WO2017208920A1 - Damper device - Google Patents

Damper device Download PDF

Info

Publication number
WO2017208920A1
WO2017208920A1 PCT/JP2017/019318 JP2017019318W WO2017208920A1 WO 2017208920 A1 WO2017208920 A1 WO 2017208920A1 JP 2017019318 W JP2017019318 W JP 2017019318W WO 2017208920 A1 WO2017208920 A1 WO 2017208920A1
Authority
WO
WIPO (PCT)
Prior art keywords
slat
link
flow path
damper device
length
Prior art date
Application number
PCT/JP2017/019318
Other languages
French (fr)
Japanese (ja)
Inventor
隆司 原田
堀尾 好正
正久 昌利
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201780033228.2A priority Critical patent/CN109312974A/en
Publication of WO2017208920A1 publication Critical patent/WO2017208920A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • F24F13/15Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre with parallel simultaneously tiltable lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts

Definitions

  • the present invention relates to a damper device.
  • Patent Document 1 discloses a refrigerator provided with a damper device that controls a flow path of cool air circulating in the warehouse.
  • the damper device of Patent Document 1 includes a single baffle, and rotates this to connect or block the cool air flow path. Therefore, in the damper device of Patent Document 1, the rotation space of the baffle increases in proportion to the opening area, and securing the rotation space of the baffle becomes a problem when providing a large opening area.
  • the problem to be solved by the present invention is to provide a damper device in which the rotation space of the slats is not easily influenced by the opening area of the damper device and can operate even in a narrow space.
  • a damper device includes a drive source, a plurality of blades, a frame that rotatably supports the blades, and a driving force of the drive source. And a power transmission mechanism for rotating each of the slats, and the frame body has a pair of openings that are a fluid inlet and outlet and the pair of openings in the frame body
  • the plurality of blades are disposed along the first opening which is one of the openings in the flow path part. , And arranged in parallel.
  • the damper device of the present invention can easily secure the space for rotating the slats and can be installed in a narrower space.
  • each slat in the direction parallel to the rotational center line is the length of the slat, and the dimension in the direction perpendicular to the length direction on the front or back surface of each slat is the width of the slat.
  • the dimension of the flow path direction of the fluid in the flow path section is the height of the flow path section, the height of the flow path section may be higher than the width of each blade.
  • the damper device frame has a height that covers the plurality of slats, the slats can be more safely protected during shipment, storage, and installation of the damper device.
  • each slat in the direction parallel to the rotational center line is the length of the slat
  • the dimension in the direction perpendicular to the length direction on the front or back surface of each slat is the width of the slat.
  • the height of the flow path portion is the same as the width of each slat or when the dimension of the fluid flow direction in the flow path part is the height of the flow path part, It is good also as a structure lower than a width
  • the damper device of the present invention can be made thinner.
  • the power transmission mechanism has a link mechanism disposed in the flow path portion, and a swing range of the link mechanism is within the flow path portion.
  • the link mechanism which is a driving member for a plurality of slats, is configured so that the swinging operation is performed in the flow path portion of the frame body, and the mechanism is not protruded outside the frame body.
  • the degree of freedom is increased.
  • the power transmission mechanism has a link mechanism disposed in the flow path portion, and the power transmission mechanism is further connected to the link mechanism to transmit the driving force of the drive source to the link mechanism.
  • a link driving member that is a member to be supported, and the frame includes a plurality of blade support portions that are support portions of the respective blade plates, and a link drive member support portion that is a support portion of the link drive member;
  • the plurality of slat support portions and the link driving member support portions are integrally formed with the frame body.
  • the blade support part and the link driving member support part are integrally formed with the frame body, the relative positional relationship between the blades and the link mechanism can be kept constant. Thereby, the influence on the positional accuracy of these members due to dimensional errors and assembly errors can be suppressed, and the smooth operation of the slats can be ensured.
  • each slat in the direction parallel to the rotation center line is the length of the slat
  • a shaft projecting in the length direction is provided at both ends in the length direction of each slat.
  • a first shaft portion is formed, and the frame body includes a plurality of blade support portions that are support portions of the blades, and each of the blade support portions includes a plurality of blade support portions. It is a bearing which supports the 1st axis part so that rotation is possible, and among the pair of slat support parts of each slat board, at least any one of the slat support parts is in a part of the peripheral direction.
  • the first shaft portion is formed with an insertion port which is a cutout portion inserted in the radial direction with respect to the blade support portion, and the periphery of each blade support portion formed with the insertion port.
  • the opening angle of the insertion port in the direction is not parallel to the direction perpendicular to the length direction of each slat in the first opening, and It is preferable that the angle is not a corner.
  • the midway position of the slat rotation operation The outlet will be directed in the direction.
  • the damper devices are arranged and packed in a direction in which the slats are closed or in a direction in which the slats are fully opened.
  • the pair of openings includes the first opening and a second opening that is the other opening, and the inner wall surface of the frame that defines the flow path portion includes the first opening. It is preferable that a taper is provided so that the diameter of the flow path is increased from one opening toward the second opening.
  • the power transmission mechanism includes a link mechanism disposed in the flow path, and the power transmission mechanism is coupled to the link mechanism and transmits the driving force of the drive source to the link mechanism.
  • the link mechanism is connected to the link drive member when the length of the blade plate is the dimension of each blade plate in the direction parallel to the rotation center line. It is preferable to have a first link member to be connected, and a second link member for connecting the first link member and one end in the length direction of each slat.
  • the link mechanism has the first link member and the second link member, the first link member serves as a drive link, the second link member serves as an intermediate link, the frame body serves as a fixed link, and each wing plate serves as a driven link 4
  • a knot link mechanism can be configured. Thereby, it becomes possible to synchronize the rotation operation of each slat with a simple structure.
  • the power transmission mechanism includes a link mechanism disposed in the flow path, and the power transmission mechanism is coupled to the link mechanism and transmits the driving force of the drive source to the link mechanism.
  • a link driving member that is a member; the link driving member includes a gear portion and an output shaft portion; and the driving force of the driving source is one or a plurality of gears included in the power transmission mechanism.
  • Member is transmitted to the link drive member, and the gear portion of the link drive member and the gear member are accommodated in a gear box which is a case body, and the gear portion of the link drive member or the gear member, and the gear box
  • the link driving member when the link driving member is at a predetermined angular position, it has a stopper portion that abuts against each other and blocks transmission of the driving force.
  • the power transmission mechanism has a link mechanism disposed in the flow path portion, and the power transmission mechanism is further connected to the link mechanism to transmit the driving force of the drive source to the link mechanism.
  • a link driving member that is a member to be operated, and the length of each slat in the direction parallel to the rotation center line is the length of the slat.
  • a first shaft portion that is a shaft portion protruding in the length direction is formed, and the frame body includes a plurality of blade support portions that are support portions of the blades and the link driving member.
  • a link drive member support part, the link drive member support part is a bearing that rotatably supports the link drive member, and the plurality of blade support parts are respectively Is a bearing that rotatably supports the first shaft portion, and the link driving portion.
  • Shaft hole direction of the support portion, and the shaft hole direction of each vane plate supporting portion preferably extends in a direction which is a straight line or in parallel.
  • the axial hole direction of these link drive member support parts and each slat support part is the same direction, so that the driving force can be efficiently transmitted, and the load applied to each member such as the twist of the slats is applied. Can be suppressed.
  • the frame body has a plurality of slat support parts that are support parts of the slats, and protrudes in the length direction at both ends in the length direction of the slats.
  • a first shaft portion which is a shaft portion supported by the plate support portion, is formed.
  • One end of each of the blades in the length direction protrudes in the length direction and is connected to the second link member.
  • a second shaft portion that is a shaft portion is formed, and when the width in the direction perpendicular to the length direction on the front surface or the back surface of each blade plate is the width of the blade plate, It is preferable that the 2nd axial part is arrange
  • the drive source is preferably a stepping motor.
  • the stepping motor can rotate in both forward and reverse directions, and the rotation angle can be calculated from the number of steps. Therefore, it is not necessary to separately perform feedback control using a rotary encoder or the like in order to detect the arrangement angle of the slats from time to time. Thereby, the number of parts in the whole apparatus can be reduced and the apparatus can be downsized.
  • each slat in the direction parallel to the rotational center line is the length of the slat
  • the dimension in the direction perpendicular to the length direction on the front or back surface of each slat is the width of the slat.
  • the plurality of slats open and close the first opening by its rotational movement, and each slat is closed to the proximal end of the adjacent slat when the first opening is closed. It is good also as a structure which a front-end
  • the sealing degree of the first opening can be increased by adopting a configuration in which the distal end portion of each slat overlaps with the proximal end portion of the adjacent slat when the slats are closed.
  • each slat in the direction parallel to the rotational center line is the length of the slat
  • the dimension in the direction perpendicular to the length direction on the front or back surface of each slat is the width of the slat.
  • the tip of each slat may be made of an elastic member.
  • each slat Since the tip of each slat is made of an elastic member, the degree of sealing of the first opening can be increased when each slat is closed.
  • the damper device according to the present invention can be operated even in a small space because the rotational space of the slats is not easily influenced by the opening area of the damper device.
  • the damper device D according to this embodiment is disposed inside a refrigerator (not shown) and controls the circulation of cold air in the refrigerator.
  • the damper device D of the present embodiment is used, for example, in the middle of a refrigerator duct or between a duct and a storage chamber.
  • the application target of the damper device of the present invention is not limited to a refrigerator, and can be applied to a wide range of equipment and facilities for the purpose of opening and closing a fluid flow path and adjusting the flow rate.
  • FIG. 1 is a plan view showing a schematic configuration and operation of a damper device D according to the present embodiment.
  • FIG. 1A shows the damper device D with the slat 20 closed
  • FIG. 1B shows the damper device D with the slat 20 open.
  • the damper device D includes three slats 20 and a frame 10 that is a frame that rotatably supports these slats 20.
  • the frame 10 is formed with a first opening 11 and a second opening 12 which are a pair of openings that allow the inside of the frame 10 and the duct to communicate with each other.
  • Cold air flows into the frame 10 of the present embodiment from the second opening 12 and out of the first opening 11.
  • the slats 20 in this embodiment are arranged in parallel so as to follow the first opening 11 of the frame 10. These slats 20 are rotated by the driving force of the motor 40 provided in the damper device D to open and close the first opening 11.
  • a flange portion 10f is formed extending from the entire circumference toward a position that is the center of the first opening 11.
  • the first opening portion 11 is adjusted to have an opening area enough to cover the entire surface with the wing plate 20 by the flange portion 10f.
  • No flange portion is provided on the second opening portion 12 side, so that the opening area of the second opening portion 12 is formed wider than the first opening portion 11 by the extension width of the flange portion 10f. Yes.
  • a plate-like member that opens and closes the first opening 11 (a member corresponding to a baffle in Patent Document 1) is divided into a plurality of blades 20. For this reason, even when the opening area of the damper apparatus D becomes large, the rotation space of each blade 20 can be kept constant by increasing the number of blades 20. Thereby, the damper device D facilitates securing the rotation space of the slats 20 and can appropriately operate the slats 20 even in a narrow space.
  • FIG. 2 is an external perspective view showing the shape of the slat 20.
  • the wing plate 20 is an elongated plate-like member.
  • the dimension of the slat 20 in the direction parallel to the rotation center line a is referred to as the length l of the slat 20, and the direction orthogonal to the length l direction on the front surface 20 a or the back surface 20 b of the slat 20. Is called the width w of the slat 20.
  • the end of the slat 20 on the side of the rotation center line a in the width w direction is referred to as a base end b of the slat 20 and the opposite end is referred to as a tip t of the slat 20. .
  • a first shaft portion 21 that is a shaft portion protruding in the length l direction is formed at both ends of the blade 20 in the length l direction.
  • the first shaft portion 21 is rotatably supported by the frame 10, whereby the position of the rotation center line a of the slat 20 is determined.
  • a second shaft portion 22 protruding in the length l direction is formed at one end of the wing plate 20 in the length l direction.
  • the second shaft portion 22 receives the driving force of the motor 40 and reciprocates on an arc centered on the rotation center line a to determine the rotation angle of the slat 20.
  • the first shaft portion 21 and the second shaft portion 22 are arranged at positions almost at both ends in the width w direction of the slat 20. Thereby, the slat 20 can be rotated with a minimum driving force, and the operation accuracy of the slat 20 is improved.
  • Both end faces in the width w direction of the slats 20 are constituted by curved surfaces with rounded corners on the front surface 20a side and the back surface 20b side.
  • the second shaft portion 22 is provided with a reinforcing portion 22r integrally formed with the wing plate 20 and the second shaft portion 22.
  • the reinforcing part 22r supplements the strength of the second shaft part 22 by supporting the side surface of the second shaft part 22 on the first shaft part 21 side.
  • the second shaft portion 22 is disposed slightly on the center side from the tip t of the slat 20. And the space S 1 from the second shank 22 to the tip t, space S 2 from the reinforcing portion 22r to the first shaft portion 21, when each blade plate 20 closes the first opening 11 will be described later wings This is a configuration for allowing the plate support 15 to escape into the space and preventing the blade 20 and the blade support 15 from contacting each other.
  • three slats 20 are used, but the upper limit is not particularly limited on the condition that the number of slats of the damper device of the present invention is two or more.
  • the rotational space of each slat 20 can be further reduced.
  • the number of the slats 20 is reduced, such a problem can be reduced, but the rotation space of the slats 20 is increased by the amount of the decrease in the number of slats 20.
