WO2017209224A1 - Method for producing article having metallic luster, and toner for metallic luster colors and printing method using same - Google Patents

Method for producing article having metallic luster, and toner for metallic luster colors and printing method using same Download PDF

Info

Publication number
WO2017209224A1
WO2017209224A1 PCT/JP2017/020373 JP2017020373W WO2017209224A1 WO 2017209224 A1 WO2017209224 A1 WO 2017209224A1 JP 2017020373 W JP2017020373 W JP 2017020373W WO 2017209224 A1 WO2017209224 A1 WO 2017209224A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
metallic luster
article
resin
thiophene
Prior art date
Application number
PCT/JP2017/020373
Other languages
French (fr)
Japanese (ja)
Inventor
星野 勝義
輝大 水戸川
宮本克真
Original Assignee
国立大学法人千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016223667A external-priority patent/JP6961197B2/en
Application filed by 国立大学法人千葉大学 filed Critical 国立大学法人千葉大学
Priority to US16/305,241 priority Critical patent/US11048182B2/en
Publication of WO2017209224A1 publication Critical patent/WO2017209224A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/09Colouring agents for toner particles

Definitions

  • the present invention relates to a method for producing an article having a metallic luster, a metallic luster toner using the same, and a printing method.
  • Metals are generally hard and are used not only for parts that require mechanical strength, such as home appliances and automobiles, but also because they have a metallic luster, they are excellent in texture and are used in every kind of everyday life such as furniture and sundries. . Gold is particularly popular because it can give a sense of quality. However, not only is the metal itself expensive, but it is not easy to process, and the metal is expensive.
  • a metal plating method for coating a metal thin film on the surface of an article such as a polymer or glass, or a paint added with fine particles or flaky metal is applied to the surface of the article.
  • There are surface treatment techniques such as methods. When this technique is used, an article having a metallic luster can be produced at low cost by manufacturing an article with a polymer compound and coating the surface thereof with a metal thin film or a paint containing a metal.
  • the metal plating method has many limitations on the materials that can be surface treated.
  • the surface technique uses a metal after all, and it is less expensive than the case where the entire article is used with a metal, but it becomes expensive.
  • the coating material to which the above metal is added has a problem that due to the difference in specific gravity between the polymer binder and the metal in the coating material, the metal particles are settled, and spots are easily formed when the coating film is formed.
  • Patent Document 1 discloses. There are techniques described.
  • Patent Document 1 gives a metallic luster by dissolving in a solvent and uniformly coating on an article, and requires dissolution with a solvent. That is, the range of application is further expanded if a metallic luster can be obtained without using a solvent.
  • the present invention provides a method for producing an article having a novel metallic luster that does not use a solvent when forming an article having a metallic luster, and a metallic gloss color toner and a printing method using the same.
  • the purpose is to provide.
  • the method for producing an article having a metallic luster according to one aspect of the present invention that solves the above-described problems involves pressurizing a thiophene polymer.
  • the thiophene polymer is preferably formed by chemical polymerization or electrolytic polymerization.
  • the metallic gloss color toner according to another aspect of the present invention contains a thiophene polymer.
  • a printing method is to fix a metallic glossy color toner containing a thiophene polymer on a paper and pressurize the metallic glossy color toner.
  • a method for producing an article having a new metallic luster that does not use a solvent when forming an article having a metallic luster, and a toner for metallic luster color and a printing method using the same. it can.
  • FIG. It is a figure which shows the outline of the article
  • FIG. It is a figure which shows the outline of another example of the articles
  • FIG. It is a figure which shows the image of the manufacturing process of the articles
  • FIG. It is a figure which shows the image of the manufacturing process of the articles
  • FIG. It is a figure which shows the image of the toner particle which concerns on an application example. It is a figure which shows the image in the case of printing using the toner particle which concerns on an application example.
  • FIG. It is a figure which shows the outline of the article
  • FIG. It is a figure which shows an example of the other shape of the articles
  • FIG. It is a figure which shows the film
  • FIG. 1 is a schematic cross-sectional view of an article (hereinafter referred to as “article having metallic luster”) formed with a film having metallic luster containing a thiophene polymer according to the present embodiment.
  • the article according to the present embodiment is not particularly limited as long as it has a metallic luster, not only electronic machine parts such as home appliances and automobiles, but also miscellaneous goods, clothes used in daily life such as furniture and toys, Although there are various kinds of paper products and the like, a flat surface is a preferable example from the viewpoint of easily applying pressure evenly. In the example of this figure, an example of paper is shown. Further, as described later, the entire article itself may be an article having a metallic luster.
  • the thickness of the film having a metallic luster is not limited as long as the metallic luster can be exhibited, but if it is 0.1 ⁇ m or more, the film having the metallic luster can be obtained. More preferably, the thickness is 0.3 ⁇ m or more, and even more preferably 0.6 ⁇ m or more, the film has a more sufficient metallic luster.
  • the film having metallic luster according to the present embodiment includes a thiophene polymer.
  • the “thiophene polymer” refers to a polymer in which two or more thiophenes are bonded to each other and is a compound represented by the following general formula.
  • R is a substituent and is not limited as long as it can impart a metallic luster to the film, but is not limited to an alkoxy group, an amino group, an alkyl group, a hydroxyl group, a hydroxyalkyl group, an aryl group, a cyano group, Or it is preferable that it is either halogen.
  • R may be one or two per thiophene ring.
  • the Rs of the thiophenes may be the same or different.
  • thiophene is a heterocyclic compound containing sulfur, and is a compound represented by the following general formula.
  • R is the same as described above.
  • R when R is an alkoxy group, it is not limited, but the number of carbon atoms is preferably 1 or more and 8 or less, more specifically, 3-methoxythiophene, 3,4-dimethoxy. Examples include thiophene, 3-ethoxythiophene, 3,4-diethoxythiophene, 3-propoxythiophene, 3-butoxythiophene, 3-hydroxythiophene, 3,4-ethylenedioxythiophene, 3,4-propylenedioxythiophene can do.
  • R in the above formula is an alkyl group
  • the number of carbon atoms is preferably 1 or more and 12 or less, more specifically, 3-methylthiophene, 3,4-dimethyl.
  • R is an amino group
  • 3-aminothiophene, 3,4-diaminothiophene, 3-methylaminothiophene, 3-dimethylaminothiophene, 3-thiophenecarboxamide, 4- (thiophene-3- Il) Aniline and the like can be exemplified.
  • the molecular weight of the “thiophene polymer” is not limited as long as it can have a metallic luster and can be formed as a film, but is determined by a GPC measurement method.
  • the peak of the weight average molecular weight distribution is preferably in the range of 200 or more and 30000 or less, more preferably in the range of 500 or more and 10,000 or less.
  • the article having a metallic luster according to the present embodiment may be configured by an article including a thiophene polymer having a metallic luster instead of forming a film having a metallic luster on the article surface. It is.
  • a thiophene polymer may be molded so as to have a desired shape of the article itself to give a metallic luster. As an example of this, an example of a tablet-shaped article is shown in FIG.
  • the method for producing an article having a metallic luster made of a thiophene polymer in this embodiment is a method in which a thiophene polymer powder is placed on an article and the thiophene polymer is pressurized. is there.
  • the thiophene polymer is preferably formed by chemical polymerization or electrolytic polymerization.
  • the thiophene polymer can also be produced using chemical polymerization.
  • the “chemical polymerization method” refers to polymerization performed in at least one of a liquid phase and a solid phase using an oxidizing agent.
  • the reason why the thiophene polymer exhibits a metallic luster is the same as in the case of electrolytic polymerization, but the reason is that the molecules constituting the thiophene polymer are regularly oriented and reflect a specific wavelength. It is believed that there is. This is supported by the fact that the produced film shows a sharp peak in X-ray diffraction. The details will be apparent from the examples described later, but in the X-ray diffraction measurement of the thiophene polymer, there are no halo patterns due to amorphous, and there are three peaks that are considered to be derived from the regular structure of the thiophene polymer. It means that it can be clearly observed in the range of diffraction angle (2 ⁇ ) from 5 degrees to 30 degrees.
  • the article in the present embodiment is formed with a film made of the above thiophene polymer.
  • This thiophene polymer is very stable in the air, hardly deteriorates even if left in the air for a long time, and is long. It can show a metallic luster over time.
  • the present method a method for producing a film having metallic luster using the chemical polymerization method in the present embodiment (hereinafter simply referred to as “the present method”) will be described.
  • This method includes (1) a step of polymerizing thiophene using an oxidizing agent to obtain a solution containing a thiophene polymer, and (2) a step of removing the solution containing the thiophene polymer to obtain a thiophene polymer powder. . That is, in this embodiment, chemical polymerization is performed to produce a thiophene polymer.
  • thiophene is polymerized using an oxidizing agent, and a solution containing this thiophene polymer is prepared.
  • the “thiophene” used here and the resulting “thiophene polymer” are those described above.
  • the thiophene polymer is preferably in the range of a so-called oligomer, and specifically, the polymerization is preferably performed so that the distribution peak of the weight average molecular weight is in the range of 200 to 30000.
  • the oxidizing agent is not limited as long as the thiophene polymer can be produced, and various ones can be used.
  • ferric salt, cupric salt, cerium salt, dichromic acid examples thereof include salts, permanganate, ammonium persulfate, boron trifluoride, bromate, hydrogen peroxide, chlorine, bromine and iodine.
  • ferric salt is preferable. Hydrates may also be used. In this case, the pair of ions can be appropriately adjusted and is not limited.
  • perchlorate ion, hexafluorophosphate ion, and tetrafluoroborate ion is used, a metal close to gold Gloss can be obtained, which is preferable.
  • the polymerization is preferably performed in a solvent using a solvent.
  • the solvent to be used is not limited as long as the oxidizing agent and thiophene can be sufficiently dissolved and polymerized efficiently, but the organic solvent has a high polarity and a certain degree of volatility.
  • acetonitrile, nitromethane, ⁇ -butyrolactone, propylene carbonate, nitromethane, 1-methyl-2-pyrrolidinone, dimethyl sulfoxide, 2-butanone, tetrahydrofuran, acetone, methanol, anisole, chloroform, ethyl acetate, hexane, trichloroethylene, cyclohexanone, Dichloromethane, chloroform, dimethylformamide, ethanol, butanol, pyridine, dioxane, and mixtures thereof can be used, but acetonitrile, nitromethane, ⁇ -butyrolactone, carbonate Lopylene is preferable because it has a soluble thiophene polymer and tends to form a film with better metallic luster.
  • the amount of thiophene and oxidizing agent used for the solvent can be adjusted as appropriate and is not limited.
  • the weight of the solvent is 1, the weight of thiophene is 0.00007 or more and 7 or less. More preferably, it is 0.0007 or more and 0.7 or less, and in the case of iron (III) perchlorate n hydrate, the weight is preferably 0.0006 or more and 6 or less, more preferably 0. 0.006 or more and 0.6 or less.
  • the ratio of the thiophene to the oxidizing agent used is preferably 0.1 or more and 1000 or less, and more preferably 1 or more and 100 or less, when the weight of thiophene is 1.
  • thiophene and oxidant may be added to the solvent all at once, but two types of solutions are separately prepared: a solution in which thiophene is added to the solvent and a solution in which the oxidant is added to the solvent.
  • the polymerization reaction may be performed by combining them.
  • the thiophene polymer produced as described above is preferably prepared as a powdered thiophene polymer (thiophene polymer powder) by removing the solvent. In this way, an article having a metallic luster can be easily produced only by pressing.
  • an oxidizing agent containing the above-mentioned perchlorate ion, hexafluorophosphate ion, tetrafluoroborate ion, or chloride ion is used, it remains stably because it is stably bonded to the polymer. This state can be stably maintained.
  • electrolytic polymerization is a method of dissolving a solution insoluble polymer film on a conductor by dissolving a substance (monomer) that is a precursor of a polymer in a solution containing a supporting electrolyte, and then subjecting the monomer to electrode oxidation.
  • the technique to form is a method of dissolving a solution insoluble polymer film on a conductor by dissolving a substance (monomer) that is a precursor of a polymer in a solution containing a supporting electrolyte, and then subjecting the monomer to electrode oxidation. The technique to form.
  • the potential sweep method is a treatment in which a pair of electrodes is immersed in a solution containing a supporting electrolyte and applied while changing the potential at a constant rate.
  • the solvent of the solution used in this embodiment is not particularly limited.
  • a mixed solvent of various solvents is also preferable.
  • the supporting electrolyte of the solution used in the present embodiment is an essential component in electrolysis, and preferably has a cation or an anion that is sufficiently dissolved in a solvent and hardly electrolyzed, and is not limited thereto.
  • the concentration of the supporting electrolyte is not limited, but is preferably 0.001 M or more and solubility or less, and more preferably 0.01 M or more and 1 M or less.
  • the concentration of the thiophene monomer used in the electrolytic polymerization in the electrolytic solution is not limited, but is preferably 0.1 mM or more and less than or equal to the solubility, and more specifically 1 mM or more and 1M. The following is more preferable.
  • the electropolymerization is performed by immersing a conductor (functioning as an operating electrode) in an electrolytic container containing a solution, and counter electrodes, and if necessary, three electrodes of a reference electrode serving as a potential reference Can be employed, or a two-electrode system using only a conductor and a counter electrode can be employed.
  • a conductor functioning as an operating electrode
  • three electrodes of a reference electrode serving as a potential reference Can or a two-electrode system using only a conductor and a counter electrode can be employed.
  • the three-electrode system that can strictly regulate the electric potential of the conductor with respect to the reference electrode as a reference is used to produce an article having a metallic luster that contains the thiophene polymer formed by this method with good reproducibility. Is more preferable in that
  • the conductor as the working electrode is not limited as long as it is a substance that is stable against electrode oxidation in both the three-electrode type and the two-electrode type.
  • a transparent glass electrode, a metal electrode, a glassy carbon electrode or the like coated with indium tin (hereinafter abbreviated as “ITO”) or tin oxide can be suitably used.
  • ITO indium tin
  • a metal electrode such as stainless steel or a copper plate can be suitably used.
  • the reference electrode is not limited, but for example, a silver / silver chloride electrode (Ag / AgCl electrode) or a saturated calomel electrode can be preferably used.
  • the potential sweep method in the electropolymerization is preferably sweeping between a negative potential and a positive potential.
  • the negative potential is preferably in the range of ⁇ 1.5V to ⁇ 0.01V, more preferably in the range of ⁇ 1.0V to ⁇ 0.1V, and still more preferably ⁇ 0.7V. It is the range of -0.2V or less.
  • the positive potential is preferably in the range of + 1.0V to + 3.0V, more preferably in the range of + 1.0V to + 2.0V, and still more preferably in the range of + 1.0V to + 1.5V. It is.
  • the potential sweep method is not limited as long as the sweep rate can produce an article having a metallic luster, but within a range of 0.1 mV / second to 10 V / second. More preferably, it is in the range of 1 mV / second to 1 V / second, and more preferably in the range of 2 mV / second to 300 mV / second.
  • the time for the electropolymerization is not limited as long as an article having a metallic luster can be deposited, but it is preferably performed within the range of 1 second to 5 hours within the range of the applied voltage. More preferably, it is carried out within a range of 10 seconds to 1 hour.
  • the temperature of this electrolysis is not limited as long as an article having a metallic luster can be deposited by electrolytic polymerization, but it is preferably in the range of ⁇ 20 ° C. or more and 60 ° C. or less.
  • this electrolysis is a reaction in which constituent substances in the atmosphere are rarely involved, and since it is carried out at a relatively low potential, it can be carried out in the atmosphere. From the viewpoint of avoiding the possibility of contaminating the formed film, such as oxidation of impurities in the electrolytic solution, it is preferable to carry out in an atmosphere of nitrogen gas or argon gas, but there is almost no fear of contamination. Nevertheless, in the case of forming electropolymerization, bubbling with an inert gas (nitrogen gas or argon gas) is also useful because there is a possibility that the electrode reaction may be affected if a large amount of oxygen is present in the solution. is there.
  • the thiophene polymer produced as described above is placed on an article and pressurized.
  • pressurization refers to applying pressure to the membrane, and so-called “rubbing” is also included in the pressurization of the membrane.
  • the thiophene polymer produced in this case is a powder. An image diagram relating to the manufacture of this article is shown in FIG.
  • the article itself can be formed with only the thiophene polymer by placing the thiophene polymer prepared as described above in a mold made of metal or the like and pressurizing it.
  • An image diagram relating to the manufacture of this article is shown in FIG.
  • the range of the pressure at the time of pressurizing in this method is not particularly limited, but is preferably 10 kg / cm 2 or more, and more preferably 50 kg / cm 2 or more, for example.
  • the upper limit is not limited as long as the film or article having metallic luster is not destroyed, but it is preferably in the range of 1.0 ⁇ 10 5 kg / cm 2 or less, more preferably 5.
  • the range is 0 ⁇ 10 4 kg / cm 2 or less.
  • the surface roughness can be reduced and glossiness can be better shown by setting it to 50 kg / cm 2 or more, and the destruction of the structure of the article can be prevented by setting it to 5.0 ⁇ 10 4 kg / cm 2 or less. be able to.
  • the toner particles can be dissolved and stably fixed to an article such as paper.
  • the heating temperature is not particularly limited as long as it is not higher than the thermal decomposition temperature.
  • Patent Document 1 the inventors synthesized a deep blue polythiophene-based conductive polymer and dissolved it in a solvent to apply a coating solution on an article to form a gold-colored coating film. Have found to be. This is the world's first organic material that does not contain metals and dissolves in a solvent to give a gold-colored film. On the other hand, this time is based on the finding that a metal color tone is exhibited by applying pressure to this material. That is, the color change (chromism) based on a new principle that a deep blue powder exhibits a metallic color such as a gold color by pressure stimulation.
  • an application example of the thiophene polymer according to the present embodiment is wide and not limited as apparent from the above description, but an example considered to be very effective is a toner for metallic gloss color. That is, the metallic glossy color toner according to this application example described below is one in which a thiophene polymer is externally or internally added (or both types of addition) to binder resin particles, or does not contain a binder resin. The coalescence itself becomes the toner body.
  • the present toner is one in which the thiophene polymer is externally or internally added to the binder resin particles (or both addition modes), or the binder resin does not contain the thiophene polymer itself as the toner body.
  • a component necessary as a toner may be included as long as the formation of an article having a metallic luster by the thiophene polymer is not hindered.
  • a magnetic material such as iron powder, a wax, a charge control agent, an external additive, and the like can be included, but the invention is not limited thereto. An image diagram in this case is shown in FIG.
  • the amount of the thiophene polymer to be included is limited as long as a metallic luster can be expressed. However, it is preferably 0.1% by weight or more, preferably 1% by weight or more based on the total amount of toner. Further, when no binder resin is used, the thiophene polymer occupies most of the weight of the toner.
  • the printing method according to this application example is one in which a metallic gloss color toner containing a thiophene polymer is placed on an article, and the metallic gloss color toner is pressed to fix the toner.
  • the toner binder and the like can be melted and fixed more easily on an article such as paper.
  • FIG. 6 shows an image diagram of this process.
  • a method for producing an article having a new metallic luster that does not use a solvent when forming an article having a metallic luster, and a toner for metallic luster color and a printing method using the same. it can.
  • the method according to this embodiment manufactures an article having a metallic luster by rubbing the thiophene polymer.
  • “rubbing” also referred to as “rubbing” specifically means that a force is applied in a direction (lateral direction) different from the direction in which pressure is applied in a pressurized state, more specifically.
  • a thiophene polymer powder is placed on a substrate, and the pressure product is moved on the substrate in a state where the powder is pressurized by the pressure product.
  • the pressurized material is not particularly limited, but for example, it is preferable that a weight is placed on the plate-like member itself or the plate-like member because a force can be applied uniformly.
  • the value of pressurization can be greatly reduced compared to the case of only pressurization. More specifically, a metallic (golden) gloss can be obtained by rubbing even at a pressure of 500 g / cm 2 or less.
  • the lower limit of pressurization may be a level that can be said to be pressurization, for example, 3 g / cm 2 or more. That is, when rubbing, the pressure range is 3 g / cm 2 or more and 500 g / cm 2 or less, more preferably 300 g / cm 2 or less.
  • the pressure value can be further reduced, and a film having a metallic luster can be manufactured more easily.
  • the weights applied to the case 50kg, 0.5t, 1t, 2t, 4t, 8t, 10t and changed (each as a pressure 0.038ton / cm 2, 0.38ton / cm 2, 0.75ton / cm 2 , 1.5 ton / cm 2 , 3.0 ton / cm 2 , 6.0 ton / cm 2 , 7.5 ton / cm 2 ), each of which was applied for 10 minutes to produce a plurality of tablets (50 kg sample was pressure For 1 minute). Then, the regular reflectance and surface roughness of the obtained tablet were measured.
  • the regular reflection spectrum of the tablet showed the same outline as that of the oligomer coating film.
  • the maximum reflectivity increased as the pressure applied during pressing increased.
  • the arithmetic average roughness Ra which is a representative parameter of the surface roughness, was calculated for the manufactured article.
  • a laser microscope VK-9700 manufactured by Keyence Corporation and its analysis software were used, and the average value of 10 line roughnesses per 500 ⁇ m fixed length was calculated.
  • FIGS. 16 to 22 show a 3D image and arithmetic average roughness Ra by a laser microscope
  • FIG. 23 shows a relationship between the pressure applied during pressing and Ra.
  • the brightness and saturation of the non-glossy 3MeOT oligomer powder were small, whereas in the rubbing sample ( ⁇ ) and coating film ( ⁇ ), the brightness was significantly increased and the saturation was also in the first quadrant. It confirmed that it extended in the direction. Moreover, when the rubbing sample was compared with the coating film, it was confirmed that although the hue was almost the same, the saturation was slightly smaller. This is probably because the rubbing sample has a larger surface roughness than the coating film, and thus diffuse reflection is large, and as a result, the glossy yellow color is observed to fade.
  • the color of the 3MeOT oligomer powder is a subtractive color mixture of yellow and magenta, which is brown, and is actually very dark brown, so it is close to black.
  • the peak intensity is low in this powder, the number density of the lamella structure is extremely small, and it can be seen that there are many amorphous parts in the powder.
  • the (100) peak is remarkably increased compared to that, and since a sharp peak with a small half-value width is shown compared with the coating film, an edge-on lamella with a large crystal size is formed. (See FIG. 28). That is, rubbing has the effect of increasing the number density of edge-on lamellae and face-on lamellae contained in the powder sample, and it is considered that gold-colored gloss was developed especially by increasing the number density and size of edge-on lamellae.
  • Metals are generally hard and are used not only for parts that require mechanical strength, such as home appliances and automobiles, but also because they have a metallic luster, they are excellent in texture and are used in every kind of everyday life such as furniture and sundries. . Gold is particularly popular because it can give a sense of quality. However, not only is the metal itself expensive, but it is not easy to process, and the metal is expensive.
  • a metal plating method for coating a metal thin film on the surface of an article such as a polymer or glass, or a paint added with fine particles or flaky metal is applied to the surface of the article.
  • There are surface treatment techniques such as methods. When this technique is used, an article having a metallic luster can be produced at low cost by manufacturing an article with a polymer compound and coating the surface thereof with a metal thin film or a paint containing a metal.
  • the metal plating method has many limitations on the materials that can be surface treated.
  • the surface technique uses a metal after all, and it is less expensive than the case where the entire article is used with a metal, but it becomes expensive.
  • paints with the above metals added have metal particles that settle due to the difference in specific gravity between the polymer binder and the metal in the paint, making it easy to produce spots, and the metal is corroded and glossy. There are also problems such as loss and heavy coating.
  • an object of the present invention is to provide an article and a toner having a metallic luster having high strength and a method for producing an article having a metallic luster.
  • the weight of the thiophene polymer is preferably in the range of 0.1 to 99.9 when the weight of the article is 100.
  • the article is preferably a three-dimensional object.
