na2CO3의 첨가량이 1 kg/t인 경우 회중석 정광의 회수율이 60 % 수준으로 낮고, Na2CO3의 첨가량이 4 kg/t인 경우, 회중석 정광의 품위가 지나치게 떨어지는 것을 알 수 있다. According to Figure 5, it can be seen that the recovery of salt concentrate also increases as Na 2 CO 3 increases, the quality is similar trend up to 3 kg / t, it can be seen that sharply falls when the addition amount is increased. Specifically, when the addition amount of Na 2 CO 3 according to Comparative Example 2 is 1 kg / t, the recovery rate of sinter concentrate is low to 60% level, and when the addition amount of Na 2 CO 3 is 4 kg / t, the grade of salt concentrate It can be seen that falls too much.
그러므로, 회중석 정광의 품위와 회수율을 고려하면, pH 조절제의 첨가량이 3 kg/t일 때 가장 우수한 효율을 나타내었고, 최적의 pH 조절제의 첨가량 범위는 2 kg/t 내지 3.5 kg/t인 것으로 판단된다. pH 조절제의 첨가량이 3 kg/t일 때의 회중석 정광의 품위와 회수율은 각각 67.6 %WO3와 88.16 %이었다.Therefore, considering the grade and recovery rate of sinterite concentrate, it showed the best efficiency when the addition amount of pH adjuster was 3 kg / t, and it was judged that the optimum addition amount range of pH regulator was 2 kg / t to 3.5 kg / t. do. The grade and recovery of sintered concentrate at 3 kg / t of pH adjuster were 67.6% WO 3 and 88.16%, respectively.
[실시예 4] - 억제제의 첨가량Example 4 Addition of Inhibitor
미립 산물의 입자 크기를 -200 메쉬로 하고, 억제제인 Na2SiO3의 첨가량을 4 kg/t으로 한 것을 제외하고, 실시예 1과 동일한 방법으로 실험을 진행하였다. The experiment was conducted in the same manner as in Example 1 except that the particle size of the particulate product was -200 mesh and the amount of the inhibitor Na 2 SiO 3 added was 4 kg / t.
[비교예 3] - 억제제의 첨가량Comparative Example 3-Amount of Inhibitor Added
억제제인 Na2SiO3의 첨가량을 1 kg/t 내지 3 kg/t, 및 5 kg/t으로 한 것을 제외하고, 실시예 4와 동일하게 실험을 진행하였다. The experiment was conducted in the same manner as in Example 4, except that the addition amount of the inhibitor, Na 2 SiO 3 , was set to 1 kg / t to 3 kg / t and 5 kg / t.
도 6은 실시예 4 및 비교예 3의 억제제의 첨가량에 따른 회중석 정광의 품위(grade of WO3) 및 회수율(recovery of WO3)을 나타낸 것이다.Figure 6 shows a fourth embodiment and the comparative quality of the scheelite concentrate according to the added amount of the inhibitor of Example 3 (grade of WO 3) and recovery (recovery of WO 3).
도 6에 따르면, 억제제의 첨가량이 증가할수록 회중석 정광의 품위는 증가하고 회수율은 감소하는 경향을 알 수 있다. 구체적으로, 비교예 3에 따른 Na2SiO3의 첨가량이 1 kg/t 내지 3 kg/t인 경우 회중석 정광의 품위가 50 %WO3 미만으로 저조한 것을 알 수 있으며, Na2SiO3의 첨가량이 5 kg/t인 경우 회중석 정광의 회수율이 급격하게 떨어진 것을 알 수 있다. 나아가, 실시예 4에 따른 Na2SiO3의 첨가량이 4 ㎏/t인 경우 회중석 정광의 품위와 회수율의 임계점이 나타나는 것을 알 수 있다. According to FIG. 6, it can be seen that as the amount of the inhibitor is increased, the quality of the feldspar concentrate increases and the recovery rate decreases. Specifically, when the addition amount of Na 2 SiO 3 according to Comparative Example 3 is 1 kg / t to 3 kg / t, it can be seen that the grade of the feldspar concentrate is lower than 50% WO 3 , the addition amount of Na 2 SiO 3 At 5 kg / t, it can be seen that the recovery rate of sinter concentrate sharply dropped. Furthermore, when the addition amount of Na 2 SiO 3 according to Example 4 is 4 kg / t, it can be seen that the critical point of the quality and recovery rate of sinterite concentrate.
그러므로, 회중석 정광의 품위와 회수율을 고려하면, 억제제의 첨가량이 4 kg/t 일 때 가장 우수한 효율을 나타내었고, 최적의 억제제의 첨가량의 범위는 3.5 kg/t 지 4.5 kg/t인 것으로 판단된다. Therefore, considering the grade and recovery of sinterite concentrate, it showed the best efficiency when the amount of inhibitor added was 4 kg / t, and the range of the optimum amount of inhibitor was 3.5 kg / t to 4.5 kg / t. .
[실시예 5] - 시약의 첨가 순서Example 5 Addition Procedure of Reagents
미립 산물의 입자 크기를 -200 메쉬로 한 것을 제외하고, 실시예 1과 동일한 방법으로 실험을 진행하였다. 구체적으로, 이 때의 시약 첨가 순서는 pH조절제-억제제-포수제-기포제의 순서였다. The experiment was conducted in the same manner as in Example 1, except that the particle size of the particulate product was -200 mesh. Specifically, the reagent addition order at this time was in the order of the pH regulator-inhibitor-aquatic agent-foaming agent.
[비교예 4] - 시약의 첨가 순서Comparative Example 4-Procedure for Adding Reagents
시약의 첨가 순서를 억제제-pH조절제-포수제-기포제의 순서로 한 것을 제외하고, 실시예 5와 동일한 방법으로 실험을 진행하였다. The experiment was conducted in the same manner as in Example 5, except that the addition order of the reagents was performed in the order of the inhibitor-pH regulator- catcher-foaming agent.
