WO2017208559A1 - Half mirror, and mirror with image display function - Google Patents

Half mirror, and mirror with image display function Download PDF

Info

Publication number
WO2017208559A1
WO2017208559A1 PCT/JP2017/009980 JP2017009980W WO2017208559A1 WO 2017208559 A1 WO2017208559 A1 WO 2017208559A1 JP 2017009980 W JP2017009980 W JP 2017009980W WO 2017208559 A1 WO2017208559 A1 WO 2017208559A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
liquid crystal
half mirror
circularly polarized
image display
Prior art date
Application number
PCT/JP2017/009980
Other languages
French (fr)
Japanese (ja)
Inventor
昭裕 安西
寛 稲田
渉 馬島
田口 貴雄
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016122604A external-priority patent/JP6632479B2/en
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2017208559A1 publication Critical patent/WO2017208559A1/en
Priority to US16/172,192 priority Critical patent/US20190072819A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a half mirror and a mirror with an image display function.
  • a half mirror is provided on the surface of the image display unit of the image display device, and an image display function is provided to display an image in the display mode and to display a mirror reflection image as a mirror in the non-display mode such as when the image display device is turned off.
  • the mirror is described in, for example, Patent Document 1 and Patent Document 2.
  • Patent Literature 1 a liquid crystal display device is provided inside a housing for a vehicle mirror, and an image is displayed via a half mirror provided on the front surface of the vehicle mirror, thereby realizing an image display on the mirror. It is disclosed.
  • Patent Document 2 there is a disclosure relating to a mirror with an information display function applied to a mirror for interior, makeup, crime prevention, and safety.
  • Patent Document 1 does not pay attention to such a problem.
  • Patent Document 2 a reflective polarizing plate is used as a half mirror, the linearly polarized light emitted from the image display device and the transmission axis of the reflective polarizing plate are combined, light loss is eliminated, and image quality is further improved. There is description about.
  • the present inventors have examined using a cholesteric liquid crystal layer for a half mirror. This is because a display image and a mirror reflection image can be observed without direction dependency even through polarized sunglasses by using a circularly polarized reflective cholesteric liquid crystal layer. Furthermore, it has been found that a quarter wave plate can be provided between the cholesteric liquid crystal layer and the linearly polarized light emitted from the image display device can be used without loss.
  • the half mirror having such a configuration has faced a new problem that a color change occurs in a mirror reflection image under a high temperature environment.
  • a half mirror is used for a vehicle, use at a high temperature is assumed, and thus the above-described color change can be a serious problem.
  • the inventors have further studied to solve this problem, and have completed the present invention.
  • a circularly polarized light reflecting layer including a cholesteric liquid crystal layer, a barrier layer, an adhesive layer, and a front plate
  • the barrier layer is a half mirror provided between the adhesive layer and the circularly polarized light reflecting layer.
  • the cholesteric liquid crystal layer is a layer obtained by curing a liquid crystal composition containing a polymerizable liquid crystal compound and a polymerization initiator.
  • the barrier layer is a layer obtained by curing a composition containing a monomer containing a polymerizable group.
  • the half mirror according to the polymerizable groups Y 1 and the polymerizable groups Y 1 of the above monomers satisfy the polymerizable group content
  • X 1 Togashiki 1 is a value obtained by dividing the molecular weight of the monomer [7] .
  • the monomer is a urethane (meth) acrylate monomer, and the polymerizable group number Y 2 of the urethane (meth) acrylate monomer and the glass transition temperature X 2 of the composition satisfy Formula 2.
  • [7] to [10 ] Is a half mirror. Y 2 > ⁇ 0.0066 X 2 +5.33 Equation 2
  • the half mirror includes a quarter-wave plate, The half mirror according to any one of [1] to [13], including the quarter-wave plate, the circularly polarized light reflection layer, and the front plate in this order.
  • a mirror with an image display function comprising the half mirror according to any one of [1] to [15] and an image display device, the image display device, the circularly polarizing reflection layer, and the front plate in this order.
  • a novel half mirror and a mirror with an image display function using the same are provided.
  • a bright display image and mirror reflection image can be observed without direction dependency even through polarized sunglasses.
  • FIGS. 1a) to 1g) are diagrams schematically showing an example of the layer configuration of a half mirror.
