WO2017208656A1 - Manipulator - Google Patents

Manipulator Download PDF

Info

Publication number
WO2017208656A1
WO2017208656A1 PCT/JP2017/015793 JP2017015793W WO2017208656A1 WO 2017208656 A1 WO2017208656 A1 WO 2017208656A1 JP 2017015793 W JP2017015793 W JP 2017015793W WO 2017208656 A1 WO2017208656 A1 WO 2017208656A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulley
wire
rotation center
center axis
motor
Prior art date
Application number
PCT/JP2017/015793
Other languages
French (fr)
Japanese (ja)
Inventor
浩史 横井
銀来 姜
Original Assignee
国立大学法人電気通信大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人電気通信大学 filed Critical 国立大学法人電気通信大学
Priority to JP2018520708A priority Critical patent/JP6928960B2/en
Publication of WO2017208656A1 publication Critical patent/WO2017208656A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints

Definitions

  • the present invention relates to a manipulator.
  • This application claims priority on May 31, 2016 based on Japanese Patent Application No. 2016-109120 for which it applied to Japan, and uses the content here.
  • a configuration is known in which the rotational drive of two pulleys is transmitted to a biaxial joint via a differential gear mechanism and controlled independently (for example, Patent Document 1).
  • an aspect of the present invention provides a manipulator capable of independently controlling a plurality of rotation center shafts by a plurality of drive devices while ensuring the degree of freedom of arrangement of the rotation center shaft and the drive device. Is one of the purposes.
  • One aspect of the manipulator of the present invention includes a first member, a second member rotatably attached to the first member around a first rotation center axis, the first member, and the second member. Both of the first rotation member and the second rotation member rotatably attached to the first rotation center axis, and a second rotation different from the first rotation center axis with respect to the first member.
  • a third rotating member rotatably attached around a central axis, a first driving device for rotating the first rotating member around the first rotating central axis, and the second rotating member at the first rotating central axis
  • a first transmission that connects the second driving device that rotates around, the first rotating member, and the third rotating member, and transmits the rotation of the first rotating member to the third rotating member via tension.
  • a rotational torque in one direction around is applied, a rotational torque in one direction around the second rotation center axis is transmitted to the third rotational member, and the second transmission member is the second rotational member.
  • a rotation torque in one direction around the first rotation center axis is applied to the third rotation member, a rotation torque in the other direction around the second rotation center axis is transmitted to the third rotation member.
  • a manipulator capable of independently controlling a plurality of rotation center shafts by a plurality of drive devices while ensuring the degree of freedom of arrangement of the rotation center shaft and the drive device.
  • FIG. 1 is a perspective view showing a manipulator 1 of the present embodiment.
  • FIG. 2 is a cross-sectional view showing a portion of the manipulator 1.
  • FIG. 3 is a perspective view showing the shoulder 40 and the drive unit 10A. In FIG. 3, a part of the shoulder 40 is cut away.
  • FIG. 4 is a perspective view showing the drive unit 10A.
  • the manipulator 1 includes a shoulder 40, an upper arm 43, a forearm 46, a hand 47, and drive units 10A, 10B, and 10C.
  • the drive unit 10 ⁇ / b> A connects the shoulder 40 and the upper arm 43, and drives the upper arm 43 with respect to the shoulder 40.
  • the drive unit 10 ⁇ / b> B connects the upper arm portion 43 and the forearm portion 46, and drives the forearm portion 46 with respect to the upper arm portion 43.
  • the drive unit 10 ⁇ / b> C connects the forearm portion 46 and the hand portion 47 and drives the hand portion 47 with respect to the forearm portion 46.
  • the configuration common to each unit may be described only for the drive unit 10A as a representative.
  • the posture of the manipulator 1 shown in FIGS. 1 to 4 is referred to as a “reference posture”.
  • the Z-axis direction is a direction parallel to a second rotation center axis J2 described later.
  • the X-axis direction is orthogonal to the Z-axis direction and is a direction parallel to one side of a bottom 41 described later of the shoulder 40.
  • the Y-axis direction is a direction orthogonal to both the Z-axis direction and the X-axis direction.
  • the Z-axis direction may be referred to as “vertical direction”, the X-axis direction may be referred to as “front-rear direction”, and the Y-axis direction may be referred to as “left-right direction”.
  • the positive side (+ Z side) in the Z-axis direction may be referred to as “upper side”, and the negative side ( ⁇ Z side) in the Z-axis direction may be referred to as “lower side”.
  • the positive side (+ X side) in the X-axis direction may be called “front side”, and the negative side ( ⁇ X side) in the X-axis direction may be called “rear side”.
  • the positive side (+ Y side) in the Y-axis direction may be referred to as “right side”, and the negative side ( ⁇ Y side) in the Y-axis direction may be referred to as “left side”.
  • a side close to a second rotation center axis J2 (to be described later) in the left-right direction may be referred to as “inward in the left-right direction”.
  • the vertical direction, the front-rear direction, the left-right direction, the upper side, the lower side, the front side, the rear side, the right side, and the left side are simply names for explaining the positional relationship of each part. There is no limitation on the mode of use and posture.
  • the shoulder 40 includes a bottom 41 and a side wall 42.
  • the bottom 41 has a square plate shape.
  • a wire through hole 41 a that penetrates the bottom 41 in the vertical direction is formed in the bottom 41.
  • a total of eight wire through-holes 41 a are formed, two on each of the front and rear direction sides ( ⁇ X side) and the left and right direction sides ( ⁇ Y side) across the center of the bottom 41.
  • a concave portion 41b recessed downward is formed.
  • a bottom center through hole 41c that penetrates the bottom 41 in the vertical direction is formed.
  • the side wall 42 is fixed to the upper surface of the bottom 41 as shown in FIGS.
  • the side wall portion 42 is a rectangular frame-shaped wall portion that rises upward from the outer edge of the upper surface of the bottom portion 41 and opens upward.
  • the side wall portion 42 is provided with a tension adjusting mechanism 50 described later.
  • the drive unit 10A is connected to the lower side of the shoulder 40 as shown in FIGS.
  • the drive unit 10A rotates the upper arm 43 with respect to the shoulder 40 around the first rotation center axis J1 ( ⁇ ⁇ 1 direction) and the second rotation center axis J2 ( ⁇ ⁇ 2 direction).
  • the first rotation center axis J1 is an axis parallel to the left-right direction (Y-axis direction) in the reference posture.
  • the second rotation center axis J2 is an axis parallel to the vertical direction (Z-axis direction).
  • the direction of the second rotation center axis J2 does not change regardless of the relative movement of each part of the manipulator 1.
  • the second rotation center axis J2 is different from the first rotation center axis J1.
  • the second rotation center axis J2 is an axis orthogonal to the first rotation center axis J1.
  • the drive unit 10 ⁇ / b> A includes a support member (first member) 20, a first motor (first drive device) 21, a second motor (second drive device) 22, 1 pulley (first rotating member) 31, second pulley (second rotating member) 32, third pulley (third rotating member) 33, central bolt 29a, and first wire (first transmission member) 81 And a second wire (second transmission member) 82 and a tension adjusting mechanism 50.
  • the support member 20 supports the first motor 21, the second motor 22, the first pulley 31, and the second pulley 32 so as to be rotatable about the first rotation center axis J1 ( ⁇ ⁇ 1 direction).
  • the support member 20 includes a first plate member 23, a second plate member 24, a third plate member 25, a bush 28, bearing holding members 26a and 26b, a first output bearing 26c, and a second output bearing 26d.
  • the first plate member 23 includes a first pulley support portion 23a and a first upper plate portion 23b.
  • the 1st pulley support part 23a is plate shape extended to the plane (ZX plane) orthogonal to the left-right direction.
  • the shape of the first pulley support portion 23a viewed along the left-right direction (Y-axis direction) (hereinafter referred to as a side view) is a rectangular shape that is long in the up-down direction.
  • the first pulley support portion 23 a is located on the outer side in the left-right direction ( ⁇ Y side) with respect to the first motor 21 and the first pulley 31.
  • the first pulley support portion 23a is formed with a first output shaft through hole 23d that penetrates the first pulley support portion 23a in the left-right direction.
  • the first upper plate portion 23b has a plate shape extending inward in the left-right direction (+ Y side) from the upper end of the first pulley support portion 23a.
  • the shape of the first upper plate portion 23b viewed from the upper side to the lower side (hereinafter referred to as a plan view) is a substantially rectangular shape that is long in the left-right direction (Y-axis direction).
  • the first upper plate portion 23b is formed with a first central through hole 23c that penetrates the first upper plate portion 23b in the vertical direction.
  • the first central through hole 23c has a circular shape passing through the second rotation center axis J2 at the center.
  • the second plate member 24 includes a second pulley support portion 24a and a second upper plate portion 24b.
  • the 2nd pulley support part 24a is plate shape extended to the plane (ZX plane) orthogonal to the left-right direction.
  • the side view shape of the second pulley support portion 24a is a rectangular shape that is long in the vertical direction.
  • the second pulley support 24 a is located on the outer side in the left-right direction (+ Y side) than the second motor 22 and the second pulley 32.
  • the second pulley support portion 24a is formed with a second output shaft through hole 24d that penetrates the second pulley support portion 24a in the left-right direction.
  • the 1st pulley support part 23a and the 2nd pulley support part 24a are provided facing the left-right direction (Y-axis direction).
  • the second upper plate portion 24b has a plate shape extending from the upper end of the second pulley support portion 24a to the inner side in the left-right direction ( ⁇ Y side).
  • the plan view shape of the second upper plate portion 24b is a substantially rectangular shape that is long in the left-right direction (Y-axis direction).
  • the left ( ⁇ Y side) portion of the second upper plate portion 24b overlaps the right (+ Y side) portion of the first upper plate portion 23b in the vertical direction (Z-axis direction).
  • the upper surface of the left side portion of the second upper plate portion 24b is fixed in contact with the lower surface of the right portion of the first upper plate portion 23b.
  • the second upper plate portion 24b is formed with a second central through hole 24c penetrating the second upper plate portion 24b in the vertical direction.
  • the second central through hole 24c has a circular shape passing through the second rotation center axis J2 at the center.
  • the second central through hole 24c overlaps the first central through hole 23c in the vertical direction.
  • the third plate member 25 is fixed to the upper surface of the first upper plate portion 23 b in the first plate member 23. As shown in FIGS. 2 and 4, the third plate member 25 has a plate shape that extends in a plane (XY plane) orthogonal to the vertical direction. The plan view shape of the third plate member 25 is a square shape.
  • a third central through hole 25 a penetrating the third plate member 25 in the vertical direction is formed at the center of the third plate member 25.
  • the third central through hole 25a has a circular shape concentric with the first central through hole 23c and the second central through hole 24c.
  • the inner diameter of the third central through hole 25a is smaller than the inner diameter of the first central through hole 23c and the inner diameter of the second central through hole 24c.
  • the recess 25b has an annular shape that extends radially outward from the inner edge of the third central through hole 25a.
  • the first plate member 23, the second plate member 24, and the third plate member 25 are fixed to each other by a bolt that penetrates each member in the vertical direction and a nut that is screwed to the lower end of the bolt.
  • the bush 28 includes a bush main body 28a and a flange portion 28b.
  • the bush main body 28a is open at both ends in the vertical direction and has a cylindrical shape centered on the second rotation center axis J2.
  • the lower part of the bush main body 28a is inserted inside the second central through hole 24c, the first central through hole 23c, and the third central through hole 25a.
  • the bush main body 28a is fitted inside the third central through hole 25a.
  • the flange portion 28b has an annular shape extending from the lower end of the bush main body 28a to the radially outer side of the second rotation center axis J2.
  • the flange portion 28b is fitted inside the first central through hole 23c and the second central through hole 24c.
  • the upper surface of the flange portion 28 b is in contact with the lower surface of the third plate member 25.
  • the bearing holding members 26a and 26b are cylindrical members that open on both sides in the left-right direction ( ⁇ Y side) and center on the first rotation center axis J1.
  • the bearing holding member 26a is fixed to the outer surface in the left-right direction ( ⁇ Y side) of the first pulley support portion 23a with a screw.
  • the bearing holding member 26a has a flange portion that extends radially outward at an end portion on the first pulley support portion 23a side (+ Y side). The inner side of the bearing holding member 26a overlaps the first output shaft through hole 23d in the left-right direction (Y-axis direction).
  • the bearing holding member 26b is fixed to the surface on the outer side in the left-right direction (+ Y side) of the second pulley support portion 24a with a screw.
  • the bearing holding member 26b has a flange that extends radially outward at the end on the second pulley support portion 24a side ( ⁇ Y side).
  • the inner side of the bearing holding member 26b overlaps the second output shaft through hole 24d in the left-right direction (Y-axis direction).
  • the first output bearing 26c has a cylindrical shape that opens on both sides in the left-right direction ( ⁇ Y side) and has the first rotation center axis J1 as the center.
  • the first output bearing 26c is provided in a hole formed by the inside of the bearing holding member 26a and the first output shaft through hole 23d.
  • the outer peripheral surface of the first output bearing 26c is fixed to the inner peripheral surface of the bearing holding member 26a with screws.
  • the second output bearing 26d has a cylindrical shape that opens on both sides in the left-right direction ( ⁇ Y side) and has the first rotation center axis J1 as the center.
  • the second output bearing 26d is provided in a hole formed by the inner side of the bearing holding member 26b and the second output shaft through hole 24d.
  • the outer peripheral surface of the second output bearing 26d is fixed to the inner peripheral surface of the bearing holding member 26b with screws.
  • the first auxiliary pulley support portion 27a is fixed to the left ( ⁇ Y side) portion of the upper surface of the first upper plate portion 23b.
  • the first auxiliary pulley support portion 27a is a rectangular parallelepiped member that is long in the front-rear direction (X-axis direction).
  • the first auxiliary pulley support portion 27a is formed with a plurality of (six in the figure) shaft fixing holes 27c that penetrate the first auxiliary pulley support portion 27a in the front-rear direction.
  • the first auxiliary pulley shaft 34c is inserted and fixed in one of the plurality of shaft fixing holes 27c.
  • the first auxiliary pulley shaft 34c has a cylindrical shape extending in the front-rear direction (X-axis direction). Both ends of the first auxiliary pulley shaft 34c in the front-rear direction protrude from the shaft fixing hole 27c.
  • the first auxiliary pulley 34a is rotatably connected to the front (+ X side) end of the first auxiliary pulley shaft 34c.
  • the first auxiliary pulley 34b is rotatably connected to the rear ( ⁇ X side) end of the first auxiliary pulley shaft 34c.
  • the first auxiliary pulleys 34a and 34b can rotate around the first auxiliary pulley shaft 34c independently of each other.
  • the position where the first auxiliary pulleys 34a and 34b are provided can be easily adjusted by changing the shaft fixing hole 27c into which the first auxiliary pulley shaft 34c is inserted.
  • the second auxiliary pulley support portion 27b is fixed to the right side (+ Y side) portion of the upper surface of the second upper plate portion 24b, as shown in FIGS.
  • the second auxiliary pulley support portion 27b is a rectangular parallelepiped member that is long in the front-rear direction (X-axis direction).
  • the upper surface of the second auxiliary pulley support portion 27b is located below the upper surface of the first auxiliary pulley support portion 27a.
  • the second auxiliary pulley support portion 27b is formed with a plurality (four in the figure) of shaft fixing holes 27d penetrating the second auxiliary pulley support portion 27b in the front-rear direction.
  • the second auxiliary pulley shaft 35c is inserted and fixed in one of the plurality of shaft fixing holes 27d.
  • the second auxiliary pulley shaft 35c has a cylindrical shape extending in the front-rear direction (X-axis direction). Both ends of the second auxiliary pulley shaft 35c in the front-rear direction protrude from the shaft fixing hole 27d.
  • the second auxiliary pulley 35a is rotatably connected to the front (+ X side) end of the second auxiliary pulley shaft 35c.
  • the second auxiliary pulley 35b is rotatably connected to the rear ( ⁇ X side) end of the second auxiliary pulley shaft 35c.
  • the second auxiliary pulleys 35a and 35b can rotate around the second auxiliary pulley shaft 35c independently of each other.
  • the position where the second auxiliary pulleys 35a and 35b are provided can be easily adjusted by changing the shaft fixing hole 27d into which the second auxiliary pulley shaft 35c is inserted.
  • the first motor 21 and the second motor 22 are, for example, servo motors.
  • the first motor 21 and the second motor 22 are fixed to the upper arm portion 43.
  • the upper arm portion 43 corresponds to the second member.
  • the first motor 21 and the second motor 22 are fixed to each other so that their output shafts face opposite sides in the left-right direction (Y-axis direction).
  • the first motor 21 is fixed to the left side ( ⁇ Y side) of the second motor 22 as shown in FIG.
  • the first motor 21 includes a first pulley receiving portion 21b that protrudes to the left.
  • the first pulley receiving portion 21b has a cylindrical shape centered on the first rotation center axis J1.
  • the first output shaft 21a of the first motor 21 extends to the left from the first pulley receiving portion 21b.
  • the first output shaft 21a has a cylindrical shape centered on the first rotation center axis J1.
  • the first output shaft 21a is rotatably supported inside the first output bearing 26c. Thereby, the first output shaft 21a of the first motor 21 can rotate about the first rotation center axis J1 ( ⁇ ⁇ 1 direction) with respect to the support member 20.
  • the second motor 22 is fixed to the right side (+ Y side) of the first motor 21.
  • the second motor 22 includes a second pulley receiving portion 22b that protrudes to the right.
  • the second pulley receiving portion 22b has a columnar shape centered on the first rotation center axis J1.
  • the second output shaft 22a of the second motor 22 extends to the right from the second pulley receiving portion 22b.
  • the second output shaft 22a has a cylindrical shape with the first rotation center axis J1 as the center. That is, in the present embodiment, the first output shaft 21a of the first motor 21 and the second output shaft 22a of the second motor 22 are arranged coaxially.
  • the second output shaft 22a is rotatably supported by the second output bearing 26d. As a result, the second output shaft 22a of the second motor 22 can rotate about the first rotation center axis J1 ( ⁇ ⁇ 1 direction) with respect to the support member 20.
  • the first pulley 31 is disposed between the first pulley support portion 23a of the first plate member 23 and the first motor 21 in the left-right direction (Y-axis direction).
  • the first pulley 31 is fixed to the first output shaft 21 a of the first motor 21. Thereby, the first motor 21 can rotate the first pulley 31 around the first rotation center axis J1 ( ⁇ ⁇ 1 direction).
  • the 1st pulley 31 is provided with the 1st pulley main-body part 31a, the disc part 31b, and the fixing
  • the first pulley main body 31a is a cylindrical portion around which the first wire 81 is wound.
  • the disc portion 31b is a disc-shaped portion that extends from both ends in the left-right direction of the first pulley main body portion 31a to the outside in the radial direction of the first rotation center axis J1.
  • the fixing portion 31c is a cylindrical portion that protrudes outward in the left-right direction from the disc portion 31b on the outer side in the left-right direction ( ⁇ Y side). The outer diameter of the fixing portion 31c is smaller than the outer diameter of the first pulley main body portion 31a.
  • the first pulley 31 is formed with a through hole that communicates with the inside of the fixed portion 31c and penetrates the first pulley 31 in the left-right direction (Y-axis direction).
  • the first output shaft 21a passes through the through hole.
  • the fixing portion 31c is fixed to the first output shaft 21a by tightening screws from the outer peripheral surface of the fixing portion 31c to the outer peripheral surface of the first output shaft 21a.
  • a fitting recess 31d is formed that is recessed outward in the left-right direction ( ⁇ Y side).
  • the first pulley receiving portion 21b of the first motor 21 is fitted in the fitting recess 31d.
  • the first pulley 31 is supported by the first pulley receiving portion 21b so as to be rotatable about the first rotation center axis J1 ( ⁇ ⁇ 1 direction).
  • the first pulley 31 is attached to both the support member 20 and the upper arm portion 43 to which the first motor 21 is fixed so as to be rotatable around the first rotation center axis J1 ( ⁇ ⁇ 1 direction).
  • the second pulley 32 is disposed between the second pulley support portion 24a of the second plate member 24 and the second motor 22 in the left-right direction (Y-axis direction).
  • the second pulley 32 is fixed to the second output shaft 22 a of the second motor 22. Accordingly, the second motor 22 can rotate the second pulley 32 around the first rotation center axis J1 ( ⁇ ⁇ 1 direction).
  • the 2nd pulley 32 is provided with the 2nd pulley main-body part 32a, the disc part 32b, and the fixing
  • the second pulley main body 32a is a cylindrical portion around which the second wire 82 is wound.
  • the disc portion 32b is a disc-shaped portion that extends from both ends in the left-right direction of the second pulley main body portion 32a to the outside in the radial direction of the first rotation center axis J1.
  • the fixing portion 32c is a cylindrical portion that protrudes outward in the left-right direction from the disc portion 32b on the outer side in the left-right direction (+ Y side).
  • the outer diameter of the fixed portion 32c is smaller than the outer diameter of the second pulley main body portion 32a.
  • the second pulley 32 is formed with a through hole that communicates with the inside of the fixed portion 32c and penetrates the second pulley 32 in the left-right direction (Y-axis direction).
  • the second output shaft 22a passes through the through hole.
  • the fixing portion 32c is fixed to the second output shaft 22a by tightening a screw from the outer peripheral surface of the fixing portion 32c to the outer peripheral surface of the second output shaft 22a.
  • a fitting recess 32d that is recessed outward in the left-right direction (+ Y side) is formed on the inner surface ( ⁇ Y side) in the left-right direction of the second pulley 32.
  • the second pulley receiving portion 22b of the second motor 22 is fitted in the fitting recess 32d.
  • the second pulley 32 is supported by the second pulley receiving portion 22b so as to be rotatable around the first rotation center axis J1 ( ⁇ ⁇ 1 direction).
  • the second pulley 32 is attached to both the support member 20 and the upper arm portion 43 to which the second motor 22 is fixed so as to be rotatable around the first rotation center axis J1 ( ⁇ ⁇ 1 direction).
  • the third pulley 33 is fixed to the lower surface of the bottom 41 of the shoulder 40. More specifically, the third pulley 33 is fixed to the bottom portion 41 by tightening a screw from the bottom surface of the recess 41 b of the bottom portion 41 to the upper surface of the third pulley 33.
  • the third pulley 33 includes an upper body part 33a, a lower body part 33b, an upper disk part 33c, a central disk part 33d, and a lower disk part 33e.
  • the upper body portion 33a is a portion around which the first wire 81 is wound.
  • the upper body part 33a has a columnar shape centered on the second rotation center axis J2.
  • the lower body part 33b is located below the upper body part 33a.
  • the lower main body portion 33b is a portion around which the second wire 82 is wound.
  • the lower main body portion 33b has a columnar shape centered on the second rotation center axis J2.
  • the outer diameter of the upper body part 33a and the outer diameter of the lower body part 33b are the same.
  • the upper disk part 33c is a disk-shaped part that extends from the upper end of the upper body part 33a to the outside in the radial direction of the second rotation center axis J2.
  • the upper part of the upper disk part 33 c is fitted in a recess formed in the lower surface of the bottom part 41 in the shoulder part 40.
  • the upper disc portion 33c is formed with a wire through hole 33f that penetrates the upper disc portion 33c in the vertical direction. Although illustration is omitted, a total of eight wire through-holes 33f are formed on each of the two sides on the front and rear direction ( ⁇ X side) and the both sides in the left and right direction ( ⁇ Y side) across the second rotation center axis J2. Yes.
  • the plurality of wire through holes 33 f communicate with the plurality of wire through holes 41 a in the bottom 41.
  • the plurality of wire through holes 33f overlap with the plurality of wire through holes 41a in the bottom portion 41 in plan view.
  • the central disc part 33d is located at the center in the vertical direction between the upper body part 33a and the lower body part 33b.
  • the central disc portion 33d is a disc-shaped portion that extends outward in the radial direction of the second rotation center axis J2.
  • the central disc portion 33d is formed with a wire through hole 33g that penetrates the central disc portion 33d in the vertical direction. Although illustration is omitted, a total of eight wire through holes 33g are formed, two on each of the front and rear direction sides ( ⁇ X side) and the left and right direction sides ( ⁇ Y side) across the second rotation center axis J2. Yes.
  • the plurality of wire through holes 33g overlap with the plurality of wire through holes 33f in the upper disk portion 33c in a plan view.
  • the lower disk part 33e is a disk-shaped part that extends from the lower end of the lower body part 33b to the radially outer side of the second rotation center axis J2.
  • the lower disc portion 33e is formed with a wire through hole 33h that penetrates the lower disc portion 33e in the vertical direction. Although illustration is omitted, a total of eight wire through-holes 33h are formed, two on each of the front and rear direction sides ( ⁇ X side) and the left and right direction sides ( ⁇ Y side) across the second rotation center axis J2. Yes.
  • the plurality of wire through holes 33h overlap with the plurality of wire through holes 33f in the upper disk part 33c and the plurality of wire through holes 33g in the central disk part 33d in plan view.
  • the outer diameter of the upper disk portion 33c, the outer diameter of the central disk portion 33d, and the outer diameter of the lower disk portion 33e are, for example, the same.
  • the lower surface of the third pulley 33 is formed with a concave portion 33i that is recessed upward.
  • the shape viewed from the lower side of the concave portion 33i is a circular shape passing through the center by the second rotation center axis J2.
  • the upper end of the bush main body 28a in the bush 28 is inserted into the recess 33i.
  • a pulley central through hole 33j that passes through the third pulley 33 in the vertical direction is formed at the center of the top surface of the recess 33i.
  • the plan view shape of the pulley central through hole 33j is a circular shape passing through the center through the second rotation center axis J2.
  • the central bolt 29a is inserted into the second central through hole 24c from the lower side of the second upper plate portion 24b in the second plate member 24.
  • the central bolt 29a is inserted from the second central through hole 24c into the shoulder 40 through the inside of the bush 28, the pulley central through hole 33j, the bottom central through hole 41c, and the recess 41b.
  • the central bolt 29a is fixed to the third pulley 33 by screws tightened from the outer peripheral surface of the upper main body portion 33a of the third pulley 33 and the outer peripheral surface of the lower main body portion 33b to the outer peripheral surface of the central bolt 29a. ing.
  • a locking nut 29d is screwed onto the upper end of the central bolt 29a.
  • a guide member 29b is mounted on the outer peripheral surface of the head side (-Z side) portion of the central bolt 29a.
  • the guide member 29b has a cylindrical shape that opens at both ends in the vertical direction.
  • the guide member 29 b is inserted inside the bush 28 and is supported so as to be rotatable with respect to the inner surface of the bush 28.
  • a washer 29c is provided between the head of the central bolt 29a and the guide member 29b and the bush 28 in the vertical direction.
  • the upper surface of the washer 29 c is in contact with the lower surface of the guide member 29 b and the lower surface of the bush 28.
  • the head of the central bolt 29a supports the bush 28 from below via a washer 29c.
  • the lower surface of the third plate member 25 fixed to the first plate member 23 and the second plate member 24 is in contact with the upper surface of the flange portion 28 b of the bush 28. Therefore, the head of the central bolt 29a supports the support member 20 from below via the washer 29c.
  • the shoulder 40 and the third pulley 33 and the support member 20 are connected via the central bolt 29a.
  • the support member 20 Since the bush 28 is rotatably supported with respect to the guide member 29b, the support member 20 is rotated around the second rotation center axis J2 ( ⁇ ⁇ 2 direction) with respect to the central bolt 29a, the third pulley 33, and the shoulder 40. ) Can be rotated. Therefore, the third pulley 33 is attached to the support member 20 so as to be rotatable around the second rotation center axis J2.
  • the first wire 81 connects the first pulley 31 and the third pulley 33 as shown in FIG.
  • the first wire 81 transmits the rotation of the first pulley 31 to the third pulley 33 via tension.
  • the first wire 81 is, for example, a stainless steel wire.
  • the first wire 81 includes two wires, a front first wire 81a and a rear first wire 81b.
  • the front side first wire 81a is wound around the first pulley 31 several times (for example, twice) and pulled out from the front side (+ X side) of the first pulley 31 to the upper side.
  • the front first wire 81a drawn to the upper side is guided to the inner side in the left-right direction (+ Y side) by being hooked on the first auxiliary pulley 34a, and several times from the front side with respect to the upper main body portion 33a of the third pulley 33. It is wound (for example, twice).
  • the rear first wire 81b is wound around the first pulley 31 several times (for example, twice), and is drawn upward from the rear side ( ⁇ X side) of the first pulley 31.
  • the rear first wire 81b drawn upward is guided to the inner side in the left-right direction (+ Y side) by being hooked on the first auxiliary pulley 34b, and from the rear side with respect to the upper main body portion 33a of the third pulley 33. It is wound several times (for example, twice).
  • the front first wire 81a is arranged in the left-right direction of the first pulley 31 through two holes formed in the disk portion 31b of the first pulley 31 while being wound around the first pulley 31. Pulled out to the outside. A clamp tube is attached to the portion of the front first wire 81a that is drawn outward in the left-right direction. As a result, the front first wire 81 a is fixed to the first pulley 31. The rear first wire 81 b is fixed to the first pulley 31. The method of fixing the rear first wire 81b to the first pulley 31 is the same as that of the front first wire 81a.
  • the end of the rear first wire 81 b on the third pulley 33 side is inside the wire through hole 33 f in the upper disk portion 33 c of the third pulley 33 and inside the wire through hole 41 a of the bottom 41. It passes through the shoulder 40.
  • the end of the rear first wire 81b on the third pulley 33 side is wound and fixed on a winding shaft 53 (described later) of the tension adjusting mechanism 50.
  • the end portion of the front first wire 81a on the third pulley 33 side passes through wire through holes 33f and 41a different from the wire through holes 33f and 41a through which the rear first wire 81b is passed. It is pulled out inside the shoulder 40. And the edge part by the side of the 3rd pulley 33 of the front side 1st wire 81a is wound around the winding axis
  • the first wire 81 since the first wire 81 is wound around the first pulley 31 and the third pulley 33, the first wire 81 has a positive orientation around the first rotation center axis J1 around the first pulley 31.
  • a rotational torque in one direction (+ ⁇ 1 direction) is applied, a rotational torque in a positive direction (one direction, + ⁇ 2 direction) around the second rotation center axis J2 is transmitted to the third pulley 33.
  • the second wire 82 connects the second pulley 32 and the third pulley 33 as shown in FIG.
  • the second wire 82 transmits the rotation of the second pulley 32 to the third pulley 33 via tension.
  • the second wire 82 is, for example, a stainless steel wire.
  • the second wire 82 includes two wires, a front second wire 82a and a rear second wire 82b.
  • the front second wire 82a is wound around the second pulley 32 several times (for example, twice), and is drawn upward from the front side (+ X side) of the second pulley 32.
  • the front second wire 82a drawn upward is guided to the inner side in the left-right direction ( ⁇ Y side) by being hooked on the second auxiliary pulley 35a, and from the front side to the lower main body portion 33b of the third pulley 33. It is wound several times (for example, twice).
  • the rear second wire 82b is wound around the second pulley 32 several times (for example, twice), and is drawn upward from the rear side ( ⁇ X side) of the second pulley 32.
  • the rear second wire 82b drawn upward is guided to the inner side in the left-right direction ( ⁇ Y side) by being hooked on the second auxiliary pulley 35b, and is rearward relative to the lower main body portion 33b of the third pulley 33. It is wound several times (for example, twice) from the side.
  • the end of the second front wire 82 a on the second pulley 32 side is fixed to the second pulley 32.
  • the end of the rear second wire 82 b on the second pulley 32 side is fixed to the second pulley 32.
  • the method of fixing the front second wire 82a and the rear second wire 82b to the second pulley 32 is the same as the method of fixing the front first wire 81a to the first pulley 31.
  • the end portion of the rear second wire 82b on the third pulley 33 side is inside the wire through hole 33g in the central disc portion 33d of the third pulley 33, and the wire through hole in the upper disc portion 33c. It passes through the inside of 33f and the wire through hole 41a of the bottom 41, and is pulled out into the shoulder 40.
  • the end of the rear second wire 82b on the third pulley 33 side is wound around and fixed to a winding shaft 53 (described later) of the tension adjustment mechanism 50.
  • the wire through holes 33f and 41a through which the rear second wire 82b is passed are wire through holes 33f and 41a different from the wire through holes 33f and 41a through which the first wire 81 is passed.
  • the winding shaft 53 around which the rear second wire 82b is wound is a winding shaft 53 different from the winding shaft 53 around which the first wire 81 is wound.
  • the end portion of the front second wire 82a on the third pulley 33 side is different from the wire through holes 33g, 33f, 41a through which the rear second wire 82b is passed. It is pulled out to the inside of the shoulder 40 through 41a. And the edge part by the side of the 3rd pulley 33 of the front side 2nd wire 82a is wound around the winding axis
  • the second wire 82 is wound around the second pulley 32 and the third pulley 33, the second wire 82 is positively oriented around the first rotation center axis J1 around the second pulley 32.
  • a rotational torque in the (+ ⁇ 1 direction) is applied, a rotational torque in the negative direction (the other direction, ⁇ 2 direction) around the second rotation center axis J2 is transmitted to the third pulley 33. That is, when a rotational torque is applied to the first pulley 31 and the second pulley 32 in the same direction around the first rotation center axis J1, the rotational torque transmitted to the third pulley 33 by the first wire 81. And the direction of the rotational torque transmitted to the third pulley 33 by the second wire 82 are different from each other.
  • four tension adjusting mechanisms 50 in the drive unit 10 ⁇ / b> A are provided on the side wall 42 of the shoulder 40.
  • the four tension adjusting mechanisms 50 are respectively provided on the four outer surfaces of the side wall portion 42.
  • the tension adjustment mechanism 50 includes a holding member 51, an adjustment member 52, a winding shaft 53, and a worm wheel 54.
  • the holding member 51 is fixed to the outer side surface 42a of the side wall portion 42 provided with the tension adjusting mechanism 50.
  • the holding member 51 includes a fixed plate portion 51a and a holding portion 51b.
  • the fixed plate portion 51 a has a plate shape that extends along the outer side surface 42 a of the side wall portion 42.
  • the fixed plate portion 51a is fixed to the side wall portion 42 by screws.
  • the holding portion 51b is a plate that protrudes from both ends in the left-right direction (Y-axis direction) of the fixed plate portion 51a in the front-rear direction (X-axis direction) orthogonal to the outer surface 42a of the side wall portion 42 provided with the tension adjusting mechanism 50. Is.
  • a side view shape of the holding portion 51b is a U-shape opening upward.
  • the adjusting member 52 includes a worm part 52a and a knob part 52b.
  • the worm portion 52a extends in the left-right direction (Y-axis direction).
  • a screw-shaped gear portion is formed on the outer surface of the worm portion 52a.
  • the worm portion 52a is held by fitting both ends in the left-right direction into the opening of the holding portion 51b.
  • the worm part 52a is rotatable around the central axis of the worm part 52a extending in the left-right direction.
  • the knob 52b is fixed to the end of one side of the worm 52a in the left-right direction.
  • the winding shaft 53 extends along the front-rear direction (X-axis direction) orthogonal to the direction in which the worm portion 52a extends.
  • the winding shaft 53 is provided inside the shoulder portion 40.
  • the front end (+ X side) end of the winding shaft 53 penetrates the side wall portion 42 and the fixing plate portion 51a of the holding member 51 in the front-rear direction.
  • the winding shaft 53 is rotatably held around the central axis of the winding shaft 53 extending in the front-rear direction.
  • the rear end ( ⁇ X side) of the winding shaft 53 is provided with a constricted portion with a smaller outer diameter, and the rear second wire 82b is wound and fixed to the constricted portion. ing.
  • the worm wheel 54 is fixed to the front (+ X side) end of the winding shaft 53.
  • the worm wheel 54 is located on the front surface of the fixed plate portion 51a.
