WO2017208833A1 - Scroll-type fluid machine - Google Patents

Scroll-type fluid machine Download PDF

Info

Publication number
WO2017208833A1
WO2017208833A1 PCT/JP2017/018604 JP2017018604W WO2017208833A1 WO 2017208833 A1 WO2017208833 A1 WO 2017208833A1 JP 2017018604 W JP2017018604 W JP 2017018604W WO 2017208833 A1 WO2017208833 A1 WO 2017208833A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
tip seal
seal
spiral
groove
Prior art date
Application number
PCT/JP2017/018604
Other languages
French (fr)
Japanese (ja)
Inventor
金敬 宮澤
聡 伊能
Original Assignee
サンデン・オートモーティブコンポーネント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブコンポーネント株式会社 filed Critical サンデン・オートモーティブコンポーネント株式会社
Publication of WO2017208833A1 publication Critical patent/WO2017208833A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present invention relates to a scroll type fluid machine, and more particularly to a scroll type fluid machine having a tip seal assembled in a groove formed at a tip portion of a wrap.
  • the scroll type fluid machine includes a fixed scroll and a movable scroll that each have a bottom plate and a spiral wrap standing on the bottom plate and mesh with each other.
  • a working chamber (sealed space) for the working fluid is defined between the laps of the two scrolls engaged with each other.
  • the scroll type fluid machine compresses or compresses the fluid by changing the volume of the working chamber by rotating orbiting the movable scroll around the center axis of the fixed scroll while preventing the rotation of the movable scroll by the rotation prevention mechanism. Inflate.
  • a scroll type compressor described in Patent Document 1 is known.
  • a tip seal is disposed in a groove formed in a spiral shape along the tip of each lap of the fixed scroll and the movable scroll.
  • the clearance of the center axis extending direction between the two scrolls is the other scroll in which the one end surface (contact surface) in the thickness direction protruding from the tip surface of the wrap in the tip seal disposed in the groove of one scroll faces. It is adjusted to press the bottom plate. Therefore, the one end surface in the thickness direction of the chip seal presses the bottom plate with a uniform pressing force over the whole from one end to the other end in the spiral extending direction.
  • An object of the present invention is to provide a scroll type fluid machine capable of improving the sealing performance for a specific region.
  • a scroll type fluid machine includes a fixed scroll and a movable scroll each having a bottom plate and a spiral wrap standing on the bottom plate and meshed with each other, and at least one of the two scrolls.
  • a spiral tip seal By disposing a spiral tip seal in a plan view in a groove formed at the tip of the wrap, a working fluid working chamber is defined between the wraps of both scrolls.
  • the tip seal has a shape in which the height position in the spiral central axis extending direction continuously changes from one end side to the other end side in the spiral extending direction.
  • the tip seal expands and contracts in the spiral central axis extending direction when an external force in the spiral central axis extending direction is applied.
  • the tip seal is assembled into the groove and the bottom surface of the tip seal facing the bottom surface of the groove extends from one end to the other end in the spiral extending direction in a state where the external force is not applied. It is formed so as to be located inside.
  • the tip seal has a shape in which the height position in the spiral central axis extending direction is continuously changed from one end side to the other end side in the spiral extending direction.
  • the tip seal is formed so that the height position of the tip seal is higher than the other portions in a portion corresponding to a specific region such as the center side or the outer end side where the scroll sealing performance needs to be improved. can do.
  • the pressing force from the chip seal to the bottom plate in the specific area of the scroll becomes higher than the pressing force in the other areas, and the sealing performance for the specific area can be improved.
  • the tip seal is configured to expand and contract in the spiral center axis extending direction (that is, the center axis extending direction of both scrolls) when an external force in the spiral center axis extending direction is applied, the entire tip seal is arranged in the spiral center axis. It functions as a spring that expands and contracts in the stretching direction.
  • an error manufactured error
  • the error is reduced by the extension allowance in the direction of extension of the center axis of the spiral of the tip seal. Can be absorbed within range. Therefore, it is not necessary to initialize the clearance with high accuracy.
  • the tip seal is assembled in the groove and the bottom surface of the tip seal facing the bottom surface of the groove is the groove extending from one end to the other end in the spiral extending direction while no external force is applied in the spiral central axis extending direction. It is formed so as to be located inside. That is, the tip seal is formed with the height position restricted so that the entire end surface (chip seal bottom surface) facing the bottom surface of the groove is located in the groove. As a result, the tip seal is formed in a shape in which the height position in the direction of extension of the spiral central axis changes in a free state where no external force is applied (that is, a natural length as a spring). Sometimes the entire end face can be placed in the groove at the same time.
  • the chip seal can be assembled into the groove in the same procedure as the conventional planar chip seal. In this way, it is possible to improve the sealing performance for a specific area of the scroll while reducing the management accuracy of the clearance in the direction of extension of the central axis between the two scrolls without reducing the workability of assembling the tip seal.
  • a scroll-type fluid machine can be provided.
  • FIG. 1 is a cross-sectional view showing the overall configuration
  • FIG. 2 is a perspective view of the movable scroll viewed from the lap side.
  • a scroll fluid machine 1 hereinafter referred to as a scroll compressor 1 according to the present embodiment includes a scroll unit 4 having a fixed scroll 2 and a movable scroll 3 which are arranged to face each other and mesh with each other. I have.
  • the fixed scroll 2 has a bottom plate 2a and a spiral wrap 2b standing on the bottom plate 2a.
  • the movable scroll 3 has a bottom plate 3a and a spiral wrap 3b standing on the bottom plate 3a, like the fixed scroll 2.
  • the two scrolls 2 and 3 mesh with each other, and the leading end of the wrap 2b of the fixed scroll 2 is close to the bottom plate 3a of the movable scroll 3, and the leading end of the wrap 3b of the movable scroll 3 is the fixed scroll 2. It arrange
  • the scrolls 2 and 3 are arranged such that the side walls of the wraps 2b and 3b are partially in contact with each other with the circumferential angles of the wraps 2b and 3b being shifted from each other.
  • tip seal grooves 2c and 3c are formed at the tip ends of the wraps 2b and 3b of the scrolls 2 and 3, respectively.
  • the chip seal grooves 2c and 3c have a generally concave cross-sectional shape and continuously extend in the spiral extending direction of the wraps 2b and 3b. In the chip seal grooves 2c and 3c, spiral chip seals 40 are respectively assembled in plan view.
  • a scroll compressor 1 which partitions a working fluid working chamber 5 between the wraps 2b and 3c.
  • the working chamber 5 is formed in a crescent shape between the wraps 2b and 3b.
  • the chip seal grooves 2c and 3c are “grooves” according to the present invention.
  • the tip seal 40 assembled in the tip seal groove 3c of the movable scroll 3 will be referred to as a movable-side tip seal 41
  • the tip seal 40 assembled in the tip seal groove 2c of the fixed scroll 2 will be referred to as a fixed-side tip.
  • This is called a seal 42.
  • the shapes of the movable side tip seal 41 and the fixed side tip seal 42 will be described in detail later.
  • the movable scroll 3 is revolved around the central axis X1 of the fixed scroll 2 by a drive mechanism and a rotation prevention mechanism 30 described later, and rotation is prevented.
  • the working chamber 5 formed between the wraps 2b and 3b is moved from the outer peripheral part (outer end part) of the wraps 2b and 3b toward the center part, and the volume thereof is changed in the reduction direction. . Therefore, the working fluid (for example, refrigerant gas) taken into the working chamber 5 from the outer peripheral side of the wraps 2b and 3b is compressed.
  • the scroll unit 4 compresses and discharges the working fluid introduced from the outer peripheral side of the scroll unit 4 in the working chamber 5.
  • the working chamber 5 is moved from the central part of the wraps 2b and 3b toward the outer periphery, while its volume changes in the increasing direction, and from the central part side of the wraps 2b and 3b.
  • the housing of the scroll compressor 1 includes, for example, a center housing 6 that encloses the scroll unit 4, a front housing 7 that is disposed on the front side, and a rear housing 8 that is disposed on the rear side.
  • the center housing 6 is formed as a casing (outer shell) of the scroll unit 4 integrally with the bottom plate 2 a of the fixed scroll 2.
  • the fixed scroll 2 and the center housing 6 may be separate members, and the fixed scroll 2 may be housed and fixed in the center housing 6.
  • the center housing 6 is closed on the rear side by the bottom plate 2a and opened on the front side.
  • the front housing 7 is fastened to the opening side of the center housing 6 by bolts (not shown).
  • the front housing 7 supports the movable scroll 3 in the thrust direction and houses a drive mechanism for the movable scroll 3.
  • the suction chamber 9 is connected to a suction port (not shown) formed on the outer wall of the front housing 7.
  • the front housing 7 and the center housing 6 extend in a direction parallel to the compressor central axis (for example, the central axis X1 of the fixed scroll 2), and from the suction chamber 9 on the front housing 7 side to the scroll on the center housing 6 side.
  • a fluid passage space 10 for guiding the working fluid is formed in the vicinity of the outer peripheral portions of the laps 2b and 3b of the unit 4.
  • the rear housing 8 is fastened to the bottom plate 2a side of the fixed scroll 2 in the center housing 6 by an appropriate fastening means (not shown) such as a bolt, and the working fluid discharge chamber 11 is formed between the rear housing 8 and the back surface of the bottom plate 2a.
  • a compressed fluid discharge hole 12 is formed at the center of the bottom plate 2 a of the fixed scroll 2, and a one-way valve 13 is attached to the discharge hole 12.
  • the discharge hole 12 is connected to the discharge chamber 11 via a one-way valve 13.
  • the discharge chamber 11 is connected to a discharge port (not shown) formed on the outer wall of the rear housing 8.
  • the working fluid is introduced into the suction chamber 9 in the front housing 7 from the suction port (not shown), and is wrapped from the outer peripheral side of the scroll unit 4 via the fluid passage space 10 of the front housing 7 and the center housing 6. It is taken into the working chamber 5 formed by the contact of 2b and 3b, and used for compression.
  • the compressed fluid is discharged from a discharge hole 12 opened at the center of the bottom plate 2a of the fixed scroll 2 to a discharge chamber 11 in the rear housing 8, and from the discharge chamber 11 through the discharge port (not shown). Derived externally.
  • the front housing 7 faces the rear surface of the bottom plate 3a of the movable scroll 3 on the inner side of the outer peripheral portion fastened to the opening side of the center housing 6 by bolts (not shown), and applies the thrust force from the movable scroll 3 to the thrust plate 14.
  • a thrust receiving portion 15 is provided for receiving via the.
  • the front housing 7 rotatably supports a drive shaft 20 that forms the core of the drive mechanism of the movable scroll 3 at the center.
  • One end portion side of the drive shaft 20 protrudes outside the front housing 7.
  • a pulley 22 is attached to one end of the drive shaft 20 via an electromagnetic clutch 21. Accordingly, the drive shaft 20 is rotationally driven by the rotational driving force input from the pulley 22 via the electromagnetic clutch 21.
  • the other end portion side of the drive shaft 20 is connected to the movable scroll 3 via a crank mechanism.
  • the crank mechanism is eccentrically attached to a cylindrical boss portion 23 formed on the back surface of the bottom plate 3a of the movable scroll 3 and a crank 24 provided at the end of the drive shaft 20 in an eccentric state.
  • a bush 25 is fitted inside the boss portion 23 via a bearing 26.
  • a balancer weight 27 is attached to the eccentric bush 25 so as to face the centrifugal force during the operation of the movable scroll 3.
  • the rotation prevention mechanism 30 is provided with a plurality (for example, four) of rotation prevention parts 33 including a circular hole 31 formed on the back surface of the bottom plate 3 a of the movable scroll 3 and a pin 32 engaged with the circular hole 31.
  • the circular hole 31 is formed in an end surface portion of the bottom plate 3a facing the thrust receiving portion 15 of the front housing 7.
  • the pin 32 protrudes on the thrust receiving portion 15 side of the front housing 7 and penetrates the thrust plate 14 to engage with the circular hole 31.
  • the rotation preventing portions 33 are arranged at equal intervals along the circumferential direction in the vicinity of the outer peripheral edge of the back surface of the bottom plate 3 a of the movable scroll 3.
  • the movable scroll 3 can revolve around the axis of the fixed scroll 2 without rotating.
  • the operation of the scroll compressor 1 having such a configuration will be briefly described.
  • the pulley 22 is rotated by a rotational driving force from the outside, the drive shaft 20 is rotated through the electromagnetic clutch 21, and the movable scroll 3 is rotated through the crank mechanism while the rotation preventing mechanism 30 prevents the rotation of the fixed scroll 2.
  • FIG. 3 is a perspective view of the movable-side chip seal 41 and is shown with the contact end surface 40 a contacting the bottom plate 2 a of the fixed scroll 2 facing upward.
  • the movable-side chip seal 41 and the fixed-side chip seal 42 are each formed in accordance with the shape of the corresponding chip seal groove (3c, 2c). That is, as shown in FIGS.
  • the movable tip seal 41 is formed in a spiral shape in plan view in accordance with the shape of the tip seal groove 3 c of the movable scroll 3.
  • the fixed-side chip seal 42 is formed in a spiral shape in plan view in accordance with the shape of the chip seal groove 2 c of the fixed scroll 2.
  • both the movable side chip seal 41 and the fixed side chip seal 42 are simply referred to as a chip seal 40.
  • the tip seal 40 has a shape in which the height position of the spiral central axis X2 in the extending direction continuously changes from one end side to the other end side in the spiral extending direction W.
  • the spiral central axis X2 of the tip seal 40 extends parallel to the central axis X1 of the fixed scroll 2 shown in FIG.
  • the tip seal 40 has elasticity that expands and contracts in the direction of extension of the spiral center axis X2 when an external force in the direction of extension of the spiral center axis X2 is applied. That is, the entire tip seal 40 functions as a spring that expands and contracts in the direction of extension of the spiral central axis X2.
  • the tip seal 40 is assembled in the tip seal grooves 2c and 3c and the tip seal bottom surface 40b facing the bottom surfaces 2d and 3d of the tip seal grooves 2c and 3c is in the spiral extending direction W in a state where the external force is not applied.
  • the tip seal 40 protrudes from the front end surfaces 2e and 3e of the corresponding wraps 2b and 3b with the contact end surface 40a extending from one end to the other end in the spiral extending direction W. Is formed.
  • the chip seal 40 is formed to have a rectangular cross section having a substantially constant thickness and a width corresponding to the groove width of the corresponding chip seal grooves 2c, 3c, and as a whole in a spiral shape. Is formed.
  • the tip seal 40 is assembled into the corresponding tip seal grooves 2c and 3c and the tip seal bottom surface 40b is in the spiral extending direction outer end portion W1 side to the central portion W2 side in a state where the external force is not loaded.
  • the corresponding tip seal grooves 2c and 3c are wound in a spiral shape away from the bottom surfaces 2d and 3d. That is, the movable side chip seal 41 will be described in detail with reference to FIG. 3.
  • the chip seal bottom surface 40b facing the bottom surface 3d of the chip seal groove 3c is swirled in a state where the external force is not applied.
  • the fixed-side tip seal 42 has a tip seal bottom surface 40b opposed to the bottom surface 2d of the tip seal groove 2c in a state where the external force is not applied, and a central portion W2 from the outer end W1 side in the spiral extending direction. It forms so that it may leave
  • FIG. 4 is a conceptual diagram for explaining the change in the height position at a to h of the movable side tip seal 41
  • FIG. 5 is an assembled state of the movable side tip seal 41 in the tip seal groove 3c.
  • FIG. 6 is a conceptual diagram showing a change in pressing force when the movable tip seal 41 is in use. As shown in FIG.
  • the tip seal bottom surface 40b at the outer end W1 in the spiral extension direction is a reference surface H0 (indicated by a two-dot chain line in the drawing) at the height position in the spiral central axis X2, 41 is formed so that the distance from the reference plane H0 increases as it goes from the outer end W1 side to the center W2 side (that is, from the a side to the h side) in the spiral extending direction in the single product state. Yes. Further, as shown in FIG. 5, the movable tip seal 41 is assembled into the tip seal groove 3c in the assembled state, and the chip facing the bottom surface 3d of the chip seal groove 3c in a state where the external force is not loaded.
  • the seal bottom surface 40b is formed so as to move away from the bottom surface 3d of the chip seal groove 3c as it goes from the a side to the h side.
  • the surface on the bottom plate 2 a side of the movable tip seal 41 that is, the contact end surface 40 a that contacts the bottom plate 2 a protrudes above the front end surface 3 e of the wrap 3 b of the movable scroll 3.
  • the movable tip seal 41 has the tip seal bottom surface 40b positioned in the tip seal groove 3c from the one end to the other end in the spiral extending direction W, and the contact The contact end surface 40a is formed so as to protrude from the tip end surface 3e of the wrap 3b over the whole from one end to the other end in the spiral extending direction W. That is, the distance L (see FIG. 4) between the tip seal bottom surface 40b and the reference surface H0 that is farthest from the reference surface H0 is smaller than the groove depth D (see FIG. 5) of the tip seal groove 3c. (L ⁇ D). As shown in FIG.
  • the movable-side chip seal 41 is in use, for example, its abutting end surface 40 a abuts against the bottom plate 2 a of the fixed scroll 2 and its tip-sealed bottom surface 40 b is the tip of the movable scroll 3. It is in contact with the bottom surface 3d of the seal groove 3c.
  • the movable-side tip seal 41 is contracted from the external force no-load state (free state) shown in FIGS. 4 and 5 in the spiral central axis X2 extending direction, and the contact end surface 40a is moved from one end of the spiral extending direction W to the other. It protrudes from the front end surface 3e of the wrap 3b over the entire end.
  • the contraction margin of the movable tip seal 41 with respect to the direction of extension of the spiral central axis X2 increases as it goes from the outer end W1 side to the center W2 side (from the a side to the h side).
  • the magnitude of the pressing force P with which the movable side chip seal 41 presses the bottom plate 2a of the fixed scroll 2 is determined by the spiral extending direction.
  • the size increases from the outer end W1 side toward the central portion W2 side.
  • the fixed-side chip seal 42 is also formed so that the distance from the reference plane H0 increases as it goes from the outer end portion W1 side in the spiral extending direction toward the central portion W2 side in a single product state.
  • the reference numerals “2a” and “3d” and “3d” shown in FIG. By replacing with 2b and 2c respectively, it can be expressed conceptually.
  • the fixed-side chip seal 42 is assembled into the chip seal groove 2c, and the chip seal bottom surface 40b facing the bottom surface 2d of the chip seal groove 2c is from the a side in a state where the external force is not loaded.
  • the tip seal groove 2c is formed so as to move away from the bottom surface 2d toward the h side.
  • the contact end surface 40a of the fixed-side chip seal 42 protrudes upward from the front end surface 2e of the wrap 2b.
  • the fixed-side tip seal 42 has the tip seal bottom surface 40b positioned in the tip seal groove 2c from one end to the other end in the spiral extending direction W, and the The contact end surface 40a is formed so as to protrude from the tip end surface 2e of the wrap 2b over the whole from one end to the other end in the spiral extending direction W.
  • the reference numeral “2a” shown in FIG. 6 is replaced with “3a”, and the other reference numerals are replaced in the same manner as in the assembled state. Therefore, it can be expressed conceptually.
  • the fixed-side chip seal 42 has, for example, a contact end surface 40a that contacts the bottom plate 3a of the movable scroll 3, and a chip seal bottom surface 40b that contacts the bottom surface 2d of the chip seal groove 2c. .
  • the fixed-side tip seal 42 contracts from the no-load state (free state) in the spiral central axis X2 extending direction, and the contact end surface 40a extends from one end to the other end in the spiral extending direction W. It protrudes from the front end surface 2e of the wrap 2b. Therefore, the shrinkage allowance of the fixed-side chip seal 42 in the direction of extension of the spiral central axis X2 increases from the outer end W1 side in the spiral extension direction toward the central portion W2.
  • the magnitude of the pressing force P with which the fixed side tip seal 42 presses the bottom plate 3a of the movable scroll 3 is also similar to the movable side tip seal 41 from the outer end W1 side in the spiral extending direction to the central portion W2 side. It gets bigger as you go.
  • the tip seal 40 (movable tip seal 41, fixed tip seal 42) has a height position in the direction of extension of the spiral central axis X2 from the one end side of the spiral extension direction W. Since it has a shape that continuously changes toward the other end side, the height position of the tip seal 40 in a portion corresponding to a specific region that needs to be improved in the sealing performance of the scroll unit 4 is higher than other portions.
  • the tip seal 40 can be formed.
  • the pressing force from the tip seal 40 to the bottom plates 2a and 3a in the specific region of the scroll unit 4 becomes higher than the pressing force in other regions, and the sealing performance for the specific region can be improved.
  • the tip seal 40 is configured to expand and contract in the spiral center axis X2 extending direction (that is, the center axis X1 extending direction of both scrolls) when an external force in the spiral center axis X2 extending direction is applied.
  • each of the movable side tip seal 41 and the fixed side tip seal 42 functions as a spring that expands and contracts in the extending direction of the spiral central axis X2.
  • the tip seal 40 is assembled into the tip seal grooves 2c and 3c and the bottom surface 2d of the tip seal grooves 2c and 3c is not loaded with an external force in the direction of extension of the spiral central axis X2.
  • the chip seal bottom surface 40b facing 3d is formed so as to be located in the corresponding chip seal grooves 2c and 3c over the whole from one end to the other end in the spiral extending direction W. That is, the tip seal 40 is formed such that the distance L is smaller than the groove depth D of the tip seal grooves 2c and 3c (L ⁇ D). In other words, the tip seal 40 is formed with the height position restricted so that the entire tip seal bottom surface 40b facing the bottom surfaces 2d and 3d is located in the chip seal grooves 2c and 3c.
  • FIG. 7 is a side view of a tip seal 40 ′ produced by making the distance L of the tip seal 40 larger than the depth D of the tip seal grooves 2c and 3c, for example.
  • FIG. 8 is a conceptual diagram showing an assembled state of the chip seal 40 ′ shown in FIG. 7 to the chip seal grooves 2c and 3c
  • FIG. 9 is a conceptual diagram showing a usage state of the chip seal 40 ′ shown in FIG. FIG.
  • the tip seal 40 ′ (L> D) is manufactured with a larger amount of change in height (ie, distance L) than the tip seal 40 (L ⁇ D) in this embodiment. Has been.
  • this chip seal 40 ′ is assembled to the chip seal groove 3c (2c), as shown in FIG.
  • the two scrolls 2, 3 in a state where the tip seal bottom surface 40'b side edge of the chip seal 40 'is in contact with the tip surface 3e (2e) of the chip seal groove 3c (2c). Is assumed to be fastened. In this case, the remaining portions (d to h) of the chip seal 40 ′ are not normally assembled in the chip seal groove 3c (2c) and may be damaged as shown in FIG. Is done. Further, in the state of FIG. 9, it is assumed that a gap is generated between the contact end face 40a and the bottom plate 2a (3a) in a part (ac) of the chip seal 40 ′.
  • the chip seal 40 is manufactured with L> D set, problems such as poor assembly, breakage, and poor seal may occur.
  • L ⁇ D is set in the chip seal 40 according to the present embodiment, as described above, the entire chip seal bottom surface 40b is attached to the chip seal grooves 2c and 3c as described above. At the same time, it can be disposed in the tip seal grooves 2c, 3c. Therefore, in this state, the scrolls 2 and 3 are assembled, and as shown in FIG. 6, the chip seal 40 can be used in a state of being normally assembled in the chip seal groove 3c (2c). it can. That is, it is possible to reliably prevent the occurrence of problems such as the above-described assembly failure, breakage, and seal failure.
  • the seal of a specific region of the scroll unit 4 is reduced while reducing the management accuracy of the clearance in the direction of extension of the central axis X1 between the scrolls 2 and 3 without reducing the workability of assembling the tip seal 40.
  • a scroll compressor 1 as a scroll type fluid machine capable of improving the performance.
  • the tip seal 40 is assembled into the tip seal grooves 2c and 3c and the tip seal bottom surface 40b is in the spiral extending direction outer end portion W1 side to the central portion W2 side in a state where the external force is not loaded.
  • the tip seal grooves 2c and 3c are wound in a spiral shape away from the bottom surfaces 2d and 3d.
  • the tip seal 40 has a spiral shape in which the tip seal bottom surface 40b is spaced apart from the bottom surfaces 2d and 3d of the tip seal grooves 2c and 3c as the tip seal bottom surface 40b moves from the outer end W1 side in the spiral extending direction toward the center portion W2.
  • the present invention is not limited to this. For example, as shown in FIGS.
  • the chip seal 40 is assembled in the chip seal grooves 2c and 3c and the chip is not loaded with the external force.
  • the seal bottom surface 40b may be wound in a spiral shape approaching the bottom surfaces 2d and 3d of the chip seal grooves 2c and 3c as it goes from the outer end W1 side in the spiral extending direction toward the center portion W2.
  • the sealing performance of the working chamber 5 in the outer peripheral portion (a side) of the scroll unit 4, that is, the low pressure region is improved by the tip seal 40. Can be made.
  • the tip seal 40 is lifted (FIGS. 4 and 5) or lowered (FIGS. 10 and 10) in one direction from the outer end W1 side in the spiral extending direction toward the center W2 side. 11) It is assumed that it is formed in a spiral shape.
  • the present invention is not limited to this, and a change point that changes from an upward trend to a downward trend may be provided. Specifically, for example, as shown in FIGS. 13 and 14 showing an example of the movable tip seal 41, the tip seal 40 is assembled in the tip seal grooves 2c and 3c and the external force is not loaded.
  • the tip seal bottom surface 40b changes from a tendency to approach the bottom surface 2d, 3d of the chip seal grooves 2c, 3c to a tendency to leave. It may be wound to have a point.
  • the outer peripheral portion (a side) and the central portion (h side) of the scroll unit 4, that is, the working chambers in the low pressure region and the high pressure region. 5 can be improved. Thereby, it is possible to easily construct a seal structure using the tip seal 40 capable of improving the compression capability in the low-speed rotation region while improving the sealing performance in the high-pressure region.
  • the tip seal bottom surface 40b when the tip seal bottom surface 40b is formed so as to change from the tendency to approach the bottom surfaces 2d and 3d of the chip seal grooves 2c and 3c at the changing point of the chip seal 40.
  • the tip seal grooves 2c and 3c may be formed so as to change from a tendency to move away from the bottom surfaces 2d and 3d.
  • the change points may be provided at a plurality of locations separated in the spiral extension direction W.
  • the tip seal grooves 2c and 3c are formed at the front ends of the wraps 2b and 3b of the scrolls 2 and 3, respectively. What is necessary is just to be formed in at least one of the 2 and 3 wraps 2b and 3b.
  • the tip seal 40 may be disposed in the tip seal grooves 2c and 3c formed at the tip of at least one lap 2b and 3b of the scrolls 2 and 3. Further, as in the present embodiment, when the chip seals are disposed in the chip seal grooves 2c and 3c of the scrolls 2 and 3, respectively, the chip seal 40 according to the present embodiment is employed for only one chip seal, and the other As for the tip seal, a flat tip seal similar to the conventional one may be adopted.
  • the scroll type fluid machine 1 is described as applied to a compressor. However, the present invention is not limited to this, and the scroll fluid machine 1 can also be applied to an expander.
  • the preferred embodiments of the present invention and the modifications thereof have been described above, but the present invention is not limited to the above-described embodiments and modifications, and various modifications and changes can be made based on the technical idea of the present invention. Is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Provided is a scroll-type fluid machine with which it is possible to improve sealing properties in a specific area of the scroll while reducing management accuracy of clearance in the direction of extension of the central axis between both scrolls, and without detriment to the ease with which a tip seal can be fitted. The tip seal 40 has a shape in which the height position in the direction of extension of the coil central axis X2 changes continuously from one end W1 to the other end W2 in the coil extension direction. If an external load is applied in the direction of extension of the coil central axis X2, the tip seal 40 extends in the direction of extension of the coil central axis X2. The tip seal 40 is formed in such a manner that in a state of being fitted inside the tip seal groups 2c, 3c and without external force being applied, the tip seal bottom surface 40b that faces the bottom surfaces 2d, 3d of the tip seal grooves 2c, 3c is positioned inside the tip seal grooves 2c, 3c over the entirety from one end W1 to the other end W2 in the direction of extension of the coil.