  • a toner according to another aspect of the present invention includes a thiophene polymer mixed with at least one of a polyester resin, a polycarbonate resin, a polyvinyl pyrrolidone resin, a polystyrene resin, a polymethyl methacrylate resin, and a styrene acrylic copolymer resin. It has a metallic luster.
  • the weight of the thiophene polymer is preferably in the range of 0.1 to 99.9 when the weight of the article is 100.
  • a method for manufacturing an article according to another aspect of the present invention includes a polyester resin, a polycarbonate resin, a polyvinyl pyrrolidone resin, a polystyrene resin, a polymethyl methacrylate resin, and a styrene acrylic copolymer resin and a thiophene polymer. , Having a metallic luster that is solidified by mixing with a solvent and removing the solvent.
  • the weight of the thiophene polymer is preferably in the range of 0.1 to 99.9 when the weight of the article is 100.
  • a method for producing an article according to another aspect of the present invention includes a polyester resin, a polycarbonate resin, a polyvinyl pyrrolidone resin, a polystyrene resin, a polymethyl methacrylate resin, and a styrene acrylic copolymer resin, and a thiophene polymer. And a solvent for producing an article having a metallic luster.
  • a three-dimensional object according to another aspect of the present invention is a polyester resin, a polycarbonate resin, a polyvinyl pyrrolidone resin, a polystyrene resin, a polymethyl methacrylate resin, and a styrene acrylic copolymer resin, a thiophene polymer, Are mixed.
  • the toner having metallic luster includes a polyester resin, a polycarbonate resin, a polyvinylpyrrolidone resin, a polystyrene resin, a polymethyl methacrylate resin, and a styrene acrylic copolymer resin, and a thiophene polymer.
  • the union is a mixture.
  • a method for producing a three-dimensional object having metallic luster is a polyester resin, a polycarbonate resin, a polyvinyl pyrrolidone resin, a polystyrene resin, a polymethyl methacrylate resin, or a styrene acrylic copolymer resin.
  • the heel thiophene polymer is mixed using a solvent and solidified by removing the solvent.
  • a solution for producing an article having a metallic luster includes a polyester resin, a polycarbonate resin, a polyvinylpyrrolidone resin, a polystyrene resin, a polymethyl methacrylate resin, and a styrene acrylic copolymer resin. It has at least one, a thiophene polymer, and a solvent.
  • FIG. 29 is a schematic view of an article (hereinafter, also referred to as “this article”) 1 having a metallic luster according to the present embodiment.
  • This article in this figure is a mixture of polyester resin, polycarbonate resin, polyvinyl pyrrolidone resin, polystyrene resin, polymethyl methacrylate resin and styrene acrylic copolymer resin, and thiophene polymer, although this is an example in the form of a film in which an article is formed on a substrate, for example, a more three-dimensional and complicated shape shown in FIG. 30 is also possible.
  • the polyester resin refers to a resin comprising a polycondensate of a polyvalent carboxylic acid and a polyhydric alcohol, and is not limited to this, but for example, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene.
  • examples include, but are not limited to, terephthalate, polyethylene naphthalate, polybutylene naphthalate, polycyclohexanedimethyl terephthalate, polytrimethylene naphthalate, polycyclohexanedimethylene terephthalate, polytritetramethylene naphthalate, and mixtures thereof. .
  • the average molecular weight of the polyester resin is not limited as long as it has a metallic luster, but is preferably 1000 or more and 1000000 or less, more preferably 3000 or more and 100000 or less.
  • the polycarbonate resin is a resin having a carbonate group as a constituent element, and can be produced by, for example, bisphenol A and phosgene.
  • the average molecular weight of the polycarbonate resin is not limited as long as it has a metallic luster, but it is preferably 1000 or more and 1000000 or less, more preferably 3000 or more and 100000 or less.
  • the polyvinyl pyrrolidone resin refers to a resin obtained by polymerizing N-vinyl-2-pyrrolidone. Moreover, in this article, the average molecular weight of the polyvinylpyrrolidone resin is not limited as long as it has a metallic luster, but it is preferably 1,000 or more and 1,000,000 or less, more preferably 3000 or more and 100,000 or less.
  • the polystyrene resin refers to a resin obtained by polymerizing styrene.
  • the average molecular weight of the polystyrene resin is not limited as long as it has a metallic luster, but it is preferably 1000 or more and 1000000 or less, more preferably 3000 or more and 500000 or less, and more preferably Is 300,000 or less.
  • polymethyl methacrylate resin (acrylic resin)
  • PMMA polymethyl methacrylate resin
  • the average molecular weight of the polymethyl methacrylate resin is not limited as long as it has a metallic luster, but is preferably 1000 or more and 1000000 or less, more preferably 3000 or more and 500000 or less.
  • the styrene acrylic copolymer resin refers to a copolymer compound of acrylonitrile and styrene.
  • the average molecular weight of the styrene acrylic copolymer resin is not limited as long as it has a metallic luster, but it is preferably 1000 or more and 1000000 or less, more preferably 3000 or more and 500000 or less.
  • Thiophene polymer In the present article, the “thiophene polymer” refers to a polymer in which two or more thiophenes are bonded to each other and refers to a compound represented by the following general formula.
  • R is a substituent and is not limited as long as it can impart a metallic luster to the film, but is not limited to an alkoxy group, an amino group, an alkyl group, a hydroxyl group, a hydroxyalkyl group, an aryl group, a cyano group, Or it is preferable that it is either halogen.
  • R may be one or two per thiophene ring.
  • the Rs of the thiophenes may be the same or different.
  • the thiophene polymer when the thiophene polymer is doped with anions, it exhibits a gold color and copper color similar to gold and copper.
  • Anions include perchlorate ion, hexafluorophosphate ion, tetrafluoroborate ion, chloride ion, bromide ion, sulfate ion, acetate ion, nitrate ion, citrate ion, oxalate ion, p-toluenesulfonic acid Ion, polystyrene sulfonate ion and the like.
  • thiophene is a heterocyclic compound containing sulfur, and is a compound represented by the following general formula.
  • R is the same as described above.
  • R when R is an alkoxy group, it is not limited, but the number of carbon atoms is preferably 1 or more and 8 or less, more specifically, 3-methoxythiophene, 3,4-dimethoxy.
  • Examples thereof include thiophene, 3,4-ethylenedioxythiophene, 3,4-propylenedioxythiophene, and the like.
  • R in the above formula is an alkyl group
  • the number of carbon atoms is preferably 1 or more and 12 or less, more specifically, 3-methylthiophene, 3,4-dimethyl.
  • R is an amino group
  • 3-aminothiophene, 3,4-diaminothiophene, 3-methylaminothiophene, 3-dimethylaminothiophene, 3-thiophenecarboxamide, 4- (thiophene-3- Il) Aniline and the like can be exemplified.
  • the molecular weight of the “thiophene polymer” is not limited as long as it can have a metallic luster and can be formed as a film, but the weight required by the GPC measurement method.
  • the average molecular weight distribution peak is preferably in the range of 200 to 30,000, more preferably in the range of 500 to 10,000.
  • the weight of the thiophene polymer is preferably in the range of 0.1 to 99.9, more preferably 0.5 to 99, when the total weight of the article is 100. Range.
  • the thiophene polymer is not limited as long as it can be produced, and various methods can be adopted.
  • thiophene polymers can be made by chemical polymerization or electrolytic polymerization.
  • the “chemical polymerization method” refers to polymerization performed in at least one of a liquid phase and a solid phase using an oxidizing agent.
  • a step of polymerizing thiophene using an oxidizing agent to obtain a solution containing a thiophene polymer (2) removing unreacted raw materials and by-products from the solution containing the thiophene polymer. And obtaining a thiophene polymer powder.
  • thiophene is polymerized using an oxidizing agent to prepare a solution containing this thiophene polymer.
  • the “thiophene” used here and the resulting “thiophene polymer” are those described above.
  • the thiophene polymer is preferably in the range of a so-called oligomer, and specifically, the polymerization is preferably performed so that the distribution peak of the weight average molecular weight is in the range of 200 to 30000.
  • the oxidizing agent is not limited as long as the thiophene polymer can be produced, and various ones can be used.
  • ferric salt, cupric salt, cerium salt, dichromic acid examples thereof include salts, permanganate, ammonium persulfate, boron trifluoride, bromate, hydrogen peroxide, chlorine, bromine and iodine.
  • ferric salt is preferable. Hydrates may also be used.
  • the pair of ions can be appropriately adjusted and is not limited. For example, chloride ion, bromide ion, citrate ion, oxalate ion, paratoluenesulfonate ion, perchloric acid.
  • the polymerization is preferably performed in a solvent using a solvent.
  • the solvent to be used is not limited as long as the oxidizing agent and thiophene can be sufficiently dissolved and polymerized efficiently, but the organic solvent has a high polarity and a certain degree of volatility.
  • acetonitrile, nitromethane, ⁇ -butyrolactone, propylene carbonate, nitromethane, 1-methyl-2-pyrrolidinone, dimethyl sulfoxide, 2-butanone, tetrahydrofuran, acetone, methanol, anisole, chloroform, ethyl acetate, hexane, trichloroethylene, cyclohexanone, Dichloromethane, chloroform, dimethylformamide, ethanol, butanol, pyridine, dioxane, and mixtures thereof can be used, but acetonitrile, nitromethane, ⁇ -butyrolactone, carbonate Lopylene is preferable because it has a soluble thiophene polymer and tends to form a film with better metallic luster.
  • the amount of thiophene and oxidizing agent used for the solvent can be adjusted as appropriate and is not limited.
  • the weight of the solvent is 1, the weight of thiophene is 0.00007 or more and 7 or less. More preferably, it is 0.0007 or more and 0.7 or less, and in the case of iron (III) perchlorate n hydrate, the weight is preferably 0.0006 or more and 6 or less, more preferably 0. 0.006 or more and 0.6 or less.
  • the ratio of the thiophene to the oxidizing agent used is preferably 0.1 or more and 1000 or less, and more preferably 1 or more and 100 or less, when the weight of thiophene is 1.
  • thiophene and oxidant may be added to the solvent all at once, but two types of solutions are separately prepared: a solution in which thiophene is added to the solvent and a solution in which the oxidant is added to the solvent.
  • the polymerization reaction may be performed by combining them.
  • the thiophene polymer produced as described above is preferably prepared as a powdered thiophene polymer (thiophene polymer powder) by removing the solvent. By doing so, it is possible to produce an article having metallic luster by mixing with a polyester resin while being dissolved in a solvent described later.
  • an oxidizing agent containing the perchlorate ion, hexafluorophosphate ion, tetrafluoroborate ion, chloride ion, bromide ion, or paratoluenesulfonate ion is used, the polymer is stably used. Since it is bonded, the remaining metal gloss can be stably maintained.
  • electrolytic polymerization refers to a solution-insoluble polymer film on a conductor by dissolving a substance (monomer) serving as a polymer precursor in a solution containing a supporting electrolyte, and then subjecting the monomer to electrode oxidation. Is a method of forming
  • the potential sweep method is a treatment in which a pair of electrodes is immersed in a solution containing a supporting electrolyte and applied while changing the potential at a constant rate.
  • the solvent of the solution used in this embodiment is not particularly limited.
  • a mixed solvent of various solvents is also preferable.
  • an anionic surfactant such as sodium dodecyl sulfate, a cationic surfactant such as dodecyltrimethylammonium bromide, and a nonionic surfactant such as polyoxyethylene lauryl ether, numerical evaluation using a colorimeter
  • regulated by (1) can be obtained and it is preferable.
  • the supporting electrolyte of the solution used in the present embodiment is an essential component in electrolysis, and preferably has a cation or an anion that is sufficiently dissolved in a solvent and hardly electrolyzed, and is not limited thereto.
  • the concentration of the supporting electrolyte is not limited, but is preferably 0.001M or more and solubility or less, and more preferably 0.01M or more and 5M or less.
  • the concentration of the thiophene monomer used in the electropolymerization in the electrolytic solution is not limited, but is preferably 0.1 mM or more and less than or equal to the solubility, more specifically 0.5 mM. More preferably, it is 1 M or less.
  • the electropolymerization is performed by immersing a conductor (functioning as an operating electrode) in an electrolytic container containing a solution, and counter electrodes, and if necessary, three electrodes of a reference electrode serving as a potential reference Can be employed, or a two-electrode system using only a conductor and a counter electrode can be employed.
  • a conductor functioning as an operating electrode
  • three electrodes of a reference electrode serving as a potential reference Can or a two-electrode system using only a conductor and a counter electrode can be employed.
  • the three-electrode system that can strictly regulate the electric potential of the conductor with respect to the reference electrode as a reference is used to produce an article having a metallic luster that contains the thiophene polymer formed by this method with good reproducibility. Is more preferable in that
  • the conductor as the working electrode is not limited as long as it is a substance that is stable against electrode oxidation in both the three-electrode type and the two-electrode type.
  • a transparent glass electrode coated with indium tin (hereinafter abbreviated as “ITO”) or tin oxide, a metal electrode, an alloy electrode such as stainless steel, a glassy carbon electrode, or the like can be suitably used.
  • ITO indium tin
  • a metal electrode such as stainless steel or a copper plate
  • the reference electrode is not limited, but for example, a silver / silver chloride electrode (Ag / AgCl electrode) or a saturated calomel electrode can be preferably used.
  • the potential sweep method in the electropolymerization is preferably sweeping between a negative potential and a positive potential.
  • the negative potential is preferably in the range of ⁇ 1.5V to ⁇ 0.01V, more preferably in the range of ⁇ 1.0V to ⁇ 0.1V, and still more preferably ⁇ 0.7V. It is the range of -0.2V or less.
  • the positive potential is preferably in the range of + 1.0V to + 3.0V, more preferably in the range of + 1.0V to + 2.0V, and still more preferably in the range of + 1.0V to + 1.5V. It is.
  • the potential sweep method is not limited as long as the sweep rate can produce an article having a metallic luster, but within a range of 0.1 mV / second to 10 V / second. More preferably, it is in the range of 1 mV / second to 1 V / second, and more preferably in the range of 2 mV / second to 300 mV / second.
  • the time for the electropolymerization is not limited as long as an article having a metallic luster can be deposited, but it is preferably performed within the range of 1 second to 5 hours within the range of the applied voltage. More preferably, it is carried out within a range of 10 seconds to 1 hour.
  • the temperature of this electrolysis is not limited as long as an article having a metallic luster can be deposited by electrolytic polymerization, but it is preferably in the range of ⁇ 20 ° C. or more and 60 ° C. or less.
  • this electrolysis is a reaction in which constituent substances in the atmosphere are rarely involved, and since it is carried out at a relatively low potential, it can be carried out in the atmosphere. From the viewpoint of avoiding the possibility of contaminating the formed film, such as oxidation of dissolved oxygen in the electrolytic solution, it is preferably performed in a nitrogen gas or argon gas atmosphere, but there is little concern about contamination. Nevertheless, in the case of forming electropolymerization, bubbling with an inert gas (nitrogen gas or argon gas) is also useful because there is a possibility that the electrode reaction may be affected if a large amount of oxygen is present in the solution. is there.
  • This article is a mixture of the thiophene polymer synthesized by the above chemical polymerization or electrolytic polymerization and at least one of polyester resin, polycarbonate resin, polyvinyl pyrrolidone resin, polystyrene resin, polymethyl methacrylate resin and styrene acrylic copolymer resin.
  • a solvent is not limited as long as the thiophene polymer can be mixed with at least one of the polyester resin, polycarbonate resin, polyvinyl pyrrolidone resin, polystyrene resin, polymethyl methacrylate resin and styrene acrylic copolymer resin.
  • nitromethane, ⁇ -butyrolactone, acetonitrile, propylene carbonate, dimethyl sulfoxide, N-methyl-2-pyrrolidone and a mixture thereof can be used, but are not limited thereto.
  • the ratio of the thiophene polymer to the ratio of at least one of polyester resin, polycarbonate resin, polyvinyl pyrrolidone resin, polystyrene resin, polymethyl methacrylate resin and styrene acrylic copolymer resin may be in the above range, but the concentration of the solvent and this mixture The ratio of is not limited as long as it can be dissolved and can be appropriately adjusted as long as the necessary viscosity can be obtained. For example, when the total weight of the polyester resin and the thiophene polymer is 1, It is preferably 0.1 or more and 500 or less.
  • the three-dimensional shape includes a film, and the strength of the film has a very high strength, as will be apparent from Examples described later.
  • the reason why the thiophene polymer exhibits a metallic luster is in the range of speculation, but it is considered that the molecules constituting the thiophene polymer are regularly oriented and reflect a specific wavelength. This is supported by the fact that the prepared film containing the thiophene polymer shows a sharp peak in X-ray diffraction.
  • polyester resin polycarbonate resin, polyvinyl pyrrolidone resin, polystyrene resin, polymethyl methacrylate resin, and styrene-acrylic copolymer resin are used, among other resins.
  • At least one of a resin, a polyvinyl pyrrolidone resin, a polystyrene resin, a polymethyl methacrylate resin and a styrene acrylic copolymer resin enters, the metallic luster is not lost.
  • at least one of polyester resin, polycarbonate resin, polyvinyl pyrrolidone resin, polystyrene resin, polymethyl methacrylate resin and styrene acrylic copolymer resin can be appropriately adjusted in molecular weight, and by adjusting the solvent to be mixed, It is possible to adjust the viscosity of the solution.
  • the article according to the present embodiment is a mixture of a thiophene polymer and at least one of a polyester resin, a polycarbonate resin, a polyvinyl pyrrolidone resin, a polystyrene resin, a polymethyl methacrylate resin, and a styrene acrylic copolymer resin.
  • the polyester resin itself is used as a binder for toner used in, for example, printers and copiers, and this article can be used as toner for printers and the like.
  • the toner it can be realized by making the mixture of the polyester resin and the thiophene polymer into fine particles.
  • an article in which the polyester resin and the thiophene polymer are mixed can be crushed to obtain a desired particle size.
  • the viscosity of the prepared solution is lowered, and an inkjet nozzle is used.
  • a droplet having a size slightly larger than the desired particle size is formed by spraying used, and the solvent can be removed from the droplet to obtain a dried particle.
  • other resins polycarbonate resins, polyvinyl pyrrolidone resins, polystyrene resins, polymethyl methacrylate resins, styrene acrylic copolymer resins, and the like can be used as long as possible.
  • an article having a higher metallic luster can be obtained.
  • a monomer of 3-methoxythiophene (hereinafter referred to as “3MeOT”) was distilled before polymerization to remove impurities. 5.418 g of the distilled monomer was stirred with a propeller stirrer for 30 minutes while bubbling nitrogen into 475 ml of acetonitrile to prepare a monomer solution of 0.1 mol / l.
  • the solution was dropped onto a well-washed glass substrate with a dropper.
  • the coating film of nitromethane solvent was dried at room temperature for 1 hour (20 ° C., 40% RH), and the coating film of GBL solvent was dried for 30 minutes (45 ° C.) with a constant temperature hot air dryer.
  • FIG. 31 shows a film prepared from the nitromethane solution shown in Table 1 above.
  • the ratio in the figure is the mass ratio of 3MeOT: PES. 1: 0 is an oligomer-only film that does not contain PES.
  • FIG. 32 shows a film prepared from the GBL solution shown in Table 2 above.
  • the ratio in the figure is the mass ratio of 3MeOT: PES. 1: 0 is an oligomer-only film that does not contain PES.
  • the coating film prepared from the nitromethane solution shown in FIG. 33 According to the specular reflection spectrum of the coating film prepared from the nitromethane solution shown in FIG. 33, it was confirmed that the coating film showed a slight decrease in reflectance due to the addition of the polymer resin, but no rising wavelength shift was observed.
  • the coating film prepared from the GBL solution shown in FIG. 34 had improved reflectance by the addition of the polymer resin.
  • the rising wavelength is shifted by a short wavelength by the addition of the polymer resin, it was found that the color can be changed by the addition of the resin.
  • Tables 5 and 6 show values compared with gold films prepared by vacuum deposition.
  • ⁇ E * ab represents a color difference (a distance in the color space).
  • FIGS. 37 and 38 show the difference between the coating film and the gold deposition film in the case of the nitromethane solution and the GBL solution.
  • FIGS. 39 and 40 show the coating film and the gold deposition in the case of the nitromethane solution and the GBL solution, respectively. The color difference ⁇ E * ab from the film will be described.
  • the coating strength was improved by increasing the amount of polymer resin added.
  • the prepared coating solution was dropped onto a well-washed glass substrate with a dropper and applied, and the coating film was dried with a constant temperature hot air dryer for 1 hour (60 ° C.). In all cases, the film thickness was about 18 ⁇ m.
  • FIG. 42 shows a photograph of the prepared coating film and a coating film not containing resin as a comparative example.
  • a coating film not containing a resin (nitromethane solvent) as a comparative example a coating film not containing a resin (GBL solvent), PES-N, and PES-G as comparative examples are shown.
  • PVP, PS, PMMA, and StAc respectively.
  • PS, PMMA, and StAc since the back side of the film developed a gold color, it was taken as a photograph of the back side.
  • FIG. 43 shows total reflection spectra of a film not containing a resin and a PEN-N film prepared from a nitromethane solvent
  • FIG. 44 is a film not containing a resin and a PES-G film, a PC film and a PVP prepared from a GBL solvent.
  • 45 shows the total reflection spectrum of the film
  • FIG. 45 shows the total reflection spectrum of the film not containing the resin made from the GBL solvent, the PES film, the PMMA film, and the StAc film, respectively.
  • represents a gold vapor-deposited film
  • ⁇ 1 represents a gold-colored film containing no resin prepared from a nitromethane solvent
  • ⁇ 2 represents a PES-N film.
  • represents a gold vapor deposition film
  • ⁇ 1 represents a gold-tone film not containing a resin prepared from a GBL solvent
  • ⁇ 2 represents a PES-G film
  • 3 represents a PC film
  • 4 represents a PVP.
  • represents a gold deposited film
  • ⁇ 1 represents a gold-colored film containing no resin prepared from a GBL solvent
  • ⁇ 2 represents a PS film
  • ⁇ 3 represents a PMMA film
  • ⁇ 4 represents a StAc film.
  • the color difference ⁇ E * ab based on the colorimetric value of the gold vapor-deposited film and L * , a
  • the values ⁇ L * , ⁇ a * and ⁇ b * between the values of * and b * are shown in Table 11 below, and the results plotted in FIGS. 49 to 51 are shown.
  • the color difference ⁇ E * ab is a linear distance from the reference color (gold vapor deposition film) in the L * a * b * space, and is given by the following equation. 49 shows the color difference from the gold vapor deposition film.
  • represents a gold vapor deposition film
  • ⁇ 1 represents a gold-tone film not containing a resin prepared from a nitromethane solvent
  • ⁇ 2 represents a PES-N film.
  • FIG. 50 also shows the color difference from the gold vapor deposition film.
  • represents a gold vapor deposition film
  • ⁇ 1 represents a gold-tone film not containing a resin prepared from a GBL solvent
  • ⁇ 2 represents a PES-G film.
  • ⁇ 3 indicates a PC film
  • ⁇ 4 indicates a PVP film.
  • indicates a gold deposited film
  • ⁇ 1 indicates a gold-colored film containing no resin prepared from a GBL solvent
  • ⁇ 2 indicates a PS film
  • ⁇ 3 indicates a PMMA film
  • ⁇ 4 indicates a StAc film.
  • represents a gold vapor deposition film
  • ⁇ 1 represents a gold-colored film not containing a resin prepared from a GBL solvent
  • ⁇ 2 represents a PES-G film
  • ⁇ 3 indicates a PC film
  • ⁇ 4 indicates a PVP film.
  • indicates a gold deposited film
  • ⁇ 1 indicates a gold-colored film containing no resin prepared from a GBL solvent
  • ⁇ 2 indicates a PS film
  • ⁇ 3 indicates a PMMA film
  • ⁇ 4 indicates a StAc film.
  • the thiophene polymer was performed in the same manner as in the above example. Also, 80 mg of various resins shown in Table 13 below were completely dissolved in 1.0 g of GBL, and 10 mg of the prepared 3MeOT oligomer was mixed with the solution and stirred. Next, the solution was dropped onto a well-washed glass substrate with a dropper and applied, and the coating film was dried with a constant temperature hot air dryer for 1 hour (60 ° C.). The film thickness was about 50 ⁇ m.
  • FIG. 55 shows a photograph of the film prepared above and a film not containing resin (dried at 60 ° C.).
  • PS, PMMA, and StAc are images of the bonding surface (back surface) with the glass substrate.
  • FIG. 56 shows a specular reflection spectrum of the surface of PES and the adhesive surface (back surface) of PS, PMMA, and StAc among the prepared coating films.
  • the results measured with MSV-370) manufactured by the company are respectively shown. Comparing the results shown in this figure with the same results as described above, there was no difference in the rising wavelength and the reflectance, so that it was confirmed that even when the resin was excessively mixed with the oligomer, golden gloss was developed.
  • is a gold vapor deposition film
  • ⁇ 1 is a gold-tone film not containing a resin made from GBL solvent
  • ⁇ 2 is a PES film
  • ⁇ 3 is a PS film
  • ⁇ 4 is a PMMA film
  • (5) indicates a StAc film, respectively.
  • FIG. 59 shows the results plotted in FIG.
  • is a gold vapor deposition film
  • ⁇ 1 is a gold-tone film not containing a resin made from GBL solvent
  • ⁇ 2 is a PES film
  • ⁇ 3 is a PS film
  • ⁇ 4 is a PMMA film
  • (5) indicates a StAc film, respectively.
  • FIG. 60 shows these XRD patterns. In any pattern, a sharp peak was confirmed around 7.79 degrees, and lamella crystals were present in the film, producing a lamellar correlation distance of 1.13 nm.
  • XPS X-ray photoelectron spectroscopy
  • Fig. 60 shows the wide scan spectrum. According to this, only peaks of oxygen O, carbon C, chlorine Cl, and sulfur S were confirmed in both PES and PMMA.
  • Signals of sulfur derived from thiophene ring and chlorine derived from dopant perchloric acid were clearly observed within 2.5 nm in depth on both PES surface and PMMA surface exhibiting golden luster. That is, it was found that a thiophene polymer was present on the outermost surface and the rearmost surface of a 50 ⁇ m-thick film, and it was found that a golden tone was developed by lamellar crystals formed by the thiophene polymer.
  • the chlorine and sulfur atom number concentrations obtained from the obtained spectrum are shown in Table 17 below. From this concentration, it was found that the thiophene polymer obtained in this example was doped with about 3 chloride ions per 10 units of the thiophene ring.
  • the present invention has industrial applicability as an article having a metallic luster and a method for producing the same.