도 7은 실시예 5 및 비교예 4의 시약의 첨가 순서에 따른 회중석 정광의 품위(grade of WO3) 및 회수율(recovery of WO3)을 나타낸 것이다. 구체적으로, 도 7에서의 (A)는 실시예 5에 따른 회중석 정광과 품위 및 회수율을 나타낸 것이고, (B)는 비교예 4에 따른 회중석 정광과 품위 및 회수율을 나타낸 것이다. Figure 7 shows a fifth embodiment and the quality of the scheelite concentrate according to the order of addition of the reagent of Comparative Example 4 (grade of WO 3) and recovery (recovery of WO 3). Specifically, (A) in FIG. 7 shows the scheelite concentrate and grade and recovery rate according to Example 5, and (B) shows the scheelite concentrate and grade and recovery rate according to Comparative Example 4. FIG.
도 7에 따르면, 실시예 5에 따른 회중석 정광의 품위는 67.6 %WO3, 회수율은 88.16 %이었고, 비교예 4에 따른 회중석 정광의 품위는 1.21 %WO3, 회수율은 0.17 %이었다. According to FIG. 7, the grade of the sintered concentrate according to Example 5 was 67.6% WO 3 , the recovery rate was 88.16%, and the grade of the sintered concentrate according to Comparative Example 4 was 1.21% WO 3 , the recovery rate was 0.17%.
그러므로, 실시예 5와 같이 pH 조절제를 첨가한 후 억제제를 첨가하는 것이 억제제 첨가 후 pH 조절제를 첨가하는 비교예 4의 경우에 비하여 월등히 우수한 효과가 나타나는 것을 알 수 있다. Therefore, it can be seen that the addition of the inhibitor after the addition of the pH adjuster as in Example 5 shows an excellent effect compared to the case of Comparative Example 4 in which the pH adjustment agent is added after the addition of the inhibitor.
[실시예 6] - pH 조절제 및 억제제 첨가 후의 반응 시간Example 6-Reaction time after addition of pH adjuster and inhibitor
미립 산물의 입자 크기를 -200 메쉬로 하고, pH조절제와 억제제를 순서대로 넣고 이의 반응 시간을 1분에서 7분까지 변화시킨 것을 제외하고, 실시예 1과 동일하게 실험을 진행하였다. Experiment was carried out in the same manner as in Example 1 except that the particle size of the particulate product was -200 mesh, and the pH adjusting agent and the inhibitor were sequentially added and the reaction time thereof was changed from 1 minute to 7 minutes.
도 8은 실시예 6의 pH 조절제 및 억제제 첨가 후의 반응 시간에 따른 회중석 정광의 품위(grade of WO3) 및 회수율(recovery of WO3)을 나타낸 것이다.Figure 8 shows a sixth embodiment according to the quality of the scheelite concentrate the reaction time after addition of the pH adjusting agent and the inhibitor (grade of WO 3) and recovery (recovery of WO 3).
도 8에 따르면, pH 조절제 및 억제제 첨가 후의 반응 시간이 3분보다 짧으면 맥석광물들의 억제효과가 낮아 품위가 낮아지고, 7분보다 길어지면 뚜렷한 품위증가 없이 회수율이 감소되는 것을 확인할 수 있다. According to Figure 8, if the reaction time after the addition of the pH regulator and inhibitor is shorter than 3 minutes, the inhibitory effect of the gangue minerals are lowered, the grade is lowered, if longer than 7 minutes it can be seen that the recovery rate is reduced without a noticeable dignity.
그러므로, 회중석 정광의 품위와 회수율을 고려하면, pH 조절제 및 억제제 첨가 후의 반응 시간이 5분일 때 가장 우수한 효율을 나타내었고, 최적의 pH 조절제 및 억제제 첨가 후의 반응 시간의 범위는 3분 이상 7분 이하인 것으로 판단된다. pH 조절제 및 억제제 첨가 후의 반응 시간이 5분일 때, 회중석 정광의 품위와 회수율은 각각 67.6 %WO3 및 88.6 %였다. Therefore, considering the grade and recovery rate of sinterite concentrate, it showed the best efficiency when the reaction time after addition of pH adjuster and inhibitor was 5 minutes, and the range of reaction time after addition of optimum pH adjuster and inhibitor was 3 minutes to 7 minutes. It seems to be. When the reaction time after addition of the pH adjusting agent and the inhibitor was 5 minutes, the grade and recovery of the feldspar concentrate were 67.6% WO 3 and 88.6%, respectively.
[실시예 7] - 포수제 종류Example 7 Type of Catcher
포수제의 종류에 따른 회중석 정광의 품위(grade of WO3) 및 회수율(recovery of WO3)을 알아보기 위하여, 수산형 포수제인 올레산, CYTEC사의 AERO 726, CLARIANT사의 FS-2 또는 올레산나트륨을 선택하여 부유선별에 미치는 영향을 알아보았다.To determine the grade of WO 3 and recovery of WO 3 according to the type of catcher, choose oxalic acid, ER-2 726 from CYTEC, FS-2 from CLARIANT or sodium oleate. This study examined the effects on floating screening.
구체적으로, 포수제를 올레산, AERO 726, FS-2 또는 올레산나트륨으로 하고, 미립 산물의 입자 크기를 -200 메쉬로 한 것을 제외하고, 실시예 1과 동일하게 실험을 진행하였다. Specifically, the experiment was conducted in the same manner as in Example 1, except that the catcher was oleic acid, AERO 726, FS-2 or sodium oleate, and the particle size of the particulate product was -200 mesh.
도 9는 실시예 7의 포수제 종류에 따른 회중석 정광의 품위(grade of WO3) 및 회수율(recovery of WO3)을 나타낸 것이다.9 illustrates a seventh embodiment of a catcher refined scheelite concentrates according to the type of (grade of WO 3) and recovery (recovery of WO 3).