  • a helical gear portion is formed on the outer surface of the worm wheel 54 and meshes with the gear portion of the worm portion 52a. Both the worm wheel 54 and the winding shaft 53 are rotatable around the central axis of the winding shaft 53.
  • the front first wire 81a, the rear first wire 81b, and the front second wire 82a are wound around the winding shaft 53 of each tension adjusting mechanism 50 different from the tension adjusting mechanism 50 to which the rear second wire 82b is fixed. Is fixed. Thereby, the tension of each wire can be adjusted independently by operating each tension adjusting mechanism 50.
  • the upper arm 43 is connected to the shoulder 40 via the drive unit 10A.
  • the upper arm portion 43 includes an upper arm portion main body 44 and a connection portion 45.
  • the upper arm portion main body 44 has an elongated rectangular tube shape extending in a direction orthogonal to the first rotation center axis J1.
  • the direction in which the upper arm main body 44 extends is parallel to the second rotation center axis J4 in the drive unit 10B.
  • the direction in which the upper arm main body 44 extends in the reference posture is the vertical direction (Z-axis direction).
  • the first motor 21 and the second motor 22 are fixed to the upper arm main body 44.
  • a fork 44a is formed at the end of the upper arm 43 on the drive unit 10A side (+ Z side).
  • the first motor 21 and the second motor 22 are sandwiched by a sandwiching portion 44a in a direction (X-axis direction) orthogonal to the output shaft of each motor, and are fixed to the upper arm main body 44.
  • the first motor 21 and the second motor 22 are attached to the support member 20 so as to be rotatable about the first rotation center axis J1 ( ⁇ ⁇ 1 direction). Therefore, the upper arm portion 43 is attached to the support member 20 so as to be rotatable around the first rotation center axis J1.
  • each wire of the drive unit 10 ⁇ / b> B is wound around the winding shaft 53 of each tension adjusting mechanism 50 and fixed inside the upper arm main body 44.
  • the connecting portion 45 is fixed on the opposite side ( ⁇ Z side) of the upper arm main body 44 to the drive unit 10A.
  • the drive unit 10 ⁇ / b> B is connected to the connection unit 45.
  • the drive unit 10B rotates the forearm portion 46 around the first rotation center axis J3 and the second rotation center axis J4 with respect to the upper arm portion 43.
  • the forearm portion 46 corresponds to a second member.
  • the first rotation center axis J3 is parallel to the first rotation center axis J1.
  • the second rotation center axis J4 is parallel to the second rotation center axis J2 and coaxial.
  • the forearm portion 46 is connected to the upper arm portion 43 via the drive unit 10B.
  • the forearm 46 is an elongated rectangular tube extending in parallel with a direction orthogonal to the first rotation center axis J3 of the drive unit 10B.
  • the direction in which the forearm 46 extends is a direction parallel to the second rotation center axis J6 in the drive unit 10C.
  • the direction in which the forearm portion 46 extends in the reference posture is the front-rear direction (X-axis direction).
  • each tension adjusting mechanism 50 of the drive unit 10 ⁇ / b> C is provided on the outer surface of the forearm portion 46.
  • the four tension adjusting mechanisms 50 are arranged side by side along the direction in which the forearm portion 46 extends (X-axis direction). Although illustration is omitted, each wire of the drive unit 10 ⁇ / b> C is wound around the winding shaft 53 of each tension adjusting mechanism 50 and fixed inside the forearm portion 46.
  • the drive unit 10C rotates the hand portion 47 about the first rotation center axis J5 and the second rotation center axis J6 with respect to the forearm portion 46.
  • the first rotation center axis J5 is parallel to the first rotation center axis J1.
  • the second rotation center axis J6 is perpendicular to the second rotation center axis J2.
  • FIG. 5 is a perspective view showing the drive unit 10C.
  • FIG. 5 shows a case where the hand portion 47 is rotated around the first rotation center axis J5 from the reference posture.
  • the illustration of the hand portion 47 is omitted.
  • the same reference numerals are given to the same configurations as those of the drive unit 10A.
  • the drive unit 10C is different from the drive unit 10A in the arrangement of the motors.
  • the first motor 121 and the second motor 122 are overlapped and fixed to each other in a direction orthogonal to the first rotation center axis J5.
  • the output shaft of the first motor 121 and the output shaft of the second motor 122 are parallel to the first rotation center axis J5.
  • the output shaft of the first motor 121 and the output shaft of the second motor 122 are disposed at positions different from each other, and are disposed at positions different from the first rotation center axis J5.
  • a first output pulley 121 a is fixed to the output shaft of the first motor 121.
  • a second output pulley 122 a is fixed to the output shaft of the second motor 122.
  • the drive unit 10C further includes motor clamping members 124a and 124b and a connection member 124c.
  • the motor clamping members 124a and 124b have a plate shape that extends in a direction orthogonal to the first rotation center axis J5.
  • the motor clamping member 124a and the motor clamping member 124b fix the first motor 121 and the second motor 122 so as to be sandwiched in a direction parallel to the first rotation center axis J5.
  • the connection member 124c connects the motor holding member 124a and the motor holding member 124b.
  • the first pulley 131 of the drive unit 10C is connected to the motor holding member 124a so as to be rotatable around the first rotation center axis J5.
  • the second pulley 132 of the drive unit 10C is connected to the motor holding member 124b so as to be rotatable around the first rotation center axis J5.
  • the first wire 181 of the drive unit 10C is wound around and fixed to the first output pulley 121a several times (for example, twice), and then is pulled out from the first output pulley 121a and the first pulley 131 and the first auxiliary pulley 34a. , 34b and wound around the third pulley 33 to be fixed.
  • the first pulley 131 is rotated around the first rotation center axis J5 by the first motor 121, and the rotation of the first pulley 131 is transmitted to the third pulley 33 by the first wire 181.
  • the first wire 181 is composed of, for example, two wires, similarly to the first wire 81 of the drive unit 10A.
  • the second wire 182 of the drive unit 10C is wound around and fixed to the second output pulley 122a several times (for example, twice), and then is pulled out from the second output pulley 122a and the second pulley 132 and the second auxiliary pulley 35a. , 35b and wound around the third pulley 33 to be fixed. Accordingly, the second pulley 132 is rotated around the first rotation center axis J5 by the second motor 122, and the rotation of the second pulley 132 is transmitted to the third pulley 33 by the second wire 182. Similar to the second wire 82 of the drive unit 10A, the second wire 182 is composed of, for example, two wires.
  • the hand portion 47 is connected to the forearm portion 46 through the drive unit 10C as shown in FIG.
  • the hand portion 47 is fixed to the first motor 121, the second motor 122, and the motor holding members 124a and 124b in the drive unit 10C.
  • the hand portion 47, the motor clamping members 124a and 124b, and the connection member 124c correspond to a second member.
  • FIG. 6 and 7 are perspective views for explaining a method of driving the upper arm portion 43 by the drive unit 10A.
  • FIG. 6 shows a case where the upper arm 43 is rotated around the second rotation center axis J2 with respect to the shoulder 40 from the reference posture.
  • FIG. 7 shows a case where the upper arm 43 is rotated around the first rotation center axis J1 with respect to the shoulder 40 from the reference posture.
  • the support member 20 rotates around the second rotation center axis J2 with respect to the third pulley 33. Accordingly, the upper arm 43 can be rotated around the second rotation center axis J2 with respect to the shoulder 40.
  • the first motor 21 applies a rotational torque in the positive direction (+ ⁇ 1 direction) around the first rotation center axis J ⁇ b> 1 to the first pulley 31, and the second motor 22 applies to the second pulley 32.
  • a rotational torque in the negative direction (- ⁇ 1 direction) around the first rotation center axis J1 is applied.
  • rotational torque is applied to the third pulley 33 in a positive direction (+ ⁇ 2 direction) around the second rotation center axis J2.
  • the support member 20 is opposite to the direction of the rotational torque applied to the third pulley 33 with respect to the third pulley 33 ( ⁇ 2 direction). ).
  • the rotational torque applied to the first pulley 31 and the second pulley 32 is applied to the third pulley 33 around the first rotation center axis J1 ( ⁇ ⁇ 1 direction) via the first wire 81 and the second wire 82. ). Therefore, the third pulley 33, the first motor 21, and the second motor 22 rotate relatively around the first rotation center axis J1. In the present embodiment, since the position of the third pulley 33 is fixed, the first motor 21 and the second motor 22 rotate with respect to the third pulley 33. Thereby, the upper arm 43 can be rotated around the first rotation center axis J1 with respect to the shoulder 40.
  • the first motor 21 and the second motor 22 are in the negative direction ( ⁇ 1 direction) around the first rotation center axis J1 to the first pulley 31 and the second pulley 32. Rotating torque is applied.
  • the rotational torque by the first motor 21 and the rotational torque by the second motor 22 are the same.
  • a negative rotational torque around the first rotation center axis J1 is applied to the third pulley 33.
  • the first motor 21 and the second motor 22 rotate in the direction opposite to the direction of the rotational torque applied to the third pulley 33 (+ ⁇ 1 direction). .
  • ⁇ 1 is the rotational torque of the first pulley 31 applied by the first motor 21.
  • ⁇ 2 is the rotational torque of the second pulley 32 applied by the second motor 22.
  • T 1 is the rotational torque around the first rotation center axis J1.
  • T 2 are a rotation torque around the second rotation axis J2.
  • Rotational torque can be applied to both.
  • the upper arm portion 43 rotates around the first rotation center axis J1 with respect to the shoulder portion 40 and simultaneously rotates around the second rotation center axis J2.
  • the pulley having a rotational torque of 0 is moved around the first rotation center axis J1 together with the motor while maintaining the relative positional relationship around the first rotation center axis J1 with the motor driving the pulley. Rotate.
  • the driving force of the two motors can be distributed around the two rotation center axes of the first rotation center axis J1 and the second rotation center axis J2.
  • the rotation around the first rotation center axis J1 and the rotation around the second rotation center axis J2 can be controlled independently.
  • the rotation of the first pulley 31 and the rotation of the second pulley 32 driven by each motor are transmitted to the third pulley 33 by a wire via tension. Therefore, regardless of the arrangement relationship between the first rotation center axis J1 and the second rotation center axis J2 and the position where the first motor 21 and the second motor 22 are arranged, the driving force of each motor is applied to each rotation center axis. Easy to transmit and dispense. Therefore, according to the present embodiment, it is possible to obtain the manipulator 1 that can independently control the plurality of rotation center axes by the plurality of motors while ensuring the degree of freedom of arrangement of the rotation center axis and the motor.
  • the rotational torque that can be applied around one rotation center axis depends on the output of one motor, and in order to apply a large torque around the rotation center axis, for example, the output is increased by enlarging the motor. It was necessary to enlarge.
  • the driving force of two motors can be used for rotation around one rotation center axis, even when the same number of motors of the same size as in the past are arranged, The output around one rotation center axis can be doubled. Therefore, the output of the manipulator 1 can be increased.
  • the output of the manipulator 1 is the same as the conventional output, the output of each motor can be reduced, so that the motor can be reduced in size.
  • the gear when a large external force is applied to the manipulator, the gear may be damaged by a load applied by the external force.
  • the driving force of the first motor 21 and the driving force of the second motor 22 are transmitted by the first wire 81 and the second wire 82. Therefore, when a large external force is applied to the manipulator 1, the first wire 81 and the second wire 82 expand and contract, and the load applied by the external force can be absorbed. Thereby, it can suppress that 10A of drive units are damaged, and the highly reliable manipulator 1 is obtained.
  • the configuration is such that two rotation center axes are controlled by two motors in one drive unit, but the present invention is not limited to this.
  • two or more rotation center axes may be controlled by two motors, or two rotation center axes may be controlled by three or more motors.
  • FIG. 8 is a schematic diagram for explaining an example principle of controlling three rotation central axes by three motors.
  • an example of controlling three rotation central axes by three motors is shown as a link manipulator LM1 to which four links are connected.
  • the link manipulator LM1 includes three motors MA, MB, and MC, a base link BL, a first link L1, a second link L2, and a third link L3.
  • the base link BL and the first link L1 are connected to each other so as to be rotatable around the rotation center axis JA.
  • the first link L1 and the second link L2 are connected to each other so as to be rotatable around the rotation center axis JB.
  • the second link L2 and the third link L3 are connected to each other so as to be rotatable around the rotation center axis JC.
  • the link manipulator LM1 the three motors MA, MB, and MC are fixed to the base link BL.
  • the rotation center axes JA, JB, and JC are parallel to each other.
  • the rotation center axis JA, the rotation center axis JB, and the rotation center axis JC are independently controlled by the motor MA, the motor MB, and the motor MC.
  • the wires WA1 and WA2 driven by the motor MA, the wires WB1 and WB2 driven by the motor MB, and the wires WC1 and WC2 driven by the motor MC include the links and the rotation center shafts.
  • the wires WA1 and WA2 are fixed to the motor MA and the third link L3.
  • the wires WB1 and WB2 are fixed to the motor MB and the third link L3.
  • the wires WC1 and WC2 are fixed to the motor MC and the third link L3. More specifically, each wire is fixed to a pulley that is rotated by receiving torque from each motor.
  • Each wire is fixed to the base link BL via each motor. In FIG. 8, each wire passing around each rotation center axis indicates that a rotation torque can be applied to each rotation center axis.
  • ⁇ A is the rotational torque of the pulley applied by the motor MA.
  • ⁇ B is the rotational torque of the pulley applied by the motor MB.
  • ⁇ C is the rotational torque of the pulley applied by the motor MC.
  • T A is the rotational torque around the rotation center axis JA.
  • T B is the rotational torque around the rotation center axis JB.
  • T C is the rotational torque around the rotation center axis JC.
  • the manipulator 1 described above can be expanded to a manipulator capable of controlling three rotation center axes by three motors by increasing the number of motors, pulleys, and rotation center axes.
  • the wires WA1 and WA2 between the rotation center axis JA and the rotation center axis JB and the wires WB1 and WB2 between the rotation center axis JB and the rotation center axis JC are added to the rotation center axis.
  • a location where the wire handling intersects is provided.
  • the coefficient in the coefficient matrix is attached with a minus sign. Independent control is possible.
  • the link manipulator LM2 shown in FIG. 9 differs from the link manipulator LM1 shown in FIG. 8 in that the axis of the motor MA, that is, the rotation axis of the pulley rotated by the motor MA coincides with the rotation center axis JA.
  • the motor MA is fixed to the base link BL.
  • the other configuration of the link manipulator LM2 is the same as that of the link manipulator LM1 shown in FIG.
  • the rotational torque of each pulley applied by each motor and the rotational torque around each rotation center axis are expressed by the above-described equation (4).
  • the link manipulator LM3 shown in FIG. 10 is different from the link manipulator LM2 shown in FIG. 9 in that the axis of the motor MB, that is, the rotation axis of the pulley rotated by the motor MB coincides with the rotation center axis JB. That is, the difference is that the rotation axis of the pulley rotated by the motor MC coincides with the rotation center axis JC.
  • the motor MB is fixed to the second link L2, and the motor MC is fixed to the third link L3.
  • the wires WB1 and WB2 are directly fixed to the third link L3 and the base link BL.
  • the wires WB1 and WB2 are each wound around a motor MB, more specifically, a pulley rotated by the motor MB, and connected to the motor MB.
  • the wires WB1 and WB2 can be driven by the motor MB.
  • the wires WB1 and WB2 bend when the relative posture of each link changes and the path length around which the wires WB1 and WB2 are routed changes. Can be suppressed.
  • the wires WC1 and WC2 are fixed to a motor MC, more specifically, a pulley and a base link BL that are rotated by the motor MC.
  • the other configuration of the link manipulator LM3 is the same as that of the link manipulator LM2 shown in FIG.
  • the rotational torque of each pulley applied by each motor and the rotational torque around each rotation center axis are expressed by the above-described equation (4).
  • the motors MA, MB, and MC are fixed to the base link BL like the link manipulator LM1 shown in FIG. 8 and the link manipulator LM2 shown in FIG. 9, the first link L1 is fixed by fixing the base link BL.
  • the second link L2 and the third link L3 it is not necessary to compensate the own weights of the motors MA, MB, MC by the motors MA, MB, MC. Therefore, the rotational torque of each motor MA, MB, MC for driving each link can be reduced.
  • the lengths of the wires WA1 and WA2 can be made shorter than the link manipulator LM1 shown in FIG. Therefore, the expansion / contraction amount of the wires WA1 and WA2 as a whole can be reduced, and the driving force can be accurately transmitted to each link via the wires WA1 and WA2. Thereby, the error of the position of each link to drive can be made small, and each link can be driven with sufficient position accuracy.
  • each motor is arranged on each rotation center axis like the link manipulator LM3 shown in FIG. 10, the total length of each wire can be easily shortened, and the expansion / contraction amount of each wire can be reduced. Therefore, each link can be driven with higher positional accuracy.
  • the motor MB is shown in FIG. 8 for the link manipulator LM3 shown in FIG.
  • the link manipulator which only the point fixed to the base link BL similarly to the link manipulator LM1 shown can also be mentioned.
  • the manipulator 1 of the present embodiment is particularly useful when applied to an artificial hand, an arm of a humanoid robot, and the like.
  • each of the wires WA1 and WA2 may be configured by a single wire.
  • Each of the wires WB1 and WB2 may be composed of a single wire.
  • Each of the wires WC1 and WC2 may be composed of a single wire.
  • the driving force of each motor is transmitted and distributed to a plurality of rotation center axes using pulleys and wires. Therefore, it is possible to incorporate a load sensitive mechanism that can increase the output around the rotation center axis as the load on the first motor 21 and the load on the second motor 22 increase. Details will be described in the second to fourth embodiments described later.
  • the manipulator 1 is an articulated manipulator as in the present embodiment
  • the handling of the wire is more complicated as the number of joints increases. There was a problem.
  • the first motor 21 and the second motor 22 are fixed to the upper arm portion 43. Therefore, the device that drives the upper arm 43 with respect to the shoulder 40 can be unitized as the drive unit 10A.
  • the two objects can be easily driven relatively with a degree of freedom of the number of rotation center axes of the drive unit 10A.
  • the handling of each wire is completed within the drive unit 10A, the handling of the wires does not become complicated even if the number of joints of the manipulator is increased. Therefore, it is easy to increase the number of joints of the manipulator, and it is easy to add joints.
  • the articulated manipulator as described above can be used as a manipulator that performs work in a narrow place, for example.
  • a manipulator that conducts pipe inspection through a pipe a manipulator that conducts exploration / search by entering a gap between rubbles at a disaster site, and the like.
  • the manipulator 1 of the present embodiment is particularly useful when applied to such an articulated manipulator.
  • the manipulator 1 is used as a prosthetic hand.
  • each motor becomes an obstacle when connecting the shoulder 40 to the user's body, and the user's It is difficult to wear a prosthetic hand on the body.
  • the first motor 21 and the second motor 22 are fixed to the upper arm portion 43 driven with respect to the shoulder portion 40, and the first motor 21 and the second motor 22 are changed together with the change in the posture of the upper arm portion 43.
  • the motor 21 and the second motor 22 move. Therefore, the motor is not fixed to the shoulder 40, and when using the manipulator 1 as a prosthetic hand, it is easy to connect the shoulder 40 to the user's body. Therefore, the manipulator 1 of the present embodiment is particularly useful when used as a prosthetic hand.
  • the first output shaft 21a of the first motor 21 and the second output shaft 22a of the second motor 22 are centered on the first rotation center axis J1. Therefore, the output of the first motor 21 can be directly transmitted to the first pulley 31 by fixing the first pulley 31 to the first output shaft 21a. Similarly, the output of the second motor 22 can be directly transmitted to the second pulley 32 by fixing the second pulley 32 to the second output shaft 22a. Thereby, the output of the first motor 21 and the output of the second motor 22 can be easily transmitted to the first pulley 31 and the second pulley 32.
  • the output shaft of the first motor 121 and the output shaft of the second motor 122 are arranged so as to be shifted from the first rotation center axis J ⁇ b> 5, and the first motor 121 and the second motor 122.
  • the dimension of the direction parallel to the 1st rotation central axis J5 between the 1st pulley 131 and the 2nd pulley 132 can be made small.
  • the dimension of the drive unit 10C in the direction parallel to the first rotation center axis J5 can be reduced, and the drive unit 10C can be easily downsized.
  • the tension adjusting mechanism 50 that adjusts the tension of the first wire 81 and the tension of the second wire 82 is provided.
  • the first wire 81 and the second wire 82 are loosened and the tension of the first wire 81 and the tension of the second wire 82 are lowered, the first wire 81 and the second wire 82 Tension can be applied.
  • the tension of the first wire 81 and the tension of the second wire 82 the advance angle or delay angle of the rotation around each rotation center axis with respect to the rotation of the first motor 21 and the rotation of the second motor 22 is adjusted. can do.
  • the first wire 81 that connects the first pulley 31 and the third pulley 33 may be, for example, a single wire. In this case, the first wire 81 may only be wound around each pulley and may not be directly fixed to the pulley.
  • the first wire 81 may be composed of three or more wires.
  • the second wire 82 that connects the second pulley 32 and the third pulley 33 may be, for example, a single wire. In this case, the second wire 82 may only be wound around each pulley and may not be fixed directly to the pulley.
  • the second wire 82 may be composed of three or more wires.
  • the transmission member is not particularly limited as long as it can transmit rotation between pulleys via tension.
  • the transmission member may be a rope, a chain, or a belt.
  • the material of the transmission member is not particularly limited.
  • the rotating member is not particularly limited as long as it is rotatably attached to each part, and may not be a pulley.
  • first motor 21 and the arrangement of the second motor 22 are not particularly limited, and the first motor 21 and the second motor 22 may be fixed at a place other than the upper arm portion 43.
  • the tension adjusting mechanism 50 is not particularly limited as long as the tension of the first wire 81 or the tension of the second wire 82 can be adjusted. Further, the tension adjusting mechanism 50 may be provided for only one of the first wire 81 and the second wire 82.
  • the wire connecting the first output pulley 121a and the first pulley 131 may be a wire different from the first wire 181.
  • the wire connecting the second output pulley 122 a and the second pulley 132 may be a wire different from the second wire 182.
  • first rotation center axis J1 and the second rotation center axis J2 are not particularly limited as long as they are different from each other.
  • first rotation center axis J1 and the second rotation center axis J2 may intersect each other without being orthogonal, may be in a twisted position, or may be parallel to each other.
  • each wire of the drive unit 10A may be wound around each pulley of the drive unit 10B, and each wire of the drive unit 10B may be wound around each pulley of the drive unit 10A to interfere with each other.
  • it can be set as the structure which controls four rotation center axes with four motors.
  • the drive units 10A to 10C may interfere with each other.
  • the second embodiment is different from the first embodiment in that a variable mechanism 230 as a load sensitive mechanism is provided.
  • 11 and 12 are perspective views showing the first pulley 231 of the present embodiment.
  • the first pulley 231 includes a first disc portion 231a, a second disc portion 231b, a support shaft 231c, a compression spring 231d, and a connecting wire 231e. Yes.
  • each part of the first pulley 231 constitutes a variable mechanism 230.
  • the first disc portion 231a and the second disc portion 231b have a disc shape that extends radially outward from the first rotation center axis J1 around the first rotation center axis J1.
  • the first disc portion 231a and the second disc portion 231b are arranged to face each other in a direction parallel to the first rotation center axis J1.
  • the support shaft 231c has a cylindrical shape that extends in the axial direction of the first rotation center axis J1 with the first rotation center axis J1 as the center. One end of the support shaft 231c is fixed to the first disc portion 231a.
  • the second disk portion 231b is connected to the other end side of the support shaft 231c so as to be movable in the axial direction of the first rotation center axis J1 with respect to the support shaft 231c.
  • the compression spring 231d is disposed between the first disc portion 231a and the second disc portion 231b.
  • a support shaft 231c is passed inside the compression spring 231d.
  • One end of the compression spring 231d is in contact with the surface of the first disc portion 231a on the second disc portion 231b side.
  • the other end of the compression spring 231d is in contact with the surface of the second disc portion 231b on the first disc portion 231a side.
  • the compression spring 231d is oriented so as to separate the first disc portion 231a and the second disc portion 231b from the first disc portion 231a and the second disc portion 231b in the axial direction of the first rotation center axis J1. Is adding power.
  • the connecting wire 231e is a wire that connects the first disc portion 231a and the second disc portion 231b between the first disc portion 231a and the second disc portion 231b.
  • a plurality of connecting wires 231e are provided along the circumferential direction of the first rotation center axis J1.
  • the plurality of connecting wires 231e surround the first rotation center axis J1 in the circumferential direction.
  • the diameter of the connecting wire 231e is larger than the diameter of the first wire 81, for example.
  • the first pulley main body of the first pulley 231 is constituted by a plurality of connecting wires 231e. That is, in the present embodiment, the first wire 81 is wound around the outside of the bundle of the plurality of connecting wires 231e.
  • FIG. 11 shows a case where the load of the first motor 21 is relatively small and the tension of the first wire 81 is relatively small.
  • FIG. 12 shows a case where the load of the first motor 21 is relatively large and the tension of the first wire 81 is relatively large.
  • the connecting wire 231e bends and the diameter D1 of the 1st pulley 231 becomes small.
  • the diameter D1 of the first pulley 231 corresponds to the inner diameter of the wound first wire 81.
  • the 2nd disc part 231b moves in the direction which approaches the 1st disc part 231a.
  • the first pulley 231 of the present embodiment includes the variable mechanism 230 that decreases the diameter D1 of the first pulley 231 as the tension of the first wire 81 increases.
  • the diameter D1 of the first pulley 231 is decreased. Therefore, the ratio between the diameter D1 of the first pulley 231 and the diameter of the third pulley 33 is increased, and the reduction ratio between the first pulley 231 and the third pulley can be increased. Therefore, a load sensitive mechanism that can increase the output around the second rotation center axis J2 as the load of the first motor 21 increases is obtained.
  • the variable mechanism 230 may be provided on the second pulley 32. Thereby, the diameter of the second pulley 32 can be changed according to the load of the second motor 22.
  • the variable mechanism 230 may be provided in both the first pulley 31 and the second pulley 32, or may be provided in only one of them.
  • the second disk portion 231b may be connected to the support shaft 231c so as to be rotatable around the first rotation center axis J1 with respect to the first disk portion 231a.
  • the diameter D1 of the first pulley 231 may be decreased by rotating the second disk portion 231b and tilting the connecting wire 231e.
  • the connecting wire 231e may be bent or may not be bent.
  • the first disc portion 231a and the second disc portion 231b may be connected using an articulated link.
  • variable mechanism 230 instead of the variable mechanism 230 described above, for example, a configuration may be used in which the diameter D1 of the first pulley 231 is changed using a spiral spring.
  • FIGS. 13 and 14 are schematic side views of the drive unit 310 according to the present embodiment as viewed from the left side ( ⁇ Y side) to the right side (+ Y side).
  • the drive unit 310 includes moving mechanisms 390a and 390b as shown in FIGS.
  • the moving mechanism 390a is provided on the front side (+ X side) of the support member 20.
  • the moving mechanism 390a includes a movable pulley 391a and a tension spring 392a.
  • the movable pulley 391 a is provided so as to be movable with respect to the support member 20.
  • a front first wire 81a is hung on the movable pulley 391a.
  • the movable pulley 391a is in contact with the front first wire 81a from the front side.
  • the tension spring 392a connects the movable pulley 391a and the support member 20.
  • the tension spring 392a extends diagonally forward and downward from the support member 20, and a movable pulley 391a is connected to the tip.
  • the tension spring 392a applies a force that is obliquely upward to the movable pulley 391a. Thereby, the movable pulley 391a is pressed against the front first wire 81a from the front side.
  • the moving mechanism 390b is provided on the rear side ( ⁇ X side) of the support member 20.
  • the moving mechanism 390b includes a movable pulley 391b and a tension spring 392b.
  • the movable pulley 391 b is provided so as to be movable with respect to the support member 20.
  • a rear first wire 81b is hung on the movable pulley 391b.
  • the movable pulley 391b is in contact with the rear first wire 81b from the rear side.
  • the tension spring 392b connects the movable pulley 391b and the support member 20.
  • the tension spring 392b extends rearward and obliquely downward from the support member 20, and a movable pulley 391b is connected to the tip.
  • the tension spring 392b applies a forward oblique upward force to the movable pulley 391b. Accordingly, the movable pulley 391b is pressed against the rear first wire 81b from the rear side.
  • FIG. 13 shows a case where the load of the first motor 21 is relatively small and the tension of the first wire 81 is relatively small.
  • FIG. 14 shows a case where the load of the first motor 21 is relatively large and the tension of the first wire 81 is relatively large.
  • the movable pulley 391a and the movable pulley 391b are moved by the tension of the first wire 81 as shown in FIG.
  • the movable pulley 391a moves forward and obliquely downward.
  • the movable pulley 391b moves rearward and obliquely downward.
  • the front first wire 81a pushed from the front side (+ X side) to the movable pulley 391a moves to the front side
  • the rear first wire 81b pushed from the rear side ( ⁇ X side) to the movable pulley 391b Moves to the back side.
  • the front first wire 81a and the rear first wire 81b move away from the second rotation center axis J2.
  • the moving mechanisms 390a and 390b move the first wire 81 to a position away from the second rotation center axis J2 as the tension of the first wire 81 increases.
  • the tension of the first wire 81 increases, the first wire 81 moves away from the second rotation center axis J2. Therefore, the second rotation center axis applied to the support member 20 via the first wire 81.
  • the moment arm of the rotational moment around J2 can be increased. Therefore, a load sensitive mechanism that can increase the output around the second rotation center axis J2 as the load of the first motor 21 increases is obtained.
  • the fourth embodiment differs from the third embodiment in the configuration of a moving mechanism as a load sensitive mechanism.
  • 15 and 16 are schematic side views of the drive unit 410 according to this embodiment as viewed from the left side ( ⁇ Y side) to the right side (+ Y side).
  • the first wire 481 includes a front first wire 81a and a rear first wire 481b as shown in FIGS. Further, the rear first wire 481b is constituted by two divided wires 481c and 481d.
  • the split wire 481c is wound around the first pulley 31 and fixed.
  • the dividing wire 481d is wound around the third pulley 33 and fixed.
  • the split wire 481c and the split wire 481d are connected via a lower wire support member 491a, an upper wire support member 491b, and a compression spring 495, which will be described later.
  • the drive unit 410 includes a moving mechanism 490.
  • the moving mechanism 490 is provided on the support member 20.
  • the moving mechanism 490 includes a lower wire support member 491a, an upper wire support member 491b, a compression spring 495, a link mechanism 492, and a movable pulley 494.
  • the lower wire support member 491a and the upper wire support member 491b are plate-like members that face each other in the vertical direction.
  • the lower wire support member 491a and the upper wire support member 491b are provided on the rear side ( ⁇ X side) with respect to the support member 20.
  • the lower wire support member 491a is formed with a through hole 491c that penetrates the lower wire support member 491a in the vertical direction.
  • a split wire 481c drawn from the first pulley 31 is passed through the through hole 491c from below.
  • the upper end of the split wire 481c passed through the through hole 491c is fixed to the lower surface of the upper wire support member 491b.
  • the upper wire support member 491b is located above the lower wire support member 491a.
  • the upper wire support member 491b is formed with a through hole 491d that penetrates the upper wire support member 491b in the vertical direction.
  • the through hole 491d is formed at a position shifted from the through hole 491c of the lower wire support member 491a in plan view.
  • a split wire 481d drawn from the third pulley 33 is passed through the through hole 491d from above.
  • the lower end of the split wire 481d passed through the through hole 491d is fixed to the upper surface of the lower wire support member 491a.
  • the compression spring 495 is disposed between the lower wire support member 491a and the upper wire support member 491b in the vertical direction, and connects the lower wire support member 491a and the upper wire support member 491b.
  • the compression spring 495 applies a force to the lower wire support member 491a and the upper wire support member 491b in a direction to separate the lower wire support member 491a and the upper wire support member 491b from each other.
  • the link mechanism 492 is fixed to the lower wire support member 491a and the upper wire support member 491b.
  • the link mechanism 492 extends to the front side (+ X side) from the lower wire support member 491a and the upper wire support member 491b as a whole.
  • the link mechanism 492 includes first links 492a and 492b and second links 493a and 493b.
  • the first link 492a is rotatably connected to the front (+ X side) end of the lower wire support member 491a.
  • the first link 492a extends diagonally forward from the front (+ X side) end of the lower wire support member 491a.
  • the first link 492b is rotatably connected to the front end of the upper wire support member 491b.
  • the first link 492b extends obliquely forward and downward from the front end of the upper wire support member 491b.
  • the first link 492a and the first link 492b are arranged so as to intersect with each other, and are connected to each other through a connection shaft 492c so as to be rotatable.
  • the second link 493a is rotatably connected to the front (+ X side) end of the first link 492a.
  • the second link 493a extends from the front end of the first link 492a obliquely downward to the front.
  • the second link 493b is rotatably connected to the front end of the first link 492b.
  • the second link 493b extends diagonally forward and upward from the front end of the first link 492b.
  • the front end portion of the second link 493a and the front end portion of the second link 493b are rotatably connected to each other.
  • the movable pulley 494 is connected to the front (+ X side) end of the link mechanism 492. More specifically, the movable pulley 494 is connected to a location where the second links 493a and 493b are connected to each other. A front first wire 81a is hung on the movable pulley 494. The movable pulley 494 is in contact with the front first wire 81a from the rear side ( ⁇ X side).
  • FIG. 15 shows a case where the load of the first motor 21 is relatively small and the tension of the first wire 481 is relatively small.
  • FIG. 16 shows a case where the load of the first motor 21 is relatively large and the tension of the first wire 481 is relatively large.
  • the moving mechanism 490 moves the first wire 481 (front first wire 81a) to a position away from the second rotation center axis J2 as the tension of the first wire 481 increases.
  • the first wire 481 moves away from the second rotation center axis J2, so that the second rotation center axis applied to the support member 20 via the first wire 481.
  • the moment arm of the rotational moment around J2 can be increased. Therefore, a load sensitive mechanism that can increase the output around the second rotation center axis J2 as the load of the first motor 21 increases is obtained.
  • the link mechanism 492 that pushes out the movable pulley 494 using the tension of the first wire 481 is provided, and therefore, the movable pulley 494 is more at the second rotation center than in the third embodiment. It can be moved to a position away from the axis J2. Therefore, as the load on the first motor 21 increases, the output around the second rotation central axis J2 can be increased.
  • both the front first wire 81a and the rear first wire 481b can be moved in a direction away from the second rotation center axis J2 by one moving mechanism 490.
  • each moving mechanism may be provided for the second wire 82.
  • manipulator of each embodiment mentioned above may be used for any apparatus, apparatus, etc.
  • the number of arms connected by the drive unit and the drive unit is not particularly limited.
  • second wire (second transmission member), 124a, 124b ... motor clamping member (second member), 124c ... connection member (second member), 230 ... variable mechanism, 390a, 390b, 490 ... movement mechanism, J1 , J3, J5: First rotation center axis, J2, J4, J6: During second rotation Axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

