WO2017208801A1 - Analyzing device, analyzing method, and non-transitory computer-readable medium - Google Patents

Analyzing device, analyzing method, and non-transitory computer-readable medium Download PDF

Info

Publication number
WO2017208801A1
WO2017208801A1 PCT/JP2017/018305 JP2017018305W WO2017208801A1 WO 2017208801 A1 WO2017208801 A1 WO 2017208801A1 JP 2017018305 W JP2017018305 W JP 2017018305W WO 2017208801 A1 WO2017208801 A1 WO 2017208801A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
distance
signal transmitted
communication terminal
received
Prior art date
Application number
PCT/JP2017/018305
Other languages
French (fr)
Japanese (ja)
Inventor
源 高橋
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2017208801A1 publication Critical patent/WO2017208801A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • G01S11/06Systems for determining distance or velocity not using reflection or reradiation using radio waves using intensity measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools

Definitions

  • the present invention relates to an analysis device, an analysis method, and a program, and more particularly, to an analysis device, an analysis method, and a program for specifying the position of a base station.
  • Big data is, for example, data that is a collection of data acquired by many communication terminals that communicate via a mobile network.
  • a telecommunications carrier may specify the location of a base station whose installation location is not specified, and design its own mobile network using the location information of the specified base station.
  • the base station whose installation position is not specified may be, for example, a base station installed by the company or a base station installed by another company.
  • an operator other than the communication operator may investigate the position of the base station in the mobile network.
  • Patent Document 1 discloses a configuration of an analysis apparatus that estimates a position of a base station using a communication log acquired from a mobile terminal.
  • the analysis device disclosed in Patent Literature 1 generates a level map in which reception levels of a plurality of mobile terminals are associated with each base station.
  • the analysis apparatus estimates the position of the base station in the level map, assuming that the position where the communication terminal having a reception level equal to or lower than x (dB) from the highest reception level is present has a high base station existence probability.
  • the analysis device disclosed in Patent Document 1 estimates the position of the base station using the position information of the mobile terminal whose reception level is within a predetermined range among the communication logs acquired from many mobile terminals. . Therefore, the portable terminals used for estimating the position of the base station are only some portable terminals among the plurality of portable terminals that have transmitted the communication log. Further, when narrowing the region where it is estimated that a base station exists, in order to narrow the predetermined range of the reception level in the level map, the position information of a smaller mobile terminal is used. For this reason, the analysis device disclosed in Patent Document 1 has a problem in that it cannot take advantage of the big data characteristic of improving estimation accuracy using a large amount of information.
  • An object of the present invention is to provide an analysis apparatus, an analysis method, and a program that can estimate the position of a base station using a large amount of information.
  • the analysis apparatus includes communication quality calculated in a plurality of communication terminals that have received a signal transmitted from a first base station whose position is specified, and the communication quality calculated from each communication terminal.
  • An expression generator that generates a relational expression that associates a distance to one base station, and communication quality calculated in a plurality of communication terminals that have received signals transmitted from a second base station whose position is not specified; , Using the relational expression, a distance estimation unit that estimates a distance from each communication terminal to the second base station, and each communication terminal that has received a signal transmitted from the second base station
  • a position estimation unit that estimates the position of the second base station using overlapping information of an area whose center is a position and whose radius is determined as the distance estimated by the distance estimation unit.
  • the analysis method includes communication quality calculated in a plurality of communication terminals that have received a signal transmitted from a first base station whose position has been specified, and the communication quality calculated from each communication terminal.
  • a relational expression for associating a distance to one base station, communication quality calculated in a plurality of communication terminals that have received signals transmitted from a second base station whose position is not specified, and the relational expression Are used to estimate the distance from each communication terminal to the second base station, and estimate the radius around the position of each communication terminal that has received the signal transmitted from the second base station.
  • the position of the second base station is estimated using the overlap information of the area determined as the distance.
  • the program according to the third aspect of the present invention includes: a communication quality calculated in a plurality of communication terminals that have received a signal transmitted from a first base station whose position is specified; Communication quality calculated in a plurality of communication terminals that received a signal transmitted from a second base station whose position is not specified, and a relational expression for associating a distance to a base station of Is used to estimate the distance from each communication terminal to the second base station, and the radius is estimated around the position of each communication terminal that has received the signal transmitted from the second base station. Further, the computer is caused to estimate the position of the second base station by using the overlapping information of the area determined as the distance.
  • the present invention it is possible to provide an analysis apparatus, an analysis method, and a program that can estimate the position of a base station using a large amount of information.
  • FIG. 1 is a configuration diagram of an analysis apparatus according to a first embodiment.
  • FIG. 3 is a configuration diagram of a communication system according to a second exemplary embodiment.
  • FIG. 3 is a configuration diagram of an analysis apparatus according to a second embodiment. It is a figure which shows the information which the analyzer concerning Embodiment 2 manages. It is a figure which shows the relationship between the distance from the base station and communication terminal concerning Embodiment 2, and path loss. It is a figure which shows the information which the analyzer concerning Embodiment 2 manages. It is a figure explaining the estimation process of the position of the base station concerning Embodiment 2.
  • FIG. It is a figure which shows the flow of the process which the analyzer concerning Embodiment 2 estimates the position of a base station.
  • FIG. 10 is a diagram for explaining base station position estimation processing according to the third embodiment; It is a figure which shows the flow of the process which the analyzer concerning Embodiment 3 estimates the position of a base station. It is a figure which shows the flow of the process which the analyzer concerning Embodiment 3 estimates the position of a base station. It is a block diagram of the analyzer concerning each embodiment.
  • the analysis device 10 may be a computer device that operates when a processor executes a program stored in a memory.
  • the computer device may be a server device, for example.
  • the analysis device 10 includes an expression generation unit 11, a distance estimation unit 12, and a position estimation unit 13.
  • the expression generation unit 11, the distance estimation unit 12, and the position estimation unit 13 may be software or modules in which processing is executed by a processor executing a program stored in a memory.
  • the expression generation unit 11, the distance estimation unit 12, and the position estimation unit 13 may be hardware such as a chip or a circuit.
  • the expression generation unit 11 relates the communication quality calculated in a plurality of communication terminals that have received the signal transmitted from the base station A whose position is specified, and the distance from each communication terminal to the base station A Is generated. It is assumed that the expression generation unit 11 manages the position of the base station A in advance.
  • the position of the base station A may be specified by latitude and longitude, for example.
  • a plurality of communication terminals are located in a communicable area formed by the base station A.
  • the communication terminal may be a computer device that operates when a processor executes a program stored in a memory.
  • the communication terminal may be, for example, a mobile phone terminal, a smartphone terminal, a tablet terminal, or the like.
  • the communication quality may be, for example, received power when the communication terminal receives a signal transmitted from the base station A.
  • the communication quality may be a path loss indicating the attenuation ratio of the signal transmitted from the base station A.
  • the communication quality may be throughput, delay, or the like.
  • the formula generator 11 may calculate the distance from each communication terminal to the base station A using the communication terminal position information and the base station A position information.
  • the location information may be, for example, the latitude and longitude of the communication terminal and the latitude and longitude of the base station A.
  • the expression generation unit 11 may acquire the position information of the communication terminal from the communication terminal as application information. Or the expression production
  • generation part 11 may acquire the positional information on a communication terminal from the core network which a communication carrier manages.
  • the expression generation unit 11 may acquire position information from the communication terminal periodically or at an arbitrary timing.
  • the relational expression is an expression that approximates the relationship between the distance from the base station A to the communication terminal and the communication quality at the communication terminal using a specific function.
  • the specific function may be an n-order function (n is an integer of 1 or more), a logarithmic curve, or the like.
  • the relational expression may be an expression determined using, for example, a least square method.
  • the relational expression may be an expression determined using a maximum likelihood method, for example.
  • the distance estimation unit 12 uses the communication quality calculated in the plurality of communication terminals that have received the signal transmitted from the base station B whose position is not specified, and the relational expression generated in the expression generation unit 11, The distance from each communication terminal to the base station B is estimated.
  • the base station B may be a base station managed by a telecommunications carrier different from the telecommunications carrier that manages the base station A.
  • the base station A may be a base station installed by a communication carrier, while the base station B may be a small base station or a femto base station installed by an individual.
  • the plurality of communication terminals that have received the signal transmitted from the base station B are located in a communicable area formed by the base station B.
  • the communicable area formed by the base station A and the communicable area formed by the base station B may or may not overlap.
  • the communication terminal may be a terminal that can communicate with the base station A and the base station B, or may be a terminal that can communicate with either one of the base stations.
  • the relational expression generated in the expression generation unit 11 is an expression that associates the distance from the base station A and the communication quality at the distance.
  • the distance estimation unit 12 is substantially equivalent to the “relationship between the distance from the base station B and the communication quality at that distance” as “the relationship between the distance from the base station A and the communication quality at that distance”. The distance is estimated on the assumption that the same tendency is shown. Therefore, the distance estimation unit 12 performs communication from the base station B by applying the communication quality calculated in the communication terminal that has received the signal transmitted from the base station B to the relational expression generated in the expression generation unit 11. The distance to the terminal can be estimated.
  • the position estimation unit 13 uses the overlapping information of the area determined by the distance estimated by the distance estimation unit 12 around the position of each communication terminal that has received the signal transmitted from the base station B as a base station. Estimate the position of B.
  • the area determined by the distance estimated by the distance estimation unit 12 with the position of each communication terminal as the center is defined as a search area.
  • the search area is different depending on the position of the communication terminal that has received the signal transmitted from the base station B.
  • the position estimation unit 13 superimposes a plurality of search areas, and estimates that the base station B exists in an area where the most search areas overlap.
  • the analysis apparatus 10 in FIG. 1 can generate a relational expression using the communication quality calculated in a plurality of communication terminals that have received the signal transmitted from the base station A.
  • the relational expression is an expression that approximates the relationship between the distance to the communication terminal centered on the base station A and the communication quality at the communication terminal using a specific function. The larger the number, the more accurate approximation can be made.
  • the analysis apparatus 10 can estimate the position of the base station B using a search area centered on the communication terminal that has received the signal transmitted from the base station B. Since the analysis apparatus 10 estimates that the base station B exists in an area where the search area overlaps most, the area where the base station B exists can be accurately estimated as the number of search areas increases.
  • the analysis apparatus 10 can accurately estimate the position of the base station B using a large number of data collected as big data.
  • the analysis device 50, the base station 20, and the base station 30 are connected via the Internet 40.
  • communication terminals 21 to 24 exist in the communicable area of the base station 20
  • communication terminals 31 to 34 exist in the communicable area of the base station 30.
  • the base station 20 may be the base station A in the first embodiment
  • the base station 30 may be the base station B in the first embodiment. That is, it is assumed that the analysis device 50 manages the position of the base station 20 but does not manage the position of the base station 30.
  • FIG. 2 shows that the base station 20 and the base station 30 are connected to the Internet 40.
  • the base station 20, the base station 30, and the Internet 40 are core networks managed by a communication carrier. It may be connected via.
  • FIG. 2 shows that there are four communication terminals in each communicable area of the base station 20 and the base station 30, but there are four communication terminals in each communicable area. It may exist above.
  • the base station 20 may be managed by the same carrier as the carrier that manages the base station 30, or may be managed by a carrier different from the carrier that manages the base station 30.
  • the analysis apparatus 50 may receive the information regarding the communication quality calculated at each communication terminal and the position information regarding each communication terminal via the base station 20 and the Internet 40. Furthermore, the analysis device 50 may receive information on communication quality calculated at each communication terminal and position information about each communication terminal via the base station 30 and the Internet 40. Alternatively, the analysis device 50 uses the access point and the Internet 40 used in the wireless LAN communication instead of the base station 20 or the base station 30 for the information regarding the communication quality calculated in each communication terminal and the position information regarding each communication terminal. You may receive via.
  • the analysis device 50 has a configuration in which a database 14 is added to the analysis device 10 of FIG. 3 shows a configuration in which the analysis device 50 has the database 14, but a device different from the analysis device 50 may have the database 14.
  • information managed by the database 14 will be described.
  • the base station 20 is a base station managed by the communication carrier A
  • the base station 30 is a base station managed by the communication carrier B. Further, it is assumed that the position of the base station 20 is specified, but the position of the base station 30 is not specified. That is, the analysis device 50 is used to specify the position of the base station 30.
  • the database 14 includes a database related to the base station 20 and a database related to the base station 30.
  • FIG. 4 shows a database related to the base station 20.
  • the database shown in FIG. 4 manages information measured by the communication terminals 21 to 24 using signals transmitted from the base station 20.
  • the database in FIG. 4 manages information measured by the communication terminal for each measurement point measured by the communication terminal using the signal transmitted from the base station 20.
  • the information described outside the table in FIG. 4 indicates the position information of the base station 20 and the transmission power of the signal transmitted by the base station 20.
  • the base station 20 is located at a latitude of 35.5746 degrees and a longitude of 139.66 degrees.
  • the base station 20 transmits a signal with a transmission power of 18 (dBm).
  • Lat indicates latitude, and Lon indicates longitude.
  • Carrier indicates a business operator that manages the base station 20.
  • CellIdentity indicates cell identification information formed by the base station 20.
  • eNBId indicates identification information of the base station 20.
  • Cell indicates identification information of a cell in which the communication terminal is located.
  • PCI Physical Cell Identity
  • EARFCN indicates a frequency band related to a signal transmitted by the base station 20.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • RSSI Reference Signal Strength Strength Indicator
  • SINR Signal Interference Plus Noise Noise Power Ratio
  • RSRP (dBm) indicates the magnitude of the received power of the signal received by the communication terminal.
  • d indicates the distance between the base station 20 and the communication terminal.
  • PathLoss path loss is information indicating the attenuation ratio of the signal transmitted from the base station 20 at the position of the communication terminal that has received the signal transmitted from the base station 20.
  • Path loss (dB) transmission of the base station 20 Calculated as power (dBm) -RSRP (dBm).
  • FIG. 5 is a diagram showing the value of the path loss for each distance d in FIG.
  • the horizontal axis in FIG. 5 indicates the distance d (meter), and the vertical axis indicates the path loss (dB).
  • the straight line in FIG. 5 is a value indicated by an equation that simulates the value of the path loss.
  • the straight line in FIG. 5 represents an expression of a linear function that simulates the path loss value using regression analysis by the least square method.
  • the equation indicated by the straight line in FIG. 5 is referred to as a path loss equation.
  • the path loss formula is generated in the formula generation unit 11.
  • the contribution ratio R 2 that is an evaluation index of the path loss formula is 0.6222.
  • the path loss equation in FIG. 5 indicates that the attenuation rate increases and the communication quality decreases as the position of the communication terminal moves away from the base station 20.
  • the expression generation unit 11 may generate the path loss expression again using regression analysis by the least square method, or other regression analysis methods For example, the path loss equation may be generated using a maximum likelihood method or the like.
  • the analysis apparatus 50 uses the path loss expression generated by the expression generation unit 11 to Execute the process.