Abstract

Provided are: a novel method for producing an article having metallic luster, wherein a solvent is not used when an article having metallic luster is formed; and a toner for metallic luster colors and a printing method, each of which uses this method. One embodiment of the present invention is a method for producing an article having metallic luster by applying a pressure to a thiophene polymer. In this case, it is preferable that the thiophene polymer is obtained by electropolymerization or chemical polymerization. Another embodiment of the present invention is a toner for metallic luster colors, which contains a thiophene polymer. Another embodiment of the present invention is a printing method, wherein a toner for metallic luster colors, which contains a thiophene polymer, is arranged on an article and the toner for metallic luster colors is fixed thereon by applying a pressure to the toner for metallic luster colors.

Description

金属光沢を備えた物品を製造する方法、並びに、これを用いる金属光沢色用トナー及び印刷方法。A method for producing an article having a metallic luster, a metallic luster color toner using the same, and a printing method.
 本発明は、金属光沢を備えた物品を製造する方法、並びに、これを用いる金属光沢色用トナー及び印刷方法に関する。 The present invention relates to a method for producing an article having a metallic luster, a metallic luster toner using the same, and a printing method.
 金属は一般に硬く、家電や自動車等、機械的強度が必要な部品に使用されているだけでなく、金属光沢を有するため質感に優れ、家具や雑貨等、日常生活のありとあらゆる物品において使用されている。特に金は、高級感を出すことができ人気が高い。しかしながら、金属は材料そのものが高価であるだけでなく加工も容易ではなく、高価となってしまうといった課題がある。 Metals are generally hard and are used not only for parts that require mechanical strength, such as home appliances and automobiles, but also because they have a metallic luster, they are excellent in texture and are used in every kind of everyday life such as furniture and sundries. . Gold is particularly popular because it can give a sense of quality. However, not only is the metal itself expensive, but it is not easy to process, and the metal is expensive.
 上記の課題を解決するための手段として、例えば、高分子やガラスといった物品の表面に金属の薄膜を被覆する金属めっき方法や、微粒子又はフレーク状の金属を添加した塗料を物品の表面に塗布する方法等の表面処理技術がある。この技術を用いると、高分子化合物で物品を製造する一方、その表面に金属薄膜又は金属を含む塗料を被覆することで、安価に金属光沢を有する物品を製造することができるといった効果がある。 As means for solving the above-mentioned problems, for example, a metal plating method for coating a metal thin film on the surface of an article such as a polymer or glass, or a paint added with fine particles or flaky metal is applied to the surface of the article. There are surface treatment techniques such as methods. When this technique is used, an article having a metallic luster can be produced at low cost by manufacturing an article with a polymer compound and coating the surface thereof with a metal thin film or a paint containing a metal.
 しかしながら、上記金属めっき方法は、表面処理を行うことができる材質に制限が少なからずある。また上記表面技術は結局のところ金属を使用するものであり、物品全部を金属で使用する場合よりは少なくて済むが結局高価となってしまう。特に、上記金属を添加した塗料は塗料中のポリマーバインダーと金属との比重の違いにより、金属粒子が沈降し、塗膜にしたときに斑が生じやすくなってしまうといった課題もある。 However, the metal plating method has many limitations on the materials that can be surface treated. In addition, the surface technique uses a metal after all, and it is less expensive than the case where the entire article is used with a metal, but it becomes expensive. In particular, the coating material to which the above metal is added has a problem that due to the difference in specific gravity between the polymer binder and the metal in the coating material, the metal particles are settled, and spots are easily formed when the coating film is formed.
 そこで、金属以外の物質を用いて金属光沢を示す物質が存在すれば、上記課題を解決することができると考えられており、金属光沢を示す非金属物質に関する技術として、例えば下記特許文献1に記載の技術がある。 Therefore, it is considered that the above problem can be solved if there is a substance exhibiting metallic luster using a substance other than metal. As a technique relating to a non-metallic substance exhibiting metallic luster, for example, the following Patent Document 1 discloses. There are techniques described.
WO2014/0231405号公報WO2014 / 0231405 gazette
 しかしながら、上記特許文献1に記載の技術は、溶媒に溶解して物品上に均一に塗布することによって金属光沢を出すものであって、溶媒による溶解が必要となっている。すなわち、溶媒を用いずとも金属光沢を出すことができれば応用の範囲は更に広がる。 However, the technique described in the above-mentioned Patent Document 1 gives a metallic luster by dissolving in a solvent and uniformly coating on an article, and requires dissolution with a solvent. That is, the range of application is further expanded if a metallic luster can be obtained without using a solvent.
 そこで、本発明は上記課題を鑑み、金属光沢を有する物品を形成する際に溶媒を用いない新規な金属光沢を備えた物品を製造する方法、並びに、これを用いる金属光沢色用トナー及び印刷方法を提供することを目的とする。 Therefore, in view of the above problems, the present invention provides a method for producing an article having a novel metallic luster that does not use a solvent when forming an article having a metallic luster, and a metallic gloss color toner and a printing method using the same. The purpose is to provide.
 上記課題を解決する本発明の一観点に係る金属光沢を有する物品を製造する方法は、チオフェン重合体を加圧するものである。 The method for producing an article having a metallic luster according to one aspect of the present invention that solves the above-described problems involves pressurizing a thiophene polymer.
 またこの観点において、チオフェン重合体は、化学重合又は電解重合によって形成されたものであることが好ましい。 In this respect, the thiophene polymer is preferably formed by chemical polymerization or electrolytic polymerization.
 また、本発明の他の一観点に係る金属光沢色用トナーは、チオフェン重合体を含むものである。 Also, the metallic gloss color toner according to another aspect of the present invention contains a thiophene polymer.
 また、本発明の他の一観点に係る印刷方法は、チオフェン重合体を含む金属光沢色用トナーを紙の上に配置し、当該金属光沢色用トナーを加圧することで定着させるものである。 Also, a printing method according to another aspect of the present invention is to fix a metallic glossy color toner containing a thiophene polymer on a paper and pressurize the metallic glossy color toner.
 以上、本発明により、金属光沢を有する物品を形成する際に溶媒を用いない新規な金属光沢を有する物品を製造する方法、並びに、これを用いる金属光沢色用トナー及び印刷方法を提供することができる。 As described above, according to the present invention, there is provided a method for producing an article having a new metallic luster that does not use a solvent when forming an article having a metallic luster, and a toner for metallic luster color and a printing method using the same. it can.
実施形態1に係る金属光沢を有する物品の概略を示す図である。It is a figure which shows the outline of the article | item which has the metallic luster which concerns on Embodiment 1. FIG. 実施形態1に係る金属光沢を有する物品の他の一例の概略を示す図である。It is a figure which shows the outline of another example of the articles | goods which have metallic luster concerning Embodiment 1. FIG. 実施形態1に係る金属光沢膜を有する物品の製造工程のイメージを示す図である。It is a figure which shows the image of the manufacturing process of the articles | goods which have a metallic glossy film which concerns on Embodiment 1. FIG. 実施形態1に係る金属光沢を有する物品の製造工程のイメージを示す図である。It is a figure which shows the image of the manufacturing process of the articles | goods which have metal luster concerning Embodiment 1. FIG. 応用例に係るトナー粒子のイメージを示す図である。It is a figure which shows the image of the toner particle which concerns on an application example. 応用例に係るトナー粒子を用いて印刷する場合のイメージを示す図である。It is a figure which shows the image in the case of printing using the toner particle which concerns on an application example. 実施例にて作製した金属光沢を有する物品の写真図である。It is a photograph figure of the articles | goods which have the metallic luster produced in the Example. 実施例にて作製した金属光沢を有する物品の写真図である。It is a photograph figure of the articles | goods which have the metallic luster produced in the Example. 実施例にて作製した金属光沢を有する物品の写真図である。It is a photograph figure of the articles | goods which have the metallic luster produced in the Example. 実施例にて作製した金属光沢を有する物品の写真図である。It is a photograph figure of the articles | goods which have the metallic luster produced in the Example. 実施例にて作製した金属光沢を有する物品の写真図である。It is a photograph figure of the articles | goods which have the metallic luster produced in the Example. 実施例にて作製した金属光沢を有する物品の写真図である。It is a photograph figure of the articles | goods which have the metallic luster produced in the Example. 実施例にて作製した金属光沢を有する物品の写真図である。It is a photograph figure of the articles | goods which have the metallic luster produced in the Example. 実施例にて作成した金属光沢を有する物品の正反射スペクトルを示す図である。It is a figure which shows the regular reflection spectrum of the articles | goods which have the metallic luster created in the Example. プレス時に加えた圧力と最大反射率の関係を示すグラフである。It is a graph which shows the relationship between the pressure applied at the time of pressing, and the maximum reflectance. レーザー顕微鏡による3D画像と算術平均粗さRaを示す図である。It is a figure which shows 3D image and arithmetic mean roughness Ra by a laser microscope. レーザー顕微鏡による3D画像と算術平均粗さRaを示す図である。It is a figure which shows 3D image and arithmetic mean roughness Ra by a laser microscope. レーザー顕微鏡による3D画像と算術平均粗さRaを示す図である。It is a figure which shows 3D image and arithmetic mean roughness Ra by a laser microscope. レーザー顕微鏡による3D画像と算術平均粗さRaを示す図である。It is a figure which shows 3D image and arithmetic mean roughness Ra by a laser microscope. レーザー顕微鏡による3D画像と算術平均粗さRaを示す図である。It is a figure which shows 3D image and arithmetic mean roughness Ra by a laser microscope. レーザー顕微鏡による3D画像と算術平均粗さRaを示す図である。It is a figure which shows 3D image and arithmetic mean roughness Ra by a laser microscope. レーザー顕微鏡による3D画像と算術平均粗さRaを示す図である。It is a figure which shows 3D image and arithmetic mean roughness Ra by a laser microscope. プレス時に加えた圧力とRaの関係を示す図である。It is a figure which shows the relationship between the pressure applied at the time of pressing, and Ra. チオフェンオリゴマーの粉末及びラビングにより作製した金属光沢を有する膜の写真図である。It is a photograph figure of the film | membrane which has the metallic luster produced by the powder and rubbing of the thiophene oligomer. ラビングにより作製した膜の正反射スペクトルの測定結果を示す図である。It is a figure which shows the measurement result of the regular reflection spectrum of the film | membrane produced by rubbing. ラビングにより作製した膜の測色の結果を示す図である。It is a figure which shows the result of the colorimetry of the film | membrane produced by rubbing. ラビングにより作製した膜のX線開設スペクトル測定の結果を示す図である。It is a figure which shows the result of the X-ray opening spectrum measurement of the film | membrane produced by rubbing. エッジオンラメラとフェイスオンラメラの構造のイメージを示す図である。It is a figure which shows the image of the structure of an edge on lamella and a face on lamella. 実施形態3に係る物品の概略を示す図である。It is a figure which shows the outline of the article | item which concerns on Embodiment 3. FIG. 実施形態3に係る物品の他の形状の一例を示す図である。It is a figure which shows an example of the other shape of the articles | goods which concern on Embodiment 3. FIG. ニトロメタン溶液から作製された膜を示す図である。It is a figure which shows the film | membrane produced from the nitromethane solution. GBL溶液から作製された膜を示す図である。It is a figure which shows the film | membrane produced from the GBL solution. ニトロメタン溶液から作製された膜の正反射スペクトルを示す図である。It is a figure which shows the regular reflection spectrum of the film | membrane produced from the nitromethane solution. GBL溶液から作製された膜の正反射スペクトルを示す図である。It is a figure which shows the regular reflection spectrum of the film | membrane produced from the GBL solution. ニトロメタン溶液から作製された膜の色度図である。It is a chromaticity diagram of a film made from a nitromethane solution. GBL溶液から作製された膜の色度図である。It is a chromaticity diagram of a film made from a GBL solution. ニトロメタン溶液から作製された膜と金蒸着膜との差を示す図である。It is a figure which shows the difference of the film | membrane produced from the nitromethane solution, and a gold vapor deposition film | membrane. GBL溶液から作製された膜と金蒸着膜との差を示す図である。It is a figure which shows the difference of the film | membrane produced from the GBL solution, and a gold vapor deposition film | membrane. ニトロメタン溶液から作製された膜と金蒸着膜との色差を示す図である。It is a figure which shows the color difference of the film | membrane produced from the nitromethane solution, and a gold vapor deposition film | membrane. GBL溶液から作製された膜と金蒸着膜との色差を示す図である。It is a figure which shows the color difference of the film | membrane produced from the GBL solution, and a gold vapor deposition film. 実施例に係る立体的形状とした物品の写真図である。It is a photograph figure of the articles | goods made into the three-dimensional shape which concerns on an Example. 実施例にて作製した金色調膜の写真図である。It is a photograph figure of the golden tone film produced in the Example. 実施例にて作製した金色調膜の全反射スペクトルを示す図である。It is a figure which shows the total reflection spectrum of the golden tone film produced in the Example. 実施例にて作製した金色調膜の全反射スペクトルを示す図である。It is a figure which shows the total reflection spectrum of the golden tone film produced in the Example. 実施例にて作製した金色調膜の全反射スペクトルを示す図である。It is a figure which shows the total reflection spectrum of the golden tone film produced in the Example. 実施例にて作製した金色調膜の測色データの絶対値を示す図である。It is a figure which shows the absolute value of the colorimetric data of the gold color tone film produced in the Example. 実施例にて作製した金色調膜の測色データの絶対値を示す図である。It is a figure which shows the absolute value of the colorimetric data of the gold color tone film produced in the Example. 実施例にて作製した金色調膜の測色データの絶対値を示す図である。It is a figure which shows the absolute value of the colorimetric data of the gold color tone film produced in the Example. 金蒸着膜と実施例の金色調膜との色差を示す図である。It is a figure which shows the color difference of a gold vapor deposition film | membrane and the gold color tone film | membrane of an Example. 金蒸着膜と実施例の金色調膜との色差を示す図である。It is a figure which shows the color difference of a gold vapor deposition film | membrane and the gold color tone film | membrane of an Example. 金蒸着膜と実施例の金色調膜との色差を示す図である。It is a figure which shows the color difference of a gold vapor deposition film | membrane and the gold color tone film | membrane of an Example. 樹脂なしの金色調膜と実施例の金色調膜との色差を示す図である。It is a figure which shows the color difference of the gold color tone film | membrane without resin, and the gold color tone film | membrane of an Example. 樹脂なしの金色調膜と実施例の金色調膜との色差を示す図である。It is a figure which shows the color difference of the gold color tone film | membrane without resin, and the gold color tone film | membrane of an Example. 樹脂なしの金色調膜と実施例の金色調膜との色差を示す図である。It is a figure which shows the color difference of the gold color tone film | membrane without resin, and the gold color tone film | membrane of an Example. 実施例にて作製した金色調膜の写真図である。It is a photograph figure of the golden tone film produced in the Example. 実施例にて作製した金色調膜の全反射スペクトルを示す図である。It is a figure which shows the total reflection spectrum of the golden tone film produced in the Example. 実施例にて作製した金色調膜の測色データの絶対値を示す図である。It is a figure which shows the absolute value of the colorimetric data of the gold color tone film produced in the Example. 金蒸着膜と実施例の金色調膜との色差を示す図である。It is a figure which shows the color difference of a gold vapor deposition film | membrane and the gold color tone film | membrane of an Example. 樹脂なしの金色調膜と実施例の金色調膜との色差を示す図である。It is a figure which shows the color difference of the gold color tone film | membrane without resin, and the gold color tone film | membrane of an Example. X線回折スペクトルを示す図である。It is a figure which shows an X-ray diffraction spectrum. PES表面及びPMMA裏面のワイドスキャンXPSスペクトルである。It is a wide scan XPS spectrum of the PES front surface and the PMMA back surface. PES表面及びPMMA裏面のS2p領域のXPSスペクトルである。It is an XPS spectrum of the S2p region of the PES front surface and the PMMA back surface. PES表面及びPMMA裏面のCl2p領域のXPSスペクトルである。It is the XPS spectrum of the Cl2p area | region of a PES surface and a PMMA back surface.
 以下、本発明の実施形態について、図面を用いて詳細に説明する。ただし、本発明は多くの異なる形態による実施が可能であり、以下に示す実施形態、実施例の例示に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention can be implemented in many different forms, and is not limited to the following embodiments and examples.
(実施形態1)
(金属光沢を有する膜が形成された物品)
 図1は、本実施形態に係るチオフェン重合体を含む金属光沢を有する膜が形成されてなる物品(以下「金属光沢を有する物品」という。)の断面の概略図である。
(Embodiment 1)
(Articles with a metallic gloss film)
FIG. 1 is a schematic cross-sectional view of an article (hereinafter referred to as “article having metallic luster”) formed with a film having metallic luster containing a thiophene polymer according to the present embodiment.
 ここで本実施形態に係る物品としては、金属光沢を有する限りにおいて特に限定されるものではなく、家電や自動車等の電子機械部品だけでなく、家具や玩具等の日常生活において用いる雑貨、衣類、紙製品等、ありとあらゆるものを挙げることができるが、表面が平坦なものであることは均等に圧力を加えやすくする観点から好ましい一例である。本図の例では紙の例を示している。また、後述の記載にもあるように、物品の全体そのものが金属光沢を有する物品であってもよい。 Here, the article according to the present embodiment is not particularly limited as long as it has a metallic luster, not only electronic machine parts such as home appliances and automobiles, but also miscellaneous goods, clothes used in daily life such as furniture and toys, Although there are various kinds of paper products and the like, a flat surface is a preferable example from the viewpoint of easily applying pressure evenly. In the example of this figure, an example of paper is shown. Further, as described later, the entire article itself may be an article having a metallic luster.
 また本実施形態において金属光沢を有する膜の厚さとしては、金属光沢を発揮することができる限りにおいて限定されるわけではないが、0.1μm以上あれば金属光沢を有する膜とすることができ、より好ましくは0.3μm以上であり、さらに好ましくは0.6μm以上あればより十分な金属光沢を有する膜となる。 In the present embodiment, the thickness of the film having a metallic luster is not limited as long as the metallic luster can be exhibited, but if it is 0.1 μm or more, the film having the metallic luster can be obtained. More preferably, the thickness is 0.3 μm or more, and even more preferably 0.6 μm or more, the film has a more sufficient metallic luster.
 また、本実施形態に係る金属光沢を有する膜は、チオフェン重合体を含む。 Further, the film having metallic luster according to the present embodiment includes a thiophene polymer.
 本実施形態において「チオフェン重合体」は、二以上のチオフェンが互いに結合して重合したものをいい、下記一般式で示される化合物である。
Figure JPOXMLDOC01-appb-C000001
In the present embodiment, the “thiophene polymer” refers to a polymer in which two or more thiophenes are bonded to each other and is a compound represented by the following general formula.
Figure JPOXMLDOC01-appb-C000001
 上記式において、Rは置換基であり、膜に金属光沢を付与できる限りにおいて限定されるわけではないが、アルコキシ基、アミノ基、アルキル基、ヒドロキシル基、ヒドロキシアルキル基、アリール基、シアノ基、又は、ハロゲンのいずれかであることが好ましい。また、Rは一つのチオフェン環に一つであっても、二つであってもよい。また、本実施形態に係るチオフェン重合体において、各チオフェンの上記Rは同じであっても異なっていてもよい。 In the above formula, R is a substituent and is not limited as long as it can impart a metallic luster to the film, but is not limited to an alkoxy group, an amino group, an alkyl group, a hydroxyl group, a hydroxyalkyl group, an aryl group, a cyano group, Or it is preferable that it is either halogen. R may be one or two per thiophene ring. Moreover, in the thiophene polymer according to the present embodiment, the Rs of the thiophenes may be the same or different.
 なお「チオフェン」は、上記の記載からも明らかなように、硫黄を含む複素環式化合物であって、下記一般式で示される化合物である。式中Rの定義は上記と同様である。
Figure JPOXMLDOC01-appb-C000002
As is clear from the above description, “thiophene” is a heterocyclic compound containing sulfur, and is a compound represented by the following general formula. In the formula, the definition of R is the same as described above.
Figure JPOXMLDOC01-appb-C000002
 なお、上記式中Rがアルコキシ基である場合、限定されるわけではないが、炭素数は1以上8以下であることが好ましく、より具体的には、3-メトキシチオフェン、3,4-ジメトキシチオフェン、3-エトキシチオフェン、3,4-ジエトキシチオフェン、3-プロポキシチオフェン、3-ブトキシチオフェン、3-ヒドロキシチオフェン、3,4-エチレンジオキシチオフェン、3,4-プロピレンジオキシチオフェン等を例示することができる。 In the above formula, when R is an alkoxy group, it is not limited, but the number of carbon atoms is preferably 1 or more and 8 or less, more specifically, 3-methoxythiophene, 3,4-dimethoxy. Examples include thiophene, 3-ethoxythiophene, 3,4-diethoxythiophene, 3-propoxythiophene, 3-butoxythiophene, 3-hydroxythiophene, 3,4-ethylenedioxythiophene, 3,4-propylenedioxythiophene can do.
 また、上記式中Rがアルキル基である場合、限定されるわけではないが、炭素数は1以上12以下であることが好ましく、より具体的には、3-メチルチオフェン、3,4-ジメチルチオフェン、3-エチルチオフェン、3,4-ジエチルチオフェン、3-ブチルチオフェン、3-ヘキシルチオフェン、3-ヘプチルチオフェン、3-オクチルチオフェン、3-ノニルチオフェン、3-デシルチオフェン、3-ウンデシルチオフェン、3-ドデシルチオフェン、3-ブロモ-4-メチルチオフェン等を例示することができる。 Further, when R in the above formula is an alkyl group, the number of carbon atoms is preferably 1 or more and 12 or less, more specifically, 3-methylthiophene, 3,4-dimethyl. Thiophene, 3-ethylthiophene, 3,4-diethylthiophene, 3-butylthiophene, 3-hexylthiophene, 3-heptylthiophene, 3-octylthiophene, 3-nonylthiophene, 3-decylthiophene, 3-undecylthiophene, Examples thereof include 3-dodecylthiophene and 3-bromo-4-methylthiophene.
 また、上記式中Rがアミノ基である場合、3-アミノチオフェン、3,4-ジアミノチオフェン、3-メチルアミノチオフェン、3-ジメチルアミノチオフェン、3-チオフェンカルボキシアミド、4-(チオフェン-3-イル)アニリン等を例示することができる。 In the above formula, when R is an amino group, 3-aminothiophene, 3,4-diaminothiophene, 3-methylaminothiophene, 3-dimethylaminothiophene, 3-thiophenecarboxamide, 4- (thiophene-3- Il) Aniline and the like can be exemplified.
 また本実施形態において、「チオフェン重合体」の分子量としては、金属光沢を有するものとすることができ、膜として形成できるものである限りにおいて限定されるわけではないが、GPC測定法により求められる重量平均分子量の分布のピークが200以上30000以下の範囲内にあることが好ましく、より好ましくは500以上10000以下の範囲内である。 Further, in this embodiment, the molecular weight of the “thiophene polymer” is not limited as long as it can have a metallic luster and can be formed as a film, but is determined by a GPC measurement method. The peak of the weight average molecular weight distribution is preferably in the range of 200 or more and 30000 or less, more preferably in the range of 500 or more and 10,000 or less.
 また、本実施形態に係る金属光沢を有する物品は、上記のとおり、物品表面に金属光沢を有する膜が形成されているのではなく金属光沢を有するチオフェン重合体を含む物品で構成することも可能である。製造方法については別途後述するが、チオフェン重合体を所望の物品の形状そのものとなるよう成型し、金属光沢を持たせたものであっても良い。この例として、例えばタブレット形の物品の例を図2に示しておく。 In addition, as described above, the article having a metallic luster according to the present embodiment may be configured by an article including a thiophene polymer having a metallic luster instead of forming a film having a metallic luster on the article surface. It is. Although a manufacturing method will be described later separately, a thiophene polymer may be molded so as to have a desired shape of the article itself to give a metallic luster. As an example of this, an example of a tablet-shaped article is shown in FIG.
(金属光沢を有する物品を製造する方法)
 本実施形態におけるチオフェン重合体からなる金属光沢を有する物品を製造する方法(以下「本方法」ともいう。)は、物品上にチオフェン重合体の粉末を配置し、チオフェン重合体を加圧するものである。
(Method for producing an article having metallic luster)
The method for producing an article having a metallic luster made of a thiophene polymer in this embodiment (hereinafter also referred to as “the present method”) is a method in which a thiophene polymer powder is placed on an article and the thiophene polymer is pressurized. is there.
 またこの観点において、チオフェン重合体は、化学重合又は電解重合によって形成されたものであることが好ましい。 In this respect, the thiophene polymer is preferably formed by chemical polymerization or electrolytic polymerization.
(化学重合)
 本実施形態において、上記のとおりチオフェン重合体は、化学重合を用いて製造することもできる。ここで「化学重合法」とは、酸化剤を用いて液相及び固相の少なくともいずれかにおいて行う重合をいう。
(Chemical polymerization)
In the present embodiment, as described above, the thiophene polymer can also be produced using chemical polymerization. Here, the “chemical polymerization method” refers to polymerization performed in at least one of a liquid phase and a solid phase using an oxidizing agent.
 本実施形態において、電解重合の場合と同様チオフェン重合体が金属光沢を示す理由は推測の域にあるが、チオフェン重合体を構成する分子が規則的に配向し、特定の波長を反射するためであると考えられる。このことは、作製された膜がX線回折において鋭いピークを示していることからも裏付けられる。この詳細は後述の実施例から明らかとなるが、チオフェン重合体のX線回折測定において、アモルファスに起因するハローパターンが存在せずチオフェン重合体の規則的な構造に由来すると考えられる3つのピークが5度から30度の回折角(2θ)の範囲で明確に観測できることを意味する。 In this embodiment, the reason why the thiophene polymer exhibits a metallic luster is the same as in the case of electrolytic polymerization, but the reason is that the molecules constituting the thiophene polymer are regularly oriented and reflect a specific wavelength. It is believed that there is. This is supported by the fact that the produced film shows a sharp peak in X-ray diffraction. The details will be apparent from the examples described later, but in the X-ray diffraction measurement of the thiophene polymer, there are no halo patterns due to amorphous, and there are three peaks that are considered to be derived from the regular structure of the thiophene polymer. It means that it can be clearly observed in the range of diffraction angle (2θ) from 5 degrees to 30 degrees.