  • FIG. 2 (a) is a graph of TOF-SIMS measurement results showing the material distribution in the film thickness direction of the laminate before and after the laminate including the circularly polarized light reflection layer and the adhesive layer was left at high temperature. The initiator distribution is shown.
  • FIG. 2 (b) is a graph of TOF-SIMS measurement results showing the material distribution in the film thickness direction of the laminate before and after the laminate including the circularly polarized light reflection layer and the adhesive layer was left at high temperature. The distribution of decomposition products of the initiator is shown.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • an angle such as “45 °”, “parallel”, “vertical” or “orthogonal” is within a range where the difference from the exact angle is less than 5 ° unless otherwise specified. Means. The difference from the exact angle is preferably less than 4 °, more preferably less than 3 °.
  • (meth) acrylate is used to mean “one or both of acrylate and methacrylate”.
  • “selective” for circularly polarized light means that either the right circularly polarized light component or the left circularly polarized light component has more light than the other circularly polarized light component.
  • the degree of circular polarization of light is preferably 0.3 or more, more preferably 0.6 or more, and even more preferably 0.8 or more. More preferably, it is substantially 1.0.
  • sense for circularly polarized light means right circularly polarized light or left circularly polarized light.
  • the sense of circularly polarized light is right-handed circularly polarized light when the electric field vector tip turns clockwise as time increases when viewed as the light travels toward you, and left when it turns counterclockwise. Defined as being circularly polarized.
  • the term “sense” is sometimes used for the twist direction of the spiral of the cholesteric liquid crystal.
  • the twist direction (sense) of the spiral of the cholesteric liquid crystal is right, the right circularly polarized light is reflected and the left circularly polarized light is transmitted.
  • the cholesteric liquid crystal spiral sense is on the left, it reflects left circularly polarized light and transmits right circularly polarized light.
  • Visible light is light having a wavelength visible to the human eye among electromagnetic waves, and indicates light having a wavelength range of 380 nm to 780 nm.
  • Infrared rays are electromagnetic waves in the wavelength range that are longer than visible rays and shorter than radio waves.
  • near infrared light is an electromagnetic wave having a wavelength range of 780 nm to 2500 nm.
  • the surface of the half mirror on the front plate side with respect to the circularly polarized reflective layer and the surface of the mirror with an image display function on the front plate side with respect to the circularly polarized reflective layer may be referred to as the front surface, respectively.
  • image for a mirror with an image display function means an image that can be viewed and observed when the image is displayed on the image display unit of the image display device.
  • mirror reflection image for a mirror with an image display function means an image that can be viewed and observed when the image is not displayed on the image display unit of the image display device.
  • the front phase difference is a value measured using an AxoScan manufactured by Axometrics.
  • the front phase difference is a value measured by making light in a wavelength range of visible light such as the central wavelength of selective reflection of the cholesteric liquid crystal layer incident in the normal direction of the film in KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments). You can also When selecting the measurement wavelength, the wavelength selection filter can be exchanged manually, or the measurement value can be converted by a program or the like.
  • the front phase difference is sometimes referred to as “Re”.
  • reflectance when “reflectance” at a predetermined wavelength is referred to, it is a measured value of reflectivity when set to each wavelength using a spectrophotometer. Specifically, the reflectance at each wavelength can be measured using a spectrophotometer V-670 (manufactured by JASCO Corporation).
  • the half mirror of the present invention includes a circularly polarized light reflecting layer, an adhesive layer, and a front plate.
  • the half mirror of the present invention may include a circularly polarized light reflecting layer, an adhesive layer, and a front plate in this order, or may include an adhesive layer, a circularly polarized light reflecting layer, and a front plate in this order.
  • the half mirror of the present invention may be a half mirror with a polarizer including a front plate, a circularly polarized light reflection layer, and a polarizer in this order.
  • the half mirror of the present invention further includes a barrier layer between the circularly polarized light reflecting layer and the adhesive layer.
  • the half mirror may include other layers such as an adhesive layer other than the adhesive layer or a quarter wave plate.
  • FIGS. 11a) to 1g) schematically show examples of the layer structure of the half mirror of the present invention.
  • FIG. 1a) has a glass substrate or a plastic film as a front plate, an adhesive layer between the front plate and the circularly polarized reflective layer, and further includes a barrier layer between the adhesive layer and the circularly polarized reflective layer. The configuration is shown.
  • FIG. 1b) shows a configuration that further includes a quarter-wave plate in the configuration of FIG. 1a).
  • FIG. 1c) shows a configuration in which the front plate includes an optical functional layer.
  • FIG. 1d) shows a configuration in which a laminate of a high Re retardation film and an optical functional layer is bonded to the surface of a glass substrate or a plastic film.
  • FIG. 1a) has a glass substrate or a plastic film as a front plate, an adhesive layer between the front plate and the circularly polarized reflective layer, and further includes a barrier layer between the adhesive layer and the circularly polarized reflective layer. The configuration is
  • FIGS. 1f) and 1g) show examples of the layer structure of a half mirror with a polarizer.
  • an optical functional layer is formed on the surface of the support and the alignment layer when the circularly polarized light reflecting layer is formed to constitute a front plate.
  • a barrier layer is formed on the surface of the circularly polarized light reflecting layer, and a quarter wave plate and then a polarizer are bonded. The barrier layer is provided on the polarizer side when viewed from the circularly polarized light reflecting layer.
  • the area of the main surface of the front plate may be larger than the area of the main surface of the circularly polarized light reflecting layer, or may be the same or smaller.
  • “main surface” refers to the surface (front surface or back surface) of a plate-like or film-like member.
  • the circularly polarized light reflecting layer may be bonded to a part of the main surface of the front plate, and another type of reflecting layer such as a metal foil may be bonded or formed at other portions. With such a configuration, an image can be displayed on a part of the mirror. On the other hand, a circularly polarized light reflecting layer may be adhered to the entire front plate main surface.
  • the film thickness of the half mirror is not particularly limited, but is preferably 100 ⁇ m to 20 mm, more preferably 200 ⁇ m to 15 mm, and even more preferably 300 ⁇ m to 10 mm.
  • the half mirror may be plate-shaped or film-shaped, and may have a curved surface.
  • the half mirror may be flat or curved.
  • a curved half mirror can be produced using a curved front plate.
  • ⁇ Circularly polarized reflective layer> When the circular mirror is used as a mirror with an image display function, an image is displayed on the front surface of the mirror with an image display function by transmitting light emitted from the image display device when the image is displayed. On the other hand, when the image is not displayed, it is a layer that reflects at least part of incident light from the front surface and functions so that the front surface of the mirror with the image display function becomes a mirror.
  • the half mirror includes a circularly polarized light reflection layer, incident light from the front surface can be reflected as circularly polarized light, and incident light from the image display device can be transmitted as circularly polarized light. Therefore, the mirror with an image display function including the half mirror according to the present invention does not depend on the relationship between the transmission axis direction of the polarized sunglasses and the horizontal direction of the mirror with the image display function, even through the polarized sunglasses. A mirror reflection image can be observed.
  • the circularly polarized light reflection layer includes a cholesteric liquid crystal layer.
  • the circularly polarized light reflection layer preferably includes at least three cholesteric liquid crystal layers.
  • the circularly polarized light reflecting layer may include four or more cholesteric liquid crystal layers.
  • the circularly polarized light reflecting layer may include other layers such as an alignment layer in addition to the cholesteric liquid crystal layer, or may be composed of only the cholesteric liquid crystal layer.
  • the plurality of cholesteric liquid crystal layers are preferably in direct contact with adjacent cholesteric liquid crystal layers.
  • the film thickness of the circularly polarized light reflecting layer is preferably in the range of 2.0 ⁇ m to 300 ⁇ m, more preferably in the range of 6.0 ⁇ m to 100 ⁇ m.
  • a cholesteric liquid crystal layer means a layer in which a cholesteric liquid crystal phase is fixed.
  • the cholesteric liquid crystal layer is sometimes simply referred to as a liquid crystal layer.
  • the cholesteric liquid crystal phase selectively reflects the circularly polarized light of either the right circularly polarized light or the left circularly polarized light in a specific wavelength range and selectively transmits the circularly polarized light of the other sense. It is known to show.
  • the circularly polarized light selective reflection is sometimes simply referred to as selective reflection.
  • the cholesteric liquid crystal layer may be a layer that maintains the orientation of the liquid crystal compound that is in the cholesteric liquid crystal phase.
  • a polymerizable liquid crystal compound is brought into an alignment state of a cholesteric liquid crystal phase, and then polymerized and cured by ultraviolet irradiation or heating to form a non-flowable layer, and an alignment form by an external field or an external force. Any layer may be used as long as it is changed to a state that does not cause any change.
  • the cholesteric liquid crystal layer it is sufficient that the optical properties of the cholesteric liquid crystal phase are maintained in the layer, and the liquid crystal compound in the layer may no longer exhibit liquid crystallinity.
  • the polymerizable liquid crystal compound may have a high molecular weight due to a curing reaction and may no longer have liquid crystallinity.
  • the selective reflection center wavelength and the half value width of the cholesteric liquid crystal layer can be obtained as follows.
  • the center wavelength of selective reflection means the center wavelength when measured from the normal direction of the cholesteric liquid crystal layer.
  • the reflection spectrum of the cholesteric liquid crystal layer is measured using a spectrophotometer V-670 (Shimadzu Corporation)
  • a reflection peak is observed in the selective reflection region.
  • the wavelength value on the short wavelength side is ⁇ l (nm)
  • the wavelength value on the long wavelength side is ⁇ h (nm )
  • the center wavelength and the full width at half maximum of selective reflection can be expressed by the following equations.
  • the reflection spectrum is observed from the normal reflection direction ( ⁇ 5 ° from the normal direction) when light is irradiated from the + 5 ° direction from the normal direction of the cholesteric liquid crystal layer.
  • the central wavelength ⁇ of selective reflection possessed by the cholesteric liquid crystal layer thus obtained usually coincides with the wavelength at the center of gravity of the reflection peak of the circularly polarized reflection spectrum measured from the normal direction of the cholesteric liquid crystal layer.
  • the center wavelength of selective reflection can be adjusted by adjusting the pitch of the spiral structure.
  • the center wavelength ⁇ can be adjusted in order to selectively reflect either the right circularly polarized light or the left circularly polarized light with respect to light of a desired wavelength by adjusting the n value and the P value.
  • n ⁇ P the center wavelength of selective reflection when a light beam passes at an angle of ⁇ 2 with respect to the normal direction of the cholesteric liquid crystal layer (helical axis direction of the cholesteric liquid crystal layer) is ⁇ d .
  • ⁇ d n 2 ⁇ P ⁇ cos ⁇ 2
  • the center wavelength of selective reflection of the cholesteric liquid crystal layer included in the circularly polarized light reflecting layer it is possible to prevent the visibility of the image from being viewed obliquely.
  • the pitch of the cholesteric liquid crystal phase depends on the type of chiral agent used together with the polymerizable liquid crystal compound or the concentration of the chiral agent, the desired pitch can be obtained by adjusting these.
  • For the method of measuring spiral sense and pitch use the methods described in “Introduction to Liquid Crystal Chemistry Experiments”, edited by the Japanese Liquid Crystal Society, Sigma Publishing 2007, page 46, and “Liquid Crystal Handbook”, Liquid Crystal Handbook Editing Committee, page 196. be able to.
  • the central wavelength of selective reflection of the cholesteric liquid crystal layer By adjusting the central wavelength of selective reflection of the cholesteric liquid crystal layer to be used according to the emission wavelength range of the image display device and the usage mode of the circularly polarized light reflection layer, a bright image can be displayed with high light utilization efficiency.
  • the usage of the circularly polarized light reflecting layer include an incident angle of light to the circularly polarized light reflecting layer, an image observation direction, and the like.
  • the circularly polarized light reflection layer includes a cholesteric liquid crystal layer having a central wavelength of selective reflection in a red light wavelength range, a cholesteric liquid crystal layer having a central wavelength of selective reflection in a wavelength range of green light, and blue It is preferable to include a cholesteric liquid crystal layer having a central wavelength of selective reflection in the wavelength region of light.
  • the reflective layer is, for example, a cholesteric liquid crystal layer having a central wavelength of selective reflection in 400 nm to 500 nm, a cholesteric liquid crystal layer having a central wavelength of selective reflection in 500 nm to 580 nm, and a cholesteric liquid crystal having a central wavelength of selective reflection in 580 nm to 700 nm. It is preferable to include a layer. Further, when the circularly polarized light reflection layer includes a plurality of cholesteric liquid crystal layers, it is preferable that the cholesteric liquid crystal layer closer to the image display device has a longer selective reflection center wavelength. With such a configuration, it is possible to suppress a color change during oblique observation in the image and the mirror reflection image.