도 9에 따르면, 가장 선별 효율이 좋은 포수제로는 올레산이었으며, 회중석 정광의 품위와 회수율이 각각 67.6 %WO3와 88.16 %로 가장 높은 결과를 나타내었다. 나아가, 올레산나트륨의 경우, 회중석 정광의 품위는 65.74 %WO3, 회수율이 68.47 %로 양호한 결과를 나타내었다. 또한, AERO 726과 Fs-2의 경우, AERO 726은 정광의 품위와 회수율이 각각 62.58 %WO3와 75.05 %로 비교적 양호한 품위와 회수율을 보였으며, FS-2는 정광의 품위와 회수율이 각각 34.82 %WO3와 73.55 %로 회수율은 양호하나 다른 포수제에 비하여 품위가 저조한 결과를 나타내었다.According to FIG. 9, the most efficient screening agent was oleic acid, and the grade and recovery rate of sinter concentrate were the highest at 67.6% WO 3 and 88.16%, respectively. Furthermore, in the case of sodium oleate, the grade of sinter concentrate was 65.74% WO 3 and the recovery rate was 68.47%, showing good results. In the case of AERO 726 and Fs-2, AERO 726 has a relatively good grade and recovery rate of 62.58% WO 3 and 75.05%, respectively, while FS-2 has 34.82% grade and recovery rate, respectively. The recovery rate was good at% WO 3 and 73.55%, but the quality was lower than that of other catchers.
[실시예 8] - 포수제 첨가량Example 8-Addition amount of catcher
포수제의 첨가량이 회중석 부유선별에 미치는 영향을 알아보기 위하여, 포수제의 첨가량을 100g/t에서 300g/t까지 변화시키고, 미립 산물의 입자 크기를 -200 메쉬로 한 것을 제외하고, 실시예 1과 동일하게 실험을 진행하였다.In order to investigate the effect of the addition amount of the catcher on the slate sorting, Example 1 was changed except that the amount of the catcher was changed from 100 g / t to 300 g / t, and the particle size of the particulate product was -200 mesh. The experiment was performed in the same manner.
도 10은 실시예 8의 포수제 첨가량에 따른 회중석 정광의 품위(grade of WO3) 및 회수율(recovery of WO3)을 나타낸 것이다.Figure 10 shows a refined embodiment of the scheelite concentrate according to claim catcher amount of Example 8 (grade of WO 3) and recovery (recovery of WO 3).
도 10에 따르면, 포수제 첨가량이 증가할수록 회중석 정광의 품위와 회수율이 250 g/t일 때 가장 우수한 효율을 나타내는 것을 알 수 있으며, 이보다 첨가량이 증가하면 더 이상의 뚜렷한 회수율과 품위의 증가가 없음을 알 수 있다. According to Figure 10, it can be seen that as the addition amount of the catcher increases the highest efficiency when the quality and recovery of the sintered concentrate is 250 g / t, the increase in addition is no more apparent recovery and quality increase Able to know.
그러므로, 회중석 정광의 품위와 회수율을 고려하면, 포수제의 첨가량이 250 g/t일 때 가장 우수한 효율을 나타내었고, 최적의 포수제의 첨가량의 범위는 200 g/t 내지 300g/t 인 것으로 판단된다. 포수제의 첨가량이 250 g/t일 때, 회중석 정광의 품위와 회수율이 각각 67.6 %WO3와 88.16 %이었다. Therefore, considering the grade and recovery rate of sinterite concentrate, it showed the best efficiency when the addition amount of the catcher was 250 g / t, and the optimum amount of the addition of the catcher was determined to be 200 g / t to 300 g / t. do. When the addition amount of the catcher was 250 g / t, the grade and recovery of the sinter concentrate were 67.6% WO 3 and 88.16%, respectively.
[실시예 9] - 포수제 첨가 후 반응 시간 Example 9-Reaction time after addition of catcher
포수제 첨가 후 반응 시간이 회중석 부유선별에 미치는 영향을 알아보기 위하여, 포수제 첨가 후 반응 시간을 30초에서 5분까지 변화시키고, 미립 산물의 입자 크기를 -200 메쉬로 한 것을 제외하고, 실시예 1과 동일하게 실험을 진행하였다.In order to examine the effect of reaction time on the slate suspension after addition of the catcher, the reaction time was changed from 30 seconds to 5 minutes after the addition of the catcher, except that the particle size of the particulate product was -200 mesh. The experiment was conducted in the same manner as in Example 1.
도 11은 실시예 9의 포수제 첨가 후 반응 시간에 따른 회중석 정광의 품위(grade of WO3) 및 회수율(recovery of WO3)을 나타낸 것이다.Figure 11 shows a ninth embodiment catcher after the addition of the quality of the scheelite concentrate according to the reaction time (grade of WO 3) and recovery (recovery of WO 3).
도 11에 따르면, 포수제의 반응시간을 많이 부여할수록 회중석 정광의 회수율은 증가하나 품위는 감소하는 경향을 나타내었다. 구체적으로, 포수제의 반응 시간이 1분을 기점으로 회중석 정광의 회수율의 상승률은 둔화되고, 품위는 떨어지는 경향을 보이는 것을 알 수 있다. According to FIG. 11, as the reaction time of the catcher was increased, the recovery rate of the feldspar concentrate increased but the quality decreased. Specifically, it can be seen that as the reaction time of the catcher starts, the rate of increase in the recovery rate of the sinter concentrate is slowed, and the quality tends to decrease.