 本実施形態における物品は、上記のチオフェン重合体からなる膜が形成されており、このチオフェン重合体は空気中において非常に安定であり、長期間空気中に放置しても劣化が殆どなく、長期間にわたり金属光沢を示すことができる。 The article in the present embodiment is formed with a film made of the above thiophene polymer. This thiophene polymer is very stable in the air, hardly deteriorates even if left in the air for a long time, and is long. It can show a metallic luster over time.
 ここで、本実施形態における化学重合法を用いた金属光沢を有する膜の製造方法(以下単に「本方法」という。)について説明する。 Here, a method for producing a film having metallic luster using the chemical polymerization method in the present embodiment (hereinafter simply referred to as “the present method”) will be described.
 本方法は、(1)酸化剤を用いてチオフェンを重合してチオフェン重合体を含む溶液とする工程、(2)チオフェン重合体を含む溶液を除去してチオフェン重合体粉末を得る工程、を有する。すなわち、本実施形態では、化学重合を行い、チオフェン重合体を製造する。 This method includes (1) a step of polymerizing thiophene using an oxidizing agent to obtain a solution containing a thiophene polymer, and (2) a step of removing the solution containing the thiophene polymer to obtain a thiophene polymer powder. . That is, in this embodiment, chemical polymerization is performed to produce a thiophene polymer.
 まず、本方法では、(1)酸化剤を用いてチオフェンを重合し、このチオフェン重合体を含む溶液を作製する。ここで用いる「チオフェン」及び得られる「チオフェン重合体」は、上記したものである。チオフェン重合体は、上記の通り、いわゆるオリゴマーの範囲にあることが好ましく、具体的には重量平均分子量の分布ピークが200以上30000以下の範囲内となるように重合することが好ましい。 First, in this method, (1) thiophene is polymerized using an oxidizing agent, and a solution containing this thiophene polymer is prepared. The “thiophene” used here and the resulting “thiophene polymer” are those described above. As described above, the thiophene polymer is preferably in the range of a so-called oligomer, and specifically, the polymerization is preferably performed so that the distribution peak of the weight average molecular weight is in the range of 200 to 30000.
 本工程において、酸化剤は、チオフェン重合体を製造することができる限りにおいて限定されず様々なものを使用することができるが、例えば第二鉄塩、第二銅塩、セリウム塩、二クロム酸塩、過マンガン酸塩、過硫酸アンモニウム、三フッ化ホウ素、臭素酸塩、過酸化水素、塩素、臭素及びヨウ素を挙げることができ、中でも第二鉄塩が好ましい。なお水和物であっても良い。また、この場合において、この対となるイオンも適宜調整可能であって限定されるわけではなく、例えば塩化物イオン、クエン酸イオン、シュウ酸イオン、パラトルエンスルホン酸イオン、過塩素酸イオン、ヘキサフルオロリン酸イオン、テトラフルオロホウ酸イオン等を挙げることができ、その中でも、過塩素酸イオン、ヘキサフルオロリン酸イオン、及び、テトラフルオロホウ酸イオンの少なくともいずれかを用いると、金色に近い金属光沢を得ることができ好ましい。金色に近い金属光沢を得ることができる理由は、推測の域であるが、過塩素酸イオン、ヘキサフルオロリン酸イオン、テトラフルオロホウ酸イオンが重合の際、チオフェン重合体にドーパントとして組み込まれ、チオフェン重合体内に生成されるカチオン部位と結合して安定化し、規則正しい構造の形成に寄与するためであると考えられる。実際のところ金属光沢を有する膜を分析するとこれらが安定的に存在することが確認されている。 In this step, the oxidizing agent is not limited as long as the thiophene polymer can be produced, and various ones can be used. For example, ferric salt, cupric salt, cerium salt, dichromic acid Examples thereof include salts, permanganate, ammonium persulfate, boron trifluoride, bromate, hydrogen peroxide, chlorine, bromine and iodine. Among them, ferric salt is preferable. Hydrates may also be used. In this case, the pair of ions can be appropriately adjusted and is not limited. For example, chloride ion, citrate ion, oxalate ion, p-toluenesulfonate ion, perchlorate ion, hexachlorate ion, Fluorophosphate ion, tetrafluoroborate ion, and the like. Among them, when at least one of perchlorate ion, hexafluorophosphate ion, and tetrafluoroborate ion is used, a metal close to gold Gloss can be obtained, which is preferable. The reason why a metallic luster close to gold can be obtained is speculated, but perchlorate ion, hexafluorophosphate ion, tetrafluoroborate ion is incorporated as a dopant in the thiophene polymer during polymerization, This is thought to be due to binding to and stabilizing the cation moiety generated in the thiophene polymer, and contributing to the formation of an ordered structure. In fact, when films having metallic luster are analyzed, it has been confirmed that they exist stably.
 また本工程において、重合は溶媒を用い、この溶媒中において行うことが好ましい。用いる溶媒は、上記酸化剤及びチオフェンを十分に溶解し効率的に重合させることができる限りにおいて限定されるわけではないが、高い極性を有し、ある程度の揮発性を有する有機溶媒であることが好ましく、例えばアセトニトリル、ニトロメタン、γ-ブチロラクトン、炭酸プロピレン、ニトロメタン、1-メチル-2-ピロリジノン、ジメチルスルホキシド、2-ブタノン、テトラヒドロフラン、アセトン、メタノール、アニソール、クロロホルム、酢酸エチル、ヘキサン、トリクロロエチレン、シクロヘキサノン、ジクロロメタン、クロロホルム、ジメチルホルムアミド、エタノール、ブタノール、ピリジン、ジオキサン、及びこれらの混合物等を用いることができるが、アセトニトリル、ニトロメタン、γ-ブチロラクトン、炭酸プロピレンはチオフェン重合体が可溶であり、より良好な金属光沢を備えた膜となりやすく好ましい。 In this step, the polymerization is preferably performed in a solvent using a solvent. The solvent to be used is not limited as long as the oxidizing agent and thiophene can be sufficiently dissolved and polymerized efficiently, but the organic solvent has a high polarity and a certain degree of volatility. Preferably, for example, acetonitrile, nitromethane, γ-butyrolactone, propylene carbonate, nitromethane, 1-methyl-2-pyrrolidinone, dimethyl sulfoxide, 2-butanone, tetrahydrofuran, acetone, methanol, anisole, chloroform, ethyl acetate, hexane, trichloroethylene, cyclohexanone, Dichloromethane, chloroform, dimethylformamide, ethanol, butanol, pyridine, dioxane, and mixtures thereof can be used, but acetonitrile, nitromethane, γ-butyrolactone, carbonate Lopylene is preferable because it has a soluble thiophene polymer and tends to form a film with better metallic luster.
 なお本工程において、溶媒に対し用いるチオフェン、酸化剤の量は適宜調整可能であり限定されるわけではないが、溶媒の重量を1とした場合、チオフェンの重量は0.00007以上7以下であることが好ましく、より好ましくは0.0007以上0.7以下であり、過塩素酸鉄(III)n水和物の場合、重量は0.0006以上6以下であることが好ましく、より好ましくは0.006以上0.6以下である。 In this step, the amount of thiophene and oxidizing agent used for the solvent can be adjusted as appropriate and is not limited. However, when the weight of the solvent is 1, the weight of thiophene is 0.00007 or more and 7 or less. More preferably, it is 0.0007 or more and 0.7 or less, and in the case of iron (III) perchlorate n hydrate, the weight is preferably 0.0006 or more and 6 or less, more preferably 0. 0.006 or more and 0.6 or less.
 また、本工程において、用いるチオフェンと酸化剤の比としてはチオフェンの重量を1とした場合、0.1以上1000以下であることが好ましく、1以上100以下であることがより好ましい。 In this step, the ratio of the thiophene to the oxidizing agent used is preferably 0.1 or more and 1000 or less, and more preferably 1 or more and 100 or less, when the weight of thiophene is 1.
 また本工程は、チオフェンと酸化剤を溶媒に一度に加えてもよいが、溶媒にチオフェンを加えた溶液と、酸化剤を溶媒に加えた溶液の二種類の溶液を別途作製し、これらを加え合わせることで重合反応を行わせても良い。 In this step, thiophene and oxidant may be added to the solvent all at once, but two types of solutions are separately prepared: a solution in which thiophene is added to the solvent and a solution in which the oxidant is added to the solvent. The polymerization reaction may be performed by combining them.
 また本方法において、上記作製したチオフェン重合体は、溶媒を除去して粉末状のチオフェン重合体(チオフェン重合体粉末)としておくことが好ましい。このようにしておくことで加圧のみによって容易に金属光沢を有する物品を製造することが可能となる。なお、酸化剤において上記過塩素酸イオン、ヘキサフルオロリン酸イオン、テトラフルオロホウ酸イオン、塩化物イオンを含むものを用いた場合、上記重合体に安定的に結合されているため残り、金属光沢の状態を安定的に維持することができる。 In the present method, the thiophene polymer produced as described above is preferably prepared as a powdered thiophene polymer (thiophene polymer powder) by removing the solvent. In this way, an article having a metallic luster can be easily produced only by pressing. When an oxidizing agent containing the above-mentioned perchlorate ion, hexafluorophosphate ion, tetrafluoroborate ion, or chloride ion is used, it remains stably because it is stably bonded to the polymer. This state can be stably maintained.
(電解重合)
 本実施形態において、電解重合とは、重合体の前駆体となる物質(モノマー)を支持電解質を含む溶液に溶解し、その後モノマーを電極酸化することにより、導電体上に溶液不溶性重合体膜を形成する手法をいう。
(Electropolymerization)
In the present embodiment, electrolytic polymerization is a method of dissolving a solution insoluble polymer film on a conductor by dissolving a substance (monomer) that is a precursor of a polymer in a solution containing a supporting electrolyte, and then subjecting the monomer to electrode oxidation. The technique to form.
 また、本実施形態において、陽極酸化させる際、電位掃引法を用いることが好ましい。電位掃引法とは、支持電解質を含む溶液に一対の電極を浸漬し、一定の速度で電位を変化させつつ印加する処理をいう。 In this embodiment, it is preferable to use a potential sweep method when anodizing. The potential sweep method is a treatment in which a pair of electrodes is immersed in a solution containing a supporting electrolyte and applied while changing the potential at a constant rate.
 また本実施形態において用いられる溶液の溶媒としては、特に限定されるわけではないが、例えば水、アルコールの他、藤島昭、相澤益男、井上  徹、電気化学測定法、技報堂出版、上巻107―114頁、1984年に記載の溶媒を採用できる。また、種々の溶媒の混合溶媒も好ましい。 The solvent of the solution used in this embodiment is not particularly limited. For example, in addition to water and alcohol, Akira Fujishima, Masuo Aizawa, Satoru Inoue, Electrochemical Measurement, Gihodo Publishing, Vol. 107-114 Page, 1984 can be used. A mixed solvent of various solvents is also preferable.
 また本実施形態において用いられる溶液の支持電解質は、電気分解において必須の成分であり、溶媒に十分溶解し、電気分解されにくいカチオン又はアニオンを構成要素とするものが好ましく、限定されるわけではないが、カチオンに注目すれば例えばリチウム塩、ナトリウム塩、カリウム塩、カルシウム塩、テトラアルキルアンモニウム塩の少なくともいずれかを用いることが好ましく、アニオンに注目すれば例えばハロゲン化物、硫酸塩、硝酸塩、リン酸塩、過塩素酸塩、三フッ化ホウ素塩、六フッ化リン酸塩の少なくともいずれかを用いることが好ましい。支持電解質の濃度は、限定されるわけではないが0.001M以上溶解度以下であることが好ましく、0.01M以上1M以下であることがより好ましい。 Further, the supporting electrolyte of the solution used in the present embodiment is an essential component in electrolysis, and preferably has a cation or an anion that is sufficiently dissolved in a solvent and hardly electrolyzed, and is not limited thereto. However, it is preferable to use at least one of lithium salt, sodium salt, potassium salt, calcium salt, and tetraalkylammonium salt if attention is paid to cations, and halide, sulfate, nitrate, phosphoric acid, etc. if attention is paid to anions. It is preferable to use at least one of a salt, a perchlorate, a boron trifluoride salt, and a hexafluorophosphate. The concentration of the supporting electrolyte is not limited, but is preferably 0.001 M or more and solubility or less, and more preferably 0.01 M or more and 1 M or less.
 また、本実施形態において、電解重合で用いられるチオフェンモノマーの電解溶液中における濃度は、限定されるわけではないが、0.1mM以上溶解度以下であることが好ましく、より具体的には1mM以上1M以下であることがより好ましい。 In the present embodiment, the concentration of the thiophene monomer used in the electrolytic polymerization in the electrolytic solution is not limited, but is preferably 0.1 mM or more and less than or equal to the solubility, and more specifically 1 mM or more and 1M. The following is more preferable.
 また本実施形態において、電解重合は溶液を入れた電解容器に導電体(動作電極として機能させる)を浸漬し、これに対向電極、必要に応じて電位の基準となる参照電極の3本の電極を用いる3電極式、又は、導電体と対向電極だけを用いる2電極式を採用することができる。なお、導電体の電位を基準となる参照電極に対して厳密に規定することのできる3電極式は、本方法によって形成されるチオフェン重合体を含む金属光沢を有する物品を再現性良く作製することができる点においてより好ましい。 In this embodiment, the electropolymerization is performed by immersing a conductor (functioning as an operating electrode) in an electrolytic container containing a solution, and counter electrodes, and if necessary, three electrodes of a reference electrode serving as a potential reference Can be employed, or a two-electrode system using only a conductor and a counter electrode can be employed. Note that the three-electrode system that can strictly regulate the electric potential of the conductor with respect to the reference electrode as a reference is used to produce an article having a metallic luster that contains the thiophene polymer formed by this method with good reproducibility. Is more preferable in that
  動作電極としての導電体は、3電極式及び2電極式のいずれの場合においても、電極酸化に対して安定な物質であれば良く、限定されるわけではないが、例えば上記したように、酸化インジウムスズ(以下「ITO」と略記する。)や酸化錫が塗布された透明ガラス電極、金属電極、グラシーカーボン電極等を好適に用いることができる。また、対向電極としては、上記電極材料に加え、ステンレスや銅板などの金属電極を好適に用いることができる。また参照電極は、限定されるわけではないが例えば銀・塩化銀電極(Ag/AgCl電極)、飽和カロメル電極を好適に用いることができる。 The conductor as the working electrode is not limited as long as it is a substance that is stable against electrode oxidation in both the three-electrode type and the two-electrode type. For example, as described above, A transparent glass electrode, a metal electrode, a glassy carbon electrode or the like coated with indium tin (hereinafter abbreviated as “ITO”) or tin oxide can be suitably used. Moreover, as a counter electrode, in addition to the electrode material, a metal electrode such as stainless steel or a copper plate can be suitably used. The reference electrode is not limited, but for example, a silver / silver chloride electrode (Ag / AgCl electrode) or a saturated calomel electrode can be preferably used.
 また、本実施形態において電解重合における電位掃引法は、負電位と正電位の間で掃引することが好ましい。またこの場合において、負電位は、-1.5V以上-0.01V以下の範囲であることが好ましく、より好ましくは-1.0V以上-0.1V以下の範囲、さらに好ましくは-0.7V以上-0.2V以下の範囲である。また、正電位は、+1.0V以上+3.0V以下の範囲であることが好ましく、より好ましくは+1.0V以上+2.0V以下の範囲、さらに好ましくは+1.0V以上+1.5V以下の範囲内である。 In the present embodiment, the potential sweep method in the electropolymerization is preferably sweeping between a negative potential and a positive potential. In this case, the negative potential is preferably in the range of −1.5V to −0.01V, more preferably in the range of −1.0V to −0.1V, and still more preferably −0.7V. It is the range of -0.2V or less. The positive potential is preferably in the range of + 1.0V to + 3.0V, more preferably in the range of + 1.0V to + 2.0V, and still more preferably in the range of + 1.0V to + 1.5V. It is.
 また本実施形態において、電位掃引法は、掃引速度について、金属光沢を有する物品を製造することができる限りにおいて限定されるわけではないが、0.1mV/秒以上10V/秒以下の範囲内とすることが好ましく、より好ましくは1mV/秒以上1V/秒以下の範囲、さらに好ましくは2mV/秒以上300mV/秒以下の範囲内である。 In the present embodiment, the potential sweep method is not limited as long as the sweep rate can produce an article having a metallic luster, but within a range of 0.1 mV / second to 10 V / second. More preferably, it is in the range of 1 mV / second to 1 V / second, and more preferably in the range of 2 mV / second to 300 mV / second.
  また電解重合の時間としては、金属光沢を有する物品を析出させることができる限りにおいて限定されるわけではないが、上記印加電圧の範囲内において1秒以上5時間以下の範囲内において行うことが好ましく、10秒以上1時間以下の範囲内において行うことがより好ましい。 The time for the electropolymerization is not limited as long as an article having a metallic luster can be deposited, but it is preferably performed within the range of 1 second to 5 hours within the range of the applied voltage. More preferably, it is carried out within a range of 10 seconds to 1 hour.
  また、この電気分解の温度としては電解重合により金属光沢を有する物品を析出させることができる限りにおいて限定されるわけではないが、-20℃以上60℃以下の範囲内にあることが好ましい。 The temperature of this electrolysis is not limited as long as an article having a metallic luster can be deposited by electrolytic polymerization, but it is preferably in the range of −20 ° C. or more and 60 ° C. or less.
  また、この電気分解は、大気中の成分物質が関与することの少ない反応でありまた比較的低電位で行われるため、大気中で行うことができる。電解液中の不純物の酸化など、生成した膜を汚染する可能性を回避する観点から、窒素ガスやアルゴンガス雰囲気中で行うことが好ましいが、汚染の心配はほとんど無い。しかしながらそれでもやはり、電解重合を形成する場合、溶液中に酸素が多く存在すると電極反応に影響を与えてしまうおそれがあるため、不活性ガス(窒素ガスやアルゴンガス)によるバブリングを行うことも有用である。 こ の Moreover, this electrolysis is a reaction in which constituent substances in the atmosphere are rarely involved, and since it is carried out at a relatively low potential, it can be carried out in the atmosphere. From the viewpoint of avoiding the possibility of contaminating the formed film, such as oxidation of impurities in the electrolytic solution, it is preferable to carry out in an atmosphere of nitrogen gas or argon gas, but there is almost no fear of contamination. Nevertheless, in the case of forming electropolymerization, bubbling with an inert gas (nitrogen gas or argon gas) is also useful because there is a possibility that the electrode reaction may be affected if a large amount of oxygen is present in the solution. is there.
 そして、本方法では、上記によって作製されたチオフェン重合体を、物品上に配置し加圧する。この結果、物品上に安定的に固着した金属光沢を有する物品を形成することができる。ここで「加圧」は、膜に対して圧力を加えることをいい、いわゆる「擦る」ことも膜に対する加圧に含まれる。またこの場合において作製されるチオフェン重合体は粉末となっていることが好ましい。なおこの物品の製造に関するイメージ図を図3に示しておく。 In this method, the thiophene polymer produced as described above is placed on an article and pressurized. As a result, an article having a metallic luster that is stably fixed on the article can be formed. Here, “pressurization” refers to applying pressure to the membrane, and so-called “rubbing” is also included in the pressurization of the membrane. Moreover, it is preferable that the thiophene polymer produced in this case is a powder. An image diagram relating to the manufacture of this article is shown in FIG.
 また、本方法では、上記によって作成されたチオフェン重合体を金属等で構成された型内に配置し、これを加圧することでほぼチオフェン重合体のみで物品そのものを形成することもできる。この物品の製造に関するイメージ図を図4に示しておく。 Further, in this method, the article itself can be formed with only the thiophene polymer by placing the thiophene polymer prepared as described above in a mold made of metal or the like and pressurizing it. An image diagram relating to the manufacture of this article is shown in FIG.
 また本方法において加圧する際の圧力の範囲としては特に限定されるわけではないが、例えば10kg/cm以上あることが好ましく、より好ましくは50kg/cm以上である。なお、上限としては、金属光沢を有する膜又は物品が破壊されない限りにおいて限定されるわけではないが、1.0×10kg/cm以下の範囲であることが好ましく、より好ましくは5.0×10kg/cm以下の範囲である。50kg/cm以上とすることで表面粗さを小さくし、光沢感をよりよく示すことができ、5.0×10kg/cm以下とすることで物品の構造を破壊するのを防ぐことができる。 Moreover, the range of the pressure at the time of pressurizing in this method is not particularly limited, but is preferably 10 kg / cm 2 or more, and more preferably 50 kg / cm 2 or more, for example. The upper limit is not limited as long as the film or article having metallic luster is not destroyed, but it is preferably in the range of 1.0 × 10 5 kg / cm 2 or less, more preferably 5. The range is 0 × 10 4 kg / cm 2 or less. The surface roughness can be reduced and glossiness can be better shown by setting it to 50 kg / cm 2 or more, and the destruction of the structure of the article can be prevented by setting it to 5.0 × 10 4 kg / cm 2 or less. be able to.
 なお本方法において、加圧する際、物品及びチオフェン重合体に対して加熱を行うことも好ましい。このようにすることで、より加圧効率が高まるといった効果があり、更に次に述べるとおりトナー粒子を溶解させて紙等の物品に安定的に固着させることが可能となる。なお加熱の温度としては、熱分解温度以下であれば特に限定されない。 In this method, it is also preferable to heat the article and the thiophene polymer when pressurizing. By doing so, there is an effect that the pressurization efficiency is further increased. Further, as described below, the toner particles can be dissolved and stably fixed to an article such as paper. The heating temperature is not particularly limited as long as it is not higher than the thermal decomposition temperature.
 以上、本発明により、金属光沢を有する物品を形成する際に溶媒を用いない新規な金属光沢を有する物品を製造する方法を提供することができる。 As described above, according to the present invention, it is possible to provide a method for producing an article having a novel metallic luster that does not use a solvent when forming an article having a metallic luster.
 本発明者らは、上記特許文献1において、深青色のポリチオフェン系の導電性ポリマーを合成し、これを溶媒に溶解して得られた塗布液を物品上に塗布すると金色調の塗布膜が形成することを発見している。これは世界初の金属を含まず溶媒に溶けて金色調膜を与える有機材料である。これに対し今回は、この材料に圧力をかけることで金属色調を呈することを見出したことに基づくものである。すなわち、深青色の粉体が圧力刺激によって金色等の金属色を呈する新たな原理の色変化(クロミズム)である。 In the above-mentioned Patent Document 1, the inventors synthesized a deep blue polythiophene-based conductive polymer and dissolved it in a solvent to apply a coating solution on an article to form a gold-colored coating film. Have found to be. This is the world's first organic material that does not contain metals and dissolves in a solvent to give a gold-colored film. On the other hand, this time is based on the finding that a metal color tone is exhibited by applying pressure to this material. That is, the color change (chromism) based on a new principle that a deep blue powder exhibits a metallic color such as a gold color by pressure stimulation.
(応用例:トナー)
 本実施形態に係るチオフェン重合体の応用例は、上記の記載からも明らかなように広く、限定されるわけではないが、非常に有効と考えられる一例として、金属光沢色用トナーがある。すなわち、以下説明する本応用例に係る金属光沢色用トナーは、バインダー樹脂粒子にチオフェン重合体が外添又は内添(あるいはその両方の添加様式)されたもの、あるいはバインダー樹脂を含まずチオフェン重合体自身がトナー本体となるものである。
(Application example: Toner)
An application example of the thiophene polymer according to the present embodiment is wide and not limited as apparent from the above description, but an example considered to be very effective is a toner for metallic gloss color. That is, the metallic glossy color toner according to this application example described below is one in which a thiophene polymer is externally or internally added (or both types of addition) to binder resin particles, or does not contain a binder resin. The coalescence itself becomes the toner body.
 本トナーは、上記のとおり、バインダー樹脂粒子にチオフェン重合体が外添あるいは内添(あるいはその両方の添加様式)されたもの、あるいはバインダー樹脂を含まずチオフェン重合体自身がトナー本体となるものであるが、このチオフェン重合体による金属光沢を有する物品形成を阻害しない範囲でトナーとして必要な成分を含んでいても良い。具体的には例えば鉄粉等の磁性体、ワックス、帯電制御剤、外添剤等を含ませることができるがこれに限定されない。この場合のイメージ図を図5に示しておく。 As described above, the present toner is one in which the thiophene polymer is externally or internally added to the binder resin particles (or both addition modes), or the binder resin does not contain the thiophene polymer itself as the toner body. However, a component necessary as a toner may be included as long as the formation of an article having a metallic luster by the thiophene polymer is not hindered. Specifically, for example, a magnetic material such as iron powder, a wax, a charge control agent, an external additive, and the like can be included, but the invention is not limited thereto. An image diagram in this case is shown in FIG.
 バインダー樹脂粒子にチオフェン重合体を外添あるいは内添(あるいはその両方の添加様式)させたトナーの場合において、チオフェン重合体を含ませる量としては金属光沢を発現させることができる限りにおいて限定されるわけではないが、トナー全量に対し0.1重量%以上あることが好ましくは1重量%以上である。また、バインダー樹脂を用いない場合には、チオフェン重合体がトナーのほとんどの重量を占めることとなる。 In the case of a toner in which a thiophene polymer is added externally or internally (or both of them) to the binder resin particles, the amount of the thiophene polymer to be included is limited as long as a metallic luster can be expressed. However, it is preferably 0.1% by weight or more, preferably 1% by weight or more based on the total amount of toner. Further, when no binder resin is used, the thiophene polymer occupies most of the weight of the toner.
 また、本応用例に係る印刷方法は、チオフェン重合体を含む金属光沢色用トナーを物品の上に配置し、当該金属光沢色用トナーを加圧することで定着させるものである。この際、上記したように、加圧と同時に加熱を加えることでトナーのバインダー等を溶融して紙等の物品上により固着させやすくなる。図6にこの工程のイメージ図を示しておく。 Also, the printing method according to this application example is one in which a metallic gloss color toner containing a thiophene polymer is placed on an article, and the metallic gloss color toner is pressed to fix the toner. At this time, as described above, by applying heat simultaneously with pressurization, the toner binder and the like can be melted and fixed more easily on an article such as paper. FIG. 6 shows an image diagram of this process.
 以上、本発明により、金属光沢を有する物品を形成する際に溶媒を用いない新規な金属光沢を有する物品を製造する方法、並びに、これを用いる金属光沢色用トナー及び印刷方法を提供することができる。 As described above, according to the present invention, there is provided a method for producing an article having a new metallic luster that does not use a solvent when forming an article having a metallic luster, and a toner for metallic luster color and a printing method using the same. it can.
(実施形態2)
 本実施形態では、上記実施形態において言及した加圧のうち、横方向に力を加えて膜を形成するいわゆる「擦る」ことに関し、より具体的に説明する。
(Embodiment 2)
In the present embodiment, the so-called “rubbing” in which a film is formed by applying a force in the lateral direction among the pressurization referred to in the above embodiment will be described more specifically.
 より具体的に説明すると、本実施形態に係る方法(以下「本方法」という。)は、チオフェン重合体を擦ることにより、金属光沢を備えた物品を製造するものである。本方法において「擦る」(「ラビング」ともいう)とは、具体的には、加圧した状態で、加圧した方向とは異なる方向(横方向)に力を加えること、より具体的には、基板上にチオフェン重合体の粉末を配置し、この粉末を加圧物によって加圧した状態で、当該加圧物を基板上において移動させることをいう。またこの場合において、加圧物は特に限定されるわけではないが、例えば板状の部材そのもの又は板状の部材に錘を載せたものであることは均一に力を加えることができるため好ましい。このようにすることで、上記の通り金属光沢を備えた物品を製造することができる。この原理についてはまだ推定の域であるが、擦ることで、チオフェン重合体の配列に対し規則的な配列を誘起し、金属的な光沢を備えた膜となると考えられる。 More specifically, the method according to this embodiment (hereinafter referred to as “the present method”) manufactures an article having a metallic luster by rubbing the thiophene polymer. In this method, “rubbing” (also referred to as “rubbing”) specifically means that a force is applied in a direction (lateral direction) different from the direction in which pressure is applied in a pressurized state, more specifically. This means that a thiophene polymer powder is placed on a substrate, and the pressure product is moved on the substrate in a state where the powder is pressurized by the pressure product. In this case, the pressurized material is not particularly limited, but for example, it is preferable that a weight is placed on the plate-like member itself or the plate-like member because a force can be applied uniformly. By doing in this way, the article | item provided with the metallic luster as mentioned above can be manufactured. Although this principle is still in the presumed range, it is thought that rubbing induces a regular arrangement with respect to the arrangement of the thiophene polymer, resulting in a film having a metallic luster.