One embodiment of a manipulator according to the present invention is characterized by comprising: a first transfer member that links a first rotation member and a third rotation member and transfers a rotation of the first rotation member to the third rotation member via tensile force; and a second transfer member that links a second rotation member and the third rotation member and transfers a rotation of the second rotation member to the third rotation member via tensile force, wherein when a rotational torque in one direction around a first rotational center axis is applied to the first rotation member, the first transfer member transfers, to the third rotation member, a rotational torque in one direction around a second rotational center axis, and when a rotational torque in the one direction around the first rotational center axis is applied to the second rotation member, the second transfer member transfers, to the third rotation member, a rotational torque in the other direction around the second rotational center axis.

Description

マニピュレータmanipulator
 本発明は、マニピュレータに関する。
 本願は、2016年5月31日に、日本に出願された特願2016-109120号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a manipulator.
This application claims priority on May 31, 2016 based on Japanese Patent Application No. 2016-109120 for which it applied to Japan, and uses the content here.
 差動歯車機構を介して、2つのプーリの回転駆動を2軸関節に伝達し、独立に制御する構成が知られている(例えば、特許文献1)。 A configuration is known in which the rotational drive of two pulleys is transmitted to a biaxial joint via a differential gear mechanism and controlled independently (for example, Patent Document 1).
特公平6-4230号公報Japanese Patent Publication No. 6-4230
 上記のような差動歯車機構では、各軸周りに回転する歯車同士を噛み合わせることで、力の伝達を行う。そのため、駆動する軸の配置自由度、および差動歯車機構に動力を伝達する駆動装置の配置自由度が低下する問題があった。 In the differential gear mechanism as described above, force is transmitted by meshing gears rotating around each axis. Therefore, there has been a problem that the degree of freedom of arrangement of the driving shaft and the degree of freedom of arrangement of the driving device for transmitting power to the differential gear mechanism are reduced.
 本発明の一つの態様は、上記問題点に鑑みて、回転中心軸および駆動装置の配置自由度を確保しつつ、複数の回転中心軸を複数の駆動装置によって独立に制御できるマニピュレータを提供することを目的の一つとする。 In view of the above problems, an aspect of the present invention provides a manipulator capable of independently controlling a plurality of rotation center shafts by a plurality of drive devices while ensuring the degree of freedom of arrangement of the rotation center shaft and the drive device. Is one of the purposes.
 本発明のマニピュレータの一つの態様は、第1部材と、前記1部材に対して、第1回転中心軸周りに回転可能に取り付けられた第2部材と、前記第1部材と前記第2部材との両方に対して、前記第1回転中心軸周りに回転可能に取り付けられた第1回転部材および第2回転部材と、前記第1部材に対して、前記第1回転中心軸と異なる第2回転中心軸周りに回転可能に取り付けられた第3回転部材と、前記第1回転部材を前記第1回転中心軸周りに回転させる第1駆動装置と、前記第2回転部材を前記第1回転中心軸周りに回転させる第2駆動装置と、前記第1回転部材と前記第3回転部材とを連結し、張力を介して、前記第1回転部材の回転を前記第3回転部材に伝達する第1伝達部材と、前記第2回転部材と前記第3回転部材とを連結し、張力を介して、前記第2回転部材の回転を前記第3回転部材に伝達する第2伝達部材と、を備え、前記第1伝達部材は、前記第1回転部材に前記第1回転中心軸周り一方向きの回転トルクが加えられた際に、前記第3回転部材に対して、前記第2回転中心軸周り一方向きの回転トルクを伝達し、前記第2伝達部材は、前記第2回転部材に前記第1回転中心軸周り一方向きの回転トルクが加えられた際に、前記第3回転部材に対して、前記第2回転中心軸周り他方向きの回転トルクを伝達することを特徴とする。 One aspect of the manipulator of the present invention includes a first member, a second member rotatably attached to the first member around a first rotation center axis, the first member, and the second member. Both of the first rotation member and the second rotation member rotatably attached to the first rotation center axis, and a second rotation different from the first rotation center axis with respect to the first member. A third rotating member rotatably attached around a central axis, a first driving device for rotating the first rotating member around the first rotating central axis, and the second rotating member at the first rotating central axis A first transmission that connects the second driving device that rotates around, the first rotating member, and the third rotating member, and transmits the rotation of the first rotating member to the third rotating member via tension. Connecting a member, the second rotating member, and the third rotating member A second transmission member that transmits the rotation of the second rotation member to the third rotation member via tension, and the first transmission member is connected to the first rotation center shaft by the first rotation member. When a rotational torque in one direction around is applied, a rotational torque in one direction around the second rotation center axis is transmitted to the third rotational member, and the second transmission member is the second rotational member. When a rotation torque in one direction around the first rotation center axis is applied to the third rotation member, a rotation torque in the other direction around the second rotation center axis is transmitted to the third rotation member.
 本発明の一つの態様によれば、回転中心軸および駆動装置の配置自由度を確保しつつ、複数の回転中心軸を複数の駆動装置によって独立に制御できるマニピュレータが提供される。 According to one aspect of the present invention, there is provided a manipulator capable of independently controlling a plurality of rotation center shafts by a plurality of drive devices while ensuring the degree of freedom of arrangement of the rotation center shaft and the drive device.
第1実施形態のマニピュレータを示す斜視図である。It is a perspective view which shows the manipulator of 1st Embodiment. 第1実施形態のマニピュレータの部分を示す断面図である。It is sectional drawing which shows the part of the manipulator of 1st Embodiment. 第1実施形態の肩部と駆動ユニットの部分とを示す斜視図である。It is a perspective view which shows the shoulder part of 1st Embodiment, and the part of a drive unit. 第1実施形態の駆動ユニットを示す斜視図である。It is a perspective view which shows the drive unit of 1st Embodiment. 第1実施形態の駆動ユニットを示す斜視図である。It is a perspective view which shows the drive unit of 1st Embodiment. 第1実施形態の駆動ユニットによる上腕部の駆動方法について説明するための斜視図である。It is a perspective view for demonstrating the drive method of the upper arm part by the drive unit of 1st Embodiment. 第1実施形態の駆動ユニットによる上腕部の駆動方法について説明するための斜視図である。It is a perspective view for demonstrating the drive method of the upper arm part by the drive unit of 1st Embodiment. 3つのモータによって3つの回転中心軸を制御する一例の原理を説明するための模式図である。It is a schematic diagram for demonstrating the principle of an example which controls three rotation center axes by three motors. 3つのモータによって3つの回転中心軸を制御する他の例の原理を説明するための模式図である。It is a schematic diagram for demonstrating the principle of the other example which controls three rotation center axes by three motors. 3つのモータによって3つの回転中心軸を制御する他の例の原理を説明するための模式図である。It is a schematic diagram for demonstrating the principle of the other example which controls three rotation center axes by three motors. 第2実施形態の第1プーリを示す模式的な斜視図である。It is a typical perspective view which shows the 1st pulley of 2nd Embodiment. 第2実施形態の第1プーリを示す模式的な斜視図である。It is a typical perspective view which shows the 1st pulley of 2nd Embodiment. 第3実施形態の駆動ユニットを示す模式的な側面図である。It is a typical side view which shows the drive unit of 3rd Embodiment. 第3実施形態の駆動ユニットを示す模式的な側面図である。It is a typical side view which shows the drive unit of 3rd Embodiment. 第4実施形態の駆動ユニットを示す模式的な側面図である。It is a typical side view which shows the drive unit of 4th Embodiment. 第4実施形態の駆動ユニットを示す模式的な側面図である。It is a typical side view which shows the drive unit of 4th Embodiment.
 以下、図面を参照しながら、本発明の実施形態に係るマニピュレータについて説明する。なお、本発明の範囲は、以下の実施の形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、各構造における縮尺および数等を、実際の構造における縮尺および数等と異ならせる場合がある。 Hereinafter, a manipulator according to an embodiment of the present invention will be described with reference to the drawings. The scope of the present invention is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present invention. In the following drawings, the scale and number of each structure may be different from the scale and number of the actual structure in order to make each configuration easy to understand.
<第1実施形態>
 図1は、本実施形態のマニピュレータ1を示す斜視図である。図2は、マニピュレータ1の部分を示す断面図である。図3は、肩部40と駆動ユニット10Aの部分とを示す斜視図である。図3においては、肩部40の一部を破断して示している。図4は、駆動ユニット10Aを示す斜視図である。
<First Embodiment>
FIG. 1 is a perspective view showing a manipulator 1 of the present embodiment. FIG. 2 is a cross-sectional view showing a portion of the manipulator 1. FIG. 3 is a perspective view showing the shoulder 40 and the drive unit 10A. In FIG. 3, a part of the shoulder 40 is cut away. FIG. 4 is a perspective view showing the drive unit 10A.
 図1に示すように、マニピュレータ1は、肩部40と、上腕部43と、前腕部46と、手部47と、駆動ユニット10A,10B,10Cと、を備えている。駆動ユニット10Aは、肩部40と上腕部43とを連結し、肩部40に対して上腕部43を駆動する。駆動ユニット10Bは、上腕部43と前腕部46とを連結し、上腕部43に対して前腕部46を駆動する。駆動ユニット10Cは、前腕部46と手部47とを連結し、前腕部46に対して手部47を駆動する。 As shown in FIG. 1, the manipulator 1 includes a shoulder 40, an upper arm 43, a forearm 46, a hand 47, and drive units 10A, 10B, and 10C. The drive unit 10 </ b> A connects the shoulder 40 and the upper arm 43, and drives the upper arm 43 with respect to the shoulder 40. The drive unit 10 </ b> B connects the upper arm portion 43 and the forearm portion 46, and drives the forearm portion 46 with respect to the upper arm portion 43. The drive unit 10 </ b> C connects the forearm portion 46 and the hand portion 47 and drives the hand portion 47 with respect to the forearm portion 46.
 なお、駆動ユニット10A~10Cは、基本的に同様の構成を有するため、各ユニットに共通する構成については、代表して駆動ユニット10Aについてのみ説明する場合がある。 Since the drive units 10A to 10C basically have the same configuration, the configuration common to each unit may be described only for the drive unit 10A as a representative.
 以下の説明においては、肩部40の位置および姿勢が固定されているものとして、図1から図4に示すマニピュレータ1の姿勢を「基準姿勢」とする。また、各図に示した3次元直交座標系(XYZ座標系)を適宜参照しつつ、各部の位置関係について説明する。Z軸方向は、後述する第2回転中心軸J2と平行な方向とする。X軸方向は、Z軸方向と直交し、肩部40の後述する底部41の一辺と平行な方向とする。Y軸方向は、Z軸方向とX軸方向との両方と直交する方向とする。 In the following description, assuming that the position and posture of the shoulder 40 are fixed, the posture of the manipulator 1 shown in FIGS. 1 to 4 is referred to as a “reference posture”. In addition, the positional relationship of each unit will be described with reference to the three-dimensional orthogonal coordinate system (XYZ coordinate system) shown in each drawing as appropriate. The Z-axis direction is a direction parallel to a second rotation center axis J2 described later. The X-axis direction is orthogonal to the Z-axis direction and is a direction parallel to one side of a bottom 41 described later of the shoulder 40. The Y-axis direction is a direction orthogonal to both the Z-axis direction and the X-axis direction.
 また、以下の説明においては、Z軸方向を「上下方向」と呼ぶ場合があり、X軸方向を「前後方向」と呼ぶ場合があり、Y軸方向を「左右方向」と呼ぶ場合がある。Z軸方向の正の側(+Z側)を「上側」と呼ぶ場合があり、Z軸方向の負の側(-Z側)を「下側」と呼ぶ場合がある。X軸方向の正の側(+X側)を「前側」と呼ぶ場合があり、X軸方向の負の側(-X側)を「後側」と呼ぶ場合がある。Y軸方向の正の側(+Y側)を「右側」と呼ぶ場合があり、Y軸方向の負の側(-Y側)を「左側」と呼ぶ場合がある。また、ある対象に対して、左右方向における後述する第2回転中心軸J2に近い側を「左右方向内側」と呼ぶ場合があり、左右方向における第2回転中心軸J2から遠い側を「左右方向外側」と呼ぶ場合がある。 In the following description, the Z-axis direction may be referred to as “vertical direction”, the X-axis direction may be referred to as “front-rear direction”, and the Y-axis direction may be referred to as “left-right direction”. The positive side (+ Z side) in the Z-axis direction may be referred to as “upper side”, and the negative side (−Z side) in the Z-axis direction may be referred to as “lower side”. The positive side (+ X side) in the X-axis direction may be called “front side”, and the negative side (−X side) in the X-axis direction may be called “rear side”. The positive side (+ Y side) in the Y-axis direction may be referred to as “right side”, and the negative side (−Y side) in the Y-axis direction may be referred to as “left side”. In addition, for a certain target, a side close to a second rotation center axis J2 (to be described later) in the left-right direction may be referred to as “inward in the left-right direction”. Sometimes called “outside”.
 なお、上下方向、前後方向、左右方向、上側、下側、前側、後側、右側および左側は、単に各部の位置関係を説明するための名称であり、実際の各部の位置関係および実際のマニピュレータの使用態様および姿勢を限定しない。 In addition, the vertical direction, the front-rear direction, the left-right direction, the upper side, the lower side, the front side, the rear side, the right side, and the left side are simply names for explaining the positional relationship of each part. There is no limitation on the mode of use and posture.
 肩部40は、図2および図3に示すように、底部41と、側壁部42と、を備えている。底部41は、正方形板状である。図2に示すように、底部41には、底部41を上下方向に貫通するワイヤ貫通孔41aが形成されている。図示は省略するが、ワイヤ貫通孔41aは、底部41の中央を挟んで前後方向両側(±X側)および左右方向両側(±Y側)にそれぞれ2つずつ、計8つ形成されている。底部41の上面の中央には、下側に窪む凹部41bが形成されている。凹部41bの底面の中央には、底部41を上下方向に貫通する底部中央貫通孔41cが形成されている。 As shown in FIGS. 2 and 3, the shoulder 40 includes a bottom 41 and a side wall 42. The bottom 41 has a square plate shape. As shown in FIG. 2, a wire through hole 41 a that penetrates the bottom 41 in the vertical direction is formed in the bottom 41. Although illustration is omitted, a total of eight wire through-holes 41 a are formed, two on each of the front and rear direction sides (± X side) and the left and right direction sides (± Y side) across the center of the bottom 41. In the center of the upper surface of the bottom portion 41, a concave portion 41b recessed downward is formed. At the center of the bottom surface of the recess 41b, a bottom center through hole 41c that penetrates the bottom 41 in the vertical direction is formed.
 側壁部42は、図2および図3に示すように、底部41の上面に固定されている。側壁部42は、底部41の上面の外縁から上側に立ち上がり、上側に開口する矩形枠状の壁部である。側壁部42には、後述する張力調整機構50が設けられている。 The side wall 42 is fixed to the upper surface of the bottom 41 as shown in FIGS. The side wall portion 42 is a rectangular frame-shaped wall portion that rises upward from the outer edge of the upper surface of the bottom portion 41 and opens upward. The side wall portion 42 is provided with a tension adjusting mechanism 50 described later.
 駆動ユニット10Aは、図1および図2に示すように、肩部40の下側に接続されている。駆動ユニット10Aは、上腕部43を肩部40に対して、第1回転中心軸J1周り(±θ1方向)および第2回転中心軸J2周り(±θ2方向)に回転させる。 The drive unit 10A is connected to the lower side of the shoulder 40 as shown in FIGS. The drive unit 10A rotates the upper arm 43 with respect to the shoulder 40 around the first rotation center axis J1 (± θ1 direction) and the second rotation center axis J2 (± θ2 direction).
 第1回転中心軸J1は、基準姿勢において、左右方向(Y軸方向)と平行な軸である。第2回転中心軸J2は、上述したように、上下方向(Z軸方向)と平行な軸である。本実施形態において第2回転中心軸J2の方向は、マニピュレータ1の各部の相対移動に関わらず、変化しない。第2回転中心軸J2は、第1回転中心軸J1と異なる。本実施形態において第2回転中心軸J2は、第1回転中心軸J1と直交する軸である。 The first rotation center axis J1 is an axis parallel to the left-right direction (Y-axis direction) in the reference posture. As described above, the second rotation center axis J2 is an axis parallel to the vertical direction (Z-axis direction). In the present embodiment, the direction of the second rotation center axis J2 does not change regardless of the relative movement of each part of the manipulator 1. The second rotation center axis J2 is different from the first rotation center axis J1. In the present embodiment, the second rotation center axis J2 is an axis orthogonal to the first rotation center axis J1.
 駆動ユニット10Aは、図2および図4に示すように、支持部材(第1部材)20と、第1モータ(第1駆動装置)21と、第2モータ(第2駆動装置)22と、第1プーリ(第1回転部材)31と、第2プーリ(第2回転部材)32と、第3プーリ(第3回転部材)33と、中央ボルト29aと、第1ワイヤ(第1伝達部材)81と、第2ワイヤ(第2伝達部材)82と、張力調整機構50と、を備えている。 As shown in FIGS. 2 and 4, the drive unit 10 </ b> A includes a support member (first member) 20, a first motor (first drive device) 21, a second motor (second drive device) 22, 1 pulley (first rotating member) 31, second pulley (second rotating member) 32, third pulley (third rotating member) 33, central bolt 29a, and first wire (first transmission member) 81 And a second wire (second transmission member) 82 and a tension adjusting mechanism 50.
 なお、以下の駆動ユニット10Aの構成の説明においては、マニピュレータ1が基準姿勢にあるものとして、各部の位置関係等について説明する。 In the following description of the configuration of the drive unit 10A, the positional relationship of each part will be described on the assumption that the manipulator 1 is in the reference posture.
 支持部材20は、第1モータ21、第2モータ22、第1プーリ31および第2プーリ32を、第1回転中心軸J1周り(±θ1方向)に回転可能に支持している。支持部材20は、第1板部材23と、第2板部材24と、第3板部材25と、ブッシュ28と、軸受保持部材26a,26bと、第1出力軸受26cと、第2出力軸受26dと、第1補助プーリ支持部27aと、第2補助プーリ支持部27bと、第1補助プーリ34a,34bと、第2補助プーリ35a,35bと、を備えている。 The support member 20 supports the first motor 21, the second motor 22, the first pulley 31, and the second pulley 32 so as to be rotatable about the first rotation center axis J1 (± θ1 direction). The support member 20 includes a first plate member 23, a second plate member 24, a third plate member 25, a bush 28, bearing holding members 26a and 26b, a first output bearing 26c, and a second output bearing 26d. A first auxiliary pulley support portion 27a, a second auxiliary pulley support portion 27b, first auxiliary pulleys 34a and 34b, and second auxiliary pulleys 35a and 35b.
 第1板部材23は、第1プーリ支持部23aと、第1上板部23bと、を備えている。第1プーリ支持部23aは、左右方向と直交する平面(ZX平面)に拡がる板状である。第1プーリ支持部23aの左右方向(Y軸方向)に沿って視た(以下、側面視と呼ぶ)形状は、上下方向に長い長方形状である。第1プーリ支持部23aは、第1モータ21および第1プーリ31よりも左右方向外側(-Y側)に位置している。図2に示すように、第1プーリ支持部23aには、第1プーリ支持部23aを左右方向に貫通する第1出力軸貫通孔23dが形成されている。 The first plate member 23 includes a first pulley support portion 23a and a first upper plate portion 23b. The 1st pulley support part 23a is plate shape extended to the plane (ZX plane) orthogonal to the left-right direction. The shape of the first pulley support portion 23a viewed along the left-right direction (Y-axis direction) (hereinafter referred to as a side view) is a rectangular shape that is long in the up-down direction. The first pulley support portion 23 a is located on the outer side in the left-right direction (−Y side) with respect to the first motor 21 and the first pulley 31. As shown in FIG. 2, the first pulley support portion 23a is formed with a first output shaft through hole 23d that penetrates the first pulley support portion 23a in the left-right direction.
 第1上板部23bは、第1プーリ支持部23aの上端から左右方向内側(+Y側)に延びた板状である。第1上板部23bを上側から下側に向かって視た(以下、平面視と呼ぶ)形状は、左右方向(Y軸方向)に長い略長方形状である。第1上板部23bには、第1上板部23bを上下方向に貫通する第1中央貫通孔23cが形成されている。第1中央貫通孔23cは、中心を第2回転中心軸J2が通る円形状である。 The first upper plate portion 23b has a plate shape extending inward in the left-right direction (+ Y side) from the upper end of the first pulley support portion 23a. The shape of the first upper plate portion 23b viewed from the upper side to the lower side (hereinafter referred to as a plan view) is a substantially rectangular shape that is long in the left-right direction (Y-axis direction). The first upper plate portion 23b is formed with a first central through hole 23c that penetrates the first upper plate portion 23b in the vertical direction. The first central through hole 23c has a circular shape passing through the second rotation center axis J2 at the center.
 第2板部材24は、第2プーリ支持部24aと、第2上板部24bと、を備えている。第2プーリ支持部24aは、左右方向と直交する平面(ZX平面)に拡がる板状である。第2プーリ支持部24aの側面視形状は、上下方向に長い長方形状である。第2プーリ支持部24aは、第2モータ22および第2プーリ32よりも左右方向外側(+Y側)に位置している。第2プーリ支持部24aには、第2プーリ支持部24aを左右方向に貫通する第2出力軸貫通孔24dが形成されている。第1プーリ支持部23aと第2プーリ支持部24aとは、左右方向(Y軸方向)に対向して設けられている。 The second plate member 24 includes a second pulley support portion 24a and a second upper plate portion 24b. The 2nd pulley support part 24a is plate shape extended to the plane (ZX plane) orthogonal to the left-right direction. The side view shape of the second pulley support portion 24a is a rectangular shape that is long in the vertical direction. The second pulley support 24 a is located on the outer side in the left-right direction (+ Y side) than the second motor 22 and the second pulley 32. The second pulley support portion 24a is formed with a second output shaft through hole 24d that penetrates the second pulley support portion 24a in the left-right direction. The 1st pulley support part 23a and the 2nd pulley support part 24a are provided facing the left-right direction (Y-axis direction).
 第2上板部24bは、第2プーリ支持部24aの上端から左右方向内側(-Y側)に延びた板状である。第2上板部24bの平面視形状は、左右方向(Y軸方向)に長い略長方形状である。第2上板部24bの左側(-Y側)の部分は、第1上板部23bの右側(+Y側)部分と上下方向(Z軸方向)に重なり合っている。第2上板部24bの左側の部分における上面は、第1上板部23bの右側の部分における下面と接触して、固定されている。 The second upper plate portion 24b has a plate shape extending from the upper end of the second pulley support portion 24a to the inner side in the left-right direction (−Y side). The plan view shape of the second upper plate portion 24b is a substantially rectangular shape that is long in the left-right direction (Y-axis direction). The left (−Y side) portion of the second upper plate portion 24b overlaps the right (+ Y side) portion of the first upper plate portion 23b in the vertical direction (Z-axis direction). The upper surface of the left side portion of the second upper plate portion 24b is fixed in contact with the lower surface of the right portion of the first upper plate portion 23b.
 第2上板部24bには、第2上板部24bを上下方向に貫通する第2中央貫通孔24cが形成されている。第2中央貫通孔24cは、中心を第2回転中心軸J2が通る円形状である。第2中央貫通孔24cは、第1中央貫通孔23cと上下方向に重なり合っている。 The second upper plate portion 24b is formed with a second central through hole 24c penetrating the second upper plate portion 24b in the vertical direction. The second central through hole 24c has a circular shape passing through the second rotation center axis J2 at the center. The second central through hole 24c overlaps the first central through hole 23c in the vertical direction.
 第3板部材25は、第1板部材23における第1上板部23bの上面に固定されている。図2および図4に示すように、第3板部材25は、上下方向と直交する平面(XY平面)に拡がる板状である。第3板部材25の平面視形状は、正方形状である。 The third plate member 25 is fixed to the upper surface of the first upper plate portion 23 b in the first plate member 23. As shown in FIGS. 2 and 4, the third plate member 25 has a plate shape that extends in a plane (XY plane) orthogonal to the vertical direction. The plan view shape of the third plate member 25 is a square shape.
 図2に示すように、第3板部材25の中央には、第3板部材25を上下方向に貫通する第3中央貫通孔25aが形成されている。第3中央貫通孔25aは、第1中央貫通孔23cおよび第2中央貫通孔24cと同心の円形状である。第3中央貫通孔25aの内径は、第1中央貫通孔23cの内径および第2中央貫通孔24cの内径よりも小さい。第3板部材25の上面には、下側に窪む凹部25bが形成されている。凹部25bは、第3中央貫通孔25aの内縁から径方向外側に拡がる円環状である。 As shown in FIG. 2, a third central through hole 25 a penetrating the third plate member 25 in the vertical direction is formed at the center of the third plate member 25. The third central through hole 25a has a circular shape concentric with the first central through hole 23c and the second central through hole 24c. The inner diameter of the third central through hole 25a is smaller than the inner diameter of the first central through hole 23c and the inner diameter of the second central through hole 24c. On the upper surface of the third plate member 25, a concave portion 25b that is recessed downward is formed. The recess 25b has an annular shape that extends radially outward from the inner edge of the third central through hole 25a.
 第1板部材23と第2板部材24と第3板部材25とは、各部材を上下方向に貫通するボルトと、そのボルトの下端に螺合されたナットと、によって互いに固定されている。 The first plate member 23, the second plate member 24, and the third plate member 25 are fixed to each other by a bolt that penetrates each member in the vertical direction and a nut that is screwed to the lower end of the bolt.
 ブッシュ28は、ブッシュ本体28aと、フランジ部28bと、を備えている。ブッシュ本体28aは、上下方向両端に開口し、第2回転中心軸J2を中心とする円筒状である。ブッシュ本体28aの下部は、第2中央貫通孔24c、第1中央貫通孔23c、および第3中央貫通孔25aの内側に挿入されている。ブッシュ本体28aは、第3中央貫通孔25aの内側に嵌め合わされている。 The bush 28 includes a bush main body 28a and a flange portion 28b. The bush main body 28a is open at both ends in the vertical direction and has a cylindrical shape centered on the second rotation center axis J2. The lower part of the bush main body 28a is inserted inside the second central through hole 24c, the first central through hole 23c, and the third central through hole 25a. The bush main body 28a is fitted inside the third central through hole 25a.
 フランジ部28bは、ブッシュ本体28aの下端から第2回転中心軸J2の径方向外側に拡がる円環状である。フランジ部28bは、第1中央貫通孔23cおよび第2中央貫通孔24cの内側に嵌め合わされている。フランジ部28bの上面は、第3板部材25の下面と接触している。 The flange portion 28b has an annular shape extending from the lower end of the bush main body 28a to the radially outer side of the second rotation center axis J2. The flange portion 28b is fitted inside the first central through hole 23c and the second central through hole 24c. The upper surface of the flange portion 28 b is in contact with the lower surface of the third plate member 25.
 軸受保持部材26a,26bは、左右方向両側(±Y側)に開口し、第1回転中心軸J1を中心とする円筒状の部材である。軸受保持部材26aは、第1プーリ支持部23aの左右方向外側(-Y側)の面にネジで固定されている。軸受保持部材26aは、第1プーリ支持部23a側(+Y側)の端部に、径方向外側に拡がる鍔部を有している。軸受保持部材26aの内側は、第1出力軸貫通孔23dと左右方向(Y軸方向)に重なり合っている。 The bearing holding members 26a and 26b are cylindrical members that open on both sides in the left-right direction (± Y side) and center on the first rotation center axis J1. The bearing holding member 26a is fixed to the outer surface in the left-right direction (−Y side) of the first pulley support portion 23a with a screw. The bearing holding member 26a has a flange portion that extends radially outward at an end portion on the first pulley support portion 23a side (+ Y side). The inner side of the bearing holding member 26a overlaps the first output shaft through hole 23d in the left-right direction (Y-axis direction).
 軸受保持部材26bは、第2プーリ支持部24aの左右方向外側(+Y側)の面にネジで固定されている。軸受保持部材26bは、第2プーリ支持部24a側(-Y側)の端部に径方向外側に拡がる鍔部を有している。軸受保持部材26bの内側は、第2出力軸貫通孔24dと左右方向(Y軸方向)に重なり合っている。 The bearing holding member 26b is fixed to the surface on the outer side in the left-right direction (+ Y side) of the second pulley support portion 24a with a screw. The bearing holding member 26b has a flange that extends radially outward at the end on the second pulley support portion 24a side (−Y side). The inner side of the bearing holding member 26b overlaps the second output shaft through hole 24d in the left-right direction (Y-axis direction).
 第1出力軸受26cは、左右方向両側(±Y側)に開口し、第1回転中心軸J1を中心とする円筒状である。第1出力軸受26cは、軸受保持部材26aの内側と第1出力軸貫通孔23dとによって構成された孔の内部に設けられている。第1出力軸受26cの外周面は、ネジによって軸受保持部材26aの内周面と固定されている。 The first output bearing 26c has a cylindrical shape that opens on both sides in the left-right direction (± Y side) and has the first rotation center axis J1 as the center. The first output bearing 26c is provided in a hole formed by the inside of the bearing holding member 26a and the first output shaft through hole 23d. The outer peripheral surface of the first output bearing 26c is fixed to the inner peripheral surface of the bearing holding member 26a with screws.
 第2出力軸受26dは、左右方向両側(±Y側)に開口し、第1回転中心軸J1を中心とする円筒状である。第2出力軸受26dは、軸受保持部材26bの内側と第2出力軸貫通孔24dとによって構成された孔の内部に設けられている。第2出力軸受26dの外周面は、ネジによって軸受保持部材26bの内周面と固定されている。 The second output bearing 26d has a cylindrical shape that opens on both sides in the left-right direction (± Y side) and has the first rotation center axis J1 as the center. The second output bearing 26d is provided in a hole formed by the inner side of the bearing holding member 26b and the second output shaft through hole 24d. The outer peripheral surface of the second output bearing 26d is fixed to the inner peripheral surface of the bearing holding member 26b with screws.
 第1補助プーリ支持部27aは、図2および図4に示すように、第1上板部23bの上面における左側(-Y側)の部分に固定されている。図4に示すように、第1補助プーリ支持部27aは、前後方向(X軸方向)に長い直方体状の部材である。図2に示すように、第1補助プーリ支持部27aには、第1補助プーリ支持部27aを前後方向に貫通する複数(図では6つ)の軸固定孔27cが形成されている。 As shown in FIGS. 2 and 4, the first auxiliary pulley support portion 27a is fixed to the left (−Y side) portion of the upper surface of the first upper plate portion 23b. As shown in FIG. 4, the first auxiliary pulley support portion 27a is a rectangular parallelepiped member that is long in the front-rear direction (X-axis direction). As shown in FIG. 2, the first auxiliary pulley support portion 27a is formed with a plurality of (six in the figure) shaft fixing holes 27c that penetrate the first auxiliary pulley support portion 27a in the front-rear direction.
 複数の軸固定孔27cのうちの一つには、第1補助プーリ軸34cが挿入され、固定されている。第1補助プーリ軸34cは、前後方向(X軸方向)に延びる円柱状である。第1補助プーリ軸34cの前後方向の両端は、軸固定孔27cから突出している。 The first auxiliary pulley shaft 34c is inserted and fixed in one of the plurality of shaft fixing holes 27c. The first auxiliary pulley shaft 34c has a cylindrical shape extending in the front-rear direction (X-axis direction). Both ends of the first auxiliary pulley shaft 34c in the front-rear direction protrude from the shaft fixing hole 27c.
 第1補助プーリ34aは、図4に示すように、第1補助プーリ軸34cの前側(+X側)の端部に回転可能に接続されている。第1補助プーリ34bは、第1補助プーリ軸34cの後側(-X側)の端部に回転可能に接続されている。これにより、第1補助プーリ34a,34bは、互いに独立して第1補助プーリ軸34c周りに回転可能である。本実施形態において、第1補助プーリ34a,34bが設けられる位置は、第1補助プーリ軸34cが挿入される軸固定孔27cを変更することで容易に調整することができる。 As shown in FIG. 4, the first auxiliary pulley 34a is rotatably connected to the front (+ X side) end of the first auxiliary pulley shaft 34c. The first auxiliary pulley 34b is rotatably connected to the rear (−X side) end of the first auxiliary pulley shaft 34c. As a result, the first auxiliary pulleys 34a and 34b can rotate around the first auxiliary pulley shaft 34c independently of each other. In the present embodiment, the position where the first auxiliary pulleys 34a and 34b are provided can be easily adjusted by changing the shaft fixing hole 27c into which the first auxiliary pulley shaft 34c is inserted.