그러므로, 회중석 정광의 품위와 회수율을 고려하면, 포수제의 반응 시간이 1분일 때 가장 우수한 효율을 나타내었고, 최적의 포수제의 반응 시간의 범위는 30초 이상 2분 이하인 것으로 판단된다. 포수제의 반응 시간이 1분일 때, 회중석 정광의 품위와 회수율은 각각 67.6 %WO3 및 88.16 %였다. Therefore, considering the grade and recovery rate of sinterite concentrate, it showed the best efficiency when the reaction time of the catcher was 1 minute, and the reaction time range of the optimum catcher was judged to be 30 seconds or more and 2 minutes or less. When the reaction time of the catcher was 1 minute, the grade and recovery of the sinter concentrate were 67.6% WO 3 and 88.16%, respectively.
[실시예 10] - 기포제의 종류 및 첨가량[Example 10]-Type and amount of foaming agent
기포제의 종류가 회중석 부유선별에 미치는 영향을 알아보기 위하여, 중성 기포제로서 Lankropol-8300(Akzonoble사), 파인 오일(Pine oil), AF 65(Aerofroth 65), 또는 MIBC(Methyl isobutyl carbinol)로 하고, 미립 산물의 입자 크기를 -200 메쉬로 한 것을 제외하고, 실시예 1과 동일하게 실험을 진행하였다. In order to examine the effect of the type of foaming agent on the sackstone suspension screening, the neutral foaming agent is Lankropol-8300 (Akzonoble), Pine oil, AF 65 (Aerofroth 65), or MIBC (Methyl isobutyl carbinol), The experiment was conducted in the same manner as in Example 1, except that the particle size of the particulate product was -200 mesh.
도 12는 실시예 10의 기포제의 종류에 따른 회중석 정광의 품위(grade of WO3) 및 회수율(recovery of WO3)을 나타낸 것이다.Figure 12 shows a refined embodiment of the scheelite concentrate according to the type of foaming agent of Example 10 (grade of WO 3) and recovery (recovery of WO 3).
도 12에 따르면, Lankropol-8300의 경우 회중석 정광의 품위와 회수율이 각각 67.6 %WO3와 88.16 %로 가장 효과적인 기포제인 것으로 확인되었다. 또한, 파인 오일과 MIBC의 경우, 회중석 정광의 품위 및 회수율은 Lankropol-8300과 비교하여 상대적으로 낮은 것을 알 수 있으나, 양호한 선별효율을 보였다. 나아가, AF 65의 경우 양호한 회중석 정광의 회수율을 나타내었으나, 다른 기포제에 비하여 품위가 저조한 결과를 나타내었다. 이는 4가지의 기포제 중 다른 기포제들에 비해 포수작용 능력을 가지고 있는 AF 65의 강한 표면 활성화 기능으로 회중석을 비롯하여 친수성 광물들까지 포집하여 정광으로 회수되기 때문인 것으로 판단된다. According to FIG. 12, Lankropol-8300 was found to be the most effective foaming agent in the grade and recovery rate of sintered concentrate was 67.6% WO 3 and 88.16%, respectively. In addition, in the case of fine oil and MIBC, the grade and recovery rate of sintered concentrate were relatively low compared to Lankropol-8300, but showed a good screening efficiency. Furthermore, the AF 65 showed a good recovery rate of sintered concentrate, but showed a lower quality than other foaming agents. This is due to the strong surface activation function of AF 65, which has a catching ability, compared to other foams, and it is believed to be collected by collecting hydrite and hydrophilic minerals.
나아가, 상기 Lankropol-8300 기포제의 첨가량을 25 g/t 에서 100 g/t 로 조절하며 동일하게 실험을 진행하였다. Further, the experiment was conducted in the same manner while adjusting the amount of the Lankropol-8300 foaming agent was adjusted from 25 g / t to 100 g / t.
도 13은 실시예 10의 기포제의 첨가량에 따른 회중석 정광의 품위(grade of WO3) 및 회수율(recovery of WO3)을 나타낸 것이다.Figure 13 shows the exemplary quality of scheelite concentrates according to the addition amount of the foaming agent of Example 10 (grade of WO 3) and recovery (recovery of WO 3).
도 13에 따르면, 상기 기포제의 첨가량이 30 g/t보다 적으면 광액의 계면장력을 충분히 낮추지 못해 굵은 기포의 발생이 많아 품위와 회수율이 낮아지고, 75 g/t보다 많으면 뚜렷한 선별효율의 증가를 확인할 수 없는 것을 확인할 수 있다. According to FIG. 13, when the amount of the foaming agent is less than 30 g / t, the interfacial tension of the mineral liquid is not sufficiently lowered, so that a lot of coarse bubbles are generated, the quality and recovery rate are lowered, and when the amount of the foaming agent is greater than 75 g / t, a clear increase in the screening efficiency is achieved. You can see that it can not be confirmed.
그러므로, 회중석 정광의 품위와 회수율을 고려하면, 상기 기포제의 첨가량이 50 g/t 일 때 가장 우수한 효율을 나타내었고, 최적의 기포제의 첨가량은 30 g/t 이상 75 g/t 이하인 것으로 판단된다. Therefore, in consideration of the quality and recovery rate of sinterite concentrate, it showed the best efficiency when the addition amount of the foaming agent is 50 g / t, it is judged that the optimum amount of the foaming agent is more than 30 g / t 75g / t.
[실시예 11] - 광액 농도 Example 11 Mineral Solution Concentration
광액 농도가 회중석 부유선별에 미치는 영향을 알아보기 위하여, 광액 농도를 15 %solids에서 45 %solids까지 변화시키고, 미립 산물의 입자 크기를 -200 메쉬로 한 것을 제외하고, 실시예 1과 동일하게 실험을 진행하였다. In order to determine the effect of mineral solution concentration on scheelite flotation, experiment was the same as in Example 1 except that the mineral solution concentration was changed from 15% solids to 45% solids, and the particle size of the particulate product was -200 mesh. Proceeded.