 また、本方法において擦る場合、加圧の値は加圧するだけの場合に比べ、大幅にこの値減少させることができる。より具体的には、500g/cm以下の圧力でも擦ることにより金属(金色)の光沢を得ることができる。なお、加圧の下限としては加圧といえる程度であればよく、例えば3g/cm以上あればよい。すなわち、擦る場合、加圧の範囲としては、3g/cm以上500g/cm以下、より好ましくは300g/cm以下である。 Also, when rubbing in this method, the value of pressurization can be greatly reduced compared to the case of only pressurization. More specifically, a metallic (golden) gloss can be obtained by rubbing even at a pressure of 500 g / cm 2 or less. In addition, the lower limit of pressurization may be a level that can be said to be pressurization, for example, 3 g / cm 2 or more. That is, when rubbing, the pressure range is 3 g / cm 2 or more and 500 g / cm 2 or less, more preferably 300 g / cm 2 or less.
 以上、本実施形態によると、より加圧の値を低減させ、より容易に金属光沢を有する膜を製造することができる。 As described above, according to the present embodiment, the pressure value can be further reduced, and a film having a metallic luster can be manufactured more easily.
(実施例)
 ここで、上記実施形態にかかる膜を実際に作製し、その効果を確認した。以下具体的に説明する。
(Example)
Here, the film | membrane concerning the said embodiment was produced actually and the effect was confirmed. This will be specifically described below.
 本実施例では、3-メトキシチオフェン(3MeOT)オリゴマーの粉末に圧力をかけて圧縮したところ、金色調光沢をもつ固体(タブレット形状)となった。タブレット作製時に印加する圧力を変え、各サンプルの外観、正反射スペクトルおよび算術平均粗さの評価を行った。 In this example, when pressure was applied to the powder of 3-methoxythiophene (3MeOT) oligomer and compressed, it became a solid (tablet shape) with a golden tone. The pressure applied during tablet production was changed, and the appearance, specular reflection spectrum and arithmetic average roughness of each sample were evaluated.
(3MeOTオリゴマーの作製)
 原料モノマーである3MeOT(濃度0.1M)のアセトニトリル溶液10mLに、酸化剤である過塩素酸鉄(III)(濃度0.2M)のアセトニトリル溶液(10mL)を加え、窒素雰囲気下で2時間重合を行った。重合後に、ろ過、洗浄、真空乾燥を経て生成物である3MeOTオリゴマーを得た。
(Production of 3MeOT oligomer)
An acetonitrile solution (10 mL) of iron (III) perchlorate (concentration 0.2 M) as an oxidizing agent is added to 10 mL of acetonitrile solution of 3 MeOT (concentration 0.1 M) as a raw material monomer, and polymerization is performed under a nitrogen atmosphere for 2 hours. Went. After the polymerization, the product, 3MeOT oligomer, was obtained through filtration, washing, and vacuum drying.
(3MeOTオリゴマータブレットの作製)
 次に、上記の手法で得られた3MeOTオリゴマーを乳鉢で15分程度すりつぶして粉砕した後、錠剤成形器(島津製作所社製ハンドプレスSSP-10A)を使用してタブレット(直径13mm)を作製した。1つのタブレット作製には100mgのオリゴマーを使用した。そして、その際にかける加重を50kg、0.5t、1t、2t、4t、8t、10tと変え(圧力としてはそれぞれ0.038ton/cm、0.38ton/cm、0.75ton/cm、1.5ton/cm、3.0ton/cm、6.0ton/cm、7.5ton/cm)、それぞれの圧力を10分間加えて複数のタブレットを作製した(50kgのサンプルは圧力を1分間加えた)。その後、得られたタブレットの正反射率及び表面粗さを測定した。
(Preparation of 3MeOT oligomer tablet)
Next, the 3MeOT oligomer obtained by the above method was ground and ground in a mortar for about 15 minutes, and then a tablet (diameter 13 mm) was produced using a tablet molding machine (Shimadzu Corporation Hand Press SSP-10A). . 100 mg of oligomer was used to make one tablet. Then, the weights applied to the case 50kg, 0.5t, 1t, 2t, 4t, 8t, 10t and changed (each as a pressure 0.038ton / cm 2, 0.38ton / cm 2, 0.75ton / cm 2 , 1.5 ton / cm 2 , 3.0 ton / cm 2 , 6.0 ton / cm 2 , 7.5 ton / cm 2 ), each of which was applied for 10 minutes to produce a plurality of tablets (50 kg sample was pressure For 1 minute). Then, the regular reflectance and surface roughness of the obtained tablet were measured.
(外観)
 プレスの圧力を変えて作製した3MeOTタブレットをキーエンス社のデジタルマイクロスコープVHX-5000で撮影した。この結果を図7乃至図13にそれぞれ示しておく。
(appearance)
The 3MeOT tablet produced by changing the pressure of the press was photographed with a digital microscope VHX-5000 manufactured by Keyence Corporation. The results are shown in FIGS. 7 to 13, respectively.
 この結果、どの圧力で作製したサンプルも、金色調光沢を発現していることを確認した。ただし、加重1t(圧力としては0.75ton/cm)のサンプルは錠剤成形器から取り外す際に割れてしまった。また、各サンプルの拡大像を観察したところ、圧力の低いサンプルほど表面に凹凸が見られることを確認した。 As a result, it was confirmed that samples prepared at any pressure exhibited a golden gloss. However, the sample with a weight of 1 t (the pressure was 0.75 ton / cm 2 ) was broken when removed from the tablet press. Moreover, when the enlarged image of each sample was observed, it confirmed that an unevenness | corrugation was seen on the surface, so that the sample with a low pressure was observed.
(正反射スペクトル)
 次に、上記による作成したサンプルの正反射スペクトルの測定を行った。反射スペクトルの測定には、日本分光社製 MSV-370スペクトロメーターを用いた。各サンプルの正反射スペクトルを図14に示す。
(Specular reflection spectrum)
Next, the specular reflection spectrum of the sample prepared as described above was measured. For measurement of the reflection spectrum, MSV-370 spectrometer manufactured by JASCO Corporation was used. The specular reflection spectrum of each sample is shown in FIG.
 この結果、タブレットの正反射スペクトルはオリゴマーの塗布膜のスペクトルと同じ概形を示した。プレス時に加えた圧力が大きいサンプルほど、最大反射率は大きくなった。 As a result, the regular reflection spectrum of the tablet showed the same outline as that of the oligomer coating film. The maximum reflectivity increased as the pressure applied during pressing increased.
 そこで、横軸にプレス時にかけた圧力、縦軸に最大反射率をとったときのグラフを図15に示す。 Therefore, a graph with the horizontal axis representing the pressure applied during pressing and the vertical axis representing the maximum reflectance is shown in FIG.
 また、上記作製した物品について、表面粗さの代表的なパラメータである算術平均粗さRaを計算した。計算にはキーエンス社製のレーザー顕微鏡VK-9700及びその解析ソフトウェアを使用し、固定長500μmあたりの線粗さ10ヶ所の平均値を算出した。測定結果について、図16乃至図22に、レーザー顕微鏡による3D画像と算術平均粗さRaを、図23に、プレス時に加えた圧力とRaの関係について示しておく。 Further, the arithmetic average roughness Ra, which is a representative parameter of the surface roughness, was calculated for the manufactured article. For the calculation, a laser microscope VK-9700 manufactured by Keyence Corporation and its analysis software were used, and the average value of 10 line roughnesses per 500 μm fixed length was calculated. Regarding the measurement results, FIGS. 16 to 22 show a 3D image and arithmetic average roughness Ra by a laser microscope, and FIG. 23 shows a relationship between the pressure applied during pressing and Ra.
 この測定結果より、プレス時に加えた圧力が大きくなると、表面の平滑性が高くなっていることがわかる。タブレットの最大反射率が大きいサンプルは、Raが小さく、表面平滑性が高いという関係が成り立つことがわかる。 From this measurement result, it can be seen that the surface smoothness increases as the pressure applied during pressing increases. It can be seen that a sample having a large maximum reflectance of the tablet holds a relationship that Ra is small and surface smoothness is high.
 以上、本実施例によって加圧により金属光沢を発現させることができるのを確認した。 As described above, it was confirmed that a metallic luster can be expressed by pressurization according to this example.
(ラビング)
 また、上記作製した3MeOTオリゴマー粉末0.2gを2枚のガラス板(0.5cm×7.6cm×5.2cm)に挟み、5kgの錘をガラス板上に載せ、このガラス板を50往復させた。なお、この場合の加圧は253g/cmであった。
(Rubbing)
Further, 0.2 g of the prepared 3MeOT oligomer powder was sandwiched between two glass plates (0.5 cm × 7.6 cm × 5.2 cm), a 5 kg weight was placed on the glass plate, and this glass plate was reciprocated 50 times. It was. In this case, the pressure was 253 g / cm 2 .
 この結果、擦る(ラビング)前は黒褐色であった粉末が、ラビング後には金色調の膜となった。この写真図を図24に示す。 As a result, the powder which was black brown before rubbing (rubbing) became a gold-colored film after rubbing. This photograph is shown in FIG.
 また本膜に対し、正反射スペクトルを測定した。この結果を図25の実線に示す。本図で示すように、塗布膜(有機溶媒に3MeOTオリゴマー粉末を溶解させた後基板上に塗布及び乾燥させた膜)の場合(破線)と同様のスペクトルを得ることができ、黄色味の強い金色調を示す膜であることを定量的に確認した。なお本スペクトルの測定条件は入射角23°、アパーチャー0.1mm角、標準サンプルは蒸着アルミニウム膜とした。 Also, a regular reflection spectrum was measured for this film. The result is shown by the solid line in FIG. As shown in this figure, a spectrum similar to that in the case of a coating film (a film obtained by dissolving 3MeOT oligomer powder in an organic solvent and then coating and drying on the substrate) (broken line) can be obtained, and the yellow color is strong. It was confirmed quantitatively that the film had a golden tone. The measurement conditions for this spectrum were an incident angle of 23 °, an aperture of 0.1 mm square, and the standard sample was a deposited aluminum film.
 また、この膜に対して、測色(L)を行った。この結果について図26に示す。
測色はD65光源を使用し、結果をCIE LAB表色系(L)で表している。なお図中aは色相を表し、a*値がプラスになると赤みが増し、マイナスになると緑みが増し、b値がプラスになると黄みが増し、マイナスになると青みが増すことを表しています。測定には分光測色計CM-600d(コニカミノルタ株式会社)を使用し、色彩管理ソフトウェアSpectraMagixNX(コニカミノルタ株式会社)を使用してデータの可視化を行った。なお、比較として、塗布膜を〇、3MeOTオリゴマー粉末を●で示す。
In addition, color measurement (L * a * b * ) was performed on this film. This result is shown in FIG.
Colorimetry uses a D65 light source and the results are expressed in the CIE LAB color system (L * a * b * ). In the figure, a * b * represents hue, redness increases when a * value becomes positive, greenishness increases when it becomes negative, yellowness increases when b * value becomes positive, and blueness increases when it becomes negative. Represents. For the measurement, a spectrocolorimeter CM-600d (Konica Minolta Co., Ltd.) was used, and data was visualized using color management software SpectraMagix NX (Konica Minolta Co., Ltd.). For comparison, the coating film is indicated by 〇, and the 3MeOT oligomer powder is indicated by ●.
 この結果、光沢ない3MeOTオリゴマー粉末では明度、彩度ともに小さい値をとっていたのに対して、ラビングサンプル(▲)や塗布膜(〇)では、明度が著しく増大し、彩度も第一象限方向へ伸びていることを確認した。また、ラビングサンプルを塗布膜と比べると、色相はほぼ同じであるものの、彩度がやや小さい値をとっていることを確認した。これはおそらく、ラビングサンプルは塗布膜と比較して表面粗さが大きいために拡散反射が大きく存在し、結果として光沢色の黄色が薄まって観察されたためだと考えられる。 As a result, the brightness and saturation of the non-glossy 3MeOT oligomer powder were small, whereas in the rubbing sample (▲) and coating film (◯), the brightness was significantly increased and the saturation was also in the first quadrant. It confirmed that it extended in the direction. Moreover, when the rubbing sample was compared with the coating film, it was confirmed that although the hue was almost the same, the saturation was slightly smaller. This is probably because the rubbing sample has a larger surface roughness than the coating film, and thus diffuse reflection is large, and as a result, the glossy yellow color is observed to fade.
 また、本膜に対し、X線回折スペクトル測定を行った。この結果の図を図27の実線に示す。なお、本測定は、全自動水平型多目的X線回折装置SmartLab(リガク)を使用し、Out-of-plane法による測定を行ったものである。Out-of-plane法による測定では、層の厚さ方向の情報を得ることができ、厚さ方向に規則的な層間隔があるときにピークを示す。 Also, X-ray diffraction spectrum measurement was performed on this film. A diagram of the result is shown by the solid line in FIG. This measurement was performed by an out-of-plane method using a fully automatic horizontal multi-purpose X-ray diffractometer SmartLab (Rigaku). In the measurement by the out-of-plane method, information in the thickness direction of the layer can be obtained, and a peak is shown when there is a regular layer spacing in the thickness direction.
 この結果、点線の塗布膜では、金色(光沢を除くと黄色)を示すエッジオンラメラによる(100)ピークが極めて大きく、マゼンタ(赤紫)色を示すフェイスオンラメラによる(020)ピークが小さいため金色(光沢を除くと黄色)になっていることが確認できた。なお、(100)ピークから1.13nmの層間距離が、(020)ピークから0.35nmの層間距離が、それぞれブラックの式から算出された。一方、破線のオリゴマー粉末の回折パターンでは、(100)ピークと(020)ピークを比較したところ、エッジオンラメラとフェイスオンラメラが同等かフェイスオンラメラの方が多いことがわかった。この場合において、3MeOTオリゴマー粉末の色は黄色とマゼンタの減法混色となり茶色、実際には非常に濃い茶色であるため、黒色に近く呈色している。しかもこの粉末においてはピーク強度が低いため、ラメラ構造の数密度が極めて小さく、粉末中にアモルファス部位が多いことがわかる。これに対し、ラビング試料ではそれと比較して、(100)ピークが著しく増大しており、また、塗布膜と比較して半値幅の小さな鋭いピークを示すため、結晶サイズの大きなエッジオンラメラが形成されていることがわかる(図28参照)。すなわち、ラビングは粉末試料に含まれるエッジオンラメラとフェイスオンラメラの数密度を増加させる効果があり、特にエッジオンラメラの数密度とサイズの増加によって金色調光沢が発現したものと考えられる。 As a result, in the coating film of the dotted line, the (100) peak due to the edge-on lamella indicating gold (yellow except for gloss) is extremely large, and the (020) peak due to the face-on lamella indicating magenta (red purple) is small. It was confirmed that it was yellow when the gloss was removed. The interlayer distance of 1.13 nm from the (100) peak and the interlayer distance of 0.35 nm from the (020) peak were respectively calculated from the black equation. On the other hand, in the diffraction pattern of the broken-line oligomer powder, when the (100) peak and the (020) peak were compared, it was found that the edge-on lamella and the face-on lamella were the same or more. In this case, the color of the 3MeOT oligomer powder is a subtractive color mixture of yellow and magenta, which is brown, and is actually very dark brown, so it is close to black. Moreover, since the peak intensity is low in this powder, the number density of the lamella structure is extremely small, and it can be seen that there are many amorphous parts in the powder. On the other hand, in the rubbing sample, the (100) peak is remarkably increased compared to that, and since a sharp peak with a small half-value width is shown compared with the coating film, an edge-on lamella with a large crystal size is formed. (See FIG. 28). That is, rubbing has the effect of increasing the number density of edge-on lamellae and face-on lamellae contained in the powder sample, and it is considered that gold-colored gloss was developed especially by increasing the number density and size of edge-on lamellae.
 以上、本実施例によってラビング(擦ること)により金属光沢を発現させることができるのを確認した。 As described above, it was confirmed that a metallic luster can be expressed by rubbing (rubbing) according to this example.
(別観点による発明)
 ところで、金属光沢を発現させるに関し、別の観点から発明を完成させた。以下具体的に説明する。
(Invention from another viewpoint)
By the way, the invention has been completed from another point of view regarding the development of metallic luster. This will be specifically described below.
 金属は一般に硬く、家電や自動車等、機械的強度が必要な部品に使用されているだけでなく、金属光沢を有するため質感に優れ、家具や雑貨等、日常生活のありとあらゆる物品において使用されている。特に金は、高級感を出すことができ人気が高い。しかしながら、金属は材料そのものが高価であるだけでなく加工も容易ではなく、高価となってしまうといった課題がある。 Metals are generally hard and are used not only for parts that require mechanical strength, such as home appliances and automobiles, but also because they have a metallic luster, they are excellent in texture and are used in every kind of everyday life such as furniture and sundries. . Gold is particularly popular because it can give a sense of quality. However, not only is the metal itself expensive, but it is not easy to process, and the metal is expensive.
 上記の課題を解決するための手段として、例えば、高分子やガラスといった物品の表面に金属の薄膜を被覆する金属めっき方法や、微粒子又はフレーク状の金属を添加した塗料を物品の表面に塗布する方法等の表面処理技術がある。この技術を用いると、高分子化合物で物品を製造する一方、その表面に金属薄膜又は金属を含む塗料を被覆することで、安価に金属光沢を有する物品を製造することができるといった効果がある。 As means for solving the above-mentioned problems, for example, a metal plating method for coating a metal thin film on the surface of an article such as a polymer or glass, or a paint added with fine particles or flaky metal is applied to the surface of the article. There are surface treatment techniques such as methods. When this technique is used, an article having a metallic luster can be produced at low cost by manufacturing an article with a polymer compound and coating the surface thereof with a metal thin film or a paint containing a metal.
 しかしながら、上記金属めっき方法は、表面処理を行うことができる材質に制限が少なからずある。また上記表面技術は結局のところ金属を使用するものであり、物品全部を金属で使用する場合よりは少なくて済むが結局高価となってしまう。特に、上記金属を添加した塗料は塗料中のポリマーバインダーと金属との比重の違いにより、金属粒子が沈降し、塗膜にしたときに斑が生じやすくなってしまう、金属が腐食されて光沢が失われてしまう、塗膜が重いといった課題もある。 However, the metal plating method has many limitations on the materials that can be surface treated. In addition, the surface technique uses a metal after all, and it is less expensive than the case where the entire article is used with a metal, but it becomes expensive. In particular, paints with the above metals added have metal particles that settle due to the difference in specific gravity between the polymer binder and the metal in the paint, making it easy to produce spots, and the metal is corroded and glossy. There are also problems such as loss and heavy coating.
 そこで、金属以外の物質を用いて金属光沢を示す物質が存在すれば、上記課題を解決することができると考えられており、金属光沢(金色光沢及び銅色光沢)を示す非金属物質に関する技術として、例えばWO/2014/021405に記載された技術がある。この非金属物質は、溶媒に溶解することができ、ガラス・プラスチックフィルム・金属・紙に均一に塗布でき、塗布膜が金色調あるいは銅色調の光沢を発現し、さらに光沢が何年も持続する世界初の物質である。 Therefore, it is considered that the above problem can be solved if there is a substance that exhibits a metallic luster using a substance other than a metal. For example, there is a technique described in WO / 2014/021405. This non-metallic substance can be dissolved in a solvent, and can be uniformly applied to glass, plastic film, metal, and paper, and the coating film exhibits a golden or copper-colored gloss, and the gloss lasts for many years. The world's first substance.
 しかしながら、上記特許文献に記載の技術は、金属光沢を示す膜を形成することができるが、その強度において課題がある。 However, the technique described in the above-mentioned patent document can form a film exhibiting metallic luster, but there is a problem in its strength.
 そこで、本発明は、上記課題に鑑み、高い強度を備えた金属光沢を有する物品及びトナー並びに金属光沢を有する物品の製造方法を提供することを目的とする。 Therefore, in view of the above problems, an object of the present invention is to provide an article and a toner having a metallic luster having high strength and a method for producing an article having a metallic luster.
 上記課題を解決する本発明の一観点に係る金属光沢を有する物品は、ポリエステル樹脂、ポリカーボネート樹脂、ポリビニルピロリドン樹脂、ポリスチレン樹脂、ポリメタクリル酸メチル樹脂及びスチレンアクリル共重合体樹脂の少なくともいずれかと、チオフェン重合体が混合された金属光沢を有すものである。 An article having metallic luster according to an aspect of the present invention that solves the above problems is polyester resin, polycarbonate resin, polyvinylpyrrolidone resin, polystyrene resin, polymethyl methacrylate resin, and styrene acrylic copolymer resin, and thiophene. It has a metallic luster mixed with a polymer.
 なおこの観点において、限定されるわけではないが、チオフェン重合体の重量は、物品の重量を100とした場合、0.1以上99.9以下の範囲となっていることが好ましい。 Although not limited in this respect, the weight of the thiophene polymer is preferably in the range of 0.1 to 99.9 when the weight of the article is 100.
 なおこの観点において、限定されるわけではないが、物品は立体物であることが好ましい。 In this respect, although not limited, the article is preferably a three-dimensional object.
 また、本発明の他の一観点に係るトナーは、ポリエステル樹脂、ポリカーボネート樹脂、ポリビニルピロリドン樹脂、ポリスチレン樹脂、ポリメタクリル酸メチル樹脂及びスチレンアクリル共重合体樹脂の少なくともいずれかと、チオフェン重合体が混合された金属光沢を有するものである。 A toner according to another aspect of the present invention includes a thiophene polymer mixed with at least one of a polyester resin, a polycarbonate resin, a polyvinyl pyrrolidone resin, a polystyrene resin, a polymethyl methacrylate resin, and a styrene acrylic copolymer resin. It has a metallic luster.
 また、本観点において、限定されるわけではないが、チオフェン重合体の重量は、物品の重量を100とした場合、0.1以上99.9以下の範囲となっていることが好ましい。 Further, although not limited in this aspect, the weight of the thiophene polymer is preferably in the range of 0.1 to 99.9 when the weight of the article is 100.
 また、本発明の他の一観点に係る物品の製造方法は、ポリエステル樹脂、ポリカーボネート樹脂、ポリビニルピロリドン樹脂、ポリスチレン樹脂、ポリメタクリル酸メチル樹脂及びスチレンアクリル共重合体樹脂の少なくともいずれかとチオフェン重合体を、溶媒を用いて混合し、前記溶媒を除去することで固化させる金属光沢を有するものである。 In addition, a method for manufacturing an article according to another aspect of the present invention includes a polyester resin, a polycarbonate resin, a polyvinyl pyrrolidone resin, a polystyrene resin, a polymethyl methacrylate resin, and a styrene acrylic copolymer resin and a thiophene polymer. , Having a metallic luster that is solidified by mixing with a solvent and removing the solvent.
 また、本観点において、限定されるわけではないが、チオフェン重合体の重量は、物品の重量を100とした場合0.1以上99.9以下の範囲となっていることが好ましい。 Further, although not limited in this aspect, the weight of the thiophene polymer is preferably in the range of 0.1 to 99.9 when the weight of the article is 100.
 また、本発明の他の一観点に係る物品の製造方法は、ポリエステル樹脂、ポリカーボネート樹脂、ポリビニルピロリドン樹脂、ポリスチレン樹脂、ポリメタクリル酸メチル樹脂及びスチレンアクリル共重合体樹脂の少なくともいずれかと、チオフェン重合体と、溶媒を、を含む金属光沢を有する物品を製造するための溶液である。 In addition, a method for producing an article according to another aspect of the present invention includes a polyester resin, a polycarbonate resin, a polyvinyl pyrrolidone resin, a polystyrene resin, a polymethyl methacrylate resin, and a styrene acrylic copolymer resin, and a thiophene polymer. And a solvent for producing an article having a metallic luster.
 また、本発明の他の一観点に係る立体物は、ポリエステル樹脂、ポリカーボネート樹脂、ポリビニルピロリドン樹脂、ポリスチレン樹脂、ポリメタクリル酸メチル樹脂及びスチレンアクリル共重合体樹脂の少なくともいずれかと、チオフェン重合体と、が混合されたものである。 Further, a three-dimensional object according to another aspect of the present invention is a polyester resin, a polycarbonate resin, a polyvinyl pyrrolidone resin, a polystyrene resin, a polymethyl methacrylate resin, and a styrene acrylic copolymer resin, a thiophene polymer, Are mixed.
 また、本発明の他の一観点に係る金属光沢を有するトナーは、ポリエステル樹脂、ポリカーボネート樹脂、ポリビニルピロリドン樹脂、ポリスチレン樹脂、ポリメタクリル酸メチル樹脂及びスチレンアクリル共重合体樹脂の少なくともいずれかと、チオフェン重合体と、が混合されたものである。 In addition, the toner having metallic luster according to another aspect of the present invention includes a polyester resin, a polycarbonate resin, a polyvinylpyrrolidone resin, a polystyrene resin, a polymethyl methacrylate resin, and a styrene acrylic copolymer resin, and a thiophene polymer. The union is a mixture.
 また、本発明の他の一観点に係る金属光沢を有する立体物の製造方法は、ポリエステル樹脂、ポリカーボネート樹脂、ポリビニルピロリドン樹脂、ポリスチレン樹脂、ポリメタクリル酸メチル樹脂及びスチレンアクリル共重合体樹脂の少なくともいずれかとチオフェン重合体を、溶媒を用いて混合し、溶媒を除去することで固化させるものである。 In addition, a method for producing a three-dimensional object having metallic luster according to another aspect of the present invention is a polyester resin, a polycarbonate resin, a polyvinyl pyrrolidone resin, a polystyrene resin, a polymethyl methacrylate resin, or a styrene acrylic copolymer resin. The heel thiophene polymer is mixed using a solvent and solidified by removing the solvent.
 また、本発明の他の一観点に係る金属光沢を有する物品を製造するための溶液は、ポリエステル樹脂、ポリカーボネート樹脂、ポリビニルピロリドン樹脂、ポリスチレン樹脂、ポリメタクリル酸メチル樹脂及びスチレンアクリル共重合体樹脂の少なくともいずれかと、チオフェン重合体と、溶媒を、を有するものである。 Further, a solution for producing an article having a metallic luster according to another aspect of the present invention includes a polyester resin, a polycarbonate resin, a polyvinylpyrrolidone resin, a polystyrene resin, a polymethyl methacrylate resin, and a styrene acrylic copolymer resin. It has at least one, a thiophene polymer, and a solvent.
 以上、本発明によって、高い強度の金属光沢を有する物品及びトナー並びに金属光沢を有する物品の製造方法を提供することができる。 As described above, according to the present invention, it is possible to provide an article and toner having a high-strength metallic luster and a method for producing an article having metallic luster.
 以下、本発明の実施形態について図面を用いて詳細に説明する。ただし、本発明は多くの異なる形態による実施が可能であり、以下に示す実施形態、実施例の具体的な例示にのみ限定されるわけではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention can be implemented in many different forms, and is not limited to specific examples of the embodiments and examples described below.
(実施形態3)
(物品)
 図29は、本実施形態に係る金属光沢を有する物品(以下「本物品」ともいう。)1の概略図である。本図の本物品は、ポリエステル樹脂、ポリカーボネート樹脂、ポリビニルピロリドン樹脂、ポリスチレン樹脂、ポリメタクリル酸メチル樹脂及びスチレンアクリル共重合体樹脂の少なくともいずれかと、チオフェン重合体と、が混合されたものであり、基板の上に物品が形成された膜の形態となっている例であるが、例えば図30で示す、より立体的で複雑な形状とすることも可能である。
(Embodiment 3)
(Goods)
FIG. 29 is a schematic view of an article (hereinafter, also referred to as “this article”) 1 having a metallic luster according to the present embodiment. This article in this figure is a mixture of polyester resin, polycarbonate resin, polyvinyl pyrrolidone resin, polystyrene resin, polymethyl methacrylate resin and styrene acrylic copolymer resin, and thiophene polymer, Although this is an example in the form of a film in which an article is formed on a substrate, for example, a more three-dimensional and complicated shape shown in FIG. 30 is also possible.
(ポリエステル樹脂)
 本物品において、ポリエステル樹脂とは、多価カルボン酸と多価アルコールとの重縮合体からなる樹脂をいい、この限りにおいて限定されるわけではないが、例えばポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリシクロヘキサンジメチルテレフタレート、ポリトリメチレンナフタレート、ポリシクロヘキサンジメチレンテレフタレート、ポリトリテトラメチレンナフタレート及びこれらの混合物等を例示することができるがこれに限定されない。
(Polyester resin)
In this article, the polyester resin refers to a resin comprising a polycondensate of a polyvalent carboxylic acid and a polyhydric alcohol, and is not limited to this, but for example, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene. Examples include, but are not limited to, terephthalate, polyethylene naphthalate, polybutylene naphthalate, polycyclohexanedimethyl terephthalate, polytrimethylene naphthalate, polycyclohexanedimethylene terephthalate, polytritetramethylene naphthalate, and mixtures thereof. .
 また本物品において、ポリエステル樹脂の平均分子量は、金属光沢を有する限りにおいて限定されるわけではないが、1000以上1000000以下であることが好ましく、より好ましくは3000以上100000以下である。 In the present article, the average molecular weight of the polyester resin is not limited as long as it has a metallic luster, but is preferably 1000 or more and 1000000 or less, more preferably 3000 or more and 100000 or less.
 
(ポリカーボネート樹脂)
 本物品において、ポリカーボネート樹脂とは、カーボネート基を構成要素として有する樹脂であって、例えばビスフェノールAとホスゲンによって製造可能な樹脂である。また本物品において、ポリカーボネート樹脂の平均分子量は、金属光沢を有する限りにおいて限定されるわけではないが、1000以上1000000以下であることが好ましく、より好ましくは3000以上100000以下である。

(Polycarbonate resin)
In the present article, the polycarbonate resin is a resin having a carbonate group as a constituent element, and can be produced by, for example, bisphenol A and phosgene. Moreover, in this article, the average molecular weight of the polycarbonate resin is not limited as long as it has a metallic luster, but it is preferably 1000 or more and 1000000 or less, more preferably 3000 or more and 100000 or less.
(ポリビニルピロリドン(PVP)樹脂)
 本物品において、ポリビニルピロリドン樹脂とは、N-ビニル-2-ピロリドンが重合した樹脂をいう。また本物品において、ポリビニルピロリドン樹脂の平均分子量は、金属光沢を有する限りにおいて限定されるわけではないが、1000以上1000000以下であることが好ましく、より好ましくは3000以上100000以下である。
(Polyvinylpyrrolidone (PVP) resin)
In the present article, the polyvinyl pyrrolidone resin refers to a resin obtained by polymerizing N-vinyl-2-pyrrolidone. Moreover, in this article, the average molecular weight of the polyvinylpyrrolidone resin is not limited as long as it has a metallic luster, but it is preferably 1,000 or more and 1,000,000 or less, more preferably 3000 or more and 100,000 or less.
(ポリスチレン樹脂)
 本物品において、ポリスチレン樹脂とは、スチレンを重合してなる樹脂をいう。また本物品において、ポリスチレン樹脂の平均分子量は、金属光沢を有する限りにおいて限定されるわけではないが、1000以上1000000以下であることが好ましく、より好ましくは3000以上500000以下であり、さらにこのましくは300000以下である。
(Polystyrene resin)
In this article, the polystyrene resin refers to a resin obtained by polymerizing styrene. In this article, the average molecular weight of the polystyrene resin is not limited as long as it has a metallic luster, but it is preferably 1000 or more and 1000000 or less, more preferably 3000 or more and 500000 or less, and more preferably Is 300,000 or less.
(ポリメタクリル酸メチル樹脂(アクリル樹脂))
 本物品において、ポリメタクリル酸メチル(PMMA)樹脂とは、アクリル酸エステルを重合させた樹脂をいう。またポリメタクリル酸メチル樹脂の平均分子量は、金属光沢を有する限りにおいて限定されるわけではないが、1000以上1000000以下であることが好ましく、より好ましくは3000以上500000以下である。
(Polymethyl methacrylate resin (acrylic resin))
In this article, polymethyl methacrylate (PMMA) resin refers to a resin obtained by polymerizing an acrylate ester. The average molecular weight of the polymethyl methacrylate resin is not limited as long as it has a metallic luster, but is preferably 1000 or more and 1000000 or less, more preferably 3000 or more and 500000 or less.
(スチレンアクリル共重合体樹脂)
 本物品において、スチレンアクリル共重合体樹脂とは、アクリルニトリルとスチレンの共重合化合物をいう。スチレンアクリル共重合体樹脂の平均分子量は、金属光沢を有する限りにおいて限定されるわけではないが、1000以上1000000以下であることが好ましく、より好ましくは3000以上500000以下である。
(チオフェン重合体)
 また本物品において「チオフェン重合体」とは、二以上のチオフェンが互いに結合して重合したものをいい、下記一般式で示される化合物をいう。
Figure JPOXMLDOC01-appb-C000003
(Styrene acrylic copolymer resin)
In the present article, the styrene acrylic copolymer resin refers to a copolymer compound of acrylonitrile and styrene. The average molecular weight of the styrene acrylic copolymer resin is not limited as long as it has a metallic luster, but it is preferably 1000 or more and 1000000 or less, more preferably 3000 or more and 500000 or less.
(Thiophene polymer)
In the present article, the “thiophene polymer” refers to a polymer in which two or more thiophenes are bonded to each other and refers to a compound represented by the following general formula.
Figure JPOXMLDOC01-appb-C000003
 上記式において、Rは置換基であり、膜に金属光沢を付与できる限りにおいて限定されるわけではないが、アルコキシ基、アミノ基、アルキル基、ヒドロキシル基、ヒドロキシアルキル基、アリール基、シアノ基、又は、ハロゲンのいずれかであることが好ましい。また、Rは一つのチオフェン環に一つであっても、二つであってもよい。また、本実施形態に係るチオフェン重合体において、各チオフェンの上記Rは同じであっても異なっていてもよい。さらに、チオフェン重合体は陰イオンによってドーピングされていると、金及び銅に近い金色調及び銅色調を呈する。陰イオンとしては、過塩素酸イオン、ヘキサフルオロリン酸イオン、テトラフルオロホウ酸イオン、塩化物イオン、臭化物イオン、硫酸イオン、酢酸イオン、硝酸イオン、クエン酸イオン、シュウ酸イオン、パラトルエンスルホン酸イオン、ポリスチレンスルホン酸イオン等を挙げることができる。 In the above formula, R is a substituent and is not limited as long as it can impart a metallic luster to the film, but is not limited to an alkoxy group, an amino group, an alkyl group, a hydroxyl group, a hydroxyalkyl group, an aryl group, a cyano group, Or it is preferable that it is either halogen. R may be one or two per thiophene ring. Moreover, in the thiophene polymer according to the present embodiment, the Rs of the thiophenes may be the same or different. Furthermore, when the thiophene polymer is doped with anions, it exhibits a gold color and copper color similar to gold and copper. Anions include perchlorate ion, hexafluorophosphate ion, tetrafluoroborate ion, chloride ion, bromide ion, sulfate ion, acetate ion, nitrate ion, citrate ion, oxalate ion, p-toluenesulfonic acid Ion, polystyrene sulfonate ion and the like.
 なお「チオフェン」は、上記の記載からも明らかなように、硫黄を含む複素環式化合物であって、下記一般式で示される化合物である。式中Rの定義は上記と同様である。
Figure JPOXMLDOC01-appb-C000004
As is clear from the above description, “thiophene” is a heterocyclic compound containing sulfur, and is a compound represented by the following general formula. In the formula, the definition of R is the same as described above.
Figure JPOXMLDOC01-appb-C000004
 なお、上記式中Rがアルコキシ基である場合、限定されるわけではないが、炭素数は1以上8以下であることが好ましく、より具体的には、3-メトキシチオフェン、3,4-ジメトキシチオフェン、3-エトキシチオフェン、3-プロポキシチオフェン、3-ブトキシチオフェン、3-メトキシ-4-メチルチオフェン、3-エトキシ-4-メチルチオフェン、3-ブトキシ-4-メチルチオフェン、3,4-ジエトキシチオフェン、3,4-エチレンジオキシチオフェン、3,4-プロピレンジオキシチオフェン等を例示することができる。 In the above formula, when R is an alkoxy group, it is not limited, but the number of carbon atoms is preferably 1 or more and 8 or less, more specifically, 3-methoxythiophene, 3,4-dimethoxy. Thiophene, 3-ethoxythiophene, 3-propoxythiophene, 3-butoxythiophene, 3-methoxy-4-methylthiophene, 3-ethoxy-4-methylthiophene, 3-butoxy-4-methylthiophene, 3,4-diethoxy Examples thereof include thiophene, 3,4-ethylenedioxythiophene, 3,4-propylenedioxythiophene, and the like.
 また、上記式中Rがアルキル基である場合、限定されるわけではないが、炭素数は1以上12以下であることが好ましく、より具体的には、3-メチルチオフェン、3,4-ジメチルチオフェン、3-エチルチオフェン、3,4-ジエチルチオフェン、3-ブチルチオフェン、3-ヘキシルチオフェン、3-ヘプチルチオフェン、3-オクチルチオフェン、3-ノニルチオフェン、3-デシルチオフェン、3-ウンデシルチオフェン、3-ドデシルチオフェン、3-ブロモ-4-メチルチオフェン等を例示することができる。 Further, when R in the above formula is an alkyl group, the number of carbon atoms is preferably 1 or more and 12 or less, more specifically, 3-methylthiophene, 3,4-dimethyl. Thiophene, 3-ethylthiophene, 3,4-diethylthiophene, 3-butylthiophene, 3-hexylthiophene, 3-heptylthiophene, 3-octylthiophene, 3-nonylthiophene, 3-decylthiophene, 3-undecylthiophene, Examples thereof include 3-dodecylthiophene and 3-bromo-4-methylthiophene.
 また、上記式中Rがアミノ基である場合、3-アミノチオフェン、3,4-ジアミノチオフェン、3-メチルアミノチオフェン、3-ジメチルアミノチオフェン、3-チオフェンカルボキシアミド、4-(チオフェン-3-イル)アニリン等を例示することができる。 In the above formula, when R is an amino group, 3-aminothiophene, 3,4-diaminothiophene, 3-methylaminothiophene, 3-dimethylaminothiophene, 3-thiophenecarboxamide, 4- (thiophene-3- Il) Aniline and the like can be exemplified.
 また本物品において、「チオフェン重合体」の分子量としては、金属光沢を有するものとすることができ、膜として形成できるものである限りにおいて限定されるわけではないが、GPC測定法により求められる重量平均分子量の分布のピークが200以上30000以下の範囲内にあることが好ましく、より好ましくは500以上10000以下の範囲内である。 In the present article, the molecular weight of the “thiophene polymer” is not limited as long as it can have a metallic luster and can be formed as a film, but the weight required by the GPC measurement method. The average molecular weight distribution peak is preferably in the range of 200 to 30,000, more preferably in the range of 500 to 10,000.
 また、本物品において、 チオフェン重合体の重量は、物品全体の重量を100とした場合、0.1以上99.9以下の範囲となっていることが好ましく、より好ましくは0.5以上99以下の範囲である。 In the present article, the weight of the thiophene polymer is preferably in the range of 0.1 to 99.9, more preferably 0.5 to 99, when the total weight of the article is 100. Range.
 また本物品において、チオフェン重合体は、作製することができる限りにおいて限定されず種々の方法を採用することができる。例えば、チオフェン重合体は、化学重合又は電解重合によって作製することができる。 In the present article, the thiophene polymer is not limited as long as it can be produced, and various methods can be adopted. For example, thiophene polymers can be made by chemical polymerization or electrolytic polymerization.
(化学重合)
 ここで「化学重合法」とは、酸化剤を用いて液相及び固相の少なくともいずれかにおいて行う重合をいう。
(Chemical polymerization)
Here, the “chemical polymerization method” refers to polymerization performed in at least one of a liquid phase and a solid phase using an oxidizing agent.
 この方法では、具体的に(1)酸化剤を用いてチオフェンを重合してチオフェン重合体を含む溶液とする工程、(2)チオフェン重合体を含む溶液から未反応原料及び副生成物を除去してチオフェン重合体粉末を得る工程、を有する。 Specifically, in this method, (1) a step of polymerizing thiophene using an oxidizing agent to obtain a solution containing a thiophene polymer, (2) removing unreacted raw materials and by-products from the solution containing the thiophene polymer. And obtaining a thiophene polymer powder.
 まず、この方法では、(1)酸化剤を用いてチオフェンを重合し、このチオフェン重合体を含む溶液を作製する。ここで用いる「チオフェン」及び得られる「チオフェン重合体」は、上記したものである。チオフェン重合体は、上記の通り、いわゆるオリゴマーの範囲にあることが好ましく、具体的には重量平均分子量の分布ピークが200以上30000以下の範囲内となるように重合することが好ましい。 First, in this method, (1) thiophene is polymerized using an oxidizing agent to prepare a solution containing this thiophene polymer. The “thiophene” used here and the resulting “thiophene polymer” are those described above. As described above, the thiophene polymer is preferably in the range of a so-called oligomer, and specifically, the polymerization is preferably performed so that the distribution peak of the weight average molecular weight is in the range of 200 to 30000.
 本工程において、酸化剤は、チオフェン重合体を製造することができる限りにおいて限定されず様々なものを使用することができるが、例えば第二鉄塩、第二銅塩、セリウム塩、二クロム酸塩、過マンガン酸塩、過硫酸アンモニウム、三フッ化ホウ素、臭素酸塩、過酸化水素、塩素、臭素及びヨウ素を挙げることができ、中でも第二鉄塩が好ましい。なお水和物であっても良い。また、この場合において、この対となるイオンも適宜調整可能であって限定されるわけではなく、例えば塩化物イオン、臭化物イオン、クエン酸イオン、シュウ酸イオン、パラトルエンスルホン酸イオン、過塩素酸イオン、ヘキサフルオロリン酸イオン、テトラフルオロホウ酸イオン等を挙げることができ、その中でも、過塩素酸イオン、ヘキサフルオロリン酸イオン、テトラフルオロホウ酸イオン、塩化物イオン、臭化物イオン、及び、パラトルエンスルホン酸イオンの少なくともいずれかを用いると、測色計による数値評価で規定される金色に近い金属光沢を得ることができ好ましい。金色に近い金属光沢を得ることができる理由は、推測の域であるが、過塩素酸イオン、ヘキサフルオロリン酸イオン、テトラフルオロホウ酸イオン、塩化物イオン、臭化物イオン、パラトルエンスルホン酸イオンが重合の際、チオフェン重合体にドーパントとして組み込まれ、チオフェン重合体内に生成されるカチオン部位と結合して安定化し、規則正しい分子配向構造の形成(ラメラ結晶構造の形成)に寄与するためであると考えられる。実際のところ金属光沢を有する膜を分析するとこれらが安定的に存在することが確認されている。 In this step, the oxidizing agent is not limited as long as the thiophene polymer can be produced, and various ones can be used. For example, ferric salt, cupric salt, cerium salt, dichromic acid Examples thereof include salts, permanganate, ammonium persulfate, boron trifluoride, bromate, hydrogen peroxide, chlorine, bromine and iodine. Among them, ferric salt is preferable. Hydrates may also be used. In this case, the pair of ions can be appropriately adjusted and is not limited. For example, chloride ion, bromide ion, citrate ion, oxalate ion, paratoluenesulfonate ion, perchloric acid. Ion, hexafluorophosphate ion, tetrafluoroborate ion, etc., among which perchlorate ion, hexafluorophosphate ion, tetrafluoroborate ion, chloride ion, bromide ion, and para Use of at least one of toluene sulfonate ions is preferable because a metallic luster close to a golden color defined by numerical evaluation by a colorimeter can be obtained. The reason why a metallic luster close to gold can be obtained is speculated, but perchlorate ion, hexafluorophosphate ion, tetrafluoroborate ion, chloride ion, bromide ion, paratoluenesulfonate ion During polymerization, it is incorporated into the thiophene polymer as a dopant, and is bound and stabilized by the cation moiety generated in the thiophene polymer, which contributes to the formation of an ordered molecular orientation structure (formation of lamellar crystal structure). It is done. In fact, when films having metallic luster are analyzed, it has been confirmed that they exist stably.
 また本工程において、重合は溶媒を用い、この溶媒中において行うことが好ましい。用いる溶媒は、上記酸化剤及びチオフェンを十分に溶解し効率的に重合させることができる限りにおいて限定されるわけではないが、高い極性を有し、ある程度の揮発性を有する有機溶媒であることが好ましく、例えばアセトニトリル、ニトロメタン、γ-ブチロラクトン、炭酸プロピレン、ニトロメタン、1-メチル-2-ピロリジノン、ジメチルスルホキシド、2-ブタノン、テトラヒドロフラン、アセトン、メタノール、アニソール、クロロホルム、酢酸エチル、ヘキサン、トリクロロエチレン、シクロヘキサノン、ジクロロメタン、クロロホルム、ジメチルホルムアミド、エタノール、ブタノール、ピリジン、ジオキサン、及びこれらの混合物等を用いることができるが、アセトニトリル、ニトロメタン、γ-ブチロラクトン、炭酸プロピレンはチオフェン重合体が可溶であり、より良好な金属光沢を備えた膜となりやすく好ましい。 In this step, the polymerization is preferably performed in a solvent using a solvent. The solvent to be used is not limited as long as the oxidizing agent and thiophene can be sufficiently dissolved and polymerized efficiently, but the organic solvent has a high polarity and a certain degree of volatility. Preferably, for example, acetonitrile, nitromethane, γ-butyrolactone, propylene carbonate, nitromethane, 1-methyl-2-pyrrolidinone, dimethyl sulfoxide, 2-butanone, tetrahydrofuran, acetone, methanol, anisole, chloroform, ethyl acetate, hexane, trichloroethylene, cyclohexanone, Dichloromethane, chloroform, dimethylformamide, ethanol, butanol, pyridine, dioxane, and mixtures thereof can be used, but acetonitrile, nitromethane, γ-butyrolactone, carbonate Lopylene is preferable because it has a soluble thiophene polymer and tends to form a film with better metallic luster.
 なお本工程において、溶媒に対し用いるチオフェン、酸化剤の量は適宜調整可能であり限定されるわけではないが、溶媒の重量を1とした場合、チオフェンの重量は0.00007以上7以下であることが好ましく、より好ましくは0.0007以上0.7以下であり、過塩素酸鉄(III)n水和物の場合、重量は0.0006以上6以下であることが好ましく、より好ましくは0.006以上0.6以下である。 In this step, the amount of thiophene and oxidizing agent used for the solvent can be adjusted as appropriate and is not limited. However, when the weight of the solvent is 1, the weight of thiophene is 0.00007 or more and 7 or less. More preferably, it is 0.0007 or more and 0.7 or less, and in the case of iron (III) perchlorate n hydrate, the weight is preferably 0.0006 or more and 6 or less, more preferably 0. 0.006 or more and 0.6 or less.
 また、本工程において、用いるチオフェンと酸化剤の比としてはチオフェンの重量を1とした場合、0.1以上1000以下であることが好ましく、1以上100以下であることがより好ましい。 In this step, the ratio of the thiophene to the oxidizing agent used is preferably 0.1 or more and 1000 or less, and more preferably 1 or more and 100 or less, when the weight of thiophene is 1.
 また本工程は、チオフェンと酸化剤を溶媒に一度に加えてもよいが、溶媒にチオフェンを加えた溶液と、酸化剤を溶媒に加えた溶液の二種類の溶液を別途作製し、これらを加え合わせることで重合反応を行わせても良い。 In this step, thiophene and oxidant may be added to the solvent all at once, but two types of solutions are separately prepared: a solution in which thiophene is added to the solvent and a solution in which the oxidant is added to the solvent. The polymerization reaction may be performed by combining them.
 またこの方法において、上記作製したチオフェン重合体は、溶媒を除去して粉末状のチオフェン重合体(チオフェン重合体粉末)としておくことが好ましい。このようにしておくことで後述の溶媒に溶解させつつポリエステル樹脂と混合し、金属光沢を有する物品を製造することが可能となる。なお、酸化剤において上記過塩素酸イオン、ヘキサフルオロリン酸イオン、テトラフルオロホウ酸イオン、塩化物イオン、臭化物イオン、パラトルエンスルホン酸イオンを含むものを用いた場合、上記重合体に安定的に結合されているため残り、金属光沢の状態を安定的に維持することができる。 In this method, the thiophene polymer produced as described above is preferably prepared as a powdered thiophene polymer (thiophene polymer powder) by removing the solvent. By doing so, it is possible to produce an article having metallic luster by mixing with a polyester resin while being dissolved in a solvent described later. In addition, when an oxidizing agent containing the perchlorate ion, hexafluorophosphate ion, tetrafluoroborate ion, chloride ion, bromide ion, or paratoluenesulfonate ion is used, the polymer is stably used. Since it is bonded, the remaining metal gloss can be stably maintained.
(電解重合)
 また、本物品において、上記のとおりチオフェン重合体は、電解重合を用いて製造することもできる。本実施形態において、電解重合とは、重合体の前駆体となる物質(モノマー)を、支持電解質を含む溶液に溶解し、その後モノマーを電極酸化することにより、導電体上に溶液不溶性重合体膜を形成する手法をいう。
(Electropolymerization)
In the present article, as described above, the thiophene polymer can also be produced using electrolytic polymerization. In the present embodiment, electrolytic polymerization refers to a solution-insoluble polymer film on a conductor by dissolving a substance (monomer) serving as a polymer precursor in a solution containing a supporting electrolyte, and then subjecting the monomer to electrode oxidation. Is a method of forming
 また、本実施形態において、陽極酸化させる際、電位掃引法を用いることが好ましい。電位掃引法とは、支持電解質を含む溶液に一対の電極を浸漬し、一定の速度で電位を変化させつつ印加する処理をいう。 In this embodiment, it is preferable to use a potential sweep method when anodizing. The potential sweep method is a treatment in which a pair of electrodes is immersed in a solution containing a supporting electrolyte and applied while changing the potential at a constant rate.
 また本実施形態において用いられる溶液の溶媒としては、特に限定されるわけではないが、例えば水、アルコールの他、藤島昭、相澤益男、井上徹、電気化学測定法、技報堂出版、上巻107―114頁、1984年に記載の溶媒を採用できる。また、種々の溶媒の混合溶媒も好ましい。さらに、ドデシル硫酸ナトリウム等の陰イオン界面活性剤、臭化ドデシルトリメチルアンモニウム等のカチオン性界面活性剤、及びポリオキシエチレンラウリルエーテル等の非イオン性界面活性剤を用いると、測色計による数値評価で規定される金色に近い金属光沢を得ることができ好ましい。 The solvent of the solution used in this embodiment is not particularly limited. For example, in addition to water and alcohol, Akira Fujishima, Masuo Aizawa, Toru Inoue, Electrochemical Measurement, Gihodo Publishing, Vol. 107-114 Page, 1984 can be used. A mixed solvent of various solvents is also preferable. Furthermore, using an anionic surfactant such as sodium dodecyl sulfate, a cationic surfactant such as dodecyltrimethylammonium bromide, and a nonionic surfactant such as polyoxyethylene lauryl ether, numerical evaluation using a colorimeter The metallic luster close | similar to gold | metal | money prescribed | regulated by (1) can be obtained and it is preferable.
 また本実施形態において用いられる溶液の支持電解質は、電気分解において必須の成分であり、溶媒に十分溶解し、電気分解されにくいカチオン又はアニオンを構成要素とするものが好ましく、限定されるわけではないが、カチオンに注目すれば例えばリチウム塩、ナトリウム塩、カリウム塩、カルシウム塩、テトラアルキルアンモニウム塩の少なくともいずれかを用いることが好ましく、アニオンに注目すれば例えばハロゲン化物、硫酸塩、硝酸塩、リン酸塩、過塩素酸塩、四フッ化ホウ酸塩、六フッ化リン酸塩の少なくともいずれかを用いることが好ましい。支持電解質の濃度は、限定されるわけではないが0.001M以上溶解度以下であることが好ましく、0.01M以上5M以下であることがより好ましい。 Further, the supporting electrolyte of the solution used in the present embodiment is an essential component in electrolysis, and preferably has a cation or an anion that is sufficiently dissolved in a solvent and hardly electrolyzed, and is not limited thereto. However, it is preferable to use at least one of lithium salt, sodium salt, potassium salt, calcium salt, and tetraalkylammonium salt if attention is paid to cations, and halide, sulfate, nitrate, phosphoric acid, etc. if attention is paid to anions. It is preferable to use at least one of a salt, a perchlorate, a tetrafluoroborate, and a hexafluorophosphate. The concentration of the supporting electrolyte is not limited, but is preferably 0.001M or more and solubility or less, and more preferably 0.01M or more and 5M or less.
 また、本実施形態において、電解重合で用いられるチオフェンモノマーの電解溶液中における濃度は、限定されるわけではないが、0.1mM以上溶解度以下であることが好ましく、より具体的には0.5mM以上1M以下であることがより好ましい。 In this embodiment, the concentration of the thiophene monomer used in the electropolymerization in the electrolytic solution is not limited, but is preferably 0.1 mM or more and less than or equal to the solubility, more specifically 0.5 mM. More preferably, it is 1 M or less.
 また本実施形態において、電解重合は溶液を入れた電解容器に導電体(動作電極として機能させる)を浸漬し、これに対向電極、必要に応じて電位の基準となる参照電極の3本の電極を用いる3電極式、又は、導電体と対向電極だけを用いる2電極式を採用することができる。なお、導電体の電位を基準となる参照電極に対して厳密に規定することのできる3電極式は、本方法によって形成されるチオフェン重合体を含む金属光沢を有する物品を再現性良く作製することができる点においてより好ましい。 In this embodiment, the electropolymerization is performed by immersing a conductor (functioning as an operating electrode) in an electrolytic container containing a solution, and counter electrodes, and if necessary, three electrodes of a reference electrode serving as a potential reference Can be employed, or a two-electrode system using only a conductor and a counter electrode can be employed. Note that the three-electrode system that can strictly regulate the electric potential of the conductor with respect to the reference electrode as a reference is used to produce an article having a metallic luster that contains the thiophene polymer formed by this method with good reproducibility. Is more preferable in that
  動作電極としての導電体は、3電極式及び2電極式のいずれの場合においても、電極酸化に対して安定な物質であれば良く、限定されるわけではないが、例えば上記したように、酸化インジウムスズ(以下「ITO」と略記する。)や酸化錫が塗布された透明ガラス電極、金属電極、ステンレス等の合金電極、グラシーカーボン電極等を好適に用いることができる。また、対向電極としては、上記電極材料に加え、ステンレスや銅板などの金属電極を好適に用いることができる。また参照電極は、限定されるわけではないが例えば銀・塩化銀電極(Ag/AgCl電極)、飽和カロメル電極を好適に用いることができる。 The conductor as the working electrode is not limited as long as it is a substance that is stable against electrode oxidation in both the three-electrode type and the two-electrode type. For example, as described above, A transparent glass electrode coated with indium tin (hereinafter abbreviated as “ITO”) or tin oxide, a metal electrode, an alloy electrode such as stainless steel, a glassy carbon electrode, or the like can be suitably used. Moreover, as a counter electrode, in addition to the electrode material, a metal electrode such as stainless steel or a copper plate can be suitably used. The reference electrode is not limited, but for example, a silver / silver chloride electrode (Ag / AgCl electrode) or a saturated calomel electrode can be preferably used.
 また、本実施形態において電解重合における電位掃引法は、負電位と正電位の間で掃引することが好ましい。またこの場合において、負電位は、-1.5V以上-0.01V以下の範囲であることが好ましく、より好ましくは-1.0V以上-0.1V以下の範囲、さらに好ましくは-0.7V以上-0.2V以下の範囲である。また、正電位は、+1.0V以上+3.0V以下の範囲であることが好ましく、より好ましくは+1.0V以上+2.0V以下の範囲、さらに好ましくは+1.0V以上+1.5V以下の範囲内である。 In the present embodiment, the potential sweep method in the electropolymerization is preferably sweeping between a negative potential and a positive potential. In this case, the negative potential is preferably in the range of −1.5V to −0.01V, more preferably in the range of −1.0V to −0.1V, and still more preferably −0.7V. It is the range of -0.2V or less. The positive potential is preferably in the range of + 1.0V to + 3.0V, more preferably in the range of + 1.0V to + 2.0V, and still more preferably in the range of + 1.0V to + 1.5V. It is.
 また本実施形態において、電位掃引法は、掃引速度について、金属光沢を有する物品を製造することができる限りにおいて限定されるわけではないが、0.1mV/秒以上10V/秒以下の範囲内とすることが好ましく、より好ましくは1mV/秒以上1V/秒以下の範囲、さらに好ましくは2mV/秒以上300mV/秒以下の範囲内である。 In the present embodiment, the potential sweep method is not limited as long as the sweep rate can produce an article having a metallic luster, but within a range of 0.1 mV / second to 10 V / second. More preferably, it is in the range of 1 mV / second to 1 V / second, and more preferably in the range of 2 mV / second to 300 mV / second.
  また電解重合の時間としては、金属光沢を有する物品を析出させることができる限りにおいて限定されるわけではないが、上記印加電圧の範囲内において1秒以上5時間以下の範囲内において行うことが好ましく、10秒以上1時間以下の範囲内において行うことがより好ましい。 The time for the electropolymerization is not limited as long as an article having a metallic luster can be deposited, but it is preferably performed within the range of 1 second to 5 hours within the range of the applied voltage. More preferably, it is carried out within a range of 10 seconds to 1 hour.
  また、この電気分解の温度としては電解重合により金属光沢を有する物品を析出させることができる限りにおいて限定されるわけではないが、-20℃以上60℃以下の範囲内にあることが好ましい。 The temperature of this electrolysis is not limited as long as an article having a metallic luster can be deposited by electrolytic polymerization, but it is preferably in the range of −20 ° C. or more and 60 ° C. or less.
  また、この電気分解は、大気中の成分物質が関与することの少ない反応でありまた比較的低電位で行われるため、大気中で行うことができる。電解液中の溶存酸素の酸化など、生成した膜を汚染する可能性を回避する観点から、窒素ガスやアルゴンガス雰囲気中で行うことが好ましいが、汚染の心配はほとんど無い。しかしながらそれでもやはり、電解重合を形成する場合、溶液中に酸素が多く存在すると電極反応に影響を与えてしまうおそれがあるため、不活性ガス(窒素ガスやアルゴンガス)によるバブリングを行うことも有用である。 こ の Moreover, this electrolysis is a reaction in which constituent substances in the atmosphere are rarely involved, and since it is carried out at a relatively low potential, it can be carried out in the atmosphere. From the viewpoint of avoiding the possibility of contaminating the formed film, such as oxidation of dissolved oxygen in the electrolytic solution, it is preferably performed in a nitrogen gas or argon gas atmosphere, but there is little concern about contamination. Nevertheless, in the case of forming electropolymerization, bubbling with an inert gas (nitrogen gas or argon gas) is also useful because there is a possibility that the electrode reaction may be affected if a large amount of oxygen is present in the solution. is there.
(製造方法)
 本物品は、上記の化学重合あるいは電解重合で合成されたチオフェン重合体とポリエステル樹脂、ポリカーボネート樹脂、ポリビニルピロリドン樹脂、ポリスチレン樹脂、ポリメタクリル酸メチル樹脂及びスチレンアクリル共重合体樹脂の少なくともいずれかを混合することで作製するが、この混合においては、溶媒を用いることが好ましい。溶媒としては、上記ポリエステル樹脂、ポリカーボネート樹脂、ポリビニルピロリドン樹脂、ポリスチレン樹脂、ポリメタクリル酸メチル樹脂及びスチレンアクリル共重合体樹脂の少なくともいずれかとチオフェン重合体を混合させることができる限りにおいて限定されるわけではないが、例えばニトロメタン、γ-ブチロラクトン、アセトニトリル、炭酸プロピレン、ジメチルスルホキシド、N-メチル-2-ピロリドン及びこれらの混合物を用いることができるがこれに限定されない。
(Production method)
This article is a mixture of the thiophene polymer synthesized by the above chemical polymerization or electrolytic polymerization and at least one of polyester resin, polycarbonate resin, polyvinyl pyrrolidone resin, polystyrene resin, polymethyl methacrylate resin and styrene acrylic copolymer resin. In this mixing, it is preferable to use a solvent. The solvent is not limited as long as the thiophene polymer can be mixed with at least one of the polyester resin, polycarbonate resin, polyvinyl pyrrolidone resin, polystyrene resin, polymethyl methacrylate resin and styrene acrylic copolymer resin. For example, nitromethane, γ-butyrolactone, acetonitrile, propylene carbonate, dimethyl sulfoxide, N-methyl-2-pyrrolidone and a mixture thereof can be used, but are not limited thereto.
 また、ポリエステル樹脂、ポリカーボネート樹脂、ポリビニルピロリドン樹脂、ポリスチレン樹脂、ポリメタクリル酸メチル樹脂及びスチレンアクリル共重合体樹脂の少なくともいずれかとチオフェン重合体の比率は上記した範囲でよいが、溶媒とこの混合物の濃度の比は、溶解が可能で、必要な粘度とすることができる限りにおいて適宜調整可能であれば限定されるものではないが、例えば、上記ポリエステル樹脂とチオフェン重合体の総重量を1とした場合、0.1以上500以下であることが好ましい。 The ratio of the thiophene polymer to the ratio of at least one of polyester resin, polycarbonate resin, polyvinyl pyrrolidone resin, polystyrene resin, polymethyl methacrylate resin and styrene acrylic copolymer resin may be in the above range, but the concentration of the solvent and this mixture The ratio of is not limited as long as it can be dissolved and can be appropriately adjusted as long as the necessary viscosity can be obtained. For example, when the total weight of the polyester resin and the thiophene polymer is 1, It is preferably 0.1 or more and 500 or less.
 そして、上記作製した溶液を板等の上に塗布し、所望の形状に形成した後、乾燥させて溶媒を除去することで、所望の立体的形状を維持した物品を形成することができる。もちろん、立体的形状には膜が含まれており、この膜の強度は後述の実施例から明らかなように、非常に高い強度を備えている。 And after apply | coating the produced solution on a board etc. and forming in a desired shape, it can be dried and the article which maintained the desired three-dimensional shape can be formed by removing a solvent. Of course, the three-dimensional shape includes a film, and the strength of the film has a very high strength, as will be apparent from Examples described later.
 以上、本物品では、ポリエステル樹脂、ポリカーボネート樹脂、ポリビニルピロリドン樹脂、ポリスチレン樹脂、ポリメタクリル酸メチル樹脂及びスチレンアクリル共重合体樹脂の少なくともいずれかとチオフェン重合体を混合させたとしても金属光沢を失わず、より強度の高い物品を提供することができる。 As described above, in this article, even when a thiophene polymer is mixed with at least one of a polyester resin, a polycarbonate resin, a polyvinyl pyrrolidone resin, a polystyrene resin, a polymethyl methacrylate resin, and a styrene acrylic copolymer resin, the metallic luster is not lost. An article with higher strength can be provided.
 なお、本物品において、チオフェン重合体が金属光沢を示す理由は推測の域にあるが、チオフェン重合体を構成する分子が規則的に配向し、特定の波長を反射するためであると考えられる。このことは、作製されたチオフェン重合体を含む膜がX線回折において鋭いピークを示していることからも裏付けられる。 In this article, the reason why the thiophene polymer exhibits a metallic luster is in the range of speculation, but it is considered that the molecules constituting the thiophene polymer are regularly oriented and reflect a specific wavelength. This is supported by the fact that the prepared film containing the thiophene polymer shows a sharp peak in X-ray diffraction.