  • the contribution rate may be referred to as a determination coefficient of regression analysis by the least square method.
  • some expressions may be generated as alternatives to the contribution rate, and the path loss expression may be evaluated based on a value such as Akaike's Information Criterion (AIC).
  • AIC Akaike's Information Criterion
  • the evaluation index of the path loss formula is not limited to the contribution rate and the Akaike information reference amount, and other evaluation indices may be used.
  • FIG. 6 shows a database related to the base station 30.
  • the database in FIG. 6 manages information measured by the communication terminals 31 to 34 using signals transmitted from the base station 30.
  • the database in FIG. 6 manages information measured by the communication terminal for each measurement point measured by the signal transmitted from the base station 20 by the communication terminal.
  • the position of the base station 30 is not specified. Therefore, the position of the base station 30 is not shown as in FIG. 4 which is a database related to the base station 20. Further, it is assumed that the transmission power of the signal transmitted by the base station 30 is 18 (dBm) as in the base station 20.
  • the value r ⁇ for search is used instead of the distance d in FIG. r indicates the value of d obtained when the path loss value is substituted into L of the path loss equation. That is, r is a value indicating the distance between the communication terminal and the base station 30. r for serach indicates that the position of the base station 30 is estimated by searching in a circle with a radius r centering on the position of the communication terminal. The value of the radius r is calculated by the distance estimation unit 12.
  • FIG. 7 shows a plane in a certain area, and shows that the plane is divided into a plurality of grids.
  • a grid shows the area divided
  • FIG. 7 is a plane whose position can be specified using latitude and longitude.
  • the horizontal line may be a latitude line indicating the same latitude
  • the vertical line may be a meridian indicating the same longitude.
  • points indicated by squares indicate measurement points at which each communication terminal calculates a path loss.
  • a point along the road may be used as the measurement point.
  • Square points indicated by thick lines indicate measurement points for calculating a path loss related to a signal transmitted from the base station 30.
  • a relatively large circle centered on a square indicated by a thick line indicates an area of a circle with a radius r centered on the position of the communication terminal that has received the signal transmitted from the base station 30.
  • the radius r is a value calculated by substituting the path loss calculated at the measurement point into the path loss equation.
  • the intersection of relatively large circles centered on the square indicated by the bold line is shown using a sufficiently small circle.
  • FIG. 7 shows that the intersections when the circles with the radius r are superimposed are concentrated on the specific grid A around the measurement point where the path loss is calculated using the signal transmitted from the base station 30. ing.
  • the position estimation unit 13 estimates that the base station 30 is located in the grid A that includes the most intersections.
  • a point indicated by a triangle indicates an estimated position of the base station 30.
  • the distance estimation unit 12 calculates a path loss at each measurement point using a database related to the base station 30 (S11).
  • the distance estimation unit 12 starts a loop process (S12).
  • the distance estimation unit 12 calculates the radius r (i) for the measurement point i using the path loss equation (S13).
  • the radius r (i) indicates the value of the radius r at the measurement point i.
  • the distance estimation unit 12 replaces i with i + 1 in order to calculate the value of the radius r at the next measurement point (S14).
  • the processes after step S12 are repeated (S15).
  • the position estimation unit 13 also starts a different loop process (S18).
  • the position estimation unit 13 determines whether or not there is an intersection of a circle having a radius r (i) centered on the measurement point i and a circle having a radius r (j) centered on the measurement point j ( S19). For example, if the distance between the measurement point i and the measurement point j is d (i, j), the position estimation unit 13 is d (i, j) ⁇ r (i) + r. If (j) is satisfied, it is determined that there is an intersection.
  • the position estimation unit 13 determines that there is an intersection of a circle with a radius r (i) centered on the measurement point i and a circle with a radius r (j) centered on the measurement point j
  • the position estimation unit 13 calculates an intersection coordinate ( S20). For example, the position estimation unit 13 determines that the sum of the distance from the arbitrary coordinate (x, y) to the measurement point i and the distance from the arbitrary coordinate (x, y) to the measurement point j is r (i) + r.
  • the coordinates (x, y) satisfying (j) are set as the intersection coordinates. In the intersection coordinates, x represents longitude and y represents latitude.
  • the position estimation unit 13 stores the latitude and longitude of the intersection in Cross_Lat (k) and Cross_Lon (k) (S21).
  • Cross_Lat (k) and Cross_Lon (k) are information indicating storage locations on the memory where the variable is k.
  • the position estimation unit 13 replaces k with k + 1 in order to store the intersection coordinate information at the next storage position (S22). Further, the position estimation unit 13 determines j as j + 1 in order to determine whether or not there is an intersection between a circle with a radius r (i) centered on the measurement point i and a circle with a radius r centered on the next measurement point. (S23). Next, the position estimation unit 13 determines whether or not there is an intersection of a circle with a radius r (i) centered on the measurement point i and a circle with a radius r (j + 1) centered on the measurement point j + 1. The processes after step S18 are repeated (S24).
  • step S19 if the position estimation unit 13 determines that there is no intersection of a circle with a radius r (i) centered on the measurement point i and a circle with a radius r (j) centered on the measurement point j. Then, the processing after step S23 is executed.
  • the position estimator 13 determines the presence or absence of an intersection at a radius r (N) centered on the measurement point N and a circle with a radius r (i) centered on the measurement point i, i replaces i with i + 1 (S25). .
  • the position estimation unit 13 determines whether or not there is an intersection between a circle having a radius r (i + 1) centered on the measurement point i + 1 and a circle having a radius r (j) centered on the measurement point j.
  • the processes after step S17 are repeated (S26).
  • the analysis apparatus 50 can estimate the position of the base station 30 whose position is not specified using the path loss as the communication quality.
  • the distance estimation unit 12 sets the transmission power of the signal transmitted from the base station 30 to the same value as that of the base station 20. Accordingly, the position estimation unit 13 assumes that the attenuation rate between the base station 30 and the communication terminal shows substantially the same tendency as the attenuation rate between the base station 20 and the communication terminal. The position can be estimated.
  • the database in FIG. 4 indicates that only signals in the same frequency band among the signals transmitted from the base station 20 are used.
  • the attenuation rate between the base station 30 and the communication terminal can be set to have the same tendency as the attenuation rate between the base station 20 and the communication terminal.
  • by generating a path loss equation using only signals in the same frequency band it is possible to improve the accuracy of approximation of the path loss equation. By using only signals in the same frequency band, the estimation accuracy of the position of the base station 30 can be improved.
  • signals related to a plurality of frequency bands may be added to the databases of FIGS. 4 and 6. This is because when the number of measurement points is sufficiently large, the approximation accuracy of the path loss equation and the estimation accuracy of the position of the base station 30 can be improved.
  • a delay amount may be used as the communication quality.
  • a coefficient is calculated using a change in distance per unit delay time. You may link
  • FIG. 11 shows a plane in a certain area, and shows that the plane is divided into a plurality of grids.
  • a grid shows the area divided
  • FIG. 11 is a plane whose position can be specified using latitude and longitude.
  • the horizontal line may be a latitude line indicating the same latitude
  • the vertical line may be a meridian indicating the same longitude.
  • the points indicated by the squares in FIG. 11 indicate the measurement points at which each communication terminal calculates the path loss. For example, a point along the road may be used as the measurement point.
  • Square points indicated by thick lines indicate measurement points for calculating a path loss related to a signal transmitted from the base station 30.
  • a relatively large circle centered on a square indicated by a thick line indicates an area of a circle with a radius r centered on the position of the communication terminal that has received the signal transmitted from the base station 30.
  • the radius r is a value calculated by substituting the path loss calculated at the measurement point into the path loss equation.
  • the position estimation unit 13 extracts a grid included in a relatively large circle centered on a square indicated by a thick line.
  • the position estimation unit 13 extracts a grid included in the circle for each circle having a radius r centered on each measurement point.
  • the position estimation unit 13 estimates that the base station 30 is located on the grid with the largest number of extractions. Specifically, the position estimation unit 13 estimates that the base station 30 is located on the grid B shown in FIG.
  • a point indicated by a cross indicates an estimated position of the base station 30.
  • the position estimation unit 13 extracts a grid included in a circle having a radius r (i) with the measurement point i as the center (S33). For example, the position estimation unit 13 extracts a grid in which the center of the grid is included in a circle. Alternatively, the position estimation unit 13 extracts a grid in which an arbitrary position in the grid is included in the circle. In the subsequent processing, a case will be described in which the position estimation unit 13 extracts a grid in which the center of the grid is included in a circle.
  • the position estimation unit 13 manages the center coordinates of the grid in advance.
  • the center coordinates of the grid are shown using latitude and longitude.
  • the center coordinates of the grid are (X, Y), and the coordinates of the measurement point i are (Xi, Yi).
  • the position estimation unit 13 satisfies (X ⁇ Xi) 2 + (Y ⁇ Yi) 2 ⁇ r 2 (i)
  • the center of the grid is within a circle having a radius r (i) with the measurement point i as the center. Is determined to be included.
  • the position estimation unit 13 determines whether or not the central coordinates satisfy (X ⁇ Xi) 2 + (Y ⁇ Yi) 2 ⁇ r 2 (i) for each managed central coordinate.
  • the position estimation unit 13 extracts a grid whose center coordinates satisfy (X ⁇ Xi) 2 + (Y ⁇ Yi) 2 ⁇ r 2 (i).
  • the position estimation unit 13 specifies the center coordinates of the extracted grid (S34). Next, the position estimation unit 13 stores the latitude and longitude indicating the extracted center coordinates of the grid in Gridd_Lat (k) and Gridd_Lon (k) (S35). Gridd_Lat (k) and Gridd_Lon (k) are information indicating storage locations on the memory where the variable is k.
  • the position estimation unit 13 replaces k with k + 1 in order to store the central coordinate information at the next storage position (S36). Further, the position estimation unit 13 replaces i with i + 1 in order to extract a grid included in a circle having a radius r (i + 1) centered on the measurement point i + 1 (S37).
  • the position estimation unit 13 repeats the processing from step SS32 onward in order to extract a grid included in a circle having a radius r (i + 1) centered on the measurement point i + 1 (S38).
  • the position estimation unit 13 estimates that the base station 30 is located in the grid having the center coordinates with the largest number of times counted (S40).
  • the analysis device 50 extracts a grid included in a circle having a radius r (i) with the measurement point i as the center, thereby determining a base station whose position is not specified. Thirty positions can be estimated.
  • FIG. 14 is a block diagram illustrating a configuration example of the analysis apparatuses 10 and 50.
  • the analysis apparatuses 10 and 50 include a network interface 1201, a processor 1202, and a memory 1203.
  • the network interface 1201 is used to communicate with the network node.
  • the network interface 1201 may include, for example, a network interface card (NIC) compliant with IEEE 802.3 series.
  • NIC network interface card
  • the processor 1202 reads the software (computer program) from the memory 1203 and executes it, thereby performing the processing of the analysis devices 10 and 50 described using the sequence diagrams and flowcharts in the above-described embodiment.
  • the processor 1202 may be, for example, a microprocessor, MPU, or CPU.
  • the processor 1202 may include a plurality of processors.
  • the processor 1202 may include a plurality of processors.
  • the processor 1004 includes a modem processor (eg, DSP) that performs digital baseband signal processing, a processor that performs signal processing of the GTP-U / UDP / IP layer in the X2-U interface and the S1-U interface (eg, DSP) and a protocol stack processor (eg, CPU or MPU) that performs control plane processing may be included.
  • DSP modem processor
  • a processor that performs signal processing of the GTP-U / UDP / IP layer in the X2-U interface and the S1-U interface eg, DSP
  • a protocol stack processor eg, CPU or MPU
  • the memory 1203 is configured by a combination of a volatile memory and a nonvolatile memory.
  • Memory 1203 may include storage located remotely from processor 1202. In this case, the processor 1202 may access the memory 1203 via an I / O interface not shown.
  • the memory 1203 is used for storing software module groups.
  • the software module group may be location information, map information, or database information of measurement information.
  • the processor 1202 can perform the processing of the analysis apparatuses 10 and 50 described in the above-described embodiment by reading these software module groups from the memory 1203 and executing them.
  • each of the processors included in the analysis apparatuses 10 and 50 in the above-described embodiment includes one or a plurality of instructions including instructions for causing a computer to execute the algorithm described with reference to the drawings. Run the program.
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium).
  • Examples of non-transitory computer-readable media include magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM (Random Access Memory)) are included.
  • the program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • a distance estimation unit that estimates the distance to The second base station using overlapping information of an area whose center is the position of each communication terminal that has received the signal transmitted from the second base station and whose radius is determined as the distance estimated by the distance estimation unit
  • a position estimation unit that estimates the position of the analysis device.
  • the position estimation unit The analysis apparatus according to appendix 2, wherein the analysis apparatus has information related to a divided area obtained by dividing a predetermined area into a plurality of areas, and estimates that the second base station exists in a divided area including the largest number of intersections.
  • the position estimation unit Note that an overlapping area in a circle whose center is the position of each communication terminal that has received the signal transmitted from the second base station and whose radius is determined as the distance estimated by the distance estimating unit is used as the overlapping information.
  • the analysis apparatus according to 1.
  • the position estimation unit It has information on divided areas obtained by dividing a predetermined area into a plurality of areas, and for each circle, the divided areas included in the circle are extracted, and the first extracted in the divided area with the largest number of extractions.
  • the analysis device which estimates that two base stations exist.
  • the expression generator is The analysis apparatus according to any one of appendices 1 to 5, wherein the relational expression is generated as an expression of a linear function simulated by a regression analysis using a least square method.
  • the expression generator is The analysis apparatus according to any one of appendices 1 to 6, which is used as the relational expression when an expression of a linear function simulated by a regression analysis using a least square method exceeds a predetermined contribution rate.
  • the expression generator is The analysis apparatus according to any one of appendices 1 to 6, which is used as the relational expression when an expression of a linear function simulated by regression analysis using a maximum likelihood method exceeds a predetermined Akaike information reference amount.
  • the expression generator is The analysis apparatus according to any one of appendices 1 to 8, wherein the relational expression is generated using signals transmitted at the same frequency.
  • the communication quality is It is a path loss calculated using the transmission power of the signal transmitted from the first or second base station and the reception power in the communication terminal that has received the signal transmitted from the first or second base station.
  • the analyzer according to any one of appendices 1 to 9.
  • the distance estimation unit The analysis apparatus according to appendix 10, wherein the same value as the transmission power of the signal transmitted from the first base station is used as the transmission power value of the signal transmitted from the second base station.
  • Appendix 12 A relational expression for associating the communication quality calculated in the plurality of communication terminals that have received the signal transmitted from the first base station whose position is specified with the distance from each communication terminal to the first base station.
  • each communication terminal uses the second base station.
  • Estimate the distance to The position of the second base station is estimated using the overlapping information of the area determined as the distance with the radius estimated from the position of each communication terminal that has received the signal transmitted from the second base station.
  • Analysis method. (Appendix 13) A relational expression for associating the communication quality calculated in the plurality of communication terminals that have received the signal transmitted from the first base station whose position is specified with the distance from each communication terminal to the first base station.
  • each communication terminal uses the second base station.
  • Estimate the distance to The position of the second base station is estimated using the overlapping information of the area determined as the distance with the radius estimated from the position of each communication terminal that has received the signal transmitted from the second base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The objective of the present invention is to provide an analyzing device capable of using multiple items of information to estimate the position of a base station. An analyzing device (10) according to the present invention is provided with: an expression generating unit (11) which generates a relational expression associating a communication quality, calculated for each of a plurality of communication terminals that have received a signal transmitted from a first base station, the position of which has been determined, with the distance from each communication terminal to the first base station; a distance estimating unit (12) which estimates the distance from each communication terminal to a second base station using the relational expression and communication qualities calculated for each of the plurality of communication terminals that have received a signal transmitted from the second base station, the position of which has not been determined; and a position estimating unit (13) which estimates the position of the second base station using overlap information relating to areas which are centered around the position of each communication terminal that has received the signal transmitted from the second base station, and the radii of which are defined to be the corresponding distance estimated by the distance estimating unit (12).