도 14는 실시예 11의 광액 농도에 따른 회중석 정광의 품위(grade of WO3) 및 회수율(recovery of WO3)을 나타낸 것이다.Figure 14 illustrates an exemplary quality of scheelite concentrate in accordance with the pulp density of Example 11 (grade of WO 3) and recovery (recovery of WO 3).
도 14에 따르면, 광액 농도가 증가할수록 회중석 정광의 품위는 비슷한 경향을 보이다가 35 %solids를 기점으로 이보다 광액 농도가 더 높아지면 품위가 감소하는 경향을 보인다. 이에 반하여, 회중석 정광의 회수율은 광액 농도가 증가할수록 차츰 증가하는 경향을 보인다. 구체적으로, 광액 농도 15 %solids에서 회중석 정광의 품위는 71.55 %WO3로 가장 높으나, 회수율이 58.14 %로 가장 낮게 나타났다. 또한, 광액 농도 25 %solids와 35 %solids에서 회중석 정광의 품위는 각각 68.35 %WO3와 67.6 %WO3로 비슷한 경향을 보이나, 회중석 정광의 회수율은 35 %solids에서 88.16 %로 25 %solids 조건에서의 76.98 %보다 더 높게 나타났다. According to FIG. 14, as the concentration of mineral solution increases, the grade of sinter concentrate concentrates similarly, but when the concentration of mineral solution is higher than 35% solids, the grade tends to decrease. On the contrary, the recovery rate of sinter concentrate is gradually increased as the concentration of mineral solution increases. Specifically, the feldspar concentrate quality was the highest at 71.55% WO 3 but the recovery was the lowest at 58.14% at 15% solids. In addition, at 25% solids and 35% solids concentrations of sinter concentrate concentrate similarly to 68.35% WO 3 and 67.6% WO 3 , respectively, but the recovery of sinter concentrate is 88.16% at 35% solids at 25% solids. Higher than 76.98% of the time.
그러므로, 회중석 정광의 품위와 회수율을 고려하여, 광액 농도 35 %solids일 때 가장 우수한 효율을 나타내었고, 최적의 광액 농도는 25 %solids 이상 40 %solids 이하인 것으로 판단된다. Therefore, considering the grade and recovery of sintered concentrate, it showed the best efficiency when the concentration of the mineral liquid was 35% solids.
[실시예 12] - XRD 분석Example 12-XRD Analysis
미립 산물의 입자 크기를 -200 메쉬로 한 것을 제외하고, 실시예 1과 같이 실험을 진행하며 얻어진 테일링, 미들링 및 회중석 정광을 XRD 분석을 하였다. Except that the particle size of the fine particles to -200 mesh, XRD analysis of the tailing, middle ring and scheelite concentrate obtained during the experiment as in Example 1 was carried out.
도 15는 실시예 12에 따라 얻어지는 테일링, 미들링 및 회중석 정광의 XRD 분석 결과이다. 15 is an XRD analysis of tailing, middleling and sackstone concentrates obtained according to Example 12. FIG.
구체적으로, 도 15의 A는 테일링의 XRD 분석 결과이며, 테일링의 경우 규산염 광물의 피크만 나타나며, 그 중 석영(Quartz)이 가장 높은 비율을 차지하고 있었다. 반면, 회중석(Scheelite)의 피크는 나타나지 않아 선별효율이 좋은 것을 알 수 있었다. 또한, 도 15의 B는 미들링의 XRD 분석 결과이며, 미들링의 경우 회중석의 피크가 미미하게 나타났으며, 여전히 많은 규산염 맥석광물들의 피크가 나타나는 것을 알 수 있다. 나아가, 도 15의 C는 최종 회중석 정광의 XRD 문석 결과이며, 회중석 정광의 경우 원광에 많이 존재하던 규산염 맥석광물인 석영(Quartz), 녹니석(clinochlore), 조장석(Albite), 및 각섬석(Hornblende)의 피크가 사라진 것으로 보아 규산염 광물들의 억제 및 제거가 효과적으로 이루어진 것을 알 수 있다. 회중석 정광에 비록 소량이지만 형석(Fluorite)이 존재하는 것으로 나타났으며, 이는 포수제로 사용된 올레산에 의해 이온화 된 유기산염 음이온(C17H33COO-)이 금속이온(Ca2+)에 흡착되어 불용성 금속염을 형성한 후, 광물표면을 소수성으로 만들기 때문에 회중석과 함께 회수된 영향인 것으로 파악된다. Specifically, A of FIG. 15 is a result of XRD analysis of tailing, and in the case of tailing, only peaks of silicate minerals appear, and quartz (Quartz) occupies the highest ratio. On the other hand, the peak of Scheelite did not appear, indicating that the screening efficiency was good. In addition, FIG. 15B is a result of XRD analysis of the middle ring. In the case of the middle ring, the peak of the sputum is shown to be insignificant, and the peak of many silicate gangue minerals still appears. Furthermore, FIG. 15C is the result of XRD literite of the final sinter concentrate, and quartz (quartz), chlornochlore, feldspar (Albite), and Hornblende, which are silicate gangue minerals that were present in the ore in the case of sinter concentrate As the peak of disappeared, it can be seen that the suppression and removal of silicate minerals was effective. Although a small amount, but the scheelite concentrate fluorite (Fluorite) was found to be that, if any, which the organic acid anion ionized by the oleic acid used zero catcher (C 17 H 33 COO -) is adsorbed on a metal ion (Ca 2+) After insoluble metal salts are formed, the mineral surface is hydrophobic, which is believed to have been recovered with scheelite.