  • the number of slats of the damper device according to the present invention may be determined in accordance with the environmental conditions in which the damper device is used, taking into account the balance between the advantages and disadvantages associated with the increase / decrease. In the present embodiment, it is preferable that the number of slats 20 is an odd number because of the structure of a link mechanism 50l described later.
  • FIG. 3 is a plan view and a side sectional view showing the shape of the frame 10.
  • 3A is a plan view of the frame 10
  • FIG. 3B is a cross-sectional view taken along the line AA in FIG. 3A.
  • the frame 10 is a substantially rectangular hollow frame that rotatably supports the three slats 20.
  • the frame 10 has a second opening 12 and a first opening 11 through which cool air passes.
  • the hollow portion of the frame body 10 that communicates the second opening portion 12 and the first opening portion 11 is referred to as a flow path portion 10 a of the frame body 10.
  • the frame 10 has the flange portion 10 f formed over the entire circumference of the first opening portion 11. Thereby, the rigidity of the frame 10 with respect to the external force is enhanced, and the deformation of the frame 10 due to the external force is suppressed.
  • the right end of the frame 10 as viewed in FIG. 3A is a space in which a gear box 10g which is a case-like portion in which a gear member 50g described later is accommodated and a link mechanism 50l described later is accommodated.
  • the link mechanism arrangement portion 101 is integrally formed.
  • the height h of the flow channel portion 10a is the width of each slat 20 when the dimension of the flow channel direction in the flow channel portion 10a is the height h of the flow channel portion 10a.
  • the height is approximately the same as w.
  • the height h of the flow path portion 10a does not always have to be the same as the width w of the slat 20 and may be further lowered according to the environmental conditions in which the damper device D is used. It may be higher than the width w. For example, by making the height h of the flow path portion 10a higher than the width w of each vane plate 20, it is possible to prevent inadvertent application of force to the vane plate 20 when the damper device D is assembled or transported. .
  • a plurality of slat support portions 15 that support the slats 20 are formed in the frame 10.
  • Each of the slat support portions 15 is a bearing that rotatably supports the first shaft portion 21 of the slat 20.
  • a pair of slat support portions 15 are provided at positions corresponding to both ends of the slat 20 in the length l direction.
  • the slat support portion 15 on the right side in FIG. 3A is formed on the flange portion 10 f, and a first shaft is formed on a part of the circumferential direction.
  • An insertion port 15 a is formed as a cutout portion in which the portion 21 is inserted in the radial direction with respect to the wing plate support portion 15.
  • the blade support part 15 on the left side in FIG. 3A is formed on the inner wall surface of the frame 10, and the shaft hole of the blade support part 15 is a recess that does not penetrate the side wall of the frame 10. Thereby, the grease applied to the slat support 15 is retained in the shaft hole, and the grease is prevented from easily flowing out to the outside.
  • the tip t of the slat 20 is at the flange portion 10f. It has been adjusted to the overlapping position (see FIG. 1A). Furthermore, in the group of slat support portions 15 arranged at the lowermost side in FIG. 3A, when the slat 20 that supports the slat 20 is in a fully opened state, at least a part of the slat 20 is the first. The position is adjusted to be hidden behind the flange portion 10f when viewed from the opening 11 side (see FIG. 1B). In the damper device D of the present embodiment, the opening area of the first opening 11 is maximized by arranging the slat support 15 in this way.
  • FIG. 8 is a side cross-sectional view of the frame 10 shown in FIG. 3B when the slat 20 is disposed in a fully opened state.
  • the opening angle of the insertion port 15 a in the circumferential direction of each slat plate support portion 15 in which the insertion port 15 a is formed is, among the opening diameter directions of the first opening portion 11,
  • An angle that is not parallel and not perpendicular to the short-side direction 11a that is a direction orthogonal to the length l direction of the slat 20 is inclined with respect to the short-side direction 11a of the first opening 11. It is set to an angle.
  • the “opening diameter direction” of the first opening 11 is a plane direction that defines the opening area of the first opening 11 and is a direction parallel to the XY plane in the coordinate axis display of FIG. Further, the short side direction 11a and “parallel” mean a direction parallel to the Y axis direction in the coordinate axis display of FIG. 8, and the short side direction 11a and “right angle” mean a direction parallel to the Z axis direction in the coordinate axis display.
  • the insertion port 15 a of the slat support 15 is a direction in which the wing plate 15 is in the middle of the rotation operation. Will be opened.
  • the damper device when a damper device such as the present invention is transported, the damper device is packed in a direction in which the slats are in a closed state or in a direction in which the slats are fully opened.
  • the notch direction of the insertion port 15a is oriented in the direction in which the blade plate 20 is in the middle of the rotation operation. It is prevented from falling off the plate support 15.
  • FIG. 4 is an exploded perspective view of the damper device D of the present embodiment.
  • the damper device D opens or closes the first opening 11 by rotating the slats 20 with the driving force of the motor 40 to connect or block the cool air flow path.
  • the driving force of the motor 40 is transmitted to the wing plate 20 by the power transmission mechanism 50 including the gear member 50g and the link mechanism 50l.
  • a stepping motor is used as the motor 40 of this embodiment.
  • the stepping motor can rotate in both forward and reverse directions, and the rotation angle can be calculated from the number of steps. Therefore, it is not necessary to separately perform feedback control using a rotary encoder or the like in order to detect the arrangement angle of the slats 20 from time to time. Thereby, reduction of the number of parts in the whole damper apparatus D and size reduction of an apparatus are achieved.
  • FIG. 5 is a transparent plan view showing the speed reduction structure of the gear member 50g as viewed from the direction B of FIG.
  • the gear member 50g will be described with reference to FIGS.
  • the driving force of the motor 40 is decelerated through the gear member 50g from the motor pinion 41 fixed to the output shaft and transmitted to the link mechanism 50l.
  • the gear member 50g is composed of five gear members, that is, a first gear 51 to a fourth gear 54 and a fifth gear 55 that is a link driving member that swings the link mechanism 50l.
  • the frame 10 and the motor 40 are connected by a middle case 30 which is a case body disposed between them.
  • the first gear 51 is disposed in a space defined by the motor 40 and the middle case 30, and is rotatably supported by a support shaft 42 provided in the space.
  • the second gear 52 to the fourth gear 54 are arranged in a space defined by the gear box 10g, which is a case-like portion of the frame 10, and the middle case 30, and can rotate on a support shaft 32 provided in the same space. It is supported by.
  • the fifth gear 55 is rotatably supported by a concave portion 33 formed in the middle case 30 and a link driving member support portion 16 that is a bearing portion penetrating from the gear box 10g to the flow path portion 10a.
  • the first gear 51 to the fourth gear 54 are a reduction gear train that reduces the rotation of the motor pinion 41 and transmits it to the fifth gear 55.
  • the fifth gear 55 is a member in which a gear portion 55g formed with a fan-shaped gear meshing with the fourth gear 54 and a shaft portion 55s that is an output shaft portion that transmits the driving force to the link mechanism 50l are integrated. It is. A portion of the outer peripheral surface of the shaft portion 55s of the fifth gear 55 is cut out in a flat shape. A pair of such notches are provided at positions that are symmetrical in the circumferential direction of the shaft portion 55s.
  • the first gear 51 to the fourth gear 54 constituting the gear member 50g are compound gears in which a large-diameter spur gear and a small-diameter spur gear are connected in the axial direction and integrated.
  • the motor pinion 41 of the motor 40 meshes with the large diameter gear 51w of the first gear 51, and the rotation of the large diameter gear 51w is decelerated and transmitted to the small diameter gear 51n.
  • the middle case 30 is formed with a covered cylindrical cover portion 31 protruding toward the frame 10, and a small-diameter gear 51n of the first gear 51 is accommodated in the cylinder.
  • the cover portion 31 is partially cut away in the circumferential direction, and a portion of the small-diameter gear 51n is exposed therefrom.
  • the exposed portion of the small diameter gear 51n meshes with the large diameter gear 52w of the second gear 52. Thereafter, the small diameter of the fourth gear 54 is sequentially changed from the small diameter gear 52n of the second gear 52 to the large diameter gear 53w of the third gear 53, from the small diameter gear 53n of the third gear 53 to the large diameter gear 54w of the fourth gear 54.
  • the driving force of the motor 40 is decelerated and transmitted from the gear 54n to the gear portion 55g of the fifth gear 55.
  • FIG. 6 is a side view of the fifth gear 55 inserted into the link driving member support 16 as seen from the direction C of FIG.
  • members other than the frame 10 and the fifth gear 55 are not shown.
  • the gear portion 55g of the fifth gear 55 and the gear box 10g of the frame 10 are brought into contact with each other when the blade 20 is at a predetermined rotation angle, that is, when the fifth gear 55 is at a predetermined angular position.
  • the stopper portions 10c and 55c are provided that block the transmission of the driving force to the link mechanism 50l by being in contact with each other.
  • the power transmission mechanism 50 of the present embodiment is configured such that when the slat 20 reaches its rotation limit angle, the transmission of the driving force is interrupted by the power transmission member before the link mechanism 50l.
  • the stopper portion 55 c is provided on the fifth gear 55, but the stopper portion on the gear member side of the present invention may be provided on a gear member other than the fifth gear 55.
  • the gear box 10g is integrally formed with the frame 10 as a part of the frame 10, but the gear box 10g may be a separate body from the frame 10.
  • FIG. 7 is a view of the swinging operation of the link mechanism 50l as viewed from the direction C in FIG.
  • FIG. 7A is a transmission side view when the blade 20 is in a fully open state
  • FIG. 7B is a transmission side view when the blade 20 is in a closed state.
  • the link mechanism 50l will be described with reference to FIGS.
  • the link mechanism 50l includes a first link member 56 and a second link member 57.
  • the first link member 56 receives the driving force of the fifth gear 55 and swings the second link member 57, whereby the second link member 57 moves the second shaft portion 22 of the three blades 20,
  • the vanes 20 are reciprocated on an arc centered on the rotation center line a of the vanes 20 to rotate the vanes 20.
  • the first link member 56 is a member in which two substantially cylindrical bearings are connected to each other in the radial direction.
  • the first link member 56 has a fitting hole 56b into which the shaft portion 55s of the fifth gear 55 is fitted, and a shaft hole 56a that rotatably supports the connecting shaft 57a of the second link member 57. Yes.
  • the shape of the fitting hole 56 b of the first link member 56 corresponds to the shape of the shaft portion 55 s of the fifth gear 55. As a result, the portion of the shaft portion 55s cut out in the plane engages with the fitting hole 56b in the circumferential direction, and the fifth gear 55 and the first link member 56 rotate integrally.
  • the second link member 57 is a member mainly composed of an elongated plate-like body.
  • Three connecting holes 57b that rotatably support the second shaft portion 22 of the three slats are formed on the surface of the second link member 57 on the slat 20 side, and on the opposite surface thereof
  • the connecting shaft 57a supported by the shaft hole 56a of the first link member 56 protrudes toward the first link member 56 side.
  • the first link member 56 is a drive link
  • the second link member 57 is an intermediate link
  • the frame 10 is a fixed link
  • each wing plate 20 is a driven link.
  • the four-bar linkage mechanism is configured. Thereby, it is possible to synchronize the rotation operation of each slat 20 with a simple structure.
  • the shaft portion 55 s of the fifth gear 55 is supported on the link driving member support portion 16 of the frame 10.
  • the link driving member support portion 16 and the wing plate support portion 15 described above are integrally formed on the frame 10 in the present embodiment.
  • the relative position relationship between the blade 20 and the link mechanism 50l is constant because the blade support 15 and the link drive member support 16 are integrally formed with the frame 10. It is possible to keep on. Thereby, the influence on the positional accuracy of these members due to dimensional errors and assembly errors is suppressed, and the smooth operation of the slats 20 is ensured.
  • the link mechanism 50l of the present embodiment does not protrude from the end of the frame 10 in the entire process of the swinging operation. Thereby, the freedom degree of the installation place of the damper apparatus D is raised.
  • the axial hole direction of the link driving member support part 16 and the axial hole direction of each blade support part 15 extend in a straight line or parallel direction.
  • the damper device D according to the present embodiment can efficiently transmit the driving force of the motor 40 by making the axial hole directions of the link driving member support portion 16 and the blade support portions 15 the same. In addition, the load applied to each member such as twisting of the slat 20 is suppressed.
  • FIG. 9 and FIG. 10 are schematic views showing a modification of the slat 20.
  • Each blade 20d in FIG. 9 and each blade 20e in FIG. 10 closed the first opening 11 and the base plate 25, which is the portion on the base end b side facing the first opening 11, respectively.
  • it is constituted by an overlapping portion 26 that is a portion on the tip end t side that overlaps the substrate portion 25 of the slats 20d, 20e adjacent to the right side in the drawing.
  • the gap provided between the overlapping part 26 of the slats 20d and the substrate part 25 of the adjacent slats 20d is when the cold air circulates by extending the flow path of the cold air.
  • the sealing performance of the slat 20d is improved.
  • these overlapping portions 26 may be in contact with the substrate portions 25 of the adjacent slats 20d.
  • an elastic member 27 is adhered to the surface of the adjacent slat 20e facing the substrate 25. Thereby, the clearance gap between the overlapping part 26 of the slat 20e and the board
  • FIG. 11 is a side sectional view showing a modification of the frame 10.
  • FIG. 11 is a view of the frame 10d viewed from the same direction as the frame 10 of FIG.
  • the frame 10d according to this modification is provided with a taper on the inner wall surface 10i of the frame 10g that divides the flow path portion 10a so that the diameter of the flow path increases from the first opening 11 toward the second opening 12. Yes.
  • the frame 10d is guided by the inclination of the taper when the water droplets are formed on the flow path portion 10a by, for example, dew condensation.
  • the frame 10d is arranged with the second opening 12 facing downward when arranged in the vertical flow path, and is arranged on the upstream side of the cold air when arranged in the horizontal flow path. It is assumed that the opening 12 is disposed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Air-Flow Control Members (AREA)

Abstract

Provided is a damper device configured so that it is unlikely that space for the pivoting of blade plates will be affected by the area of opening of the damper device, and the blade plates can operate even in small space. This damper device is provided with: a drive source (40); a plurality of blade plates (20); a frame body (10) for supporting the blade plates so that the blade plates can pivot; and a power transmission mechanism (50) for converting the drive power of the drive source into the pivotal movement of the blade plates. The frame body has a pair of openings (11, 12) which serve as a fluid inlet and a fluid outlet. The damper device is characterized in that, when a hollow section in the frame body, the hollow section being in communication with the pair of openings, is defined as a flow passage (10a) in the frame body, the plurality of blade plates are arranged within the flow passage along the first opening (11), which is one of the openings, so as to be parallel to each other.