Description

スクロール型流体機械Scroll type fluid machinery
 本発明は、スクロール型流体機械に関し、詳しくは、ラップの先端部に形成される溝に組付けられるチップシールを有するスクロール型流体機械に関する。 The present invention relates to a scroll type fluid machine, and more particularly to a scroll type fluid machine having a tip seal assembled in a groove formed at a tip portion of a wrap.
 スクロール型流体機械は、底板とこの底板に立設される渦巻状のラップとをそれぞれ有し互いに噛み合わされる固定スクロール及び可動スクロールを備えている。この互いに噛み合わされる両スクロールのラップ間には、作動流体の作動室(密閉空間)が区画されている。そして、このスクロール型流体機械は、自転阻止機構により可動スクロールの自転を阻止しつつ可動スクロールを固定スクロールの中心軸周りに公転旋回運動させることにより、作動室の容積を変化させて流体を圧縮又は膨張させるものである。
 この種のスクロール型流体機械としては、例えば、特許文献1に記載されているスクロール型圧縮機が知られている。このスクロール型圧縮機では、固定スクロール及び可動スクロールの各ラップの先端部に沿って渦巻状に形成された溝に、チップシールが配置されている。そして、両スクロール間の中心軸延伸方向のクリアランスは、一方のスクロールの前記溝内に配置されたチップシールにおけるラップの先端面から突出した厚み方向一端面(当接面)が対向する他方のスクロールの底板を押圧するように調整されている。したがって、チップシールの前記厚み方向一端面は、その渦巻延伸方向一端から他端までの全体に亘って均一な押圧力で底板を押圧している。
The scroll type fluid machine includes a fixed scroll and a movable scroll that each have a bottom plate and a spiral wrap standing on the bottom plate and mesh with each other. A working chamber (sealed space) for the working fluid is defined between the laps of the two scrolls engaged with each other. The scroll type fluid machine compresses or compresses the fluid by changing the volume of the working chamber by rotating orbiting the movable scroll around the center axis of the fixed scroll while preventing the rotation of the movable scroll by the rotation prevention mechanism. Inflate.
As this type of scroll type fluid machine, for example, a scroll type compressor described in Patent Document 1 is known. In this scroll compressor, a tip seal is disposed in a groove formed in a spiral shape along the tip of each lap of the fixed scroll and the movable scroll. And the clearance of the center axis extending direction between the two scrolls is the other scroll in which the one end surface (contact surface) in the thickness direction protruding from the tip surface of the wrap in the tip seal disposed in the groove of one scroll faces. It is adjusted to press the bottom plate. Therefore, the one end surface in the thickness direction of the chip seal presses the bottom plate with a uniform pressing force over the whole from one end to the other end in the spiral extending direction.
特開2002−285980号公報JP 2002-285980 A
 ところで、この種のスクロール型圧縮機においては、チップシールに対して、スクロールの中央部側における作動室のシール性の向上が求められる場合や、低速回転域における圧縮能力の向上を優先してスクロールの外端部(外周部)側における作動室のシール性の向上が求められる場合がある。
 しかしながら、特許文献1に記載されたスクロール型圧縮機では、チップシールの前記厚み方向一端面は渦巻延伸方向一端から他端までの全体に亘って均一な押圧力で底板を押圧しているため、スクロールの中央部側や外端部側等の特定領域についてのシール性を向上させることができないという問題がある。また、特許文献1に記載されたスクロール型圧縮機では、作動室のシール性を適切に確保するために、両スクロール間の中心軸延伸方向のクリアランスを精度よく初期設定する必要があり、クリアランス管理に手間がかかるという問題もある。そして、この種のスクロール型圧縮機では、チップシールを両スクロールのラップの溝にそれぞれ組付けなければならないため、チップシールの溝への組付け作業は熟練を要するものである。そのため、前記問題を解決するにあたって、チップシールの組付けの作業性が低下するものであってはならない。また、スクロール型圧縮機に限らず、スクロール型膨張機においても、同様の問題がある。
 本発明は、このような実情に着目してなされたものであり、チップシールの組付け作業性を低下させることなく、両スクロール間の中心軸延伸方向のクリアランスについての管理精度を低減しつつスクロールの特定領域についてのシール性を向上させることが可能なスクロール型流体機械を提供することを目的とする。
By the way, in this type of scroll compressor, when the tip seal is required to improve the sealing performance of the working chamber on the center side of the scroll, the scroll is given priority to the improvement of the compression capability in the low speed rotation region. In some cases, it is required to improve the sealing performance of the working chamber on the outer end (outer peripheral portion) side.
However, in the scroll compressor described in Patent Document 1, the one end surface in the thickness direction of the tip seal presses the bottom plate with a uniform pressing force from one end to the other end in the spiral extending direction. There is a problem that the sealing performance for a specific region such as the center side or the outer end side of the scroll cannot be improved. Further, in the scroll compressor described in Patent Document 1, it is necessary to accurately set the clearance in the direction of extension of the central axis between both scrolls in order to appropriately secure the sealability of the working chamber, and clearance management There is also a problem that it takes time and effort. In this type of scroll compressor, since the chip seal must be assembled in the grooves of the laps of both scrolls, the assembling operation of the chip seal into the grooves requires skill. Therefore, in solving the above problem, the workability of assembling the chip seal should not be lowered. Further, the same problem occurs not only in the scroll type compressor but also in the scroll type expander.
The present invention has been made paying attention to such a situation, and the scroll while reducing the management accuracy of the clearance in the central axis extending direction between both scrolls without reducing the workability of assembling the tip seal. An object of the present invention is to provide a scroll type fluid machine capable of improving the sealing performance for a specific region.
 本発明の一側面によるスクロール型流体機械は、底板と該底板に立設される渦巻状のラップとをそれぞれ有し互いに噛み合わされる固定スクロール及び可動スクロールを備え、両スクロールのうちの少なくとも一方の前記ラップの先端部に形成される溝内に平面視で渦巻状のチップシールを配置することにより、両スクロールの前記ラップ間に作動流体の作動室を区画する。前記チップシールは、その渦巻中心軸延伸方向についての高さ位置が渦巻延伸方向一端側から他端側に向って連続的に変化した形状を有する。そして、前記チップシールは、前記渦巻中心軸延伸方向の外力が負荷された場合、前記渦巻中心軸延伸方向に伸縮する。さらに、前記チップシールは、前記溝内へ組付けられ且つ前記外力が負荷されない状態で、前記溝の底面に対向するチップシール底面が前記渦巻延伸方向一端から他端までの全体に亘って前記溝内に位置するように形成されている。 A scroll type fluid machine according to one aspect of the present invention includes a fixed scroll and a movable scroll each having a bottom plate and a spiral wrap standing on the bottom plate and meshed with each other, and at least one of the two scrolls. By disposing a spiral tip seal in a plan view in a groove formed at the tip of the wrap, a working fluid working chamber is defined between the wraps of both scrolls. The tip seal has a shape in which the height position in the spiral central axis extending direction continuously changes from one end side to the other end side in the spiral extending direction. The tip seal expands and contracts in the spiral central axis extending direction when an external force in the spiral central axis extending direction is applied. Further, the tip seal is assembled into the groove and the bottom surface of the tip seal facing the bottom surface of the groove extends from one end to the other end in the spiral extending direction in a state where the external force is not applied. It is formed so as to be located inside.
 本発明の一側面によるスクロール型流体機械によれば、チップシールはその渦巻中心軸延伸方向についての高さ位置が渦巻延伸方向一端側から他端側に向って連続的に変化した形状を有するため、スクロールのシール性の向上を必要とする中央部側や外端部側等の特定領域に対応する部分についてのチップシールの前記高さ位置が他の部分より高くなるように、チップシールを形成することができる。その結果、スクロールの特定領域におけるチップシールから底板への押圧力が他の領域の押圧力より高くなり、その特定領域についてのシール性を向上させることができる。
 また、チップシールは、渦巻中心軸延伸方向の外力が負荷された場合、渦巻中心軸延伸方向(つまり、両スクロールの中心軸延伸方向)に伸縮する構成であるため、チップシール全体が渦巻中心軸延伸方向に伸縮するバネとして機能する。その結果、両スクロール間の中心軸延伸方向について、実際のクリアランスと目標のクリアランスとの間に誤差(製造誤差)が生じたとしても、その誤差をチップシールの渦巻中心軸延伸方向の伸縮代の範囲内で吸収することができる。したがって、クリアランスを精度よく初期設定する必要がない。
 そして、チップシールは、溝内へ組付けられ且つ渦巻中心軸延伸方向の外力が負荷されない状態で、溝の底面に対向するチップシール底面が渦巻延伸方向一端から他端までの全体に亘って溝内に位置するように形成されている。つまり、チップシールは、溝の底面に対向するその一端面(チップシール底面)の全体が溝内に位置するように、前記高さ位置を制約して形成されている。その結果、チップシールは、外力が負荷されない自由状態(つまりバネとして自然長の状態)において、渦巻中心軸延伸方向の高さ位置が変化する形状で形成されているが、溝内への組付け時に、その一端面の全体を同時に溝内に配置することができる。したがって、従来の平面的なチップシールと同様の手順で、チップシールを溝に組付けることができる。
 このようにして、チップシールの組付け作業性を低下させることなく、両スクロール間の中心軸延伸方向のクリアランスについての管理精度を低減しつつスクロールの特定領域についてのシール性を向上させることが可能なスクロール型流体機械を提供することができる。
According to the scroll type fluid machine of one aspect of the present invention, the tip seal has a shape in which the height position in the spiral central axis extending direction is continuously changed from one end side to the other end side in the spiral extending direction. The tip seal is formed so that the height position of the tip seal is higher than the other portions in a portion corresponding to a specific region such as the center side or the outer end side where the scroll sealing performance needs to be improved. can do. As a result, the pressing force from the chip seal to the bottom plate in the specific area of the scroll becomes higher than the pressing force in the other areas, and the sealing performance for the specific area can be improved.
Further, since the tip seal is configured to expand and contract in the spiral center axis extending direction (that is, the center axis extending direction of both scrolls) when an external force in the spiral center axis extending direction is applied, the entire tip seal is arranged in the spiral center axis. It functions as a spring that expands and contracts in the stretching direction. As a result, even if an error (manufacturing error) occurs between the actual clearance and the target clearance in the direction of extension of the central axis between the two scrolls, the error is reduced by the extension allowance in the direction of extension of the center axis of the spiral of the tip seal. Can be absorbed within range. Therefore, it is not necessary to initialize the clearance with high accuracy.
The tip seal is assembled in the groove and the bottom surface of the tip seal facing the bottom surface of the groove is the groove extending from one end to the other end in the spiral extending direction while no external force is applied in the spiral central axis extending direction. It is formed so as to be located inside. That is, the tip seal is formed with the height position restricted so that the entire end surface (chip seal bottom surface) facing the bottom surface of the groove is located in the groove. As a result, the tip seal is formed in a shape in which the height position in the direction of extension of the spiral central axis changes in a free state where no external force is applied (that is, a natural length as a spring). Sometimes the entire end face can be placed in the groove at the same time. Therefore, the chip seal can be assembled into the groove in the same procedure as the conventional planar chip seal.
In this way, it is possible to improve the sealing performance for a specific area of the scroll while reducing the management accuracy of the clearance in the direction of extension of the central axis between the two scrolls without reducing the workability of assembling the tip seal. A scroll-type fluid machine can be provided.
本実施形態のスクロール型流体機械の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the scroll type fluid machine of this embodiment. 前記スクロール型流体機械の可動スクロールをラップ側から視た斜視図である。It is the perspective view which looked at the movable scroll of the said scroll type fluid machine from the lap side. 前記スクロール型流体機械のチップシールの斜視図である。It is a perspective view of the chip seal of the scroll type fluid machine. 前記チップシールの高さ位置の変化を説明するための概念図である。It is a conceptual diagram for demonstrating the change of the height position of the said chip seal. 図4に示すチップシールの溝への組付け状態を示した概念図である。It is the conceptual diagram which showed the assembly | attachment state to the groove | channel of the chip seal shown in FIG. 図5に示すチップシールの使用状態における押圧力の変化を示した概念図である。It is the conceptual diagram which showed the change of the pressing force in the use condition of the chip seal shown in FIG. 前記高さ位置の変化を大きくして製作されたチップシールの側面図である。It is a side view of the chip seal manufactured by enlarging the change in the height position. 図7に示すチップシールの溝への組付け状態を示した概念図である。It is the conceptual diagram which showed the assembly | attachment state to the groove | channel of the chip seal shown in FIG. 図8に示すチップシールの使用状態を示した概念図である。It is the conceptual diagram which showed the use condition of the chip seal | sticker shown in FIG. 前記チップシールの変形例を説明するための概念図である。It is a conceptual diagram for demonstrating the modification of the said chip seal. 図10に示すチップシールの溝への組付け状態を示した概念図である。It is the conceptual diagram which showed the assembly | attachment state to the groove | channel of the chip seal shown in FIG. 図11に示すチップシールの使用状態における押圧力の変化を示した概念図である。It is the conceptual diagram which showed the change of the pressing force in the use condition of the chip seal shown in FIG. 前記チップシールの別の変形例を説明するための概念図である。It is a conceptual diagram for demonstrating another modification of the said chip seal. 図13に示すチップシールの溝への組付け状態を示した概念図である。It is the conceptual diagram which showed the assembly | attachment state to the groove | channel of the chip seal shown in FIG. 図14に示すチップシールの使用状態における押圧力の変化を示した概念図である。It is the conceptual diagram which showed the change of the pressing force in the use condition of the chip seal | sticker shown in FIG.