Claims (12)

  1. 회중석 원광석의 미립 산물을 물과 혼합하여 광액을 형성하는 단계; 상기 광액을 부유선별하여 회중석 조선 정광을 얻는 단계; 및 상기 회중석 조선 정광을 부유선별하여 회중석 정선 정광을 얻는 단계를 포함하고, Mixing the fine product of scheelite ore with water to form a mineral liquid; Flocculating the mineral liquid to obtain scheelite shipbuilding concentrate; And floating sorting the sintered shipbuilding concentrate to obtain the sintered mineral concentrate,
    상기 회중석 조선 정광을 얻는 단계는 상기 광액에 pH 조절제 및 억제제를 순차적으로 첨가하는 단계를 포함하며, Obtaining the scheelite shipbuilding concentrate includes the step of sequentially adding a pH regulator and inhibitor to the mineral liquid,
    상기 pH 조절제는 Na2CO3이고, 상기 pH 조절제의 첨가량은 2 kg/t 이상 3.5 kg/t 이하이며, The pH adjusting agent is Na 2 CO 3 , The amount of the pH adjusting agent is more than 2 kg / t 3.5 kg / t,
    상기 억제제는 Na2SiO3이고, 상기 억제제의 첨가량은 3.5 kg/t 이상 4.5 kg/t 이하인 것인 고품위 회중석 정광의 회수방법. The inhibitor is Na 2 SiO 3 , and the addition amount of the inhibitor is 3.5 kg / t or more 4.5 kg / t or less recovery method of high-quality scheelite concentrate.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 pH 조절제를 첨가한 후 억제제를 첨가하는 단계의 반응 시간은 상기 억제제의 첨가 후 3분 이상 7분 이하인 것인 고품위 회중석 정광의 회수방법.The reaction time of the step of adding the inhibitor after adding the pH adjusting agent is a recovery method of high-quality scheelite concentrate that is 3 minutes or more and 7 minutes or less after the addition of the inhibitor.
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 회중석 조선 정광을 얻는 단계 전에, 상기 광액을 부유선별하여 몰리브덴을 제거하는 단계, 및 몰리브덴이 제거된 상기 광액을 부유선별하여 황화물을 제거하는 단계를 더 포함하는 것인 고품위 회중석 정광의 회수방법.Before the step of obtaining the feldspar shipbuilding concentrate, the step of sorting the mineral liquid to remove molybdenum, and the step of sorting the mineral liquid from which molybdenum has been removed further comprising the step of removing the sulfide concentrate.
  4. 청구항 1에 있어서, The method according to claim 1,
    상기 회중석 조선 정광을 얻는 단계는 상기 억제제를 첨가한 후, 포수제 및 기포제를 첨가하는 것을 더 포함하는 것인 고품위 회중석 정광의 회수방법.The step of obtaining the feldspar shipbuilding concentrate further comprises the addition of a catcher and a foaming agent after the addition of the inhibitor.
  5. 청구항 4에 있어서, The method according to claim 4,
    상기 포수제는 수산형 포수제이고, 상기 포수제의 첨가량은 200 g/t 이상 300 g/t 이하인 것인 고품위 회중석 정광의 회수방법.The catcher is a hydroxyl type catcher, the addition amount of the catcher is 200 g / t or more 300 g / t or less recovery method of high-quality scheelite concentrate.
  6. 청구항 4에 있어서, The method according to claim 4,
    상기 포수제의 반응 시간은 상기 포수제의 첨가 후 30초 이상 2분 이하인 것인 고품위 회중석 정광의 회수방법.The reaction time of the catcher is a recovery method of high-quality scheelite concentrate that is 30 seconds or more and 2 minutes or less after the addition of the catcher.
  7. 청구항 4에 있어서, The method according to claim 4,
    상기 기포제는 중성 기포제이고, 상기 기포제의 첨가량은 30 g/t 이상 75 g/t 이하인 것인 고품위 회중석 정광의 회수방법.Said foaming agent is a neutral foaming agent, The addition amount of the said foaming agent is 30g / t or more 75g / t or less.
  8. 청구항 4에 있어서, The method according to claim 4,