 しかしながら、上記の背景を考えると、通常、チオフェン重合体に他の混合物である樹脂を混合させた場合、上記の特殊な規則的な配列は乱され、金属光沢を示す構造は実現できないものと考えられる。しかしながら、本物品では、数ある樹脂の中でもポリエステル樹脂、ポリカーボネート樹脂、ポリビニルピロリドン樹脂、ポリスチレン樹脂、ポリメタクリル酸メチル樹脂及びスチレンアクリル共重合体樹脂の少なくともいずれかを採用することで、ポリエステル樹脂、ポリカーボネート樹脂、ポリビニルピロリドン樹脂、ポリスチレン樹脂、ポリメタクリル酸メチル樹脂及びスチレンアクリル共重合体樹脂の少なくともいずれかが入り込んできたとしても金属光沢を失わないことを見出した。しかもポリエステル樹脂、ポリカーボネート樹脂、ポリビニルピロリドン樹脂、ポリスチレン樹脂、ポリメタクリル酸メチル樹脂及びスチレンアクリル共重合体樹脂の少なくともいずれかは適宜分子量の調整が可能であり、また混合する溶媒を調整することでその溶液の粘度を調整することが可能である。 However, considering the above background, it is generally considered that when a thiophene polymer is mixed with a resin that is another mixture, the above-mentioned special regular arrangement is disturbed and a structure exhibiting metallic luster cannot be realized. It is done. However, in this article, polyester resin, polycarbonate resin, polyvinyl pyrrolidone resin, polystyrene resin, polymethyl methacrylate resin, and styrene-acrylic copolymer resin are used, among other resins. It has been found that even when at least one of a resin, a polyvinyl pyrrolidone resin, a polystyrene resin, a polymethyl methacrylate resin and a styrene acrylic copolymer resin enters, the metallic luster is not lost. In addition, at least one of polyester resin, polycarbonate resin, polyvinyl pyrrolidone resin, polystyrene resin, polymethyl methacrylate resin and styrene acrylic copolymer resin can be appropriately adjusted in molecular weight, and by adjusting the solvent to be mixed, It is possible to adjust the viscosity of the solution.
(トナー)
 ところで、本実施形態に係る物品は、ポリエステル樹脂、ポリカーボネート樹脂、ポリビニルピロリドン樹脂、ポリスチレン樹脂、ポリメタクリル酸メチル樹脂及びスチレンアクリル共重合体樹脂の少なくともいずれかとチオフェン重合体を混合したものとなっている。ポリエステル樹脂自体は、例えばプリンターやコピー機等で用いられるトナーのバインダーとして使用されており、この物品はプリンター等のトナーとして用いることが可能である。トナーとする場合、上記ポリエステル樹脂とチオフェン重合体の混合物を微小な粒子とすることで実現できる。なお、微小な粒子とする方法としては上記ポリエステル樹脂とチオフェン重合体を混合した物品を破砕して所望の粒径とすることができるが、例えば上記作製した溶液の粘度を低くし、インクジェットノズルを用いた噴霧等により所望の粒径より少し大きい程度の液滴を形成し、この液滴から溶媒を除去させることで乾燥した粒とすることができる。もちろん、他の樹脂、ポリカーボネート樹脂、ポリビニルピロリドン樹脂、ポリスチレン樹脂、ポリメタクリル酸メチル樹脂及びスチレンアクリル共重合体樹脂なども可能である限り用いることができる。
(toner)
By the way, the article according to the present embodiment is a mixture of a thiophene polymer and at least one of a polyester resin, a polycarbonate resin, a polyvinyl pyrrolidone resin, a polystyrene resin, a polymethyl methacrylate resin, and a styrene acrylic copolymer resin. . The polyester resin itself is used as a binder for toner used in, for example, printers and copiers, and this article can be used as toner for printers and the like. When the toner is used, it can be realized by making the mixture of the polyester resin and the thiophene polymer into fine particles. As a method for making fine particles, an article in which the polyester resin and the thiophene polymer are mixed can be crushed to obtain a desired particle size. For example, the viscosity of the prepared solution is lowered, and an inkjet nozzle is used. A droplet having a size slightly larger than the desired particle size is formed by spraying used, and the solvent can be removed from the droplet to obtain a dried particle. Of course, other resins, polycarbonate resins, polyvinyl pyrrolidone resins, polystyrene resins, polymethyl methacrylate resins, styrene acrylic copolymer resins, and the like can be used as long as possible.
 以上、本実施形態によって、より強度の高い金属光沢を有する物品を得ることができる。 As described above, according to this embodiment, an article having a higher metallic luster can be obtained.
(実施例)
 ここで、上記実施形態に係る物品について、実際にその製品の作製を行い効果を確認した。以下具体的に説明する。
(Example)
Here, the product according to the above embodiment was actually manufactured to confirm the effect. This will be specifically described below.
(チオフェン重合体)
 まず、3-メトキシチオフェン(以下、「3MeOT」とする)のモノマーを重合前に蒸留し、不純物を除去した。蒸留したモノマー5.418gをアセトニトリル475mlに、窒素をバブリングしながら30分間プロペラ攪拌機で攪拌し、モノマー溶液0.1mol/lを調製した。
(Thiophene polymer)
First, a monomer of 3-methoxythiophene (hereinafter referred to as “3MeOT”) was distilled before polymerization to remove impurities. 5.418 g of the distilled monomer was stirred with a propeller stirrer for 30 minutes while bubbling nitrogen into 475 ml of acetonitrile to prepare a monomer solution of 0.1 mol / l.
 次に、酸化剤として過塩素酸鉄(III)・n水和物(Fe(ClO・nHO)48.02 gをアセトニトリル475 mlに加え、20分間、超音波分散させて溶解し、酸化剤溶液0.2mol/lを調製した。 Next, 48.02 g of iron (III) perchlorate.n hydrate (Fe (ClO 4 ) 3 .nH 2 O) as an oxidant is added to 475 ml of acetonitrile, and dissolved by ultrasonic dispersion for 20 minutes. Then, an oxidizing agent solution 0.2 mol / l was prepared.
 そして、モノマー溶液を重合セルに入れ、酸化剤溶液をビュレットでゆっくり滴下し、2時間重合させた。この操作により、濃青色を呈する3MeOTオリゴマーを得た。 Then, the monomer solution was put into the polymerization cell, and the oxidant solution was slowly dropped with a burette and polymerized for 2 hours. By this operation, a 3MeOT oligomer exhibiting a deep blue color was obtained.
 そして、ガラスろ過器に、重合後の3MeOTオリゴマーを含む溶液を入れ、吸引ろ過した。ガラスろ過器のフィルター上に残った残渣をメタノールを用いて洗浄し、そして吸引ろ過をする操作を繰り返した。 And the solution containing 3MeOT oligomer after superposition | polymerization was put into the glass filter, and suction filtration was carried out. The residue remaining on the filter of the glass filter was washed with methanol and suction filtration was repeated.
 その後、洗浄後の残渣を真空乾燥機に入れ、50℃下で90分間真空乾燥を行い、オリゴマーを乾燥させた。 Thereafter, the residue after washing was put in a vacuum dryer and vacuum-dried at 50 ° C. for 90 minutes to dry the oligomer.
(チオフェン重合体とポリエステル樹脂の混合)
 上記作製したオリゴマー、高分子樹脂であるポリエステル(PES)樹脂(東洋紡社製 バイロン200、平均分子量17,000)、そして溶媒であるニトロメタン及びγ-ブチロラクトン(以下、GBLとする)をそれぞれ下記表1、表2で示す量で混合し、撹拌した。なお、下記表中、3MeOT:PESはオリゴマーとポリエステルの重量比を表し、以降その表記をサンプル名とする。従って、1:0は樹脂を含まない、オリゴマーのみの溶液を表す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
(Mixture of thiophene polymer and polyester resin)
The prepared oligomers, polyester (PES) resin (Toyobo Co., Ltd., Byron 200, average molecular weight 17,000), and nitromethane and γ-butyrolactone (hereinafter referred to as GBL) as solvents are shown in Table 1 below. The amounts shown in Table 2 were mixed and stirred. In the following table, 3MeOT: PES represents the weight ratio of the oligomer and the polyester, and hereinafter the notation is referred to as a sample name. Therefore, 1: 0 represents an oligomer-only solution containing no resin.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
(物品の製造)
 よく洗浄したガラス基板上に上記溶液をスポイトで滴下して塗布した。ニトロメタン溶媒の塗膜は、室温で1時間(20℃、40%RH)乾燥、GBL溶媒の塗膜は、恒温温風乾燥機で30分間(45℃)乾燥させた。
(Manufacture of goods)
The solution was dropped onto a well-washed glass substrate with a dropper. The coating film of nitromethane solvent was dried at room temperature for 1 hour (20 ° C., 40% RH), and the coating film of GBL solvent was dried for 30 minutes (45 ° C.) with a constant temperature hot air dryer.
 図31に、上記表1において示したニトロメタン溶液から作成された膜を示す。なお図中の比は3MeOT : PESの質量比である。また、1:0はPESが含まれていないオリゴマーのみの膜である。 FIG. 31 shows a film prepared from the nitromethane solution shown in Table 1 above. The ratio in the figure is the mass ratio of 3MeOT: PES. 1: 0 is an oligomer-only film that does not contain PES.
 また、図32に、上記表2において示したGBL溶液から作成された膜を以下に示す。なお図中の比は3MeOT:PESの質量比である。また、1:0はPESが含まれていない、オリゴマーのみの膜である。 FIG. 32 shows a film prepared from the GBL solution shown in Table 2 above. The ratio in the figure is the mass ratio of 3MeOT: PES. 1: 0 is an oligomer-only film that does not contain PES.
(正反射スペクトル)
 ここで、図33及び図34に、上記表1および表2それぞれの溶液から作成された塗布膜の正反射スペクトルを顕微紫外可視近赤外分光光度計(日本分光社製 MSV-370)で測定した結果を示す。なお波長間隔は0.5nm、アパーチャーサイズは100×100μmとした。
(Specular reflection spectrum)
Here, in FIGS. 33 and 34, the specular reflection spectra of the coating films prepared from the solutions in Tables 1 and 2 above were measured with a micro-ultraviolet-visible-near infrared spectrophotometer (MSV-370, manufactured by JASCO Corporation). The results are shown. The wavelength interval was 0.5 nm, and the aperture size was 100 × 100 μm.
 図33で示すニトロメタン溶液から作成された塗膜の正反射スペクトルによると、塗布膜は、高分子樹脂の添加により反射率は多少低下するが、立ち上がり波長のシフトは見られないことを確認した。 According to the specular reflection spectrum of the coating film prepared from the nitromethane solution shown in FIG. 33, it was confirmed that the coating film showed a slight decrease in reflectance due to the addition of the polymer resin, but no rising wavelength shift was observed.
 また、図34で示すGBL溶液から作製された塗膜は、高分子樹脂の添加によって反射率が向上していることを確認した。また、立ち上がり波長は、高分子樹脂の添加によって短波長シフトしていることから、樹脂の添加によって色味を変化させることができることがわかった。 Further, it was confirmed that the coating film prepared from the GBL solution shown in FIG. 34 had improved reflectance by the addition of the polymer resin. In addition, since the rising wavelength is shifted by a short wavelength by the addition of the polymer resin, it was found that the color can be changed by the addition of the resin.
(測色データ)
 また、分光測色計(コニカミノルタ社製 CM-600d)を用いて膜の測色の結果を以下の表3、4にそれぞれ示す。この場合において、光源はD65、視野角は10度、測定は正反射光を含んだ結果で測色を行った。
(Colorimetric data)
The results of film color measurement using a spectrocolorimeter (CM-600d manufactured by Konica Minolta) are shown in Tables 3 and 4 below. In this case, color measurement was performed with the result that the light source was D65, the viewing angle was 10 degrees, and the specular reflection was included.
 図35及び図36は、CIE1976(L,a,b) 色空間(http://www.konicaminolta.jp/instruments/knowledge/color/part1/07.html)におけるL,a,bの値をそれぞれプロットしたものである。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
35 and 36, CIE1976 (L *, a * , b *) L in the color space (http://www.konicaminolta.jp/instruments/knowledge/color/part1/07.html) *, a *, The values of b * are plotted respectively.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 また、真空蒸着によって作製した金の膜と比較した値を表5、表6にそれぞれ示す。なお、ΔE*abは色差(色空間における距離)を表す。また、この塗膜と金蒸着膜との差について図37、38にニトロメタン溶液及びGBL溶液それぞれの場合を示し、図39、図40に、ニトロメタン溶液及びGBL溶液それぞれの場合における塗膜と金蒸着膜との色差ΔE*abについて示しておく。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Tables 5 and 6 show values compared with gold films prepared by vacuum deposition. ΔE * ab represents a color difference (a distance in the color space). In addition, FIGS. 37 and 38 show the difference between the coating film and the gold deposition film in the case of the nitromethane solution and the GBL solution. FIGS. 39 and 40 show the coating film and the gold deposition in the case of the nitromethane solution and the GBL solution, respectively. The color difference ΔE * ab from the film will be described.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
(機械的強度の測定)
 次に、塗膜の機械的性質を引っかき硬度(JIS5600-5-4)に基づいて評価した。鉛筆は、三菱鉛筆ハイユニを使用し、塗膜にキズ跡が生じなかったもっとも硬い鉛筆の硬度を表7、表8にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
(Measuring mechanical strength)
Next, the mechanical properties of the coating film were evaluated based on the scratch hardness (JIS 5600-5-4). As the pencil, Mitsubishi Pencil High Uni was used, and the hardness of the hardest pencil with no scratch marks on the coating film is shown in Table 7 and Table 8, respectively.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 この結果、高分子樹脂の添加量を増やすことで、塗膜の強度が向上した。 As a result, the coating strength was improved by increasing the amount of polymer resin added.
 以上、金属調光沢を発現する3-メトキシチオフェンオリゴマーとポリエステル樹脂を混合した塗布液を作製し、基板上に塗布したところ、金色調光沢を失うことなく機械的強度に優れた金属調光沢膜を作製することができた。 As described above, when a coating liquid in which a polyester resin is mixed with 3-methoxythiophene oligomer exhibiting a metallic luster is prepared and coated on a substrate, a metallic luster film having excellent mechanical strength without losing the golden luster is obtained. We were able to make it.
(立体形状の作製)
 なお、上記作製した溶液の粘度を調整することで、膜ではなく立体的形状の物品を作成することができる。図41に、膜ではなく実際の立体的形状とした物品の例について写真図を示しておく。本図で示すように、高い強度を備えた立体的形状の物品とすることが可能である。
(Production of three-dimensional shape)
Note that by adjusting the viscosity of the prepared solution, a three-dimensional article can be created instead of a film. FIG. 41 shows a photograph of an example of an article having an actual three-dimensional shape instead of a film. As shown in the figure, a three-dimensional article having high strength can be obtained.
(他の樹脂との組み合わせ:チオフェン重合体と樹脂の混合塗布液作製)
 上記PESの例と同様、他の樹脂との組み合わせを行い、塗布液を作製した。具体的には、下記表9で示す種々の樹脂10mgをγ-ブチルラクトン1.0g(以下「GBL」という。)又はニトロメタン1.0gに完全に溶解させ、その溶液に上記作製したチオフェン重合体10mgを混合し、撹拌した。
Figure JPOXMLDOC01-appb-T000013
(Combination with other resins: Preparation of mixed coating solution of thiophene polymer and resin)
As in the case of the above PES, a combination with another resin was performed to prepare a coating solution. Specifically, 10 mg of various resins shown in Table 9 below are completely dissolved in 1.0 g of γ-butyllactone (hereinafter referred to as “GBL”) or 1.0 g of nitromethane, and the thiophene polymer prepared above is dissolved in the solution. 10 mg was mixed and stirred.
Figure JPOXMLDOC01-appb-T000013
(他の樹脂との組み合わせ:膜の作成)
 そして、よく洗浄したガラス基板上に上記作製した塗布液をスポイトで滴下して塗布し、塗膜を恒温温風乾燥機で1時間(60℃)乾燥させた。なおいずれも膜厚は18μm程度であった。
(Combination with other resins: creation of membranes)
Then, the prepared coating solution was dropped onto a well-washed glass substrate with a dropper and applied, and the coating film was dried with a constant temperature hot air dryer for 1 hour (60 ° C.). In all cases, the film thickness was about 18 μm.
 図42に、上記作製した塗膜と、比較例として樹脂を含まない塗膜の写真図を示す。図中、上段左から、比較例として樹脂を含まない塗膜(ニトロメタン溶媒)、比較例として樹脂を含まない塗膜(GBL溶媒)、PES-N、PES-Gを示し、下段左から、PC、PVP、PS、PMMA、StAcをそれぞれ示している。なお、PS、PMMA、StAcについては、膜の裏側が金色を発現したため、裏側の写真図とした。 FIG. 42 shows a photograph of the prepared coating film and a coating film not containing resin as a comparative example. In the figure, from the upper left, a coating film not containing a resin (nitromethane solvent) as a comparative example, a coating film not containing a resin (GBL solvent), PES-N, and PES-G as comparative examples are shown. , PVP, PS, PMMA, and StAc, respectively. For PS, PMMA, and StAc, since the back side of the film developed a gold color, it was taken as a photograph of the back side.
(他の樹脂との組み合わせ:反射スペクトル)
 図43乃至図45に、分光測色計(コニカミノルタ製CM-600d)を用いて、反射スペクトルを測定した。光源はD65、視野角は10度、測定は制反射を含んだ測定法(SCI方式)で測定を行った。なお図43はニトロメタン溶媒から作製した樹脂を含まない膜及びPEN-N膜の全反射スペクトルを示し、図44は、GBL溶媒から作製した樹脂を含まない膜及びPES-G膜、PC膜及びPVP膜の全反射スペクトルを示し、また図45は、GBL溶媒から作製した樹脂を含まない膜及び、PES膜、PMMA膜及びStAc膜の全反射スペクトルをそれぞれ示している。
(Combination with other resins: reflection spectrum)
43 to 45, reflection spectra were measured using a spectrocolorimeter (CM-600d manufactured by Konica Minolta). The light source was D65, the viewing angle was 10 degrees, and the measurement was performed by a measurement method including antireflection (SCI method). FIG. 43 shows total reflection spectra of a film not containing a resin and a PEN-N film prepared from a nitromethane solvent, and FIG. 44 is a film not containing a resin and a PES-G film, a PC film and a PVP prepared from a GBL solvent. 45 shows the total reflection spectrum of the film, and FIG. 45 shows the total reflection spectrum of the film not containing the resin made from the GBL solvent, the PES film, the PMMA film, and the StAc film, respectively.
(分光測色)
 次に、上記した分光測色計を用い、上記図で示した膜の金色調面の測色を行った。光源はD65、視野角は10度、測定は制反射光を含んだ測定法(SCI方式)で測色を行った。なお、L、a、bの値は、CIE1976(L,a,b)色空間における明度L、色相と彩度a、bを表し、JISZ8781-4:2013の規格に基づいている。この結果得られた測色の絶対値データについて下記表10に示し、その値のL、a、bのグラフを図46乃至48に示す。なお図46中の●は金蒸着膜を、■1はニトロメタン溶媒から作製された樹脂を含有しない金色調膜、■2はPES-N膜をそれぞれ示している。また、図47中の●は金蒸着膜を、■1はGBL溶媒から作製された樹脂を含まない金色調膜、■2はPES-G膜を、■3はPC膜を、■4はPVP膜をそれぞれ示す。また、図48中の●は金蒸着膜を、■1はGBL溶媒から作製された樹脂を含有しない金色調膜、■2はPS膜、■3はPMMA膜、■4はStAc膜をそれぞれ示している。
Figure JPOXMLDOC01-appb-T000014
(Spectral colorimetry)
Next, using the above-described spectrocolorimeter, color measurement was performed on the gold-colored surface of the film shown in the above figure. The light source was D65, the viewing angle was 10 degrees, and the measurement was performed by a measuring method (SCI method) including antireflection light. Incidentally, L *, a *, b * values, CIE1976 (L *, a * , b) the lightness L * in the color space, the hue and saturation a *, represents the b *, JISZ8781-4: 2013 standard Based on. The absolute value data of the colorimetry obtained as a result is shown in Table 10 below, and graphs of L * , a * , b * of the values are shown in FIGS. In FIG. 46, ● represents a gold vapor-deposited film, ■ 1 represents a gold-colored film containing no resin prepared from a nitromethane solvent, and ■ 2 represents a PES-N film. In FIG. 47, ● represents a gold vapor deposition film, ■ 1 represents a gold-tone film not containing a resin prepared from a GBL solvent, ■ 2 represents a PES-G film, 3 represents a PC film, and 4 represents a PVP. Each membrane is shown. In FIG. 48, ● represents a gold deposited film, ■ 1 represents a gold-colored film containing no resin prepared from a GBL solvent, ■ 2 represents a PS film, ■ 3 represents a PMMA film, and ■ 4 represents a StAc film. ing.
Figure JPOXMLDOC01-appb-T000014
 次に、ここで得られた金色調膜と、蒸着金属金との色の比較をするために、金の蒸着膜の測色値を基準としたときの色差ΔEabと、L、a、bの値の差ΔL、Δa、Δbの値を下記表11に示し、図49乃至図51にプロットした結果を示す。ただし、色差ΔEabは、L空間における基準色(金蒸着膜)との直線距離であり、下記式で与えられる。なお図49は、金蒸着膜との色差を表し、図中●は金蒸着膜を、■1はニトロメタン溶媒から作製された樹脂を含有しない金色調膜、■2はPES-N膜をそれぞれ示している。また、図50も、金蒸着膜との色差を表し、図中の●は金蒸着膜を、■1はGBL溶媒から作製された樹脂を含まない金色調膜、■2はPES-G膜を、■3はPC膜を、■4はPVP膜をそれぞれ示す。また、図51中の●は金蒸着膜を、■1はGBL溶媒から作製された樹脂を含有しない金色調膜、■2はPS膜、■3はPMMA膜、■4はStAc膜をそれぞれ示している。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-T000016
Next, in order to compare the color of the gold-colored film obtained here and the vapor-deposited metal gold, the color difference ΔE * ab based on the colorimetric value of the gold vapor-deposited film and L * , a The values ΔL * , Δa * and Δb * between the values of * and b * are shown in Table 11 below, and the results plotted in FIGS. 49 to 51 are shown. However, the color difference ΔE * ab is a linear distance from the reference color (gold vapor deposition film) in the L * a * b * space, and is given by the following equation. 49 shows the color difference from the gold vapor deposition film. In the figure, ● represents a gold vapor deposition film, ■ 1 represents a gold-tone film not containing a resin prepared from a nitromethane solvent, and ■ 2 represents a PES-N film. ing. FIG. 50 also shows the color difference from the gold vapor deposition film. In the figure, ● represents a gold vapor deposition film, ■ 1 represents a gold-tone film not containing a resin prepared from a GBL solvent, and ■ 2 represents a PES-G film. , ■ 3 indicates a PC film, and ■ 4 indicates a PVP film. In FIG. 51, ● indicates a gold deposited film, ■ 1 indicates a gold-colored film containing no resin prepared from a GBL solvent, ■ 2 indicates a PS film, ■ 3 indicates a PMMA film, and ■ 4 indicates a StAc film. ing.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-T000016
 次に樹脂を含まない膜との比較を行った。具体的には、上記得られた膜と、樹脂を含まない膜との色の比較をするために、チオフェン重合体のみで作製した膜の測色値を基準とし、色差ΔEabと、L、a、bの値の差ΔL、Δa、Δbを下記表12に示し、図52乃至54にプロットした結果を示す。なお図52は、金蒸着膜との色差を表し、図中●は金蒸着膜を、■1はニトロメタン溶媒から作製された樹脂を含有しない金色調膜、■2はPES-N膜をそれぞれ示している。また、図53も、金蒸着膜との色差を表し、図中の●は金蒸着膜を、■1はGBL溶媒から作製された樹脂を含まない金色調膜、■2はPES-G膜を、■3はPC膜を、■4はPVP膜をそれぞれ示す。また、図54中の●は金蒸着膜を、■1はGBL溶媒から作製された樹脂を含有しない金色調膜、■2はPS膜、■3はPMMA膜、■4はStAc膜をそれぞれ示している。
Figure JPOXMLDOC01-appb-T000017
Next, a comparison was made with a film containing no resin. Specifically, in order to compare the color of the film obtained above and the film containing no resin, the color difference ΔE * ab and L The differences ΔL * , Δa * , Δb * between the values of * , a * , b * are shown in Table 12 below, and the results plotted in FIGS. 52 to 54 are shown. 52 shows the color difference from the gold vapor deposition film. In the figure, ● represents a gold vapor deposition film, ■ 1 represents a gold-tone film not containing a resin prepared from a nitromethane solvent, and ■ 2 represents a PES-N film. ing. 53 also shows the color difference from the gold vapor deposition film. In the figure, ● represents a gold vapor deposition film, ■ 1 represents a gold-colored film not containing a resin prepared from a GBL solvent, and ■ 2 represents a PES-G film. , ■ 3 indicates a PC film, and ■ 4 indicates a PVP film. In FIG. 54, ● indicates a gold deposited film, ■ 1 indicates a gold-colored film containing no resin prepared from a GBL solvent, ■ 2 indicates a PS film, ■ 3 indicates a PMMA film, and ■ 4 indicates a StAc film. ing.
Figure JPOXMLDOC01-appb-T000017
(樹脂の添加量を変化させた場合の金色膜形成)
 次に、樹脂の添加量をオリゴマーに対し8倍以上に増量したときの塗布膜において、同様の金色調光沢の発現が確認された。以下にその結果について示す。
(Gold film formation when the amount of resin added is changed)
Next, in the coating film when the amount of the resin added was increased by 8 times or more relative to the oligomer, it was confirmed that the same golden tone gloss was exhibited. The results are shown below.
(作製)
 チオフェン重合体は上記実施例と同様に行った。また、下記表13で示す種々の樹脂80mgを1.0gのGBLに完全に溶解させ、その溶液に上記作製した3MeOTオリゴマー10mgを混合し、撹拌した。次いで、よく洗浄したガラス基板上に上記溶液をスポイトで滴下して塗布し、塗膜を恒温温風乾燥機で1時間(60℃)乾燥させた。膜厚は約50μm程度であった。
Figure JPOXMLDOC01-appb-T000018
(Production)
The thiophene polymer was performed in the same manner as in the above example. Also, 80 mg of various resins shown in Table 13 below were completely dissolved in 1.0 g of GBL, and 10 mg of the prepared 3MeOT oligomer was mixed with the solution and stirred. Next, the solution was dropped onto a well-washed glass substrate with a dropper and applied, and the coating film was dried with a constant temperature hot air dryer for 1 hour (60 ° C.). The film thickness was about 50 μm.
Figure JPOXMLDOC01-appb-T000018
 ここで、図55に、上記で作成した膜と、樹脂を含まない膜(60℃乾燥)の写真を示す。ただし、PS、PMMA、StAcはガラス基板との接着面(裏面)を撮影したものである。 Here, FIG. 55 shows a photograph of the film prepared above and a film not containing resin (dried at 60 ° C.). However, PS, PMMA, and StAc are images of the bonding surface (back surface) with the glass substrate.
(正反射スペクトル)
 図56に、上記作製された塗布膜のうち、PESの表面及びPS、PMMA、StAcのガラス基板との接着面(裏面)の正反射スペクトルを、顕微紫外可視近赤外分光光度計(日本分光社製MSV-370)で測定した結果をそれぞれ示す。本図の結果と上記した同様の結果を比較すると、立ち上がり波長や反射率に差がないことから、樹脂をオリゴマーに対して過剰に混合しても金色光沢が発現することが確認された。
(Specular reflection spectrum)
FIG. 56 shows a specular reflection spectrum of the surface of PES and the adhesive surface (back surface) of PS, PMMA, and StAc among the prepared coating films. The results measured with MSV-370) manufactured by the company are respectively shown. Comparing the results shown in this figure with the same results as described above, there was no difference in the rising wavelength and the reflectance, so that it was confirmed that even when the resin was excessively mixed with the oligomer, golden gloss was developed.
(分光測色)
 次に、それぞれの膜のL、a、bの値を下記表14に示し、その値のLとa-bのグラフを図57に示す。結果として、いずれの樹脂膜とも金蒸着と近い値をとっているがa及びbの値は金蒸着膜と比較してやや低い値となり、緑と青みがやや強いことがわかる。なお、上記表と比較すると樹脂を増量しても色調に変化はあまりなかった。なお図中の●は金蒸着膜を、■1はGBL溶媒から作製された樹脂を含まない金色調膜、■2はPES膜を、■3はPS膜を、■4はPMMA膜を、■5はStAc膜をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000019
(Spectral colorimetry)
Next, the values of L * , a * , and b * of each film are shown in Table 14 below, and a graph of L * and a * -b * of the values is shown in FIG. As a result, all of the resin films have values close to those of gold vapor deposition, but the values of a * and b * are slightly lower than those of the gold vapor deposition film, indicating that green and blue are slightly strong. In comparison with the above table, there was not much change in color tone even when the amount of resin was increased. In the figure, ● is a gold vapor deposition film, ■ 1 is a gold-tone film not containing a resin made from GBL solvent, ■ 2 is a PES film, ■ 3 is a PS film, ■ 4 is a PMMA film, ■ Reference numeral 5 denotes a StAc film.
Figure JPOXMLDOC01-appb-T000019
 次に、上記金色調膜と、蒸着金属金との色の比較をするために、金の蒸着膜の測色値を基準としたときの色差ΔL、Δa、Δbを下記表15に示し、図58にプロットした結果を示す。なお本図において、●は金蒸着膜を、■1はGBL溶媒から作製された樹脂を含まない金色調膜、■2はPES膜を、■3はPS膜を、■4はPMMA膜を、■5はStAc膜をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000020
Next, in order to compare the color of the gold-colored film and the vapor-deposited metal gold, the color differences ΔL * , Δa * , Δb * with reference to the colorimetric values of the gold vapor-deposited film are shown in Table 15 below. The results plotted are shown in FIG. In this figure, ● is a gold vapor deposition film, ■ 1 is a gold-tone film not containing a resin made from GBL solvent, ■ 2 is a PES film, ■ 3 is a PS film, ■ 4 is a PMMA film, (5) indicates a StAc film, respectively.
Figure JPOXMLDOC01-appb-T000020
 次に、上記金色調膜と、樹脂を含まない膜との色の比較をするために、金の蒸着膜の測色値を基準としたときの色差ΔL、Δa、Δbを下記表16に示し、図59にプロットした結果を示す。なお本図において、●は金蒸着膜を、■1はGBL溶媒から作製された樹脂を含まない金色調膜、■2はPES膜を、■3はPS膜を、■4はPMMA膜を、■5はStAc膜をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000021
Next, in order to compare the colors of the gold-colored film and the film containing no resin, the color differences ΔL * , Δa * , Δb * with reference to the colorimetric values of the gold deposited film are shown in the following table. FIG. 59 shows the results plotted in FIG. In this figure, ● is a gold vapor deposition film, ■ 1 is a gold-tone film not containing a resin made from GBL solvent, ■ 2 is a PES film, ■ 3 is a PS film, ■ 4 is a PMMA film, (5) indicates a StAc film, respectively.
Figure JPOXMLDOC01-appb-T000021
(X線回折スペクトル)
 ここで、金色調光沢が発現しているPES膜の表面とPMMA膜の裏面のX線回折分析を行い、チオフェン重合体に起因する結晶性構造(ラメラ構造)の有無に関する知見を得た。測定には、リガク社製SmartLabを用いて、薄膜法で測定を行った。この場合の膜厚は50μm程度であった。
(X-ray diffraction spectrum)
Here, X-ray diffraction analysis was performed on the surface of the PES film in which the golden luster was developed and the back surface of the PMMA film, and knowledge about the presence or absence of the crystalline structure (lamella structure) attributed to the thiophene polymer was obtained. The measurement was performed by the thin film method using SmartLab manufactured by Rigaku Corporation. In this case, the film thickness was about 50 μm.
 図60にそれらのXRDパターンを示す。いずれのパターンにおいても7.79度付近に鋭いピークが確認され、膜中にはラメラ結晶が存在し、ラメラ相関距離が1.13nmであることが産出された。 FIG. 60 shows these XRD patterns. In any pattern, a sharp peak was confirmed around 7.79 degrees, and lamella crystals were present in the film, producing a lamellar correlation distance of 1.13 nm.
(X線光電子分光分析(XPS))
 X線高電子分光分析により、膜の表面(深さ2.5nm程度までの表面)の構成元素と存在量に関する知見を得た。測定にはPHI社製QuanteraIIを用い、X線源は単色化Al(1486.6eV)とした。
(X-ray photoelectron spectroscopy (XPS))
By X-ray high electron spectroscopy analysis, knowledge on the constituent elements and abundance of the film surface (surface up to a depth of about 2.5 nm) was obtained. For the measurement, Quantera II manufactured by PHI was used, and the X-ray source was monochromatic Al (1486.6 eV).
 図60にワイドスキャンスペクトルを示す。これによるとPESもPMMAも酸素O、炭素C、塩素Cl、硫黄Sのピークのみが確認された。 Fig. 60 shows the wide scan spectrum. According to this, only peaks of oxygen O, carbon C, chlorine Cl, and sulfur S were confirmed in both PES and PMMA.
 また、S2pとCl2p付近のナロースキャンスペクトルを図61、62に示す。金色調光沢が発現しているPES表面もPMMA表面も、深さ2.5nm以内にチオフェン環に由来する硫黄とドーパントの過塩素酸に由来する塩素のシグナルが明瞭に観察された。すなわち、50μm厚のフィルム最表面及び最裏面にチオフェン重合体が存在することがわかり、そのチオフェン重合体が形成するラメラ結晶によって金色調の色調が発現することが分かった。なお、得られたスペクトルから得られる塩素と硫黄の原子数濃度を下記表17に示しておく。この濃度から、本実施例によって得られたチオフェン重合体は、チオフェン環10ユニットに対して塩化物イオンが約3個の割合でドーピングされていることが分かった。
Figure JPOXMLDOC01-appb-T000022
Further, narrow scan spectra in the vicinity of S2p and Cl2p are shown in FIGS. Signals of sulfur derived from thiophene ring and chlorine derived from dopant perchloric acid were clearly observed within 2.5 nm in depth on both PES surface and PMMA surface exhibiting golden luster. That is, it was found that a thiophene polymer was present on the outermost surface and the rearmost surface of a 50 μm-thick film, and it was found that a golden tone was developed by lamellar crystals formed by the thiophene polymer. The chlorine and sulfur atom number concentrations obtained from the obtained spectrum are shown in Table 17 below. From this concentration, it was found that the thiophene polymer obtained in this example was doped with about 3 chloride ions per 10 units of the thiophene ring.
Figure JPOXMLDOC01-appb-T000022
 本発明は、金属光沢を有する物品およびその製造方法として産業上の利用可能性がある。
 