Description

解析装置、解析方法、及び、非一時的なコンピュータ可読媒体Analysis device, analysis method, and non-transitory computer-readable medium
 本発明は解析装置、解析方法、及び、プログラムに関し、特に基地局の位置を特定するための解析装置、解析方法、及び、プログラムに関する。 The present invention relates to an analysis device, an analysis method, and a program, and more particularly, to an analysis device, an analysis method, and a program for specifying the position of a base station.
 近年、モバイルネットワークの設計に、ビッグデータを用いることが検討されている。ビッグデータは、例えば、モバイルネットワークを介して通信を行う多くの通信端末によって取得されるデータをまとめたデータである。 In recent years, the use of big data for mobile network design is being studied. Big data is, for example, data that is a collection of data acquired by many communication terminals that communicate via a mobile network.
 例えば、通信事業者は、設置位置が特定されていない基地局の位置を特定し、特定した基地局の位置情報を用いて、自社のモバイルネットワークの設計を行うことがある。設置位置が特定されていない基地局は、例えば自社が設置した基地局でもよく、他社が設置した基地局であってもよい。もしくは、通信事業者以外の事業者が、モバイルネットワークにおける基地局の位置を調査する場合もある。 For example, a telecommunications carrier may specify the location of a base station whose installation location is not specified, and design its own mobile network using the location information of the specified base station. The base station whose installation position is not specified may be, for example, a base station installed by the company or a base station installed by another company. Alternatively, an operator other than the communication operator may investigate the position of the base station in the mobile network.
 特許文献1には、移動端末から取得した通信ログを用いて、基地局の位置等を推定する分析装置の構成が開示されている。例えば、特許文献1に開示されている分析装置は、基地局毎に、複数の携帯端末の受信レベルを対応付けたレベルマップを生成する。さらに、分析装置は、レベルマップにおいて、最も高い受信レベルからx(dB)以下の受信レベルの通信端末が存在する位置を、基地局の存在確率が高いものとして、基地局の位置を推定する。 Patent Document 1 discloses a configuration of an analysis apparatus that estimates a position of a base station using a communication log acquired from a mobile terminal. For example, the analysis device disclosed in Patent Literature 1 generates a level map in which reception levels of a plurality of mobile terminals are associated with each base station. Furthermore, the analysis apparatus estimates the position of the base station in the level map, assuming that the position where the communication terminal having a reception level equal to or lower than x (dB) from the highest reception level is present has a high base station existence probability.
特開2015-192444号公報Japanese Patent Application Laid-Open No. 2015-192444
 しかし、特許文献1に開示されている分析装置は、多くの移動端末から取得した通信ログのうち、受信レベルが所定の範囲内にある携帯端末の位置情報を用いて基地局の位置を推定する。そのため、基地局の位置を推定するために用いられる携帯端末は、通信ログを送信してきた複数の携帯端末における一部の携帯端末のみになる。さらに、基地局が存在すると推定する領域を狭める場合、レベルマップにおける、受信レベルの所定の範囲を狭くするために、さらに少ない携帯端末の位置情報を用いることになる。そのため、特許文献1に開示されている分析装置は、多数の情報を用いて推定精度を向上させるというビッグデータの特性を生かすことができないという問題がある。 However, the analysis device disclosed in Patent Document 1 estimates the position of the base station using the position information of the mobile terminal whose reception level is within a predetermined range among the communication logs acquired from many mobile terminals. . Therefore, the portable terminals used for estimating the position of the base station are only some portable terminals among the plurality of portable terminals that have transmitted the communication log. Further, when narrowing the region where it is estimated that a base station exists, in order to narrow the predetermined range of the reception level in the level map, the position information of a smaller mobile terminal is used. For this reason, the analysis device disclosed in Patent Document 1 has a problem in that it cannot take advantage of the big data characteristic of improving estimation accuracy using a large amount of information.
 本発明の目的は、多数の情報を用いて基地局の位置を推定することができる解析装置、解析方法、及び、プログラムを提供することにある。 An object of the present invention is to provide an analysis apparatus, an analysis method, and a program that can estimate the position of a base station using a large amount of information.
 本発明の第1の態様にかかる解析装置は、位置が特定された第1の基地局から送信された信号を受信した複数の通信端末において算出された通信品質と、それぞれの通信端末から前記第1の基地局までの距離とを関連付ける関係式を生成する式生成部と、位置が特定されていない第2の基地局から送信された信号を受信した複数の通信端末において算出された通信品質と、前記関係式とを用いて、それぞれの通信端末から前記第2の基地局までの距離を推定する距離推定部と、前記第2の基地局から送信された信号を受信したそれぞれの通信端末の位置を中心とし、半径を前記距離推定部において推定された距離として定まるエリアの重複情報を用いて前記第2の基地局の位置を推定する位置推定部と、を備えるものである。 The analysis apparatus according to the first aspect of the present invention includes communication quality calculated in a plurality of communication terminals that have received a signal transmitted from a first base station whose position is specified, and the communication quality calculated from each communication terminal. An expression generator that generates a relational expression that associates a distance to one base station, and communication quality calculated in a plurality of communication terminals that have received signals transmitted from a second base station whose position is not specified; , Using the relational expression, a distance estimation unit that estimates a distance from each communication terminal to the second base station, and each communication terminal that has received a signal transmitted from the second base station A position estimation unit that estimates the position of the second base station using overlapping information of an area whose center is a position and whose radius is determined as the distance estimated by the distance estimation unit.
 本発明の第2の態様にかかる解析方法は、位置が特定された第1の基地局から送信された信号を受信した複数の通信端末において算出された通信品質と、それぞれの通信端末から前記第1の基地局までの距離とを関連付ける関係式を生成し、位置が特定されていない第2の基地局から送信された信号を受信した複数の通信端末において算出された通信品質と、前記関係式とを用いて、それぞれの通信端末から前記第2の基地局までの距離を推定し、前記第2の基地局から送信された信号を受信したそれぞれの通信端末の位置を中心とし、半径を推定された前記距離として定まるエリアの重複情報を用いて前記第2の基地局の位置を推定するものである。 The analysis method according to the second aspect of the present invention includes communication quality calculated in a plurality of communication terminals that have received a signal transmitted from a first base station whose position has been specified, and the communication quality calculated from each communication terminal. A relational expression for associating a distance to one base station, communication quality calculated in a plurality of communication terminals that have received signals transmitted from a second base station whose position is not specified, and the relational expression Are used to estimate the distance from each communication terminal to the second base station, and estimate the radius around the position of each communication terminal that has received the signal transmitted from the second base station. The position of the second base station is estimated using the overlap information of the area determined as the distance.
 本発明の第3の態様にかかるプログラムは、位置が特定された第1の基地局から送信された信号を受信した複数の通信端末において算出された通信品質と、それぞれの通信端末から前記第1の基地局までの距離とを関連付ける関係式を生成し、位置が特定されていない第2の基地局から送信された信号を受信した複数の通信端末において算出された通信品質と、前記関係式とを用いて、それぞれの通信端末から前記第2の基地局までの距離を推定し、前記第2の基地局から送信された信号を受信したそれぞれの通信端末の位置を中心とし、半径を推定された前記距離として定まるエリアの重複情報を用いて前記第2の基地局の位置を推定することをコンピュータに実行させるものである。 The program according to the third aspect of the present invention includes: a communication quality calculated in a plurality of communication terminals that have received a signal transmitted from a first base station whose position is specified; Communication quality calculated in a plurality of communication terminals that received a signal transmitted from a second base station whose position is not specified, and a relational expression for associating a distance to a base station of Is used to estimate the distance from each communication terminal to the second base station, and the radius is estimated around the position of each communication terminal that has received the signal transmitted from the second base station. Further, the computer is caused to estimate the position of the second base station by using the overlapping information of the area determined as the distance.
 本発明により、多数の情報を用いて基地局の位置を推定することができる解析装置、解析方法、及び、プログラムを提供することができる。 According to the present invention, it is possible to provide an analysis apparatus, an analysis method, and a program that can estimate the position of a base station using a large amount of information.
実施の形態1にかかる解析装置の構成図である。1 is a configuration diagram of an analysis apparatus according to a first embodiment. 実施の形態2にかかる通信システムの構成図である。FIG. 3 is a configuration diagram of a communication system according to a second exemplary embodiment. 実施の形態2にかかる解析装置の構成図である。FIG. 3 is a configuration diagram of an analysis apparatus according to a second embodiment. 実施の形態2にかかる解析装置が管理する情報を示す図である。It is a figure which shows the information which the analyzer concerning Embodiment 2 manages. 実施の形態2にかかる基地局から通信端末までの距離とパスロスとの関係を示す図である。It is a figure which shows the relationship between the distance from the base station and communication terminal concerning Embodiment 2, and path loss. 実施の形態2にかかる解析装置が管理する情報を示す図である。It is a figure which shows the information which the analyzer concerning Embodiment 2 manages. 実施の形態2にかかる基地局の位置の推定処理を説明する図である。It is a figure explaining the estimation process of the position of the base station concerning Embodiment 2. FIG. 実施の形態2にかかる解析装置が基地局の位置を推定する処理の流れを示す図である。It is a figure which shows the flow of the process which the analyzer concerning Embodiment 2 estimates the position of a base station. 実施の形態2にかかる解析装置が基地局の位置を推定する処理の流れを示す図である。It is a figure which shows the flow of the process which the analyzer concerning Embodiment 2 estimates the position of a base station. 実施の形態2にかかる解析装置が基地局の位置を推定する処理の流れを示す図である。It is a figure which shows the flow of the process which the analyzer concerning Embodiment 2 estimates the position of a base station. 実施の形態3にかかる基地局の位置の推定処理を説明する図である。FIG. 10 is a diagram for explaining base station position estimation processing according to the third embodiment; 実施の形態3にかかる解析装置が基地局の位置を推定する処理の流れを示す図である。It is a figure which shows the flow of the process which the analyzer concerning Embodiment 3 estimates the position of a base station. 実施の形態3にかかる解析装置が基地局の位置を推定する処理の流れを示す図である。It is a figure which shows the flow of the process which the analyzer concerning Embodiment 3 estimates the position of a base station. それぞれの実施の形態にかかる解析装置の構成図である。It is a block diagram of the analyzer concerning each embodiment.
 (実施の形態1)
 以下、図面を参照して本発明の実施の形態について説明する。はじめに、図1を用いて実施の形態1にかかる解析装置10の構成例について説明する。解析装置10は、プロセッサがメモリに格納されたプログラムを実行することによって動作するコンピュータ装置であってもよい。コンピュータ装置は、例えば、サーバ装置であってもよい。
(Embodiment 1)
Embodiments of the present invention will be described below with reference to the drawings. First, a configuration example of the analysis apparatus 10 according to the first embodiment will be described with reference to FIG. The analysis device 10 may be a computer device that operates when a processor executes a program stored in a memory. The computer device may be a server device, for example.
 解析装置10は、式生成部11、距離推定部12、及び、位置推定部13を有している。式生成部11、距離推定部12、及び、位置推定部13は、プロセッサがメモリに格納されたプログラムを実行することによって処理が実行されるソフトウェアもしくはモジュールであってもよい。または、式生成部11、距離推定部12、及び、位置推定部13は、チップもしくは回路等のハードウェアであってもよい。 The analysis device 10 includes an expression generation unit 11, a distance estimation unit 12, and a position estimation unit 13. The expression generation unit 11, the distance estimation unit 12, and the position estimation unit 13 may be software or modules in which processing is executed by a processor executing a program stored in a memory. Alternatively, the expression generation unit 11, the distance estimation unit 12, and the position estimation unit 13 may be hardware such as a chip or a circuit.
 式生成部11は、位置が特定された基地局Aから送信された信号を受信した複数の通信端末において算出される通信品質と、それぞれの通信端末から基地局Aまでの距離とを関連付ける関係式を生成する。式生成部11は、予め基地局Aの位置を管理しているとする。基地局Aの位置は、例えば、緯度及び経度によって特定されてもよい。 The expression generation unit 11 relates the communication quality calculated in a plurality of communication terminals that have received the signal transmitted from the base station A whose position is specified, and the distance from each communication terminal to the base station A Is generated. It is assumed that the expression generation unit 11 manages the position of the base station A in advance. The position of the base station A may be specified by latitude and longitude, for example.
 複数の通信端末は、基地局Aが形成する通信可能エリア内に位置している。通信端末は、プロセッサがメモリに格納されたプログラムを実行することによって動作するコンピュータ装置であってもよい。通信端末は、例えば、携帯電話端末、スマートフォン端末、もしくは、タブレット型端末等であってもよい。 A plurality of communication terminals are located in a communicable area formed by the base station A. The communication terminal may be a computer device that operates when a processor executes a program stored in a memory. The communication terminal may be, for example, a mobile phone terminal, a smartphone terminal, a tablet terminal, or the like.
 通信品質は、例えば、通信端末が、基地局Aから送信された信号を受信した際の受信電力であってもよい。もしくは、通信品質は、基地局Aから送信された信号の減衰比率を示すパスロスであってもよい。もしくは、通信品質は、スループット、遅延等であってもよい。 The communication quality may be, for example, received power when the communication terminal receives a signal transmitted from the base station A. Alternatively, the communication quality may be a path loss indicating the attenuation ratio of the signal transmitted from the base station A. Alternatively, the communication quality may be throughput, delay, or the like.
 式生成部11は、通信端末の位置情報と、基地局Aの位置情報とを用いてそれぞれの通信端末から基地局Aまでの距離を算出してもよい。位置情報は、例えば、通信端末の緯度及び経度と、基地局Aの緯度及び経度とであってもよい。式生成部11は、通信端末の位置情報を通信端末からアプリケーション情報として取得してもよい。もしくは、式生成部11は、通信事業者が管理するコアネットワークから、通信端末の位置情報を取得してもよい。式生成部11は、定期的に、もしくは、任意のタイミングに、通信端末から位置情報を取得してもよい。 The formula generator 11 may calculate the distance from each communication terminal to the base station A using the communication terminal position information and the base station A position information. The location information may be, for example, the latitude and longitude of the communication terminal and the latitude and longitude of the base station A. The expression generation unit 11 may acquire the position information of the communication terminal from the communication terminal as application information. Or the expression production | generation part 11 may acquire the positional information on a communication terminal from the core network which a communication carrier manages. The expression generation unit 11 may acquire position information from the communication terminal periodically or at an arbitrary timing.
 関係式は、基地局Aから通信端末までの距離と、その通信端末における通信品質との関係を、特定の関数を用いて近似した式である。特定の関数とは、n次関数(nは1以上の整数)、対数曲線等であってもよい。また、関係式は、例えば、最小二乗法を用いて決定された式であってもよい。また、関係式は、例えば、最尤法を用いて決定された式であってもよい。 The relational expression is an expression that approximates the relationship between the distance from the base station A to the communication terminal and the communication quality at the communication terminal using a specific function. The specific function may be an n-order function (n is an integer of 1 or more), a logarithmic curve, or the like. Further, the relational expression may be an expression determined using, for example, a least square method. In addition, the relational expression may be an expression determined using a maximum likelihood method, for example.
 距離推定部12は、位置が特定されていない基地局Bから送信された信号を受信した複数の通信端末において算出された通信品質と、式生成部11において生成された関係式とを用いて、それぞれの通信端末から基地局Bまでの距離を推定する。 The distance estimation unit 12 uses the communication quality calculated in the plurality of communication terminals that have received the signal transmitted from the base station B whose position is not specified, and the relational expression generated in the expression generation unit 11, The distance from each communication terminal to the base station B is estimated.