 以下、本発明の実施形態について、添付図面を参照して詳細に説明する。なお、本発明に係るスクロール型流体機械は、圧縮機或いは膨張機として使用することができるが、本実施形態では圧縮機に適用した場合を一例に挙げて説明する。
 図1~図3は本実施形態のスクロール型流体機械の構成を示しており、図1は全体構成を示す断面図、図2はラップ側から視た可動スクロールの斜視図である。
 本実施形態に係るスクロール型流体機械(以下において、スクロール型圧縮機という)1は、図1に示すように、対向配置されて互いに噛み合わされる固定スクロール2及び可動スクロール3を有するスクロールユニット4を備えている。固定スクロール2は、底板2aと、この底板2aに立設される渦巻状のラップ2bを有する。可動スクロール3は、図2に示すように、固定スクロール2と同様に、底板3aと、この底板3aに立設される渦巻状のラップ3bとを有する。
 両スクロール2、3は、互いにラップ2b、3bを噛み合わせ、固定スクロール2のラップ2bの先端部が可動スクロール3の底板3aに近接し、可動スクロール3のラップ3bの先端部が固定スクロール2の底板2aに近接するように配設される。詳しくは、両スクロール2、3は、両ラップ2b、3bの周方向の角度が互いにずれた状態で、両ラップ2b、3bの側壁が互いに部分的に接触するように配設されている。
 また、両スクロール2,3のラップ2b、3bの先端部には、チップシール溝2c、3cがそれぞれ形成されている。このチップシール溝2c、3cは、概ね凹状断面形状を有し、ラップ2b、3bの渦巻延伸方向に連続して延びている。そして、このチップシール溝2c、3c内には、平面視で渦巻状のチップシール40がそれぞれ組付けられている。
 このように、両スクロール2、3のラップ2b、3bの先端部に形成されるチップシール溝2c、3c内に平面視で渦巻状のチップシール40をそれぞれ配置することにより、両スクロール2、3のラップ2b、3c間に作動流体の作動室5を区画するスクロール型圧縮機1が構成されている。
 詳しくは、作動室5は、両ラップ2b、3b間に三日月状に区画形成される。なお、本実施形態では、前記チップシール溝2c、3cが本発明に係る「溝」である。また、以下では、可動スクロール3のチップシール溝3c内に組付けられるチップシール40を可動側チップシール41といい、固定スクロール2のチップシール溝2c内に組付けられるチップシール40を固定側チップシール42という。この可動側チップシール41及び固定側チップシール42の形状については、後に詳述する。
 可動スクロール3は、駆動機構と後述する自転阻止機構30により、固定スクロール2の中心軸X1回りに公転運動され、自転が阻止される。これにより、両ラップ2b、3b間に形成される作動室5が、両ラップ2b、3bの外周部(外端部)から中央部へ向かて移動されつつ、その容積が縮小方向に変化する。従って、ラップ2b、3bの外周部側から作動室5内に取込まれた作動流体(例えば冷媒ガス)が圧縮される。このように、本実施形態では、スクロールユニット4は、その外周部側から導入される前記作動流体を作動室5により圧縮して吐出する。
 なお、膨張機の場合には、作動室5が逆にラップ2b、3bの中央部から外周部へ向かって移動されつつ、その容積が増大方向に変化し、ラップ2b、3bの中央部側から作動室5内に取込まれた流体が膨張される。つまり、この場合は、スクロールユニット4は、その中央部側から導入される前記作動流体を作動室5により膨張させて吐出する。
 スクロール型圧縮機1のハウジングは、例えば、スクロールユニット4を内包するセンターハウジング6と、その前側に配置されるフロントハウジング7と、後側に配置されるリアハウジング8とから構成されている。
 センターハウジング6は、本実施形態では、固定スクロール2の底板2aと一体にスクロールユニット4の筐体部(外殻シェル)として形成されている。但し、固定スクロール2とセンターハウジング6とを別部材として、センターハウジング6内に固定スクロール2を収納固定する構造としてもよい。センターハウジング6は、リア側が底板2aにより閉止され、フロント側が開口している。
 フロントハウジング7は、センターハウジング6の開口部側にボルト(図示省略)により締結される。フロントハウジング7は、可動スクロール3をスラスト方向に支持すると共に、可動スクロール3の駆動機構を収納している。
 フロントハウジング7の内部には、上記作動流体の吸入室9が形成されている。この吸入室9は、フロントハウジング7の外壁に形成される吸入ポート(図示省略)に接続されている。
 フロントハウジング7及びセンターハウジング6には、圧縮機中心軸(例えば、固定スクロール2の中心軸X1)と平行な方向に延在して、フロントハウジング7側の吸入室9からセンターハウジング6側のスクロールユニット4の両ラップ2b、3bの外周部付近へ、上記作動流体を案内する流体通路空間10が形成されている。
 リアハウジング8は、センターハウジング6における固定スクロール2の底板2a側にボルト等の適宜の締結手段(図示省略)により締結され、底板2a背面との間に上記作動流体の吐出室11を形成している。固定スクロール2の底板2aの中央部には、圧縮流体の吐出孔12が形成され、吐出孔12には一方向弁13が付設されている。吐出孔12は、一方向弁13を介して吐出室11に接続される。吐出室11は、リアハウジング8の外壁に形成される吐出ポート(図示省略)に接続されている。
 上記作動流体は、図示省略した前記吸入ポートからフロントハウジング7内の吸入室9に導入され、フロントハウジング7及びセンターハウジング6の流体通路空間10を経由して、スクロールユニット4の外周部側からラップ2b,3bの接触により形成される作動室5内に取込まれ、圧縮に供される。圧縮された流体は、固定スクロール2の底板2aの中央部に開口された吐出孔12から、リアハウジング8内の吐出室11に吐出され、この吐出室11から図示省略した前記吐出ポートを介して外部に導出される。
 フロントハウジング7は、センターハウジング6の開口部側にボルト(図示省略)により締結される外周部の内側に、可動スクロール3の底板3a背面と対向し可動スクロール3からのスラスト力を、スラストプレート14を介して受けるスラスト受け部15を有する。
 また、フロントハウジング7は、中央部に可動スクロール3の駆動機構の中核をなす駆動軸20を回転可能に支持している。駆動軸20の一端部側はフロントハウジング7外に突出している。この駆動軸20の一端部に、電磁クラッチ21を介してプーリ22が取付けられている。従って、プーリ22から電磁クラッチ21を介して入力される回転駆動力により、駆動軸20が回転駆動される。駆動軸20の他端部側は、クランク機構を介して可動スクロール3に連結されている。
 前記クランク機構は、本実施形態では、可動スクロール3の底板3a背面に突出形成された円筒状のボス部23と、駆動軸20の端部に設けられたクランク24に偏心状態で取付けられた偏心ブッシュ25と、を含んで構成されている。前記偏心ブッシュ25は、ボス部23の内部に軸受26を介して嵌合されている。なお、偏心ブッシュ25には、可動スクロール3の動作時の遠心力に対向するバランサウエイト27が取付けられている。
 自転阻止機構30は、可動スクロール3の底板3a背面に形成された円形穴31と、円形穴31に係合するピン32とで構成される自転阻止部33を、複数(例えば4個)配置して構成されている。円形穴31は、詳しくは、底板3aにおけるフロントハウジング7のスラスト受け部15に対向する端面部位に形成されている。また、ピン32は、フロントハウジング7のスラスト受け部15側に突設され、スラストプレート14を貫通して円形穴31に係合する。この自転阻止部33は、可動スクロール3の底板3a背面の外周縁近傍の周方向に沿って等間隔に配置されている。なお、自転阻止部33は、少なくとも3個以上あれば、可動スクロール3は自転をすることなく固定スクロール2の軸心周りに公転旋回運動することができる。
 かかる構成のスクロール型圧縮機1の動作について簡単に説明する。
 外部からの回転駆動力によりプーリ22が回転すると、電磁クラッチ21を介して駆動軸20が回転し、クランク機構を介して可動スクロール3が、自転阻止機構30により自転が阻止されつつ固定スクロール2の軸心周りに公転旋回運動する。可動スクロール3の公転旋回運動により、流体(冷媒ガス)が吸入ポートから吸入室9及び流体通路空間10を経由してスクロールユニット4のラップ2b、3b間の作動室5内に取込まれ、作動室5の容積の縮小変化によって圧縮された流体は、固定スクロール2中央部の吐出孔12から吐出室11に吐出される。吐出室11に吐出された流体は、吐出ポートを介して外部に導出される。
 次に、本実施形態のチップシール40(可動側チップシール41及び固定側チップシール42)について、図1~図3を参照して説明する。図3は、可動側チップシール41の斜視図であり、固定スクロール2の底板2aに当接する当接端面40aを上にして示されている。
 可動側チップシール41と固定側チップシール42は、それぞれ、対応するチップシール溝(3c、2c)の形状に合わせて形成されている。つまり、可動側チップシール41は、図2及び図3に示すように、可動スクロール3のチップシール溝3cの形状に合わせて、平面視で渦巻状に形成されている。また、固定側チップシール42は、固定スクロール2のチップシール溝2cの形状に合わせて、平面視で渦巻状に形成されている。以下において、可動側チップシール41と固定側チップシール42について、共通の構成を説明する場合は、可動側チップシール41及び固定側チップシール42のいずれも、単に、チップシール40という。
 チップシール40は、その渦巻中心軸X2延伸方向についての高さ位置が渦巻延伸方向W一端側から他端側に向って連続的に変化した形状を有している。チップシール40の渦巻中心軸X2は図1に示す固定スクロール2の中心軸X1と平行に延伸する。チップシール40は、渦巻中心軸X2延伸方向の外力が負荷された場合、渦巻中心軸X2延伸方向に伸縮する弾性を有している。つまり、チップシール40全体が渦巻中心軸X2延伸方向に伸縮するバネとして機能する。また、チップシール40は、チップシール溝2c、3c内へ組付けられ且つ前記外力が負荷されない状態で、チップシール溝2c、3cの底面2d、3dに対向するチップシール底面40bが渦巻延伸方向W一端から他端までの全体に亘ってチップシール溝2c、3c内に位置するように形成されている。また、この外力無負荷状態で、チップシール40は、その当接端面40aが渦巻延伸方向W一端から他端までの全体に亘って対応するラップ2b、3bの先端面2e、3eから突出するように形成されている。
 本実施形態では、チップシール40は、略一定の厚みを有すると共に対応するチップシール溝2c、3cの溝幅に合わせた幅を有する矩形断面を有して形成され、全体としてはつる巻状に形成されている。
 具体的には、チップシール40は、対応するチップシール溝2c、3c内へ組付けられ且つ前記外力が負荷されない状態で、チップシール底面40bが渦巻延伸方向外端部W1側から中央部W2側に向かうにしたがって対応するチップシール溝2c、3cの底面2d、3dから離れるつる巻状に巻回されている。
 つまり、図3を参照して、可動側チップシール41について詳述すると、可動側チップシール41は、前記外力が負荷されない状態で、チップシール溝3cの底面3dに対向するチップシール底面40bが渦巻延伸方向外端部W1側から中央部W2側に向うにしたがって、底面3dから離れるように形成されている。また、図示を省略するが、固定側チップシール42は、前記外力が負荷されない状態で、チップシール溝2cの底面2dに対向するチップシール底面40bが渦巻延伸方向外端部W1側から中央部W2側に向うにしたがって、底面2dから離れるように形成されている。
 次に、可動側チップシール41を一例に挙げて、チップシール40の前記高さ位置の変化、組付け状態、及び、使用状態について、図4~図6を参照して詳述する。
 図4~図6は、図3に示す渦巻延伸方向Wに位置をずらしたa~hにおける可動側チップシール41の断面をそれぞれ示している。詳しくは、図4は可動側チップシール41のa~hにおける前記高さ位置の変化を説明するための概念図であり、図5は可動側チップシール41のチップシール溝3cへの組付け状態を示した概念図であり、図6は可動側チップシール41の使用状態における押圧力の変化を示した概念図である。
 図4に示すように、渦巻延伸方向外端部W1におけるチップシール底面40bを渦巻中心軸X2方向の高さ位置の基準面H0(図中、二点鎖線で示す)とすると、可動側チップシール41は、単品の状態において、渦巻延伸方向外端部W1側から中央部W2側に向う(つまり、a側からh側に向う)にしたがって、基準面H0からの距離が離れるように形成されている。
 また、図5に示すように、可動側チップシール41は、組付け状態では、チップシール溝3c内へ組付けられ且つ前記外力が負荷されない状態で、チップシール溝3cの底面3dに対向するチップシール底面40bがa側からh側に向うにしたがって、チップシール溝3cの底面3dから離れるように形成されている。この状態で、可動側チップシール41における底板2a側の面(つまり、底板2aに当接する当接端面40a)は、可動スクロール3のラップ3bの先端面3eより上方に突出している。また、この外力無負荷の組付け状態で、可動側チップシール41は、チップシール底面40bが渦巻延伸方向W一端から他端までの全体に亘ってチップシール溝3c内に位置すると共に、その当接端面40aが渦巻延伸方向W一端から他端までの全体に亘ってラップ3bの先端面3eから突出するように形成されている。つまり、基準面H0から一番離れている部分のチップシール底面40bと基準面H0との間の距離L(図4参照)が、チップシール溝3cの溝深さD(図5参照)より小さくなるように設定(L<D)されている。
 そして、図6に示すように、可動側チップシール41は、使用状態では、例えば、その当接端面40aが固定スクロール2の底板2aに当接すると共に、そのチップシール底面40bが可動スクロール3のチップシール溝3cの底面3dに当接している。この使用状態において、可動側チップシール41は、図4及び図5に示す外力無負荷状態(自由状態)から渦巻中心軸X2延伸方向に縮まると共に、当接端面40aが渦巻延伸方向W一端から他端までの全体に亘ってラップ3bの先端面3eから突出している。つまり、可動側チップシール41の渦巻中心軸X2延伸方向についての縮まり代は、渦巻延伸方向外端部W1側から中央部W2側に向う(a側からh側に向う)にしたがって大きくなる。その結果、図6に、各断面(a~h)において上向き矢印Pで示したように、可動側チップシール41が固定スクロール2の底板2aを押圧する押圧力Pの大きさは、渦巻延伸方向外端部W1側から中央部W2側に向うにしたがって大きくなる。
 また、図示を省略したが、固定側チップシール42の前記高さ位置の変化については、図4に示す符号「2a」を「3a」に、同じく符号「3d」を「2d」に読み替えることにより、概念的に表すことができる。つまり、固定側チップシール42についても、単品の状態において、渦巻延伸方向外端部W1側から中央部W2側に向うにしたがって、基準面H0からの距離が離れるように形成されている。
 そして、図示を省略したが、固定側チップシール42の組付け状態については、図5に示す符号「2a」を「3a」に、「3d」を「2d」に読み替えると共に、符号3b、3cをそれぞれ2b、2cに読み替えることにより、概念的に表すことができる。つまり、固定側チップシール42は、組付け状態では、チップシール溝2c内へ組付けられ且つ前記外力が負荷されない状態で、チップシール溝2cの底面2dに対向するチップシール底面40bがa側からh側に向うにしたがって、チップシール溝2cの底面2dから離れるように形成されている。この状態で、固定側チップシール42における当接端面40aは、ラップ2bの先端面2eより上方に突出している。また、この外力無負荷の組付け状態で、固定側チップシール42は、チップシール底面40bが渦巻延伸方向W一端から他端までの全体に亘ってチップシール溝2c内に位置すると共に、その当接端面40aが渦巻延伸方向W一端から他端までの全体に亘ってラップ2bの先端面2eから突出するように形成されている。
 さらに、図示を省略したが、固定側チップシール42の使用状態については、図6に示す符号「2a」を「3a」に読み替えると共に、他の符号を上記組付け状態の場合と同じように読み替えることにより、概念的に表すことができる。つまり、固定側チップシール42は、使用状態では、例えば、その当接端面40aが可動スクロール3の底板3aに当接すると共に、そのチップシール底面40bがチップシール溝2cの底面2dに当接している。この使用状態において、固定側チップシール42は、外力無負荷状態(自由状態)から渦巻中心軸X2延伸方向に縮まると共に、当接端面40aが渦巻延伸方向W一端から他端までの全体に亘ってラップ2bの先端面2eから突出している。したがって、固定側チップシール42の渦巻中心軸X2延伸方向についての縮まり代は、渦巻延伸方向外端部W1側から中央部W2側に向うにしたがって大きくなる。その結果、固定側チップシール42が可動スクロール3の底板3aを押圧する押圧力Pの大きさについても、可動側チップシール41と同様に、渦巻延伸方向外端部W1側から中央部W2側に向うにしたがって大きくなる。
 本実施形態によるスクロール型圧縮機1によれば、チップシール40(可動側チップシール41、固定側チップシール42)はその渦巻中心軸X2延伸方向についての高さ位置が渦巻延伸方向W一端側から他端側に向って連続的に変化した形状を有するため、スクロールユニット4のシール性の向上を必要とする特定領域に対応する部分についてのチップシール40の前記高さ位置が他の部分より高くなるように、チップシール40を形成することができる。その結果、スクロールユニット4の特定領域におけるチップシール40から底板2a、3aへの押圧力が他の領域の押圧力より高くなり、その特定領域についてのシール性を向上させることができる。
 また、チップシール40は、渦巻中心軸X2延伸方向の外力が負荷された場合、渦巻中心軸X2延伸方向(つまり、両スクロールの中心軸X1延伸方向)に伸縮する構成である。このため、可動側チップシール41と固定側チップシール42のそれぞれが渦巻中心軸X2延伸方向に伸縮するバネとして機能する。その結果、両スクロール2、3間の中心軸X1(つまりX2)延伸方向について、実際のクリアランスと、目標のクリアランスとの間に誤差(製造誤差)が生じたとしても、その誤差をチップシール40の渦巻中心軸X2延伸方向の伸縮代の範囲内で吸収することができる。したがって、クリアランスを精度よく初期設定する必要がない。
 そして、チップシール40は、図5に示すように、チップシール溝2c、3c内へ組付けられ且つ渦巻中心軸X2延伸方向の外力が負荷されない状態で、チップシール溝2c、3cの底面2d、3dに対向するチップシール底面40bが渦巻延伸方向W一端から他端までの全体に亘って対応するチップシール溝2c、3c内に位置するように形成されている。つまり、チップシール40は、前記距離Lがチップシール溝2c、3cの溝深さDより小さくなるように形成されている(L<D)。言い換えると、チップシール40は、底面2d、3dに対向するそのチップシール底面40bの全体がチップシール溝2c、3c内に位置するように、前記高さ位置を制約して形成されている。その結果、チップシール40は、外力が負荷されない自由状態において、渦巻中心軸X2延伸方向の高さ位置が変化する形状で形成されているが、チップシール溝2c、3c内への組付け時に、そのチップシール底面40bの全体を同時にチップシール溝2c、3c内に配置することができる。したがって、従来の平面的なチップシールと同様の手順で、チップシール40をチップシール溝2c、3cに組付けることができる。
 この組付けについて、図7~図9を参照して詳述する。
 図7は、例えば、チップシール40の前記距離Lをチップシール溝2c、3cの深さDよりも大きく製作したチップシール40’の側面図である。図8は、図7に示すチップシール40’のチップシール溝2c、3cへの組付け状態を示した概念図であり、図9は図8に示すチップシール40’の使用状態を示した概念図である。
 図7に示すように、チップシール40’(L>D)は、本実施形態におけるチップシール40(L<D)よりもその高さ位置の変化量(つまり、距離L)を大きくして製作されている。このチップシール40’をチップシール溝3c(2c)へ組付けた場合、図8に示すように、チップシール底面40’bの一部(図では、a~c)のみがチップシール溝3c(2c)内に位置し、残りの部分(図では、d~h)はチップシール溝3c(2c)内に位置せず自由な状態になっている。そして、図8の状態で、両スクロール2、3を噛み合わせるように組立てる必要がある。この組立て時に、チップシール40’の当接端面40aが底板2a(3a)により押圧されてその距離Lが小さくなる。しかし、この組立て時において、作業者はチップシール40’のうちの自由な状態になっている部分(前記残りの部分)が正常にチップシール溝3c(2c)内に組付けられているかを視認することはできない(又は困難)である。したがって、図9に示すように、例えば、チップシール40’のチップシール底面40’b側のエッジがチップシール溝3c(2c)の先端面3e(2e)に当たった状態で両スクロール2、3が締結されてしまう場合が想定される。この場合、チップシール40’の前記残りの部分(d~h)は、図9に示すように、チップシール溝3c(2c)内に正常に組付けられない上、破損してしまう場合も想定される。さらに、図9の状態では、チップシール40’の一部(a~c)では、当接端面40aと底板2a(3a)の間に隙間が生じることも想定される。つまり、L>Dに設定してチップシールを製作すると、組付け不良、破損及びシール不良等の不具合が生じる可能性がある。
 この点について、本実施形態に係るチップシール40では、L<Dに設定されているため、前述したように、チップシール溝2c、3c内への組付け時に、そのチップシール底面40bの全体を同時にチップシール溝2c、3c内に配置することができる。そのため、この状態で、両スクロール2、3の組立を行い、図6に示したように、チップシール40をチップシール溝3c(2c)内に正常に組付けた状態で使用状態とすることができる。つまり、上記組付け不良、破損及びシール不良等の不具合の発生を確実に防止することができる。
 このようにして、チップシール40の組付け作業性を低下させることなく、両スクロール2、3間の中心軸X1延伸方向のクリアランスについての管理精度を低減しつつスクロールユニット4の特定領域についてのシール性を向上させることが可能なスクロール型流体機械としてのスクロール型圧縮機1を提供することができる。
 また、本実施形態では、チップシール40は、チップシール溝2c、3c内へ組付けられ且つ前記外力が負荷されない状態で、チップシール底面40bが渦巻延伸方向外端部W1側から中央部W2側に向かうにしたがってチップシール溝2c、3cの底面2d、3dから離れるつる巻状に巻回される。これにより、スクロールユニット4の中央部(図4ではh側)、つまり、高圧領域における作動室5のシール性を向上させる場合に好適なチップシール40を用いたシール構造を容易に構築することができる。
 なお、本実施形態では、チップシール40は、チップシール底面40bが渦巻延伸方向外端部W1側から中央部W2側に向うにしたがってチップシール溝2c、3cの底面2d、3dから離れるつる巻状に巻回される場合で説明したが、これに限らない。
 例えば、可動側チップシール41の一例に挙げて示した図10及び図11に示すように、チップシール40は、チップシール溝2c、3c内へ組付けられ且つ前記外力が負荷されない状態で、チップシール底面40bが渦巻延伸方向外端部W1側から中央部W2側に向かうにしたがってチップシール溝2c、3cの底面2d、3dに近づくつる巻状に巻回されるようにしてもよい。この図10及び図11に示した変形例1の場合、図12に示すように、スクロールユニット4の外周部(a側)、つまり、低圧領域における作動室5のシール性をチップシール40により向上させることができる。これにより、低速回転域における圧縮能力を向上させる場合に好適なチップシール40を用いたシール構造を容易に構築することができる。
 また、本実施形態及び上記変形例1では、チップシール40は、渦巻延伸方向外端部W1側から中央部W2側に向って一方向に上昇(図4及び図5)又は下降(図10及び図11)するつる巻状に形成されるものとしたが、これに限らず、上昇傾向から下降傾向に変化する変化点を有するようにしてもよい。詳しくは、例えば、可動側チップシール41の一例を挙げて示した図13及び図14に示すように、チップシール40は、チップシール溝2c、3c内へ組付けられ且つ前記外力が負荷されない状態で、渦巻延伸方向Wについての所定位置(図ではdとeの間の所定位置)において、チップシール底面40bがチップシール溝2c、3cの底面2d、3dに近づく傾向から離れる傾向に変化する変化点を有するように巻回されてもよい。この図13及び図14に示した変形例2の場合、図15に示すように、スクロールユニット4の外周部(a側)及び中央部(h側)、つまり、低圧領域と高圧領域の作動室5のシール性を向上させることができる。これにより、高圧領域のシール性を高めつつ、低速回転域における圧縮能力を向上させることが可能なチップシール40を用いたシール構造を容易に構築することができる。また、この変形例2の場合、チップシール40の前記変化点において、チップシール底面40bが、チップシール溝2c、3cの底面2d、3dに近づく傾向から離れる傾向に変化するように形成する場合に限らず、チップシール溝2c、3cの底面2d、3dから離れる傾向から近づく傾向に変化するように形成してもよい。また、前記変化点は、渦巻延伸方向Wに離間した複数個所設けてもよい。
 また、本実施形態及び上記変形例1では、チップシール溝2c、3cは、両スクロール2、3のラップ2b、3bの先端部にそれぞれ形成されるものとしたが、これに限らず、両スクロール2、3のラップ2b、3bの少なくとも一方に形成されていればよい。つまり、両スクロール2、3のうちの少なくとも一方のラップ2b、3bの先端部に形成されるチップシール溝2c、3c内にチップシール40を配置すればよい。また、本実施形態のように、両スクロール2、3のチップシール溝2c、3cにそれぞチップシールを配置する場合、一方のチップシールについてのみ本実施形態に係るチップシール40を採用し、他方にチップシールについては従来と同様の平板状のチップシールを採用してもよい。
 また、本実施形態では、スクロール型流体機械1は圧縮機に適用した場合で説明したが、これに限らず、膨張機に適用することもできる。
 以上、本発明の好ましい実施形態及びその変形例について説明したが、本発明は上記実施形態及び変形例に制限されるものではなく、本発明の技術的思想に基づいて更に種々の変形及び変更が可能である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The scroll fluid machine according to the present invention can be used as a compressor or an expander. In the present embodiment, a case where the present invention is applied to a compressor will be described as an example.
1 to 3 show the configuration of the scroll type fluid machine of the present embodiment. FIG. 1 is a cross-sectional view showing the overall configuration, and FIG. 2 is a perspective view of the movable scroll viewed from the lap side.
As shown in FIG. 1, a scroll fluid machine 1 (hereinafter referred to as a scroll compressor) 1 according to the present embodiment includes a scroll unit 4 having a fixed scroll 2 and a movable scroll 3 which are arranged to face each other and mesh with each other. I have. The fixed scroll 2 has a bottom plate 2a and a spiral wrap 2b standing on the bottom plate 2a. As shown in FIG. 2, the movable scroll 3 has a bottom plate 3a and a spiral wrap 3b standing on the bottom plate 3a, like the fixed scroll 2.
The two scrolls 2 and 3 mesh with each other, and the leading end of the wrap 2b of the fixed scroll 2 is close to the bottom plate 3a of the movable scroll 3, and the leading end of the wrap 3b of the movable scroll 3 is the fixed scroll 2. It arrange | positions so that it may adjoin to the baseplate 2a. Specifically, the scrolls 2 and 3 are arranged such that the side walls of the wraps 2b and 3b are partially in contact with each other with the circumferential angles of the wraps 2b and 3b being shifted from each other.
Further, tip seal grooves 2c and 3c are formed at the tip ends of the wraps 2b and 3b of the scrolls 2 and 3, respectively. The chip seal grooves 2c and 3c have a generally concave cross-sectional shape and continuously extend in the spiral extending direction of the wraps 2b and 3b. In the chip seal grooves 2c and 3c, spiral chip seals 40 are respectively assembled in plan view.
Thus, by arranging the spiral tip seals 40 in a plan view in the tip seal grooves 2c and 3c formed at the tip portions of the wraps 2b and 3b of the scrolls 2 and 3, respectively, A scroll compressor 1 is defined which partitions a working fluid working chamber 5 between the wraps 2b and 3c.
Specifically, the working chamber 5 is formed in a crescent shape between the wraps 2b and 3b. In the present embodiment, the chip seal grooves 2c and 3c are “grooves” according to the present invention. Hereinafter, the tip seal 40 assembled in the tip seal groove 3c of the movable scroll 3 will be referred to as a movable-side tip seal 41, and the tip seal 40 assembled in the tip seal groove 2c of the fixed scroll 2 will be referred to as a fixed-side tip. This is called a seal 42. The shapes of the movable side tip seal 41 and the fixed side tip seal 42 will be described in detail later.
The movable scroll 3 is revolved around the central axis X1 of the fixed scroll 2 by a drive mechanism and a rotation prevention mechanism 30 described later, and rotation is prevented. Thereby, the working chamber 5 formed between the wraps 2b and 3b is moved from the outer peripheral part (outer end part) of the wraps 2b and 3b toward the center part, and the volume thereof is changed in the reduction direction. . Therefore, the working fluid (for example, refrigerant gas) taken into the working chamber 5 from the outer peripheral side of the wraps 2b and 3b is compressed. Thus, in this embodiment, the scroll unit 4 compresses and discharges the working fluid introduced from the outer peripheral side of the scroll unit 4 in the working chamber 5.
In the case of an expander, the working chamber 5 is moved from the central part of the wraps 2b and 3b toward the outer periphery, while its volume changes in the increasing direction, and from the central part side of the wraps 2b and 3b. The fluid taken into the working chamber 5 is expanded. That is, in this case, the scroll unit 4 expands and discharges the working fluid introduced from the center side thereof in the working chamber 5.
The housing of the scroll compressor 1 includes, for example, a center housing 6 that encloses the scroll unit 4, a front housing 7 that is disposed on the front side, and a rear housing 8 that is disposed on the rear side.
In this embodiment, the center housing 6 is formed as a casing (outer shell) of the scroll unit 4 integrally with the bottom plate 2 a of the fixed scroll 2. However, the fixed scroll 2 and the center housing 6 may be separate members, and the fixed scroll 2 may be housed and fixed in the center housing 6. The center housing 6 is closed on the rear side by the bottom plate 2a and opened on the front side.
The front housing 7 is fastened to the opening side of the center housing 6 by bolts (not shown). The front housing 7 supports the movable scroll 3 in the thrust direction and houses a drive mechanism for the movable scroll 3.
Inside the front housing 7, a suction chamber 9 for the working fluid is formed. The suction chamber 9 is connected to a suction port (not shown) formed on the outer wall of the front housing 7.
The front housing 7 and the center housing 6 extend in a direction parallel to the compressor central axis (for example, the central axis X1 of the fixed scroll 2), and from the suction chamber 9 on the front housing 7 side to the scroll on the center housing 6 side. A fluid passage space 10 for guiding the working fluid is formed in the vicinity of the outer peripheral portions of the laps 2b and 3b of the unit 4.
The rear housing 8 is fastened to the bottom plate 2a side of the fixed scroll 2 in the center housing 6 by an appropriate fastening means (not shown) such as a bolt, and the working fluid discharge chamber 11 is formed between the rear housing 8 and the back surface of the bottom plate 2a. Yes. A compressed fluid discharge hole 12 is formed at the center of the bottom plate 2 a of the fixed scroll 2, and a one-way valve 13 is attached to the discharge hole 12. The discharge hole 12 is connected to the discharge chamber 11 via a one-way valve 13. The discharge chamber 11 is connected to a discharge port (not shown) formed on the outer wall of the rear housing 8.
The working fluid is introduced into the suction chamber 9 in the front housing 7 from the suction port (not shown), and is wrapped from the outer peripheral side of the scroll unit 4 via the fluid passage space 10 of the front housing 7 and the center housing 6. It is taken into the working chamber 5 formed by the contact of 2b and 3b, and used for compression. The compressed fluid is discharged from a discharge hole 12 opened at the center of the bottom plate 2a of the fixed scroll 2 to a discharge chamber 11 in the rear housing 8, and from the discharge chamber 11 through the discharge port (not shown). Derived externally.
The front housing 7 faces the rear surface of the bottom plate 3a of the movable scroll 3 on the inner side of the outer peripheral portion fastened to the opening side of the center housing 6 by bolts (not shown), and applies the thrust force from the movable scroll 3 to the thrust plate 14. A thrust receiving portion 15 is provided for receiving via the.
Further, the front housing 7 rotatably supports a drive shaft 20 that forms the core of the drive mechanism of the movable scroll 3 at the center. One end portion side of the drive shaft 20 protrudes outside the front housing 7. A pulley 22 is attached to one end of the drive shaft 20 via an electromagnetic clutch 21. Accordingly, the drive shaft 20 is rotationally driven by the rotational driving force input from the pulley 22 via the electromagnetic clutch 21. The other end portion side of the drive shaft 20 is connected to the movable scroll 3 via a crank mechanism.
In the present embodiment, the crank mechanism is eccentrically attached to a cylindrical boss portion 23 formed on the back surface of the bottom plate 3a of the movable scroll 3 and a crank 24 provided at the end of the drive shaft 20 in an eccentric state. And a bush 25. The eccentric bush 25 is fitted inside the boss portion 23 via a bearing 26. A balancer weight 27 is attached to the eccentric bush 25 so as to face the centrifugal force during the operation of the movable scroll 3.
The rotation prevention mechanism 30 is provided with a plurality (for example, four) of rotation prevention parts 33 including a circular hole 31 formed on the back surface of the bottom plate 3 a of the movable scroll 3 and a pin 32 engaged with the circular hole 31. Configured. Specifically, the circular hole 31 is formed in an end surface portion of the bottom plate 3a facing the thrust receiving portion 15 of the front housing 7. Further, the pin 32 protrudes on the thrust receiving portion 15 side of the front housing 7 and penetrates the thrust plate 14 to engage with the circular hole 31. The rotation preventing portions 33 are arranged at equal intervals along the circumferential direction in the vicinity of the outer peripheral edge of the back surface of the bottom plate 3 a of the movable scroll 3. If there are at least three rotation preventing portions 33, the movable scroll 3 can revolve around the axis of the fixed scroll 2 without rotating.
The operation of the scroll compressor 1 having such a configuration will be briefly described.
When the pulley 22 is rotated by a rotational driving force from the outside, the drive shaft 20 is rotated through the electromagnetic clutch 21, and the movable scroll 3 is rotated through the crank mechanism while the rotation preventing mechanism 30 prevents the rotation of the fixed scroll 2. Revolves around the axis. Due to the orbital revolving motion of the movable scroll 3, the fluid (refrigerant gas) is taken into the working chamber 5 between the laps 2 b and 3 b of the scroll unit 4 from the suction port via the suction chamber 9 and the fluid passage space 10. The fluid compressed by the change in the volume of the chamber 5 is discharged from the discharge hole 12 at the center of the fixed scroll 2 to the discharge chamber 11. The fluid discharged into the discharge chamber 11 is led out to the outside through the discharge port.
Next, the tip seal 40 (movable side tip seal 41 and fixed side tip seal 42) of this embodiment will be described with reference to FIGS. FIG. 3 is a perspective view of the movable-side chip seal 41 and is shown with the contact end surface 40 a contacting the bottom plate 2 a of the fixed scroll 2 facing upward.
The movable-side chip seal 41 and the fixed-side chip seal 42 are each formed in accordance with the shape of the corresponding chip seal groove (3c, 2c). That is, as shown in FIGS. 2 and 3, the movable tip seal 41 is formed in a spiral shape in plan view in accordance with the shape of the tip seal groove 3 c of the movable scroll 3. The fixed-side chip seal 42 is formed in a spiral shape in plan view in accordance with the shape of the chip seal groove 2 c of the fixed scroll 2. In the following, when a common configuration is described for the movable side chip seal 41 and the fixed side chip seal 42, both the movable side chip seal 41 and the fixed side chip seal 42 are simply referred to as a chip seal 40.
The tip seal 40 has a shape in which the height position of the spiral central axis X2 in the extending direction continuously changes from one end side to the other end side in the spiral extending direction W. The spiral central axis X2 of the tip seal 40 extends parallel to the central axis X1 of the fixed scroll 2 shown in FIG. The tip seal 40 has elasticity that expands and contracts in the direction of extension of the spiral center axis X2 when an external force in the direction of extension of the spiral center axis X2 is applied. That is, the entire tip seal 40 functions as a spring that expands and contracts in the direction of extension of the spiral central axis X2. The tip seal 40 is assembled in the tip seal grooves 2c and 3c and the tip seal bottom surface 40b facing the bottom surfaces 2d and 3d of the tip seal grooves 2c and 3c is in the spiral extending direction W in a state where the external force is not applied. It is formed so as to be located in the chip seal grooves 2c and 3c over the whole from one end to the other end. Further, in the state where no external force is applied, the tip seal 40 protrudes from the front end surfaces 2e and 3e of the corresponding wraps 2b and 3b with the contact end surface 40a extending from one end to the other end in the spiral extending direction W. Is formed.
In this embodiment, the chip seal 40 is formed to have a rectangular cross section having a substantially constant thickness and a width corresponding to the groove width of the corresponding chip seal grooves 2c, 3c, and as a whole in a spiral shape. Is formed.
Specifically, the tip seal 40 is assembled into the corresponding tip seal grooves 2c and 3c and the tip seal bottom surface 40b is in the spiral extending direction outer end portion W1 side to the central portion W2 side in a state where the external force is not loaded. The corresponding tip seal grooves 2c and 3c are wound in a spiral shape away from the bottom surfaces 2d and 3d.
That is, the movable side chip seal 41 will be described in detail with reference to FIG. 3. In the movable side chip seal 41, the chip seal bottom surface 40b facing the bottom surface 3d of the chip seal groove 3c is swirled in a state where the external force is not applied. It forms so that it may leave | separate from the bottom face 3d as it goes to the center part W2 side from the extending | stretching direction outer end part W1 side. Although not shown, the fixed-side tip seal 42 has a tip seal bottom surface 40b opposed to the bottom surface 2d of the tip seal groove 2c in a state where the external force is not applied, and a central portion W2 from the outer end W1 side in the spiral extending direction. It forms so that it may leave | separate from the bottom face 2d as it goes to the side.
Next, taking the movable-side chip seal 41 as an example, the change in the height position, the assembled state, and the used state of the chip seal 40 will be described in detail with reference to FIGS.
4 to 6 show cross sections of the movable-side chip seal 41 at positions a to h shifted in the spiral extending direction W shown in FIG. Specifically, FIG. 4 is a conceptual diagram for explaining the change in the height position at a to h of the movable side tip seal 41, and FIG. 5 is an assembled state of the movable side tip seal 41 in the tip seal groove 3c. FIG. 6 is a conceptual diagram showing a change in pressing force when the movable tip seal 41 is in use.
As shown in FIG. 4, when the tip seal bottom surface 40b at the outer end W1 in the spiral extension direction is a reference surface H0 (indicated by a two-dot chain line in the drawing) at the height position in the spiral central axis X2, 41 is formed so that the distance from the reference plane H0 increases as it goes from the outer end W1 side to the center W2 side (that is, from the a side to the h side) in the spiral extending direction in the single product state. Yes.
Further, as shown in FIG. 5, the movable tip seal 41 is assembled into the tip seal groove 3c in the assembled state, and the chip facing the bottom surface 3d of the chip seal groove 3c in a state where the external force is not loaded. The seal bottom surface 40b is formed so as to move away from the bottom surface 3d of the chip seal groove 3c as it goes from the a side to the h side. In this state, the surface on the bottom plate 2 a side of the movable tip seal 41 (that is, the contact end surface 40 a that contacts the bottom plate 2 a) protrudes above the front end surface 3 e of the wrap 3 b of the movable scroll 3. Further, in this assembled state with no external force, the movable tip seal 41 has the tip seal bottom surface 40b positioned in the tip seal groove 3c from the one end to the other end in the spiral extending direction W, and the contact The contact end surface 40a is formed so as to protrude from the tip end surface 3e of the wrap 3b over the whole from one end to the other end in the spiral extending direction W. That is, the distance L (see FIG. 4) between the tip seal bottom surface 40b and the reference surface H0 that is farthest from the reference surface H0 is smaller than the groove depth D (see FIG. 5) of the tip seal groove 3c. (L <D).
As shown in FIG. 6, the movable-side chip seal 41 is in use, for example, its abutting end surface 40 a abuts against the bottom plate 2 a of the fixed scroll 2 and its tip-sealed bottom surface 40 b is the tip of the movable scroll 3. It is in contact with the bottom surface 3d of the seal groove 3c. In this use state, the movable-side tip seal 41 is contracted from the external force no-load state (free state) shown in FIGS. 4 and 5 in the spiral central axis X2 extending direction, and the contact end surface 40a is moved from one end of the spiral extending direction W to the other. It protrudes from the front end surface 3e of the wrap 3b over the entire end. That is, the contraction margin of the movable tip seal 41 with respect to the direction of extension of the spiral central axis X2 increases as it goes from the outer end W1 side to the center W2 side (from the a side to the h side). As a result, as indicated by the upward arrow P in each cross section (a to h) in FIG. 6, the magnitude of the pressing force P with which the movable side chip seal 41 presses the bottom plate 2a of the fixed scroll 2 is determined by the spiral extending direction. The size increases from the outer end W1 side toward the central portion W2 side.
Although not shown, the change in the height position of the fixed-side tip seal 42 can be obtained by replacing the reference numeral “2a” shown in FIG. 4 with “3a” and the reference numeral “3d” with “2d”. Can be expressed conceptually. That is, the fixed-side chip seal 42 is also formed so that the distance from the reference plane H0 increases as it goes from the outer end portion W1 side in the spiral extending direction toward the central portion W2 side in a single product state.
Although not shown, regarding the assembled state of the fixed side chip seal 42, the reference numerals “2a” and “3d” and “3d” shown in FIG. By replacing with 2b and 2c respectively, it can be expressed conceptually. That is, in the assembled state, the fixed-side chip seal 42 is assembled into the chip seal groove 2c, and the chip seal bottom surface 40b facing the bottom surface 2d of the chip seal groove 2c is from the a side in a state where the external force is not loaded. The tip seal groove 2c is formed so as to move away from the bottom surface 2d toward the h side. In this state, the contact end surface 40a of the fixed-side chip seal 42 protrudes upward from the front end surface 2e of the wrap 2b. Further, in this assembled state with no external force, the fixed-side tip seal 42 has the tip seal bottom surface 40b positioned in the tip seal groove 2c from one end to the other end in the spiral extending direction W, and the The contact end surface 40a is formed so as to protrude from the tip end surface 2e of the wrap 2b over the whole from one end to the other end in the spiral extending direction W.
Further, although not shown, regarding the usage state of the fixed side tip seal 42, the reference numeral “2a” shown in FIG. 6 is replaced with “3a”, and the other reference numerals are replaced in the same manner as in the assembled state. Therefore, it can be expressed conceptually. In other words, in use, the fixed-side chip seal 42 has, for example, a contact end surface 40a that contacts the bottom plate 3a of the movable scroll 3, and a chip seal bottom surface 40b that contacts the bottom surface 2d of the chip seal groove 2c. . In this use state, the fixed-side tip seal 42 contracts from the no-load state (free state) in the spiral central axis X2 extending direction, and the contact end surface 40a extends from one end to the other end in the spiral extending direction W. It protrudes from the front end surface 2e of the wrap 2b. Therefore, the shrinkage allowance of the fixed-side chip seal 42 in the direction of extension of the spiral central axis X2 increases from the outer end W1 side in the spiral extension direction toward the central portion W2. As a result, the magnitude of the pressing force P with which the fixed side tip seal 42 presses the bottom plate 3a of the movable scroll 3 is also similar to the movable side tip seal 41 from the outer end W1 side in the spiral extending direction to the central portion W2 side. It gets bigger as you go.
According to the scroll compressor 1 according to the present embodiment, the tip seal 40 (movable tip seal 41, fixed tip seal 42) has a height position in the direction of extension of the spiral central axis X2 from the one end side of the spiral extension direction W. Since it has a shape that continuously changes toward the other end side, the height position of the tip seal 40 in a portion corresponding to a specific region that needs to be improved in the sealing performance of the scroll unit 4 is higher than other portions. Thus, the tip seal 40 can be formed. As a result, the pressing force from the tip seal 40 to the bottom plates 2a and 3a in the specific region of the scroll unit 4 becomes higher than the pressing force in other regions, and the sealing performance for the specific region can be improved.
Further, the tip seal 40 is configured to expand and contract in the spiral center axis X2 extending direction (that is, the center axis X1 extending direction of both scrolls) when an external force in the spiral center axis X2 extending direction is applied. For this reason, each of the movable side tip seal 41 and the fixed side tip seal 42 functions as a spring that expands and contracts in the extending direction of the spiral central axis X2. As a result, even if an error (manufacturing error) occurs between the actual clearance and the target clearance in the extending direction of the central axis X1 (that is, X2) between the scrolls 2 and 3, the error is detected by the tip seal 40. Can be absorbed within the range of expansion / contraction allowance in the extending direction of the spiral central axis X2. Therefore, it is not necessary to initialize the clearance with high accuracy.
As shown in FIG. 5, the tip seal 40 is assembled into the tip seal grooves 2c and 3c and the bottom surface 2d of the tip seal grooves 2c and 3c is not loaded with an external force in the direction of extension of the spiral central axis X2. The chip seal bottom surface 40b facing 3d is formed so as to be located in the corresponding chip seal grooves 2c and 3c over the whole from one end to the other end in the spiral extending direction W. That is, the tip seal 40 is formed such that the distance L is smaller than the groove depth D of the tip seal grooves 2c and 3c (L <D). In other words, the tip seal 40 is formed with the height position restricted so that the entire tip seal bottom surface 40b facing the bottom surfaces 2d and 3d is located in the chip seal grooves 2c and 3c. As a result, the tip seal 40 is formed in a shape in which the height position in the direction of extension of the spiral central axis X2 changes in a free state where no external force is applied, but when assembled into the tip seal grooves 2c and 3c, The entire chip seal bottom surface 40b can be simultaneously disposed in the chip seal grooves 2c and 3c. Therefore, the chip seal 40 can be assembled to the chip seal grooves 2c and 3c in the same procedure as the conventional planar chip seal.
This assembly will be described in detail with reference to FIGS.
FIG. 7 is a side view of a tip seal 40 ′ produced by making the distance L of the tip seal 40 larger than the depth D of the tip seal grooves 2c and 3c, for example. FIG. 8 is a conceptual diagram showing an assembled state of the chip seal 40 ′ shown in FIG. 7 to the chip seal grooves 2c and 3c, and FIG. 9 is a conceptual diagram showing a usage state of the chip seal 40 ′ shown in FIG. FIG.
As shown in FIG. 7, the tip seal 40 ′ (L> D) is manufactured with a larger amount of change in height (ie, distance L) than the tip seal 40 (L <D) in this embodiment. Has been. When this chip seal 40 ′ is assembled to the chip seal groove 3c (2c), as shown in FIG. 8, only a part (a to c in the figure) of the chip seal bottom surface 40′b is inserted into the chip seal groove 3c ( 2c), and the remaining portions (d to h in the figure) are not located in the tip seal groove 3c (2c) and are in a free state. And in the state of FIG. 8, it is necessary to assemble so that both the scrolls 2 and 3 may mesh | engage. At the time of this assembly, the contact end surface 40a of the chip seal 40 'is pressed by the bottom plate 2a (3a), and the distance L is reduced. However, at the time of this assembly, the operator visually confirms whether the free part (the remaining part) of the chip seal 40 'is normally assembled in the chip seal groove 3c (2c). It is impossible (or difficult) to do. Therefore, as shown in FIG. 9, for example, the two scrolls 2, 3 in a state where the tip seal bottom surface 40'b side edge of the chip seal 40 'is in contact with the tip surface 3e (2e) of the chip seal groove 3c (2c). Is assumed to be fastened. In this case, the remaining portions (d to h) of the chip seal 40 ′ are not normally assembled in the chip seal groove 3c (2c) and may be damaged as shown in FIG. Is done. Further, in the state of FIG. 9, it is assumed that a gap is generated between the contact end face 40a and the bottom plate 2a (3a) in a part (ac) of the chip seal 40 ′. In other words, if the chip seal is manufactured with L> D set, problems such as poor assembly, breakage, and poor seal may occur.
In this regard, since L <D is set in the chip seal 40 according to the present embodiment, as described above, the entire chip seal bottom surface 40b is attached to the chip seal grooves 2c and 3c as described above. At the same time, it can be disposed in the tip seal grooves 2c, 3c. Therefore, in this state, the scrolls 2 and 3 are assembled, and as shown in FIG. 6, the chip seal 40 can be used in a state of being normally assembled in the chip seal groove 3c (2c). it can. That is, it is possible to reliably prevent the occurrence of problems such as the above-described assembly failure, breakage, and seal failure.
In this way, the seal of a specific region of the scroll unit 4 is reduced while reducing the management accuracy of the clearance in the direction of extension of the central axis X1 between the scrolls 2 and 3 without reducing the workability of assembling the tip seal 40. It is possible to provide a scroll compressor 1 as a scroll type fluid machine capable of improving the performance.
Further, in this embodiment, the tip seal 40 is assembled into the tip seal grooves 2c and 3c and the tip seal bottom surface 40b is in the spiral extending direction outer end portion W1 side to the central portion W2 side in a state where the external force is not loaded. The tip seal grooves 2c and 3c are wound in a spiral shape away from the bottom surfaces 2d and 3d. Thereby, it is possible to easily construct a seal structure using the tip seal 40 suitable for improving the sealing performance of the working chamber 5 in the central portion (h side in FIG. 4) of the scroll unit 4, that is, the high pressure region. it can.
In this embodiment, the tip seal 40 has a spiral shape in which the tip seal bottom surface 40b is spaced apart from the bottom surfaces 2d and 3d of the tip seal grooves 2c and 3c as the tip seal bottom surface 40b moves from the outer end W1 side in the spiral extending direction toward the center portion W2. However, the present invention is not limited to this.
For example, as shown in FIGS. 10 and 11 shown as an example of the movable side chip seal 41, the chip seal 40 is assembled in the chip seal grooves 2c and 3c and the chip is not loaded with the external force. The seal bottom surface 40b may be wound in a spiral shape approaching the bottom surfaces 2d and 3d of the chip seal grooves 2c and 3c as it goes from the outer end W1 side in the spiral extending direction toward the center portion W2. In the case of the first modification shown in FIGS. 10 and 11, as shown in FIG. 12, the sealing performance of the working chamber 5 in the outer peripheral portion (a side) of the scroll unit 4, that is, the low pressure region, is improved by the tip seal 40. Can be made. As a result, a seal structure using the tip seal 40 suitable for improving the compression capability in the low-speed rotation region can be easily constructed.
Further, in the present embodiment and the first modification, the tip seal 40 is lifted (FIGS. 4 and 5) or lowered (FIGS. 10 and 10) in one direction from the outer end W1 side in the spiral extending direction toward the center W2 side. 11) It is assumed that it is formed in a spiral shape. However, the present invention is not limited to this, and a change point that changes from an upward trend to a downward trend may be provided. Specifically, for example, as shown in FIGS. 13 and 14 showing an example of the movable tip seal 41, the tip seal 40 is assembled in the tip seal grooves 2c and 3c and the external force is not loaded. Thus, at a predetermined position in the spiral extension direction W (a predetermined position between d and e in the figure), the tip seal bottom surface 40b changes from a tendency to approach the bottom surface 2d, 3d of the chip seal grooves 2c, 3c to a tendency to leave. It may be wound to have a point. In the case of the modification 2 shown in FIGS. 13 and 14, as shown in FIG. 15, the outer peripheral portion (a side) and the central portion (h side) of the scroll unit 4, that is, the working chambers in the low pressure region and the high pressure region. 5 can be improved. Thereby, it is possible to easily construct a seal structure using the tip seal 40 capable of improving the compression capability in the low-speed rotation region while improving the sealing performance in the high-pressure region. In the case of the second modification, when the tip seal bottom surface 40b is formed so as to change from the tendency to approach the bottom surfaces 2d and 3d of the chip seal grooves 2c and 3c at the changing point of the chip seal 40. Not limited to this, the tip seal grooves 2c and 3c may be formed so as to change from a tendency to move away from the bottom surfaces 2d and 3d. The change points may be provided at a plurality of locations separated in the spiral extension direction W.
Further, in the present embodiment and the first modification, the tip seal grooves 2c and 3c are formed at the front ends of the wraps 2b and 3b of the scrolls 2 and 3, respectively. What is necessary is just to be formed in at least one of the 2 and 3 wraps 2b and 3b. That is, the tip seal 40 may be disposed in the tip seal grooves 2c and 3c formed at the tip of at least one lap 2b and 3b of the scrolls 2 and 3. Further, as in the present embodiment, when the chip seals are disposed in the chip seal grooves 2c and 3c of the scrolls 2 and 3, respectively, the chip seal 40 according to the present embodiment is employed for only one chip seal, and the other As for the tip seal, a flat tip seal similar to the conventional one may be adopted.
In the present embodiment, the scroll type fluid machine 1 is described as applied to a compressor. However, the present invention is not limited to this, and the scroll fluid machine 1 can also be applied to an expander.
The preferred embodiments of the present invention and the modifications thereof have been described above, but the present invention is not limited to the above-described embodiments and modifications, and various modifications and changes can be made based on the technical idea of the present invention. Is possible.
1     スクロール型圧縮機(スクロール型流体機械)
2     固定スクロール
2a    底板
2b    ラップ
2c    チップシール溝(溝)
3     可動スクロール
3a    底板
3b    ラップ
3c    チップシール溝(溝)
4     スクロールユニット
5     作動室(密閉空間)
40    チップシール
40b   チップシール底面
41    可動側チップシール
42    固定側チップシール
X2    渦巻中心軸
W     渦巻延伸方向
W1    渦巻延伸方向外端部
W2    渦巻延伸方向中央部
1 Scroll type compressor (Scroll type fluid machine)
2 Fixed scroll 2a Bottom plate 2b Wrap 2c Tip seal groove (groove)
3 Movable scroll 3a Bottom plate 3b Wrap 3c Chip seal groove (groove)
4 Scroll unit 5 Working chamber (sealed space)
40 Tip seal 40b Tip seal bottom surface 41 Movable tip seal 42 Fixed tip seal X2 Centrifugal center axis W Centrifugal extension direction W1 Centrifugal extension direction outer end W2 Centrifugal extension direction center

Claims (7)

  1.  底板と該底板に立設される渦巻状のラップとをそれぞれ有し互いに噛み合わされる固定スクロール及び可動スクロールを備え、両スクロールのうちの少なくとも一方の前記ラップの先端部に形成される溝内に平面視で渦巻状のチップシールを配置することにより、両スクロールの前記ラップ間に作動流体の作動室を区画するスクロール型流体機械であって、
     前記チップシールは、
     その渦巻中心軸延伸方向についての高さ位置が渦巻延伸方向一端側から他端側に向って連続的に変化した形状を有し、
     前記渦巻中心軸延伸方向の外力が負荷された場合、前記渦巻中心軸延伸方向に伸縮し、
     前記溝内へ組付けられ且つ前記外力が負荷されない状態で、前記溝の底面に対向するチップシール底面が前記渦巻延伸方向一端から他端までの全体に亘って前記溝内に位置するように形成されている、スクロール型流体機械。
    A fixed scroll and a movable scroll each having a bottom plate and a spiral wrap standing on the bottom plate are provided, and in a groove formed at the tip of at least one of the scrolls. A scroll type fluid machine that divides a working chamber of working fluid between the laps of both scrolls by disposing a spiral tip seal in plan view,
    The tip seal is
    The height position of the spiral central axis extending direction has a shape continuously changing from one end side to the other end side in the spiral extending direction,
    When an external force in the spiral central axis stretching direction is loaded, it expands and contracts in the spiral central axis stretching direction,
    Formed so that the bottom surface of the chip seal facing the bottom surface of the groove is located in the groove from one end to the other end in the spiral extending direction in a state where it is assembled in the groove and the external force is not applied. Scroll type fluid machine.
  2.  前記チップシールは、前記溝内へ組付けられ且つ前記外力が負荷されない状態で、前記チップシール底面が前記渦巻延伸方向外端部側から中央部側に向かうにしたがって前記溝の底面から離れるつる巻状に巻回される、請求項1に記載のスクロール型流体機械。 When the tip seal is assembled into the groove and the external force is not applied, the tip seal bottom surface is spirally wound away from the bottom surface of the groove as it goes from the outer end side to the center side in the spiral extending direction. The scroll type fluid machine according to claim 1, wherein the scroll type fluid machine is wound into a shape.
  3.  前記チップシールは、前記溝内へ組付けられ且つ前記外力が負荷されない状態で、前記チップシール底面が前記渦巻延伸方向外端部側から中央部側に向かうにしたがって前記溝の底面に近づくつる巻状に巻回される、請求項1に記載のスクロール型流体機械。 The tip seal is assembled in the groove and the spiral seal approaches the bottom surface of the groove as the bottom surface of the tip seal moves from the outer end side to the center side in the spiral extending direction in a state where the external force is not applied. The scroll type fluid machine according to claim 1, wherein the scroll type fluid machine is wound into a shape.
  4.  前記チップシールは、前記溝内へ組付けられ且つ前記外力が負荷されない状態で、前記渦巻延伸方向についての所定位置において、前記チップシール底面が前記溝の底面から離れる傾向から近づく傾向に、又は、前記溝の底面に近づく傾向から離れる傾向に変化する変化点を有するように巻回される、請求項1に記載のスクロール型流体機械。 The tip seal is assembled in the groove and the external force is not applied, and at a predetermined position in the spiral extension direction, the tip seal bottom surface tends to approach from the tendency to move away from the bottom surface of the groove, or The scroll type fluid machine according to claim 1, wherein the scroll type fluid machine is wound so as to have a changing point that changes from a tendency to approach the bottom surface of the groove to a tendency to leave.
  5.  前記固定スクロール及び前記可動スクロールを有するスクロールユニットは、前記作動流体を前記作動室により圧縮して吐出する、請求項1~4のいずれか一つに記載のスクロール型流体機械。 The scroll fluid machine according to any one of claims 1 to 4, wherein the scroll unit having the fixed scroll and the movable scroll compresses and discharges the working fluid in the working chamber.
  6.  前記固定スクロール及び前記可動スクロールを有するスクロールユニットは、前記作動流体を前記作動室により膨張させて吐出する、請求項1~4のいずれか一つに記載のスクロール型流体機械。 5. The scroll fluid machine according to claim 1, wherein the scroll unit having the fixed scroll and the movable scroll expands and discharges the working fluid in the working chamber.
  7.  前記溝は、前記両スクロールの前記ラップの先端部にそれぞれ形成され、
     前記チップシールは、前記ラップのそれぞれに配置される、請求項1~6のいずれか一つに記載のスクロール型流体機械。
    The grooves are respectively formed at the end portions of the wraps of the scrolls.
    The scroll type fluid machine according to any one of claims 1 to 6, wherein the tip seal is disposed in each of the wraps.
PCT/JP2017/018604 2016-05-30 2017-05-11 Scroll-type fluid machine WO2017208833A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016107657A JP2017214842A (en) 2016-05-30 2016-05-30 Scroll Type Fluid Machine
JP2016-107657 2016-05-30