Description

ダンパ装置Damper device
 本発明はダンパ装置に関する。 The present invention relates to a damper device.
 下記特許文献1には、庫内を循環する冷気の流路を制御するダンパ装置を備えた冷蔵庫が開示されている。 The following Patent Document 1 discloses a refrigerator provided with a damper device that controls a flow path of cool air circulating in the warehouse.
特開2009-002545号公報JP 2009-002545 A
 上記特許文献1のダンパ装置は、一枚のバッフルを備え、これを回動させることで冷気の流路を連通させたり遮断したりする。そのため、特許文献1のダンパ装置は、その開口面積に比例してバッフルの回動スペースが大きくなり、開口面積を大きく設けるときにはバッフルの回動スペースの確保が問題となる。 The damper device of Patent Document 1 includes a single baffle, and rotates this to connect or block the cool air flow path. Therefore, in the damper device of Patent Document 1, the rotation space of the baffle increases in proportion to the opening area, and securing the rotation space of the baffle becomes a problem when providing a large opening area.
 上記問題に鑑み、本発明が解決しようとする課題は、羽板の回動スペースがダンパ装置の開口面積に左右されにくく、狭小なスペースでも動作可能なダンパ装置を提供することにある。 In view of the above problems, the problem to be solved by the present invention is to provide a damper device in which the rotation space of the slats is not easily influenced by the opening area of the damper device and can operate even in a narrow space.
 上記課題を解決するため、本発明のダンパ装置は、駆動源と、複数の羽板と、前記各羽板を回動可能に支持する枠体と、前記駆動源の駆動力を前記各羽板に伝達しこれら各羽板を回動させる動力伝達機構と、を備え、前記枠体は、流体の流入口および流出口である一対の開口部を有し、前記枠体における、前記一対の開口部を連通している中空部を該枠体の流路部 としたときに、前記複数の羽板は、前記流路部内に、いずれか一方の前記開口部である第1開口部に沿って、平行に並べて配置されていることを特徴とする。 In order to solve the above problems, a damper device according to the present invention includes a drive source, a plurality of blades, a frame that rotatably supports the blades, and a driving force of the drive source. And a power transmission mechanism for rotating each of the slats, and the frame body has a pair of openings that are a fluid inlet and outlet and the pair of openings in the frame body When the hollow part communicating with the part is used as the flow path part of the frame body, the plurality of blades are disposed along the first opening which is one of the openings in the flow path part. , And arranged in parallel.
 流体の流路を開閉する羽板を複数枚に分割することにより、ダンパ装置の開口面積が大きくなった場合でも、羽板の回動スペースの拡大を抑えることができる。これにより、本発明のダンパ装置は、羽板の回動スペースの確保が容易となり、より狭小なスペースに設置することが可能とされている。 By dividing the wing plate that opens and closes the fluid flow path into a plurality of pieces, even when the opening area of the damper device is increased, it is possible to suppress an increase in the rotation space of the wing plate. As a result, the damper device of the present invention can easily secure the space for rotating the slats and can be installed in a narrower space.
 また、前記各羽板のその回動中心線に平行な方向の寸法を該羽板の長さとし、前記各羽板の表面または裏面における長さ方向に直交する方向の寸法を該羽板の幅とし、前記流路部における流体の流路方向の寸法を該流路部の高さとしたときに、前記流路部の高さは、前記各羽板の幅よりも高い構成としてもよい。 The dimension of each slat in the direction parallel to the rotational center line is the length of the slat, and the dimension in the direction perpendicular to the length direction on the front or back surface of each slat is the width of the slat. And when the dimension of the flow path direction of the fluid in the flow path section is the height of the flow path section, the height of the flow path section may be higher than the width of each blade.
 ダンパ装置の枠体が複数の羽板を覆う高さを有していることにより、ダンパ装置の出荷時、保管時、および取付時において、羽板をより安全に保護することができる。 Since the damper device frame has a height that covers the plurality of slats, the slats can be more safely protected during shipment, storage, and installation of the damper device.
 また、前記各羽板のその回動中心線に平行な方向の寸法を該羽板の長さとし、前記各羽板の表面または裏面における長さ方向に直交する方向の寸法を該羽板の幅とし、前記流路部における流体の流路方向の寸法を該流路部の高さとしたときに、前記流路部の高さは、前記各羽板の幅と同じ、または前記各羽板の幅よりも低い構成としてもよい。 The dimension of each slat in the direction parallel to the rotational center line is the length of the slat, and the dimension in the direction perpendicular to the length direction on the front or back surface of each slat is the width of the slat. And the height of the flow path portion is the same as the width of each slat or when the dimension of the fluid flow direction in the flow path part is the height of the flow path part, It is good also as a structure lower than a width | variety.
 流体の流路を開閉する羽板を複数枚に分割することにより、ダンパ装置の開口面積が大きくなった場合でも、羽板の回動スペースの拡大を抑えることができる。本発明のダンパ装置は、かかる構成により枠体の薄型化を図ることが可能となる。 By dividing the wing plate that opens and closes the fluid flow path into a plurality of pieces, even when the opening area of the damper device is increased, it is possible to suppress an increase in the rotation space of the wing plate. With this configuration, the damper device of the present invention can be made thinner.
 また、前記動力伝達機構は前記流路部内に配置されたリンク機構を有しており、前記リンク機構の揺動範囲は、前記流路部内に収まることが好ましい。 Further, it is preferable that the power transmission mechanism has a link mechanism disposed in the flow path portion, and a swing range of the link mechanism is within the flow path portion.
 複数の羽板の駆動部材であるリンク機構が、その揺動動作を枠体の流路部内で行い、枠体の外にはその機構を突き出さない構成であることにより、ダンパ装置の設置場所の自由度が高められる。 The link mechanism, which is a driving member for a plurality of slats, is configured so that the swinging operation is performed in the flow path portion of the frame body, and the mechanism is not protruded outside the frame body. The degree of freedom is increased.
 また、前記動力伝達機構は前記流路部内に配置されたリンク機構を有しており、前記動力伝達機構はさらに、前記リンク機構に連結されて、前記駆動源の駆動力を前記リンク機構に伝達する部材であるリンク駆動部材を有しており、前記枠体は、前記各羽板の支持部である複数の羽板支持部と、前記リンク駆動部材の支持部であるリンク駆動部材支持部とを有しており、前記複数の羽板支持部および前記リンク駆動部材支持部は、前記枠体と一体成形されていることが好ましい。 Further, the power transmission mechanism has a link mechanism disposed in the flow path portion, and the power transmission mechanism is further connected to the link mechanism to transmit the driving force of the drive source to the link mechanism. A link driving member that is a member to be supported, and the frame includes a plurality of blade support portions that are support portions of the respective blade plates, and a link drive member support portion that is a support portion of the link drive member; Preferably, the plurality of slat support portions and the link driving member support portions are integrally formed with the frame body.
 羽板支持部とリンク駆動部材支持部とが枠体と一体成形されていることにより、羽板とリンク機構との相対的な位置関係を一定に保つことができる。これにより、寸法誤差や組立誤差によるこれら部材の位置精度への影響を抑え、羽板のスムーズな動作を担保することができる。 Since the blade support part and the link driving member support part are integrally formed with the frame body, the relative positional relationship between the blades and the link mechanism can be kept constant. Thereby, the influence on the positional accuracy of these members due to dimensional errors and assembly errors can be suppressed, and the smooth operation of the slats can be ensured.
 また、前記各羽板のその回動中心線に平行な方向の寸法を該羽板の長さとしたときに、前記各羽板の長さ方向の両端には、該長さ方向に突出した軸部である第1軸部が形成されており、前記枠体は、前記各羽板の支持部である複数の羽板支持部を有しており、前記複数の羽板支持部は、それぞれが前記第1軸部を回動可能に支持する軸受であり、前記各羽板の前記一対の羽板支持部のうち、少なくともいずれか一方の前記羽板支持部は、その周方向の一部に、前記第1軸部が該羽板支持部に対して径方向に差し込まれる切欠部である差込口が形成されており、前記差込口が形成された前記各羽板支持部のその周方向における該差込口の開口角度は、前記第1開口部における前記各羽板の長さ方向と直交する方向に対して平行ではなく、かつ直角ではない角度であることが好ましい。 In addition, when the length of each slat in the direction parallel to the rotation center line is the length of the slat, a shaft projecting in the length direction is provided at both ends in the length direction of each slat. A first shaft portion is formed, and the frame body includes a plurality of blade support portions that are support portions of the blades, and each of the blade support portions includes a plurality of blade support portions. It is a bearing which supports the 1st axis part so that rotation is possible, and among the pair of slat support parts of each slat board, at least any one of the slat support parts is in a part of the peripheral direction. The first shaft portion is formed with an insertion port which is a cutout portion inserted in the radial direction with respect to the blade support portion, and the periphery of each blade support portion formed with the insertion port. The opening angle of the insertion port in the direction is not parallel to the direction perpendicular to the length direction of each slat in the first opening, and It is preferable that the angle is not a corner.
 羽板支持部の差込口を第1開口部の開口径方向のうち、各羽板の長さ方向と直交する方向に対して斜めに形成することにより、羽板の回動動作の中途位置となる方向に差込口が向けられることとなる。一般に、このようなダンパ装置を運送するときには、ダンパ装置は、その羽板が閉じた状態となる向き、またはその羽板が全開となる向きに並べられて梱包される。差込口の切欠方向を羽板の回動動作の中途位置となる方向に向けることにより、ダンパ装置の運送時にその羽板が羽板支持部から脱落することを防止することができる。 By forming the insertion port of the slat support portion obliquely with respect to the direction perpendicular to the length direction of each slat among the opening diameter direction of the first opening, the midway position of the slat rotation operation The outlet will be directed in the direction. Generally, when such a damper device is transported, the damper devices are arranged and packed in a direction in which the slats are closed or in a direction in which the slats are fully opened. By orienting the notch direction of the insertion port in a direction that is a midway position of the rotating operation of the slats, it is possible to prevent the slats from dropping from the slat support portions when the damper device is transported.
 また、前記一対の開口部は、前記第1開口部と、他方の前記開口部である第2開口部とにより構成され、前記流路部を区画する前記枠体の内壁面には、前記第1開口部から前記第2開口部に向かうにつれて流路が拡径されるようにテーパが設けられていることが好ましい。 The pair of openings includes the first opening and a second opening that is the other opening, and the inner wall surface of the frame that defines the flow path portion includes the first opening. It is preferable that a taper is provided so that the diameter of the flow path is increased from one opening toward the second opening.
 流路部の内壁面にテーパが設けられることにより、例えば結露により流路部に形成された水滴が、テーパに誘導されて第2開口部から枠体の外に流れるため、流路部に氷が堆積して流体の流路が塞がれたり、羽板の動作が阻害されたりする不具合を抑えることができる。 By providing the inner wall surface of the flow path with a taper, for example, water droplets formed on the flow path due to dew condensation are guided by the taper and flow out of the frame from the second opening. It is possible to suppress the problem that the fluid is deposited and the flow path of the fluid is blocked or the operation of the slats is hindered.
 また、前記動力伝達機構は前記流路部内に配置されたリンク機構を有しており、前記動力伝達機構は、前記リンク機構に連結されて、前記駆動源の駆動力を前記リンク機構に伝達する部材であるリンク駆動部材を有しており、前記各羽板のその回動中心線に平行な方向の寸法を該羽板の長さとしたときに、前記リンク機構は、前記リンク駆動部材に連結される第1リンク部材と、該第1リンク部材と前記各羽板の長さ方向の一端とを連結する第2リンク部材と、を有することが好ましい。 The power transmission mechanism includes a link mechanism disposed in the flow path, and the power transmission mechanism is coupled to the link mechanism and transmits the driving force of the drive source to the link mechanism. The link mechanism is connected to the link drive member when the length of the blade plate is the dimension of each blade plate in the direction parallel to the rotation center line. It is preferable to have a first link member to be connected, and a second link member for connecting the first link member and one end in the length direction of each slat.