 距離推定部12及び式生成部11は、基地局Bの位置を管理していないとする。例えば、基地局Bは、基地局Aを管理する通信事業者と異なる通信事業者によって管理される基地局であってもよい。もしくは、基地局Aが通信事業者によって設置される基地局であるのに対して、基地局Bは、個人によって設置される小型基地局もしくはフェムト基地局等であってもよい。 It is assumed that the distance estimation unit 12 and the expression generation unit 11 do not manage the position of the base station B. For example, the base station B may be a base station managed by a telecommunications carrier different from the telecommunications carrier that manages the base station A. Alternatively, the base station A may be a base station installed by a communication carrier, while the base station B may be a small base station or a femto base station installed by an individual.
 基地局Bから送信された信号を受信した複数の通信端末は、基地局Bが形成する通信可能エリア内に位置する。基地局Aが形成する通信可能エリアと、基地局Bが形成する通信可能エリアとは、重複していてもよく、重複していなくてもよい。また、通信端末は、基地局A及び基地局Bと通信可能な端末であってもよく、いずれか一方の基地局と通信可能な端末であってもよい。 The plurality of communication terminals that have received the signal transmitted from the base station B are located in a communicable area formed by the base station B. The communicable area formed by the base station A and the communicable area formed by the base station B may or may not overlap. The communication terminal may be a terminal that can communicate with the base station A and the base station B, or may be a terminal that can communicate with either one of the base stations.
 式生成部11において生成された関係式は、基地局Aからの距離と、その距離における通信品質とを関連付けた式である。ここで、距離推定部12は、「基地局Bからの距離と、その距離における通信品質との関係」が、「基地局Aからの距離と、その距離における通信品質との関係」と実質的に同一の傾向を示すという仮定のもとで、距離を推定する。そのため、距離推定部12は、式生成部11において生成された関係式に、基地局Bから送信された信号を受信した通信端末において算出された通信品質を適用することによって、基地局Bから通信端末までの距離を推定することができる。 The relational expression generated in the expression generation unit 11 is an expression that associates the distance from the base station A and the communication quality at the distance. Here, the distance estimation unit 12 is substantially equivalent to the “relationship between the distance from the base station B and the communication quality at that distance” as “the relationship between the distance from the base station A and the communication quality at that distance”. The distance is estimated on the assumption that the same tendency is shown. Therefore, the distance estimation unit 12 performs communication from the base station B by applying the communication quality calculated in the communication terminal that has received the signal transmitted from the base station B to the relational expression generated in the expression generation unit 11. The distance to the terminal can be estimated.
 位置推定部13は、基地局Bから送信された信号を受信したそれぞれの通信端末の位置を中心とし、半径を距離推定部12において推定された距離として定まるエリアの重複情報を用いて、基地局Bの位置を推定する。 The position estimation unit 13 uses the overlapping information of the area determined by the distance estimated by the distance estimation unit 12 around the position of each communication terminal that has received the signal transmitted from the base station B as a base station. Estimate the position of B.
 それぞれの通信端末の位置を中心とし、半径を距離推定部12において推定された距離として定まるエリアをサーチエリアとする。サーチエリアは、基地局Bから送信された信号を受信した通信端末の位置に応じて異なるエリアとなる。位置推定部13は、複数のサーチエリアを重ね合わせ、最も多くのサーチエリアが重複するエリアに、基地局Bが存在すると推定する。 The area determined by the distance estimated by the distance estimation unit 12 with the position of each communication terminal as the center is defined as a search area. The search area is different depending on the position of the communication terminal that has received the signal transmitted from the base station B. The position estimation unit 13 superimposes a plurality of search areas, and estimates that the base station B exists in an area where the most search areas overlap.
 以上説明したように、図1の解析装置10は、基地局Aから送信された信号を受信した複数の通信端末において算出された通信品質を用いて、関係式を生成することができる。関係式は、基地局Aを中心とした通信端末までの距離と、その通信端末における通信品質との関係を、特定の関数を用いて近似した式であるため、通信品質を算出する通信端末の数が多いほど、正確な近似を行うことができる。 As described above, the analysis apparatus 10 in FIG. 1 can generate a relational expression using the communication quality calculated in a plurality of communication terminals that have received the signal transmitted from the base station A. The relational expression is an expression that approximates the relationship between the distance to the communication terminal centered on the base station A and the communication quality at the communication terminal using a specific function. The larger the number, the more accurate approximation can be made.
 また、図1の解析装置10は、基地局Bから送信された信号を受信した通信端末を中心とするサーチエリアを用いて基地局Bの位置を推定することができる。解析装置10は、サーチエリアが最も多く重複するエリアに基地局Bが存在すると推定するため、サーチエリアの数が多いほど、基地局Bが存在するエリアを正確に推定することができる。 1 can estimate the position of the base station B using a search area centered on the communication terminal that has received the signal transmitted from the base station B. Since the analysis apparatus 10 estimates that the base station B exists in an area where the search area overlaps most, the area where the base station B exists can be accurately estimated as the number of search areas increases.
 これより、解析装置10は、ビッグデータとして収集する多数のデータを用いて、基地局Bの位置を正確に推定することができる。 Thus, the analysis apparatus 10 can accurately estimate the position of the base station B using a large number of data collected as big data.
 (実施の形態2)
 続いて、図2を用いて実施の形態2にかかる通信システムの構成例について説明する。図2の通信システムは、解析装置50、基地局20、及び、基地局30が、インターネット40を介して接続している。また、基地局20の通信可能エリアに、通信端末21~24が存在し、基地局30の通信可能エリアに通信端末31~34が存在する。例えば、基地局20が、実施の形態1における基地局Aであり、基地局30が、実施の形態1における基地局Bであってもよい。つまり、解析装置50は、基地局20の位置については管理しているが、基地局30の位置については管理していないとする。
(Embodiment 2)
Next, a configuration example of the communication system according to the second embodiment will be described with reference to FIG. In the communication system of FIG. 2, the analysis device 50, the base station 20, and the base station 30 are connected via the Internet 40. In addition, communication terminals 21 to 24 exist in the communicable area of the base station 20, and communication terminals 31 to 34 exist in the communicable area of the base station 30. For example, the base station 20 may be the base station A in the first embodiment, and the base station 30 may be the base station B in the first embodiment. That is, it is assumed that the analysis device 50 manages the position of the base station 20 but does not manage the position of the base station 30.
 図2においては、基地局20及び基地局30がインターネット40に接続していることを示しているが、基地局20及び基地局30と、インターネット40とは、通信事業者が管理するコアネットワークを介して接続されてもよい。 FIG. 2 shows that the base station 20 and the base station 30 are connected to the Internet 40. The base station 20, the base station 30, and the Internet 40 are core networks managed by a communication carrier. It may be connected via.
 また、図2は、基地局20及び基地局30のそれぞれの通信可能エリアには、4台の通信端末が存在することを示しているが、それぞれの通信可能エリアには、通信端末が4台以上存在していてもよい。基地局20は、基地局30を管理する通信事業者と同じ通信事業者によって管理されてもよく、基地局30を管理する通信事業者と異なる通信事業者によって管理されてもよい。 FIG. 2 shows that there are four communication terminals in each communicable area of the base station 20 and the base station 30, but there are four communication terminals in each communicable area. It may exist above. The base station 20 may be managed by the same carrier as the carrier that manages the base station 30, or may be managed by a carrier different from the carrier that manages the base station 30.
 解析装置50は、それぞれの通信端末において算出した通信品質に関する情報及びそれぞれの通信端末に関する位置情報を、基地局20及びインターネット40を介して受信してもよい。さらに、解析装置50は、それぞれの通信端末において算出した通信品質に関する情報及びそれぞれの通信端末に関する位置情報を、基地局30及びインターネット40を介して受信してもよい。もしくは、解析装置50は、それぞれの通信端末において算出した通信品質に関する情報及びそれぞれの通信端末に関する位置情報を、基地局20もしくは基地局30の替りに無線LAN通信において用いられるアクセスポイント及びインターネット40を介して受信してもよい。 The analysis apparatus 50 may receive the information regarding the communication quality calculated at each communication terminal and the position information regarding each communication terminal via the base station 20 and the Internet 40. Furthermore, the analysis device 50 may receive information on communication quality calculated at each communication terminal and position information about each communication terminal via the base station 30 and the Internet 40. Alternatively, the analysis device 50 uses the access point and the Internet 40 used in the wireless LAN communication instead of the base station 20 or the base station 30 for the information regarding the communication quality calculated in each communication terminal and the position information regarding each communication terminal. You may receive via.
 続いて、図3を用いて実施の形態2にかかる解析装置50の構成例について説明する。解析装置50は、図1の解析装置10にデータベース14が追加された構成となっている。また、図3においては、解析装置50がデータベース14を有する構成を示しているが、解析装置50とは異なる装置がデータベース14を有してもよい。ここで、データベース14が管理する情報について説明する。また、基地局20は、通信事業者Aが管理する基地局であり、基地局30は、通信事業者Bが管理する基地局であるとする。さらに、基地局20は、位置が特定されているが、基地局30は、位置が特定されていないとする。つまり、解析装置50は、基地局30の位置を特定するために用いられる。データベース14は、基地局20に関するデータベースと、基地局30に関するデータベースとを有する。 Subsequently, a configuration example of the analysis apparatus 50 according to the second embodiment will be described with reference to FIG. The analysis device 50 has a configuration in which a database 14 is added to the analysis device 10 of FIG. 3 shows a configuration in which the analysis device 50 has the database 14, but a device different from the analysis device 50 may have the database 14. Here, information managed by the database 14 will be described. The base station 20 is a base station managed by the communication carrier A, and the base station 30 is a base station managed by the communication carrier B. Further, it is assumed that the position of the base station 20 is specified, but the position of the base station 30 is not specified. That is, the analysis device 50 is used to specify the position of the base station 30. The database 14 includes a database related to the base station 20 and a database related to the base station 30.
 図4は、基地局20に関するデータベースを示している。図4のデータベースは、通信端末21~24が基地局20から送信された信号を用いて測定した情報を管理する。言い換えると、図4のデータベースは、通信端末が基地局20から送信された信号を用いて測定を行った測定点毎に、通信端末が測定した情報を管理する。図4の表の外側に記載されている情報は、基地局20の位置情報及び基地局20が送信する信号の送信電力を示している。基地局20は、緯度が35.5746度、経度が139.66度に位置している。また、基地局20は、送信電力を18(dBm)として信号を送信している。 FIG. 4 shows a database related to the base station 20. The database shown in FIG. 4 manages information measured by the communication terminals 21 to 24 using signals transmitted from the base station 20. In other words, the database in FIG. 4 manages information measured by the communication terminal for each measurement point measured by the communication terminal using the signal transmitted from the base station 20. The information described outside the table in FIG. 4 indicates the position information of the base station 20 and the transmission power of the signal transmitted by the base station 20. The base station 20 is located at a latitude of 35.5746 degrees and a longitude of 139.66 degrees. The base station 20 transmits a signal with a transmission power of 18 (dBm).
 図4の表におけるTimeは、データベース14が通信端末から情報を取得した時刻を示している。Latは、緯度を示しており、Lonは、経度を示している。Carrierは、基地局20を管理している事業者を示している。CellIdentityは、基地局20が形成するセルの識別情報を示している。eNBIdは、基地局20の識別情報を示している。Cellは、通信端末が在圏するセルの識別情報を示している。PCI(Physical Cell Identity)は、基地局20が形成するセルの識別情報を示している。EARFCNは、基地局20が送信する信号に関する周波数帯を示している。RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)、RSSI(Reference Signal Strength Indicator)、及び、SINR(Signal to Interference plus Noise power Ratio)は、受信電力に関する情報を示している。特に、RSRP(dBm)は、通信端末が受信した信号の受信電力の大きさを示している。dは、基地局20と通信端末との間の距離を示している。PathLoss(パスロス)は、基地局20から送信された信号を受信した通信端末の位置において、基地局20から送信された信号の減衰比率を示す情報であり、パスロス(dB)=基地局20の送信電力(dBm)-RSRP(dBm)、として算出される。 4 in the table of FIG. 4 indicates the time when the database 14 acquires information from the communication terminal. Lat indicates latitude, and Lon indicates longitude. Carrier indicates a business operator that manages the base station 20. CellIdentity indicates cell identification information formed by the base station 20. eNBId indicates identification information of the base station 20. Cell indicates identification information of a cell in which the communication terminal is located. PCI (Physical Cell Identity) indicates cell identification information formed by the base station 20. EARFCN indicates a frequency band related to a signal transmitted by the base station 20. RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), RSSI (Reference Signal Strength Strength Indicator), and SINR (Signal Signal Interference Plus Noise Noise Power Ratio) indicate information on received power. In particular, RSRP (dBm) indicates the magnitude of the received power of the signal received by the communication terminal. d indicates the distance between the base station 20 and the communication terminal. PathLoss (path loss) is information indicating the attenuation ratio of the signal transmitted from the base station 20 at the position of the communication terminal that has received the signal transmitted from the base station 20. Path loss (dB) = transmission of the base station 20 Calculated as power (dBm) -RSRP (dBm).
 続いて、図5は、図4における距離d毎に、パスロスの値を示した図である。図5の横軸は、距離d(メートル)を示しており、縦軸は、パスロス(dB)を示している。図5の直線は、パスロスの値を模擬した式によって示される値である。具体的には、図5の直線は、パスロスの値を、最小二乗法による回帰分析を用いて模擬した一次関数の式を示している。図5の直線が示す式を、パスロス式と称する。パスロス式は、式生成部11において生成される。 Subsequently, FIG. 5 is a diagram showing the value of the path loss for each distance d in FIG. The horizontal axis in FIG. 5 indicates the distance d (meter), and the vertical axis indicates the path loss (dB). The straight line in FIG. 5 is a value indicated by an equation that simulates the value of the path loss. Specifically, the straight line in FIG. 5 represents an expression of a linear function that simulates the path loss value using regression analysis by the least square method. The equation indicated by the straight line in FIG. 5 is referred to as a path loss equation. The path loss formula is generated in the formula generation unit 11.
 パスロス式は、具体的には、L=0.029d+96.09、と示される。dは、距離を示し、Lは、パスロスの値を示している。また、パスロス式の評価指標である寄与率Rは、0.6222である。図5のパスロス式は、通信端末の位置が基地局20から離れるにつれて、減衰率が大きくなり、通信品質が低下することを示している。式生成部11は、寄与率Rの値が、予め定められた値よりも低い場合、再度最小二乗法による回帰分析を用いてパスロス式を生成してもよく、もしくは、他の回帰分析手法、例えば最尤法などを用いてパスロス式を生成してもよい。つまり、式生成部11によって生成されたパスロス式に関する寄与率Rの値が、予め定められた値よりも大きい場合、解析装置50は、式生成部11によって生成されたパスロス式を用いてその後の処理を実行する。寄与率は、最小二乗法による回帰分析の決定係数と称されてもよい。また、寄与率の代替としていくつかの式を生成し、赤池情報基準量(Akaike’s Information Criterion:AIC)のような値に基づきパスロス式を評価してもよい。パスロス式の評価指標は、寄与率及び赤池情報基準量に限定されず、他の評価指標が用いられてもよい。 Specifically, the path loss equation is expressed as L = 0.029d + 96.09. d indicates a distance, and L indicates a path loss value. Further, the contribution ratio R 2 that is an evaluation index of the path loss formula is 0.6222. The path loss equation in FIG. 5 indicates that the attenuation rate increases and the communication quality decreases as the position of the communication terminal moves away from the base station 20. When the value of the contribution rate R 2 is lower than a predetermined value, the expression generation unit 11 may generate the path loss expression again using regression analysis by the least square method, or other regression analysis methods For example, the path loss equation may be generated using a maximum likelihood method or the like. That is, when the value of the contribution rate R 2 related to the path loss expression generated by the expression generation unit 11 is larger than a predetermined value, the analysis apparatus 50 uses the path loss expression generated by the expression generation unit 11 to Execute the process. The contribution rate may be referred to as a determination coefficient of regression analysis by the least square method. Also, some expressions may be generated as alternatives to the contribution rate, and the path loss expression may be evaluated based on a value such as Akaike's Information Criterion (AIC). The evaluation index of the path loss formula is not limited to the contribution rate and the Akaike information reference amount, and other evaluation indices may be used.