 
 
The present invention has industrial applicability as an article having a metallic luster and a method for producing the same.


Claims (5)

  1.  チオフェン重合体を加圧することによって金属光沢を備えた物品を製造する方法。 A method for producing an article having a metallic luster by pressurizing a thiophene polymer.
  2.  前記チオフェン重合体は、化学重合又は電解重合によって形成されたものである請求項1記載の金属光沢を備えた物品を製造する方法。 The method for producing an article with metallic luster according to claim 1, wherein the thiophene polymer is formed by chemical polymerization or electrolytic polymerization.
  3.  チオフェン重合体を含む金属光沢色用トナー。 Metal gloss color toner containing thiophene polymer.
  4.  チオフェン重合体を含む金属光沢色用トナーを物品の上に配置し、当該金属光沢色用トナーを加圧することで定着させる印刷方法。 A printing method in which a metallic glossy color toner containing a thiophene polymer is placed on an article, and the metallic glossy color toner is pressed and fixed.
  5.  前記チオフェン重合体を擦る請求項1記載の金属光沢を備えた物品を製造する方法。 The method for producing an article with metallic luster according to claim 1, wherein the thiophene polymer is rubbed.
PCT/JP2017/020373 2016-05-31 2017-05-31 Method for producing article having metallic luster, and toner for metallic luster colors and printing method using same WO2017209224A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/305,241 US11048182B2 (en) 2016-05-31 2017-05-31 Method for producing articles having a metallic luster, and toners with a metallic luster using the same and a printing method using the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016109631 2016-05-31
JP2016-109631 2016-05-31
JP2016136489 2016-07-11
JP2016-136489 2016-07-11
JP2016-223667 2016-11-16
JP2016223667A JP6961197B2 (en) 2016-05-31 2016-11-16 A method for producing an article having a metallic luster, and a toner and a printing method for metallic luster using the same.

Publications (1)

Publication Number Publication Date
WO2017209224A1 true WO2017209224A1 (en) 2017-12-07

Family

ID=60477523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020373 WO2017209224A1 (en) 2016-05-31 2017-05-31 Method for producing article having metallic luster, and toner for metallic luster colors and printing method using same

Country Status (1)

Country Link
WO (1) WO2017209224A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210179773A1 (en) * 2019-12-13 2021-06-17 Fuji Xerox Co., Ltd. Composition for forming metallic luster film, metallic luster film, and article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372726A (en) * 1986-09-16 1988-04-02 Res Inst For Prod Dev Poly(2-aminothiophene) conductor and its production
JPS6386206A (en) * 1986-09-29 1988-04-16 花王株式会社 Manufacture of insulating or semiconducting conjugate based high polymer film
JPH1088030A (en) * 1996-08-19 1998-04-07 Bayer Ag Scratch-resistant, conductive coating
JP2007529094A (en) * 2004-03-11 2007-10-18 バイエル・ベタイリグングスフェアヴァルトゥング・ゴスラー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Functional layers for optical applications based on polythiophene
JP2014153691A (en) * 2013-02-14 2014-08-25 Fuji Xerox Co Ltd Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, image forming method, and image forming apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372726A (en) * 1986-09-16 1988-04-02 Res Inst For Prod Dev Poly(2-aminothiophene) conductor and its production
JPS6386206A (en) * 1986-09-29 1988-04-16 花王株式会社 Manufacture of insulating or semiconducting conjugate based high polymer film
JPH1088030A (en) * 1996-08-19 1998-04-07 Bayer Ag Scratch-resistant, conductive coating
JP2007529094A (en) * 2004-03-11 2007-10-18 バイエル・ベタイリグングスフェアヴァルトゥング・ゴスラー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Functional layers for optical applications based on polythiophene
JP2014153691A (en) * 2013-02-14 2014-08-25 Fuji Xerox Co Ltd Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, image forming method, and image forming apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210179773A1 (en) * 2019-12-13 2021-06-17 Fuji Xerox Co., Ltd. Composition for forming metallic luster film, metallic luster film, and article
CN112980299A (en) * 2019-12-13 2021-06-18 富士胶片商业创新有限公司 Composition for forming metallic luster film, and article
US11708450B2 (en) * 2019-12-13 2023-07-25 Fujifilm Business Innovation Corp. Composition for forming metallic luster film, metallic luster film, and article

Similar Documents

Publication Publication Date Title
JP6410374B2 (en) Solution in which a film having a golden or copper gloss is formed
Korent et al. A correlative study of polyaniline electropolymerization and its electrochromic behavior
TWI305219B (en) Color shifting pigment flakes and foils,method of fabricating color shifting pigment flakes and color shifting foil device
KR100921230B1 (en) Electrochromic polymers and polymer electrochromic devices
Hu et al. Water processable Prussian blue–polyaniline: polystyrene sulfonate nanocomposite (PB–PANI: PSS) for multi-color electrochromic applications
Najafi-Ashtiani et al. A dual electrochromic film based on nanocomposite of copolymer and WO3 nanoparticles: Enhanced electrochromic coloration efficiency and switching response
Arjomandi et al. Electrochemical synthesis and In situ spectroelectrochemistry of conducting NMPy‐TiO2 and ZnO polymer nanocomposites for Li secondary battery applications
Kao et al. High contrast and low-driving voltage electrochromic device containing triphenylamine dendritic polymer and zinc hexacyanoferrate
Guzel et al. A new way to obtain black electrochromism: Appropriately covering whole visible regions by absorption spectra of copolymers composed of EDOT and carbazole derivatives
JP2018012831A (en) Article and toner having metallic luster and method for producing article having metallic luster
WO2017209224A1 (en) Method for producing article having metallic luster, and toner for metallic luster colors and printing method using same
Harish et al. Interaction between gold (III) chloride and potassium hexacyanoferrate (II/III)—does it lead to gold analogue of Prussian blue?
Abaci et al. Electrosynthesis and analysis of the electrochemical properties of a composite material: polyaniline+ titanium oxide
Vidales-Hurtado et al. Electrochromism in nickel oxide-based thin films obtained by chemical bath deposition
Gumusay et al. Electrochemistry of secondary amine substituted 2, 5-di (2-thienyl) pyrrole derivative and its copolymer
US11048182B2 (en) Method for producing articles having a metallic luster, and toners with a metallic luster using the same and a printing method using the same
Mortimer et al. Synthesis, characterisation and in situ colorimetry of electrochromic Ruthenium purple thin films
JP6881743B2 (en) Manufacturing method of articles and toners with black luster and articles with black luster
Deng et al. Electrochromic properties of WO3 thin film onto gold nanoparticles modified indium tin oxide electrodes
Tavoli et al. Enhancement effect of transition metal cations on the electrochromic properties of nanostructure tiron doped polypyrrole film
Velevska et al. Electrochromic properties of prussian blue thin films prepared by chemical deposition method
JP6961197B2 (en) A method for producing an article having a metallic luster, and a toner and a printing method for metallic luster using the same.
JP6800568B2 (en) A method for producing a metallic luster film.
Kalagi et al. Study of novel WO3-PEDOT: PSS bilayered thin film for electrochromic applications
Pang et al. Electrochromic properties of poly (3-chlorothiophene) film electrodeposited on a nanoporous TiO2 surface via a room temperature ionic liquid and its application in an electrochromic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806774

Country of ref document: EP

Kind code of ref document: A1