 リンク機構が上記第1リンク部材および第2リンク部材を有することにより、第1リンク部材を駆動リンクとし、第2リンク部材を中間リンク、枠体を固定リンク、各羽板を従動リンクとする4節リンク機構を構成することができる。これにより、簡易な構造で各羽板の回動動作を同期させることが可能となる。 Since the link mechanism has the first link member and the second link member, the first link member serves as a drive link, the second link member serves as an intermediate link, the frame body serves as a fixed link, and each wing plate serves as a driven link 4 A knot link mechanism can be configured. Thereby, it becomes possible to synchronize the rotation operation of each slat with a simple structure.
 また、前記動力伝達機構は前記流路部内に配置されたリンク機構を有しており、前記動力伝達機構は、前記リンク機構に連結されて、前記駆動源の駆動力を前記リンク機構に伝達する部材であるリンク駆動部材を有しており、前記リンク駆動部材は、歯車部、および出力軸部を有しており、前記駆動源の駆動力は、前記動力伝達機構が有する一又は複数の歯車部材により前記リンク駆動部材に伝達され、前記リンク駆動部材の歯車部および前記歯車部材はケース体であるギヤボックスに収容されており、前記リンク駆動部材の歯車部または前記歯車部材、および前記ギヤボックスは、前記リンク駆動部材が所定の角度位置になったときに、互いに当接して前記駆動力の伝達を遮断するストッパ部を有することが好ましい。 The power transmission mechanism includes a link mechanism disposed in the flow path, and the power transmission mechanism is coupled to the link mechanism and transmits the driving force of the drive source to the link mechanism. A link driving member that is a member; the link driving member includes a gear portion and an output shaft portion; and the driving force of the driving source is one or a plurality of gears included in the power transmission mechanism. Member is transmitted to the link drive member, and the gear portion of the link drive member and the gear member are accommodated in a gear box which is a case body, and the gear portion of the link drive member or the gear member, and the gear box Preferably, when the link driving member is at a predetermined angular position, it has a stopper portion that abuts against each other and blocks transmission of the driving force.
 羽板がその回動限界角度に至った時に、リンク機構よりも前の動力伝達部材で駆動力の伝達を遮断することにより、羽板やリンク機構に過剰な応力が加えられることが防止され、羽板およびリンク機構の部品寿命の低下を抑えることができる。 When the wing plate reaches its rotation limit angle, by blocking the transmission of the driving force with the power transmission member before the link mechanism, it is prevented that excessive stress is applied to the wing plate and the link mechanism, It is possible to suppress a decrease in the component life of the slats and the link mechanism.
 また、前記動力伝達機構は前記流路部内に配置されたリンク機構を有しており、前記動力伝達機構はさらに、前記リンク機構に連結されて、前記駆動源の駆動力を前記リンク機構に伝達する部材であるリンク駆動部材を有しており、前記各羽板のその回動中心線に平行な方向の寸法を該羽板の長さとしたときに、前記各羽板の長さ方向の両端には、該長さ方向に突出した軸部である第1軸部が形成されており、前記枠体は、前記各羽板の支持部である複数の羽板支持部と、前記リンク駆動部材の支持部であるリンク駆動部材支持部とを有しており、前記リンク駆動部材支持部は、前記リンク駆動部材を回動可能に支持する軸受であり、前記複数の羽板支持部は、それぞれが前記第1軸部を回動可能に支持する軸受であり、前記リンク駆動部材支持部の軸穴方向、および前記各羽板支持部の軸穴方向は、一直線上または平行となる向きに延びていることが好ましい。 Further, the power transmission mechanism has a link mechanism disposed in the flow path portion, and the power transmission mechanism is further connected to the link mechanism to transmit the driving force of the drive source to the link mechanism. A link driving member that is a member to be operated, and the length of each slat in the direction parallel to the rotation center line is the length of the slat. A first shaft portion that is a shaft portion protruding in the length direction is formed, and the frame body includes a plurality of blade support portions that are support portions of the blades and the link driving member. A link drive member support part, the link drive member support part is a bearing that rotatably supports the link drive member, and the plurality of blade support parts are respectively Is a bearing that rotatably supports the first shaft portion, and the link driving portion. Shaft hole direction of the support portion, and the shaft hole direction of each vane plate supporting portion preferably extends in a direction which is a straight line or in parallel.
 これらリンク駆動部材支持部と各羽板支持部の軸穴方向が同一方向であることにより、駆動力を効率的に伝達することができ、また、羽板のねじれなど、各部材に加わる負荷を抑えることができる。 The axial hole direction of these link drive member support parts and each slat support part is the same direction, so that the driving force can be efficiently transmitted, and the load applied to each member such as the twist of the slats is applied. Can be suppressed.
 また、前記枠体は、前記各羽板の支持部である複数の羽板支持部を有しており、前記各羽板の長さ方向の両端には、該長さ方向に突出し、前記羽板支持部に支持される軸部である第1軸部が形成されており、前記各羽板の長さ方向の一端には、該長さ方向に突出し、前記第2リンク部材に連結される軸部である第2軸部が形成されており、前記各羽板の表面または裏面における長さ方向に直交する方向の寸法を該羽板の幅としたときに、前記第1軸部および前記第2軸部は、前記各羽板の幅方向における両端に配置されていることが好ましい。 Further, the frame body has a plurality of slat support parts that are support parts of the slats, and protrudes in the length direction at both ends in the length direction of the slats. A first shaft portion, which is a shaft portion supported by the plate support portion, is formed. One end of each of the blades in the length direction protrudes in the length direction and is connected to the second link member. A second shaft portion that is a shaft portion is formed, and when the width in the direction perpendicular to the length direction on the front surface or the back surface of each blade plate is the width of the blade plate, It is preferable that the 2nd axial part is arrange | positioned at the both ends in the width direction of each said blade.
 各羽板の幅方向における両端にこれら軸部が設けられていることにより、最小限の駆動力で羽板を回動させることができるとともに、羽板の動作精度を高めることができる。 Since these shaft portions are provided at both ends in the width direction of each slat, the slat can be rotated with a minimum driving force and the operation accuracy of the slat can be improved.
 また、前記駆動源はステッピングモータであることが好ましい。 The drive source is preferably a stepping motor.
 ステッピングモータは正逆両方向に回転可能であり、また、ステップ数によりその回転角度を算出することができる。よって、羽板のその時々における配置角度を検出するために別途ロータリエンコーダなどによるフィードバック制御を行う必要がない。これにより、装置全体における部品点数の削減および装置の小型化を図ることができる。 The stepping motor can rotate in both forward and reverse directions, and the rotation angle can be calculated from the number of steps. Therefore, it is not necessary to separately perform feedback control using a rotary encoder or the like in order to detect the arrangement angle of the slats from time to time. Thereby, the number of parts in the whole apparatus can be reduced and the apparatus can be downsized.
 また、前記各羽板のその回動中心線に平行な方向の寸法を該羽板の長さとし、前記各羽板の表面または裏面における長さ方向に直交する方向の寸法を該羽板の幅とし、前記各羽板の幅方向における、該羽板の回動中心線側の端部を該羽板の基端部、その反対側の端部を該羽板の先端部としたときに、前記複数の羽板は、その回動動作により前記第1開口部を開閉し、前記各羽板は、前記第1開口部を閉じたときに、その隣接する前記羽板の基端部にその先端部が重なる構成としてもよい。 The dimension of each slat in the direction parallel to the rotational center line is the length of the slat, and the dimension in the direction perpendicular to the length direction on the front or back surface of each slat is the width of the slat. And, in the width direction of each slat, when the end of the slat on the rotation center line side is the base end of the slat, and the opposite end is the tip of the slat, The plurality of slats open and close the first opening by its rotational movement, and each slat is closed to the proximal end of the adjacent slat when the first opening is closed. It is good also as a structure which a front-end | tip part overlaps.
 各羽板の先端部が、各羽板の閉時においてその隣接する羽板の基端部と重なる構成とすることにより、第1開口部の密閉度を高めることができる。 The sealing degree of the first opening can be increased by adopting a configuration in which the distal end portion of each slat overlaps with the proximal end portion of the adjacent slat when the slats are closed.
 また、前記各羽板のその回動中心線に平行な方向の寸法を該羽板の長さとし、前記各羽板の表面または裏面における長さ方向に直交する方向の寸法を該羽板の幅とし、前記各羽板の幅方向における、該羽板の回動中心線側の端部を該羽板の基端部、その反対側の端部を該羽板の先端部としたときに、前記各羽板の先端部は弾性部材からなる構成としてもよい。 The dimension of each slat in the direction parallel to the rotational center line is the length of the slat, and the dimension in the direction perpendicular to the length direction on the front or back surface of each slat is the width of the slat. And, in the width direction of each slat, when the end of the slat on the rotation center line side is the base end of the slat, and the opposite end is the tip of the slat, The tip of each slat may be made of an elastic member.
 各羽板の先端部が弾性部材からなることにより、各羽板の閉時において第1開口部の密閉度を高めることができる。 Since the tip of each slat is made of an elastic member, the degree of sealing of the first opening can be increased when each slat is closed.
 本発明のダンパ装置は、羽板の回動スペースがダンパ装置の開口面積に左右されにくく、狭小なスペースでも動作させることができる。 The damper device according to the present invention can be operated even in a small space because the rotational space of the slats is not easily influenced by the opening area of the damper device.
実施形態にかかるダンパ装置の概略構成およびその動作を示す平面図である。It is a top view showing a schematic structure and operation of a damper device concerning an embodiment. 羽板の形状を示す外観斜視図である。It is an external appearance perspective view which shows the shape of a slat. フレームの形状を示す平面図および側面視断面図である。It is the top view and side view sectional drawing which show the shape of a flame | frame. 実施形態にかかるダンパ装置の分解斜視図である。It is a disassembled perspective view of the damper device concerning an embodiment. 歯車部材の減速構造を示す透過平面図である。It is a permeation | transmission top view which shows the reduction gear structure of a gear member. ストッパ部の構造を示す側面図である。It is a side view which shows the structure of a stopper part. リンク機構の揺動動作を示す側面図である。It is a side view which shows rocking | fluctuation operation | movement of a link mechanism. 羽板支持部の差込口の開口角度を説明する側面視断面図である。It is sectional drawing seen from the side explaining the opening angle of the insertion port of a slat board support part. 羽板の変形例を示す模式図である。It is a schematic diagram which shows the modification of a slat. 羽板の変形例を示す模式図である。It is a schematic diagram which shows the modification of a slat. フレームの変形例を示す側面視断面図である。It is sectional drawing seen from the side which shows the modification of a flame | frame.
 以下、本発明にかかるダンパ装置の実施形態について図面を用いて説明する。本実施形態にかかるダンパ装置Dは、図示しない冷蔵庫の内部に配置され、庫内における冷気の循環を制御する。本実施形態のダンパ装置Dは、例えば冷蔵庫のダクトの中途や、ダクトと収納室との間に嵌め込まれて使用される。本発明のダンパ装置の適用対象は冷蔵庫には限られず、流体の流路の開閉や流量の調節を行う目的において広範な機器や設備に適用可能である。 Hereinafter, embodiments of a damper device according to the present invention will be described with reference to the drawings. The damper device D according to this embodiment is disposed inside a refrigerator (not shown) and controls the circulation of cold air in the refrigerator. The damper device D of the present embodiment is used, for example, in the middle of a refrigerator duct or between a duct and a storage chamber. The application target of the damper device of the present invention is not limited to a refrigerator, and can be applied to a wide range of equipment and facilities for the purpose of opening and closing a fluid flow path and adjusting the flow rate.
<全体構成概要>
 図1は、本実施形態に係るダンパ装置Dの概略構成およびその動作を示す平面図である。図1(a)は、羽板20が閉じた状態のダンパ装置Dであり、図1(b)は、羽板20が開いた状態のダンパ装置Dである。
<Overview of overall configuration>
FIG. 1 is a plan view showing a schematic configuration and operation of a damper device D according to the present embodiment. FIG. 1A shows the damper device D with the slat 20 closed, and FIG. 1B shows the damper device D with the slat 20 open.
 ダンパ装置Dは、3枚の羽板20、およびこれら羽板20を回動可能に支持する枠体であるフレーム10を有している。フレーム10には、フレーム10の枠内とダクトとを連通させる一対の開口部である第1開口部11および第2開口部12が形成されている。本実施形態のフレーム10には、冷気が第2開口部12から流入し、第1開口部11から流出する。本実施形態における羽板20は、フレーム10の第1開口部11に沿うように平行に並べて配置されている。これら羽板20は、ダンパ装置Dが備えるモータ40の駆動力により回動し、第1開口部11を開閉する。フレーム10の第1開口部11側の端部には、その全周から第1開口部11の中心となる位置に向かって延出したフランジ部10fが形成されており。第1開口部11は、フランジ部10fにより、羽板20でその全面を覆うことができる程度の開口面積に調節されている。第2開口部12側にはフランジ部は設けられておらず、これにより第2開口部12の開口面積は、第1開口部11よりもフランジ部10fの延出幅の分だけ広く形成されている。 The damper device D includes three slats 20 and a frame 10 that is a frame that rotatably supports these slats 20. The frame 10 is formed with a first opening 11 and a second opening 12 which are a pair of openings that allow the inside of the frame 10 and the duct to communicate with each other. Cold air flows into the frame 10 of the present embodiment from the second opening 12 and out of the first opening 11. The slats 20 in this embodiment are arranged in parallel so as to follow the first opening 11 of the frame 10. These slats 20 are rotated by the driving force of the motor 40 provided in the damper device D to open and close the first opening 11. At the end of the frame 10 on the first opening 11 side, a flange portion 10f is formed extending from the entire circumference toward a position that is the center of the first opening 11. The first opening portion 11 is adjusted to have an opening area enough to cover the entire surface with the wing plate 20 by the flange portion 10f. No flange portion is provided on the second opening portion 12 side, so that the opening area of the second opening portion 12 is formed wider than the first opening portion 11 by the extension width of the flange portion 10f. Yes.
 ダンパ装置Dは、第1開口部11を開閉する板状部材(特許文献1におけるバッフルに相当する部材)が複数枚の羽板20に分割されている。このため、ダンパ装置Dの開口面積が大きくなった場合でも、羽板20の数を増やすことで個々の羽板20の回動スペースを一定に保つことができる。これにより、ダンパ装置Dは、羽板20の回動スペースを確保することが容易化されており、狭小なスペースにおいても羽板20を適切に動作させることが可能とされている。 In the damper device D, a plate-like member that opens and closes the first opening 11 (a member corresponding to a baffle in Patent Document 1) is divided into a plurality of blades 20. For this reason, even when the opening area of the damper apparatus D becomes large, the rotation space of each blade 20 can be kept constant by increasing the number of blades 20. Thereby, the damper device D facilitates securing the rotation space of the slats 20 and can appropriately operate the slats 20 even in a narrow space.
<羽板の構成>
 図2は羽板20の形状を示す外観斜視図である。羽板20は細長く形成された板状部材である。以下の説明では、羽板20のその回動中心線aに平行な方向の寸法を羽板20の長さlといい、羽板20の表面20aまたは裏面20bにおける長さl方向に直交する方向の寸法を羽板20の幅wという。また、以下の説明では、羽板20のその幅w方向における回動中心線a側の端部を羽板20の基端部b、その反対側の端部を羽板20の先端部tという。
<Configuration of slats>
FIG. 2 is an external perspective view showing the shape of the slat 20. The wing plate 20 is an elongated plate-like member. In the following description, the dimension of the slat 20 in the direction parallel to the rotation center line a is referred to as the length l of the slat 20, and the direction orthogonal to the length l direction on the front surface 20 a or the back surface 20 b of the slat 20. Is called the width w of the slat 20. In the following description, the end of the slat 20 on the side of the rotation center line a in the width w direction is referred to as a base end b of the slat 20 and the opposite end is referred to as a tip t of the slat 20. .
 羽板20の長さl方向の両端には、長さl方向に突出した軸部である第1軸部21が形成されている。第1軸部21はフレーム10に回動可能に支持されており、これにより、羽板20の回動中心線aの位置が決められている。羽板20の長さl方向の一端には、長さl方向に突出した第2軸部22が形成されている。第2軸部22は、モータ40の駆動力をうけて回動中心線aを中心とする円弧上を往復移動し、羽板20の回動角度を決定する。第1軸部21および第2軸部22は、羽板20の幅w方向において、ほぼその両端となる位置に配置されている。これにより最小限の駆動力で羽板20を回動させることができるとともに、羽板20の動作精度が高められている。 A first shaft portion 21 that is a shaft portion protruding in the length l direction is formed at both ends of the blade 20 in the length l direction. The first shaft portion 21 is rotatably supported by the frame 10, whereby the position of the rotation center line a of the slat 20 is determined. A second shaft portion 22 protruding in the length l direction is formed at one end of the wing plate 20 in the length l direction. The second shaft portion 22 receives the driving force of the motor 40 and reciprocates on an arc centered on the rotation center line a to determine the rotation angle of the slat 20. The first shaft portion 21 and the second shaft portion 22 are arranged at positions almost at both ends in the width w direction of the slat 20. Thereby, the slat 20 can be rotated with a minimum driving force, and the operation accuracy of the slat 20 is improved.
 羽板20の幅w方向の両端面は、その表面20a側および裏面20b側の角部が丸められた曲面により構成されている。これにより、羽板20の開閉時において、隣接する羽板20と角部が接触することが防止され、第1開口部11を閉じたときの各羽板20間の隙間を小さくすることが可能とされている。 Both end faces in the width w direction of the slats 20 are constituted by curved surfaces with rounded corners on the front surface 20a side and the back surface 20b side. As a result, when the slats 20 are opened and closed, the adjacent slats 20 are prevented from coming into contact with the corners, and the gaps between the slats 20 when the first opening 11 is closed can be reduced. It is said that.
 第2軸部22には、羽板20および第2軸部22と一体成形された補強部22rが設けられている。補強部22rは第2軸部22の第1軸部21側の側面を支持することで、第2軸部22の強度を補っている。また、第2軸部22は、羽板20の先端tよりもやや中心側に配置されている。第2軸部22から先端tまでの空間Sと、補強部22rから第1軸部21までの空間Sは、各羽板20が第1開口部11を閉じたときに、後述する羽板支持部15をその空間内に逃がし、羽板20と羽板支持部15とが接触することを防ぐための構成である。 The second shaft portion 22 is provided with a reinforcing portion 22r integrally formed with the wing plate 20 and the second shaft portion 22. The reinforcing part 22r supplements the strength of the second shaft part 22 by supporting the side surface of the second shaft part 22 on the first shaft part 21 side. Further, the second shaft portion 22 is disposed slightly on the center side from the tip t of the slat 20. And the space S 1 from the second shank 22 to the tip t, space S 2 from the reinforcing portion 22r to the first shaft portion 21, when each blade plate 20 closes the first opening 11 will be described later wings This is a configuration for allowing the plate support 15 to escape into the space and preventing the blade 20 and the blade support 15 from contacting each other.
 尚、本実施形態においては3枚の羽板20が用いられているが、本発明のダンパ装置の羽板の数は、2枚以上であることを条件として、その上限については特に制限されない。例えば、羽板20の幅wを狭くして、同一面積の流路に対してより多くの羽板20を配置することにより、個々の羽板20の回動スペースをさらに小さく抑えることができるが、部品点数が増えることにより、当然、故障率や組み立て工数も増加する。一方、羽板20の数を減らせば、そのような問題を軽減することができるが、羽板20の数を減らした分だけ羽板20の回動スペースは大きくなる。本発明のダンパ装置の羽板の数は、ダンパ装置が用いられる環境条件に応じて、その増減に伴うメリットおよびデメリットのバランスを鑑みて、最適な数を決定すればよい。尚、本実施形態においては、後述するリンク機構50lの構造上、羽板20を奇数枚とすることが好ましい。 In the present embodiment, three slats 20 are used, but the upper limit is not particularly limited on the condition that the number of slats of the damper device of the present invention is two or more. For example, by reducing the width w of the slats 20 and disposing more slats 20 on the same area of the flow path, the rotational space of each slat 20 can be further reduced. Of course, as the number of parts increases, the failure rate and assembly man-hours also increase. On the other hand, if the number of the slats 20 is reduced, such a problem can be reduced, but the rotation space of the slats 20 is increased by the amount of the decrease in the number of slats 20. The number of slats of the damper device according to the present invention may be determined in accordance with the environmental conditions in which the damper device is used, taking into account the balance between the advantages and disadvantages associated with the increase / decrease. In the present embodiment, it is preferable that the number of slats 20 is an odd number because of the structure of a link mechanism 50l described later.
<フレームの構成>
(全体構成)
 図3はフレーム10の形状を示す平面図および側面視断面図である。図3(a)はフレーム10の平面図、図3(b)は、図3(a)におけるA-A方向断面図である。
<Frame structure>
(overall structure)
FIG. 3 is a plan view and a side sectional view showing the shape of the frame 10. 3A is a plan view of the frame 10, and FIG. 3B is a cross-sectional view taken along the line AA in FIG. 3A.
 フレーム10は、3枚の羽板20を回動可能に支持する略矩形状の中空の枠体である。フレーム10には、その枠内に冷気を通す第2開口部12および第1開口部11が形成されている。以下、第2開口部12と第1開口部11とを連通している枠体10の中空部を枠体10の流路部10aという。上でも述べたように、フレーム10には、第1開口部11の全周にわたってフランジ部10fが形成されている。これにより、外力に対するフレーム10の剛性が高められており、外力によるフレーム10の変形が抑えられている。また、フレーム10の図3(a)視右側の端部には、後述する歯車部材50gが収容されるケース状部であるギヤボックス10gと、同じく後述するリンク機構50lが収容される空間であるリンク機構配置部10lと、が一体的に成形されている。 The frame 10 is a substantially rectangular hollow frame that rotatably supports the three slats 20. The frame 10 has a second opening 12 and a first opening 11 through which cool air passes. Hereinafter, the hollow portion of the frame body 10 that communicates the second opening portion 12 and the first opening portion 11 is referred to as a flow path portion 10 a of the frame body 10. As described above, the frame 10 has the flange portion 10 f formed over the entire circumference of the first opening portion 11. Thereby, the rigidity of the frame 10 with respect to the external force is enhanced, and the deformation of the frame 10 due to the external force is suppressed. Further, the right end of the frame 10 as viewed in FIG. 3A is a space in which a gear box 10g which is a case-like portion in which a gear member 50g described later is accommodated and a link mechanism 50l described later is accommodated. The link mechanism arrangement portion 101 is integrally formed.
 本実施形態のフレーム10は、流路部10aにおける流体の流路方向の寸法を流路部10aの高さhとしたときに、流路部10aの高さhは、各羽板20の幅wと略同じ高さとされている。これにより、ダンパ装置D全体の薄型化が図られている。流路部10aの高さhは、常に羽板20の幅wと同じである必要はなく、ダンパ装置Dが用いられる環境条件に応じて、さらに低くしてもよく、逆に羽板20の幅wより高くしてもよい。例えば、流路部10aの高さhを各羽板20の幅wよりも高くすることにより、ダンパ装置Dの組立時や搬送時に羽板20に不用意に力が加わることを防ぐことができる。 In the frame 10 of the present embodiment, the height h of the flow channel portion 10a is the width of each slat 20 when the dimension of the flow channel direction in the flow channel portion 10a is the height h of the flow channel portion 10a. The height is approximately the same as w. Thereby, thickness reduction of the whole damper apparatus D is achieved. The height h of the flow path portion 10a does not always have to be the same as the width w of the slat 20 and may be further lowered according to the environmental conditions in which the damper device D is used. It may be higher than the width w. For example, by making the height h of the flow path portion 10a higher than the width w of each vane plate 20, it is possible to prevent inadvertent application of force to the vane plate 20 when the damper device D is assembled or transported. .
(羽板支持部の構成)
フレーム10の枠内には、羽板20を支持する複数の羽板支持部15が形成されている。羽板支持部15は、それぞれが羽板20の第1軸部21を回動可能に支持する軸受である。羽板支持部15は、各羽板20に対して一対ずつ、羽板20の長さl方向の両端に相当する位置に設けられている。各羽板20の一対の羽板支持部15のうち、図3(a)視右側の羽板支持部15は、フランジ部10fに形成されており、その周方向の一部に、第1軸部21がその羽板支持部15に対して径方向に差し込まれる切欠部である差込口15aが形成されている。図3(a)視左側の羽板支持部15は、フレーム10の内壁面に形成されており、同羽板支持部15の軸穴は、フレーム10の側壁を貫通しない凹部とされている。これにより、同羽板支持部15に塗布されたグリスはその軸穴内に留められ、グリスが容易に外部へ流出することが防止されている。
(Configuration of slat support)
A plurality of slat support portions 15 that support the slats 20 are formed in the frame 10. Each of the slat support portions 15 is a bearing that rotatably supports the first shaft portion 21 of the slat 20. A pair of slat support portions 15 are provided at positions corresponding to both ends of the slat 20 in the length l direction. Of the pair of slat support portions 15 of each slat 20, the slat support portion 15 on the right side in FIG. 3A is formed on the flange portion 10 f, and a first shaft is formed on a part of the circumferential direction. An insertion port 15 a is formed as a cutout portion in which the portion 21 is inserted in the radial direction with respect to the wing plate support portion 15. The blade support part 15 on the left side in FIG. 3A is formed on the inner wall surface of the frame 10, and the shaft hole of the blade support part 15 is a recess that does not penetrate the side wall of the frame 10. Thereby, the grease applied to the slat support 15 is retained in the shaft hole, and the grease is prevented from easily flowing out to the outside.
 また、図3(a)において最も上側に配置された羽板支持部15の組は、その支持する羽板20が閉状態にあるときに、その羽板20の先端部tがフランジ部10fに重なる位置に調節されている(図1(a)参照)。さらに、図3(a)において最も下側に配置された羽板支持部15の組は、その支持する羽板20が全開状態にあるときに、その羽板20の少なくとも一部が、第1開口部11側から見てフランジ部10fの背後に隠れる位置に調節されている(図1(b)参照)。本実施形態のダンパ装置Dでは、羽板支持部15がこのように配置されていることにより、第1開口部11の開口面積の最大化が図られている。 Further, in the pair of slat support portions 15 arranged on the uppermost side in FIG. 3 (a), when the slat 20 to be supported is in a closed state, the tip t of the slat 20 is at the flange portion 10f. It has been adjusted to the overlapping position (see FIG. 1A). Furthermore, in the group of slat support portions 15 arranged at the lowermost side in FIG. 3A, when the slat 20 that supports the slat 20 is in a fully opened state, at least a part of the slat 20 is the first. The position is adjusted to be hidden behind the flange portion 10f when viewed from the opening 11 side (see FIG. 1B). In the damper device D of the present embodiment, the opening area of the first opening 11 is maximized by arranging the slat support 15 in this way.
 図8は、図3(b)に示されるフレーム10に対して、羽板20が全開状態で配置されたときの側面視断面図である。図8に示されるように、差込口15aが形成された各羽板支持部15の、その周方向における差込口15aの開口角度は、第1開口部11の開口径方向のうち、各羽板20の長さl方向と直交する方向である短辺方向11aに対して、平行ではなく、かつ直角ではない角度、すなわち、第1開口部11の短辺方向11aに対して斜めとなる角度に設定されている。なお、第1開口部11の「開口径方向」とは、第1開口部11の開口面積を定める面方向であって、図8の座標軸表示におけるXY平面に平行な方向をいう。また、短辺方向11aと「平行」とは図8の座標軸表示におけるY軸方向に平行な方向をいい、短辺方向11aと「直角」とは同座標軸表示におけるZ軸方向に平行な方向をいう。 FIG. 8 is a side cross-sectional view of the frame 10 shown in FIG. 3B when the slat 20 is disposed in a fully opened state. As shown in FIG. 8, the opening angle of the insertion port 15 a in the circumferential direction of each slat plate support portion 15 in which the insertion port 15 a is formed is, among the opening diameter directions of the first opening portion 11, An angle that is not parallel and not perpendicular to the short-side direction 11a that is a direction orthogonal to the length l direction of the slat 20 is inclined with respect to the short-side direction 11a of the first opening 11. It is set to an angle. The “opening diameter direction” of the first opening 11 is a plane direction that defines the opening area of the first opening 11 and is a direction parallel to the XY plane in the coordinate axis display of FIG. Further, the short side direction 11a and “parallel” mean a direction parallel to the Y axis direction in the coordinate axis display of FIG. 8, and the short side direction 11a and “right angle” mean a direction parallel to the Z axis direction in the coordinate axis display. Say.
 羽板支持部15の差込口15aを第1開口部11の短辺方向11aに対して斜めに形成することにより、差込口15aは、羽板15の回動動作の中途位置となる方向に開口されることとなる。一般に、本発明のようなダンパ装置を運送するときには、ダンパ装置は、その羽板が閉じた状態となる向き、またはその羽板が全開となる向きに並べられて梱包される。本実施形態のダンパ装置Dは、差込口15aの切欠方向が羽板20の回動動作の中途位置となる方向に向けられていることにより、ダンパ装置Dの運送時にその羽板20が羽板支持部15から脱落することが防止されている。 By forming the insertion port 15 a of the slat support 15 at an angle with respect to the short side direction 11 a of the first opening 11, the insertion port 15 a is a direction in which the wing plate 15 is in the middle of the rotation operation. Will be opened. Generally, when a damper device such as the present invention is transported, the damper device is packed in a direction in which the slats are in a closed state or in a direction in which the slats are fully opened. In the damper device D of the present embodiment, the notch direction of the insertion port 15a is oriented in the direction in which the blade plate 20 is in the middle of the rotation operation. It is prevented from falling off the plate support 15.
<動力伝達機構>
(全体構成)
 図4は、本実施形態のダンパ装置Dの分解斜視図である。ダンパ装置Dは、モータ40の駆動力で羽板20を回動させて第1開口部11を開閉することにより、冷気の流路を連通させたり、遮断したりする。モータ40の駆動力は、歯車部材50gおよびリンク機構50lからなる動力伝達機構50により、羽板20に伝達される。
<Power transmission mechanism>
(overall structure)
FIG. 4 is an exploded perspective view of the damper device D of the present embodiment. The damper device D opens or closes the first opening 11 by rotating the slats 20 with the driving force of the motor 40 to connect or block the cool air flow path. The driving force of the motor 40 is transmitted to the wing plate 20 by the power transmission mechanism 50 including the gear member 50g and the link mechanism 50l.
(モータ)
 本実施形態のモータ40にはステッピングモータが使用されている。ステッピングモータは正逆両方向に回転可能であり、また、ステップ数によりその回転角度を算出することができる。よって、羽板20のその時々における配置角度を検出するために別途ロータリエンコーダなどによるフィードバック制御を行う必要がない。これにより、ダンパ装置D全体における部品点数の削減および装置の小型化が図られている。
(motor)
A stepping motor is used as the motor 40 of this embodiment. The stepping motor can rotate in both forward and reverse directions, and the rotation angle can be calculated from the number of steps. Therefore, it is not necessary to separately perform feedback control using a rotary encoder or the like in order to detect the arrangement angle of the slats 20 from time to time. Thereby, reduction of the number of parts in the whole damper apparatus D and size reduction of an apparatus are achieved.
(歯車部材)
 図5は、図4のB方向から見た歯車部材50gの減速構造を示す透過平面図である。以下、図4と図5を参照して歯車部材50gについて説明する。
(Gear member)
FIG. 5 is a transparent plan view showing the speed reduction structure of the gear member 50g as viewed from the direction B of FIG. Hereinafter, the gear member 50g will be described with reference to FIGS.
 モータ40の駆動力は、その出力軸に固定されたモータピニオン41から、歯車部材50gを介して減速されてリンク機構50lに伝達される。歯車部材50gは、第1歯車51から第4歯車54、および、リンク機構50lを揺動させるリンク駆動部材である第5歯車55の5つの歯車部材により構成されている。 The driving force of the motor 40 is decelerated through the gear member 50g from the motor pinion 41 fixed to the output shaft and transmitted to the link mechanism 50l. The gear member 50g is composed of five gear members, that is, a first gear 51 to a fourth gear 54 and a fifth gear 55 that is a link driving member that swings the link mechanism 50l.
 フレーム10とモータ40とは、これらの間に配置されたケース体である中ケース30により連結されている。第1歯車51は、モータ40と中ケース30とにより区画される空間内に配置され、同空間内に設けられた支軸42に回転可能に支持されている。第2歯車52から第4歯車54は、フレーム10のケース状部であるギヤボックス10gと中ケース30とにより区画される空間内に配置され、同空間内に設けられた支軸32に回転可能に支持されている。第5歯車55は、中ケース30に形成された凹部33と、ギヤボックス10gから流路部10aに貫通した軸受部であるリンク駆動部材支持部16とにより回転可能に支持されている。 The frame 10 and the motor 40 are connected by a middle case 30 which is a case body disposed between them. The first gear 51 is disposed in a space defined by the motor 40 and the middle case 30, and is rotatably supported by a support shaft 42 provided in the space. The second gear 52 to the fourth gear 54 are arranged in a space defined by the gear box 10g, which is a case-like portion of the frame 10, and the middle case 30, and can rotate on a support shaft 32 provided in the same space. It is supported by. The fifth gear 55 is rotatably supported by a concave portion 33 formed in the middle case 30 and a link driving member support portion 16 that is a bearing portion penetrating from the gear box 10g to the flow path portion 10a.
 第1歯車51から第4歯車54は、モータピニオン41の回転を減速して第5歯車55に伝達する減速歯車列である。第5歯車55は、第4歯車54と噛合する扇状の歯車が形成された歯車部55gと、その駆動力をリンク機構50lに伝達する出力軸部である軸部55sとが一体化された部材である。第5歯車55の軸部55sは、その外周面の一部が平面状に切り欠かれている。かかる切り欠きは、軸部55sの周方向において対称となる位置に一対設けられている。 The first gear 51 to the fourth gear 54 are a reduction gear train that reduces the rotation of the motor pinion 41 and transmits it to the fifth gear 55. The fifth gear 55 is a member in which a gear portion 55g formed with a fan-shaped gear meshing with the fourth gear 54 and a shaft portion 55s that is an output shaft portion that transmits the driving force to the link mechanism 50l are integrated. It is. A portion of the outer peripheral surface of the shaft portion 55s of the fifth gear 55 is cut out in a flat shape. A pair of such notches are provided at positions that are symmetrical in the circumferential direction of the shaft portion 55s.
 歯車部材50gを構成する第1歯車51から第4歯車54は、大径の平歯車および小径の平歯車が軸方向に連結されて一体化された複合歯車である。モータ40のモータピニオン41には第1歯車51の大径歯車51wが噛合しており、大径歯車51wの回転はその小径歯車51nに減速されて伝達される。中ケース30には、フレーム10側に突き出した有蓋筒状のカバー部31が形成されており、その筒内には第1歯車51の小径歯車51nが収容されている。カバー部31はその周方向の一部が切り欠かれており、そこから小径歯車51nの一部が露出している。そして、小径歯車51nのその露出した部分は、第2歯車52の大径歯車52wに噛合している。以降、順次、第2歯車52の小径歯車52nから第3歯車53の大径歯車53wに、第3歯車53の小径歯車53nから第4歯車54の大径歯車54wに、第4歯車54の小径歯車54nから第5歯車55の歯車部55gに、モータ40の駆動力が減速されて伝達される。 The first gear 51 to the fourth gear 54 constituting the gear member 50g are compound gears in which a large-diameter spur gear and a small-diameter spur gear are connected in the axial direction and integrated. The motor pinion 41 of the motor 40 meshes with the large diameter gear 51w of the first gear 51, and the rotation of the large diameter gear 51w is decelerated and transmitted to the small diameter gear 51n. The middle case 30 is formed with a covered cylindrical cover portion 31 protruding toward the frame 10, and a small-diameter gear 51n of the first gear 51 is accommodated in the cylinder. The cover portion 31 is partially cut away in the circumferential direction, and a portion of the small-diameter gear 51n is exposed therefrom. The exposed portion of the small diameter gear 51n meshes with the large diameter gear 52w of the second gear 52. Thereafter, the small diameter of the fourth gear 54 is sequentially changed from the small diameter gear 52n of the second gear 52 to the large diameter gear 53w of the third gear 53, from the small diameter gear 53n of the third gear 53 to the large diameter gear 54w of the fourth gear 54. The driving force of the motor 40 is decelerated and transmitted from the gear 54n to the gear portion 55g of the fifth gear 55.
 図6は、リンク駆動部材支持部16に挿入された第5歯車55を、図4のC方向からみた側面図である。説明の便宜上、フレーム10と第5歯車55以外の部材は図示を省略している。第5歯車55の歯車部55gとフレーム10のギヤボックス10gは、羽板20が所定の回動角度になったとき、すなわち、第5歯車55が所定の角度位置になったときに、互いに当接することでリンク機構50lへの駆動力の伝達を遮断する、ストッパ部10c,55cを有している。本実施形態の動力伝達機構50は、羽板20がその回動限界角度に至った時に、リンク機構50lよりも前の動力伝達部材で駆動力の伝達を遮断する構成とされていることにより、羽板20やリンク機構50lに過剰な応力が加えられることが防止されており、羽板20およびリンク機構50lの部品寿命の低下が抑えられている。本実施形態においては第5歯車55にストッパ部55cが設けられているが、本発明の歯車部材側のストッパ部は、第5歯車55以外の歯車部材に設けられていてもよい。尚、本実施形態では、ギヤボックス10gがフレーム10の一部としてフレーム10と一体成形されているが、ギヤボックス10gはフレーム10とは別体であってもよい。 FIG. 6 is a side view of the fifth gear 55 inserted into the link driving member support 16 as seen from the direction C of FIG. For convenience of explanation, members other than the frame 10 and the fifth gear 55 are not shown. The gear portion 55g of the fifth gear 55 and the gear box 10g of the frame 10 are brought into contact with each other when the blade 20 is at a predetermined rotation angle, that is, when the fifth gear 55 is at a predetermined angular position. The stopper portions 10c and 55c are provided that block the transmission of the driving force to the link mechanism 50l by being in contact with each other. The power transmission mechanism 50 of the present embodiment is configured such that when the slat 20 reaches its rotation limit angle, the transmission of the driving force is interrupted by the power transmission member before the link mechanism 50l. Excessive stress is prevented from being applied to the wing plate 20 and the link mechanism 50l, and the reduction in the component life of the wing plate 20 and the link mechanism 50l is suppressed. In the present embodiment, the stopper portion 55 c is provided on the fifth gear 55, but the stopper portion on the gear member side of the present invention may be provided on a gear member other than the fifth gear 55. In this embodiment, the gear box 10g is integrally formed with the frame 10 as a part of the frame 10, but the gear box 10g may be a separate body from the frame 10.
(リンク機構)
 図7は、リンク機構50lの揺動動作を図4のC方向から見た図である。図7(a)は羽板20が全開状態のときの透過側面図であり、図7(b)は羽板20が閉状態のときの透過側面図である。以下、図4と図7を参照してリンク機構50lについて説明する。
(Link mechanism)
FIG. 7 is a view of the swinging operation of the link mechanism 50l as viewed from the direction C in FIG. FIG. 7A is a transmission side view when the blade 20 is in a fully open state, and FIG. 7B is a transmission side view when the blade 20 is in a closed state. Hereinafter, the link mechanism 50l will be described with reference to FIGS.
 リンク機構50lは、第1リンク部材56および第2リンク部材57により構成されている。第1リンク部材56は、第5歯車55の駆動力を受けて第2リンク部材57を揺動させ、これにより第2リンク部材57は、3枚の羽板20の第2軸部22を、それら各羽板20の回動中心線aを中心とする円弧上で往復移動させ、各羽板20を回動させる。 The link mechanism 50l includes a first link member 56 and a second link member 57. The first link member 56 receives the driving force of the fifth gear 55 and swings the second link member 57, whereby the second link member 57 moves the second shaft portion 22 of the three blades 20, The vanes 20 are reciprocated on an arc centered on the rotation center line a of the vanes 20 to rotate the vanes 20.
 第1リンク部材56は、2つの略円筒形状の軸受が互いに径方向に連結された部材である。第1リンク部材56は、第5歯車55の軸部55sが嵌合される嵌合穴56bと、第2リンク部材57の連結軸57aを回動可能に支持する軸穴56aとを有している。第1リンク部材56の嵌合穴56bの形状は、第5歯車55の軸部55sの形状に対応している。これにより、軸部55sの平面に切り欠かれた部分が、嵌合穴56bに対して周方向に係合し、第5歯車55と第1リンク部材56とが一体的に回動する。 The first link member 56 is a member in which two substantially cylindrical bearings are connected to each other in the radial direction. The first link member 56 has a fitting hole 56b into which the shaft portion 55s of the fifth gear 55 is fitted, and a shaft hole 56a that rotatably supports the connecting shaft 57a of the second link member 57. Yes. The shape of the fitting hole 56 b of the first link member 56 corresponds to the shape of the shaft portion 55 s of the fifth gear 55. As a result, the portion of the shaft portion 55s cut out in the plane engages with the fitting hole 56b in the circumferential direction, and the fifth gear 55 and the first link member 56 rotate integrally.
 第2リンク部材57は、細長い板状体を主構成とする部材である。第2リンク部材57の羽板20側の面には、3枚の羽板の第2軸部22を回動可能に支持する3つの連結穴57bが形成されており、その反対側の面には、第1リンク部材56の軸穴56aに支持される連結軸57aが第1リンク部材56側に突出している。 The second link member 57 is a member mainly composed of an elongated plate-like body. Three connecting holes 57b that rotatably support the second shaft portion 22 of the three slats are formed on the surface of the second link member 57 on the slat 20 side, and on the opposite surface thereof The connecting shaft 57a supported by the shaft hole 56a of the first link member 56 protrudes toward the first link member 56 side.
 本実施形態のリンク機構50l、羽板20、およびフレーム10は、第1リンク部材56を駆動リンクとし、第2リンク部材57を中間リンク、フレーム10を固定リンク、各羽板20を従動リンクとする4節リンク機構を構成している。これにより、簡易な構造で各羽板20の回動動作を同期させることが可能とされている。 In the link mechanism 50l, the wing plate 20, and the frame 10 of this embodiment, the first link member 56 is a drive link, the second link member 57 is an intermediate link, the frame 10 is a fixed link, and each wing plate 20 is a driven link. The four-bar linkage mechanism is configured. Thereby, it is possible to synchronize the rotation operation of each slat 20 with a simple structure.
 ここで、フレーム10のリンク駆動部材支持部16には、第5歯車55の軸部55sが支持されている。本実施形態におけるフレーム10には、このリンク駆動部材支持部16と、上述の羽板支持部15とが一体成形されている。本実施形態のダンパ装置Dでは、羽板支持部15およびリンク駆動部材支持部16が枠体10と一体成形されていることにより、羽板20とリンク機構50lとの相対的な位置関係を一定に保つことが可能とされている。これにより、寸法誤差や組立誤差によるこれら部材の位置精度への影響が抑えられており、羽板20のスムーズな動作が担保されている。 Here, the shaft portion 55 s of the fifth gear 55 is supported on the link driving member support portion 16 of the frame 10. The link driving member support portion 16 and the wing plate support portion 15 described above are integrally formed on the frame 10 in the present embodiment. In the damper device D of the present embodiment, the relative position relationship between the blade 20 and the link mechanism 50l is constant because the blade support 15 and the link drive member support 16 are integrally formed with the frame 10. It is possible to keep on. Thereby, the influence on the positional accuracy of these members due to dimensional errors and assembly errors is suppressed, and the smooth operation of the slats 20 is ensured.
 また、リンク機構50lは、図1や図4においてリンク機構50lの第2開口部12側がカバー部19で覆われていることからも分かるように、その揺動範囲が、フレーム10の流路部10aの範囲内に収まっている。つまり、本実施形態のリンク機構50lは、その揺動動作の全過程において、フレーム10の外部にその端部が突き出すことがない。これにより、ダンパ装置Dの設置場所の自由度が高められている。 Further, as can be seen from the fact that the second opening 12 side of the link mechanism 50l in FIG. 1 or FIG. It is within the range of 10a. That is, the link mechanism 50l of the present embodiment does not protrude from the end of the frame 10 in the entire process of the swinging operation. Thereby, the freedom degree of the installation place of the damper apparatus D is raised.
 さらに、リンク駆動部材支持部16の軸穴方向、および各羽板支持部15の軸穴方向は、一直線上または平行となる向きに延びている。本実施形態のダンパ装置Dは、これらリンク駆動部材支持部16と各羽板支持部15の軸穴方向が同一方向とされていることにより、モータ40の駆動力を効率的に伝達することができ、また、羽板20のねじれなど、各部材に加わる負荷が抑えられている。 Furthermore, the axial hole direction of the link driving member support part 16 and the axial hole direction of each blade support part 15 extend in a straight line or parallel direction. The damper device D according to the present embodiment can efficiently transmit the driving force of the motor 40 by making the axial hole directions of the link driving member support portion 16 and the blade support portions 15 the same. In addition, the load applied to each member such as twisting of the slat 20 is suppressed.
<変形例>
 以下に、先の実施形態のダンパ装置Dの変形例について説明する。以下の説明では、先の実施形態と同一または同様の構造および機能を有する構成については、先の実施形態と同一の符号を付してその詳細な説明を省略する。
<Modification>
Below, the modification of the damper apparatus D of previous embodiment is demonstrated. In the following description, configurations having the same or similar structures and functions as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and detailed description thereof is omitted.
 図9および図10は、羽板20の変形例を示す模式図である。図9の各羽板20d、および図10の各羽板20eは、それぞれ、第1開口部11に面する基端部b側の部分である基板部25と、第1開口部11を閉じたときに、その図視右側に隣接する羽板20d,20eの基板部25に重なる先端部t側の部分である重なり部26と、により構成されている。図9に示されるように、羽板20dの重なり部26と、その隣接する羽板20dの基板部25との間に設けられた隙間は、冷気の流路を延ばすことで冷気が流通するときの抵抗を増加させ、これにより羽板20dの封止性能を向上させている。なお、これら重なり部26は、隣接する羽板20dの基板部25に接触していてもよい。図10に示される羽板20eの重なり部26には、隣接する羽板20eの基板部25との対向面に、弾性部材27が貼付されている。これにより、羽板20eの重なり部26と、その隣接する羽板20eの基板部25との隙間が塞がれ、羽板20eの封止性能が高められている。 FIG. 9 and FIG. 10 are schematic views showing a modification of the slat 20. Each blade 20d in FIG. 9 and each blade 20e in FIG. 10 closed the first opening 11 and the base plate 25, which is the portion on the base end b side facing the first opening 11, respectively. Sometimes, it is constituted by an overlapping portion 26 that is a portion on the tip end t side that overlaps the substrate portion 25 of the slats 20d, 20e adjacent to the right side in the drawing. As shown in FIG. 9, the gap provided between the overlapping part 26 of the slats 20d and the substrate part 25 of the adjacent slats 20d is when the cold air circulates by extending the flow path of the cold air. Thus, the sealing performance of the slat 20d is improved. Note that these overlapping portions 26 may be in contact with the substrate portions 25 of the adjacent slats 20d. In the overlapping portion 26 of the slat 20e shown in FIG. 10, an elastic member 27 is adhered to the surface of the adjacent slat 20e facing the substrate 25. Thereby, the clearance gap between the overlapping part 26 of the slat 20e and the board | substrate part 25 of the adjacent slat 20e is closed, and the sealing performance of the slat 20e is improved.
 図11は、フレーム10の変形例を示す側面視断面図である。図11は、図3(b)のフレーム10と同方向からフレーム10dを見た図である。本変形例にかかるフレーム10dは、流路部10aを区画するフレーム10gの内壁面10iに、第1開口部11から第2開口部12に向かうにつれて流路が拡径されるテーパが設けられている。内壁面10iにこのようなテーパが設けられていることで、フレーム10dは、例えば結露により流路部10aに水滴が形成されたときに、テーパの傾斜に誘導されて第2開口部12からフレーム10の外に水滴が流れるため、流路部10aに氷が堆積して流体の流路が塞がれたり、羽板20の動作が阻害されたりする不具合を抑えることができる。尚、フレーム10dは、上下方向の流路に配置されるときは、第2開口部12を下に向けて配置され、水平方向の流路に配置されるときは、冷気の上流側に第2開口部12を向けて配置されるものとする。 FIG. 11 is a side sectional view showing a modification of the frame 10. FIG. 11 is a view of the frame 10d viewed from the same direction as the frame 10 of FIG. The frame 10d according to this modification is provided with a taper on the inner wall surface 10i of the frame 10g that divides the flow path portion 10a so that the diameter of the flow path increases from the first opening 11 toward the second opening 12. Yes. By providing such a taper on the inner wall surface 10i, the frame 10d is guided by the inclination of the taper when the water droplets are formed on the flow path portion 10a by, for example, dew condensation. Since water droplets flow outside 10, the problem that ice accumulates in the flow path portion 10a and the flow path of the fluid is blocked or the operation of the slats 20 is hindered can be suppressed. Note that the frame 10d is arranged with the second opening 12 facing downward when arranged in the vertical flow path, and is arranged on the upstream side of the cold air when arranged in the horizontal flow path. It is assumed that the opening 12 is disposed.
 以上、本発明の実施の形態について説明したが、本発明は上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。例えば、上記実施形態では、全ての羽板20を一つのモータ40の駆動力により回動させているが、これら各羽板20を複数のモータ40を用いて回動させる構成などが考えられる。