 図6は、基地局30に関するデータベースを示している。図6のデータベースは、通信端末31~34が基地局30から送信された信号を用いて測定した情報を管理する。言い換えると、図6のデータベースは、通信端末が基地局20から送信された信号を用いて測定を行った測定点毎に、通信端末が測定した情報を管理する。基地局30は、位置が特定されていない。そのため、基地局20に関するデータベースである図4のように、基地局30の位置は示されていない。また、基地局30が送信する信号の送信電力は、基地局20と同様に18(dBm)と仮定する。 FIG. 6 shows a database related to the base station 30. The database in FIG. 6 manages information measured by the communication terminals 31 to 34 using signals transmitted from the base station 30. In other words, the database in FIG. 6 manages information measured by the communication terminal for each measurement point measured by the signal transmitted from the base station 20 by the communication terminal. The position of the base station 30 is not specified. Therefore, the position of the base station 30 is not shown as in FIG. 4 which is a database related to the base station 20. Further, it is assumed that the transmission power of the signal transmitted by the base station 30 is 18 (dBm) as in the base station 20.
 また、図6は、図4の距離dの代わりに、r for searchとの値が用いられている。rは、パスロス式のLにパスロスの値を代入した際に求められるdの値を示している。つまり、rは、通信端末と基地局30との間の距離を示す値である。r for serachとは、通信端末の位置を中心として、半径rの円内をサーチして、基地局30の位置を推定することを示している。半径rの値は、距離推定部12において算出される。 In FIG. 6, the value r 値 for search is used instead of the distance d in FIG. r indicates the value of d obtained when the path loss value is substituted into L of the path loss equation. That is, r is a value indicating the distance between the communication terminal and the base station 30. r for serach indicates that the position of the base station 30 is estimated by searching in a circle with a radius r centering on the position of the communication terminal. The value of the radius r is calculated by the distance estimation unit 12.
 続いて、図7を用いて、位置推定部13における基地局30の位置の推定処理の概要を説明する。図7は、ある地域における平面を示しており、平面が、複数のグリッドに分割されていることを示している。グリッドは、格子状に分割されたエリアを示す。また、図7は、緯度及び経度を用いて位置を特定することができる平面であるとする。例えば、横方向の線が同一の緯度を示す緯線であり、縦方向の線が同一の経度を示す経線であってもよい。 Subsequently, the outline of the position estimation process of the base station 30 in the position estimation unit 13 will be described with reference to FIG. FIG. 7 shows a plane in a certain area, and shows that the plane is divided into a plurality of grids. A grid shows the area divided | segmented into the grid | lattice form. FIG. 7 is a plane whose position can be specified using latitude and longitude. For example, the horizontal line may be a latitude line indicating the same latitude, and the vertical line may be a meridian indicating the same longitude.
 図7において四角にて示されるポイントは、各通信端末がパスロスを算出する測定点を示している。例えば、道路沿いの地点を、測定点としてもよい。また、太線にて示される四角のポイントは、基地局30から送信された信号に関するパスロスを算出する測定点を示している。 In FIG. 7, points indicated by squares indicate measurement points at which each communication terminal calculates a path loss. For example, a point along the road may be used as the measurement point. Square points indicated by thick lines indicate measurement points for calculating a path loss related to a signal transmitted from the base station 30.
 太線にて示される四角を中心とした比較的大きな円は、基地局30から送信された信号を受信した通信端末の位置を中心とした、半径rの円のエリアを示している。半径rは、測定点において算出されたパスロスを、パスロス式に代入して算出される値である。太線にて示される四角を中心とした比較的大きな円の交点は、十分に小さい円を用いて示されている。 A relatively large circle centered on a square indicated by a thick line indicates an area of a circle with a radius r centered on the position of the communication terminal that has received the signal transmitted from the base station 30. The radius r is a value calculated by substituting the path loss calculated at the measurement point into the path loss equation. The intersection of relatively large circles centered on the square indicated by the bold line is shown using a sufficiently small circle.
 図7は、特定のグリッドAに、基地局30から送信された信号を用いてパスロスを算出した測定点を中心に、半径rの円を重ね合わせた際の交点が集中していることを示している。位置推定部13は、交点が最も多く含まれるグリッドAに基地局30が位置していると推定する。三角にて示されるポイントは、基地局30の推定位置を示している。 FIG. 7 shows that the intersections when the circles with the radius r are superimposed are concentrated on the specific grid A around the measurement point where the path loss is calculated using the signal transmitted from the base station 30. ing. The position estimation unit 13 estimates that the base station 30 is located in the grid A that includes the most intersections. A point indicated by a triangle indicates an estimated position of the base station 30.
 続いて、図8、図9、及び、図10を用いて、解析装置50が基地局30の位置を推定する処理の流れについて説明する。解析装置50における式生成部11は、図4のデータベースを用いて、パスロス式を算出しているとする。 Subsequently, the flow of processing in which the analysis device 50 estimates the position of the base station 30 will be described with reference to FIGS. 8, 9, and 10. It is assumed that the expression generation unit 11 in the analysis device 50 calculates a path loss expression using the database in FIG.
 はじめに、距離推定部12は、基地局30に関するデータベースを用いてそれぞれの測定点におけるパスロスを算出する(S11)。次に、距離推定部12は、ループ処理を開始する(S12)。iは、測定点を示し、i=1~N(Nは1以上の整数)とする。ステップS12は、i=1~Nまでの測定点について、ステップサイズを1として処理を実行することを示している。具体的には、図6の先頭の情報の測定点をi=1とし、最後方の情報の測定点をi=Nとする。 First, the distance estimation unit 12 calculates a path loss at each measurement point using a database related to the base station 30 (S11). Next, the distance estimation unit 12 starts a loop process (S12). i represents a measurement point, and i = 1 to N (N is an integer of 1 or more). Step S12 indicates that the process is executed with the step size set to 1 for the measurement points from i = 1 to N. Specifically, the measurement point of the top information in FIG. 6 is i = 1, and the measurement point of the last information is i = N.
 次に、距離推定部12は、測定点iについて、パスロス式を用いて半径r(i)を算出する(S13)。半径r(i)は、測定点iにおける半径rの値を示す。次に、距離推定部12は、次の測定点における半径rの値を算出するために、iをi+1に置き換える(S14)。次に、測定点i+1における半径r(i+1)を算出するために、ステップS12以降の処理を繰り返す(S15)。 Next, the distance estimation unit 12 calculates the radius r (i) for the measurement point i using the path loss equation (S13). The radius r (i) indicates the value of the radius r at the measurement point i. Next, the distance estimation unit 12 replaces i with i + 1 in order to calculate the value of the radius r at the next measurement point (S14). Next, in order to calculate the radius r (i + 1) at the measurement point i + 1, the processes after step S12 are repeated (S15).
 距離推定部12が、測定点Nにおける半径r(N)を算出すると、位置推定部13は、変数kの値を1に設定する(S16)。次に、位置推定部13は、ループ処理を開始する(S17)。iは、測定点を示し、i=1~N(Nは1以上の整数)とする。ステップS17は、i=1~Nまでの測定点について、ステップサイズを1として処理を実行することを示している。 When the distance estimation unit 12 calculates the radius r (N) at the measurement point N, the position estimation unit 13 sets the value of the variable k to 1 (S16). Next, the position estimation unit 13 starts a loop process (S17). i represents a measurement point, and i = 1 to N (N is an integer of 1 or more). Step S17 indicates that the process is executed with the step size set to 1 for the measurement points from i = 1 to N.
 さらに、位置推定部13は、異なるループ処理についても開始する(S18)。jは、測定点を示し、j=1~N(Nは1以上の整数)とする。ステップS17は、i=1~Nまでの測定点について、ステップサイズを1として処理を実行することを示している。 Furthermore, the position estimation unit 13 also starts a different loop process (S18). j represents a measurement point, and j = 1 to N (N is an integer of 1 or more). Step S17 indicates that the process is executed with the step size set to 1 for the measurement points from i = 1 to N.
 次に、位置推定部13は、測定点iを中心とした半径r(i)の円と、測定点jを中心とした半径r(j)の円の交点があるか否かを判定する(S19)。例えば、位置推定部13は、測定点iと測定点jとの間の距離をd(i,j)とすると、d(i,j)が、d(i,j)≦r(i)+r(j)を満たす場合に、交点があると判定する。 Next, the position estimation unit 13 determines whether or not there is an intersection of a circle having a radius r (i) centered on the measurement point i and a circle having a radius r (j) centered on the measurement point j ( S19). For example, if the distance between the measurement point i and the measurement point j is d (i, j), the position estimation unit 13 is d (i, j) ≦ r (i) + r. If (j) is satisfied, it is determined that there is an intersection.
 位置推定部13は、測定点iを中心とした半径r(i)の円と、測定点jを中心とした半径r(j)の円の交点があると判定すると、交点座標を算出する(S20)。例えば、位置推定部13は、任意の座標(x,y)から測定点iまでの距離と、任意の座標(x,y)から測定点jまでの距離との和が、r(i)+r(j)を満たす座標(x,y)を、交点座標とする。交点座標のxは経度を示し、yは緯度を示す。 If the position estimation unit 13 determines that there is an intersection of a circle with a radius r (i) centered on the measurement point i and a circle with a radius r (j) centered on the measurement point j, the position estimation unit 13 calculates an intersection coordinate ( S20). For example, the position estimation unit 13 determines that the sum of the distance from the arbitrary coordinate (x, y) to the measurement point i and the distance from the arbitrary coordinate (x, y) to the measurement point j is r (i) + r. The coordinates (x, y) satisfying (j) are set as the intersection coordinates. In the intersection coordinates, x represents longitude and y represents latitude.
 次に、位置推定部13は、交点の緯度及び経度を、Cross_Lat(k)及びCross_Lon(k)に格納する(S21)。Cross_Lat(k)及びCross_Lon(k)は、変数をkとするメモリ上の格納位置を示す情報である。 Next, the position estimation unit 13 stores the latitude and longitude of the intersection in Cross_Lat (k) and Cross_Lon (k) (S21). Cross_Lat (k) and Cross_Lon (k) are information indicating storage locations on the memory where the variable is k.
 次に、位置推定部13は、次の格納位置に交点座標の情報を格納するために、kをk+1に置き換える(S22)。さらに、位置推定部13は、測定点iを中心とした半径r(i)の円と、次の測定点を中心とした半径rの円との交点の有無を判定するために、jをj+1に置き換える(S23)。次に、位置推定部13は、測定点iを中心とした半径r(i)の円と、測定点j+1を中心とした半径r(j+1)の円との交点の有無を判定するために、ステップS18以降の処理を繰り返す(S24)。ここで、ステップS19において、位置推定部13は、測定点iを中心とした半径r(i)の円と、測定点jを中心とした半径r(j)の円の交点がないと判定すると、ステップS23以降の処理を実行する。 Next, the position estimation unit 13 replaces k with k + 1 in order to store the intersection coordinate information at the next storage position (S22). Further, the position estimation unit 13 determines j as j + 1 in order to determine whether or not there is an intersection between a circle with a radius r (i) centered on the measurement point i and a circle with a radius r centered on the next measurement point. (S23). Next, the position estimation unit 13 determines whether or not there is an intersection of a circle with a radius r (i) centered on the measurement point i and a circle with a radius r (j + 1) centered on the measurement point j + 1. The processes after step S18 are repeated (S24). Here, in step S19, if the position estimation unit 13 determines that there is no intersection of a circle with a radius r (i) centered on the measurement point i and a circle with a radius r (j) centered on the measurement point j. Then, the processing after step S23 is executed.
 位置推定部13は、測定点iを中心とした半径r(i)の円と、測定点Nを中心とした半径r(N)における交点の有無を判定すると、iをi+1に置き換える(S25)。次に、位置推定部13は、測定点i+1を中心とした半径r(i+1)の円と、測定点jを中心とした半径r(j)の円との交点の有無を判定するために、ステップS17以降の処理を繰り返す(S26)。 When the position estimator 13 determines the presence or absence of an intersection at a radius r (N) centered on the measurement point N and a circle with a radius r (i) centered on the measurement point i, i replaces i with i + 1 (S25). . Next, the position estimation unit 13 determines whether or not there is an intersection between a circle having a radius r (i + 1) centered on the measurement point i + 1 and a circle having a radius r (j) centered on the measurement point j. The processes after step S17 are repeated (S26).
 位置推定部13は、ステップS26までの処理を実行することによって、測定点Nを中心とした半径r(N)の円と、他の全ての測定点との交点の有無を判定し、さらに、交点が存在する場合に交点座標の算出を行う。位置推定部13は、この結果をCross_Lat(k)及びCross_Lon(k)(k=1~N)に格納する。次に、位置推定部13は、図7の平面に緯度及び経度を用いて示される交点座標をプロットする(S27)。次に、位置推定部13は、交点座標としてプロットされた数が最も多いグリッド内を、基地局30の推定位置として決定する(S28)。具体的には、位置推定部13は、交点座標としてプロットされた数が最も多いグリッド内の中心を、基地局30の推定位置として決定してもよく、グリッド内の任意の位置を、基地局30の推定位置として決定してもよい。 The position estimation unit 13 determines whether or not there is an intersection of a circle having a radius r (N) centered on the measurement point N and all other measurement points by executing the processing up to step S26. When the intersection exists, the intersection coordinates are calculated. The position estimation unit 13 stores this result in Cross_Lat (k) and Cross_Lon (k) (k = 1 to N). Next, the position estimation unit 13 plots the intersection coordinates indicated using the latitude and longitude on the plane of FIG. 7 (S27). Next, the position estimation unit 13 determines the grid with the largest number plotted as the intersection coordinates as the estimated position of the base station 30 (S28). Specifically, the position estimation unit 13 may determine the center in the grid having the largest number plotted as the intersection coordinates as the estimated position of the base station 30, and the arbitrary position in the grid may be determined as the base station. It may be determined as 30 estimated positions.
 また、メモリ容量を削減するために、位置推定部13は、Cross_Lat(k)及びCross_Lon(k)(k=1~N)において、同じ緯度及び経度を示す交点に関する情報を削除してもよい。 In addition, in order to reduce the memory capacity, the position estimation unit 13 may delete the information on the intersection indicating the same latitude and longitude in Cross_Lat (k) and Cross_Lon (k) (k = 1 to N).
 以上説明したように、実施の形態2にかかる解析装置50は、通信品質としてパスロスを用いて、位置が特定されていない基地局30の位置を推定することができる。また、距離推定部12は、基地局30が送信する信号の送信電力を、基地局20と同じ値とする。これより、位置推定部13は、基地局30と通信端末との間の減衰率が、基地局20と通信端末との間の減衰率と実質的に同一の傾向を示すとして、基地局30の位置を推定することができる。 As described above, the analysis apparatus 50 according to the second embodiment can estimate the position of the base station 30 whose position is not specified using the path loss as the communication quality. The distance estimation unit 12 sets the transmission power of the signal transmitted from the base station 30 to the same value as that of the base station 20. Accordingly, the position estimation unit 13 assumes that the attenuation rate between the base station 30 and the communication terminal shows substantially the same tendency as the attenuation rate between the base station 20 and the communication terminal. The position can be estimated.
 また、図4のデータベースは、基地局20から送信された信号のうち、同じ周波数帯の信号のみが用いられていることを示している。図6についても同様である。また、図4と図6とにおいて用いられている周波数帯についても実質的に同様の周波数帯が用いられているとする。これにより、基地局30と通信端末との間の減衰率が、基地局20と通信端末との間の減衰率と実質的に同一の傾向とすることができる。また、同じ周波数帯の信号のみを用いてパスロス式を生成することによって、パスロス式の近似の精度を向上させることができる。同じ周波数帯の信号のみを用いることによって、基地局30の位置の推定精度を向上させることができる。 Further, the database in FIG. 4 indicates that only signals in the same frequency band among the signals transmitted from the base station 20 are used. The same applies to FIG. In addition, it is assumed that substantially the same frequency band is used for the frequency bands used in FIGS. Thereby, the attenuation rate between the base station 30 and the communication terminal can be set to have the same tendency as the attenuation rate between the base station 20 and the communication terminal. Further, by generating a path loss equation using only signals in the same frequency band, it is possible to improve the accuracy of approximation of the path loss equation. By using only signals in the same frequency band, the estimation accuracy of the position of the base station 30 can be improved.