 第2補助プーリ支持部27bは、図2および図4に示すように、第2上板部24bの上面における右側(+Y側)の部分に固定されている。図4に示すように、第2補助プーリ支持部27bは、前後方向(X軸方向)に長い直方体状の部材である。第2補助プーリ支持部27bの上面は、第1補助プーリ支持部27aの上面よりも下側に位置している。図2に示すように、第2補助プーリ支持部27bには、第2補助プーリ支持部27bを前後方向に貫通する複数(図では4つ)の軸固定孔27dが形成されている。 The second auxiliary pulley support portion 27b is fixed to the right side (+ Y side) portion of the upper surface of the second upper plate portion 24b, as shown in FIGS. As shown in FIG. 4, the second auxiliary pulley support portion 27b is a rectangular parallelepiped member that is long in the front-rear direction (X-axis direction). The upper surface of the second auxiliary pulley support portion 27b is located below the upper surface of the first auxiliary pulley support portion 27a. As shown in FIG. 2, the second auxiliary pulley support portion 27b is formed with a plurality (four in the figure) of shaft fixing holes 27d penetrating the second auxiliary pulley support portion 27b in the front-rear direction.
 複数の軸固定孔27dのうちの一つには、第2補助プーリ軸35cが挿入され、固定されている。第2補助プーリ軸35cは、前後方向(X軸方向)に延びる円柱状である。第2補助プーリ軸35cの前後方向の両端は、軸固定孔27dから突出している。 The second auxiliary pulley shaft 35c is inserted and fixed in one of the plurality of shaft fixing holes 27d. The second auxiliary pulley shaft 35c has a cylindrical shape extending in the front-rear direction (X-axis direction). Both ends of the second auxiliary pulley shaft 35c in the front-rear direction protrude from the shaft fixing hole 27d.
 第2補助プーリ35aは、図4に示すように、第2補助プーリ軸35cの前側(+X側)の端部に回転可能に接続されている。第2補助プーリ35bは、第2補助プーリ軸35cの後側(-X側)の端部に回転可能に接続されている。これにより、第2補助プーリ35a,35bは、互いに独立して第2補助プーリ軸35c周りに回転可能である。本実施形態において、第2補助プーリ35a,35bが設けられる位置は、第2補助プーリ軸35cが挿入される軸固定孔27dを変更することで容易に調整することができる。 As shown in FIG. 4, the second auxiliary pulley 35a is rotatably connected to the front (+ X side) end of the second auxiliary pulley shaft 35c. The second auxiliary pulley 35b is rotatably connected to the rear (−X side) end of the second auxiliary pulley shaft 35c. As a result, the second auxiliary pulleys 35a and 35b can rotate around the second auxiliary pulley shaft 35c independently of each other. In the present embodiment, the position where the second auxiliary pulleys 35a and 35b are provided can be easily adjusted by changing the shaft fixing hole 27d into which the second auxiliary pulley shaft 35c is inserted.
 第1モータ21および第2モータ22は、例えば、サーボモータである。本実施形態において第1モータ21および第2モータ22は、上腕部43に固定されている。駆動ユニット10Aとの関係において、上腕部43は、第2部材に相当する。第1モータ21と第2モータ22とは、それぞれの出力軸が左右方向(Y軸方向)の反対側を向くように、互いに固定されている。 The first motor 21 and the second motor 22 are, for example, servo motors. In the present embodiment, the first motor 21 and the second motor 22 are fixed to the upper arm portion 43. In the relationship with the drive unit 10A, the upper arm portion 43 corresponds to the second member. The first motor 21 and the second motor 22 are fixed to each other so that their output shafts face opposite sides in the left-right direction (Y-axis direction).
 第1モータ21は、図2に示すように、第2モータ22の左側(-Y側)に固定されている。第1モータ21は、左側に突出する第1プーリ受部21bを備えている。第1プーリ受部21bは、第1回転中心軸J1を中心とする円柱状である。第1モータ21の第1出力軸21aは、第1プーリ受部21bから左側に延びている。第1出力軸21aは、第1回転中心軸J1を中心とする円柱状である。第1出力軸21aは、第1出力軸受26cの内側に回転可能に支持されている。これにより、第1モータ21の第1出力軸21aは、支持部材20に対して第1回転中心軸J1周り(±θ1方向)に回転可能である。 The first motor 21 is fixed to the left side (−Y side) of the second motor 22 as shown in FIG. The first motor 21 includes a first pulley receiving portion 21b that protrudes to the left. The first pulley receiving portion 21b has a cylindrical shape centered on the first rotation center axis J1. The first output shaft 21a of the first motor 21 extends to the left from the first pulley receiving portion 21b. The first output shaft 21a has a cylindrical shape centered on the first rotation center axis J1. The first output shaft 21a is rotatably supported inside the first output bearing 26c. Thereby, the first output shaft 21a of the first motor 21 can rotate about the first rotation center axis J1 (± θ1 direction) with respect to the support member 20.
 第2モータ22は、第1モータ21の右側(+Y側)に固定されている。第2モータ22は、右側に突出する第2プーリ受部22bを備えている。第2プーリ受部22bは、第1回転中心軸J1を中心とする円柱状である。第2モータ22の第2出力軸22aは、第2プーリ受部22bから右側に延びている。第2出力軸22aは、第1回転中心軸J1を中心とする円柱状である。すなわち、本実施形態において第1モータ21の第1出力軸21aと第2モータ22の第2出力軸22aとは、同軸上に配置されている。第2出力軸22aは、第2出力軸受26dに回転可能に支持されている。これにより、第2モータ22の第2出力軸22aは、支持部材20に対して第1回転中心軸J1周り(±θ1方向)に回転可能である。 The second motor 22 is fixed to the right side (+ Y side) of the first motor 21. The second motor 22 includes a second pulley receiving portion 22b that protrudes to the right. The second pulley receiving portion 22b has a columnar shape centered on the first rotation center axis J1. The second output shaft 22a of the second motor 22 extends to the right from the second pulley receiving portion 22b. The second output shaft 22a has a cylindrical shape with the first rotation center axis J1 as the center. That is, in the present embodiment, the first output shaft 21a of the first motor 21 and the second output shaft 22a of the second motor 22 are arranged coaxially. The second output shaft 22a is rotatably supported by the second output bearing 26d. As a result, the second output shaft 22a of the second motor 22 can rotate about the first rotation center axis J1 (± θ1 direction) with respect to the support member 20.
 第1プーリ31は、第1板部材23の第1プーリ支持部23aと第1モータ21との左右方向(Y軸方向)の間に配置されている。第1プーリ31は、第1モータ21の第1出力軸21aに固定されている。これにより、第1モータ21は、第1プーリ31を第1回転中心軸J1周り(±θ1方向)に回転させることができる。第1プーリ31は、第1プーリ本体部31aと、円板部31bと、固定部31cと、を備えている。 The first pulley 31 is disposed between the first pulley support portion 23a of the first plate member 23 and the first motor 21 in the left-right direction (Y-axis direction). The first pulley 31 is fixed to the first output shaft 21 a of the first motor 21. Thereby, the first motor 21 can rotate the first pulley 31 around the first rotation center axis J1 (± θ1 direction). The 1st pulley 31 is provided with the 1st pulley main-body part 31a, the disc part 31b, and the fixing | fixed part 31c.
 第1プーリ本体部31aは、第1ワイヤ81が巻かれている円柱状の部分である。円板部31bは、第1プーリ本体部31aの左右方向両端から第1回転中心軸J1の径方向外側に拡がる円板状の部分である。固定部31cは、左右方向外側(-Y側)の円板部31bから左右方向外側に突出する円筒状の部分である。固定部31cの外径は、第1プーリ本体部31aの外径よりも小さい。 The first pulley main body 31a is a cylindrical portion around which the first wire 81 is wound. The disc portion 31b is a disc-shaped portion that extends from both ends in the left-right direction of the first pulley main body portion 31a to the outside in the radial direction of the first rotation center axis J1. The fixing portion 31c is a cylindrical portion that protrudes outward in the left-right direction from the disc portion 31b on the outer side in the left-right direction (−Y side). The outer diameter of the fixing portion 31c is smaller than the outer diameter of the first pulley main body portion 31a.
 第1プーリ31には、固定部31cの内側と連通して第1プーリ31を左右方向(Y軸方向)に貫通する貫通孔が形成されており、この貫通孔に第1出力軸21aが通されている。固定部31cの外周面から第1出力軸21aの外周面にネジが締め込まれることで、固定部31cが第1出力軸21aに固定されている。 The first pulley 31 is formed with a through hole that communicates with the inside of the fixed portion 31c and penetrates the first pulley 31 in the left-right direction (Y-axis direction). The first output shaft 21a passes through the through hole. Has been. The fixing portion 31c is fixed to the first output shaft 21a by tightening screws from the outer peripheral surface of the fixing portion 31c to the outer peripheral surface of the first output shaft 21a.
 第1プーリ31の左右方向内側(+Y側)の面には、左右方向外側(-Y側)に窪む嵌合凹部31dが形成されている。嵌合凹部31dには、第1モータ21の第1プーリ受部21bが嵌め合わされている。第1プーリ31は、第1プーリ受部21bに第1回転中心軸J1周り(±θ1方向)に回転可能に支持されている。第1プーリ31は、支持部材20と第1モータ21が固定された上腕部43との両方に対して、第1回転中心軸J1周り(±θ1方向)に回転可能に取り付けられている。 On the inner surface (+ Y side) of the first pulley 31 in the left-right direction, a fitting recess 31d is formed that is recessed outward in the left-right direction (−Y side). The first pulley receiving portion 21b of the first motor 21 is fitted in the fitting recess 31d. The first pulley 31 is supported by the first pulley receiving portion 21b so as to be rotatable about the first rotation center axis J1 (± θ1 direction). The first pulley 31 is attached to both the support member 20 and the upper arm portion 43 to which the first motor 21 is fixed so as to be rotatable around the first rotation center axis J1 (± θ1 direction).
 第2プーリ32は、第2板部材24の第2プーリ支持部24aと第2モータ22との左右方向(Y軸方向)の間に配置されている。第2プーリ32は、第2モータ22の第2出力軸22aに固定されている。これにより、第2モータ22は、第2プーリ32を第1回転中心軸J1周り(±θ1方向)に回転させることができる。第2プーリ32は、第2プーリ本体部32aと、円板部32bと、固定部32cと、を備えている。 The second pulley 32 is disposed between the second pulley support portion 24a of the second plate member 24 and the second motor 22 in the left-right direction (Y-axis direction). The second pulley 32 is fixed to the second output shaft 22 a of the second motor 22. Accordingly, the second motor 22 can rotate the second pulley 32 around the first rotation center axis J1 (± θ1 direction). The 2nd pulley 32 is provided with the 2nd pulley main-body part 32a, the disc part 32b, and the fixing | fixed part 32c.
 第2プーリ本体部32aは、第2ワイヤ82が巻かれている円柱状の部分である。円板部32bは、第2プーリ本体部32aの左右方向両端から第1回転中心軸J1の径方向外側に拡がる円板状の部分である。固定部32cは、左右方向外側(+Y側)の円板部32bから左右方向外側に突出する円筒状の部分である。固定部32cの外径は、第2プーリ本体部32aの外径よりも小さい。 The second pulley main body 32a is a cylindrical portion around which the second wire 82 is wound. The disc portion 32b is a disc-shaped portion that extends from both ends in the left-right direction of the second pulley main body portion 32a to the outside in the radial direction of the first rotation center axis J1. The fixing portion 32c is a cylindrical portion that protrudes outward in the left-right direction from the disc portion 32b on the outer side in the left-right direction (+ Y side). The outer diameter of the fixed portion 32c is smaller than the outer diameter of the second pulley main body portion 32a.
 第2プーリ32には、固定部32cの内側と連通して第2プーリ32を左右方向(Y軸方向)に貫通する貫通孔が形成されており、この貫通孔に第2出力軸22aが通されている。固定部32cの外周面から第2出力軸22aの外周面までネジが締め込まれることで、固定部32cが第2出力軸22aに固定されている。 The second pulley 32 is formed with a through hole that communicates with the inside of the fixed portion 32c and penetrates the second pulley 32 in the left-right direction (Y-axis direction). The second output shaft 22a passes through the through hole. Has been. The fixing portion 32c is fixed to the second output shaft 22a by tightening a screw from the outer peripheral surface of the fixing portion 32c to the outer peripheral surface of the second output shaft 22a.
 第2プーリ32の左右方向内側(-Y側)の面には、左右方向外側(+Y側)に窪む嵌合凹部32dが形成されている。嵌合凹部32dには、第2モータ22の第2プーリ受部22bが嵌め合わされている。第2プーリ32は、第2プーリ受部22bに第1回転中心軸J1周り(±θ1方向)に回転可能に支持されている。第2プーリ32は、支持部材20と第2モータ22が固定された上腕部43との両方に対して、第1回転中心軸J1周り(±θ1方向)に回転可能に取り付けられている。 A fitting recess 32d that is recessed outward in the left-right direction (+ Y side) is formed on the inner surface (−Y side) in the left-right direction of the second pulley 32. The second pulley receiving portion 22b of the second motor 22 is fitted in the fitting recess 32d. The second pulley 32 is supported by the second pulley receiving portion 22b so as to be rotatable around the first rotation center axis J1 (± θ1 direction). The second pulley 32 is attached to both the support member 20 and the upper arm portion 43 to which the second motor 22 is fixed so as to be rotatable around the first rotation center axis J1 (± θ1 direction).
 第3プーリ33は、肩部40の底部41の下面に固定されている。より詳細には、底部41の凹部41bの底面から第3プーリ33の上面にネジが締め込まれることで、第3プーリ33は、底部41に固定されている。第3プーリ33は、上側本体部33aと、下側本体部33bと、上側円板部33cと、中央円板部33dと、下側円板部33eと、を備えている。 The third pulley 33 is fixed to the lower surface of the bottom 41 of the shoulder 40. More specifically, the third pulley 33 is fixed to the bottom portion 41 by tightening a screw from the bottom surface of the recess 41 b of the bottom portion 41 to the upper surface of the third pulley 33. The third pulley 33 includes an upper body part 33a, a lower body part 33b, an upper disk part 33c, a central disk part 33d, and a lower disk part 33e.
 上側本体部33aは、第1ワイヤ81が巻かれている部分である。上側本体部33aは、第2回転中心軸J2を中心とする円柱状である。下側本体部33bは、上側本体部33aの下側に位置している。下側本体部33bは、第2ワイヤ82が巻かれている部分である。下側本体部33bは、第2回転中心軸J2を中心とする円柱状である。上側本体部33aの外径と下側本体部33bの外径とは、同じである。 The upper body portion 33a is a portion around which the first wire 81 is wound. The upper body part 33a has a columnar shape centered on the second rotation center axis J2. The lower body part 33b is located below the upper body part 33a. The lower main body portion 33b is a portion around which the second wire 82 is wound. The lower main body portion 33b has a columnar shape centered on the second rotation center axis J2. The outer diameter of the upper body part 33a and the outer diameter of the lower body part 33b are the same.
 上側円板部33cは、上側本体部33aの上端から第2回転中心軸J2の径方向外側に拡がる円板状の部分である。上側円板部33cの上部は、肩部40における底部41の下面に形成された窪みに嵌め合わされている。 The upper disk part 33c is a disk-shaped part that extends from the upper end of the upper body part 33a to the outside in the radial direction of the second rotation center axis J2. The upper part of the upper disk part 33 c is fitted in a recess formed in the lower surface of the bottom part 41 in the shoulder part 40.
 上側円板部33cには、上側円板部33cを上下方向に貫通するワイヤ貫通孔33fが形成されている。図示は省略するが、ワイヤ貫通孔33fは、第2回転中心軸J2を挟んで前後方向両側(±X側)および左右方向両側(±Y側)にそれぞれ2つずつ、計8つ形成されている。複数のワイヤ貫通孔33fは、底部41における複数のワイヤ貫通孔41aと連通している。複数のワイヤ貫通孔33fは、底部41における複数のワイヤ貫通孔41aと平面視において重なり合っている。 The upper disc portion 33c is formed with a wire through hole 33f that penetrates the upper disc portion 33c in the vertical direction. Although illustration is omitted, a total of eight wire through-holes 33f are formed on each of the two sides on the front and rear direction (± X side) and the both sides in the left and right direction (± Y side) across the second rotation center axis J2. Yes. The plurality of wire through holes 33 f communicate with the plurality of wire through holes 41 a in the bottom 41. The plurality of wire through holes 33f overlap with the plurality of wire through holes 41a in the bottom portion 41 in plan view.
 中央円板部33dは、上側本体部33aと下側本体部33bとの上下方向の中央に位置している。中央円板部33dは、第2回転中心軸J2の径方向外側に拡がる円板状の部分である。中央円板部33dには、中央円板部33dを上下方向に貫通するワイヤ貫通孔33gが形成されている。図示は省略するが、ワイヤ貫通孔33gは、第2回転中心軸J2を挟んで前後方向両側(±X側)および左右方向両側(±Y側)にそれぞれ2つずつ、計8つ形成されている。複数のワイヤ貫通孔33gは、上側円板部33cにおける複数のワイヤ貫通孔33fと平面視において重なり合っている。 The central disc part 33d is located at the center in the vertical direction between the upper body part 33a and the lower body part 33b. The central disc portion 33d is a disc-shaped portion that extends outward in the radial direction of the second rotation center axis J2. The central disc portion 33d is formed with a wire through hole 33g that penetrates the central disc portion 33d in the vertical direction. Although illustration is omitted, a total of eight wire through holes 33g are formed, two on each of the front and rear direction sides (± X side) and the left and right direction sides (± Y side) across the second rotation center axis J2. Yes. The plurality of wire through holes 33g overlap with the plurality of wire through holes 33f in the upper disk portion 33c in a plan view.
 下側円板部33eは、下側本体部33bの下端から第2回転中心軸J2の径方向外側に拡がる円板状の部分である。下側円板部33eには、下側円板部33eを上下方向に貫通するワイヤ貫通孔33hが形成されている。図示は省略するが、ワイヤ貫通孔33hは、第2回転中心軸J2を挟んで前後方向両側(±X側)および左右方向両側(±Y側)にそれぞれ2つずつ、計8つ形成されている。複数のワイヤ貫通孔33hは、上側円板部33cにおける複数のワイヤ貫通孔33fおよび中央円板部33dにおける複数のワイヤ貫通孔33gと平面視において重なり合っている。 The lower disk part 33e is a disk-shaped part that extends from the lower end of the lower body part 33b to the radially outer side of the second rotation center axis J2. The lower disc portion 33e is formed with a wire through hole 33h that penetrates the lower disc portion 33e in the vertical direction. Although illustration is omitted, a total of eight wire through-holes 33h are formed, two on each of the front and rear direction sides (± X side) and the left and right direction sides (± Y side) across the second rotation center axis J2. Yes. The plurality of wire through holes 33h overlap with the plurality of wire through holes 33f in the upper disk part 33c and the plurality of wire through holes 33g in the central disk part 33d in plan view.
 上側円板部33cの外径と中央円板部33dの外径と下側円板部33eの外径とは、例えば、互いに同じである。上側円板部33cと中央円板部33dと下側円板部33eとは、第3板部材25の凹部25bと平面視において重なっている。 The outer diameter of the upper disk portion 33c, the outer diameter of the central disk portion 33d, and the outer diameter of the lower disk portion 33e are, for example, the same. The upper disc portion 33c, the central disc portion 33d, and the lower disc portion 33e overlap the concave portion 25b of the third plate member 25 in plan view.
 第3プーリ33の下面には、上側に窪む凹部33iが形成されている。凹部33iの下側から視た形状は、中心を第2回転中心軸J2が通る円形状である。凹部33iの内部には、ブッシュ28におけるブッシュ本体28aの上端が挿入されている。凹部33iの天面の中央には、第3プーリ33を上下方向に貫通するプーリ中央貫通孔33jが形成されている。プーリ中央貫通孔33jの平面視形状は、中心を第2回転中心軸J2が通る円形状である。 The lower surface of the third pulley 33 is formed with a concave portion 33i that is recessed upward. The shape viewed from the lower side of the concave portion 33i is a circular shape passing through the center by the second rotation center axis J2. The upper end of the bush main body 28a in the bush 28 is inserted into the recess 33i. A pulley central through hole 33j that passes through the third pulley 33 in the vertical direction is formed at the center of the top surface of the recess 33i. The plan view shape of the pulley central through hole 33j is a circular shape passing through the center through the second rotation center axis J2.
 中央ボルト29aは、第2板部材24における第2上板部24bの下側から、第2中央貫通孔24cに挿入されている。中央ボルト29aは、第2中央貫通孔24cから、ブッシュ28の内側、プーリ中央貫通孔33j、底部中央貫通孔41c、および凹部41bを介して、肩部40の内部に挿入されている。 The central bolt 29a is inserted into the second central through hole 24c from the lower side of the second upper plate portion 24b in the second plate member 24. The central bolt 29a is inserted from the second central through hole 24c into the shoulder 40 through the inside of the bush 28, the pulley central through hole 33j, the bottom central through hole 41c, and the recess 41b.
 中央ボルト29aは、第3プーリ33の上側本体部33aの外周面および下側本体部33bの外周面から中央ボルト29aの外周面に対して締め込まれたネジによって、第3プーリ33と固定されている。中央ボルト29aの上端には、緩み止めナット29dが螺合されている。 The central bolt 29a is fixed to the third pulley 33 by screws tightened from the outer peripheral surface of the upper main body portion 33a of the third pulley 33 and the outer peripheral surface of the lower main body portion 33b to the outer peripheral surface of the central bolt 29a. ing. A locking nut 29d is screwed onto the upper end of the central bolt 29a.
 中央ボルト29aの頭部側(-Z側)の部分の外周面には、ガイド部材29bが装着されている。ガイド部材29bは、上下方向両端に開口する円筒状である。ガイド部材29bは、ブッシュ28の内側に挿入されており、ブッシュ28の内側面に対して回転可能に支持されている。 A guide member 29b is mounted on the outer peripheral surface of the head side (-Z side) portion of the central bolt 29a. The guide member 29b has a cylindrical shape that opens at both ends in the vertical direction. The guide member 29 b is inserted inside the bush 28 and is supported so as to be rotatable with respect to the inner surface of the bush 28.
 中央ボルト29aの頭部とガイド部材29bおよびブッシュ28との上下方向の間には、ワッシャ29cが設けられている。ワッシャ29cの上面は、ガイド部材29bの下面およびブッシュ28の下面と接触している。中央ボルト29aの頭部は、ワッシャ29cを介して、ブッシュ28を下側から支持している。ブッシュ28のフランジ部28bの上面には、第1板部材23および第2板部材24と固定された第3板部材25の下面が接触している。そのため、中央ボルト29aの頭部は、ワッシャ29cを介して、支持部材20を下側から支持している。これにより、中央ボルト29aを介して、肩部40および第3プーリ33と、支持部材20と、が連結されている。 A washer 29c is provided between the head of the central bolt 29a and the guide member 29b and the bush 28 in the vertical direction. The upper surface of the washer 29 c is in contact with the lower surface of the guide member 29 b and the lower surface of the bush 28. The head of the central bolt 29a supports the bush 28 from below via a washer 29c. The lower surface of the third plate member 25 fixed to the first plate member 23 and the second plate member 24 is in contact with the upper surface of the flange portion 28 b of the bush 28. Therefore, the head of the central bolt 29a supports the support member 20 from below via the washer 29c. Thus, the shoulder 40 and the third pulley 33 and the support member 20 are connected via the central bolt 29a.
 支持部材20は、ブッシュ28がガイド部材29bに対して回転可能に支持されているため、中央ボルト29a、第3プーリ33および肩部40に対して、第2回転中心軸J2周り(±θ2方向)に回転可能である。したがって、第3プーリ33は、支持部材20に対して、第2回転中心軸J2周りに回転可能に取り付けられている。 Since the bush 28 is rotatably supported with respect to the guide member 29b, the support member 20 is rotated around the second rotation center axis J2 (± θ2 direction) with respect to the central bolt 29a, the third pulley 33, and the shoulder 40. ) Can be rotated. Therefore, the third pulley 33 is attached to the support member 20 so as to be rotatable around the second rotation center axis J2.
 第1ワイヤ81は、図4に示すように、第1プーリ31と第3プーリ33とを連結している。第1ワイヤ81は、張力を介して、第1プーリ31の回転を第3プーリ33に伝達する。第1ワイヤ81は、例えば、ステンレス製のワイヤである。本実施形態において第1ワイヤ81は、前側第1ワイヤ81aと、後側第1ワイヤ81bと、の2本のワイヤで構成されている。 The first wire 81 connects the first pulley 31 and the third pulley 33 as shown in FIG. The first wire 81 transmits the rotation of the first pulley 31 to the third pulley 33 via tension. The first wire 81 is, for example, a stainless steel wire. In the present embodiment, the first wire 81 includes two wires, a front first wire 81a and a rear first wire 81b.
 前側第1ワイヤ81aは、第1プーリ31に数回(例えば2回)巻かれて、第1プーリ31の前側(+X側)から上側に引き出されている。上側に引き出された前側第1ワイヤ81aは、第1補助プーリ34aに掛けられることで左右方向内側(+Y側)に導かれ、第3プーリ33の上側本体部33aに対して、前側から数回(例えば2回)巻かれている。 The front side first wire 81a is wound around the first pulley 31 several times (for example, twice) and pulled out from the front side (+ X side) of the first pulley 31 to the upper side. The front first wire 81a drawn to the upper side is guided to the inner side in the left-right direction (+ Y side) by being hooked on the first auxiliary pulley 34a, and several times from the front side with respect to the upper main body portion 33a of the third pulley 33. It is wound (for example, twice).
 後側第1ワイヤ81bは、第1プーリ31に数回(例えば2回)巻かれて、第1プーリ31の後側(-X側)から上側に引き出されている。上側に引き出された後側第1ワイヤ81bは、第1補助プーリ34bに掛けられることで左右方向内側(+Y側)に導かれ、第3プーリ33の上側本体部33aに対して、後側から数回(例えば2回)巻かれている。 The rear first wire 81b is wound around the first pulley 31 several times (for example, twice), and is drawn upward from the rear side (−X side) of the first pulley 31. The rear first wire 81b drawn upward is guided to the inner side in the left-right direction (+ Y side) by being hooked on the first auxiliary pulley 34b, and from the rear side with respect to the upper main body portion 33a of the third pulley 33. It is wound several times (for example, twice).
 図示は省略するが、前側第1ワイヤ81aは、第1プーリ31に巻かれている途中で第1プーリ31の円板部31bに形成された2つの孔を介して第1プーリ31の左右方向外側に引き出されている。左右方向外側に引き出された前側第1ワイヤ81aの部分には、クランプ管が取り付けられている。これにより、前側第1ワイヤ81aは、第1プーリ31に固定されている。後側第1ワイヤ81bは、第1プーリ31に固定されている。後側第1ワイヤ81bの第1プーリ31に対する固定方法は、前側第1ワイヤ81aと同様である。 Although not shown, the front first wire 81a is arranged in the left-right direction of the first pulley 31 through two holes formed in the disk portion 31b of the first pulley 31 while being wound around the first pulley 31. Pulled out to the outside. A clamp tube is attached to the portion of the front first wire 81a that is drawn outward in the left-right direction. As a result, the front first wire 81 a is fixed to the first pulley 31. The rear first wire 81 b is fixed to the first pulley 31. The method of fixing the rear first wire 81b to the first pulley 31 is the same as that of the front first wire 81a.
 図2に示すように、後側第1ワイヤ81bの第3プーリ33側の端部は、第3プーリ33の上側円板部33cにおけるワイヤ貫通孔33f内および底部41のワイヤ貫通孔41a内を通って、肩部40の内部に引き出されている。そして、後側第1ワイヤ81bの第3プーリ33側の端部は、張力調整機構50の後述する巻軸53に巻かれて固定されている。 As shown in FIG. 2, the end of the rear first wire 81 b on the third pulley 33 side is inside the wire through hole 33 f in the upper disk portion 33 c of the third pulley 33 and inside the wire through hole 41 a of the bottom 41. It passes through the shoulder 40. The end of the rear first wire 81b on the third pulley 33 side is wound and fixed on a winding shaft 53 (described later) of the tension adjusting mechanism 50.
 図示は省略するが、前側第1ワイヤ81aの第3プーリ33側の端部は、後側第1ワイヤ81bが通されたワイヤ貫通孔33f,41aとは異なるワイヤ貫通孔33f,41aを介して肩部40の内部に引き出されている。そして、前側第1ワイヤ81aの第3プーリ33側の端部は、後側第1ワイヤ81bが巻かれた巻軸53とは異なる巻軸53に巻かれて固定されている。 Although illustration is omitted, the end portion of the front first wire 81a on the third pulley 33 side passes through wire through holes 33f and 41a different from the wire through holes 33f and 41a through which the rear first wire 81b is passed. It is pulled out inside the shoulder 40. And the edge part by the side of the 3rd pulley 33 of the front side 1st wire 81a is wound around the winding axis | shaft 53 different from the winding axis | shaft 53 around which the back side 1st wire 81b was wound, and is being fixed.
 以上のように、第1ワイヤ81が第1プーリ31と第3プーリ33とに巻かれていることで、第1ワイヤ81は、第1プーリ31に第1回転中心軸J1周りの正の向き(一方向き,+θ1向き)の回転トルクが加えられた際に、第3プーリ33に対して、第2回転中心軸J2周りの正の向き(一方向き,+θ2向き)の回転トルクを伝達する。 As described above, since the first wire 81 is wound around the first pulley 31 and the third pulley 33, the first wire 81 has a positive orientation around the first rotation center axis J1 around the first pulley 31. When a rotational torque in one direction (+ θ1 direction) is applied, a rotational torque in a positive direction (one direction, + θ2 direction) around the second rotation center axis J2 is transmitted to the third pulley 33.
 第2ワイヤ82は、図4に示すように、第2プーリ32と第3プーリ33とを連結している。第2ワイヤ82は、張力を介して、第2プーリ32の回転を第3プーリ33に伝達する。第2ワイヤ82は、例えば、ステンレス製のワイヤである。本実施形態において第2ワイヤ82は、前側第2ワイヤ82aと、後側第2ワイヤ82bと、の2本のワイヤで構成されている。 The second wire 82 connects the second pulley 32 and the third pulley 33 as shown in FIG. The second wire 82 transmits the rotation of the second pulley 32 to the third pulley 33 via tension. The second wire 82 is, for example, a stainless steel wire. In the present embodiment, the second wire 82 includes two wires, a front second wire 82a and a rear second wire 82b.
 前側第2ワイヤ82aは、第2プーリ32に数回(例えば2回)巻かれて、第2プーリ32の前側(+X側)から上側に引き出されている。上側に引き出された前側第2ワイヤ82aは、第2補助プーリ35aに掛けられることで左右方向内側(-Y側)に導かれ、第3プーリ33の下側本体部33bに対して、前側から数回(例えば2回)巻かれている。 The front second wire 82a is wound around the second pulley 32 several times (for example, twice), and is drawn upward from the front side (+ X side) of the second pulley 32. The front second wire 82a drawn upward is guided to the inner side in the left-right direction (−Y side) by being hooked on the second auxiliary pulley 35a, and from the front side to the lower main body portion 33b of the third pulley 33. It is wound several times (for example, twice).
 後側第2ワイヤ82bは、第2プーリ32に数回(例えば2回)巻かれて、第2プーリ32の後側(-X側)から上側に引き出されている。上側に引き出された後側第2ワイヤ82bは、第2補助プーリ35bに掛けられることで左右方向内側(-Y側)に導かれ、第3プーリ33の下側本体部33bに対して、後側から数回(例えば2回)巻かれている。 The rear second wire 82b is wound around the second pulley 32 several times (for example, twice), and is drawn upward from the rear side (−X side) of the second pulley 32. The rear second wire 82b drawn upward is guided to the inner side in the left-right direction (−Y side) by being hooked on the second auxiliary pulley 35b, and is rearward relative to the lower main body portion 33b of the third pulley 33. It is wound several times (for example, twice) from the side.
 前側第2ワイヤ82aの第2プーリ32側の端部は、第2プーリ32に固定されている。後側第2ワイヤ82bの第2プーリ32側の端部は、第2プーリ32に固定されている。前側第2ワイヤ82aおよび後側第2ワイヤ82bの第2プーリ32に対する固定方法は、前側第1ワイヤ81aの第1プーリ31に対する固定方法と同様である。 The end of the second front wire 82 a on the second pulley 32 side is fixed to the second pulley 32. The end of the rear second wire 82 b on the second pulley 32 side is fixed to the second pulley 32. The method of fixing the front second wire 82a and the rear second wire 82b to the second pulley 32 is the same as the method of fixing the front first wire 81a to the first pulley 31.
 図2に示すように、後側第2ワイヤ82bの第3プーリ33側の端部は、第3プーリ33の中央円板部33dにおけるワイヤ貫通孔33g内、上側円板部33cにおけるワイヤ貫通孔33f内および底部41のワイヤ貫通孔41a内を通って、肩部40の内部に引き出されている。そして、後側第2ワイヤ82bの第3プーリ33側の端部は、張力調整機構50の後述する巻軸53に巻き回されて固定されている。後側第2ワイヤ82bが通されたワイヤ貫通孔33f,41aは、第1ワイヤ81が通されたワイヤ貫通孔33f,41aとは異なるワイヤ貫通孔33f,41aである。後側第2ワイヤ82bが巻かれた巻軸53は、第1ワイヤ81が巻かれた巻軸53とは異なる巻軸53である。 As shown in FIG. 2, the end portion of the rear second wire 82b on the third pulley 33 side is inside the wire through hole 33g in the central disc portion 33d of the third pulley 33, and the wire through hole in the upper disc portion 33c. It passes through the inside of 33f and the wire through hole 41a of the bottom 41, and is pulled out into the shoulder 40. The end of the rear second wire 82b on the third pulley 33 side is wound around and fixed to a winding shaft 53 (described later) of the tension adjustment mechanism 50. The wire through holes 33f and 41a through which the rear second wire 82b is passed are wire through holes 33f and 41a different from the wire through holes 33f and 41a through which the first wire 81 is passed. The winding shaft 53 around which the rear second wire 82b is wound is a winding shaft 53 different from the winding shaft 53 around which the first wire 81 is wound.
 図示は省略するが、前側第2ワイヤ82aの第3プーリ33側の端部は、後側第2ワイヤ82bが通されたワイヤ貫通孔33g,33f,41aとは異なるワイヤ貫通孔33g,33f,41aを介して肩部40の内部に引き出されている。そして、前側第2ワイヤ82aの第3プーリ33側の端部は、後側第2ワイヤ82bが巻かれた巻軸53とは異なる巻軸53に巻かれて固定されている。 Although illustration is omitted, the end portion of the front second wire 82a on the third pulley 33 side is different from the wire through holes 33g, 33f, 41a through which the rear second wire 82b is passed. It is pulled out to the inside of the shoulder 40 through 41a. And the edge part by the side of the 3rd pulley 33 of the front side 2nd wire 82a is wound around the winding axis | shaft 53 different from the winding axis | shaft 53 around which the back side 2nd wire 82b was wound, and is being fixed.
 以上のように、第2ワイヤ82が第2プーリ32と第3プーリ33とに巻かれていることで、第2ワイヤ82は、第2プーリ32に第1回転中心軸J1周りの正の向き(+θ1向き)の回転トルクが加えられた際に、第3プーリ33に対して、第2回転中心軸J2周りの負の向き(他方向き,-θ2向き)の回転トルクを伝達する。すなわち、第1プーリ31と第2プーリ32とに対して、第1回転中心軸J1周りの同じ向きに回転トルクが加えられた場合、第1ワイヤ81によって第3プーリ33に伝達される回転トルクの向きと、第2ワイヤ82によって第3プーリ33に伝達される回転トルクの向きとは、互いに異なる。 As described above, since the second wire 82 is wound around the second pulley 32 and the third pulley 33, the second wire 82 is positively oriented around the first rotation center axis J1 around the second pulley 32. When a rotational torque in the (+ θ1 direction) is applied, a rotational torque in the negative direction (the other direction, −θ2 direction) around the second rotation center axis J2 is transmitted to the third pulley 33. That is, when a rotational torque is applied to the first pulley 31 and the second pulley 32 in the same direction around the first rotation center axis J1, the rotational torque transmitted to the third pulley 33 by the first wire 81. And the direction of the rotational torque transmitted to the third pulley 33 by the second wire 82 are different from each other.
 駆動ユニット10Aにおける張力調整機構50は、図3に示すように、肩部40の側壁部42に4つ設けられている。4つの張力調整機構50は、側壁部42の4つの外側面にそれぞれ設けられている。 As shown in FIG. 3, four tension adjusting mechanisms 50 in the drive unit 10 </ b> A are provided on the side wall 42 of the shoulder 40. The four tension adjusting mechanisms 50 are respectively provided on the four outer surfaces of the side wall portion 42.
 以下の説明においては、側壁部42の外側面のうち前側(+X側)の外側面42aに設けられた張力調整機構50を例として、張力調整機構50の各部の位置関係について説明する。張力調整機構50は、保持部材51と、調整部材52と、巻軸53と、ウォームホイール54と、を備えている。 In the following description, the positional relationship of each part of the tension adjusting mechanism 50 will be described by taking the tension adjusting mechanism 50 provided on the outer side 42a on the front side (+ X side) of the outer side surfaces of the side wall part 42 as an example. The tension adjustment mechanism 50 includes a holding member 51, an adjustment member 52, a winding shaft 53, and a worm wheel 54.
 保持部材51は、張力調整機構50が設けられた側壁部42の外側面42aに固定されている。保持部材51は、固定板部51aと、保持部51bと、を備えている。固定板部51aは、側壁部42の外側面42aに沿って拡がる板状である。固定板部51aは、ネジによって側壁部42に固定されている。 The holding member 51 is fixed to the outer side surface 42a of the side wall portion 42 provided with the tension adjusting mechanism 50. The holding member 51 includes a fixed plate portion 51a and a holding portion 51b. The fixed plate portion 51 a has a plate shape that extends along the outer side surface 42 a of the side wall portion 42. The fixed plate portion 51a is fixed to the side wall portion 42 by screws.
 保持部51bは、固定板部51aの左右方向(Y軸方向)の両端から、張力調整機構50が設けられた側壁部42の外側面42aと直交する前後方向(X軸方向)に突出する板状である。保持部51bの側面視形状は、上側に開口するU字形状である。 The holding portion 51b is a plate that protrudes from both ends in the left-right direction (Y-axis direction) of the fixed plate portion 51a in the front-rear direction (X-axis direction) orthogonal to the outer surface 42a of the side wall portion 42 provided with the tension adjusting mechanism 50. Is. A side view shape of the holding portion 51b is a U-shape opening upward.
 調整部材52は、ウォーム部52aと、摘み部52bと、を備えている。ウォーム部52aは、左右方向(Y軸方向)に延びている。ウォーム部52aの外側面には、ネジ状の歯車部が形成されている。ウォーム部52aは、左右方向の両端が保持部51bの開口に嵌められて保持されている。ウォーム部52aは、左右方向に延びるウォーム部52aの中心軸周りに回転可能である。摘み部52bは、ウォーム部52aの左右方向一方側の端部に固定されている。 The adjusting member 52 includes a worm part 52a and a knob part 52b. The worm portion 52a extends in the left-right direction (Y-axis direction). A screw-shaped gear portion is formed on the outer surface of the worm portion 52a. The worm portion 52a is held by fitting both ends in the left-right direction into the opening of the holding portion 51b. The worm part 52a is rotatable around the central axis of the worm part 52a extending in the left-right direction. The knob 52b is fixed to the end of one side of the worm 52a in the left-right direction.
 巻軸53は、ウォーム部52aが延びる方向と直交する前後方向(X軸方向)に沿って延びている。巻軸53は、肩部40の内部に設けられている。巻軸53の前側(+X側)の端部は、側壁部42および保持部材51の固定板部51aを前後方向に貫通している。巻軸53は、前後方向に延びる巻軸53の中心軸周りに回転可能に保持されている。巻軸53の後側(-X側)の端部には、外径が小さくなる括れた部分が設けられており、この括れた部分には、後側第2ワイヤ82bが巻かれて固定されている。 The winding shaft 53 extends along the front-rear direction (X-axis direction) orthogonal to the direction in which the worm portion 52a extends. The winding shaft 53 is provided inside the shoulder portion 40. The front end (+ X side) end of the winding shaft 53 penetrates the side wall portion 42 and the fixing plate portion 51a of the holding member 51 in the front-rear direction. The winding shaft 53 is rotatably held around the central axis of the winding shaft 53 extending in the front-rear direction. The rear end (−X side) of the winding shaft 53 is provided with a constricted portion with a smaller outer diameter, and the rear second wire 82b is wound and fixed to the constricted portion. ing.
 ウォームホイール54は、巻軸53の前側(+X側)の端部に固定されている。ウォームホイール54は、固定板部51aの前側の面に位置している。ウォームホイール54の外側面には、はす歯の歯車部が形成されており、ウォーム部52aの歯車部と噛み合っている。ウォームホイール54と巻軸53とは、共に巻軸53の中心軸周りに回転可能である。 The worm wheel 54 is fixed to the front (+ X side) end of the winding shaft 53. The worm wheel 54 is located on the front surface of the fixed plate portion 51a. A helical gear portion is formed on the outer surface of the worm wheel 54 and meshes with the gear portion of the worm portion 52a. Both the worm wheel 54 and the winding shaft 53 are rotatable around the central axis of the winding shaft 53.
 調整部材52の摘み部52bを介してウォーム部52aを回転させることで、ウォーム部52aと噛み合ったウォームホイール54が回転し、巻軸53が回転する。これにより、巻軸53に巻かれた後側第2ワイヤ82bを巻軸53にさらに巻き取ることで、後側第2ワイヤ82bの張力を大きくすることができる。一方、巻軸53に巻かれた後側第2ワイヤ82bが解ける向きに巻軸53を回すことで、後側第2ワイヤ82bの張力を小さくすることができる。このようにして、張力調整機構50によって、後側第2ワイヤ82bの張力を調整することができる。 Rotating the worm portion 52a via the knob 52b of the adjusting member 52 rotates the worm wheel 54 meshed with the worm portion 52a, and the winding shaft 53 rotates. Thereby, the tension | tensile_strength of the back side 2nd wire 82b can be enlarged by further winding up the back side 2nd wire 82b wound around the winding axis 53 around the winding axis 53. On the other hand, by rotating the winding shaft 53 in such a direction that the rear second wire 82b wound around the winding shaft 53 can be unwound, the tension of the rear second wire 82b can be reduced. In this way, the tension of the rear second wire 82b can be adjusted by the tension adjusting mechanism 50.
 前側第1ワイヤ81a、後側第1ワイヤ81bおよび前側第2ワイヤ82aは、後側第2ワイヤ82bが固定された張力調整機構50とは異なる各張力調整機構50の巻軸53にそれぞれ巻かれて固定されている。これにより、各張力調整機構50を操作することで、各ワイヤの張力を互いに独立して調整可能である。 The front first wire 81a, the rear first wire 81b, and the front second wire 82a are wound around the winding shaft 53 of each tension adjusting mechanism 50 different from the tension adjusting mechanism 50 to which the rear second wire 82b is fixed. Is fixed. Thereby, the tension of each wire can be adjusted independently by operating each tension adjusting mechanism 50.
 上腕部43は、図1に示すように、駆動ユニット10Aを介して、肩部40と接続されている。上腕部43は、上腕部本体44と、接続部45と、を備えている。上腕部本体44は、第1回転中心軸J1と直交する方向に延びた細長の角筒状である。上腕部本体44が延びている方向は、駆動ユニット10Bにおける第2回転中心軸J4と平行な方向である。基準姿勢において上腕部本体44が延びている方向は、上下方向(Z軸方向)である。 As shown in FIG. 1, the upper arm 43 is connected to the shoulder 40 via the drive unit 10A. The upper arm portion 43 includes an upper arm portion main body 44 and a connection portion 45. The upper arm portion main body 44 has an elongated rectangular tube shape extending in a direction orthogonal to the first rotation center axis J1. The direction in which the upper arm main body 44 extends is parallel to the second rotation center axis J4 in the drive unit 10B. The direction in which the upper arm main body 44 extends in the reference posture is the vertical direction (Z-axis direction).
 上腕部本体44には、図4に示すように、第1モータ21および第2モータ22が固定されている。上腕部43の駆動ユニット10A側(+Z側)の端部には、二股に分かれた挟持部44aが形成されている。第1モータ21および第2モータ22は、挟持部44aによって、各モータの出力軸と直交する方向(X軸方向)に挟まれて、上腕部本体44に固定されている。上述したように、第1モータ21および第2モータ22は、支持部材20に対して第1回転中心軸J1周り(±θ1方向)に回転可能に取り付けられている。そのため、上腕部43は、支持部材20に対して第1回転中心軸J1周りに回転可能に取り付けられている。 As shown in FIG. 4, the first motor 21 and the second motor 22 are fixed to the upper arm main body 44. At the end of the upper arm 43 on the drive unit 10A side (+ Z side), a fork 44a is formed. The first motor 21 and the second motor 22 are sandwiched by a sandwiching portion 44a in a direction (X-axis direction) orthogonal to the output shaft of each motor, and are fixed to the upper arm main body 44. As described above, the first motor 21 and the second motor 22 are attached to the support member 20 so as to be rotatable about the first rotation center axis J1 (± θ1 direction). Therefore, the upper arm portion 43 is attached to the support member 20 so as to be rotatable around the first rotation center axis J1.
 図1に示すように、上腕部本体44の外側面には、駆動ユニット10Bの張力調整機構50が4つ設けられている。図示は省略するが、駆動ユニット10Bの各ワイヤは、上腕部本体44の内部において、各張力調整機構50の巻軸53に巻かれて固定されている。接続部45は、上腕部本体44の駆動ユニット10Aと反対側(-Z側)に固定されている。接続部45には、駆動ユニット10Bが接続されている。 As shown in FIG. 1, four tension adjusting mechanisms 50 of the drive unit 10B are provided on the outer surface of the upper arm main body 44. Although illustration is omitted, each wire of the drive unit 10 </ b> B is wound around the winding shaft 53 of each tension adjusting mechanism 50 and fixed inside the upper arm main body 44. The connecting portion 45 is fixed on the opposite side (−Z side) of the upper arm main body 44 to the drive unit 10A. The drive unit 10 </ b> B is connected to the connection unit 45.
 駆動ユニット10Bは、上腕部43に対して、前腕部46を第1回転中心軸J3周りおよび第2回転中心軸J4周りに回転させる。駆動ユニット10Bとの関係において、前腕部46は、第2部材に相当する。基準姿勢において第1回転中心軸J3は、第1回転中心軸J1と平行である。基準姿勢において第2回転中心軸J4は、第2回転中心軸J2と平行で、かつ、同軸上にある。 The drive unit 10B rotates the forearm portion 46 around the first rotation center axis J3 and the second rotation center axis J4 with respect to the upper arm portion 43. In relation to the drive unit 10B, the forearm portion 46 corresponds to a second member. In the reference posture, the first rotation center axis J3 is parallel to the first rotation center axis J1. In the reference posture, the second rotation center axis J4 is parallel to the second rotation center axis J2 and coaxial.
 前腕部46は、駆動ユニット10Bを介して、上腕部43と接続されている。前腕部46は、駆動ユニット10Bの第1回転中心軸J3と直交する方向と平行に延びた細長の角筒状である。前腕部46が延びている方向は、駆動ユニット10Cにおける第2回転中心軸J6と平行な方向である。基準姿勢において前腕部46が延びている方向は、前後方向(X軸方向)である。 The forearm portion 46 is connected to the upper arm portion 43 via the drive unit 10B. The forearm 46 is an elongated rectangular tube extending in parallel with a direction orthogonal to the first rotation center axis J3 of the drive unit 10B. The direction in which the forearm 46 extends is a direction parallel to the second rotation center axis J6 in the drive unit 10C. The direction in which the forearm portion 46 extends in the reference posture is the front-rear direction (X-axis direction).
 前腕部46の外側面には、駆動ユニット10Cの張力調整機構50が4つ設けられている。4つの張力調整機構50は、前腕部46が延びる方向(X軸方向)に沿って並んで配置されている。図示は省略するが、駆動ユニット10Cの各ワイヤは、前腕部46の内部において、各張力調整機構50の巻軸53に巻かれて固定されている。 Four tension adjusting mechanisms 50 of the drive unit 10 </ b> C are provided on the outer surface of the forearm portion 46. The four tension adjusting mechanisms 50 are arranged side by side along the direction in which the forearm portion 46 extends (X-axis direction). Although illustration is omitted, each wire of the drive unit 10 </ b> C is wound around the winding shaft 53 of each tension adjusting mechanism 50 and fixed inside the forearm portion 46.
 駆動ユニット10Cは、前腕部46に対して、手部47を第1回転中心軸J5周りおよび第2回転中心軸J6周りに回転させる。基準姿勢において第1回転中心軸J5は、第1回転中心軸J1と平行である。基準姿勢において第2回転中心軸J6は、第2回転中心軸J2と垂直である。 The drive unit 10C rotates the hand portion 47 about the first rotation center axis J5 and the second rotation center axis J6 with respect to the forearm portion 46. In the reference posture, the first rotation center axis J5 is parallel to the first rotation center axis J1. In the reference posture, the second rotation center axis J6 is perpendicular to the second rotation center axis J2.
 図5は、駆動ユニット10Cを示す斜視図である。図5は、手部47が基準姿勢から第1回転中心軸J5周りに回転された場合について示している。図5においては、手部47の図示を省略している。また、図5に示す駆動ユニット10Cにおいて、駆動ユニット10Aと同様の構成については、同一の符号を付している。 FIG. 5 is a perspective view showing the drive unit 10C. FIG. 5 shows a case where the hand portion 47 is rotated around the first rotation center axis J5 from the reference posture. In FIG. 5, the illustration of the hand portion 47 is omitted. Further, in the drive unit 10C shown in FIG. 5, the same reference numerals are given to the same configurations as those of the drive unit 10A.
 駆動ユニット10Cは、図5に示すように、駆動ユニット10Aに対して、各モータの配置が異なる。駆動ユニット10Cにおいて、第1モータ121および第2モータ122は、第1回転中心軸J5と直交する方向に重ねられて互いに固定されている。第1モータ121の出力軸および第2モータ122の出力軸は、第1回転中心軸J5と平行である。第1モータ121の出力軸と第2モータ122の出力軸とは、互いに異なる位置に配置され、かつ、第1回転中心軸J5とも異なる位置に配置されている。第1モータ121の出力軸には、第1出力プーリ121aが固定されている。第2モータ122の出力軸には、第2出力プーリ122aが固定されている。 As shown in FIG. 5, the drive unit 10C is different from the drive unit 10A in the arrangement of the motors. In the drive unit 10C, the first motor 121 and the second motor 122 are overlapped and fixed to each other in a direction orthogonal to the first rotation center axis J5. The output shaft of the first motor 121 and the output shaft of the second motor 122 are parallel to the first rotation center axis J5. The output shaft of the first motor 121 and the output shaft of the second motor 122 are disposed at positions different from each other, and are disposed at positions different from the first rotation center axis J5. A first output pulley 121 a is fixed to the output shaft of the first motor 121. A second output pulley 122 a is fixed to the output shaft of the second motor 122.
 駆動ユニット10Cは、モータ挟持部材124a,124bと、接続部材124cと、をさらに備えている。モータ挟持部材124a,124bは、第1回転中心軸J5と直交する方向に拡がる板状である。モータ挟持部材124aとモータ挟持部材124bとは、第1モータ121と第2モータ122とを第1回転中心軸J5と平行な方向に挟んで固定している。接続部材124cは、モータ挟持部材124aとモータ挟持部材124bとを連結している。 The drive unit 10C further includes motor clamping members 124a and 124b and a connection member 124c. The motor clamping members 124a and 124b have a plate shape that extends in a direction orthogonal to the first rotation center axis J5. The motor clamping member 124a and the motor clamping member 124b fix the first motor 121 and the second motor 122 so as to be sandwiched in a direction parallel to the first rotation center axis J5. The connection member 124c connects the motor holding member 124a and the motor holding member 124b.
 駆動ユニット10Cの第1プーリ131は、モータ挟持部材124aに対して、第1回転中心軸J5周りに回転可能に接続されている。駆動ユニット10Cの第2プーリ132は、モータ挟持部材124bに対して、第1回転中心軸J5周りに回転可能に接続されている。 The first pulley 131 of the drive unit 10C is connected to the motor holding member 124a so as to be rotatable around the first rotation center axis J5. The second pulley 132 of the drive unit 10C is connected to the motor holding member 124b so as to be rotatable around the first rotation center axis J5.
 駆動ユニット10Cの第1ワイヤ181は、第1出力プーリ121aに数回(例えば2回)巻かれて固定された後、第1出力プーリ121aから引き出されて第1プーリ131と第1補助プーリ34a,34bとを介して、第3プーリ33に巻かれて固定されている。これにより、第1モータ121によって第1プーリ131が第1回転中心軸J5周りに回転させられ、第1プーリ131の回転が、第1ワイヤ181によって第3プーリ33に伝達される。第1ワイヤ181は、駆動ユニット10Aの第1ワイヤ81と同様に、例えば、2本のワイヤで構成されている。 The first wire 181 of the drive unit 10C is wound around and fixed to the first output pulley 121a several times (for example, twice), and then is pulled out from the first output pulley 121a and the first pulley 131 and the first auxiliary pulley 34a. , 34b and wound around the third pulley 33 to be fixed. Thus, the first pulley 131 is rotated around the first rotation center axis J5 by the first motor 121, and the rotation of the first pulley 131 is transmitted to the third pulley 33 by the first wire 181. The first wire 181 is composed of, for example, two wires, similarly to the first wire 81 of the drive unit 10A.
 駆動ユニット10Cの第2ワイヤ182は、第2出力プーリ122aに数回(例えば2回)巻かれて固定された後、第2出力プーリ122aから引き出されて第2プーリ132と第2補助プーリ35a,35bとを介して、第3プーリ33に巻かれて固定されている。これにより、第2モータ122によって第2プーリ132が第1回転中心軸J5周りに回転させられ、第2プーリ132の回転が、第2ワイヤ182によって第3プーリ33に伝達される。第2ワイヤ182は、駆動ユニット10Aの第2ワイヤ82と同様に、例えば、2本のワイヤで構成されている。 The second wire 182 of the drive unit 10C is wound around and fixed to the second output pulley 122a several times (for example, twice), and then is pulled out from the second output pulley 122a and the second pulley 132 and the second auxiliary pulley 35a. , 35b and wound around the third pulley 33 to be fixed. Accordingly, the second pulley 132 is rotated around the first rotation center axis J5 by the second motor 122, and the rotation of the second pulley 132 is transmitted to the third pulley 33 by the second wire 182. Similar to the second wire 82 of the drive unit 10A, the second wire 182 is composed of, for example, two wires.
 手部47は、図1に示すように、駆動ユニット10Cを介して、前腕部46と接続されている。手部47は、駆動ユニット10Cにおける第1モータ121、第2モータ122およびモータ挟持部材124a,124bに固定されている。駆動ユニット10Cとの関係において、手部47と、モータ挟持部材124a,124bと、接続部材124cとは、第2部材に相当する。 The hand portion 47 is connected to the forearm portion 46 through the drive unit 10C as shown in FIG. The hand portion 47 is fixed to the first motor 121, the second motor 122, and the motor holding members 124a and 124b in the drive unit 10C. In relation to the drive unit 10C, the hand portion 47, the motor clamping members 124a and 124b, and the connection member 124c correspond to a second member.
 次に、駆動ユニット10Aによる上腕部43の駆動方法について説明する。図6および図7は、駆動ユニット10Aによる上腕部43の駆動方法について説明するための斜視図である。図6は、基準姿勢から、上腕部43を肩部40に対して第2回転中心軸J2周りに回転させた場合を示している。図7は、基準姿勢から、上腕部43を肩部40に対して第1回転中心軸J1周りに回転させた場合を示している。 Next, a method for driving the upper arm 43 by the drive unit 10A will be described. 6 and 7 are perspective views for explaining a method of driving the upper arm portion 43 by the drive unit 10A. FIG. 6 shows a case where the upper arm 43 is rotated around the second rotation center axis J2 with respect to the shoulder 40 from the reference posture. FIG. 7 shows a case where the upper arm 43 is rotated around the first rotation center axis J1 with respect to the shoulder 40 from the reference posture.
 上腕部43を肩部40に対して第2回転中心軸J2周り(±θ2方向)に回転させる場合、図6に示すように、第1モータ21と第2モータ22とによって、第1プーリ31と第2プーリ32とに第2回転中心軸J2周り逆向きの回転トルクを加える。これにより、第3プーリ33には、第1ワイヤ81と第2ワイヤ82とを介して、第2回転中心軸J2周りの同じ向きに回転トルクが加えられる。したがって、支持部材20と第3プーリ33とが第2回転中心軸J2周りに相対的に回転する。本実施形態では、第3プーリ33が固定された肩部40の位置が固定されているため、第3プーリ33に対して支持部材20が第2回転中心軸J2周りに回転する。これにより、肩部40に対して上腕部43を第2回転中心軸J2周りに回転させることができる。 When the upper arm 43 is rotated around the second rotation center axis J2 (± θ2 direction) with respect to the shoulder 40, the first pulley 31 is driven by the first motor 21 and the second motor 22, as shown in FIG. And a rotational torque in the opposite direction around the second rotation center axis J <b> 2 is applied to the second pulley 32. Thereby, rotational torque is applied to the third pulley 33 in the same direction around the second rotation center axis J <b> 2 via the first wire 81 and the second wire 82. Accordingly, the support member 20 and the third pulley 33 rotate relatively around the second rotation center axis J2. In the present embodiment, since the position of the shoulder 40 to which the third pulley 33 is fixed is fixed, the support member 20 rotates around the second rotation center axis J2 with respect to the third pulley 33. Accordingly, the upper arm 43 can be rotated around the second rotation center axis J2 with respect to the shoulder 40.
 具体的に図6の例では、第1モータ21が第1プーリ31に第1回転中心軸J1周りの正の向き(+θ1向き)の回転トルクを加え、第2モータ22が第2プーリ32に第1回転中心軸J1周りの負の向き(-θ1向き)の回転トルクを加えている。この場合、第3プーリ33には、第2回転中心軸J2周りの正の向き(+θ2向き)に回転トルクが加えられる。しかし、本実施形態において第3プーリ33の位置は固定されているため、支持部材20が、第3プーリ33に対して、第3プーリ33に加えられる回転トルクの向きと逆向き(-θ2向き)に回転する。 Specifically, in the example of FIG. 6, the first motor 21 applies a rotational torque in the positive direction (+ θ1 direction) around the first rotation center axis J <b> 1 to the first pulley 31, and the second motor 22 applies to the second pulley 32. A rotational torque in the negative direction (-θ1 direction) around the first rotation center axis J1 is applied. In this case, rotational torque is applied to the third pulley 33 in a positive direction (+ θ2 direction) around the second rotation center axis J2. However, since the position of the third pulley 33 is fixed in this embodiment, the support member 20 is opposite to the direction of the rotational torque applied to the third pulley 33 with respect to the third pulley 33 (−θ2 direction). ).
 上腕部43を肩部40に対して第1回転中心軸J1周り(±θ1方向)に回転させる場合、図7に示すように、第1モータ21と第2モータ22とによって、第1プーリ31と第2プーリ32とに同じ向きの回転トルクを加える。これにより、第1ワイヤ81と第2ワイヤ82とを介して、それぞれ第3プーリ33に加えられる第2回転中心軸J2周り回転トルクは、互いに逆向きとなる。したがって、第1ワイヤ81と第2ワイヤ82とによって第3プーリ33に伝達される回転トルクの絶対値が同じ場合、各回転トルクが互いに打ち消し合って、第3プーリ33と支持部材20とは第2回転中心軸J2周りに回転しない。 When the upper arm 43 is rotated about the first rotation center axis J1 (± θ1 direction) with respect to the shoulder 40, the first pulley 31 is driven by the first motor 21 and the second motor 22 as shown in FIG. And a rotational torque in the same direction is applied to the second pulley 32. Thereby, the rotational torques around the second rotation center axis J2 applied to the third pulley 33 via the first wire 81 and the second wire 82 are opposite to each other. Therefore, when the absolute values of the rotational torque transmitted to the third pulley 33 by the first wire 81 and the second wire 82 are the same, the rotational torques cancel each other, and the third pulley 33 and the support member 20 Does not rotate around the center axis J2.
 この場合、第1プーリ31と第2プーリ32とに加えられる回転トルクが、第1ワイヤ81と第2ワイヤ82とを介して、第3プーリ33に第1回転中心軸J1周り(±θ1方向)の回転トルクを加える。そのため、第3プーリ33と第1モータ21および第2モータ22とが第1回転中心軸J1周りに相対的に回転する。本実施形態においては、第3プーリ33の位置が固定されているため、第1モータ21および第2モータ22が、第3プーリ33に対して回転する。これにより、肩部40に対して上腕部43を第1回転中心軸J1周りに回転させることができる。 In this case, the rotational torque applied to the first pulley 31 and the second pulley 32 is applied to the third pulley 33 around the first rotation center axis J1 (± θ1 direction) via the first wire 81 and the second wire 82. ). Therefore, the third pulley 33, the first motor 21, and the second motor 22 rotate relatively around the first rotation center axis J1. In the present embodiment, since the position of the third pulley 33 is fixed, the first motor 21 and the second motor 22 rotate with respect to the third pulley 33. Thereby, the upper arm 43 can be rotated around the first rotation center axis J1 with respect to the shoulder 40.
 具体的に図7の例では、第1モータ21と第2モータ22とが、第1プーリ31と第2プーリ32とに、第1回転中心軸J1周りの負の向き(-θ1向き)の回転トルクを加えている。第1モータ21による回転トルクと第2モータ22による回転トルクとは、互いに同じである。この場合、第3プーリ33には、第1回転中心軸J1周りの負の向きの回転トルクが加えられる。しかし、本実施形態において第3プーリ33の位置は固定されているため、第1モータ21および第2モータ22が第3プーリ33に加えられる回転トルクの向きと逆向き(+θ1向き)に回転する。 Specifically, in the example of FIG. 7, the first motor 21 and the second motor 22 are in the negative direction (−θ1 direction) around the first rotation center axis J1 to the first pulley 31 and the second pulley 32. Rotating torque is applied. The rotational torque by the first motor 21 and the rotational torque by the second motor 22 are the same. In this case, a negative rotational torque around the first rotation center axis J1 is applied to the third pulley 33. However, since the position of the third pulley 33 is fixed in this embodiment, the first motor 21 and the second motor 22 rotate in the direction opposite to the direction of the rotational torque applied to the third pulley 33 (+ θ1 direction). .
 上記説明した各モータによって加えられる各プーリの回転トルクと、各回転中心軸周りの回転トルクとの関係は、以下の式(1)で示される。τは、第1モータ21によって加えられる第1プーリ31の回転トルクである。τは、第2モータ22によって加えられる第2プーリ32の回転トルクである。Tは、第1回転中心軸J1周りの回転トルクである。Tは、第2回転中心軸J2周りの回転トルクである。 The relationship between the rotational torque of each pulley applied by each motor described above and the rotational torque around each rotational center axis is expressed by the following equation (1). τ 1 is the rotational torque of the first pulley 31 applied by the first motor 21. τ 2 is the rotational torque of the second pulley 32 applied by the second motor 22. T 1 is the rotational torque around the first rotation center axis J1. T 2 are a rotation torque around the second rotation axis J2.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、各係数a11~a22を1とすると、各回転中心軸に加えられる回転トルクは、以下の式(2),(3)で表される。 Here, if each coefficient a 11 to a 22 is 1, the rotational torque applied to each rotation center axis is expressed by the following equations (2) and (3).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2),(3)から、回転トルクτ,τの絶対値が同じ場合、第1プーリ31の回転トルクτの向きと第2プーリ32の回転トルクτの向きとを同じとすれば、第2回転中心軸J2周りの回転トルクTは0となることが分かる。また、第1回転中心軸J1周りの回転トルクTが各プーリの回転トルクの2倍となることが分かる。また、第1プーリ31の回転トルクτの向きと第2プーリ32の回転トルクτの向きとを逆向きとすれば、第1回転中心軸J1周りの回転トルクTは0となり、第2回転中心軸J2周りの回転トルクTが各プーリの回転トルクの2倍となることが分かる。 From equations (2) and (3), when the absolute values of the rotational torques τ 1 and τ 2 are the same, the direction of the rotational torque τ 1 of the first pulley 31 and the direction of the rotational torque τ 2 of the second pulley 32 are the same. if, it can be seen that the rotational torque T 2 are 0 around the second rotation axis J2. Further, it can be seen that rotational torque T 1 of the around the first rotation center axis J1 is twice the rotational torque of the pulleys. Further, if the direction of the rotational torque τ 1 of the first pulley 31 and the direction of the rotational torque τ 2 of the second pulley 32 are reversed, the rotational torque T 1 around the first rotational center axis J 1 becomes 0, and it can be seen that the rotational torque T 2 of the around 2 rotation axis J2 is two times the torque of each pulley.
 また、例えば、第1プーリ31の回転トルクτと第2プーリ32の回転トルクτとのうちの一方を0とすれば、第1回転中心軸J1周りおよび第2回転中心軸J2周りの両方に回転トルクを加えることができる。この場合、上腕部43は、肩部40に対して第1回転中心軸J1周りに回転すると同時に、第2回転中心軸J2周りに回転する。なお、この場合、回転トルクを0とされたプーリは、そのプーリを駆動するモータとの第1回転中心軸J1周りの相対位置関係が保持されたまま、モータと共に第1回転中心軸J1周りに回転する。 Further, for example, a rotational torque tau 1 of the first pulley 31 if one zero of the torque tau 2 of the second pulley 32, around the first rotation center axis J1 and around the second rotation axis J2 Rotational torque can be applied to both. In this case, the upper arm portion 43 rotates around the first rotation center axis J1 with respect to the shoulder portion 40 and simultaneously rotates around the second rotation center axis J2. In this case, the pulley having a rotational torque of 0 is moved around the first rotation center axis J1 together with the motor while maintaining the relative positional relationship around the first rotation center axis J1 with the motor driving the pulley. Rotate.