 
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. For example, in the above-described embodiment, all the blades 20 are rotated by the driving force of one motor 40, but a configuration in which each blade 20 is rotated using a plurality of motors 40 is conceivable.

Claims (14)

  1.  駆動源と、
     複数の羽板と、
     前記各羽板を回動可能に支持する枠体と、
     前記駆動源の駆動力を前記各羽板に伝達しこれら各羽板を回動させる動力伝達機構と、
    を備え、
     前記枠体は、流体の流入口および流出口である一対の開口部を有し、
     前記枠体における、前記一対の開口部を連通している中空部を該枠体の流路部としたときに、
     前記複数の羽板は、前記流路部内に、いずれか一方の前記開口部である第1開口部に沿って、平行に並べて配置されていることを特徴とするダンパ装置。
    A driving source;
    Multiple slats,
    A frame that rotatably supports each of the slats;
    A power transmission mechanism for transmitting the driving force of the driving source to each of the blades and rotating the blades;
    With
    The frame body has a pair of openings that are an inlet and an outlet of a fluid,
    When the hollow portion communicating with the pair of openings in the frame body is used as the flow path portion of the frame body,
    The damper device, wherein the plurality of slats are arranged in parallel along the first opening which is one of the openings in the flow path.
  2.  前記各羽板のその回動中心線に平行な方向の寸法を該羽板の長さとし、前記各羽板の表面または裏面における長さ方向に直交する方向の寸法を該羽板の幅とし、前記流路部における流体の流路方向の寸法を該流路部の高さとしたときに、
     前記流路部の高さは、前記各羽板の幅よりも高いことを特徴とする請求項1に記載のダンパ装置。
    The length in the direction parallel to the rotation center line of each slat is the length of the slat, and the dimension in the direction perpendicular to the length direction on the front or back surface of each slat is the width of the slat. When the dimension of the flow path direction of the fluid in the flow path section is the height of the flow path section,
    The damper device according to claim 1, wherein a height of the flow path portion is higher than a width of each of the blades.
  3.  前記各羽板のその回動中心線に平行な方向の寸法を該羽板の長さとし、前記各羽板の表面または裏面における長さ方向に直交する方向の寸法を該羽板の幅とし、前記流路部における流体の流路方向の寸法を該流路部の高さとしたときに、
     前記流路部の高さは、前記各羽板の幅と同じ、または前記各羽板の幅よりも低いことを特徴とする請求項1に記載のダンパ装置。
    The length in the direction parallel to the rotation center line of each slat is the length of the slat, and the dimension in the direction perpendicular to the length direction on the front or back surface of each slat is the width of the slat. When the dimension of the flow path direction of the fluid in the flow path section is the height of the flow path section,
    2. The damper device according to claim 1, wherein a height of the flow path portion is the same as a width of each of the blades or lower than a width of each of the blades.
  4.  前記動力伝達機構は前記流路部内に配置されたリンク機構を有しており、
     前記リンク機構の揺動範囲は、前記流路部内に収まることを特徴とする請求項1に記載のダンパ装置。
    The power transmission mechanism has a link mechanism arranged in the flow path section,
    The damper device according to claim 1, wherein a swing range of the link mechanism is within the flow path portion.
  5.  前記動力伝達機構は前記流路部内に配置されたリンク機構を有しており、
     前記動力伝達機構はさらに、前記リンク機構に連結されて、前記駆動源の駆動力を前記リンク機構に伝達する部材であるリンク駆動部材を有しており、
     前記枠体は、前記各羽板の支持部である複数の羽板支持部と、前記リンク駆動部材の支持部であるリンク駆動部材支持部とを有しており、
     前記複数の羽板支持部および前記リンク駆動部材支持部は、前記枠体と一体成形されていることを特徴とする請求項1に記載のダンパ装置。
    The power transmission mechanism has a link mechanism arranged in the flow path section,
    The power transmission mechanism further includes a link driving member that is connected to the link mechanism and transmits a driving force of the driving source to the link mechanism.
    The frame body includes a plurality of blade support portions that are support portions of the respective blade plates, and a link drive member support portion that is a support portion of the link drive member,
    2. The damper device according to claim 1, wherein the plurality of blade support parts and the link driving member support part are integrally formed with the frame body.
  6.  前記各羽板のその回動中心線に平行な方向の寸法を該羽板の長さとしたときに、
     前記各羽板の長さ方向の両端には、該長さ方向に突出した軸部である第1軸部が形成されており、
     前記枠体は、前記各羽板の支持部である複数の羽板支持部を有しており、
     前記複数の羽板支持部は、それぞれが前記第1軸部を回動可能に支持する軸受であり、
     前記各羽板の前記一対の羽板支持部のうち、少なくともいずれか一方の前記羽板支持部は、その周方向の一部に、前記第1軸部が該羽板支持部に対して径方向に差し込まれる切欠部である差込口が形成されており、
     前記差込口が形成された前記各羽板支持部のその周方向における該差込口の開口角度は、前記第1開口部における前記各羽板の長さ方向と直交する方向に対して、平行ではなく、かつ直角ではない角度であることを特徴とする請求項1に記載のダンパ装置。
    When the dimension in the direction parallel to the rotation center line of each slat is the length of the slat,
    A first shaft portion that is a shaft portion protruding in the length direction is formed at both ends in the length direction of each slat,
    The frame body has a plurality of blade support portions that are support portions of the blades,
    Each of the plurality of blade support portions is a bearing that rotatably supports the first shaft portion,
    Of the pair of slat support portions of each slat, at least one of the slat support portions is partly in the circumferential direction, and the first shaft portion has a diameter relative to the slat support portion. An insertion port that is a notch that is inserted in the direction is formed,
    The opening angle of the insertion port in the circumferential direction of each slat support formed with the insertion port is in a direction perpendicular to the length direction of each slat in the first opening. The damper device according to claim 1, wherein the damper device has an angle that is not parallel and not a right angle.
  7.  前記一対の開口部は、前記第1開口部と、他方の前記開口部である第2開口部とにより構成され、
     前記流路部を区画する前記枠体の内壁面には、前記第1開口部から前記第2開口部に向かうにつれて流路が拡径されるようにテーパが設けられていることを特徴とする請求項1に記載のダンパ装置。
    The pair of openings includes the first opening and the second opening which is the other opening.
    A taper is provided on an inner wall surface of the frame body that defines the flow path portion so that the diameter of the flow path increases from the first opening toward the second opening. The damper device according to claim 1.
  8.  前記動力伝達機構は前記流路部内に配置されたリンク機構を有しており、
     前記動力伝達機構は、前記リンク機構に連結されて、前記駆動源の駆動力を前記リンク機構に伝達する部材であるリンク駆動部材を有しており、
     前記各羽板のその回動中心線に平行な方向の寸法を該羽板の長さとしたときに、
     前記リンク機構は、前記リンク駆動部材に連結される第1リンク部材と、該第1リンク部材と前記各羽板の長さ方向の一端とを連結する第2リンク部材と、を有することを特徴とする請求項1に記載のダンパ装置。
    The power transmission mechanism has a link mechanism arranged in the flow path section,
    The power transmission mechanism includes a link driving member that is connected to the link mechanism and transmits a driving force of the driving source to the link mechanism.
    When the dimension in the direction parallel to the rotation center line of each slat is the length of the slat,
    The link mechanism includes a first link member connected to the link driving member, and a second link member connecting the first link member and one end in the length direction of each slat. The damper device according to claim 1.
  9.  前記動力伝達機構は前記流路部内に配置されたリンク機構を有しており、
     前記動力伝達機構は、前記リンク機構に連結されて、前記駆動源の駆動力を前記リンク機構に伝達する部材であるリンク駆動部材を有しており、
     前記リンク駆動部材は、歯車部、および出力軸部を有しており、
     前記駆動源の駆動力は、前記動力伝達機構が有する一又は複数の歯車部材により前記リンク駆動部材に伝達され、
     前記リンク駆動部材の歯車部および前記歯車部材はケース体であるギヤボックスに収容されており、
     前記リンク駆動部材の歯車部または前記歯車部材、および前記ギヤボックスは、前記リンク駆動部材が所定の角度位置になったときに、互いに当接して前記駆動力の伝達を遮断するストッパ部を有することを特徴とする請求項1に記載のダンパ装置。
    The power transmission mechanism has a link mechanism arranged in the flow path section,
    The power transmission mechanism includes a link driving member that is connected to the link mechanism and transmits a driving force of the driving source to the link mechanism.
    The link driving member has a gear portion and an output shaft portion,
    The driving force of the driving source is transmitted to the link driving member by one or a plurality of gear members of the power transmission mechanism,
    The gear portion of the link driving member and the gear member are accommodated in a gear box that is a case body,
    The gear portion of the link driving member or the gear member, and the gear box have a stopper portion that abuts against each other and interrupts transmission of the driving force when the link driving member is at a predetermined angular position. The damper device according to claim 1.
  10.  前記動力伝達機構は前記流路部内に配置されたリンク機構を有しており、
     前記動力伝達機構はさらに、前記リンク機構に連結されて、前記駆動源の駆動力を前記リンク機構に伝達する部材であるリンク駆動部材を有しており、
     前記各羽板のその回動中心線に平行な方向の寸法を該羽板の長さとしたときに、
     前記各羽板の長さ方向の両端には、該長さ方向に突出した軸部である第1軸部が形成されており、
     前記枠体は、前記各羽板の支持部である複数の羽板支持部と、前記リンク駆動部材の支持部であるリンク駆動部材支持部とを有しており、
     前記リンク駆動部材支持部は、前記リンク駆動部材を回動可能に支持する軸受であり、
     前記複数の羽板支持部は、それぞれが前記第1軸部を回動可能に支持する軸受であり、
     前記リンク駆動部材支持部の軸穴方向、および前記各羽板支持部の軸穴方向は、一直線上または平行となる向きに延びていることを特徴とする請求項1に記載のダンパ装置。
    The power transmission mechanism has a link mechanism arranged in the flow path section,
    The power transmission mechanism further includes a link driving member that is connected to the link mechanism and transmits a driving force of the driving source to the link mechanism.
    When the dimension in the direction parallel to the rotation center line of each slat is the length of the slat,
    A first shaft portion that is a shaft portion protruding in the length direction is formed at both ends in the length direction of each slat,
    The frame body includes a plurality of blade support portions that are support portions of the respective blade plates, and a link drive member support portion that is a support portion of the link drive member,
    The link drive member support portion is a bearing that rotatably supports the link drive member,
    Each of the plurality of blade support portions is a bearing that rotatably supports the first shaft portion,
    2. The damper device according to claim 1, wherein an axial hole direction of the link driving member support part and an axial hole direction of each blade support part extend in a straight line or parallel direction.
  11.  前記枠体は、前記各羽板の支持部である複数の羽板支持部を有しており、
     前記各羽板の長さ方向の両端には、該長さ方向に突出し、前記羽板支持部に支持される軸部である第1軸部が形成されており、
     前記各羽板の長さ方向の一端には、該長さ方向に突出し、前記第2リンク部材に連結される軸部である第2軸部が形成されており、
     前記各羽板の表面または裏面における長さ方向に直交する方向の寸法を該羽板の幅としたときに、
     前記第1軸部および前記第2軸部は、前記各羽板の幅方向における両端に配置されていることを特徴とする請求項8に記載のダンパ装置。
    The frame body has a plurality of blade support portions that are support portions of the blades,
    At both ends in the length direction of each of the slats, a first shaft part that is a shaft part that protrudes in the length direction and is supported by the slat plate support part is formed,
    At one end in the length direction of each of the slats, a second shaft portion that is a shaft portion protruding in the length direction and connected to the second link member is formed,
    When the dimension in the direction perpendicular to the length direction on the front or back surface of each slat is the width of the slat,
    The damper device according to claim 8, wherein the first shaft portion and the second shaft portion are disposed at both ends in the width direction of the blades.
  12.  前記駆動源はステッピングモータであることを特徴とする請求項1に記載のダンパ装置。 The damper device according to claim 1, wherein the driving source is a stepping motor.
  13.  前記各羽板のその回動中心線に平行な方向の寸法を該羽板の長さとし、前記各羽板の表面または裏面における長さ方向に直交する方向の寸法を該羽板の幅とし、前記各羽板の幅方向における、該羽板の回動中心線側の端部を該羽板の基端部、その反対側の端部を該羽板の先端部としたときに、
     前記複数の羽板は、その回動動作により前記第1開口部を開閉し、
     前記各羽板は、前記第1開口部を閉じたときに、その隣接する前記羽板の基端部にその先端部が重なることを特徴とする請求項1に記載のダンパ装置。
    The length in the direction parallel to the rotation center line of each slat is the length of the slat, and the dimension in the direction perpendicular to the length direction on the front or back surface of each slat is the width of the slat. When the end of the slat in the width direction of each slat is the base end of the slat and the opposite end is the tip of the slat,
    The plurality of slats open and close the first opening by its rotation operation,
    2. The damper device according to claim 1, wherein when each of the slats closes the first opening, a tip end part of the slat overlaps with a base end part of the adjacent slats.
  14.  前記各羽板のその回動中心線に平行な方向の寸法を該羽板の長さとし、前記各羽板の表面または裏面における長さ方向に直交する方向の寸法を該羽板の幅とし、前記各羽板の幅方向における、該羽板の回動中心線側の端部を該羽板の基端部、その反対側の端部を該羽板の先端部としたときに、
     前記各羽板の先端部は弾性部材からなることを特徴とする請求項1に記載のダンパ装置。

     
    The length in the direction parallel to the rotation center line of each slat is the length of the slat, and the dimension in the direction perpendicular to the length direction on the front or back surface of each slat is the width of the slat. When the end of the slat in the width direction of each slat is the base end of the slat and the opposite end is the tip of the slat,
    The damper device according to claim 1, wherein a tip portion of each slat is made of an elastic member.

PCT/JP2017/019318 2016-05-30 2017-05-24 Damper device WO2017208920A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780033228.2A CN109312974A (en) 2016-05-30 2017-05-24 Throttle setting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016107712A JP6764258B2 (en) 2016-05-30 2016-05-30 Damper device
JP2016-107712 2016-05-30

Publications (1)

Publication Number Publication Date
WO2017208920A1 true WO2017208920A1 (en) 2017-12-07

Family

ID=60478606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019318 WO2017208920A1 (en) 2016-05-30 2017-05-24 Damper device

Country Status (4)

Country Link
JP (1) JP6764258B2 (en)
CN (1) CN109312974A (en)
TW (1) TWI725179B (en)
WO (1) WO2017208920A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212031A1 (en) * 2017-05-16 2018-11-22 日本電産サンキョー株式会社 Damper device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6734226B2 (en) * 2017-05-16 2020-08-05 パナソニック株式会社 Damper device
JP6734225B2 (en) * 2017-05-16 2020-08-05 パナソニック株式会社 Damper device
TWI760137B (en) * 2021-03-09 2022-04-01 香港商彗創工程有限公司 Air dampers and extractors

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS483015U (en) * 1971-05-27 1973-01-13
JPS555081U (en) * 1978-06-26 1980-01-14
JPS60125437U (en) * 1984-01-31 1985-08-23 松下精工株式会社 Shutter unit linked to ventilation fan
JPS60191877U (en) * 1984-05-29 1985-12-19 三菱電機株式会社 Refrigeration equipment
JPH0210866U (en) * 1988-07-06 1990-01-24
JPH053015U (en) * 1991-07-02 1993-01-19 三菱自動車工業株式会社 Vehicle side ventilator
JP2002240392A (en) * 2001-02-20 2002-08-28 Sharp Corp Electronic apparatus system
JP2009180325A (en) * 2008-01-31 2009-08-13 Nidec Sankyo Corp Geared motor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434343Y2 (en) * 1988-10-17 1992-08-17
TWM476826U (en) * 2013-10-02 2014-04-21 Uangyih-Tech Industrial Co Ltd Backdraft damper with adjustable angle and counterweight adjustment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS483015U (en) * 1971-05-27 1973-01-13
JPS555081U (en) * 1978-06-26 1980-01-14
JPS60125437U (en) * 1984-01-31 1985-08-23 松下精工株式会社 Shutter unit linked to ventilation fan
JPS60191877U (en) * 1984-05-29 1985-12-19 三菱電機株式会社 Refrigeration equipment
JPH0210866U (en) * 1988-07-06 1990-01-24
JPH053015U (en) * 1991-07-02 1993-01-19 三菱自動車工業株式会社 Vehicle side ventilator
JP2002240392A (en) * 2001-02-20 2002-08-28 Sharp Corp Electronic apparatus system
JP2009180325A (en) * 2008-01-31 2009-08-13 Nidec Sankyo Corp Geared motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212031A1 (en) * 2017-05-16 2018-11-22 日本電産サンキョー株式会社 Damper device

Also Published As

Publication number Publication date
CN109312974A (en) 2019-02-05
JP6764258B2 (en) 2020-09-30
TW201741608A (en) 2017-12-01
JP2017215066A (en) 2017-12-07
TWI725179B (en) 2021-04-21

Similar Documents

Publication Publication Date Title
WO2017208920A1 (en) Damper device
JP2011515277A (en) Slat deployment mechanism
JP2019052687A (en) Damper device
KR100977322B1 (en) A damper apparatus
US20080166254A1 (en) Hydraulic device
JP6748603B2 (en) Damper device
JP6908459B2 (en) Damper device
JP6734226B2 (en) Damper device
JPH06241550A (en) Wind-direction adjustment device
WO2018212031A1 (en) Damper device
CN211503184U (en) Air guide blade, air guide assembly, panel assembly and air conditioner of air conditioner
JP6734225B2 (en) Damper device
CN209586790U (en) Flow control device and air blower
JP2008261521A (en) Damper device
CN113982978A (en) Air duct rotating mechanism, indoor unit and air conditioner
JP6634250B2 (en) Rocking device
JP2008089206A (en) Blow out opening structure of air conditioner
JP6914136B2 (en) Damper device
CN219413660U (en) Fire-proof valve capable of automatically controlling rotation angle
EP3045791A1 (en) Vibration tolerant butterfly valve
KR200433039Y1 (en) kitchen and indoor ventilation facilities of upward air supply and exhaust type in a community dwelling house, and three way damper to be used therein
JP6843608B2 (en) Gear unit and cold damper
JP4025923B2 (en) Air volume control damper and building ventilation structure using the same
US20210396424A1 (en) Butterfly flap reduction gear
JPH10299840A (en) Orthogonal shaft gear reducer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806477

Country of ref document: EP

Kind code of ref document: A1