 ここで、測定点の数が十分に多い場合には、複数の周波数帯に関する信号も図4及び図6のデータベースに加えられてもよい。測定点の数が十分に多い場合、パスロス式の近似精度及び基地局30の位置の推定精度も向上させることができるからである。 Here, when the number of measurement points is sufficiently large, signals related to a plurality of frequency bands may be added to the databases of FIGS. 4 and 6. This is because when the number of measurement points is sufficiently large, the approximation accuracy of the path loss equation and the estimation accuracy of the position of the base station 30 can be improved.
 また、実施の形態2においては、通信品質としてパスロスを用いた場合について説明したが、通信品質として遅延量が用いられてもよい。通信品質として遅延量が用いられる場合は、単位遅延時間辺りの距離の変化を用いて係数を算出する。係数と遅延量の積から基地局までの距離を算出できる式で関連付けてもよい。具体的には、式生成部11は、距離=α×遅延量(αは係数)、とする関係式を生成してもよい。 In the second embodiment, the case where a path loss is used as the communication quality has been described. However, a delay amount may be used as the communication quality. When a delay amount is used as the communication quality, a coefficient is calculated using a change in distance per unit delay time. You may link | relate with the type | formula which can calculate the distance to a base station from the product of a coefficient and a delay amount. Specifically, the expression generation unit 11 may generate a relational expression where distance = α × delay amount (α is a coefficient).
 (実施の形態3)
 続いて、図11を用いて、実施の形態3にかかる位置推定部13における基地局30の位置の推定処理の概要を説明する。図11は、ある地域における平面を示しており、平面が、複数のグリッドに分割されていることを示している。グリッドは、格子状に分割されたエリアを示す。図11は、緯度及び経度を用いて位置を特定することができる平面であるとする。例えば、横方向の線が同一の緯度を示す緯線であり、縦方向の線が同一の経度を示す経線であってもよい。
(Embodiment 3)
Then, the outline | summary of the estimation process of the position of the base station 30 in the position estimation part 13 concerning Embodiment 3 is demonstrated using FIG. FIG. 11 shows a plane in a certain area, and shows that the plane is divided into a plurality of grids. A grid shows the area divided | segmented into the grid | lattice form. FIG. 11 is a plane whose position can be specified using latitude and longitude. For example, the horizontal line may be a latitude line indicating the same latitude, and the vertical line may be a meridian indicating the same longitude.
 図11における四角にて示されるポイントは、各通信端末がパスロスを算出する測定点を示している。例えば、道路沿いの地点を、測定点としてもよい。また、太線にて示される四角のポイントは、基地局30から送信された信号に関するパスロスを算出する測定点を示している。 The points indicated by the squares in FIG. 11 indicate the measurement points at which each communication terminal calculates the path loss. For example, a point along the road may be used as the measurement point. Square points indicated by thick lines indicate measurement points for calculating a path loss related to a signal transmitted from the base station 30.
 太線にて示される四角を中心とした比較的大きな円は、基地局30から送信された信号を受信した通信端末の位置を中心とした、半径rの円のエリアを示している。半径rは、測定点において算出されたパスロスを、パスロス式に代入して算出される値である。 A relatively large circle centered on a square indicated by a thick line indicates an area of a circle with a radius r centered on the position of the communication terminal that has received the signal transmitted from the base station 30. The radius r is a value calculated by substituting the path loss calculated at the measurement point into the path loss equation.
 位置推定部13は、太線にて示される四角を中心とした比較的大きな円の中に含まれるグリッドを抽出する。位置推定部13は、それぞれの測定点を中心とした半径rの円毎に、円の中に含まれるグリッドを抽出する。位置推定部13は、抽出した回数が最も多いグリッドに、基地局30が位置していると推定する。具体的には、位置推定部13は、図11に示されるグリッドBに基地局30が位置していると推定する。バツ印にて示されるポイントは、基地局30の推定位置を示している。 The position estimation unit 13 extracts a grid included in a relatively large circle centered on a square indicated by a thick line. The position estimation unit 13 extracts a grid included in the circle for each circle having a radius r centered on each measurement point. The position estimation unit 13 estimates that the base station 30 is located on the grid with the largest number of extractions. Specifically, the position estimation unit 13 estimates that the base station 30 is located on the grid B shown in FIG. A point indicated by a cross indicates an estimated position of the base station 30.
 続いて、図12及び図13を用いて、実施の形態3にかかる解析装置50が基地局30の位置を推定する処理の流れについて説明する。解析装置50における式生成部11は、図4のデータベースを用いて、パスロス式を算出しているとする。また、図12における処理を実行する前に、図8における処理が実行されているとする。 Subsequently, a flow of processing in which the analysis apparatus 50 according to the third embodiment estimates the position of the base station 30 will be described with reference to FIGS. 12 and 13. It is assumed that the expression generation unit 11 in the analysis device 50 calculates a path loss expression using the database in FIG. Further, it is assumed that the process in FIG. 8 is executed before the process in FIG. 12 is executed.
 距離推定部12が、測定点Nにおける半径r(N)を算出すると、位置推定部13は、変数kの値を1に設定する(S31)。次に、位置推定部13は、ループ処理を開始する(S32)。iは、測定点を示し、i=1~N(Nは1以上の整数)とする。ステップS32は、i=1~Nまでの測定点について、ステップサイズを1として処理を実行することを示している。 When the distance estimation unit 12 calculates the radius r (N) at the measurement point N, the position estimation unit 13 sets the value of the variable k to 1 (S31). Next, the position estimation unit 13 starts loop processing (S32). i represents a measurement point, and i = 1 to N (N is an integer of 1 or more). Step S32 indicates that the process is executed with the step size set to 1 for the measurement points from i = 1 to N.
 次に、位置推定部13は、測定点iを中心とした半径r(i)の円内に含まれるグリッドを抽出する(S33)。例えば、位置推定部13は、グリッドの中心が円内に含まれるグリッドを抽出する。もしくは、位置推定部13は、グリッド内の任意の位置が円内に含まれるグリッドを抽出する。以降の処理においては、位置推定部13が、グリッドの中心が円内に含まれるグリッドを抽出する場合について説明する。 Next, the position estimation unit 13 extracts a grid included in a circle having a radius r (i) with the measurement point i as the center (S33). For example, the position estimation unit 13 extracts a grid in which the center of the grid is included in a circle. Alternatively, the position estimation unit 13 extracts a grid in which an arbitrary position in the grid is included in the circle. In the subsequent processing, a case will be described in which the position estimation unit 13 extracts a grid in which the center of the grid is included in a circle.
 例えば、位置推定部13は、予めグリッドの中心座標を管理しているとする。グリッドの中心座標は、緯度及び経度を用いて示されている。グリッドの中心座標を、例えば、(X,Y)とし、測定点iの座標を(Xi,Yi)とする。位置推定部13は、(X-Xi)+(Y-Yi)≦r(i)を満たす場合に、グリッドの中心が、測定点iを中心とした半径r(i)の円内に含まれると判定する。言い換えると、位置推定部13は、管理している中心座標毎に、中心座標が(X-Xi)+(Y-Yi)≦r(i)を満たすか否かを判定する。位置推定部13は、中心座標が(X-Xi)+(Y-Yi)≦r(i)を満たすグリッドを抽出する。 For example, it is assumed that the position estimation unit 13 manages the center coordinates of the grid in advance. The center coordinates of the grid are shown using latitude and longitude. For example, the center coordinates of the grid are (X, Y), and the coordinates of the measurement point i are (Xi, Yi). When the position estimation unit 13 satisfies (X−Xi) 2 + (Y−Yi) 2 ≦ r 2 (i), the center of the grid is within a circle having a radius r (i) with the measurement point i as the center. Is determined to be included. In other words, the position estimation unit 13 determines whether or not the central coordinates satisfy (X−Xi) 2 + (Y−Yi) 2 ≦ r 2 (i) for each managed central coordinate. The position estimation unit 13 extracts a grid whose center coordinates satisfy (X−Xi) 2 + (Y−Yi) 2 ≦ r 2 (i).
 位置推定部13は、抽出したグリッドの中心座標を特定する(S34)。次に、位置推定部13は、抽出したグリッドの中心座標を示す緯度及び経度を、Gridd_Lat(k)及びGridd _Lon(k)に格納する(S35)。Gridd_Lat(k)及びGridd _Lon(k)は、変数をkとするメモリ上の格納位置を示す情報である。 The position estimation unit 13 specifies the center coordinates of the extracted grid (S34). Next, the position estimation unit 13 stores the latitude and longitude indicating the extracted center coordinates of the grid in Gridd_Lat (k) and Gridd_Lon (k) (S35). Gridd_Lat (k) and Gridd_Lon (k) are information indicating storage locations on the memory where the variable is k.
 次に、位置推定部13は、次の格納位置に中心座標の情報を格納するために、kをk+1に置き換える(S36)。さらに、位置推定部13は、測定点i+1を中心とした半径r(i+1)の円内に含まれるグリッドを抽出するためにiをi+1に置き換える(S37)。 Next, the position estimation unit 13 replaces k with k + 1 in order to store the central coordinate information at the next storage position (S36). Further, the position estimation unit 13 replaces i with i + 1 in order to extract a grid included in a circle having a radius r (i + 1) centered on the measurement point i + 1 (S37).
 次に、位置推定部13は、測定点i+1を中心とした半径r(i+1)の円内に含まれるグリッドを抽出するために、ステップSS32以降の処理を繰り返す(S38)。 Next, the position estimation unit 13 repeats the processing from step SS32 onward in order to extract a grid included in a circle having a radius r (i + 1) centered on the measurement point i + 1 (S38).
 次に、位置推定部13は、測定点Nを中心とした半径r(N)の円内に含まれるグリッドを抽出すると、k=1~Nとして、Gridd_Lat(k)及びGridd _Lon(k)に格納されている情報を用いて、それぞれの中心座標が抽出された回数をカウントする(S39)。次に、位置推定部13は、カウントされた回数が最も多い中心座標を有するグリッド内に基地局30が位置すると推定する(S40)。 Next, when the position estimation unit 13 extracts a grid included in a circle having a radius r (N) with the measurement point N as the center, k = 1 to N is set to Gridd_Lat (k) and GriddL_Lon (k). The number of times each center coordinate is extracted is counted using the stored information (S39). Next, the position estimation unit 13 estimates that the base station 30 is located in the grid having the center coordinates with the largest number of times counted (S40).
 以上説明したように、実施の形態3にかかる解析装置50は、測定点iを中心とした半径r(i)の円内に含まれるグリッドを抽出することによって、位置が特定されていない基地局30の位置を推定することができる。 As described above, the analysis device 50 according to the third embodiment extracts a grid included in a circle having a radius r (i) with the measurement point i as the center, thereby determining a base station whose position is not specified. Thirty positions can be estimated.
 図14は、解析装置10及び50の構成例を示すブロック図である。図14を参照すると、解析装置10及び50は、ネットワークインタフェース1201、プロセッサ1202、及びメモリ1203を含む。ネットワークインタフェース1201は、ネットワークノードと通信するために使用される。ネットワークインタフェース1201は、例えば、IEEE 802.3 seriesに準拠したネットワークインタフェースカード(NIC)を含んでもよい。 FIG. 14 is a block diagram illustrating a configuration example of the analysis apparatuses 10 and 50. Referring to FIG. 14, the analysis apparatuses 10 and 50 include a network interface 1201, a processor 1202, and a memory 1203. The network interface 1201 is used to communicate with the network node. The network interface 1201 may include, for example, a network interface card (NIC) compliant with IEEE 802.3 series.
 プロセッサ1202は、メモリ1203からソフトウェア(コンピュータプログラム)を読み出して実行することで、上述の実施形態においてシーケンス図及びフローチャートを用いて説明された解析装置10及び50の処理を行う。プロセッサ1202は、例えば、マイクロプロセッサ、MPU、又はCPUであってもよい。プロセッサ1202は、複数のプロセッサを含んでもよい。 The processor 1202 reads the software (computer program) from the memory 1203 and executes it, thereby performing the processing of the analysis devices 10 and 50 described using the sequence diagrams and flowcharts in the above-described embodiment. The processor 1202 may be, for example, a microprocessor, MPU, or CPU. The processor 1202 may include a plurality of processors.
 プロセッサ1202は、複数のプロセッサを含んでもよい。例えば、プロセッサ1004は、デジタルベースバンド信号処理を行うモデム・プロセッサ(e.g., DSP)、X2-Uインタフェース及びS1-UインタフェースでのGTP-U・UDP/IPレイヤの信号処理を行うプロセッサ(e.g., DSP)、及びコントロールプレーン処理を行うプロトコルスタック・プロセッサ(e.g., CPU又はMPU)を含んでもよい。 The processor 1202 may include a plurality of processors. For example, the processor 1004 includes a modem processor (eg, DSP) that performs digital baseband signal processing, a processor that performs signal processing of the GTP-U / UDP / IP layer in the X2-U interface and the S1-U interface (eg, DSP) and a protocol stack processor (eg, CPU or MPU) that performs control plane processing may be included.
 メモリ1203は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。メモリ1203は、プロセッサ1202から離れて配置されたストレージを含んでもよい。この場合、プロセッサ1202は、図示されていないI/Oインタフェースを介してメモリ1203にアクセスしてもよい。 The memory 1203 is configured by a combination of a volatile memory and a nonvolatile memory. Memory 1203 may include storage located remotely from processor 1202. In this case, the processor 1202 may access the memory 1203 via an I / O interface not shown.
 図14の例では、メモリ1203は、ソフトウェアモジュール群を格納するために使用される。ソフトウェアモジュール群は、位置情報、地図情報、もしくは測定情報のデータベース情報であってもよい。プロセッサ1202は、これらのソフトウェアモジュール群をメモリ1203から読み出して実行することで、上述の実施形態において説明された解析装置10及び50の処理を行うことができる。 In the example of FIG. 14, the memory 1203 is used for storing software module groups. The software module group may be location information, map information, or database information of measurement information. The processor 1202 can perform the processing of the analysis apparatuses 10 and 50 described in the above-described embodiment by reading these software module groups from the memory 1203 and executing them.
 図14を用いて説明したように、上述の実施形態における解析装置10及び50が有するプロセッサの各々は、図面を用いて説明されたアルゴリズムをコンピュータに行わせるための命令群を含む1又は複数のプログラムを実行する。 As described with reference to FIG. 14, each of the processors included in the analysis apparatuses 10 and 50 in the above-described embodiment includes one or a plurality of instructions including instructions for causing a computer to execute the algorithm described with reference to the drawings. Run the program.
 上述の例において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。 In the above example, the program can be stored using various types of non-transitory computer-readable media and supplied to a computer. Non-transitory computer readable media include various types of tangible storage media (tangible storage medium). Examples of non-transitory computer-readable media include magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM (Random Access Memory)) are included. The program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves. The temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 Note that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiment, but the present invention is not limited to the above. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the invention.
 この出願は、2016年6月3日に出願された日本出願特願2016-111791を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2016-111791 filed on June 3, 2016, the entire disclosure of which is incorporated herein.
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)
 位置が特定された第1の基地局から送信された信号を受信した複数の通信端末において算出された通信品質と、それぞれの通信端末から前記第1の基地局までの距離とを関連付ける関係式を生成する式生成部と、
 位置が特定されていない第2の基地局から送信された信号を受信した複数の通信端末において算出された通信品質と、前記関係式とを用いて、それぞれの通信端末から前記第2の基地局までの距離を推定する距離推定部と、
 前記第2の基地局から送信された信号を受信したそれぞれの通信端末の位置を中心とし、半径を前記距離推定部において推定された距離として定まるエリアの重複情報を用いて前記第2の基地局の位置を推定する位置推定部と、を備える解析装置。
 (付記2)
 前記位置推定部は、
 前記第2の基地局から送信された信号を受信したそれぞれの通信端末の位置を中心とし、半径を前記距離推定部において推定された距離として定まる円の交点を前記重複情報として用いる、付記1に記載の解析装置。
 (付記3)
 前記位置推定部は、
 所定のエリアを複数のエリアに分割した分割エリアに関する情報を有し、前記交点を最も多く含む分割エリア内に前記第2の基地局が存在すると推定する、付記2に記載の解析装置。
 (付記4)
 前記位置推定部は、
 前記第2の基地局から送信された信号を受信したそれぞれの通信端末の位置を中心とし、半径を前記距離推定部において推定された距離として定まる円内の重複エリアを前記重複情報として用いる、付記1に記載の解析装置。
 (付記5)
 前記位置推定部は、
 所定のエリアを複数のエリアに分割した分割エリアに関する情報を有し、それぞれの円毎に、円内に含まれる前記分割エリアを抽出し、最も多く抽出された回数が多い分割エリア内に前記第2の基地局が存在すると推定する、付記4に記載の解析装置。
 (付記6)
 前記式生成部は、
 最小二乗法を用いた回帰分析により模擬された一次関数の式として前記関係式を生成する、付記1乃至5のいずれか1項に記載の解析装置。
 (付記7)
 前記式生成部は、
 最小二乗法を用いた回帰分析により模擬された一次関数の式が予め定められた寄与率を上回る場合、前記関係式として用いる、付記1乃至6のいずれか1項に記載の解析装置。
 (付記8)
 前記式生成部は、
 最尤法を用いた回帰分析により模擬された一次関数の式が予め定められた赤池情報基準量を上回る場合、前記関係式として用いる、付記1乃至6のいずれか1項に記載の解析装置。
 (付記9)
 前記式生成部は、
 同じ周波数によって送信された信号を用いて前記関係式を生成する、付記1乃至8のいずれか1項に記載の解析装置。
 (付記10)
 前記通信品質は、
 第1又は第2の基地局から送信された信号の送信電力と、前記第1又は第2の基地局から送信された信号を受信した通信端末における受信電力を用いて算出されたパスロスである、付記1乃至9のいずれか1項に記載の解析装置。
 (付記11)
 前記距離推定部は、
 前記第2の基地局から送信される信号の送信電力の値として、前記第1の基地局から送信される信号の送信電力と同じ値を用いる、付記10に記載の解析装置。
 (付記12)
 位置が特定された第1の基地局から送信された信号を受信した複数の通信端末において算出された通信品質と、それぞれの通信端末から前記第1の基地局までの距離とを関連付ける関係式を生成し、
 位置が特定されていない第2の基地局から送信された信号を受信した複数の通信端末において算出された通信品質と、前記関係式とを用いて、それぞれの通信端末から前記第2の基地局までの距離を推定し、
 前記第2の基地局から送信された信号を受信したそれぞれの通信端末の位置を中心とし、半径を推定された前記距離として定まるエリアの重複情報を用いて前記第2の基地局の位置を推定する、解析方法。
 (付記13)
 位置が特定された第1の基地局から送信された信号を受信した複数の通信端末において算出された通信品質と、それぞれの通信端末から前記第1の基地局までの距離とを関連付ける関係式を生成し、
 位置が特定されていない第2の基地局から送信された信号を受信した複数の通信端末において算出された通信品質と、前記関係式とを用いて、それぞれの通信端末から前記第2の基地局までの距離を推定し、
 前記第2の基地局から送信された信号を受信したそれぞれの通信端末の位置を中心とし、半径を推定された前記距離として定まるエリアの重複情報を用いて前記第2の基地局の位置を推定することをコンピュータに実行させるプログラム。



