 以上に説明したように、本実施形態によれば、2つのモータの駆動力を、第1回転中心軸J1と第2回転中心軸J2との2つの回転中心軸周りに分配することができ、第1回転中心軸J1周りの回転と第2回転中心軸J2周りの回転とを独立に制御することができる。また、各モータによって駆動される第1プーリ31の回転および第2プーリ32の回転は、張力を介してワイヤによって第3プーリ33に伝達される。そのため、第1回転中心軸J1と第2回転中心軸J2との配置関係、および第1モータ21と第2モータ22との配置される位置によらず、各モータの駆動力を各回転中心軸に伝達および分配させやすい。したがって、本実施形態によれば、回転中心軸およびモータの配置自由度を確保しつつ、複数の回転中心軸を複数のモータによって独立に制御できるマニピュレータ1が得られる。 As described above, according to the present embodiment, the driving force of the two motors can be distributed around the two rotation center axes of the first rotation center axis J1 and the second rotation center axis J2. The rotation around the first rotation center axis J1 and the rotation around the second rotation center axis J2 can be controlled independently. Further, the rotation of the first pulley 31 and the rotation of the second pulley 32 driven by each motor are transmitted to the third pulley 33 by a wire via tension. Therefore, regardless of the arrangement relationship between the first rotation center axis J1 and the second rotation center axis J2 and the position where the first motor 21 and the second motor 22 are arranged, the driving force of each motor is applied to each rotation center axis. Easy to transmit and dispense. Therefore, according to the present embodiment, it is possible to obtain the manipulator 1 that can independently control the plurality of rotation center axes by the plurality of motors while ensuring the degree of freedom of arrangement of the rotation center axis and the motor.
 また、例えば、従来のマニピュレータでは、上腕部等のアームを回転中心軸周りに回転させる場合には、1つの回転中心軸ごとに1つのモータが設置されていた。そのため、1つの回転中心軸周りに加えることができる回転トルクは、1つのモータの出力に依存しており、回転中心軸周りに大きなトルクを加えるためには、例えば、モータを大型化して出力を大きくする必要があった。 Also, for example, in a conventional manipulator, when an arm such as the upper arm is rotated around the rotation center axis, one motor is installed for each rotation center axis. Therefore, the rotational torque that can be applied around one rotation center axis depends on the output of one motor, and in order to apply a large torque around the rotation center axis, for example, the output is increased by enlarging the motor. It was necessary to enlarge.
 これに対して、本実施形態によれば、1つの回転中心軸周りの回転に2つのモータの駆動力を利用できるため、従来と同じ大きさのモータを従来と同じ数だけ配置した場合でも、1つの回転中心軸周りの出力を2倍にできる。したがって、マニピュレータ1の出力を大きくすることができる。一方、マニピュレータ1の出力を従来の出力と同じにする場合には、各モータの出力を小さくできるため、モータを小型化することができる。 On the other hand, according to this embodiment, since the driving force of two motors can be used for rotation around one rotation center axis, even when the same number of motors of the same size as in the past are arranged, The output around one rotation center axis can be doubled. Therefore, the output of the manipulator 1 can be increased. On the other hand, when the output of the manipulator 1 is the same as the conventional output, the output of each motor can be reduced, so that the motor can be reduced in size.
 また、各モータの駆動力がギアで伝達されている場合、マニピュレータに大きな外力が加えられた際、外力によって加えられる負荷でギアが破損する場合がある。これに対して、本実施形態によれば、第1モータ21の駆動力および第2モータ22の駆動力が第1ワイヤ81および第2ワイヤ82で伝達されている。そのため、マニピュレータ1に大きな外力が加えられた際に、第1ワイヤ81および第2ワイヤ82が伸縮して、外力によって加えられる負荷を吸収することができる。これにより、駆動ユニット10Aが破損することを抑制でき、信頼性の高いマニピュレータ1が得られる。 In addition, when the driving force of each motor is transmitted by a gear, when a large external force is applied to the manipulator, the gear may be damaged by a load applied by the external force. On the other hand, according to the present embodiment, the driving force of the first motor 21 and the driving force of the second motor 22 are transmitted by the first wire 81 and the second wire 82. Therefore, when a large external force is applied to the manipulator 1, the first wire 81 and the second wire 82 expand and contract, and the load applied by the external force can be absorbed. Thereby, it can suppress that 10A of drive units are damaged, and the highly reliable manipulator 1 is obtained.
 また、上記実施形態では、1つの駆動ユニットにおいて、2つのモータによって2つの回転中心軸を制御する構成としたが、これに限られない。1つの駆動ユニットにおいて、2つのモータによって3つ以上の回転中心軸を制御する構成としてもよいし、3つ以上のモータによって2つの回転中心軸を制御する構成としてもよい。また、1つの駆動ユニットにおいて、3つ以上のモータによって3つ以上の回転中心軸を制御する構成としてもよい。 In the above-described embodiment, the configuration is such that two rotation center axes are controlled by two motors in one drive unit, but the present invention is not limited to this. In one drive unit, two or more rotation center axes may be controlled by two motors, or two rotation center axes may be controlled by three or more motors. Moreover, it is good also as a structure which controls three or more rotation center axes in one drive unit with three or more motors.
 図8は、3つのモータによって3つの回転中心軸を制御する一例の原理を説明するための模式図である。図8では、3つのモータによって3つの回転中心軸を制御する一例を、4つのリンクが接続されたリンクマニピュレータLM1として示している。図8に示すように、リンクマニピュレータLM1は、3つのモータMA,MB,MCと、ベースリンクBLと、第1リンクL1と、第2リンクL2と、第3リンクL3と、を備える。ベースリンクBLと第1リンクL1とは、回転中心軸JA周りに互いに回転可能に接続されている。第1リンクL1と第2リンクL2とは、回転中心軸JB周りに互いに回転可能に接続されている。第2リンクL2と第3リンクL3とは、回転中心軸JC周りに互いに回転可能に接続されている。リンクマニピュレータLM1において、3つのモータMA,MB,MCは、ベースリンクBLに固定されている。回転中心軸JA,JB,JCは、互いに平行である。 FIG. 8 is a schematic diagram for explaining an example principle of controlling three rotation central axes by three motors. In FIG. 8, an example of controlling three rotation central axes by three motors is shown as a link manipulator LM1 to which four links are connected. As shown in FIG. 8, the link manipulator LM1 includes three motors MA, MB, and MC, a base link BL, a first link L1, a second link L2, and a third link L3. The base link BL and the first link L1 are connected to each other so as to be rotatable around the rotation center axis JA. The first link L1 and the second link L2 are connected to each other so as to be rotatable around the rotation center axis JB. The second link L2 and the third link L3 are connected to each other so as to be rotatable around the rotation center axis JC. In the link manipulator LM1, the three motors MA, MB, and MC are fixed to the base link BL. The rotation center axes JA, JB, and JC are parallel to each other.
 モータMAとモータMBとモータMCとによって、回転中心軸JAと回転中心軸JBと回転中心軸JCとをそれぞれ独立に制御する場合について考える。この場合、一例として、モータMAによって駆動されるワイヤWA1,WA2と、モータMBによって駆動されるワイヤWB1,WB2と、モータMCによって駆動されるワイヤWC1,WC2とは、各リンクおよび各回転中心軸に対して図8に示すように取り回せばよい。 Consider the case where the rotation center axis JA, the rotation center axis JB, and the rotation center axis JC are independently controlled by the motor MA, the motor MB, and the motor MC. In this case, as an example, the wires WA1 and WA2 driven by the motor MA, the wires WB1 and WB2 driven by the motor MB, and the wires WC1 and WC2 driven by the motor MC include the links and the rotation center shafts. On the other hand, as shown in FIG.
 ワイヤWA1,WA2は、モータMAと第3リンクL3とに固定されている。ワイヤWB1,WB2は、モータMBと第3リンクL3とに固定されている。ワイヤWC1,WC2は、モータMCと第3リンクL3とに固定されている。より詳細には、各ワイヤは、各モータによって回転トルクを受けて回転させられるプーリに固定されている。各ワイヤは、各モータを介してベースリンクBLに固定されている。図8において、各回転中心軸の周囲を通る各ワイヤは、各回転中心軸に対して回転トルクを与えることができることを示している。 The wires WA1 and WA2 are fixed to the motor MA and the third link L3. The wires WB1 and WB2 are fixed to the motor MB and the third link L3. The wires WC1 and WC2 are fixed to the motor MC and the third link L3. More specifically, each wire is fixed to a pulley that is rotated by receiving torque from each motor. Each wire is fixed to the base link BL via each motor. In FIG. 8, each wire passing around each rotation center axis indicates that a rotation torque can be applied to each rotation center axis.
 具体的には、例えば、回転中心軸JAの上側を通るワイヤWA1が図8の右向きに移動する場合、回転中心軸JAには、時計回りの向きに回転トルクが加えられる。一方、回転中心軸JAの下側を通るワイヤWA2が図8の右向きに移動する場合、回転中心軸JAには、反時計回りの向きに回転トルクが加えられる。 Specifically, for example, when the wire WA1 passing above the rotation center axis JA moves to the right in FIG. 8, a rotation torque is applied to the rotation center axis JA in the clockwise direction. On the other hand, when the wire WA2 passing below the rotation center axis JA moves rightward in FIG. 8, a rotation torque is applied to the rotation center axis JA in the counterclockwise direction.
 図8の場合、各モータによって加えられる各プーリの回転トルクと、各回転中心軸周りの回転トルクとは、以下の式(4)で示される。τは、モータMAによって加えられるプーリの回転トルクである。τは、モータMBによって加えられるプーリの回転トルクである。τは、モータMCによって加えられるプーリの回転トルクである。Tは、回転中心軸JA周りの回転トルクである。Tは、回転中心軸JB周りの回転トルクである。Tは、回転中心軸JC周りの回転トルクである。 In the case of FIG. 8, the rotational torque of each pulley applied by each motor and the rotational torque around each rotational center axis are expressed by the following equation (4). τ A is the rotational torque of the pulley applied by the motor MA. τ B is the rotational torque of the pulley applied by the motor MB. τ C is the rotational torque of the pulley applied by the motor MC. T A is the rotational torque around the rotation center axis JA. T B is the rotational torque around the rotation center axis JB. T C is the rotational torque around the rotation center axis JC.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、各係数a11~a33を1とすると、各回転中心軸に加えられる回転トルクは、以下の式(5)~(7)で表される。 Here, if each coefficient a 11 to a 33 is 1, the rotational torque applied to each rotation center axis is expressed by the following equations (5) to (7).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(5)~(7)から、回転トルクτ,τの絶対値が同じ場合、回転トルクτを0として、回転トルクτの向きと回転トルクτの向きとを逆向きとすれば、回転中心軸JAの回転トルクTおよび回転中心軸JBの回転トルクTは0となることが分かる。また、回転中心軸JCの回転トルクTの絶対値が回転トルクτ,τの2倍となることが分かる。これにより、回転中心軸JC周りにのみ回転トルクを加えることができる。この場合、第3リンクL3のみを第2リンクL2に対して回転中心軸JC周りに回転駆動させることができる。同様にして、他の回転中心軸も独立して制御することが可能であり、各リンクを独立して駆動することが可能である。上記の式(4)に基づいて、モータ、プーリおよび回転中心軸を増やすことで、上述したマニピュレータ1を、3つのモータによって3つの回転中心軸を制御可能なマニピュレータに拡張することができる。 From the equations (5) to (7), when the absolute values of the rotational torques τ A and τ C are the same, the rotational torque τ B is set to 0 and the direction of the rotational torque τ A and the direction of the rotational torque τ C are reversed. if the rotational torque T B of the rotational torque T a and the rotational center axis JB of the rotation center axis JA is understood to be a zero. Further, it can be seen that the absolute value of the rotational torque T C of the rotation center axis JC is twice the torque τ A, τ C. Thereby, rotational torque can be applied only around the rotation center axis JC. In this case, only the third link L3 can be driven to rotate around the rotation center axis JC with respect to the second link L2. Similarly, the other rotation center axes can be controlled independently, and each link can be driven independently. Based on the above formula (4), the manipulator 1 described above can be expanded to a manipulator capable of controlling three rotation center axes by three motors by increasing the number of motors, pulleys, and rotation center axes.
 具体的には、回転中心軸JAと回転中心軸JBとの間のワイヤWA1,WA2、および回転中心軸JBと回転中心軸JCとの間のワイヤWB1,WB2のように、回転中心軸に加える回転トルクの向きが逆転するように、ワイヤの取り回しが交差する箇所を設ける。これにより、式(1)における係数a22、および式(4)における係数a22,a33のように、係数行列内の係数にマイナス符号が付く箇所が生じ、上述したような各回転中心軸の独立制御が可能となる。 Specifically, the wires WA1 and WA2 between the rotation center axis JA and the rotation center axis JB and the wires WB1 and WB2 between the rotation center axis JB and the rotation center axis JC are added to the rotation center axis. In order to reverse the direction of the rotational torque, a location where the wire handling intersects is provided. As a result, like the coefficient a 22 in the expression (1) and the coefficients a 22 and a 33 in the expression (4), there are places where the coefficient in the coefficient matrix is attached with a minus sign. Independent control is possible.
 上述した各モータMA,MB,MCと回転中心軸JA,JB,JCとの配置関係は、各ワイヤの各リンクに対する固定関係を変更しない範囲で、適宜変更可能である。図9および図10は、3つのモータによって3つの回転中心軸を制御する他の例の原理を説明するための模式図である。 The arrangement relationship between the motors MA, MB, MC and the rotation center axes JA, JB, JC described above can be changed as appropriate without changing the fixed relationship of each wire to each link. 9 and 10 are schematic diagrams for explaining the principle of another example in which three rotation central axes are controlled by three motors.
 図9に示すリンクマニピュレータLM2は、図8に示すリンクマニピュレータLM1に対して、モータMAの軸、すなわちモータMAによって回転させられるプーリの回転軸が回転中心軸JAと一致している点において異なる。モータMAは、ベースリンクBLに固定されている。リンクマニピュレータLM2のその他の構成は、図8に示すリンクマニピュレータLM1の構成と同様である。リンクマニピュレータLM2においても、各モータによって加えられる各プーリの回転トルクと、各回転中心軸周りの回転トルクとは、上述した式(4)で示される。 The link manipulator LM2 shown in FIG. 9 differs from the link manipulator LM1 shown in FIG. 8 in that the axis of the motor MA, that is, the rotation axis of the pulley rotated by the motor MA coincides with the rotation center axis JA. The motor MA is fixed to the base link BL. The other configuration of the link manipulator LM2 is the same as that of the link manipulator LM1 shown in FIG. Also in the link manipulator LM2, the rotational torque of each pulley applied by each motor and the rotational torque around each rotation center axis are expressed by the above-described equation (4).
 図10に示すリンクマニピュレータLM3は、図9に示すリンクマニピュレータLM2に対して、モータMBの軸、すなわちモータMBによって回転させられるプーリの回転軸が回転中心軸JBと一致し、モータMCの軸、すなわちモータMCによって回転させられるプーリの回転軸が回転中心軸JCと一致している点において異なる。 The link manipulator LM3 shown in FIG. 10 is different from the link manipulator LM2 shown in FIG. 9 in that the axis of the motor MB, that is, the rotation axis of the pulley rotated by the motor MB coincides with the rotation center axis JB. That is, the difference is that the rotation axis of the pulley rotated by the motor MC coincides with the rotation center axis JC.
 リンクマニピュレータLM3において、モータMBは、第2リンクL2に固定されており、モータMCは、第3リンクL3に固定されている。ワイヤWB1,WB2は、第3リンクL3とベースリンクBLとに直接固定されている。ワイヤWB1,WB2は、それぞれモータMB、より詳細にはモータMBによって回転させられるプーリに一周巻かれて、モータMBに接続されている。これにより、モータMBによってワイヤWB1,WB2を駆動することができる。ワイヤWB1,WB2をモータMBの周りに巻きつかせることで、各リンクの相対姿勢が変化してワイヤWB1,WB2が取り回される経路長が変化する場合に、ワイヤWB1,WB2が撓むことを抑制できる。 In the link manipulator LM3, the motor MB is fixed to the second link L2, and the motor MC is fixed to the third link L3. The wires WB1 and WB2 are directly fixed to the third link L3 and the base link BL. The wires WB1 and WB2 are each wound around a motor MB, more specifically, a pulley rotated by the motor MB, and connected to the motor MB. Thus, the wires WB1 and WB2 can be driven by the motor MB. By winding the wires WB1 and WB2 around the motor MB, the wires WB1 and WB2 bend when the relative posture of each link changes and the path length around which the wires WB1 and WB2 are routed changes. Can be suppressed.
 ワイヤWC1,WC2は、モータMC、より詳細にはモータMCによって回転させられるプーリとベースリンクBLとに固定されている。リンクマニピュレータLM3のその他の構成は、図9に示すリンクマニピュレータLM2の構成と同様である。リンクマニピュレータLM3においても、各モータによって加えられる各プーリの回転トルクと、各回転中心軸周りの回転トルクとは、上述した式(4)で示される。 The wires WC1 and WC2 are fixed to a motor MC, more specifically, a pulley and a base link BL that are rotated by the motor MC. The other configuration of the link manipulator LM3 is the same as that of the link manipulator LM2 shown in FIG. Also in the link manipulator LM3, the rotational torque of each pulley applied by each motor and the rotational torque around each rotation center axis are expressed by the above-described equation (4).
 図8に示したリンクマニピュレータLM1および図9に示したリンクマニピュレータLM2のように、ベースリンクBLに各モータMA,MB,MCが固定されている場合、ベースリンクBLを固定して第1リンクL1、第2リンクL2および第3リンクL3を駆動する際に、モータMA,MB,MCの自重をモータMA,MB,MCによって補償する必要が無い。そのため、各リンクを駆動するための各モータMA,MB,MCの回転トルクを小さくできる。 When the motors MA, MB, and MC are fixed to the base link BL like the link manipulator LM1 shown in FIG. 8 and the link manipulator LM2 shown in FIG. 9, the first link L1 is fixed by fixing the base link BL. When driving the second link L2 and the third link L3, it is not necessary to compensate the own weights of the motors MA, MB, MC by the motors MA, MB, MC. Therefore, the rotational torque of each motor MA, MB, MC for driving each link can be reduced.
 また、図9に示したリンクマニピュレータLM2のように、モータMAを回転中心軸JAと一致させる場合、図8に示したリンクマニピュレータLM1と比べて、ワイヤWA1,WA2の長さを短くできる。そのため、ワイヤWA1,WA2全体の伸縮量を小さくでき、ワイヤWA1,WA2を介して各リンクに精度よく駆動力を伝達できる。これにより、駆動させる各リンクの位置の誤差を小さくでき、位置精度よく各リンクを駆動できる。図10に示したリンクマニピュレータLM3のように、各モータを各回転中心軸に配置する場合には、各ワイヤの全長を短くしやすく、各ワイヤ全体の伸縮量を小さくできる。したがって、より位置精度よく各リンクを駆動できる。 Further, when the motor MA is made to coincide with the rotation center axis JA like the link manipulator LM2 shown in FIG. 9, the lengths of the wires WA1 and WA2 can be made shorter than the link manipulator LM1 shown in FIG. Therefore, the expansion / contraction amount of the wires WA1 and WA2 as a whole can be reduced, and the driving force can be accurately transmitted to each link via the wires WA1 and WA2. Thereby, the error of the position of each link to drive can be made small, and each link can be driven with sufficient position accuracy. When each motor is arranged on each rotation center axis like the link manipulator LM3 shown in FIG. 10, the total length of each wire can be easily shortened, and the expansion / contraction amount of each wire can be reduced. Therefore, each link can be driven with higher positional accuracy.
 また、図10に示したリンクマニピュレータLM3のように、各リンクに各モータをばらけさせて配置すると、ワイヤの取り回しが複雑化しにくく、リンクを駆動させる機構をユニット化しやすい。 Further, as in the link manipulator LM3 shown in FIG. 10, when the motors are arranged on the links, the wire handling is difficult to be complicated, and the mechanism for driving the links is easily unitized.
 3つのモータによって3つの回転中心軸を制御する例としては、図8から図10のそれぞれに示した各例の他、例えば、図10に示すリンクマニピュレータLM3に対して、モータMBが図8に示すリンクマニピュレータLM1と同様にベースリンクBLに固定された点のみが異なるリンクマニピュレータを挙げることもできる。 As examples of controlling the three rotation center axes by three motors, in addition to the examples shown in FIGS. 8 to 10, for example, the motor MB is shown in FIG. 8 for the link manipulator LM3 shown in FIG. The link manipulator which only the point fixed to the base link BL similarly to the link manipulator LM1 shown can also be mentioned.
 上記の各リンクマニピュレータLM1,LM2,LM3を例として示した原理に基づいて、制御できる回転中心軸を増やすことで、例えば、人間の腕の関節の軸数と同じ数(26軸)の回転中心軸をワイヤによって互いに干渉させて、複数のモータを用いて回転を制御する構成に拡張することもできる。したがって、本実施形態のマニピュレータ1は、義手および人間型のロボットの腕等に適用される場合に、特に有用である。 By increasing the number of rotation center axes that can be controlled based on the principle shown by taking each of the link manipulators LM1, LM2, LM3 as an example, for example, the number of rotation centers equal to the number of joints of the human arm (26 axes) It is also possible to extend the configuration in which the shafts are interfered with each other by wires and the rotation is controlled using a plurality of motors. Therefore, the manipulator 1 of the present embodiment is particularly useful when applied to an artificial hand, an arm of a humanoid robot, and the like.
 なお、図8から図10において各ワイヤWA1,WA2は、1本のワイヤで構成されていてもよい。各ワイヤWB1,WB2は、1本のワイヤで構成されていてもよい。各ワイヤWC1,WC2は、1本のワイヤで構成されていてもよい。 In addition, in FIGS. 8 to 10, each of the wires WA1 and WA2 may be configured by a single wire. Each of the wires WB1 and WB2 may be composed of a single wire. Each of the wires WC1 and WC2 may be composed of a single wire.
 また、本実施形態によれば、プーリとワイヤとを用いて各モータの駆動力を複数の回転中心軸に伝達および分配する構成である。そのため、第1モータ21の負荷および第2モータ22の負荷が大きくなるのに従って、回転中心軸周りの出力を大きくできる負荷感応機構を組み込むことができる。詳細については、後述する第2実施形態から第4実施形態において説明する。 Further, according to the present embodiment, the driving force of each motor is transmitted and distributed to a plurality of rotation center axes using pulleys and wires. Therefore, it is possible to incorporate a load sensitive mechanism that can increase the output around the rotation center axis as the load on the first motor 21 and the load on the second motor 22 increase. Details will be described in the second to fourth embodiments described later.
 また、例えば、本実施形態のようにマニピュレータ1を多関節マニピュレータとする場合に、各関節を駆動する複数のモータを同じ箇所にまとめて配置すると、関節数が多くなるほどワイヤの取り回しが複雑化しやすい問題があった。 Further, for example, when the manipulator 1 is an articulated manipulator as in the present embodiment, if a plurality of motors that drive each joint are collectively arranged at the same location, the handling of the wire is more complicated as the number of joints increases. There was a problem.
 これに対して、本実施形態によれば、第1モータ21および第2モータ22は、上腕部43に固定されている。そのため、肩部40に対して上腕部43を駆動させる装置を駆動ユニット10Aとして、ユニット化することができる。これにより、相対駆動させたい2つの対象を駆動ユニット10Aで繋ぐことによって、容易に、駆動ユニット10Aが有する回転中心軸の数の自由度で2つの対象を相対駆動させることができる。また、各ワイヤの取り回しは、駆動ユニット10A内で完結するため、マニピュレータの関節数を多くしても、ワイヤの取り回しが複雑化することがない。したがって、マニピュレータの関節数を多くしやすく、また、関節の追加も容易である。 On the other hand, according to the present embodiment, the first motor 21 and the second motor 22 are fixed to the upper arm portion 43. Therefore, the device that drives the upper arm 43 with respect to the shoulder 40 can be unitized as the drive unit 10A. Thus, by connecting the two objects to be relatively driven by the drive unit 10A, the two objects can be easily driven relatively with a degree of freedom of the number of rotation center axes of the drive unit 10A. Moreover, since the handling of each wire is completed within the drive unit 10A, the handling of the wires does not become complicated even if the number of joints of the manipulator is increased. Therefore, it is easy to increase the number of joints of the manipulator, and it is easy to add joints.
 上記のような多関節マニピュレータは、例えば、狭い場所に入って作業を行うマニピュレータとして利用されることが考えられる。一例としては、配管内を通って配管検査を行うマニピュレータ、災害現場等の瓦礫の隙間に入り込んで探査・捜索を行うマニピュレータ等が挙げられる。本実施形態のマニピュレータ1は、これらのような多関節マニピュレータに適用される場合に、特に有用である。 The articulated manipulator as described above can be used as a manipulator that performs work in a narrow place, for example. As an example, a manipulator that conducts pipe inspection through a pipe, a manipulator that conducts exploration / search by entering a gap between rubbles at a disaster site, and the like. The manipulator 1 of the present embodiment is particularly useful when applied to such an articulated manipulator.
 また、例えば、マニピュレータ1を義手として利用する場合について考える。この場合、例えば、固定される肩部40に第1モータ21および第2モータ22が取り付けられていると、肩部40を利用者の身体に接続する際に各モータが邪魔となり、利用者の身体に義手を装着しにくい。 For example, consider the case where the manipulator 1 is used as a prosthetic hand. In this case, for example, when the first motor 21 and the second motor 22 are attached to the shoulder 40 to be fixed, each motor becomes an obstacle when connecting the shoulder 40 to the user's body, and the user's It is difficult to wear a prosthetic hand on the body.
 これに対して、本実施形態によれば、第1モータ21および第2モータ22は、肩部40に対して駆動される上腕部43に固定され、上腕部43の姿勢の変化と共に、第1モータ21および第2モータ22が移動する。そのため、肩部40にモータが固定されておらず、マニピュレータ1を義手として利用する際に、利用者の身体に肩部40を接続しやすい。したがって、本実施形態のマニピュレータ1は、義手として利用される場合に、特に有用である。 On the other hand, according to the present embodiment, the first motor 21 and the second motor 22 are fixed to the upper arm portion 43 driven with respect to the shoulder portion 40, and the first motor 21 and the second motor 22 are changed together with the change in the posture of the upper arm portion 43. The motor 21 and the second motor 22 move. Therefore, the motor is not fixed to the shoulder 40, and when using the manipulator 1 as a prosthetic hand, it is easy to connect the shoulder 40 to the user's body. Therefore, the manipulator 1 of the present embodiment is particularly useful when used as a prosthetic hand.
 また、本実施形態の駆動ユニット10Aにおいては、第1モータ21の第1出力軸21aおよび第2モータ22の第2出力軸22aは、第1回転中心軸J1を中心とする。そのため、第1出力軸21aに第1プーリ31を固定することで、第1モータ21の出力を直接的に第1プーリ31に伝達することができる。また、同様に、第2出力軸22aに第2プーリ32を固定することで、第2モータ22の出力を直接的に第2プーリ32に伝達することができる。これにより、第1モータ21の出力および第2モータ22の出力を、容易に第1プーリ31および第2プーリ32に伝達することができる。 Further, in the drive unit 10A of the present embodiment, the first output shaft 21a of the first motor 21 and the second output shaft 22a of the second motor 22 are centered on the first rotation center axis J1. Therefore, the output of the first motor 21 can be directly transmitted to the first pulley 31 by fixing the first pulley 31 to the first output shaft 21a. Similarly, the output of the second motor 22 can be directly transmitted to the second pulley 32 by fixing the second pulley 32 to the second output shaft 22a. Thereby, the output of the first motor 21 and the output of the second motor 22 can be easily transmitted to the first pulley 31 and the second pulley 32.
 また、本実施形態の駆動ユニット10Cにおいては、第1モータ121の出力軸と第2モータ122の出力軸とが第1回転中心軸J5からずれて配置され、第1モータ121と第2モータ122とが第1回転中心軸J5と直交する方向に重ねられて配置されている。これにより、第1プーリ131と第2プーリ132との間における第1回転中心軸J5と平行な方向の寸法を小さくできる。これにより、駆動ユニット10Cの第1回転中心軸J5と平行な方向の寸法を小さくでき、駆動ユニット10Cを小型化しやすい。 In the drive unit 10 </ b> C of the present embodiment, the output shaft of the first motor 121 and the output shaft of the second motor 122 are arranged so as to be shifted from the first rotation center axis J <b> 5, and the first motor 121 and the second motor 122. Are stacked in a direction perpendicular to the first rotation center axis J5. Thereby, the dimension of the direction parallel to the 1st rotation central axis J5 between the 1st pulley 131 and the 2nd pulley 132 can be made small. Thereby, the dimension of the drive unit 10C in the direction parallel to the first rotation center axis J5 can be reduced, and the drive unit 10C can be easily downsized.
 また、本実施形態によれば、第1ワイヤ81の張力および第2ワイヤ82の張力を調整する張力調整機構50が設けられている。これにより、第1ワイヤ81および第2ワイヤ82に弛みが生じて、第1ワイヤ81の張力および第2ワイヤ82の張力が低下した場合であっても、第1ワイヤ81および第2ワイヤ82に張力を加えることができる。また、第1ワイヤ81の張力および第2ワイヤ82の張力を調整することで、第1モータ21の回転および第2モータ22の回転に対する各回転中心軸周りの回転の進み角または遅れ角を調整することができる。 Further, according to the present embodiment, the tension adjusting mechanism 50 that adjusts the tension of the first wire 81 and the tension of the second wire 82 is provided. As a result, even if the first wire 81 and the second wire 82 are loosened and the tension of the first wire 81 and the tension of the second wire 82 are lowered, the first wire 81 and the second wire 82 Tension can be applied. Further, by adjusting the tension of the first wire 81 and the tension of the second wire 82, the advance angle or delay angle of the rotation around each rotation center axis with respect to the rotation of the first motor 21 and the rotation of the second motor 22 is adjusted. can do.
 なお、本発明は上述の実施形態に限られず、他の構成を採用することもできる。以下の説明において上記説明と同様の構成については、適宜同一の符号を付す等により説明を省略する場合がある。 Note that the present invention is not limited to the above-described embodiment, and other configurations may be employed. In the following description, the same configurations as those described above may be omitted by appropriately attaching the same reference numerals.
 第1プーリ31と第3プーリ33とを連結する第1ワイヤ81は、例えば、1本のワイヤであってもよい。この場合、第1ワイヤ81は、各プーリに巻かれるのみで、プーリに直接固定されない構成であってもよい。また、第1ワイヤ81は、3本以上のワイヤで構成されていてもよい。第2プーリ32と第3プーリ33とを連結する第2ワイヤ82は、例えば、1本のワイヤであってもよい。この場合、第2ワイヤ82は、各プーリに巻かれるのみで、プーリに直接固定されない構成であってもよい。また、第2ワイヤ82は、3本以上のワイヤで構成されていてもよい。 The first wire 81 that connects the first pulley 31 and the third pulley 33 may be, for example, a single wire. In this case, the first wire 81 may only be wound around each pulley and may not be directly fixed to the pulley. The first wire 81 may be composed of three or more wires. The second wire 82 that connects the second pulley 32 and the third pulley 33 may be, for example, a single wire. In this case, the second wire 82 may only be wound around each pulley and may not be fixed directly to the pulley. The second wire 82 may be composed of three or more wires.
 また、伝達部材は、張力を介して、プーリ同士の間で回転を伝達できるならば、特に限定されない。伝達部材は、ロープであってもよいし、チェーンであってもよいし、ベルトであってもよい。また、伝達部材の材質は、特に限定されない。 Also, the transmission member is not particularly limited as long as it can transmit rotation between pulleys via tension. The transmission member may be a rope, a chain, or a belt. Moreover, the material of the transmission member is not particularly limited.
 また、回転部材は、各部に対して回転可能に取り付けられるならば、特に限定されず、プーリでなくてもよい。 Further, the rotating member is not particularly limited as long as it is rotatably attached to each part, and may not be a pulley.
 また、第1モータ21の配置および第2モータ22の配置は、特に限定されず、第1モータ21および第2モータ22は、上腕部43以外の箇所に固定されていてもよい。 Further, the arrangement of the first motor 21 and the arrangement of the second motor 22 are not particularly limited, and the first motor 21 and the second motor 22 may be fixed at a place other than the upper arm portion 43.
 また、張力調整機構50は、第1ワイヤ81の張力または第2ワイヤ82の張力を調整できるならば、特に限定されない。また、張力調整機構50は、第1ワイヤ81と第2ワイヤ82とのうちのいずれか一方のみに対して設けられていてもよい。 The tension adjusting mechanism 50 is not particularly limited as long as the tension of the first wire 81 or the tension of the second wire 82 can be adjusted. Further, the tension adjusting mechanism 50 may be provided for only one of the first wire 81 and the second wire 82.
 また、駆動ユニット10Cにおいて、第1出力プーリ121aと第1プーリ131とを連結するワイヤは、第1ワイヤ181とは別のワイヤであってもよい。第2出力プーリ122aと第2プーリ132とを連結するワイヤは、第2ワイヤ182とは別のワイヤであってもよい。 Further, in the drive unit 10C, the wire connecting the first output pulley 121a and the first pulley 131 may be a wire different from the first wire 181. The wire connecting the second output pulley 122 a and the second pulley 132 may be a wire different from the second wire 182.
 また、第1回転中心軸J1と第2回転中心軸J2との関係は、互いに異なれば、特に限定されない。例えば、第1回転中心軸J1と第2回転中心軸J2とは、直交せずに交差してもよいし、互いにねじれの位置にあってもよいし、平行であってもよい。 Further, the relationship between the first rotation center axis J1 and the second rotation center axis J2 is not particularly limited as long as they are different from each other. For example, the first rotation center axis J1 and the second rotation center axis J2 may intersect each other without being orthogonal, may be in a twisted position, or may be parallel to each other.