Publications (1)

Publication Number Publication Date
WO2017208833A1 true WO2017208833A1 (en) 2017-12-07

Family

ID=60477443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018604 WO2017208833A1 (en) 2016-05-30 2017-05-11 Scroll-type fluid machine

Country Status (2)

Country Link
JP (1) JP2017214842A (en)
WO (1) WO2017208833A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235386A (en) * 1993-02-10 1994-08-23 Mitsubishi Electric Corp Scroll compressor
JPH0712700Y2 (en) * 1988-05-25 1995-03-29 ダイキン工業株式会社 Sealing structure for rotary fluid equipment
JPH07301184A (en) * 1994-04-29 1995-11-14 Toyota Autom Loom Works Ltd Seal mechanism for scroll type compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712700Y2 (en) * 1988-05-25 1995-03-29 ダイキン工業株式会社 Sealing structure for rotary fluid equipment
JPH06235386A (en) * 1993-02-10 1994-08-23 Mitsubishi Electric Corp Scroll compressor
JPH07301184A (en) * 1994-04-29 1995-11-14 Toyota Autom Loom Works Ltd Seal mechanism for scroll type compressor

Also Published As

Publication number Publication date
JP2017214842A (en) 2017-12-07

Similar Documents

Publication Publication Date Title
JP6304663B2 (en) Scroll compressor
KR101340791B1 (en) Scroll compressor
EP2803860B1 (en) Scroll compressor
JP6021373B2 (en) Scroll compressor and method of processing the scroll
US20120177523A1 (en) Scroll compressor with split type orbitting scroll
JP6108967B2 (en) Rotary compression mechanism
KR100388694B1 (en) Scroll type fluid machinery
US10844719B2 (en) Scroll fluid machine including a pair of fixed scrolls and an orbiting scroll
EP2436928A1 (en) Scroll compressor
WO2017208833A1 (en) Scroll-type fluid machine
JP6291685B2 (en) Scroll type fluid machinery
JP6470000B2 (en) Scroll type fluid machinery
KR101821708B1 (en) Scroll compressor with split type orbitting scroll
WO2017208829A1 (en) Scroll-type fluid machine
KR101727498B1 (en) Scroll compressor with split type orbitting scroll
KR20200030390A (en) Motor operated compressor
JPH0429112Y2 (en)
JP7413136B2 (en) Compressor for refrigeration cycle
WO2023120619A1 (en) Scroll compressor
JP5791316B2 (en) Scroll type fluid machinery
EP3467311B1 (en) Vortex compressor
KR20120081488A (en) Scroll compressor with split type orbitting scroll
KR20120076165A (en) Scroll compressor
KR20200144813A (en) Scroll compressor
JP2019019772A (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806391

Country of ref document: EP

Kind code of ref document: A1