A part or all of the above-described embodiment can be described as in the following supplementary notes, but is not limited thereto.
(Appendix 1)
A relational expression for associating the communication quality calculated in the plurality of communication terminals that have received the signal transmitted from the first base station whose position is specified with the distance from each communication terminal to the first base station. An expression generator to generate;
Using the communication quality calculated in a plurality of communication terminals that have received a signal transmitted from a second base station whose position is not specified, and the relational expression, each communication terminal uses the second base station. A distance estimation unit that estimates the distance to
The second base station using overlapping information of an area whose center is the position of each communication terminal that has received the signal transmitted from the second base station and whose radius is determined as the distance estimated by the distance estimation unit A position estimation unit that estimates the position of the analysis device.
(Appendix 2)
The position estimation unit
Supplementary note 1 using an intersection of circles centered on the position of each communication terminal that has received the signal transmitted from the second base station and having a radius determined as the distance estimated by the distance estimation unit as the duplication information The analysis device described.
(Appendix 3)
The position estimation unit
The analysis apparatus according to appendix 2, wherein the analysis apparatus has information related to a divided area obtained by dividing a predetermined area into a plurality of areas, and estimates that the second base station exists in a divided area including the largest number of intersections.
(Appendix 4)
The position estimation unit
Note that an overlapping area in a circle whose center is the position of each communication terminal that has received the signal transmitted from the second base station and whose radius is determined as the distance estimated by the distance estimating unit is used as the overlapping information. The analysis apparatus according to 1.
(Appendix 5)
The position estimation unit
It has information on divided areas obtained by dividing a predetermined area into a plurality of areas, and for each circle, the divided areas included in the circle are extracted, and the first extracted in the divided area with the largest number of extractions. The analysis device according to appendix 4, which estimates that two base stations exist.
(Appendix 6)
The expression generator is
The analysis apparatus according to any one of appendices 1 to 5, wherein the relational expression is generated as an expression of a linear function simulated by a regression analysis using a least square method.
(Appendix 7)
The expression generator is
The analysis apparatus according to any one of appendices 1 to 6, which is used as the relational expression when an expression of a linear function simulated by a regression analysis using a least square method exceeds a predetermined contribution rate.
(Appendix 8)
The expression generator is
The analysis apparatus according to any one of appendices 1 to 6, which is used as the relational expression when an expression of a linear function simulated by regression analysis using a maximum likelihood method exceeds a predetermined Akaike information reference amount.
(Appendix 9)
The expression generator is
The analysis apparatus according to any one of appendices 1 to 8, wherein the relational expression is generated using signals transmitted at the same frequency.
(Appendix 10)
The communication quality is
It is a path loss calculated using the transmission power of the signal transmitted from the first or second base station and the reception power in the communication terminal that has received the signal transmitted from the first or second base station. The analyzer according to any one of appendices 1 to 9.
(Appendix 11)
The distance estimation unit
The analysis apparatus according to appendix 10, wherein the same value as the transmission power of the signal transmitted from the first base station is used as the transmission power value of the signal transmitted from the second base station.
(Appendix 12)
A relational expression for associating the communication quality calculated in the plurality of communication terminals that have received the signal transmitted from the first base station whose position is specified with the distance from each communication terminal to the first base station. Generate
Using the communication quality calculated in a plurality of communication terminals that have received a signal transmitted from a second base station whose position is not specified, and the relational expression, each communication terminal uses the second base station. Estimate the distance to
The position of the second base station is estimated using the overlapping information of the area determined as the distance with the radius estimated from the position of each communication terminal that has received the signal transmitted from the second base station. Analysis method.
(Appendix 13)
A relational expression for associating the communication quality calculated in the plurality of communication terminals that have received the signal transmitted from the first base station whose position is specified with the distance from each communication terminal to the first base station. Generate
Using the communication quality calculated in a plurality of communication terminals that have received a signal transmitted from a second base station whose position is not specified, and the relational expression, each communication terminal uses the second base station. Estimate the distance to
The position of the second base station is estimated using the overlapping information of the area determined as the distance with the radius estimated from the position of each communication terminal that has received the signal transmitted from the second base station. A program that causes a computer to execute.



