 また、例えば、駆動ユニット10Aの各ワイヤを駆動ユニット10Bの各プーリに巻いて、駆動ユニット10Bの各ワイヤを駆動ユニット10Aの各プーリに巻いて、互いに干渉させてもよい。これにより、4つのモータで4つの回転中心軸を制御する構成とできる。また、駆動ユニット10A~10Cを互いに干渉させてもよい。 Further, for example, each wire of the drive unit 10A may be wound around each pulley of the drive unit 10B, and each wire of the drive unit 10B may be wound around each pulley of the drive unit 10A to interfere with each other. Thereby, it can be set as the structure which controls four rotation center axes with four motors. Further, the drive units 10A to 10C may interfere with each other.
<第2実施形態>
 第2実施形態は、第1実施形態に対して、負荷感応機構としての可変機構230が設けられている点において異なる。図11および図12は、本実施形態の第1プーリ231を示す斜視図である。
Second Embodiment
The second embodiment is different from the first embodiment in that a variable mechanism 230 as a load sensitive mechanism is provided. 11 and 12 are perspective views showing the first pulley 231 of the present embodiment.
 第1プーリ231は、図11および図12に示すように、第1円板部231aと、第2円板部231bと、支持軸231cと、圧縮バネ231dと、連結ワイヤ231eと、を備えている。本実施形態において第1プーリ231の各部は、可変機構230を構成している。 As shown in FIGS. 11 and 12, the first pulley 231 includes a first disc portion 231a, a second disc portion 231b, a support shaft 231c, a compression spring 231d, and a connecting wire 231e. Yes. In this embodiment, each part of the first pulley 231 constitutes a variable mechanism 230.
 第1円板部231aと第2円板部231bとは、第1回転中心軸J1を中心として第1回転中心軸J1の径方向外側に拡がる円板状である。第1円板部231aと第2円板部231bとは、第1回転中心軸J1と平行な方向に対向して配置されている。 The first disc portion 231a and the second disc portion 231b have a disc shape that extends radially outward from the first rotation center axis J1 around the first rotation center axis J1. The first disc portion 231a and the second disc portion 231b are arranged to face each other in a direction parallel to the first rotation center axis J1.
 支持軸231cは、第1回転中心軸J1を中心として、第1回転中心軸J1の軸方向に延びた円柱状である。支持軸231cの一端は、第1円板部231aに固定されている。第2円板部231bは、支持軸231cの他端側に、支持軸231cに対して第1回転中心軸J1の軸方向に移動可能に接続されている。 The support shaft 231c has a cylindrical shape that extends in the axial direction of the first rotation center axis J1 with the first rotation center axis J1 as the center. One end of the support shaft 231c is fixed to the first disc portion 231a. The second disk portion 231b is connected to the other end side of the support shaft 231c so as to be movable in the axial direction of the first rotation center axis J1 with respect to the support shaft 231c.
 圧縮バネ231dは、第1円板部231aと第2円板部231bとの間に配置されている。圧縮バネ231dの内側には、支持軸231cが通されている。圧縮バネ231dの一端は、第1円板部231aの第2円板部231b側の面と接触している。圧縮バネ231dの他端は、第2円板部231bの第1円板部231a側の面と接触している。圧縮バネ231dは、第1円板部231aと第2円板部231bとに対して、第1円板部231aと第2円板部231bとを第1回転中心軸J1の軸方向に離す向きに力を加えている。 The compression spring 231d is disposed between the first disc portion 231a and the second disc portion 231b. A support shaft 231c is passed inside the compression spring 231d. One end of the compression spring 231d is in contact with the surface of the first disc portion 231a on the second disc portion 231b side. The other end of the compression spring 231d is in contact with the surface of the second disc portion 231b on the first disc portion 231a side. The compression spring 231d is oriented so as to separate the first disc portion 231a and the second disc portion 231b from the first disc portion 231a and the second disc portion 231b in the axial direction of the first rotation center axis J1. Is adding power.
 連結ワイヤ231eは、第1円板部231aと第2円板部231bとの間において、第1円板部231aと第2円板部231bとを連結するワイヤである。連結ワイヤ231eは、第1回転中心軸J1の周方向に沿って、複数設けられている。複数の連結ワイヤ231eは、第1回転中心軸J1を周方向に囲んでいる。連結ワイヤ231eの直径は、例えば、第1ワイヤ81の直径よりも大きい。 The connecting wire 231e is a wire that connects the first disc portion 231a and the second disc portion 231b between the first disc portion 231a and the second disc portion 231b. A plurality of connecting wires 231e are provided along the circumferential direction of the first rotation center axis J1. The plurality of connecting wires 231e surround the first rotation center axis J1 in the circumferential direction. The diameter of the connecting wire 231e is larger than the diameter of the first wire 81, for example.
 本実施形態においては、第1プーリ231の第1プーリ本体部は、複数の連結ワイヤ231eによって構成されている。すなわち、本実施形態において第1ワイヤ81は、複数の連結ワイヤ231eの束の外側に巻かれている。 In the present embodiment, the first pulley main body of the first pulley 231 is constituted by a plurality of connecting wires 231e. That is, in the present embodiment, the first wire 81 is wound around the outside of the bundle of the plurality of connecting wires 231e.
 ここで、図11は、第1モータ21の負荷が比較的小さく、第1ワイヤ81の張力が比較的小さい場合について示している。図12は、第1モータ21の負荷が比較的大きく、第1ワイヤ81の張力が比較的大きい場合について示している。 Here, FIG. 11 shows a case where the load of the first motor 21 is relatively small and the tension of the first wire 81 is relatively small. FIG. 12 shows a case where the load of the first motor 21 is relatively large and the tension of the first wire 81 is relatively large.
 第1ワイヤ81の張力が比較的大きくなると、連結ワイヤ231eの束に巻かれている第1ワイヤ81の締め付け力が大きくなる。これにより、図12に示すように、連結ワイヤ231eが撓んで、第1プーリ231の直径D1が小さくなる。第1プーリ231の直径D1は、巻かれた第1ワイヤ81の内径に相当する。なお、連結ワイヤ231eが撓むと共に、第2円板部231bは、第1円板部231aに近づく向きに移動する。 When the tension of the first wire 81 becomes relatively large, the tightening force of the first wire 81 wound around the bundle of the connecting wires 231e increases. Thereby, as shown in FIG. 12, the connecting wire 231e bends and the diameter D1 of the 1st pulley 231 becomes small. The diameter D1 of the first pulley 231 corresponds to the inner diameter of the wound first wire 81. In addition, while the connecting wire 231e bends, the 2nd disc part 231b moves in the direction which approaches the 1st disc part 231a.
 第1ワイヤ81の張力が比較的小さくなると、第1ワイヤ81の締め付け力が小さくなる。これにより、図11に示すように、圧縮バネ231dによって第2円板部231bが第1円板部231aから離れる向きに移動して、連結ワイヤ231eが張られる。したがって、第1プーリ231の直径D1が大きくなる。 When the tension of the first wire 81 is relatively small, the tightening force of the first wire 81 is small. As a result, as shown in FIG. 11, the second disc portion 231b is moved away from the first disc portion 231a by the compression spring 231d, and the connecting wire 231e is stretched. Therefore, the diameter D1 of the first pulley 231 is increased.
 以上のように、本実施形態の第1プーリ231は、第1ワイヤ81の張力が大きいほど第1プーリ231の直径D1を小さくする可変機構230を備えている。 As described above, the first pulley 231 of the present embodiment includes the variable mechanism 230 that decreases the diameter D1 of the first pulley 231 as the tension of the first wire 81 increases.
 本実施形態によれば、第1モータ21の負荷が大きくなって、第1ワイヤ81の張力が大きくなった場合に、第1プーリ231の直径D1が小さくなる。そのため、第1プーリ231の直径D1と第3プーリ33の直径との比が大きくなり、第1プーリ231と第3プーリとの間の減速比を大きくできる。したがって、第1モータ21の負荷が大きくなるのに従って、第2回転中心軸J2周りの出力を大きくできる負荷感応機構が得られる。 According to this embodiment, when the load of the first motor 21 is increased and the tension of the first wire 81 is increased, the diameter D1 of the first pulley 231 is decreased. Therefore, the ratio between the diameter D1 of the first pulley 231 and the diameter of the third pulley 33 is increased, and the reduction ratio between the first pulley 231 and the third pulley can be increased. Therefore, a load sensitive mechanism that can increase the output around the second rotation center axis J2 as the load of the first motor 21 increases is obtained.
 なお、可変機構230は、第2プーリ32に設けられていてもよい。これにより、第2モータ22の負荷に応じて、第2プーリ32の直径を変化させることができる。可変機構230は、第1プーリ31と第2プーリ32との両方に設けられていてもよいし、いずれか一方のみに設けられていてもよい。 The variable mechanism 230 may be provided on the second pulley 32. Thereby, the diameter of the second pulley 32 can be changed according to the load of the second motor 22. The variable mechanism 230 may be provided in both the first pulley 31 and the second pulley 32, or may be provided in only one of them.
 また、例えば、第2円板部231bを、第1円板部231aに対して第1回転中心軸J1周りに回転可能に、支持軸231cに接続してもよい。この場合、第1ワイヤ81の張力が大きくなった際に、第2円板部231bが回転して連結ワイヤ231eが斜めに傾くことで、第1プーリ231の直径D1が小さくなってもよい。このとき、連結ワイヤ231eは撓んでいてもよいし、撓んでいなくてもよい。 Further, for example, the second disk portion 231b may be connected to the support shaft 231c so as to be rotatable around the first rotation center axis J1 with respect to the first disk portion 231a. In this case, when the tension of the first wire 81 is increased, the diameter D1 of the first pulley 231 may be decreased by rotating the second disk portion 231b and tilting the connecting wire 231e. At this time, the connecting wire 231e may be bent or may not be bent.
 また、連結ワイヤ231eの代わりに、多関節のリンクを用いて第1円板部231aと第2円板部231bとを連結してもよい。 Also, instead of the connecting wire 231e, the first disc portion 231a and the second disc portion 231b may be connected using an articulated link.
 また、上記の可変機構230の代わりに、例えば、渦巻バネを用いて第1プーリ231の直径D1が変化する構成としてもよい。 Further, instead of the variable mechanism 230 described above, for example, a configuration may be used in which the diameter D1 of the first pulley 231 is changed using a spiral spring.
<第3実施形態>
 第3実施形態は、第1実施形態に対して、負荷感応機構としての移動機構390a,390bが設けられている点において異なる。図13および図14は、本実施形態の駆動ユニット310を左側(-Y側)から右側(+Y側)に向かって視た模式的な側面図である。
<Third Embodiment>
The third embodiment is different from the first embodiment in that moving mechanisms 390a and 390b as load sensitive mechanisms are provided. FIGS. 13 and 14 are schematic side views of the drive unit 310 according to the present embodiment as viewed from the left side (−Y side) to the right side (+ Y side).
 駆動ユニット310は、図13および図14に示すように、移動機構390a,390bを備えている。移動機構390aは、支持部材20の前側(+X側)に設けられている。移動機構390aは、可動プーリ391aと、引張バネ392aと、を備えている。可動プーリ391aは、支持部材20に対して移動可能に設けられている。可動プーリ391aには、前側第1ワイヤ81aが掛けられている。可動プーリ391aは、前側第1ワイヤ81aに前側から接触している。 The drive unit 310 includes moving mechanisms 390a and 390b as shown in FIGS. The moving mechanism 390a is provided on the front side (+ X side) of the support member 20. The moving mechanism 390a includes a movable pulley 391a and a tension spring 392a. The movable pulley 391 a is provided so as to be movable with respect to the support member 20. A front first wire 81a is hung on the movable pulley 391a. The movable pulley 391a is in contact with the front first wire 81a from the front side.
 引張バネ392aは、可動プーリ391aと支持部材20とを接続している。引張バネ392aは、支持部材20から前方斜め下側に延びており、先端に可動プーリ391aが接続されている。引張バネ392aは、可動プーリ391aに対して、後方斜め上向きの力を加えている。これにより、可動プーリ391aは、前側第1ワイヤ81aに前側から押し付けられている。 The tension spring 392a connects the movable pulley 391a and the support member 20. The tension spring 392a extends diagonally forward and downward from the support member 20, and a movable pulley 391a is connected to the tip. The tension spring 392a applies a force that is obliquely upward to the movable pulley 391a. Thereby, the movable pulley 391a is pressed against the front first wire 81a from the front side.
 移動機構390bは、支持部材20の後側(-X側)に設けられている。移動機構390bは、可動プーリ391bと、引張バネ392bと、を備えている。可動プーリ391bは、支持部材20に対して移動可能に設けられている。可動プーリ391bには、後側第1ワイヤ81bが掛けられている。可動プーリ391bは、後側第1ワイヤ81bに後側から接触している。 The moving mechanism 390b is provided on the rear side (−X side) of the support member 20. The moving mechanism 390b includes a movable pulley 391b and a tension spring 392b. The movable pulley 391 b is provided so as to be movable with respect to the support member 20. A rear first wire 81b is hung on the movable pulley 391b. The movable pulley 391b is in contact with the rear first wire 81b from the rear side.
 引張バネ392bは、可動プーリ391bと支持部材20とを接続している。引張バネ392bは、支持部材20から後方斜め下側に延びており、先端に可動プーリ391bが接続されている。引張バネ392bは、可動プーリ391bに対して、前方斜め上向きの力を加えている。これにより、可動プーリ391bは、後側第1ワイヤ81bに後側から押し付けられている。 The tension spring 392b connects the movable pulley 391b and the support member 20. The tension spring 392b extends rearward and obliquely downward from the support member 20, and a movable pulley 391b is connected to the tip. The tension spring 392b applies a forward oblique upward force to the movable pulley 391b. Accordingly, the movable pulley 391b is pressed against the rear first wire 81b from the rear side.
 ここで、図13は、第1モータ21の負荷が比較的小さく、第1ワイヤ81の張力が比較的小さい場合について示している。図14は、第1モータ21の負荷が比較的大きく、第1ワイヤ81の張力が比較的大きい場合について示している。 Here, FIG. 13 shows a case where the load of the first motor 21 is relatively small and the tension of the first wire 81 is relatively small. FIG. 14 shows a case where the load of the first motor 21 is relatively large and the tension of the first wire 81 is relatively large.
 第1ワイヤ81の張力が比較的大きくなると、図14に示すように、第1ワイヤ81の張力によって可動プーリ391aと可動プーリ391bとが移動する。可動プーリ391aは、前方斜め下側に移動する。可動プーリ391bは、後方斜め下側に移動する。これにより、可動プーリ391aに前側(+X側)から押されていた前側第1ワイヤ81aが前側に移動し、可動プーリ391bに後側(-X側)から押されていた後側第1ワイヤ81bが後側に移動する。これにより、前側第1ワイヤ81aおよび後側第1ワイヤ81bが第2回転中心軸J2から離れる向きに移動する。 When the tension of the first wire 81 becomes relatively large, the movable pulley 391a and the movable pulley 391b are moved by the tension of the first wire 81 as shown in FIG. The movable pulley 391a moves forward and obliquely downward. The movable pulley 391b moves rearward and obliquely downward. As a result, the front first wire 81a pushed from the front side (+ X side) to the movable pulley 391a moves to the front side, and the rear first wire 81b pushed from the rear side (−X side) to the movable pulley 391b. Moves to the back side. As a result, the front first wire 81a and the rear first wire 81b move away from the second rotation center axis J2.
 第1ワイヤ81の張力が比較的小さくなると、図13に示すように、引張バネ392aの弾性力によって可動プーリ391aが後方斜め上側に移動すると共に、引張バネ392bの弾性力によって可動プーリ391bが前方斜め上側に移動する。これにより、前側第1ワイヤ81aが可動プーリ391aに押されて後側(-X側)に移動し、後側第1ワイヤ81bが可動プーリ391bに押されて前側(+X側)に移動する。したがって、前側第1ワイヤ81aおよび後側第1ワイヤ81bが第2回転中心軸J2に近づく向きに移動する。 When the tension of the first wire 81 becomes relatively small, as shown in FIG. 13, the movable pulley 391a is moved obliquely upward rearward by the elastic force of the tension spring 392a, and the movable pulley 391b is moved forward by the elastic force of the tension spring 392b. Move diagonally upward. Thereby, the front first wire 81a is pushed by the movable pulley 391a and moved to the rear side (−X side), and the rear first wire 81b is pushed by the movable pulley 391b and moved to the front side (+ X side). Therefore, the front first wire 81a and the rear first wire 81b move in a direction approaching the second rotation center axis J2.
 以上のように、移動機構390a,390bは、第1ワイヤ81を、第1ワイヤ81の張力が大きいほど第2回転中心軸J2から離れた位置に移動させる。 As described above, the moving mechanisms 390a and 390b move the first wire 81 to a position away from the second rotation center axis J2 as the tension of the first wire 81 increases.
 本実施形態によれば、第1ワイヤ81の張力が大きくなるほど、第1ワイヤ81が第2回転中心軸J2から離れるため、第1ワイヤ81を介して支持部材20に加えられる第2回転中心軸J2周りの回転モーメントのモーメントアームを大きくできる。したがって、第1モータ21の負荷が大きくなるのに従って、第2回転中心軸J2周りの出力を大きくできる負荷感応機構が得られる。 According to the present embodiment, as the tension of the first wire 81 increases, the first wire 81 moves away from the second rotation center axis J2. Therefore, the second rotation center axis applied to the support member 20 via the first wire 81. The moment arm of the rotational moment around J2 can be increased. Therefore, a load sensitive mechanism that can increase the output around the second rotation center axis J2 as the load of the first motor 21 increases is obtained.
<第4実施形態>
 第4実施形態は、第3実施形態に対して、負荷感応機構としての移動機構の構成が異なる。図15および図16は、本実施形態の駆動ユニット410を左側(-Y側)から右側(+Y側)に向かって視た模式的な側面図である。
<Fourth embodiment>
The fourth embodiment differs from the third embodiment in the configuration of a moving mechanism as a load sensitive mechanism. 15 and 16 are schematic side views of the drive unit 410 according to this embodiment as viewed from the left side (−Y side) to the right side (+ Y side).
 本実施形態において第1ワイヤ481は、図15および図16に示すように、前側第1ワイヤ81aと、後側第1ワイヤ481bと、で構成されている。さらに、後側第1ワイヤ481bは、2本の分割ワイヤ481c,481dによって構成されている。分割ワイヤ481cは、第1プーリ31に巻かれて固定されている。分割ワイヤ481dは、第3プーリ33に巻かれて固定されている。分割ワイヤ481cと分割ワイヤ481dとは、後述する下側ワイヤ支持部材491a、上側ワイヤ支持部材491bおよび圧縮バネ495を介して接続されている。 In this embodiment, the first wire 481 includes a front first wire 81a and a rear first wire 481b as shown in FIGS. Further, the rear first wire 481b is constituted by two divided wires 481c and 481d. The split wire 481c is wound around the first pulley 31 and fixed. The dividing wire 481d is wound around the third pulley 33 and fixed. The split wire 481c and the split wire 481d are connected via a lower wire support member 491a, an upper wire support member 491b, and a compression spring 495, which will be described later.
 駆動ユニット410は、移動機構490を備えている。移動機構490は、支持部材20に設けられている。移動機構490は、下側ワイヤ支持部材491aと、上側ワイヤ支持部材491bと、圧縮バネ495と、リンク機構492と、可動プーリ494と、を備えている。 The drive unit 410 includes a moving mechanism 490. The moving mechanism 490 is provided on the support member 20. The moving mechanism 490 includes a lower wire support member 491a, an upper wire support member 491b, a compression spring 495, a link mechanism 492, and a movable pulley 494.
 下側ワイヤ支持部材491aと上側ワイヤ支持部材491bとは、互いに上下方向に対向する板状部材である。下側ワイヤ支持部材491aと上側ワイヤ支持部材491bとは、支持部材20に対して後側(-X側)に設けられている。 The lower wire support member 491a and the upper wire support member 491b are plate-like members that face each other in the vertical direction. The lower wire support member 491a and the upper wire support member 491b are provided on the rear side (−X side) with respect to the support member 20.
 下側ワイヤ支持部材491aには、下側ワイヤ支持部材491aを上下方向に貫通する貫通孔491cが形成されている。貫通孔491cには、第1プーリ31から引き出された分割ワイヤ481cが下側から通されている。貫通孔491cに通された分割ワイヤ481cの上端は、上側ワイヤ支持部材491bの下面に固定されている。 The lower wire support member 491a is formed with a through hole 491c that penetrates the lower wire support member 491a in the vertical direction. A split wire 481c drawn from the first pulley 31 is passed through the through hole 491c from below. The upper end of the split wire 481c passed through the through hole 491c is fixed to the lower surface of the upper wire support member 491b.
 上側ワイヤ支持部材491bは、下側ワイヤ支持部材491aの上側に位置している。上側ワイヤ支持部材491bには、上側ワイヤ支持部材491bを上下方向に貫通する貫通孔491dが形成されている。貫通孔491dは、平面視において、下側ワイヤ支持部材491aの貫通孔491cとずれた位置に形成されている。貫通孔491dには、第3プーリ33から引き出された分割ワイヤ481dが上側から通されている。貫通孔491dに通された分割ワイヤ481dの下端は、下側ワイヤ支持部材491aの上面に固定されている。 The upper wire support member 491b is located above the lower wire support member 491a. The upper wire support member 491b is formed with a through hole 491d that penetrates the upper wire support member 491b in the vertical direction. The through hole 491d is formed at a position shifted from the through hole 491c of the lower wire support member 491a in plan view. A split wire 481d drawn from the third pulley 33 is passed through the through hole 491d from above. The lower end of the split wire 481d passed through the through hole 491d is fixed to the upper surface of the lower wire support member 491a.
 圧縮バネ495は、下側ワイヤ支持部材491aと上側ワイヤ支持部材491bとの上下方向の間に配置され、下側ワイヤ支持部材491aと上側ワイヤ支持部材491bとを接続している。圧縮バネ495は、下側ワイヤ支持部材491aと上側ワイヤ支持部材491bとに対して、下側ワイヤ支持部材491aと上側ワイヤ支持部材491bとを互いに離す向きに力を加えている。 The compression spring 495 is disposed between the lower wire support member 491a and the upper wire support member 491b in the vertical direction, and connects the lower wire support member 491a and the upper wire support member 491b. The compression spring 495 applies a force to the lower wire support member 491a and the upper wire support member 491b in a direction to separate the lower wire support member 491a and the upper wire support member 491b from each other.
 リンク機構492は、下側ワイヤ支持部材491aと上側ワイヤ支持部材491bとに固定されている。リンク機構492は、全体として下側ワイヤ支持部材491aおよび上側ワイヤ支持部材491bから前側(+X側)に延びている。リンク機構492は、第1リンク492a,492bと、第2リンク493a,493bと、を備えている。 The link mechanism 492 is fixed to the lower wire support member 491a and the upper wire support member 491b. The link mechanism 492 extends to the front side (+ X side) from the lower wire support member 491a and the upper wire support member 491b as a whole. The link mechanism 492 includes first links 492a and 492b and second links 493a and 493b.
 第1リンク492aは、下側ワイヤ支持部材491aの前側(+X側)の端部に回転可能に接続されている。第1リンク492aは、下側ワイヤ支持部材491aの前側(+X側)の端部から、前方斜め上側に延びている。第1リンク492bは、上側ワイヤ支持部材491bの前側の端部に回転可能に接続されている。第1リンク492bは、上側ワイヤ支持部材491bの前側の端部から、前方斜め下側に延びている。第1リンク492aと第1リンク492bとは、交差して配置され、その交差する箇所において接続軸492cを介して互いに回転可能に接続されている。 The first link 492a is rotatably connected to the front (+ X side) end of the lower wire support member 491a. The first link 492a extends diagonally forward from the front (+ X side) end of the lower wire support member 491a. The first link 492b is rotatably connected to the front end of the upper wire support member 491b. The first link 492b extends obliquely forward and downward from the front end of the upper wire support member 491b. The first link 492a and the first link 492b are arranged so as to intersect with each other, and are connected to each other through a connection shaft 492c so as to be rotatable.
 第2リンク493aは、第1リンク492aの前側(+X側)の端部に回転可能に接続されている。第2リンク493aは、第1リンク492aの前側の端部から前方斜め下側に延びている。第2リンク493bは、第1リンク492bの前側の端部に回転可能に接続されている。第2リンク493bは、第1リンク492bの前側の端部から前方斜め上側に延びている。第2リンク493aの前側の端部と第2リンク493bの前側の端部とは、互いに回転可能に接続されている。 The second link 493a is rotatably connected to the front (+ X side) end of the first link 492a. The second link 493a extends from the front end of the first link 492a obliquely downward to the front. The second link 493b is rotatably connected to the front end of the first link 492b. The second link 493b extends diagonally forward and upward from the front end of the first link 492b. The front end portion of the second link 493a and the front end portion of the second link 493b are rotatably connected to each other.
 可動プーリ494は、リンク機構492の前側(+X側)の端部に接続されている。より詳細には、可動プーリ494は、第2リンク493a,493b同士が接続される箇所に接続されている。可動プーリ494には、前側第1ワイヤ81aが掛けられている。可動プーリ494は、前側第1ワイヤ81aに後側(-X側)から接触している。 The movable pulley 494 is connected to the front (+ X side) end of the link mechanism 492. More specifically, the movable pulley 494 is connected to a location where the second links 493a and 493b are connected to each other. A front first wire 81a is hung on the movable pulley 494. The movable pulley 494 is in contact with the front first wire 81a from the rear side (−X side).
 ここで、図15は、第1モータ21の負荷が比較的小さく、第1ワイヤ481の張力が比較的小さい場合について示している。図16は、第1モータ21の負荷が比較的大きく、第1ワイヤ481の張力が比較的大きい場合について示している。 Here, FIG. 15 shows a case where the load of the first motor 21 is relatively small and the tension of the first wire 481 is relatively small. FIG. 16 shows a case where the load of the first motor 21 is relatively large and the tension of the first wire 481 is relatively large.
 第1ワイヤ481の張力が比較的大きくなると、図16に示すように、下側ワイヤ支持部材491aと上側ワイヤ支持部材491bとが、分割ワイヤ481cと分割ワイヤ481dとによって引っ張られ、互いに近づく向きに移動する。これにより、リンク機構492の各リンクの前後方向(X軸方向)に対する傾きが小さくなり、リンク機構492の前後方向の寸法が大きくなる。したがって、リンク機構492の前側(+X側)の端部に接続された可動プーリ494が前側に移動し、前側第1ワイヤ81aを前側に押す。その結果、前側第1ワイヤ81aが前側、すなわち、第2回転中心軸J2から離れる向きに移動する。 When the tension of the first wire 481 becomes relatively large, as shown in FIG. 16, the lower wire support member 491a and the upper wire support member 491b are pulled by the split wire 481c and the split wire 481d and approach each other. Moving. Thereby, the inclination with respect to the front-back direction (X-axis direction) of each link of the link mechanism 492 decreases, and the dimension of the link mechanism 492 in the front-rear direction increases. Accordingly, the movable pulley 494 connected to the front end (+ X side) of the link mechanism 492 moves to the front side and pushes the front first wire 81a to the front side. As a result, the front first wire 81a moves in the direction away from the front side, that is, the second rotation center axis J2.
 第1ワイヤ481の張力が比較的小さくなると、図15に示すように、圧縮バネ495の弾性力によって下側ワイヤ支持部材491aと上側ワイヤ支持部材491bとが上下方向に離れる向きに移動する。これにより、リンク機構492の前後方向(X軸方向)の寸法が小さくなり、可動プーリ494が後側(-X側)に移動する。その結果、前側第1ワイヤ81aが後側、すなわち、第2回転中心軸J2に近づく向きに移動する。 When the tension of the first wire 481 becomes relatively small, the lower wire support member 491a and the upper wire support member 491b move in the vertical direction away from each other by the elastic force of the compression spring 495, as shown in FIG. As a result, the dimension of the link mechanism 492 in the front-rear direction (X-axis direction) is reduced, and the movable pulley 494 moves rearward (−X side). As a result, the front first wire 81a moves to the rear side, that is, in a direction approaching the second rotation center axis J2.
 以上のように、移動機構490は、第1ワイヤ481(前側第1ワイヤ81a)を、第1ワイヤ481の張力が大きいほど第2回転中心軸J2から離れた位置に移動させる。 As described above, the moving mechanism 490 moves the first wire 481 (front first wire 81a) to a position away from the second rotation center axis J2 as the tension of the first wire 481 increases.
 本実施形態によれば、第1ワイヤ481の張力が大きくなるほど、第1ワイヤ481が第2回転中心軸J2から離れるため、第1ワイヤ481を介して支持部材20に加えられる第2回転中心軸J2周りの回転モーメントのモーメントアームを大きくできる。したがって、第1モータ21の負荷が大きくなるのに従って、第2回転中心軸J2周りの出力を大きくできる負荷感応機構が得られる。 According to the present embodiment, as the tension of the first wire 481 increases, the first wire 481 moves away from the second rotation center axis J2, so that the second rotation center axis applied to the support member 20 via the first wire 481. The moment arm of the rotational moment around J2 can be increased. Therefore, a load sensitive mechanism that can increase the output around the second rotation center axis J2 as the load of the first motor 21 increases is obtained.
 また、本実施形態によれば、第1ワイヤ481の張力を利用して可動プーリ494を押し出すリンク機構492を備えているため、第3実施形態に比べて、可動プーリ494をより第2回転中心軸J2から離れた位置に移動させることができる。そのため、第1モータ21の負荷が大きくなるのに従って、第2回転中心軸J2周りの出力をより大きくできる。 In addition, according to the present embodiment, the link mechanism 492 that pushes out the movable pulley 494 using the tension of the first wire 481 is provided, and therefore, the movable pulley 494 is more at the second rotation center than in the third embodiment. It can be moved to a position away from the axis J2. Therefore, as the load on the first motor 21 increases, the output around the second rotation central axis J2 can be increased.
 なお、上記説明においては、移動機構490は一つのみ設けられ、前側第1ワイヤ81aのみを移動させる構成としたが、これに限られない。例えば、移動機構490を2つ設けて、後側第1ワイヤ481bを後側に移動させてもよい。また、例えば、第1ワイヤ481の張力が大きくなった場合に、下側ワイヤ支持部材491aおよび上側ワイヤ支持部材491bが後側に移動する構成としてもよい。この場合、1つの移動機構490で、前側第1ワイヤ81aと後側第1ワイヤ481bとを共に第2回転中心軸J2から離す向きに移動させることができる。 In the above description, only one moving mechanism 490 is provided and only the front first wire 81a is moved. However, the present invention is not limited to this. For example, two moving mechanisms 490 may be provided to move the rear first wire 481b to the rear side. Further, for example, when the tension of the first wire 481 increases, the lower wire support member 491a and the upper wire support member 491b may move rearward. In this case, both the front first wire 81a and the rear first wire 481b can be moved in a direction away from the second rotation center axis J2 by one moving mechanism 490.
 また、上述した本実施形態の移動機構490は、第3実施形態の移動機構390a,390bと互いに組み合わされていてもよい。また、各移動機構は、第2ワイヤ82に対して設けられていてもよい。 Further, the moving mechanism 490 of the present embodiment described above may be combined with the moving mechanisms 390a and 390b of the third embodiment. In addition, each moving mechanism may be provided for the second wire 82.
 なお、上述した各実施形態のマニピュレータは、いかなる機器、装置等に用いられてもよい。また、駆動ユニットおよび駆動ユニットによって連結されるアームの数は、特に限定されない。 In addition, the manipulator of each embodiment mentioned above may be used for any apparatus, apparatus, etc. Moreover, the number of arms connected by the drive unit and the drive unit is not particularly limited.
 また、上記の各構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。 Further, the above-described configurations can be appropriately combined within a range that does not contradict each other.
 1…マニピュレータ、20…支持部材(第1部材)、21…第1モータ(第1駆動装置)、21a…第1出力軸(出力軸)、22…第2モータ(第2駆動装置)、22a…第2出力軸(出力軸)、31…第1プーリ(第1回転部材)、32…第2プーリ(第2回転部材)、33…第3プーリ(第3回転部材)、43…上腕部(第2部材)、46…前腕部(第2部材)、47…手部(第2部材)、50…張力調整機構、81,181,481…第1ワイヤ(第1伝達部材)、82,182…第2ワイヤ(第2伝達部材)、124a,124b…モータ挟持部材(第2部材)、124c…接続部材(第2部材)、230…可変機構、390a,390b,490…移動機構、J1,J3,J5…第1回転中心軸、J2,J4,J6…第2回転中心軸 DESCRIPTION OF SYMBOLS 1 ... Manipulator, 20 ... Support member (1st member), 21 ... 1st motor (1st drive device), 21a ... 1st output shaft (output shaft), 22 ... 2nd motor (2nd drive device), 22a ... 2nd output shaft (output shaft), 31 ... 1st pulley (1st rotation member), 32 ... 2nd pulley (2nd rotation member), 33 ... 3rd pulley (3rd rotation member), 43 ... Upper arm part (Second member), 46 ... forearm part (second member), 47 ... hand part (second member), 50 ... tension adjusting mechanism, 81, 181, 481 ... first wire (first transmission member), 82, 182 ... second wire (second transmission member), 124a, 124b ... motor clamping member (second member), 124c ... connection member (second member), 230 ... variable mechanism, 390a, 390b, 490 ... movement mechanism, J1 , J3, J5: First rotation center axis, J2, J4, J6: During second rotation Axis

Claims (6)

  1.  第1部材と、
     前記1部材に対して、第1回転中心軸周りに回転可能に取り付けられた第2部材と、
     前記第1部材と前記第2部材との両方に対して、前記第1回転中心軸周りに回転可能に取り付けられた第1回転部材および第2回転部材と、
     前記第1部材に対して、前記第1回転中心軸と異なる第2回転中心軸周りに回転可能に取り付けられた第3回転部材と、
     前記第1回転部材を前記第1回転中心軸周りに回転させる第1駆動装置と、
     前記第2回転部材を前記第1回転中心軸周りに回転させる第2駆動装置と、
     前記第1回転部材と前記第3回転部材とを連結し、張力を介して、前記第1回転部材の回転を前記第3回転部材に伝達する第1伝達部材と、
     前記第2回転部材と前記第3回転部材とを連結し、張力を介して、前記第2回転部材の回転を前記第3回転部材に伝達する第2伝達部材と、
     を備え、
     前記第1伝達部材は、前記第1回転部材に前記第1回転中心軸周り一方向きの回転トルクが加えられた際に、前記第3回転部材に対して、前記第2回転中心軸周り一方向きの回転トルクを伝達し、
     前記第2伝達部材は、前記第2回転部材に前記第1回転中心軸周り一方向きの回転トルクが加えられた際に、前記第3回転部材に対して、前記第2回転中心軸周り他方向きの回転トルクを伝達することを特徴とするマニピュレータ。
    A first member;
    A second member attached to the one member so as to be rotatable around a first rotation center axis;
    A first rotating member and a second rotating member which are attached to both the first member and the second member so as to be rotatable around the first rotation center axis;
    A third rotating member attached to the first member so as to be rotatable around a second rotation center axis different from the first rotation center axis;
    A first driving device for rotating the first rotating member around the first rotation center axis;
    A second driving device for rotating the second rotating member around the first rotation center axis;
    A first transmission member that connects the first rotation member and the third rotation member and transmits the rotation of the first rotation member to the third rotation member via a tension;
    A second transmission member that connects the second rotation member and the third rotation member, and transmits the rotation of the second rotation member to the third rotation member via a tension;
    With
    The first transmission member is directed in one direction around the second rotation center axis with respect to the third rotation member when a rotation torque in one direction around the first rotation center axis is applied to the first rotation member. The rotational torque of
    The second transmission member faces the other direction around the second rotation center axis with respect to the third rotation member when a rotation torque in one direction around the first rotation center axis is applied to the second rotation member. A manipulator characterized by transmitting the rotational torque of the motor.
  2.  前記第1駆動装置および前記第2駆動装置は、前記第2部材に固定されている、請求項1に記載のマニピュレータ。 The manipulator according to claim 1, wherein the first driving device and the second driving device are fixed to the second member.
  3.  前記第1駆動装置の出力軸および前記第2駆動装置の出力軸は、前記第1回転中心軸を中心とし、
     前記第1駆動装置の出力軸には、前記第1回転部材が固定され、
     前記第2駆動装置の出力軸には、前記第2回転部材が固定されている、請求項2に記載のマニピュレータ。
    The output shaft of the first drive device and the output shaft of the second drive device are centered on the first rotation center axis,
    The first rotating member is fixed to the output shaft of the first driving device,
    The manipulator according to claim 2, wherein the second rotating member is fixed to an output shaft of the second driving device.
  4.  前記第1伝達部材の張力を調整する張力調整機構をさらに備える、請求項1から3のいずれか一項に記載のマニピュレータ。 The manipulator according to any one of claims 1 to 3, further comprising a tension adjustment mechanism that adjusts a tension of the first transmission member.
  5.  前記第1回転部材は、前記第1伝達部材の張力が大きいほど前記第1回転部材の直径を小さくする可変機構を備える、請求項1から4のいずれか一項に記載のマニピュレータ。 The manipulator according to any one of claims 1 to 4, wherein the first rotating member includes a variable mechanism that reduces the diameter of the first rotating member as the tension of the first transmission member increases.
  6.  前記第1伝達部材を、前記第1伝達部材の張力が大きいほど前記第2回転中心軸から離れた位置に移動させる移動機構をさらに備える、請求項1から5のいずれか一項に記載のマニピュレータ。 The manipulator according to any one of claims 1 to 5, further comprising a moving mechanism that moves the first transmission member to a position farther from the second rotation center axis as the tension of the first transmission member increases. .
PCT/JP2017/015793 2016-05-31 2017-04-19 Manipulator WO2017208656A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018520708A JP6928960B2 (en) 2016-05-31 2017-04-19 manipulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-109120 2016-05-31
JP2016109120 2016-05-31

Publications (1)

Publication Number Publication Date
WO2017208656A1 true WO2017208656A1 (en) 2017-12-07

Family

ID=60478312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015793 WO2017208656A1 (en) 2016-05-31 2017-04-19 Manipulator

Country Status (2)

Country Link
JP (1) JP6928960B2 (en)
WO (1) WO2017208656A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023106731A1 (en) * 2021-12-10 2023-06-15 주식회사 로엔서지컬 Tension maintenance structure of joint driving wire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112109071A (en) * 2020-08-31 2020-12-22 中国科学院沈阳自动化研究所 High-dexterity assembling mechanism in narrow space

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176296A (en) * 1984-09-21 1986-04-18 株式会社東芝 Joint device
JPH03505067A (en) * 1988-04-21 1991-11-07 マサチューセッツ インスティテュート オブ テクノロジー Compact cable transmission with cable differential
JP2008232360A (en) * 2007-03-22 2008-10-02 Toshiba Corp Wire drive mechanism, robot arm mechanism, and robot
JP2009201607A (en) * 2008-02-26 2009-09-10 Terumo Corp Manipulator
JP2015506724A (en) * 2011-11-23 2015-03-05 リブスメド インコーポレーテッド Differential member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176296A (en) * 1984-09-21 1986-04-18 株式会社東芝 Joint device
JPH03505067A (en) * 1988-04-21 1991-11-07 マサチューセッツ インスティテュート オブ テクノロジー Compact cable transmission with cable differential
JP2008232360A (en) * 2007-03-22 2008-10-02 Toshiba Corp Wire drive mechanism, robot arm mechanism, and robot
JP2009201607A (en) * 2008-02-26 2009-09-10 Terumo Corp Manipulator
JP2015506724A (en) * 2011-11-23 2015-03-05 リブスメド インコーポレーテッド Differential member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023106731A1 (en) * 2021-12-10 2023-06-15 주식회사 로엔서지컬 Tension maintenance structure of joint driving wire

Also Published As

Publication number Publication date
JP6928960B2 (en) 2021-09-01
JPWO2017208656A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
US10532458B2 (en) Robotic manipulator
US8434387B2 (en) Industrial robot
US5193963A (en) Force reflecting hand controller
US9802327B2 (en) Robot arm and robot
JP5528207B2 (en) Link actuator
JP5675258B2 (en) Link actuator
KR950002356B1 (en) Industrial robot with servo
US20190351562A1 (en) Gripping device and robot
WO2017208656A1 (en) Manipulator
KR101462250B1 (en) Robotic manipulator using rotary drives
JP2010094749A (en) Articulated robot and robot system
WO2020196164A1 (en) Parallel link mechanism and link operation device
US9114527B2 (en) Robot
WO2018105584A1 (en) Industrial robot
JP2013094920A (en) Joint mechanism and work attachment
JP2006250296A (en) Nonlinear elasticity mechanism and articulation mechanism for robot
Ahn et al. Reduction in gravitational torques of an industrial robot equipped with 2 DOF passive counterbalance mechanisms
CN111989191A (en) Parallel motion robot
US20220015842A1 (en) 3d printed robot for holding medical instruments during procedures and its control
JPH1086090A (en) Joint mechanism and robot used for it
JP2020015152A (en) Robot arm
US5553509A (en) Three degree of freedom robotic manipulator constructed from rotary drives
WO2013015165A1 (en) Constant-velocity universal joint and link actuator
JP7374737B2 (en) Detection device, drive device, control method for drive device, robot device, control method for robot device, detection method, method for manufacturing articles using robot device, program, and recording medium
WO2014207873A1 (en) Scissors gear, drive transmission mechanism, robot, and method for producing scissors gear

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018520708

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806216

Country of ref document: EP

Kind code of ref document: A1