    상기 기포제의 반응 시간은 상기 기포제의 첨가 후 30초 이상 90초 이하인 것인 고품위 회중석 정광의 회수방법.The reaction time of the foaming agent is a recovery method of high-quality scheelite concentrate that is 30 seconds or more and 90 seconds or less after the addition of the foaming agent.
  9. 청구항 1에 있어서, The method according to claim 1,
    상기 회중석 원광석의 미립 산물의 입자 크기는 -170 메쉬 이상 -260 메쉬 이하인 것인 고품위 회중석 정광의 회수방법.Particle size of the fine product of the feldspar ore is -170 mesh or more -260 mesh or less recovery method of high-quality scheelite concentrate.
  10. 청구항 1에 있어서, The method according to claim 1,
    상기 광액의 농도는 25 %solids 이상 40 %solids 이하인 것인 고품위 회중석 정광의 회수방법.The concentration of the mineral liquid is more than 25% solids 40% solids recovery method of high-quality scheelite concentrate.
  11. 회중석 원광석의 미립 산물을 물과 혼합하여 광액을 형성하는 광액 형성 장치;A mineral liquid forming apparatus for mixing a fine product of scheelite ore with water to form a mineral liquid;
    상기 광액을 부유선별하여 회중석 조선 정광을 얻는 조선 부유선별 장치; 및 A ship floating sorting device for sorting the mineral liquid to obtain a scheelite shipbuilding concentrate; And
    상기 회중석 조선 정광을 부유선별하여 회중석 정선 정광을 얻는 정선 부유선별 장치를 포함하고, Floating sorting the feldspar shipbuilding concentrates, and includes a sorting floating screening device to obtain a slate concentrate concentrates,
    상기 조선 부유선별 장치는 pH 조절제인 Na2CO3의 첨가량을 2 kg/t 이상 3.5 kg/t 이하로 조절하는 pH 조절부, 및 억제제인 Na2SiO3의 첨가량을 3.5 kg/t 이상 4.5 kg/t 이하로 조절하는 억제제 조절부가 순차적으로 구비되어 상기 광액에 pH 조절제 및 억제제를 순차적으로 첨가하는 것인 회중석 정광의 회수 설비.The ship floating sorting device is a pH adjusting unit for adjusting the addition amount of Na 2 CO 3 pH adjuster to 2 kg / t or more to 3.5 kg / t or less, and the addition amount of the inhibitor Na 2 SiO 3 3.5 kg / t or more 4.5 kg Suppressor concentration recovery control device to adjust to / t or less is provided with a sequential concentration of the sulphite concentrate to sequentially add the pH regulator and the inhibitor to the mineral liquid.
  12. 청구항 11에 있어서, The method according to claim 11,
    상기 광액 형성 장치와 상기 조선 부유선별 장치 사이에, 상기 광액을 부유선별하여 몰리브덴을 제거하는 몰리브덴 부유선별 장치, 및 몰리브덴이 제거된 상기 광액을 부유선별하여 황화물을 제거하는 황화물 부유선별 장치가 순차적으로 구비된 것인 회중석 정광의 회수 설비.Between the mineral liquid forming apparatus and the shipbuilding flotation device, a molybdenum flotation screening device for floating the mineral liquid to remove molybdenum and a sulfide flotation screening device for floating the mineral liquid from which molybdenum is removed to remove sulfides sequentially Equipment for the recovery of sack concentrate.
PCT/KR2017/005446 2016-06-02 2017-05-25 Method for recovery of high-grade scheelite concentrate and facility for recovery of scheelite concentrate WO2017209440A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780001708.0A CN107922993B (en) 2016-06-02 2017-05-25 Method for collecting high-grade scheelite concentrate and apparatus for collecting scheelite concentrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0068684 2016-06-02
KR1020160068684A KR101710593B1 (en) 2016-06-02 2016-06-02 Method for collecting high grade scheelite concentrate and collecting facilities of scheelite concentrate