 10 解析装置
 11 式生成部
 12 距離推定部
 13 位置推定部
 14 データベース
 20 基地局
 21~24 通信端末
 30 基地局
 31~34 通信端末
 40 インターネット
 50 解析装置
DESCRIPTION OF SYMBOLS 10 Analysis apparatus 11 Formula production | generation part 12 Distance estimation part 13 Position estimation part 14 Database 20 Base station 21-24 Communication terminal 30 Base station 31-34 Communication terminal 40 Internet 50 Analysis apparatus

Claims (14)

  1.  位置が特定された第1の基地局から送信された信号を受信した複数の通信端末において算出された通信品質と、それぞれの通信端末から前記第1の基地局までの距離とを関連付ける関係式を生成する式生成手段と、
     位置が特定されていない第2の基地局から送信された信号を受信した複数の通信端末において算出された通信品質と、前記関係式とを用いて、それぞれの通信端末から前記第2の基地局までの距離を推定する距離推定手段と、
     前記第2の基地局から送信された信号を受信したそれぞれの通信端末の位置を中心とし、半径を前記距離推定手段において推定された距離として定まるエリアの重複情報を用いて前記第2の基地局の位置を推定する位置推定手段と、を備える解析装置。
    A relational expression for associating the communication quality calculated in the plurality of communication terminals that have received the signal transmitted from the first base station whose position is specified with the distance from each communication terminal to the first base station. An expression generation means for generating;
    Using the communication quality calculated in a plurality of communication terminals that have received a signal transmitted from a second base station whose position is not specified, and the relational expression, each communication terminal uses the second base station. Distance estimation means for estimating the distance to,
    The second base station using overlapping information of an area whose center is the position of each communication terminal that has received the signal transmitted from the second base station and whose radius is determined as the distance estimated by the distance estimating means And a position estimation means for estimating the position of the analysis device.
  2.  前記位置推定手段は、
     前記第2の基地局から送信された信号を受信したそれぞれの通信端末の位置を中心とし、半径を前記距離推定手段において推定された距離として定まる円の交点を前記重複情報として用いる、請求項1に記載の解析装置。
    The position estimating means includes
    The intersection point of a circle whose center is the position of each communication terminal that has received the signal transmitted from the second base station and whose radius is determined as the distance estimated by the distance estimation means is used as the overlap information. The analysis device described in 1.
  3.  前記位置推定手段は、
     所定のエリアを複数のエリアに分割した分割エリアに関する情報を有し、前記交点を最も多く含む分割エリア内に前記第2の基地局が存在すると推定する、請求項2に記載の解析装置。
    The position estimating means includes
    The analysis apparatus according to claim 2, wherein the analysis apparatus has information related to a divided area obtained by dividing a predetermined area into a plurality of areas, and estimates that the second base station exists in a divided area that includes the most intersections.
  4.  前記位置推定手段は、
     前記第2の基地局から送信された信号を受信したそれぞれの通信端末の位置を中心とし、半径を前記距離推定手段において推定された距離として定まる円内の重複エリアを前記重複情報として用いる、請求項1に記載の解析装置。
    The position estimating means includes
    The overlapping area in a circle whose center is the position of each communication terminal that has received the signal transmitted from the second base station and whose radius is determined as the distance estimated by the distance estimating means is used as the overlapping information. Item 4. The analysis device according to Item 1.
  5.  前記位置推定手段は、
     所定のエリアを複数のエリアに分割した分割エリアに関する情報を有し、それぞれの円毎に、円内に含まれる前記分割エリアを抽出し、最も多く抽出された回数が多い分割エリア内に前記第2の基地局が存在すると推定する、請求項4に記載の解析装置。
    The position estimating means includes
    It has information on divided areas obtained by dividing a predetermined area into a plurality of areas, and for each circle, the divided areas included in the circle are extracted, and the first extracted in the divided area with the largest number of extractions. The analysis apparatus according to claim 4, wherein two base stations are estimated to exist.
  6.  前記式生成手段は、
     最小二乗法を用いた回帰分析により模擬された一次関数の式として前記関係式を生成する、請求項1乃至5のいずれか1項に記載の解析装置。
    The expression generation means includes
    The analysis apparatus according to claim 1, wherein the relational expression is generated as an expression of a linear function simulated by a regression analysis using a least square method.
  7.  前記式生成手段は、
     最小二乗法を用いた回帰分析により模擬された一次関数の式が予め定められた寄与率を上回る場合、前記関係式として用いる、請求項1乃至6のいずれか1項に記載の解析装置。
    The expression generation means includes
    The analysis apparatus according to any one of claims 1 to 6, wherein an expression of a linear function simulated by a regression analysis using a least square method is used as the relational expression when the expression exceeds a predetermined contribution rate.
  8.  前記式生成手段は、
     最尤法を用いた回帰分析により模擬された一次関数の式として前記関係式を生成する、請求項1乃至5のいずれか1項に記載の解析装置。
    The expression generation means includes
    The analysis apparatus according to claim 1, wherein the relational expression is generated as an expression of a linear function simulated by regression analysis using a maximum likelihood method.
  9.  前記式生成手段は、
     最尤法を用いた回帰分析により模擬された一次関数の式が予め定められた赤池情報基準量を上回る場合、前記関係式として用いる、請求項1乃至5及び8のいずれか1項に記載の解析装置。
    The expression generation means includes
    The linear function simulated by the regression analysis using the maximum likelihood method exceeds the predetermined Akaike information reference amount, and is used as the relational expression according to any one of claims 1 to 5 and 8. Analysis device.
  10.  前記式生成手段は、
     同じ周波数によって送信された信号を用いて前記関係式を生成する、請求項1乃至9のいずれか1項に記載の解析装置。
    The expression generation means includes
    The analysis apparatus according to claim 1, wherein the relational expression is generated using signals transmitted at the same frequency.
  11.  前記通信品質は、
     第1又は第2の基地局から送信された信号の送信電力と、前記第1又は第2の基地局から送信された信号を受信した通信端末における受信電力を用いて算出されたパスロスである、請求項1乃至10のいずれか1項に記載の解析装置。
    The communication quality is
    It is a path loss calculated using the transmission power of the signal transmitted from the first or second base station and the reception power in the communication terminal that has received the signal transmitted from the first or second base station. The analysis device according to any one of claims 1 to 10.
  12.  前記距離推定手段は、
     前記第2の基地局から送信される信号の送信電力の値として、前記第1の基地局から送信される信号の送信電力と同じ値を用いる、請求項11に記載の解析装置。
    The distance estimating means includes
    The analysis apparatus according to claim 11, wherein the same value as the transmission power of the signal transmitted from the first base station is used as the transmission power value of the signal transmitted from the second base station.
  13.  位置が特定された第1の基地局から送信された信号を受信した複数の通信端末において算出された通信品質と、それぞれの通信端末から前記第1の基地局までの距離とを関連付ける関係式を生成し、
     位置が特定されていない第2の基地局から送信された信号を受信した複数の通信端末において算出された通信品質と、前記関係式とを用いて、それぞれの通信端末から前記第2の基地局までの距離を推定し、
     前記第2の基地局から送信された信号を受信したそれぞれの通信端末の位置を中心とし、半径を推定された前記距離として定まるエリアの重複情報を用いて前記第2の基地局の位置を推定する、解析方法。
    A relational expression for associating the communication quality calculated in the plurality of communication terminals that have received the signal transmitted from the first base station whose position is specified with the distance from each communication terminal to the first base station. Generate
    Using the communication quality calculated in a plurality of communication terminals that have received a signal transmitted from a second base station whose position is not specified, and the relational expression, each communication terminal uses the second base station. Estimate the distance to
    The position of the second base station is estimated using the overlapping information of the area determined as the distance with the radius estimated from the position of each communication terminal that has received the signal transmitted from the second base station. Analysis method.
  14.  位置が特定された第1の基地局から送信された信号を受信した複数の通信端末において算出された通信品質と、それぞれの通信端末から前記第1の基地局までの距離とを関連付ける関係式を生成し、
     位置が特定されていない第2の基地局から送信された信号を受信した複数の通信端末において算出された通信品質と、前記関係式とを用いて、それぞれの通信端末から前記第2の基地局までの距離を推定し、
     前記第2の基地局から送信された信号を受信したそれぞれの通信端末の位置を中心とし、半径を推定された前記距離として定まるエリアの重複情報を用いて前記第2の基地局の位置を推定することをコンピュータに実行させるプログラムが格納された非一時的なコンピュータ可読媒体。
    A relational expression for associating the communication quality calculated in the plurality of communication terminals that have received the signal transmitted from the first base station whose position is specified with the distance from each communication terminal to the first base station. Generate
    Using the communication quality calculated in a plurality of communication terminals that have received a signal transmitted from a second base station whose position is not specified, and the relational expression, each communication terminal uses the second base station. Estimate the distance to
    The position of the second base station is estimated using the overlapping information of the area determined as the distance with the radius estimated from the position of each communication terminal that has received the signal transmitted from the second base station. A non-transitory computer-readable medium storing a program for causing a computer to execute.
PCT/JP2017/018305 2016-06-03 2017-05-16 Analyzing device, analyzing method, and non-transitory computer-readable medium WO2017208801A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-111791 2016-06-03
JP2016111791 2016-06-03

Publications (1)

Publication Number Publication Date
WO2017208801A1 true WO2017208801A1 (en) 2017-12-07

Family

ID=60477435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018305 WO2017208801A1 (en) 2016-06-03 2017-05-16 Analyzing device, analyzing method, and non-transitory computer-readable medium

Country Status (1)

Country Link
WO (1) WO2017208801A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11248783A (en) * 1998-03-06 1999-09-17 Mitsubishi Electric Corp Partial discharge detection apparatus
JP2006504284A (en) * 2001-12-27 2006-02-02 クゥアルコム・インコーポレイテッド Method for using a mobile station to determine a location parameter of a base station in a wireless mobile communication system
JP2006300918A (en) * 2005-03-25 2006-11-02 Oki Electric Ind Co Ltd Localization system and method
US7660591B1 (en) * 2005-09-09 2010-02-09 Avaya Inc. Propagation loss model based indoor wireless location of stations
JP2010529750A (en) * 2007-06-01 2010-08-26 クゥアルコム・インコーポレイテッド Method and apparatus for determining femto base station location
JP2011099809A (en) * 2009-11-09 2011-05-19 Mitsubishi Electric Corp Radio positioning system, radio positioning method, and program
JP2012105154A (en) * 2010-11-11 2012-05-31 Fujitsu Ltd Wireless base station and position detection method
JP2013546276A (en) * 2010-11-19 2013-12-26 クゥアルコム・インコーポレイテッド Wireless station self-positioning
JP2015518143A (en) * 2012-03-27 2015-06-25 マイクロソフト コーポレーション Mobile device positioning
WO2015114739A1 (en) * 2014-01-28 2015-08-06 富士通株式会社 Wireless terminal and information processing apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11248783A (en) * 1998-03-06 1999-09-17 Mitsubishi Electric Corp Partial discharge detection apparatus
JP2006504284A (en) * 2001-12-27 2006-02-02 クゥアルコム・インコーポレイテッド Method for using a mobile station to determine a location parameter of a base station in a wireless mobile communication system
JP2006300918A (en) * 2005-03-25 2006-11-02 Oki Electric Ind Co Ltd Localization system and method
US7660591B1 (en) * 2005-09-09 2010-02-09 Avaya Inc. Propagation loss model based indoor wireless location of stations
JP2010529750A (en) * 2007-06-01 2010-08-26 クゥアルコム・インコーポレイテッド Method and apparatus for determining femto base station location
JP2011099809A (en) * 2009-11-09 2011-05-19 Mitsubishi Electric Corp Radio positioning system, radio positioning method, and program
JP2012105154A (en) * 2010-11-11 2012-05-31 Fujitsu Ltd Wireless base station and position detection method
JP2013546276A (en) * 2010-11-19 2013-12-26 クゥアルコム・インコーポレイテッド Wireless station self-positioning
JP2015518143A (en) * 2012-03-27 2015-06-25 マイクロソフト コーポレーション Mobile device positioning
WO2015114739A1 (en) * 2014-01-28 2015-08-06 富士通株式会社 Wireless terminal and information processing apparatus

Similar Documents

Publication Publication Date Title
CN109246592B (en) Method and device for acquiring position information of user terminal
US8862154B2 (en) Location measuring method and apparatus using access point for wireless local area network service
CN110602741A (en) Network weak coverage identification method, device, equipment and storage medium
CN108260202B (en) Method and device for positioning sampling point of measurement report
CN111325561B (en) Intelligent complaint processing method and device, electronic equipment and storage medium
CN103068035A (en) Wireless network location method, device and system
WO2020207096A1 (en) Method for performing positioning in 5g scenarios, positioning platform and user terminal
CN104349456B (en) WiFi localization methods and WiFi locating platforms
CN109936820B (en) User terminal positioning method and device
CN106332271B (en) Interference source positioning method and device
CN108243447B (en) External interference positioning method and device
WO2020024597A1 (en) Indoor positioning method and apparatus
TW201918103A (en) Method of wireless asset positioning
CN114786199B (en) Method, device, equipment and storage medium for determining network problem point
CN112950243A (en) 5G station address planning method and device, electronic equipment and storage medium
CN108541011B (en) Method and device for analyzing strength of wireless network signal coverage area
WO2017020273A1 (en) Method and device for positioning and method of generating a positioning database in multicarrier network
WO2017208801A1 (en) Analyzing device, analyzing method, and non-transitory computer-readable medium
WO2013068095A1 (en) Distance estimation
Chen et al. Hybrid TOA/AOA geometrical positioning schemes for mobile location
CN113133058B (en) Load balancing method, device and system
CN108271183B (en) Neighbor cell optimization method and device based on original measurement report
CN115942231A (en) RSS-based 5G outdoor positioning method
CN109996253A (en) A kind of rational appraisal procedure of cell signal coverage area and device
CN111263382B (en) Method, device and equipment for determining problem source cell causing overlapping coverage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP