WO2017209239A1 - Pressure detection device and biological information measuring system - Google Patents

Pressure detection device and biological information measuring system Download PDF

Info

Publication number
WO2017209239A1
WO2017209239A1 PCT/JP2017/020430 JP2017020430W WO2017209239A1 WO 2017209239 A1 WO2017209239 A1 WO 2017209239A1 JP 2017020430 W JP2017020430 W JP 2017020430W WO 2017209239 A1 WO2017209239 A1 WO 2017209239A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric element
pressure
hollow body
end wall
detection device
Prior art date
Application number
PCT/JP2017/020430
Other languages
French (fr)
Japanese (ja)
Inventor
眞 松浦
陽祐 木村
長岡 浩
Original Assignee
パラマウントベッド株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パラマウントベッド株式会社 filed Critical パラマウントベッド株式会社
Priority to CN201780017225.XA priority Critical patent/CN109154534B/en
Publication of WO2017209239A1 publication Critical patent/WO2017209239A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/02Measuring force or stress, in general by hydraulic or pneumatic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means

Definitions

  • the present invention relates to a pressure detection device and a biological information measurement system.
  • the present application claims priority based on Japanese Patent Application No. 2016-111191 filed in Japan on June 3, 2016, the contents of which are incorporated herein by reference.
  • the biological information measurement system includes a pressure receiving unit and a pressure detection device.
  • the pressure receiving unit receives pressure
  • the pressure receiving unit pumps air (sends pressure) to the pressure detection device.
  • a piezoelectric element is provided as a pressure detection device. It is conceivable to adopt a configuration. In this configuration, the pressure of the air fed from the pressure receiving unit is received by the piezoelectric element and converted into a voltage. At this time, if the pressure receiving part receives a large pressure exceeding the assumed measurement range and the pressure of the air pumped from the pressure receiving part to the pressure detection device becomes excessively high, the voltage converted by the piezoelectric element is excessively large. Get higher. As a result, there is a possibility that the measurement accuracy of the minute pressure fluctuation generated in the measurement object may temporarily decrease.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to measure a minute pressure fluctuation generated in a measurement object with high accuracy.
  • a pressure detection device includes a piezoelectric element, a hollow body provided with an input chamber having the piezoelectric element as a part of a wall surface, and provided in the hollow body and communicated with the input chamber, An introduction portion for introducing air into the input chamber in a direction inclined with respect to the piezoelectric element.
  • the tilting direction includes a direction parallel to the piezoelectric element and does not include a perpendicular direction of the piezoelectric element.
  • the introduction unit introduces air into the input chamber in the inclined direction. Therefore, for example, compared with the case where the introduction portion introduces air into the input chamber in the direction of the perpendicular, the pressure directly received by the piezoelectric element from the air introduced into the input chamber through the introduction portion can be suppressed to be small. it can.
  • the introduction unit introduces air into the input chamber in the perpendicular direction
  • the piezoelectric element and the introduction unit are separated from each other in order to reduce the pressure that the piezoelectric element receives directly from the air. It is also possible.
  • the introduction unit introduces air into the input chamber in the inclined direction
  • the pressure can be suppressed small after the piezoelectric element and the introduction unit are brought close to each other.
  • this pressure detection device it is possible to measure a minute pressure fluctuation generated in the measurement object with high accuracy while reducing the size.
  • the piezoelectric element is accommodated in the hollow body, and a reference chamber is provided on the opposite side of the input chamber with the piezoelectric element sandwiched in the hollow body. You may employ
  • the piezoelectric element forms a reference chamber on the opposite side of the input chamber sandwiching the piezoelectric element in the hollow body. Therefore, when air is introduced into the input chamber through the introducing portion, the piezoelectric element can be deformed based on the pressure difference between the input chamber and the reference chamber. Thereby, it is possible to measure a minute pressure fluctuation generated in the measurement object with higher accuracy.
  • the hollow body includes a first end wall portion and a second end wall portion facing each other, and a peripheral wall portion connecting these both end wall portions.
  • the piezoelectric element may be inclined with respect to the first end wall.
  • the hollow body includes both end wall portions and a peripheral wall portion.
  • the piezoelectric element is inclined with respect to the first end wall portion. Therefore, for example, a larger piezoelectric element can be disposed in the hollow body than when the piezoelectric element is disposed in parallel with the first end wall portion. As a result, it is possible to easily increase the sensitivity of the piezoelectric element, and minute pressure fluctuations occurring in the measurement target can be measured with higher accuracy.
  • the pressure detection device further includes a substrate that is accommodated in the hollow body and connected to the piezoelectric element, and the piezoelectric element is interposed between the first end wall portion and the substrate.
  • the input chamber is formed, and the substrate is disposed between the piezoelectric element and the second end wall portion in the hollow body and extends along the first end wall portion. May be.
  • the piezoelectric element is inclined with respect to the first end wall portion. That is, in the piezoelectric element, one end portion of the pair of end portions located on both sides in the inclined direction is closer to the first end wall portion than the other end portion. Thereby, a wide space can be secured between the one end portion and the substrate.
  • the substrate extends along the first end wall. Therefore, the substrate and the second end wall portion can be brought close to each other by disposing a protrusion (for example, an electronic component for arithmetic processing) disposed on the substrate in the wide space. Thereby, it is possible to shorten the distance between both end wall portions while arranging the substrate in the hollow body, and it is possible to reliably reduce the size of the pressure detection device.
  • the introduction part is provided in the peripheral wall part. Therefore, when the hollow body is gripped so as to sandwich the both end wall portions, or when the first end wall portion or the second end wall portion is installed on the installation surface, the introduction portion can be prevented from becoming an obstacle. it can. Thereby, the handleability of a pressure detection apparatus can further be improved.
  • the pressure detection device according to any one of (2) to (5) further includes a chamber member that is housed in the hollow body and forms the reference chamber with the piezoelectric element. You may employ
  • the reference chamber is formed between the piezoelectric element and the chamber member, the degree of freedom in designing the reference chamber can be easily increased.
  • a configuration further including a communication portion capable of communicating the inside of the reference chamber and the outside of the hollow body is adopted. May be.
  • the pressure outside the hollow body may vary.
  • the external pressure may fluctuate slightly by opening and closing the door.
  • the input chamber may be affected by external pressure fluctuations through the introduction portion.
  • the reference chamber is not similarly affected by fluctuations in external pressure, the measurement accuracy may be reduced.
  • the inside of the reference chamber and the outside of the hollow body can communicate with each other through the communicating portion. Therefore, when the input chamber is affected by fluctuations in external pressure, the reference chamber and the outside of the hollow body can be communicated with each other through the communication portion, so that the reference chamber is similarly affected through the communication portion. Can do.
  • the in-phase component of pressure fluctuation can be canceled.
  • the communication between the inside of the reference chamber and the outside of the hollow body through the communication portion is blocked so that the reference chamber is not affected. be able to.
  • the introduction unit introduces air into the input chamber toward the center of the piezoelectric element, it is possible to accurately measure minute pressure fluctuations occurring in the measurement target and to ensure good measurement sensitivity. it can.
  • a biological information measurement system includes a pressure receiving unit that receives pressure from a measurement target, and the pressure detection device according to any one of (1) to (8), wherein the pressure receiving When the part receives pressure, the pressure receiving part pumps air to the introduction part.
  • the biological information measurement system includes the pressure detection device, it is possible to measure a minute pressure fluctuation generated in the measurement object with high accuracy.
  • FIG. 1 It is the figure which looked at a part in the biological information measurement system concerning one embodiment of the present invention. It is a top view of the 1st division body of the pressure detection apparatus which comprises the living body information measuring system shown in FIG. It is a perspective view which shows the state which reversed the chamber member of the pressure detection apparatus which comprises the biometric information measurement system shown in FIG.
  • the biological information measuring system 10 can be used for the purpose of watching and sleeping management in the medical field and the nursing field.
  • the biological information measurement system 10 can also be used for the purpose of managing the heart rate, rumination rate, and body movement of livestock in the livestock field.
  • the biological information measurement system 10 measures minute pressure fluctuations (for example, respiratory rate, heart rate, etc.) generated in a measurement target (for example, animals such as humans and domestic animals) as biological information. Further, the biological information measuring system 10 can measure not only the minute pressure fluctuation but also a pressure fluctuation (for example, body movement) having an amplitude larger than the minute pressure fluctuation as biological information.
  • minute pressure fluctuations for example, respiratory rate, heart rate, etc.
  • a measurement target for example, animals such as humans and domestic animals
  • the biological information measurement system 10 when used as a couch device (bed) in the medical field or the nursing care field, the biological information measurement system 10 can measure the respiration rate, heart rate, body motion, landing, and bed presence of a person on the couch. Can measure bed leaving.
  • the biological information measurement system 10 when used in a toilet or a wheelchair, the biological information measurement system 10 can measure the respiration rate and heart rate of a person seated in the toilet or wheelchair and the presence or absence of the person sitting in the toilet or wheelchair. it can.
  • the living body information measurement system 10 measures the living body information of the measurement object without restriction by being applied to the bed apparatus, the toilet, and the wheelchair as described above.
  • the biological information measurement system 10 detects a signal in a low frequency region (for example, a frequency is 0.1 Hz to 200 Hz).
  • the measurement result of the biological information measurement system 10 is sent to an external information processing apparatus (not shown).
  • the information processing apparatus displays, for example, a measurement result on a display unit or stores a measurement result in a storage unit.
  • the biological information measurement system 10 includes a pressure receiving unit 11, a pressure detection device 12, and a connection pipe 13.
  • the pressure receiving unit 11 receives pressure from the measurement object.
  • the pressure receiving portion 11 is a hollow air pad that can be elastically deformed.
  • the pressure receiving unit 11 receives pressure, the pressure receiving unit 11 is compressed and deformed, and the air inside the pressure receiving unit 11 is pumped to the pressure detection device 12.
  • the air itself acts as a damping damper, and pressure fluctuations based on vibrations in the sound range (relatively high frequency, for example, the frequency is about 300 Hz to 4 kHz) are not substantially transmitted to the pressure detection device 12. .
  • the pressure detection device 12 detects the pressure received by the pressure receiving unit 11.
  • the pressure detection device 12 includes a hollow body 15, a chamber member 16, a piezoelectric element 17, a communication unit 18, a blocking unit 19, a substrate 20, and an introduction unit 21.
  • the hollow body 15 includes a first end wall portion 22, a second end wall portion 23, and a peripheral wall portion 24.
  • the first end wall portion 22 and the second end wall portion 23 face each other. These both end wall parts 22 and 23 are mutually equivalent shape, and are formed in the equivalent magnitude
  • Each of the two end wall portions 22 and 23 has a rectangular shape in plan view.
  • the longitudinal direction of the rectangle is referred to as the longitudinal direction X
  • the short direction is referred to as the short direction Y
  • a direction in which the first end wall portion 22 and the second end wall portion 23 face each other is referred to as a facing direction Z.
  • the peripheral wall portion 24 connects both end wall portions 22 and 23.
  • the peripheral wall portion 24 is disposed between the both end wall portions 22 and 23 and is formed in a rectangular frame shape in plan view.
  • the peripheral wall portion 24 includes a pair of long side wall portions 25 and a pair of short side wall portions 26.
  • Each longitudinal side wall portion 25 extends in the longitudinal direction X.
  • Each short side wall portion 26 extends in the short direction Y.
  • the end portion of the long side wall portion 25 and the end portion of the short side wall portion 26 are connected to each other to form a corner portion of the peripheral wall portion 24.
  • the board pedestal 27 includes four support columns 29. Each column part 29 is arranged at a corner of the peripheral wall part 24. Each column portion 29 extends from the first end wall portion 22 toward the second end wall portion 23. Each support
  • the element pedestal portion 28 protrudes from the first end wall portion 22 toward the second end wall portion 23.
  • the size of the element pedestal portion 28 in the facing direction Z gradually decreases from the first side X1 in the longitudinal direction X toward the second side X2.
  • the element base 28 is smaller in the facing direction Z than the column 29.
  • the surface of the element pedestal 28 that faces the second end wall 23 is inclined with respect to the first end wall 22.
  • the surface is an inclined surface inclined in the longitudinal direction X.
  • connection side wall portion 26a The end portion of the element base portion 28 on the first side X1 is connected to one short side wall portion 26 (hereinafter referred to as “connection side wall portion 26a”).
  • connection side wall portion 26a The end portion on the second side X2 of the element base portion 28 is separated from the other short side wall portion 26 in the longitudinal direction X. This end is formed in a curved shape that protrudes toward the second side X2 in a plan view of the element base 28.
  • Each end of the element base 28 in the short direction Y is connected to a pair of long side walls 25.
  • the element pedestal 28 protrudes from the first end wall 22 in a cylindrical shape and has an internal space.
  • the inner peripheral surface of the element pedestal portion 28 is formed in a circular shape (perfect circle shape) in the plan view of the element pedestal portion 28.
  • An annular step 30 is formed on the inner peripheral edge of the element base 28 on the surface.
  • the hollow body 15 is divided into two in the facing direction Z.
  • an annular division part 31 (partition line) is formed.
  • the dividing portion 31 divides the hollow body 15 into a first divided body 32 on the first end wall portion 22 side and a second divided body 33 on the second end wall portion 23 side.
  • the dividing portion 31 is located closer to the second end wall portion 23 than the substrate pedestal portion 27 and the element pedestal portion 28.
  • the chamber member 16 is accommodated in the hollow body 15.
  • the chamber member 16 is formed in a flat top tube shape that opens toward the first end wall portion 22.
  • the chamber member 16 is formed in a circular shape (perfect circle shape) in a plan view of the chamber member 16.
  • the opening end portion of the chamber member 16 is disposed in the step portion 30 and is fixed to the element base portion 28.
  • the chamber member 16 forms an air chamber 34 between the first end wall portion 22 and the chamber member 16.
  • the air chamber 34 is formed by the chamber member 16, the first end wall portion 22, and the element base portion 28.
  • Piezoelectric element 17 converts pressure into voltage.
  • the piezoelectric element 17 converts the pressure received by the pressure receiving surface 17a into a voltage.
  • the piezoelectric element 17 is disposed in the hollow body 15 and is accommodated in the hollow body 15 in the present embodiment.
  • the piezoelectric element 17 is formed in a circular thin plate shape (film shape) whose surface faces the first end wall portion 22, and in the present embodiment, the surface is a pressure receiving surface 17a.
  • the diameter of the piezoelectric element 17 is, for example, about 15 mm.
  • the piezoelectric element 17 is assembled to the chamber member 16.
  • the piezoelectric element 17 is disposed in the chamber member 16.
  • the outer peripheral edge of the piezoelectric element 17 is fixed to the inner peripheral edge of the opening end of the chamber member 16 over the entire periphery.
  • the piezoelectric element 17 is inclined with respect to the first end wall portion 22.
  • the piezoelectric element 17 extends parallel to the surface of the element base 28 and is inclined with respect to the longitudinal direction X.
  • the piezoelectric element 17 closes the internal space of the element base portion 28 from the second end wall portion 23 side.
  • the pressure receiving surface 17 a faces the first end wall portion 22 through the inside of the element base portion 28.
  • the piezoelectric element 17 forms an input chamber 35 and a reference chamber 36 inside the hollow body 15.
  • the piezoelectric element 17 partitions the air chamber 34 into an input chamber 35 and a reference chamber 36.
  • the input chamber 35 and the reference chamber 36 are each sealed. In the input chamber 35, communication between the pressure receiving surface 17 a of the piezoelectric element 17 and the element pedestal portion 28 to the outside is blocked. In the reference chamber 36, communication between the outer peripheral edge of the piezoelectric element 17 and the inner peripheral edge of the chamber member 16 is blocked.
  • the input chamber 35 has the piezoelectric element 17 (pressure receiving surface 17a) as a part of the wall surface.
  • the input chamber 35 is formed by closing the inside of the element base 28 with the piezoelectric element 17.
  • the input chamber 35 is formed between the piezoelectric element 17 and the first end wall portion 22.
  • the reference chamber 36 is provided on the opposite side of the input chamber 35 with the piezoelectric element 17 interposed therebetween in the hollow body 15.
  • the reference chamber 36 is formed between the piezoelectric element 17 and the chamber member 16.
  • the substrate 20 is accommodated in the hollow body 15.
  • a piezoelectric element 17 is connected to the substrate 20.
  • a lead wire (not shown) extending from the piezoelectric element 17 is connected to the substrate 20.
  • the substrate 20 is disposed between the piezoelectric element 17 and the second end wall portion 23 in the hollow body 15.
  • the substrate 20 extends along the first end wall portion 22.
  • the substrate 20 is parallel to the first end wall portion 22 and the second end wall portion 23.
  • a protrusion 37 is disposed on the substrate 20.
  • the substrate 20 is a circuit board, and the protrusion 37 is, for example, an electronic component for arithmetic processing.
  • the protrusion 37 protrudes from the substrate 20 toward the first end wall portion 22 side.
  • a plurality of protrusions 37 are provided in the longitudinal direction X. The amount of protrusion of the plurality of protrusions 37 increases from the first side X1 toward the second side X2.
  • the substrate 20 (circuit board) forms an arithmetic processing unit 38.
  • the arithmetic processing unit 38 converts the voltage from the piezoelectric element 17 into an electric signal, and sends the electric signal as a measurement result to the information processing apparatus.
  • the substrate 20 is connected to the information processing apparatus via a cable (not shown).
  • the cable extends from the inside of the hollow body 15 to the outside through a portion of the dividing portion 31 in the circumferential direction.
  • the arithmetic processing unit 38 may filter noise in the voltage converted by the piezoelectric element 17.
  • the noise is a voltage based on vibration in a certain frequency region that is input to the pressure receiving unit 11. Examples of the constant frequency region include a high frequency region of 300 Hz or higher. This type of noise can be generated by rubbing the surface of the pressure receiving portion 11, for example.
  • a connector board not having the arithmetic processing unit 38 may be employed instead of the circuit board having the arithmetic processing unit 38 as the substrate 20, a connector board not having the arithmetic processing unit 38 may be employed.
  • a circuit board (arithmetic processing unit 38) can be separately provided outside, and the piezoelectric element 17 can be connected to an external circuit board via the connector board. At this time, it is possible to connect the connector board and the circuit board via a shield wire.
  • the protrusion 37 is, for example, a connector.
  • the communication part 18 can communicate the inside of the reference chamber 36 and the outside of the hollow body 15.
  • the communication unit 18 can open the sealed reference chamber 36 to the outside.
  • the communication unit 18 includes a first communication unit 39, a second communication unit 40, and a third communication unit (not shown).
  • the first communication part 39 is provided in the chamber member 16.
  • the first communication part 39 is a through hole that penetrates the chamber member 16.
  • the first communication portion 39 is disposed at the central portion of the top wall portion of the chamber member 16.
  • the second communication part 40 is provided inside the hollow body 15.
  • the second communication portion 40 is formed by a space between the element base portion 28, the first end wall portion 22, the peripheral wall portion 24, and the second end wall portion 23.
  • the substrate 20 is disposed in the second communication part 40.
  • the third communication portion is provided between the first divided body 32 and the second divided body 33.
  • the third communication part is provided in a part of the dividing part 31 through which the cable passes.
  • the third communication part is formed by a gap provided between the hollow body 15 and the cable.
  • the blocking unit 19 blocks communication between the inside of the reference chamber 36 and the outside of the hollow body 15 through the communication unit 18.
  • the blocking part 19 closes the first communication part 39.
  • the blocking unit 19 is a film attached to the chamber member 16.
  • the blocking portion 19 is attached to the chamber member 16 from the side opposite to the reference chamber 36 (second communication portion 40 side).
  • the introduction part 21 is provided in the hollow body 15 and communicates with the input chamber 35.
  • the introduction part 21 can open the sealed input chamber 35 to the outside.
  • the introduction part 21 introduces air into the input chamber 35 in a direction inclined with respect to the piezoelectric element 17 (pressure receiving surface 17a).
  • the tilting direction includes a direction parallel to the piezoelectric element 17 (pressure receiving surface 17a) and does not include the perpendicular P direction of the piezoelectric element 17 (pressure receiving surface 17a).
  • the introduction portion 21 introduces air into the input chamber 35 in the inclined direction (except for the direction parallel to the piezoelectric element 17).
  • the introduction part 21 is provided in the peripheral wall part 24.
  • the introduction part 21 penetrates the hollow body 15.
  • the introduction part 21 introduces air into the input chamber 35 toward the central part of the piezoelectric element 17.
  • the introduction part 21 is formed by a member separate from the hollow body 15.
  • the introduction part 21 is a tubular body.
  • the axis O of the introduction portion 21 extends in the longitudinal direction X, and extends in parallel with the first end wall portion 22 in the illustrated example.
  • the axis O passes through the central portion of the pressure receiving surface 17a and is inclined with respect to the pressure receiving surface 17a and the perpendicular P.
  • the inclination angle ⁇ between the axis O and the pressure receiving surface 17a is, for example, 45 ° or less.
  • the inclination angle ⁇ is greater than 0 ° and not greater than 45 °, for example, not less than 10 ° and not greater than 20 °.
  • the introducing portion 21 integrally penetrates the connecting side wall portion 26a and the end portion on the first side X1 of the element base portion 28.
  • the end of the introduction part 21 on the first side X1 protrudes from the hollow body 15 to the first side X1.
  • the end portion on the second side X ⁇ b> 2 of the introduction portion 21 does not protrude into the input chamber 35.
  • the end surface on the second side X ⁇ b> 2 of the introduction portion 21 is disposed at a position equivalent to the inner peripheral surface (the inner surface of the input chamber 35) of the element base portion 28 in the longitudinal direction X.
  • the connecting pipe 13 communicates the pressure receiving part 11 and the introducing part 21.
  • the connection pipe 13 introduces air from the pressure receiving part 11 into the introduction part 21.
  • the inner diameter of the introduction part 21 and the inner diameter of the connecting pipe 13 are each 2 mm or less, for example.
  • the pressure receiving unit 11 pumps air (sends pressure) to the introduction unit 21.
  • the pressure receiving part 11 is not deformed with a change in pressure (external pressure) outside the hollow body 15, and the pressure receiving part 11 is substantially not affected by the external pressure fluctuation. Therefore, the input chamber 35 is not substantially affected by fluctuations in the external pressure.
  • the introduction unit 21 introduces air into the input chamber 35 in the inclined direction. Therefore, for example, compared with the case where the introduction unit 21 introduces air into the input chamber 35 in the direction of the perpendicular P, the piezoelectric element 17 is directly connected to the air introduced into the input chamber 35 through the introduction unit 21. It is possible to keep the pressure applied to the surface small.
  • the introduction unit 21 when the introduction unit 21 introduces air into the input chamber 35 in the direction of the perpendicular line P, the piezoelectric element 17 and the piezoelectric element 17 are used in order to reduce the pressure that the piezoelectric element 17 directly receives from the air. It can also be considered that the introduction part 21 is separated. On the other hand, when the introduction part 21 introduces air into the input chamber 35 in the inclined direction, the pressure can be kept small after the piezoelectric element 17 and the introduction part 21 are brought close to each other.
  • the small pressure fluctuation which arises in a to-be-measured body can be measured with high precision, aiming at size reduction.
  • the introduction part 21 introduces air into the input chamber 35 toward the central part of the piezoelectric element 17, it is possible to accurately measure minute pressure fluctuations occurring in the measurement target and to ensure good measurement sensitivity. be able to.
  • the piezoelectric element 17 forms a reference chamber 36 on the opposite side of the input chamber 35 with the piezoelectric element 17 interposed therebetween in the hollow body 15. Therefore, when air is introduced into the input chamber 35 through the introducing portion 21, the piezoelectric element 17 can be deformed based on the pressure difference between the input chamber 35 and the reference chamber 36. Thereby, it is possible to measure a minute pressure fluctuation generated in the measurement object with higher accuracy.
  • the reference chamber 36 is formed between the piezoelectric element 17 and the chamber member 16, the degree of freedom in designing the reference chamber 36 can be easily increased.
  • the hollow body 15 includes both end wall portions 22 and 23 and a peripheral wall portion 24. Thereby, it becomes possible to make it easy to hold
  • the piezoelectric element 17 is inclined with respect to the first end wall portion 22. Therefore, for example, a larger piezoelectric element 17 can be disposed in the hollow body 15 than when the piezoelectric element 17 is disposed in parallel to the first end wall portion 22. Thereby, it becomes possible to make the sensitivity of the piezoelectric element 17 easy to increase, and minute pressure fluctuations generated in the measurement object can be measured with higher accuracy.
  • the piezoelectric element 17 is inclined with respect to the first end wall portion 22.
  • the end portion on the second side X2 of the piezoelectric element 17 is closer to the first end wall portion 22 than the end portion on the first side X1.
  • a wide space can be secured between the end portion of the second side X ⁇ b> 2 of the piezoelectric element 17 and the substrate 20.
  • the substrate 20 extends along the first end wall portion 22. Therefore, by arranging the protrusions 37 arranged on the substrate 20 in the wide space, the substrate 20 and the second end wall portion 23 can be brought close to each other. Thereby, it is possible to shorten the distance between the both end wall portions 22 and 23 while arranging the substrate 20 in the hollow body 15, and the pressure detection device 12 can be reliably reduced in size.
  • the introduction part 21 is provided in the peripheral wall part 24. Therefore, when the hollow body 15 is gripped so as to sandwich the both end wall portions 22 and 23, or when the first end wall portion 22 or the second end wall portion 23 is installed on the installation surface, the introduction portion 21 becomes an obstacle. Can be suppressed. Thereby, the handleability of the pressure detection device 12 can be further improved.
  • the pressure outside the hollow body 15 may vary depending on the use environment of the pressure detection device 12.
  • the external pressure may fluctuate slightly by opening and closing the door.
  • the input chamber 35 may be affected by external pressure fluctuations through the introduction part 21.
  • the reference chamber 36 is not similarly affected by fluctuations in external pressure, the measurement accuracy may be reduced.
  • the inside of the reference chamber 36 and the outside of the hollow body 15 can communicate with each other through the communicating portion 18. Therefore, unlike the present embodiment, when the input chamber 35 (pressure receiving portion 11) is affected by external pressure fluctuations, the blocking portion 19 is excluded and the inside of the reference chamber 36 and the outside of the hollow body 15 are passed through the communicating portion 18. , The reference chamber 36 can be similarly affected through the communication portion 18. As a result, the in-phase component of pressure fluctuation can be canceled. On the other hand, when the input chamber 35 (pressure receiving portion 11) is not affected by fluctuations in external pressure as in the present embodiment, the communication portion 18 is passed through so that the reference chamber 36 is not affected by the above-described influence.
  • the pressure receiving portion 11 As the pressure receiving portion 11, a configuration different from that of the air pad can be adopted. For example, you may employ
  • the introduction unit 21 may not introduce air into the input chamber 35 toward the center of the piezoelectric element 17.
  • the introduction unit 21 may introduce air into the input chamber 35 toward the outer peripheral edge of the piezoelectric element 17, or may not introduce air toward the piezoelectric element 17.
  • the axis O may pass through the outer peripheral edge of the pressure receiving surface 17a or may not pass through the pressure receiving surface 17a.
  • the introduction part 21 may not be a tubular body.
  • the introduction part 21 may be a passage formed in the hollow body 15.
  • the introduction part 21 may be provided in the first end wall part 22 or the second end wall part 23.
  • the substrate 20 may not be accommodated in the hollow body 15.
  • the blocking unit 19 and the communication unit 18 may not be provided.
  • the chamber member 16 may not be provided.
  • a space corresponding to the second communication unit 40 in the pressure detection device 12 may be used as the reference chamber 36.
  • the hollow body 15 may not include the first end wall portion 22, the second end wall portion 23, and the peripheral wall portion 24.
  • the hollow body 15 may be configured only by the first end wall portion 22 and the element base portion 28. In this case, a configuration in which the chamber member 16 or the piezoelectric element 17 is exposed outside without being accommodated in the hollow body 15 can be employed.
  • the industrial applicability is great.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Dentistry (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Physiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

This pressure detection device is provided with: a piezoelectric element; a hollow body that is provided with an input chamber having the piezoelectric element as a part of the wall surface thereof; and an introducing section, which is provided to the hollow body, and is in communication with the inside of the input chamber, said introducing section introducing air into the input chamber in the direction inclined with respect to the piezoelectric element.

Description

圧力検出装置および生体情報計測システムPressure detecting device and biological information measuring system
 本発明は、圧力検出装置および生体情報計測システムに関する。
 本願は、2016年6月3日に、日本国に出願された特願2016-111911号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a pressure detection device and a biological information measurement system.
The present application claims priority based on Japanese Patent Application No. 2016-111191 filed in Japan on June 3, 2016, the contents of which are incorporated herein by reference.
 従来から、生体情報計測システムとして、下記特許文献1に記載の構成が知られている。生体情報計測システムは、受圧部と、圧力検出装置と、を備えている。受圧部が圧力を受けると、受圧部が圧力検出装置に空気を圧送(圧力を送出)する。 Conventionally, a configuration described in Patent Document 1 below is known as a biological information measurement system. The biological information measurement system includes a pressure receiving unit and a pressure detection device. When the pressure receiving unit receives pressure, the pressure receiving unit pumps air (sends pressure) to the pressure detection device.
特開2005-110969号公報JP 2005-110969 A
 この種の生体情報計測システム等、被計測体に生じる微小な圧力変動(例えば、動物(人や家畜)の呼吸数や心拍数など)を計測するシステムにおいて、圧力検出装置として、圧電素子を備える構成を採用することが考えられる。この構成では、受圧部から圧送された空気の圧力を圧電素子が受けて電圧に変換する。このとき受圧部が、想定されていた計測範囲を超えるような大きな圧力を受け、受圧部から圧力検出装置に圧送される空気の圧力が過度に高くなると、圧電素子によって変換される電圧も過度に高くなる。その結果、被計測体に生じる微小な圧力変動の計測精度が一時的に低下するおそれがある。 In a system for measuring minute pressure fluctuations (for example, the respiration rate and heart rate of an animal (human or livestock)) such as this type of biological information measurement system, a piezoelectric element is provided as a pressure detection device. It is conceivable to adopt a configuration. In this configuration, the pressure of the air fed from the pressure receiving unit is received by the piezoelectric element and converted into a voltage. At this time, if the pressure receiving part receives a large pressure exceeding the assumed measurement range and the pressure of the air pumped from the pressure receiving part to the pressure detection device becomes excessively high, the voltage converted by the piezoelectric element is excessively large. Get higher. As a result, there is a possibility that the measurement accuracy of the minute pressure fluctuation generated in the measurement object may temporarily decrease.
 本発明は、前述した事情に鑑みてなされたものであって、被計測体に生じる微小な圧力変動を高精度に計測することを目的とする。 The present invention has been made in view of the above-described circumstances, and an object thereof is to measure a minute pressure fluctuation generated in a measurement object with high accuracy.
 前記課題を解決するために、本発明は以下の手段を提案している。
(1)本発明に係る圧力検出装置は、圧電素子と、前記圧電素子を壁面の一部とする入力室が設けられた中空体と、前記中空体に設けられるとともに前記入力室内に連通し、前記圧電素子に対して傾斜する方向に向けて前記入力室内に空気を導入する導入部と、を備えている。
 なお、前記傾斜する方向には、圧電素子に平行である方向が含まれ、かつ、圧電素子の垂線方向が含まれない。
In order to solve the above problems, the present invention proposes the following means.
(1) A pressure detection device according to the present invention includes a piezoelectric element, a hollow body provided with an input chamber having the piezoelectric element as a part of a wall surface, and provided in the hollow body and communicated with the input chamber, An introduction portion for introducing air into the input chamber in a direction inclined with respect to the piezoelectric element.
The tilting direction includes a direction parallel to the piezoelectric element and does not include a perpendicular direction of the piezoelectric element.
 この場合、導入部が、前記傾斜する方向に向けて入力室内に空気を導入する。したがって、例えば、導入部が、前記垂線方向に向けて入力室内に空気を導入する場合に比べて、導入部を通して入力室内に導入された空気から圧電素子が直接的に受ける圧力を小さく抑えることができる。
 なお前述のように、導入部が、前記垂線方向に向けて入力室内に空気を導入する場合、圧電素子が空気から直接的に受ける圧力を小さくするために、圧電素子と導入部とを離間させることも考えられる。これに対して、導入部が、前記傾斜する方向に向けて入力室内に空気を導入する場合、圧電素子と導入部とを接近させた上で、圧力を小さく抑えることができる。
 以上より、この圧力検出装置によれば、小型化を図りつつ、被計測体に生じる微小な圧力変動を高精度に計測することができる。
In this case, the introduction unit introduces air into the input chamber in the inclined direction. Therefore, for example, compared with the case where the introduction portion introduces air into the input chamber in the direction of the perpendicular, the pressure directly received by the piezoelectric element from the air introduced into the input chamber through the introduction portion can be suppressed to be small. it can.
As described above, when the introduction unit introduces air into the input chamber in the perpendicular direction, the piezoelectric element and the introduction unit are separated from each other in order to reduce the pressure that the piezoelectric element receives directly from the air. It is also possible. On the other hand, when the introduction unit introduces air into the input chamber in the inclined direction, the pressure can be suppressed small after the piezoelectric element and the introduction unit are brought close to each other.
As described above, according to this pressure detection device, it is possible to measure a minute pressure fluctuation generated in the measurement object with high accuracy while reducing the size.
(2)上記(1)に記載の圧力検出装置では、前記圧電素子が、前記中空体内に収容されるとともに、前記中空体内において前記圧電素子を間に挟んだ前記入力室の反対側に参照室を形成している構成を採用してもよい。 (2) In the pressure detection device according to (1), the piezoelectric element is accommodated in the hollow body, and a reference chamber is provided on the opposite side of the input chamber with the piezoelectric element sandwiched in the hollow body. You may employ | adopt the structure which forms.
 この場合、圧電素子が、中空体内において圧電素子を間に挟んだ入力室の反対側に参照室を形成している。したがって、導入部を通して入力室内に空気が導入されたときに、入力室と参照室との圧力差に基づいて圧電素子を変形させることができる。これにより、被計測体に生じる微小な圧力変動をより高精度に計測することができる。 In this case, the piezoelectric element forms a reference chamber on the opposite side of the input chamber sandwiching the piezoelectric element in the hollow body. Therefore, when air is introduced into the input chamber through the introducing portion, the piezoelectric element can be deformed based on the pressure difference between the input chamber and the reference chamber. Thereby, it is possible to measure a minute pressure fluctuation generated in the measurement object with higher accuracy.
(3)上記(2)に記載の圧力検出装置では、前記中空体が、互いに対向する第1端壁部および第2端壁部と、これらの両端壁部を連結する周壁部と、を備え、前記圧電素子が、前記第1端壁部に対して傾斜している構成を採用してもよい。 (3) In the pressure detection device according to (2), the hollow body includes a first end wall portion and a second end wall portion facing each other, and a peripheral wall portion connecting these both end wall portions. The piezoelectric element may be inclined with respect to the first end wall.
 この場合、中空体が、両端壁部および周壁部を備えている。これにより、中空体を把持し易くしたり、設置し易くしたりすることが可能になり、圧力検出装置の取り扱い性を向上させることができる。
 また圧電素子が、第1端壁部に対して傾斜している。したがって、例えば、圧電素子が第1端壁部に平行に配置されている場合など比べて、中空体内に、大きい圧電素子を配置することができる。これにより、圧電素子の感度を高め易くすることが可能になり、被計測体に生じる微小な圧力変動をより一層高精度に計測することができる。
In this case, the hollow body includes both end wall portions and a peripheral wall portion. Thereby, it becomes possible to make it easy to grasp a hollow body or to install it, and to improve the handleability of a pressure detection apparatus.
The piezoelectric element is inclined with respect to the first end wall portion. Therefore, for example, a larger piezoelectric element can be disposed in the hollow body than when the piezoelectric element is disposed in parallel with the first end wall portion. As a result, it is possible to easily increase the sensitivity of the piezoelectric element, and minute pressure fluctuations occurring in the measurement target can be measured with higher accuracy.
(4)上記(3)に記載の圧力検出装置では、前記中空体内に収容されるとともに前記圧電素子が接続された基板を更に備え、前記圧電素子が、前記第1端壁部との間に前記入力室を形成し、前記基板が、前記中空体内において前記圧電素子と前記第2端壁部との間に配置されるとともに、前記第1端壁部に沿って延びている構成を採用してもよい。 (4) The pressure detection device according to (3) further includes a substrate that is accommodated in the hollow body and connected to the piezoelectric element, and the piezoelectric element is interposed between the first end wall portion and the substrate. The input chamber is formed, and the substrate is disposed between the piezoelectric element and the second end wall portion in the hollow body and extends along the first end wall portion. May be.
 この場合、圧電素子が、第1端壁部に対して傾斜している。つまり圧電素子では、その傾斜方向の両側に位置する一対の端部のうち、一方の端部が他方の端部よりも第1端壁部に近くなっている。これにより、前記一方の端部と基板との間に広い空間を確保することができる。ここで基板が、第1端壁部に沿って延びている。したがって、基板に配置される突起物(例えば演算処理用の電子部品など)を前記広い空間に配置することで、基板と第2端壁部とを近接させることができる。これにより、中空体内に基板を配置しつつも、両端壁部間の距離を短くすることが可能になり、圧力検出装置の確実な小型化を図ることができる。 In this case, the piezoelectric element is inclined with respect to the first end wall portion. That is, in the piezoelectric element, one end portion of the pair of end portions located on both sides in the inclined direction is closer to the first end wall portion than the other end portion. Thereby, a wide space can be secured between the one end portion and the substrate. Here, the substrate extends along the first end wall. Therefore, the substrate and the second end wall portion can be brought close to each other by disposing a protrusion (for example, an electronic component for arithmetic processing) disposed on the substrate in the wide space. Thereby, it is possible to shorten the distance between both end wall portions while arranging the substrate in the hollow body, and it is possible to reliably reduce the size of the pressure detection device.
(5)上記(3)または(4)に記載の圧力検出装置では、前記導入部が前記周壁部に設けられている構成を採用してもよい。 (5) In the pressure detection device according to (3) or (4) above, a configuration in which the introduction portion is provided in the peripheral wall portion may be adopted.
 この場合、導入部が周壁部に設けられている。したがって、両端壁部を挟み込むように中空体を把持したり、第1端壁部または第2端壁部を設置面上に設置したりするときに、導入部が邪魔になるのを抑えることができる。これにより、圧力検出装置の取り扱い性を更に向上させることができる。 In this case, the introduction part is provided in the peripheral wall part. Therefore, when the hollow body is gripped so as to sandwich the both end wall portions, or when the first end wall portion or the second end wall portion is installed on the installation surface, the introduction portion can be prevented from becoming an obstacle. it can. Thereby, the handleability of a pressure detection apparatus can further be improved.
(6)上記(2)から(5)のいずれか1つに記載の圧力検出装置では、前記中空体内に収容され、前記圧電素子との間に前記参照室を形成する室部材を更に備えている構成を採用してもよい。 (6) The pressure detection device according to any one of (2) to (5) further includes a chamber member that is housed in the hollow body and forms the reference chamber with the piezoelectric element. You may employ | adopt the structure which is.
 この場合、圧電素子と室部材との間に参照室を形成するので、参照室の設計の自由度を高め易くすることができる。 In this case, since the reference chamber is formed between the piezoelectric element and the chamber member, the degree of freedom in designing the reference chamber can be easily increased.
(7)上記(2)から(6)のいずれか1つに記載の圧力検出装置では、前記参照室の内部と前記中空体の外部とを連通可能な連通部を更に備えている構成を採用してもよい。 (7) In the pressure detection device according to any one of (2) to (6), a configuration further including a communication portion capable of communicating the inside of the reference chamber and the outside of the hollow body is adopted. May be.
 圧力検出装置の使用環境によっては、中空体の外部の圧力(外圧)が変動することがある。例えば、締め切った部屋で圧力検出装置を使用する場合には、ドアを開閉すること等により、外圧に微小な変動が生じうる。このとき、入力室が導入部を通して外圧変動の影響を受ける場合がある。この場合、参照室も外圧変動から同様の影響を受けないと、計測精度が低下するおそれがある。
 この圧力検出装置では、参照室の内部と中空体の外部とが連通部を通して連通可能である。したがって、入力室が外圧変動の影響を受ける場合には、連通部を通して参照室の内部と中空体の外部とを連通しておくことで、参照室にも連通部を通して同様の影響を受けさせることができる。その結果、圧力変動の同相成分をキャンセルすることができる。一方で、入力室が外圧の変動の影響を受けない場合には、参照室も影響を受けないように、連通部を通した参照室の内部と中空体の外部との連通を遮断しておくことができる。これにより、外圧変動に伴う入力室への影響の有無によらず、被計測体に生じる微小な圧力変動を高精度に計測することができる。
Depending on the usage environment of the pressure detection device, the pressure outside the hollow body (external pressure) may vary. For example, when the pressure detection device is used in a closed room, the external pressure may fluctuate slightly by opening and closing the door. At this time, the input chamber may be affected by external pressure fluctuations through the introduction portion. In this case, if the reference chamber is not similarly affected by fluctuations in external pressure, the measurement accuracy may be reduced.
In this pressure detection device, the inside of the reference chamber and the outside of the hollow body can communicate with each other through the communicating portion. Therefore, when the input chamber is affected by fluctuations in external pressure, the reference chamber and the outside of the hollow body can be communicated with each other through the communication portion, so that the reference chamber is similarly affected through the communication portion. Can do. As a result, the in-phase component of pressure fluctuation can be canceled. On the other hand, when the input chamber is not affected by fluctuations in external pressure, the communication between the inside of the reference chamber and the outside of the hollow body through the communication portion is blocked so that the reference chamber is not affected. be able to. As a result, it is possible to measure a minute pressure fluctuation generated in the measurement object with high accuracy regardless of whether or not the input chamber is affected by the fluctuation of the external pressure.
(8)上記(1)から(7)のいずれか1つに記載の圧力検出装置では、前記導入部が、前記圧電素子の中央部に向けて前記入力室内に空気を導入する構成を採用してもよい。 (8) In the pressure detection device according to any one of (1) to (7), a configuration is adopted in which the introduction portion introduces air into the input chamber toward a central portion of the piezoelectric element. May be.
 この場合、導入部が、圧電素子の中央部に向けて入力室内に空気を導入するので、被計測体に生じる微小な圧力変動を高精度に計測しつつ、計測感度も良好に確保することができる。 In this case, since the introduction unit introduces air into the input chamber toward the center of the piezoelectric element, it is possible to accurately measure minute pressure fluctuations occurring in the measurement target and to ensure good measurement sensitivity. it can.
(9)本発明に係る生体情報計測システムは、被計測体から圧力を受ける受圧部と、上記(1)から(8)のいずれか1つに記載の圧力検出装置と、を備え、前記受圧部が圧力を受けたときに、前記受圧部が前記導入部に空気を圧送する。 (9) A biological information measurement system according to the present invention includes a pressure receiving unit that receives pressure from a measurement target, and the pressure detection device according to any one of (1) to (8), wherein the pressure receiving When the part receives pressure, the pressure receiving part pumps air to the introduction part.
 この場合、生体情報計測システムが、前記圧力検出装置を備えているので、被計測体に生じる微小な圧力変動を高精度に計測することができる。 In this case, since the biological information measurement system includes the pressure detection device, it is possible to measure a minute pressure fluctuation generated in the measurement object with high accuracy.
 本発明によれば、被計測体に生じる微小な圧力変動を高精度に計測することができる。 According to the present invention, it is possible to measure a minute pressure fluctuation generated in a measurement object with high accuracy.
本発明の一実施形態に係る生体情報計測システムにおいて一部を断面視した図である。It is the figure which looked at a part in the biological information measurement system concerning one embodiment of the present invention. 図1に示す生体情報計測システムを構成する圧力検出装置の第1分割体の平面図である。It is a top view of the 1st division body of the pressure detection apparatus which comprises the living body information measuring system shown in FIG. 図1に示す生体情報計測システムを構成する圧力検出装置の室部材を反転させた状態を示す斜視図である。It is a perspective view which shows the state which reversed the chamber member of the pressure detection apparatus which comprises the biometric information measurement system shown in FIG.
 以下、図1から図3を参照し、本発明の一実施形態に係る生体情報計測システム10を説明する。
 生体情報計測システム10は、医療分野や介護分野において、見守りや睡眠管理を目的として使用することができる。また、生体情報計測システム10は、畜産分野において、家畜の心拍数や反芻数、体動の管理を目的として使用することもできる。
Hereinafter, a biological information measurement system 10 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3.
The biological information measuring system 10 can be used for the purpose of watching and sleeping management in the medical field and the nursing field. The biological information measurement system 10 can also be used for the purpose of managing the heart rate, rumination rate, and body movement of livestock in the livestock field.
 生体情報計測システム10は、被計測体(例えば、人や家畜などの動物)に生じる微小な圧力変動(例えば呼吸数や心拍数など)を、生体情報として計測する。また、生体情報計測システム10は、前記微小な圧力変動だけでなく、前記微小な圧力変動よりも振幅が大きい圧力変動(例えば体動など)も、生体情報として計測することができる。 The biological information measurement system 10 measures minute pressure fluctuations (for example, respiratory rate, heart rate, etc.) generated in a measurement target (for example, animals such as humans and domestic animals) as biological information. Further, the biological information measuring system 10 can measure not only the minute pressure fluctuation but also a pressure fluctuation (for example, body movement) having an amplitude larger than the minute pressure fluctuation as biological information.
 例えば、医療分野や介護分野において、生体情報計測システム10を寝台装置(ベッド)に使用した場合、生体情報計測システム10は、寝台上の人の呼吸数、心拍数、体動、着床や在床、離床を計測することができる。生体情報計測システム10をトイレや車いすに使用した場合、生体情報計測システム10は、トイレや車いすに着座した人の呼吸数や心拍数、トイレや車いすへの人の着座の有無を計測することができる。 For example, when the biological information measurement system 10 is used as a couch device (bed) in the medical field or the nursing care field, the biological information measurement system 10 can measure the respiration rate, heart rate, body motion, landing, and bed presence of a person on the couch. Can measure bed leaving. When the biological information measurement system 10 is used in a toilet or a wheelchair, the biological information measurement system 10 can measure the respiration rate and heart rate of a person seated in the toilet or wheelchair and the presence or absence of the person sitting in the toilet or wheelchair. it can.
 生体情報計測システム10は、前述したような寝台装置やトイレ、車いすに適用することで、被計測体の生体情報を無拘束で計測する。生体情報計測システム10は、低周波領域(例えば、周波数が0.1Hz~200Hz)の信号を検出する。生体情報計測システム10の計測結果は、外部の図示しない情報処理装置に送出される。前記情報処理装置は、例えば、計測結果を表示部に表示させたり、計測結果を記憶部に記憶させたりする。 The living body information measurement system 10 measures the living body information of the measurement object without restriction by being applied to the bed apparatus, the toilet, and the wheelchair as described above. The biological information measurement system 10 detects a signal in a low frequency region (for example, a frequency is 0.1 Hz to 200 Hz). The measurement result of the biological information measurement system 10 is sent to an external information processing apparatus (not shown). The information processing apparatus displays, for example, a measurement result on a display unit or stores a measurement result in a storage unit.
 生体情報計測システム10は、受圧部11と、圧力検出装置12と、接続管13と、を備えている。
 受圧部11は、被計測体から圧力を受ける。本実施形態では、受圧部11が、弾性変形可能な中空の空気パッドである。受圧部11が圧力を受けると、受圧部11が圧縮変形して受圧部11の内部の空気が圧力検出装置12に圧送される。このとき本実施形態では、空気自体が減衰ダンパーとして働き、音域領域の振動(周波数が比較的高く、例えば周波数が300Hz~4kHz程度)に基づく圧力変動が圧力検出装置12に実質的には伝達されない。
The biological information measurement system 10 includes a pressure receiving unit 11, a pressure detection device 12, and a connection pipe 13.
The pressure receiving unit 11 receives pressure from the measurement object. In the present embodiment, the pressure receiving portion 11 is a hollow air pad that can be elastically deformed. When the pressure receiving unit 11 receives pressure, the pressure receiving unit 11 is compressed and deformed, and the air inside the pressure receiving unit 11 is pumped to the pressure detection device 12. At this time, in the present embodiment, the air itself acts as a damping damper, and pressure fluctuations based on vibrations in the sound range (relatively high frequency, for example, the frequency is about 300 Hz to 4 kHz) are not substantially transmitted to the pressure detection device 12. .
 圧力検出装置12は、受圧部11が受ける圧力を検出する。圧力検出装置12は、中空体15と、室部材16と、圧電素子17と、連通部18と、遮断部19と、基板20と、導入部21と、を備えている。
 中空体15は、第1端壁部22と、第2端壁部23と、周壁部24と、を備えている。
The pressure detection device 12 detects the pressure received by the pressure receiving unit 11. The pressure detection device 12 includes a hollow body 15, a chamber member 16, a piezoelectric element 17, a communication unit 18, a blocking unit 19, a substrate 20, and an introduction unit 21.
The hollow body 15 includes a first end wall portion 22, a second end wall portion 23, and a peripheral wall portion 24.
 第1端壁部22および第2端壁部23は、互いに対向する。これらの両端壁部22、23は、互いに同等の形状で、かつ同等の大きさに形成されている。両端壁部22、23それぞれの平面視形状は、矩形状とされている。なお以下では、前記矩形の長手方向を長手方向Xといい、短手方向を短手方向Yという。また、第1端壁部22および第2端壁部23が対向する方向を対向方向Zという。 The first end wall portion 22 and the second end wall portion 23 face each other. These both end wall parts 22 and 23 are mutually equivalent shape, and are formed in the equivalent magnitude | size. Each of the two end wall portions 22 and 23 has a rectangular shape in plan view. In the following, the longitudinal direction of the rectangle is referred to as the longitudinal direction X, and the short direction is referred to as the short direction Y. A direction in which the first end wall portion 22 and the second end wall portion 23 face each other is referred to as a facing direction Z.
 周壁部24は、両端壁部22、23を連結する。周壁部24は、両端壁部22、23の間に配置され、平面視において矩形枠状に形成されている。周壁部24は、一対の長手側壁部25と、一対の短手側壁部26と、を備えている。各長手側壁部25は、長手方向Xに延びる。各短手側壁部26は、短手方向Yに延びる。長手側壁部25の端部と短手側壁部26の端部とは、互いに連結されていて、周壁部24における角部を形成している。 The peripheral wall portion 24 connects both end wall portions 22 and 23. The peripheral wall portion 24 is disposed between the both end wall portions 22 and 23 and is formed in a rectangular frame shape in plan view. The peripheral wall portion 24 includes a pair of long side wall portions 25 and a pair of short side wall portions 26. Each longitudinal side wall portion 25 extends in the longitudinal direction X. Each short side wall portion 26 extends in the short direction Y. The end portion of the long side wall portion 25 and the end portion of the short side wall portion 26 are connected to each other to form a corner portion of the peripheral wall portion 24.
 中空体15内には、基板台座部27と、素子台座部28と、が設けられている。
 基板台座部27は、4つの支柱部29を備えている。各支柱部29は、周壁部24の角部に配置されている。各支柱部29は、第1端壁部22から第2端壁部23に向けて延びている。各支柱部29は、互いに同等の形状で、かつ同等の大きさに形成されている。
In the hollow body 15, a substrate base part 27 and an element base part 28 are provided.
The board pedestal 27 includes four support columns 29. Each column part 29 is arranged at a corner of the peripheral wall part 24. Each column portion 29 extends from the first end wall portion 22 toward the second end wall portion 23. Each support | pillar part 29 is formed in the mutually equivalent shape and the equivalent magnitude | size.
 素子台座部28は、第1端壁部22から第2端壁部23に向けて隆起している。素子台座部28の対向方向Zの大きさ(第1端壁部22からの高さ)は、長手方向Xの第1側X1から第2側X2に向けて徐々に小さくなっている。素子台座部28は、支柱部29よりも対向方向Zに小さい。素子台座部28において第2端壁部23に対向する表面は、第1端壁部22に対して傾斜している。前記表面は、長手方向Xに傾斜する傾斜面である。 The element pedestal portion 28 protrudes from the first end wall portion 22 toward the second end wall portion 23. The size of the element pedestal portion 28 in the facing direction Z (height from the first end wall portion 22) gradually decreases from the first side X1 in the longitudinal direction X toward the second side X2. The element base 28 is smaller in the facing direction Z than the column 29. The surface of the element pedestal 28 that faces the second end wall 23 is inclined with respect to the first end wall 22. The surface is an inclined surface inclined in the longitudinal direction X.
 素子台座部28の第1側X1の端部は、一方の短手側壁部26(以下、「連結側壁部26a」という。)に連結されている。素子台座部28の第2側X2の端部は、他方の短手側壁部26から長手方向Xに離間している。この端部は、素子台座部28の平面視において、第2側X2に突となる曲線状に形成されている。
 素子台座部28の短手方向Yの各端部は、一対の長手側壁部25に連結されている。
The end portion of the element base portion 28 on the first side X1 is connected to one short side wall portion 26 (hereinafter referred to as “connection side wall portion 26a”). The end portion on the second side X2 of the element base portion 28 is separated from the other short side wall portion 26 in the longitudinal direction X. This end is formed in a curved shape that protrudes toward the second side X2 in a plan view of the element base 28.
Each end of the element base 28 in the short direction Y is connected to a pair of long side walls 25.
 素子台座部28は、第1端壁部22から筒状に隆起し、内部空間を有している。素子台座部28の内周面は、素子台座部28の平面視において、円形状(真円形状)に形成されている。素子台座部28の前記表面における内周縁部には、環状の段部30が形成されている。 The element pedestal 28 protrudes from the first end wall 22 in a cylindrical shape and has an internal space. The inner peripheral surface of the element pedestal portion 28 is formed in a circular shape (perfect circle shape) in the plan view of the element pedestal portion 28. An annular step 30 is formed on the inner peripheral edge of the element base 28 on the surface.
 中空体15は、対向方向Zに2分割されている。中空体15には、環状の分割部31(分割線)が形成されている。分割部31は、中空体15を、第1端壁部22側の第1分割体32と、第2端壁部23側の第2分割体33と、に分割する。分割部31は、基板台座部27および素子台座部28よりも第2端壁部23側に位置している。 The hollow body 15 is divided into two in the facing direction Z. In the hollow body 15, an annular division part 31 (partition line) is formed. The dividing portion 31 divides the hollow body 15 into a first divided body 32 on the first end wall portion 22 side and a second divided body 33 on the second end wall portion 23 side. The dividing portion 31 is located closer to the second end wall portion 23 than the substrate pedestal portion 27 and the element pedestal portion 28.
 室部材16は、中空体15内に収容されている。室部材16は、第1端壁部22に向けて開口する偏平な有頂筒状に形成されている。室部材16は、室部材16の平面視において円形状(真円形状)に形成されている。室部材16の開口端部は、前記段部30内に配置され、素子台座部28に固着されている。
 室部材16は、第1端壁部22との間に空気室34を形成する。空気室34は、室部材16と、第1端壁部22と、素子台座部28と、によって形成されている。
The chamber member 16 is accommodated in the hollow body 15. The chamber member 16 is formed in a flat top tube shape that opens toward the first end wall portion 22. The chamber member 16 is formed in a circular shape (perfect circle shape) in a plan view of the chamber member 16. The opening end portion of the chamber member 16 is disposed in the step portion 30 and is fixed to the element base portion 28.
The chamber member 16 forms an air chamber 34 between the first end wall portion 22 and the chamber member 16. The air chamber 34 is formed by the chamber member 16, the first end wall portion 22, and the element base portion 28.
 圧電素子17は、圧力を電圧に変換する。圧電素子17は、受圧面17aが受けた圧力を電圧に変換する。圧電素子17は、中空体15に配置され、本実施形態では、中空体15内に収容されている。圧電素子17は、表面が第1端壁部22を向く円形の薄板状(膜状)に形成され、本実施形態では、前記表面が、受圧面17aとなっている。圧電素子17の直径は、例えば15mm程度である。 Piezoelectric element 17 converts pressure into voltage. The piezoelectric element 17 converts the pressure received by the pressure receiving surface 17a into a voltage. The piezoelectric element 17 is disposed in the hollow body 15 and is accommodated in the hollow body 15 in the present embodiment. The piezoelectric element 17 is formed in a circular thin plate shape (film shape) whose surface faces the first end wall portion 22, and in the present embodiment, the surface is a pressure receiving surface 17a. The diameter of the piezoelectric element 17 is, for example, about 15 mm.
 圧電素子17は、室部材16に組み付けられている。圧電素子17は、室部材16内に配置されている。本実施形態では、圧電素子17の外周縁が、室部材16の開口端部の内周縁に全周にわたって固着されている。圧電素子17は、第1端壁部22に対して傾斜している。圧電素子17は、素子台座部28の前記表面に平行に延びていて、長手方向Xに対して傾斜している。 The piezoelectric element 17 is assembled to the chamber member 16. The piezoelectric element 17 is disposed in the chamber member 16. In the present embodiment, the outer peripheral edge of the piezoelectric element 17 is fixed to the inner peripheral edge of the opening end of the chamber member 16 over the entire periphery. The piezoelectric element 17 is inclined with respect to the first end wall portion 22. The piezoelectric element 17 extends parallel to the surface of the element base 28 and is inclined with respect to the longitudinal direction X.
 圧電素子17は、素子台座部28の内部空間を、第2端壁部23側から閉塞する。受圧面17aは、素子台座部28の内部を通して第1端壁部22に対向する。
 圧電素子17は、中空体15の内部に、入力室35と、参照室36と、を形成する。圧電素子17は、空気室34を入力室35および参照室36に仕切る。
The piezoelectric element 17 closes the internal space of the element base portion 28 from the second end wall portion 23 side. The pressure receiving surface 17 a faces the first end wall portion 22 through the inside of the element base portion 28.
The piezoelectric element 17 forms an input chamber 35 and a reference chamber 36 inside the hollow body 15. The piezoelectric element 17 partitions the air chamber 34 into an input chamber 35 and a reference chamber 36.
 入力室35および参照室36はそれぞれ、密閉されている。入力室35では、圧電素子17の受圧面17aと素子台座部28との間を通した外部への連通が遮断されている。参照室36では、圧電素子17の外周縁と室部材16の内周縁との間を通した外部への連通が遮断されている。 The input chamber 35 and the reference chamber 36 are each sealed. In the input chamber 35, communication between the pressure receiving surface 17 a of the piezoelectric element 17 and the element pedestal portion 28 to the outside is blocked. In the reference chamber 36, communication between the outer peripheral edge of the piezoelectric element 17 and the inner peripheral edge of the chamber member 16 is blocked.
 入力室35は、圧電素子17(受圧面17a)を壁面の一部とする。入力室35は、素子台座部28の内部が圧電素子17により閉塞されてなる。入力室35は、圧電素子17と第1端壁部22との間に形成されている。
 参照室36は、中空体15内において圧電素子17を間に挟んだ入力室35の反対側に設けられている。参照室36は、圧電素子17と室部材16との間に形成されている。
The input chamber 35 has the piezoelectric element 17 (pressure receiving surface 17a) as a part of the wall surface. The input chamber 35 is formed by closing the inside of the element base 28 with the piezoelectric element 17. The input chamber 35 is formed between the piezoelectric element 17 and the first end wall portion 22.
The reference chamber 36 is provided on the opposite side of the input chamber 35 with the piezoelectric element 17 interposed therebetween in the hollow body 15. The reference chamber 36 is formed between the piezoelectric element 17 and the chamber member 16.
 基板20は、中空体15内に収容されている。基板20には、圧電素子17が接続されている。本実施形態では、圧電素子17から延びる図示しないリード線が、基板20に接続されている。基板20は、中空体15内において圧電素子17と第2端壁部23との間に配置されている。基板20は、第1端壁部22に沿って延びていている。基板20は、第1端壁部22および第2端壁部23と平行である。 The substrate 20 is accommodated in the hollow body 15. A piezoelectric element 17 is connected to the substrate 20. In the present embodiment, a lead wire (not shown) extending from the piezoelectric element 17 is connected to the substrate 20. The substrate 20 is disposed between the piezoelectric element 17 and the second end wall portion 23 in the hollow body 15. The substrate 20 extends along the first end wall portion 22. The substrate 20 is parallel to the first end wall portion 22 and the second end wall portion 23.
 基板20には、突起物37が配置されている。本実施形態では、基板20が、回路基板であり、突起物37が、例えば演算処理用の電子部品などである。突起物37は、基板20から第1端壁部22側に向けて突出している。突起物37は、長手方向Xに複数設けられている。複数の突起物37の突出量は、第1側X1から第2側X2に向かうに従い大きくなっている。 A protrusion 37 is disposed on the substrate 20. In the present embodiment, the substrate 20 is a circuit board, and the protrusion 37 is, for example, an electronic component for arithmetic processing. The protrusion 37 protrudes from the substrate 20 toward the first end wall portion 22 side. A plurality of protrusions 37 are provided in the longitudinal direction X. The amount of protrusion of the plurality of protrusions 37 increases from the first side X1 toward the second side X2.
 基板20(回路基板)は、演算処理部38を形成している。演算処理部38は、圧電素子17からの電圧を電気信号に変換し、計測結果としての前記電気信号を前記情報処理装置に送出する。基板20は、図示しないケーブルを介して前記情報処理装置に接続される。前記ケーブルは、分割部31の周方向の一部分の間を通して中空体15の内部から外部に延びている。 The substrate 20 (circuit board) forms an arithmetic processing unit 38. The arithmetic processing unit 38 converts the voltage from the piezoelectric element 17 into an electric signal, and sends the electric signal as a measurement result to the information processing apparatus. The substrate 20 is connected to the information processing apparatus via a cable (not shown). The cable extends from the inside of the hollow body 15 to the outside through a portion of the dividing portion 31 in the circumferential direction.
 なお演算処理部38は、圧電素子17が変換した電圧中のノイズをフィルタリングしてもよい。前記ノイズは、受圧部11に入力される一定の周波数領域の振動に基づく電圧である。前記一定の周波数領域としては、300Hz以上の高い周波数領域が挙げられる。
この種のノイズは、例えば、受圧部11の表面を擦ることで生じ得る。
The arithmetic processing unit 38 may filter noise in the voltage converted by the piezoelectric element 17. The noise is a voltage based on vibration in a certain frequency region that is input to the pressure receiving unit 11. Examples of the constant frequency region include a high frequency region of 300 Hz or higher.
This type of noise can be generated by rubbing the surface of the pressure receiving portion 11, for example.
 また基板20として、演算処理部38を有する前述の回路基板に代えて、演算処理部38を有さないコネクタ基板を採用することも可能である。この場合、回路基板(演算処理部38)を別途、外部に設け、圧電素子17を、コネクタ基板を介して外部の回路基板に接続することができる。このとき、コネクタ基板と回路基板とをシールド線を介して接続することが可能である。なおこの場合、前記突起物37が、例えばコネクタなどになる。 Further, instead of the circuit board having the arithmetic processing unit 38 as the substrate 20, a connector board not having the arithmetic processing unit 38 may be employed. In this case, a circuit board (arithmetic processing unit 38) can be separately provided outside, and the piezoelectric element 17 can be connected to an external circuit board via the connector board. At this time, it is possible to connect the connector board and the circuit board via a shield wire. In this case, the protrusion 37 is, for example, a connector.
 連通部18は、参照室36の内部と中空体15の外部とを連通可能である。連通部18は、密閉された参照室36を外部に開放可能である。連通部18は、第1連通部39と、第2連通部40と、図示しない第3連通部と、を備えている。
 第1連通部39は、室部材16に設けられている。第1連通部39は、室部材16を貫通する貫通孔である。第1連通部39は、室部材16の頂壁部における中央部に配置されている。
The communication part 18 can communicate the inside of the reference chamber 36 and the outside of the hollow body 15. The communication unit 18 can open the sealed reference chamber 36 to the outside. The communication unit 18 includes a first communication unit 39, a second communication unit 40, and a third communication unit (not shown).
The first communication part 39 is provided in the chamber member 16. The first communication part 39 is a through hole that penetrates the chamber member 16. The first communication portion 39 is disposed at the central portion of the top wall portion of the chamber member 16.
 第2連通部40は、中空体15の内部に設けられている。第2連通部40は、素子台座部28と、第1端壁部22と、周壁部24と、第2端壁部23と、の間の空間によって形成されている。第2連通部40には、基板20が配置されている。
 前記第3連通部は、第1分割体32と第2分割体33との間に設けられている。前記第3連通部は、分割部31のうち、前記ケーブルが通過する部分に設けられている。前記第3連通部は、中空体15と前記ケーブルとの間に設けられた隙間によって形成される。
The second communication part 40 is provided inside the hollow body 15. The second communication portion 40 is formed by a space between the element base portion 28, the first end wall portion 22, the peripheral wall portion 24, and the second end wall portion 23. The substrate 20 is disposed in the second communication part 40.
The third communication portion is provided between the first divided body 32 and the second divided body 33. The third communication part is provided in a part of the dividing part 31 through which the cable passes. The third communication part is formed by a gap provided between the hollow body 15 and the cable.
 遮断部19は、連通部18を通した参照室36の内部と中空体15の外部との連通を遮断する。遮断部19は、第1連通部39を閉塞している。遮断部19は、室部材16に貼着されたフィルムである。遮断部19は、室部材16に、参照室36の反対側(第2連通部40側)から貼着されている。 The blocking unit 19 blocks communication between the inside of the reference chamber 36 and the outside of the hollow body 15 through the communication unit 18. The blocking part 19 closes the first communication part 39. The blocking unit 19 is a film attached to the chamber member 16. The blocking portion 19 is attached to the chamber member 16 from the side opposite to the reference chamber 36 (second communication portion 40 side).
 導入部21は、中空体15に設けられるとともに入力室35内に連通している。導入部21は、密閉された入力室35を外部に開放可能である。導入部21は、圧電素子17(受圧面17a)に対して傾斜する方向に向けて入力室35内に空気を導入する。なお、前記傾斜する方向には、圧電素子17(受圧面17a)に平行である方向が含まれ、かつ、圧電素子17(受圧面17a)の垂線P方向が含まれない。図示の例では、導入部21が、前記傾斜する方向(ただし、圧電素子17に平行である方向を除く)に向けて入力室35内に空気を導入する。 The introduction part 21 is provided in the hollow body 15 and communicates with the input chamber 35. The introduction part 21 can open the sealed input chamber 35 to the outside. The introduction part 21 introduces air into the input chamber 35 in a direction inclined with respect to the piezoelectric element 17 (pressure receiving surface 17a). The tilting direction includes a direction parallel to the piezoelectric element 17 (pressure receiving surface 17a) and does not include the perpendicular P direction of the piezoelectric element 17 (pressure receiving surface 17a). In the illustrated example, the introduction portion 21 introduces air into the input chamber 35 in the inclined direction (except for the direction parallel to the piezoelectric element 17).
 導入部21は、周壁部24に設けられている。導入部21は、中空体15を貫通している。導入部21は、圧電素子17の中央部に向けて入力室35内に空気を導入する。導入部21は、中空体15とは別個の部材によって形成されている。導入部21は、管体である。 The introduction part 21 is provided in the peripheral wall part 24. The introduction part 21 penetrates the hollow body 15. The introduction part 21 introduces air into the input chamber 35 toward the central part of the piezoelectric element 17. The introduction part 21 is formed by a member separate from the hollow body 15. The introduction part 21 is a tubular body.
 導入部21の軸線Oは、長手方向Xに延び、図示の例では、第1端壁部22に平行に延びている。軸線Oは、受圧面17aの中央部を通過し、受圧面17aおよび垂線Pに対して傾斜している。長手方向Xおよび対向方向Zの両方向に沿う断面視において、軸線Oと受圧面17aとの傾斜角度θは、例えば45°以下である。前記傾斜角度θは、0°より大きく45°以下であり、例えば、10°以上20°以下である。 The axis O of the introduction portion 21 extends in the longitudinal direction X, and extends in parallel with the first end wall portion 22 in the illustrated example. The axis O passes through the central portion of the pressure receiving surface 17a and is inclined with respect to the pressure receiving surface 17a and the perpendicular P. In a cross-sectional view along both the longitudinal direction X and the opposing direction Z, the inclination angle θ between the axis O and the pressure receiving surface 17a is, for example, 45 ° or less. The inclination angle θ is greater than 0 ° and not greater than 45 °, for example, not less than 10 ° and not greater than 20 °.
 導入部21は、連結側壁部26aおよび素子台座部28の第1側X1の端部を一体に貫通している。導入部21の第1側X1の端部は、中空体15から第1側X1に突出している。導入部21の第2側X2の端部は、入力室35の内部に突出していない。導入部21の第2側X2の端面は、素子台座部28の内周面(入力室35の内面)と長手方向Xに同等の位置に配置されている。 The introducing portion 21 integrally penetrates the connecting side wall portion 26a and the end portion on the first side X1 of the element base portion 28. The end of the introduction part 21 on the first side X1 protrudes from the hollow body 15 to the first side X1. The end portion on the second side X <b> 2 of the introduction portion 21 does not protrude into the input chamber 35. The end surface on the second side X <b> 2 of the introduction portion 21 is disposed at a position equivalent to the inner peripheral surface (the inner surface of the input chamber 35) of the element base portion 28 in the longitudinal direction X.
 接続管13は、受圧部11と導入部21とを連通している。接続管13は、受圧部11からの空気を導入部21に導入する。導入部21の内径および接続管13の内径はそれぞれ、例えば2mm以下である。
 前記生体情報計測システム10では、受圧部11が圧力を受けたときに、受圧部11が導入部21に空気を圧送(圧力を送出)する。なお本実施形態では、受圧部11が、中空体15の外部の圧力(外圧)の変動に伴って変形することがなく、受圧部11が、外圧変動の影響を実質的に受けない。そのため入力室35も、外圧の変動の影響を実質的に受けない。
The connecting pipe 13 communicates the pressure receiving part 11 and the introducing part 21. The connection pipe 13 introduces air from the pressure receiving part 11 into the introduction part 21. The inner diameter of the introduction part 21 and the inner diameter of the connecting pipe 13 are each 2 mm or less, for example.
In the biological information measuring system 10, when the pressure receiving unit 11 receives pressure, the pressure receiving unit 11 pumps air (sends pressure) to the introduction unit 21. In the present embodiment, the pressure receiving part 11 is not deformed with a change in pressure (external pressure) outside the hollow body 15, and the pressure receiving part 11 is substantially not affected by the external pressure fluctuation. Therefore, the input chamber 35 is not substantially affected by fluctuations in the external pressure.
 以上説明したように、本実施形態に係る圧力検出装置12および生体情報計測システム10によれば、導入部21が、前記傾斜する方向に向けて入力室35内に空気を導入する。したがって、例えば、導入部21が、前記垂線P方向に向けて入力室35内に空気を導入する場合に比べて、導入部21を通して入力室35内に導入された空気から圧電素子17が直接的に受ける圧力を小さく抑えることができる。 As described above, according to the pressure detection device 12 and the biological information measurement system 10 according to the present embodiment, the introduction unit 21 introduces air into the input chamber 35 in the inclined direction. Therefore, for example, compared with the case where the introduction unit 21 introduces air into the input chamber 35 in the direction of the perpendicular P, the piezoelectric element 17 is directly connected to the air introduced into the input chamber 35 through the introduction unit 21. It is possible to keep the pressure applied to the surface small.
 なお前述のように、導入部21が、前記垂線P方向に向けて入力室35内に空気を導入する場合、圧電素子17が空気から直接的に受ける圧力を小さくするために、圧電素子17と導入部21とを離間させることも考えられる。これに対して、導入部21が、前記傾斜する方向に向けて入力室35内に空気を導入する場合、圧電素子17と導入部21とを接近させた上で圧力を小さく抑えることができる。 As described above, when the introduction unit 21 introduces air into the input chamber 35 in the direction of the perpendicular line P, the piezoelectric element 17 and the piezoelectric element 17 are used in order to reduce the pressure that the piezoelectric element 17 directly receives from the air. It can also be considered that the introduction part 21 is separated. On the other hand, when the introduction part 21 introduces air into the input chamber 35 in the inclined direction, the pressure can be kept small after the piezoelectric element 17 and the introduction part 21 are brought close to each other.
 以上より、この圧力検出装置12によれば、小型化を図りつつ、被計測体に生じる微小な圧力変動を高精度に計測することができる。
 また導入部21が、圧電素子17の中央部に向けて入力室35内に空気を導入するので、被計測体に生じる微小な圧力変動を高精度に計測しつつ、計測感度も良好に確保することができる。
As mentioned above, according to this pressure detection apparatus 12, the small pressure fluctuation which arises in a to-be-measured body can be measured with high precision, aiming at size reduction.
Moreover, since the introduction part 21 introduces air into the input chamber 35 toward the central part of the piezoelectric element 17, it is possible to accurately measure minute pressure fluctuations occurring in the measurement target and to ensure good measurement sensitivity. be able to.
 また圧電素子17が、中空体15内において圧電素子17を間に挟んだ入力室35の反対側に参照室36を形成している。したがって、導入部21を通して入力室35内に空気が導入されたときに、入力室35と参照室36との圧力差に基づいて圧電素子17を変形させることができる。これにより、被計測体に生じる微小な圧力変動をより高精度に計測することができる。
 また、圧電素子17と室部材16との間に参照室36を形成するので、参照室36の設計の自由度を高め易くすることができる。
In addition, the piezoelectric element 17 forms a reference chamber 36 on the opposite side of the input chamber 35 with the piezoelectric element 17 interposed therebetween in the hollow body 15. Therefore, when air is introduced into the input chamber 35 through the introducing portion 21, the piezoelectric element 17 can be deformed based on the pressure difference between the input chamber 35 and the reference chamber 36. Thereby, it is possible to measure a minute pressure fluctuation generated in the measurement object with higher accuracy.
In addition, since the reference chamber 36 is formed between the piezoelectric element 17 and the chamber member 16, the degree of freedom in designing the reference chamber 36 can be easily increased.
 また中空体15が、両端壁部22、23および周壁部24を備えている。これにより、中空体15を把持し易くしたり、設置し易くしたりすることが可能になり、圧力検出装置12の取り扱い性を向上させることができる。
 また圧電素子17が、第1端壁部22に対して傾斜している。したがって、例えば、圧電素子17が第1端壁部22に平行に配置されている場合など比べて、中空体15内に、大きい圧電素子17を配置することができる。これにより、圧電素子17の感度を高め易くすることが可能になり、被計測体に生じる微小な圧力変動をより一層高精度に計測することができる。
The hollow body 15 includes both end wall portions 22 and 23 and a peripheral wall portion 24. Thereby, it becomes possible to make it easy to hold | grip the hollow body 15, or to make it easy to install, and to improve the handleability of the pressure detection apparatus 12.
The piezoelectric element 17 is inclined with respect to the first end wall portion 22. Therefore, for example, a larger piezoelectric element 17 can be disposed in the hollow body 15 than when the piezoelectric element 17 is disposed in parallel to the first end wall portion 22. Thereby, it becomes possible to make the sensitivity of the piezoelectric element 17 easy to increase, and minute pressure fluctuations generated in the measurement object can be measured with higher accuracy.
 また圧電素子17が、第1端壁部22に対して傾斜している。本実施形態では、圧電素子17の第2側X2の端部が、第1側X1の端部よりも第1端壁部22に近くなっている。これにより、圧電素子17の第2側X2の端部と基板20との間に広い空間を確保することができる。ここで基板20が、第1端壁部22に沿って延びている。したがって、基板20に配置される突起物37を前記広い空間に配置することで、基板20と第2端壁部23とを近接させることができる。これにより、中空体15内に基板20を配置しつつも、両端壁部22、23間の距離を短くすることが可能になり、圧力検出装置12の確実な小型化を図ることができる。 The piezoelectric element 17 is inclined with respect to the first end wall portion 22. In the present embodiment, the end portion on the second side X2 of the piezoelectric element 17 is closer to the first end wall portion 22 than the end portion on the first side X1. Thereby, a wide space can be secured between the end portion of the second side X <b> 2 of the piezoelectric element 17 and the substrate 20. Here, the substrate 20 extends along the first end wall portion 22. Therefore, by arranging the protrusions 37 arranged on the substrate 20 in the wide space, the substrate 20 and the second end wall portion 23 can be brought close to each other. Thereby, it is possible to shorten the distance between the both end wall portions 22 and 23 while arranging the substrate 20 in the hollow body 15, and the pressure detection device 12 can be reliably reduced in size.
 また導入部21が周壁部24に設けられている。したがって、両端壁部22、23を挟み込むように中空体15を把持したり、第1端壁部22または第2端壁部23を設置面上に設置したりするときに、導入部21が邪魔になるのを抑えることができる。これにより、圧力検出装置12の取り扱い性を更に向上させることができる。 Further, the introduction part 21 is provided in the peripheral wall part 24. Therefore, when the hollow body 15 is gripped so as to sandwich the both end wall portions 22 and 23, or when the first end wall portion 22 or the second end wall portion 23 is installed on the installation surface, the introduction portion 21 becomes an obstacle. Can be suppressed. Thereby, the handleability of the pressure detection device 12 can be further improved.
 ところで、圧力検出装置12の使用環境によっては、中空体15の外部の圧力(外圧)が変動することがある。例えば、締め切った部屋で圧力検出装置12を使用する場合には、ドアを開閉すること等により、外圧に微小な変動が生じうる。このとき、入力室35が導入部21を通して外圧変動の影響を受ける場合がある。この場合、参照室36も外圧変動から同様の影響を受けないと、計測精度が低下するおそれがある。 Incidentally, the pressure outside the hollow body 15 (external pressure) may vary depending on the use environment of the pressure detection device 12. For example, when the pressure detection device 12 is used in a closed room, the external pressure may fluctuate slightly by opening and closing the door. At this time, the input chamber 35 may be affected by external pressure fluctuations through the introduction part 21. In this case, if the reference chamber 36 is not similarly affected by fluctuations in external pressure, the measurement accuracy may be reduced.
 この圧力検出装置12では、参照室36の内部と中空体15の外部とが連通部18を通して連通可能である。したがって、本実施形態と異なり、入力室35(受圧部11)が外圧変動の影響を受ける場合には、遮断部19を除外して、連通部18を通して参照室36の内部と中空体15の外部とを連通しておくことで、参照室36にも連通部18を通して同様の影響を受けさせることができる。その結果、圧力変動の同相成分をキャンセルすることができる。一方で、本実施形態のように、入力室35(受圧部11)が外圧の変動の影響を受けない場合には、参照室36も前述の影響を受けないように、連通部18を通した参照室36の内部と中空体15の外部との連通を、前述の遮断部19のような構成によって遮断しておくことができる。これにより、外圧変動に伴う入力室35への影響の有無によらず、被計測体に生じる微小な圧力変動を高精度に計測することができる。 In the pressure detection device 12, the inside of the reference chamber 36 and the outside of the hollow body 15 can communicate with each other through the communicating portion 18. Therefore, unlike the present embodiment, when the input chamber 35 (pressure receiving portion 11) is affected by external pressure fluctuations, the blocking portion 19 is excluded and the inside of the reference chamber 36 and the outside of the hollow body 15 are passed through the communicating portion 18. , The reference chamber 36 can be similarly affected through the communication portion 18. As a result, the in-phase component of pressure fluctuation can be canceled. On the other hand, when the input chamber 35 (pressure receiving portion 11) is not affected by fluctuations in external pressure as in the present embodiment, the communication portion 18 is passed through so that the reference chamber 36 is not affected by the above-described influence. Communication between the inside of the reference chamber 36 and the outside of the hollow body 15 can be blocked by the configuration of the blocking unit 19 described above. Thereby, it is possible to measure a minute pressure fluctuation generated in the measurement object with high accuracy regardless of whether or not the input chamber 35 is affected by the fluctuation of the external pressure.
 なお、本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 The technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
 受圧部11として、空気パッドとは異なる構成を採用することもできる。例えば、受圧部11として、聴診器において皮膚に直接接触させる部分のように振動板を備える構成を採用してもよい。 As the pressure receiving portion 11, a configuration different from that of the air pad can be adopted. For example, you may employ | adopt the structure provided with a diaphragm as the pressure receiving part 11 like the part directly contacted with skin in a stethoscope.
 導入部21が、圧電素子17の中央部に向けて入力室35内に空気を導入していなくてもよい。導入部21が、圧電素子17の外周縁に向けて入力室35内に空気を導入してもよく、圧電素子17に向けて空気を導入しなくてもよい。軸線Oが、受圧面17aの外周縁を通過してもよく、受圧面17aを通過しなくてもよい。 The introduction unit 21 may not introduce air into the input chamber 35 toward the center of the piezoelectric element 17. The introduction unit 21 may introduce air into the input chamber 35 toward the outer peripheral edge of the piezoelectric element 17, or may not introduce air toward the piezoelectric element 17. The axis O may pass through the outer peripheral edge of the pressure receiving surface 17a or may not pass through the pressure receiving surface 17a.
 導入部21が、管体でなくてもよい。例えば、導入部21が、中空体15に形成された通路などであってもよい。
 導入部21が、第1端壁部22や第2端壁部23に設けられていてもよい。基板20が、中空体15内に収容されていなくてもよい。
The introduction part 21 may not be a tubular body. For example, the introduction part 21 may be a passage formed in the hollow body 15.
The introduction part 21 may be provided in the first end wall part 22 or the second end wall part 23. The substrate 20 may not be accommodated in the hollow body 15.
 遮断部19や連通部18がなくてもよい。
 室部材16がなくてもよい。例えば、圧力検出装置12における第2連通部40に相当する空間を、参照室36としてもよい。
The blocking unit 19 and the communication unit 18 may not be provided.
The chamber member 16 may not be provided. For example, a space corresponding to the second communication unit 40 in the pressure detection device 12 may be used as the reference chamber 36.
 中空体15が、第1端壁部22、第2端壁部23および周壁部24を備えていなくてもよい。例えば、中空体15が、第1端壁部22および素子台座部28のみによって構成されていてもよい。この場合、室部材16または圧電素子17が、中空体15内に収容されずに外部に露出されている構成を採用することができる。 The hollow body 15 may not include the first end wall portion 22, the second end wall portion 23, and the peripheral wall portion 24. For example, the hollow body 15 may be configured only by the first end wall portion 22 and the element base portion 28. In this case, a configuration in which the chamber member 16 or the piezoelectric element 17 is exposed outside without being accommodated in the hollow body 15 can be employed.
 その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。 In addition, it is possible to appropriately replace the constituent elements in the embodiment with well-known constituent elements without departing from the spirit of the present invention, and the above-described modified examples may be appropriately combined.
 本発明によれば、被計測体に生じる微小な圧力変動を高精度に計測することができるので、産業上の利用可能性は大である。 According to the present invention, since the minute pressure fluctuation generated in the measurement object can be measured with high accuracy, the industrial applicability is great.
10 生体情報計測システム
11 受圧部
12 圧力検出装置
15 中空体
16 室部材
17 圧電素子
18 連通部
20 基板
21 導入部
22 第1端壁部
23 第2端壁部
24 周壁部
35 入力室
36 参照室
DESCRIPTION OF SYMBOLS 10 Biological information measurement system 11 Pressure receiving part 12 Pressure detection apparatus 15 Hollow body 16 Chamber member 17 Piezoelectric element 18 Communication part 20 Substrate 21 Introduction part 22 1st end wall part 23 2nd end wall part 24 Peripheral wall part 35 Input chamber 36 Reference room

Claims (9)

  1.  圧電素子と、
     前記圧電素子を壁面の一部とする入力室が設けられた中空体と、
     前記中空体に設けられるとともに前記入力室内に連通し、前記圧電素子に対して傾斜する方向に向けて前記入力室内に空気を導入する導入部と、を備えていることを特徴とする圧力検出装置。
    A piezoelectric element;
    A hollow body provided with an input chamber having the piezoelectric element as a part of a wall surface;
    A pressure detection device comprising: an introduction portion that is provided in the hollow body and communicates with the input chamber and introduces air into the input chamber in a direction inclined with respect to the piezoelectric element. .
  2.  前記圧電素子が、前記中空体内に収容されるとともに、前記中空体内において前記圧電素子を間に挟んだ前記入力室の反対側に参照室を形成していることを特徴とする請求項1に記載の圧力検出装置。 The piezoelectric device is housed in the hollow body, and a reference chamber is formed on the opposite side of the input chamber with the piezoelectric element sandwiched in the hollow body. Pressure sensing device.
  3.  前記中空体が、互いに対向する第1端壁部および第2端壁部と、これらの両端壁部を連結する周壁部と、を備え、
     前記圧電素子が、前記第1端壁部に対して傾斜していることを特徴とする請求項2に記載の圧力検出装置。
    The hollow body includes a first end wall portion and a second end wall portion facing each other, and a peripheral wall portion connecting these both end wall portions,
    The pressure detection device according to claim 2, wherein the piezoelectric element is inclined with respect to the first end wall portion.
  4.  前記中空体内に収容されるとともに前記圧電素子が接続された基板を更に備え、
     前記圧電素子が、前記第1端壁部との間に前記入力室を形成し、
     前記基板が、前記中空体内において前記圧電素子と前記第2端壁部との間に配置されるとともに、前記第1端壁部に沿って延びていることを特徴とする請求項3に記載の圧力検出装置。
    Further comprising a substrate housed in the hollow body and connected to the piezoelectric element;
    The piezoelectric element forms the input chamber with the first end wall;
    The said board | substrate is arrange | positioned between the said piezoelectric element and the said 2nd end wall part in the said hollow body, and is extended along the said 1st end wall part. Pressure detection device.
  5.  前記導入部が前記周壁部に設けられていることを特徴とする請求項3または4に記載の圧力検出装置。 The pressure detection device according to claim 3 or 4, wherein the introduction part is provided in the peripheral wall part.
  6.  前記中空体内に収容され、前記圧電素子との間に前記参照室を形成する室部材を更に備えていることを特徴とする請求項2から5のいずれか1項に記載の圧力検出装置。 The pressure detection device according to any one of claims 2 to 5, further comprising a chamber member housed in the hollow body and forming the reference chamber with the piezoelectric element.
  7.  前記参照室の内部と前記中空体の外部とを連通可能な連通部を更に備えていることを特徴とする請求項2から6のいずれか1項に記載の圧力検出装置。 The pressure detection device according to any one of claims 2 to 6, further comprising a communication portion capable of communicating between the inside of the reference chamber and the outside of the hollow body.
  8.  前記導入部が、前記圧電素子の中央部に向けて前記入力室内に空気を導入することを特徴とする請求項1から7のいずれか1項に記載の圧力検出装置。 The pressure detection device according to any one of claims 1 to 7, wherein the introduction portion introduces air into the input chamber toward a central portion of the piezoelectric element.
  9.  被計測体から圧力を受ける受圧部と、
     請求項1から8のいずれか1項に記載の圧力検出装置と、を備え、
     前記受圧部が圧力を受けたときに、前記受圧部が前記導入部に空気を圧送することを特徴とする生体情報計測システム。
    A pressure-receiving unit that receives pressure from the measurement object;
    A pressure detection device according to any one of claims 1 to 8,
    The biological information measurement system, wherein when the pressure receiving part receives pressure, the pressure receiving part pumps air to the introduction part.
PCT/JP2017/020430 2016-06-03 2017-06-01 Pressure detection device and biological information measuring system WO2017209239A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780017225.XA CN109154534B (en) 2016-06-03 2017-06-01 Pressure detection device and biological information measurement system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016111911A JP6612682B2 (en) 2016-06-03 2016-06-03 Pressure detecting device and biological information measuring system
JP2016-111911 2016-06-03

Publications (1)

Publication Number Publication Date
WO2017209239A1 true WO2017209239A1 (en) 2017-12-07

Family

ID=60478657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020430 WO2017209239A1 (en) 2016-06-03 2017-06-01 Pressure detection device and biological information measuring system

Country Status (3)

Country Link
JP (1) JP6612682B2 (en)
CN (1) CN109154534B (en)
WO (1) WO2017209239A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138609A1 (en) * 2020-12-25 2022-06-30 株式会社リキッド・デザイン・システムズ Pressure sensor, and biometric information measuring device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121530U (en) * 1986-01-23 1987-08-01
JPH09229801A (en) * 1996-02-26 1997-09-05 Matsushita Electric Works Ltd Semiconductor pressure sensor
JPH10332512A (en) * 1997-06-03 1998-12-18 Osaka Gas Co Ltd Differential pressure sensor and instrument and method for measuring flow rate
JP2004113618A (en) * 2002-09-27 2004-04-15 Tanita Corp Apparatus for detecting biological signal, and sleep measuring instrument using the same
JP2005110969A (en) * 2003-10-08 2005-04-28 Yamatake Corp Biological information measuring device
US8672853B2 (en) * 2010-06-15 2014-03-18 Bam Labs, Inc. Pressure sensor for monitoring a subject and pressure sensor with inflatable bladder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4389375B2 (en) * 2000-01-18 2009-12-24 株式会社デンソー Pressure sensor
US9562820B2 (en) * 2013-02-28 2017-02-07 Mks Instruments, Inc. Pressure sensor with real time health monitoring and compensation
JP6275431B2 (en) * 2013-09-18 2018-02-07 アルプス電気株式会社 Pressure detecting device and intake pressure measuring device using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121530U (en) * 1986-01-23 1987-08-01
JPH09229801A (en) * 1996-02-26 1997-09-05 Matsushita Electric Works Ltd Semiconductor pressure sensor
JPH10332512A (en) * 1997-06-03 1998-12-18 Osaka Gas Co Ltd Differential pressure sensor and instrument and method for measuring flow rate
JP2004113618A (en) * 2002-09-27 2004-04-15 Tanita Corp Apparatus for detecting biological signal, and sleep measuring instrument using the same
JP2005110969A (en) * 2003-10-08 2005-04-28 Yamatake Corp Biological information measuring device
US8672853B2 (en) * 2010-06-15 2014-03-18 Bam Labs, Inc. Pressure sensor for monitoring a subject and pressure sensor with inflatable bladder

Also Published As

Publication number Publication date
CN109154534A (en) 2019-01-04
JP2017219341A (en) 2017-12-14
CN109154534B (en) 2020-07-14
JP6612682B2 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
EP1563268B1 (en) Force or pressure sensor and use of the same
WO2017187710A1 (en) Vibration waveform sensor and pulse wave detector
WO2010123029A1 (en) Bioinformation detecting device
JPWO2007029326A1 (en) Heartbeat / respiration / behavior detection device for small animals
US11672423B2 (en) Vibration detection apparatus
WO2017209239A1 (en) Pressure detection device and biological information measuring system
JP6827271B2 (en) Biological sound acquisition device
EP1915028A2 (en) Condenser microphone, microphone unit, and blood pressure gauge
US11311238B2 (en) Attachable sensing pod comprising a piezoelectric unit
US20230019623A1 (en) Wheeze detection device
JP5103882B2 (en) Heart rate detector
JP2010069021A (en) Biological information detector and bed apparatus
FI94287C (en) Method for noise attenuation and encoder construction for measuring a signal on the surface of solid material
JP6376937B2 (en) Electronic auscultation device and cover member used in this device
JP2012152283A (en) Biological signal detection apparatus and bed-departure prediction detecting system
US20210330282A1 (en) Biological sound measurement device
WO2020145059A1 (en) Body sound measurement device
WO2019159502A1 (en) Fluid control device
JP2020069280A (en) Sound acquisition device
WO2019163515A1 (en) Biological sensor
JP2021058292A (en) Biological information measuring device, toilet seat, and toilet bowl device
JP6728489B1 (en) Speaker device
Watanabe et al. Biosignals sensing by novel use of bidirectional microphones in a mobile phone for ubiquitous healthcare monitoring
JP7431293B2 (en) Vibrometers, electronics, and electronic systems
CN219699957U (en) Auscultation equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806789

Country of ref document: EP

Kind code of ref document: A1