Publications (1)

Publication Number Publication Date
WO2017209440A1 true WO2017209440A1 (en) 2017-12-07

Family

ID=58315619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005446 WO2017209440A1 (en) 2016-06-02 2017-05-25 Method for recovery of high-grade scheelite concentrate and facility for recovery of scheelite concentrate

Country Status (3)

Country Link
KR (1) KR101710593B1 (en)
CN (1) CN107922993B (en)
WO (1) WO2017209440A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111359782A (en) * 2018-12-26 2020-07-03 有研工程技术研究院有限公司 Combined flotation reagent for inhibiting magnesium-containing silicate gangue minerals
CN111519047A (en) * 2020-04-08 2020-08-11 厦门钨业股份有限公司 Method for treating scheelite ore
CN113477409A (en) * 2021-07-21 2021-10-08 东北大学 Calcium-containing gangue combined inhibitor for scheelite flotation and preparation and application methods thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110653073A (en) * 2019-08-19 2020-01-07 西北矿冶研究院 Gangue inhibitor and beneficiation method of copper sulfide ore containing pumice mineral
CN111841826B (en) * 2020-06-11 2021-12-10 矿冶科技集团有限公司 Beneficiation method for high-calcium carbonate type low-grade scheelite
CN114570516B (en) * 2022-02-10 2023-04-25 中国地质科学院郑州矿产综合利用研究所 Sorting method of copper-containing tungsten ore

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR780000602B1 (en) * 1977-12-09 1978-11-28 Korea Inst Sci & Tech Hlotation mehtod for low grade scheelite
KR20150076347A (en) * 2013-12-26 2015-07-07 주식회사 포스코 Apparatus for recovering of precious metal and rare-earth metal from ores
KR101576928B1 (en) * 2014-07-14 2015-12-14 한국지질자원연구원 Beneficiation method of high grade scheelite ore by preprocessing
KR101576927B1 (en) * 2014-07-14 2015-12-14 한국지질자원연구원 Beneficiation method of high grade scheelite ore

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101269353A (en) * 2008-05-05 2008-09-24 广州有色金属研究院 Beneficiation method for recycling scheelite from tungsten ore rich in mispickel
KR101191788B1 (en) 2011-04-18 2012-10-16 한국지질자원연구원 Method of froth flotation of molybdenum ore by multi stage grinding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR780000602B1 (en) * 1977-12-09 1978-11-28 Korea Inst Sci & Tech Hlotation mehtod for low grade scheelite
KR20150076347A (en) * 2013-12-26 2015-07-07 주식회사 포스코 Apparatus for recovering of precious metal and rare-earth metal from ores
KR101576928B1 (en) * 2014-07-14 2015-12-14 한국지질자원연구원 Beneficiation method of high grade scheelite ore by preprocessing
KR101576927B1 (en) * 2014-07-14 2015-12-14 한국지질자원연구원 Beneficiation method of high grade scheelite ore

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE, EUN SUN.: "Study on the Recovery of High-Purity Molybdenum Concentrate for Lubricant Use by Froth Flotation", UST MASTER'S THESIS, February 2015 (2015-02-01), pages 1 - 93 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111359782A (en) * 2018-12-26 2020-07-03 有研工程技术研究院有限公司 Combined flotation reagent for inhibiting magnesium-containing silicate gangue minerals
CN111359782B (en) * 2018-12-26 2022-01-14 有研资源环境技术研究院(北京)有限公司 Combined flotation reagent for inhibiting magnesium-containing silicate gangue minerals
CN111519047A (en) * 2020-04-08 2020-08-11 厦门钨业股份有限公司 Method for treating scheelite ore
CN111519047B (en) * 2020-04-08 2022-04-29 厦门钨业股份有限公司 Method for treating scheelite ore
CN113477409A (en) * 2021-07-21 2021-10-08 东北大学 Calcium-containing gangue combined inhibitor for scheelite flotation and preparation and application methods thereof

Also Published As

Publication number Publication date
KR101710593B1 (en) 2017-02-27
CN107922993A (en) 2018-04-17
CN107922993B (en) 2020-03-06

Similar Documents

Publication Publication Date Title
WO2017209440A1 (en) Method for recovery of high-grade scheelite concentrate and facility for recovery of scheelite concentrate
US3696923A (en) Method for recovering fine coal and coal-containing particles in a coal recovery circuit
ES2656076T3 (en) Procedure for treating phosphate minerals and use of a collector composition
AU2013293041B2 (en) Monothiophosphate containing collectors and methods
JPH04227077A (en) Froth fluatation method for silica or silica gangue
KR101572861B1 (en) A method of flotation for copper oxide ore using multi-collector
US5051165A (en) Quality of heavy mineral concentrates
US3430765A (en) Beneficiation of fluorspar ores
EP0246105B1 (en) Recovering coal fines
Ahmed et al. Reduce the iron content in Egyptian feldspar ore of Wadi Zirib for industrial applications
Yehia et al. Recovery and utilization of iron and carbon values from blast furnace flue dust
Barani et al. Removal of impurities from talc ore by leaching method
JPS5876153A (en) Benecification of metal sulfide and collector used therein
CA1045256A (en) Separation of magnesite from its contaminants by reverse flotation
TW201516004A (en) Non-chemical method and system for recovering silicon carbide particles
CN115397561A (en) New frother for mineral recovery
US4218310A (en) Purification of particulate glass by mag separation of impurities
CN104772223A (en) Lindgrenite flotation agent and usage thereof
JP4852717B2 (en) Purification method for contaminated soil
Shao et al. Enhanced flotation separation of phosphate and dolomite using a new amphoteric collector
JP5393172B2 (en) Method for removing impurities from limestone
GB1587107A (en) Beneficiation of complex non-sulphide ores
CN113499851B (en) Combined beneficiation method for recycling superfine feldspar ore concentrate from sodium-potassium feldspar ore washing mud residue
KR102448759B1 (en) Beneficiation of tengsten ore and removal of arsenic
DE3343406A1 (en) Method for purifying silicon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806933

Country of ref document: EP

Kind code of ref document: A1