  • a cholesteric liquid crystal layer having a central wavelength of selective reflection in the infrared light region may be included in the circularly polarized light reflection layer.
  • the center wavelength of selective reflection in the infrared light region may specifically be in the range of 780 to 900 nm, and preferably in the range of 780 to 850 nm.
  • the cholesteric liquid crystal layer having a central wavelength of selective reflection is provided in the infrared light region, it is preferable that the cholesteric liquid crystal layer having a central wavelength of selective reflection in the visible light region is on the image display device side.
  • the central wavelength of selective reflection of each cholesteric liquid crystal layer is 5 nm or more with the wavelength of the emission peak of the image display device. It is preferable to make them different. This difference is more preferably 10 nm or more.
  • the peak wavelength only needs to be a peak wavelength in the visible light region of the emission spectrum, and includes, for example, an emission peak wavelength ⁇ R of red light, an emission peak wavelength ⁇ G of green light, and an emission peak wavelength ⁇ B of blue light. Any one or more selected from the group may be used.
  • the central wavelength of selective reflection of the cholesteric liquid crystal layer is 5 nm or more for any of the above-described red light emission peak wavelength ⁇ R, green light emission peak wavelength ⁇ G, and blue light emission peak wavelength ⁇ B of the image display device, preferably It is preferably different by 10 nm or more.
  • the central wavelength of selective reflection of all the cholesteric liquid crystal layers is different from the wavelength of the peak of light emitted from the image display device by 5 nm or more, preferably 10 nm or more. do it.
  • the image display device is a full-color display device showing an emission peak wavelength ⁇ R of red light, an emission peak wavelength ⁇ G of green light, and an emission peak wavelength ⁇ B of blue light in the emission spectrum during white display
  • All of the central wavelengths of selective reflection of the cholesteric liquid crystal layer may be different from each of ⁇ R, ⁇ G, and ⁇ B by 5 nm or more, preferably 10 nm or more.
  • the circularly polarized light reflection layer includes three cholesteric liquid crystal layers having different selective reflection center wavelengths represented by ⁇ 1, ⁇ 2, and ⁇ 3, the relationship of ⁇ B ⁇ 1 ⁇ G ⁇ 2 ⁇ R ⁇ 3 is satisfied. It is preferable that
  • each cholesteric liquid crystal layer a cholesteric liquid crystal layer whose spiral sense is either right or left is used.
  • the sense of reflected circularly polarized light in the cholesteric liquid crystal layer coincides with the sense of a spiral. It is preferable that the spiral senses of the plurality of cholesteric liquid crystal layers are all the same.
  • the sense of the spiral at that time is a circle that is more contained in the light immediately after being emitted from the image display device and transmitted through the quarter wave plate as each cholesteric liquid crystal layer. What is necessary is just to determine according to the sense of polarization.
  • a cholesteric liquid crystal layer having a spiral sense that transmits circularly polarized light of sense contained more in light immediately after being emitted from the image display device and transmitted through the quarter-wave plate may be used.
  • ⁇ n can be adjusted by adjusting the kind of the polymerizable liquid crystal compound and the mixing ratio thereof, or by controlling the temperature at the time of fixing the alignment.
  • a plurality of cholesteric liquid crystal layers having the same pitch P and the same spiral sense may be stacked. By laminating cholesteric liquid crystal layers having the same pitch P and the same spiral sense, the circularly polarized light selectivity can be increased at a specific wavelength.
  • the half mirror of the present invention includes a front plate.
  • the front plate may be a plate shape or a film shape, and may have a curved surface.
  • the front plate may be flat or curved.
  • Such a curved front plate can be produced by a plastic processing method such as injection molding.
  • injection molding for example, a resin product can be obtained by melting raw plastic pellets with heat, injecting them into a mold, and then cooling and solidifying.
  • the front plate is directly bonded to the circularly polarized light reflecting layer and the adhesive layer, or the front plate and the circularly polarized light reflecting layer are in direct contact with each other.
  • the material of the front plate is not particularly limited.
  • the front plate should just contain the glass plate and plastic film which are used for preparation of a normal mirror.
  • plastic film materials include polycarbonate, acrylic resin, epoxy resin, polyurethane, polyamide, polyolefin, cellulose derivatives such as triacetylcellulose, silicone, polyester such as polyethylene terephthalate (PET), polyacetal, polyarylate, and the like.
  • the support used when forming the cholesteric liquid crystal layer may be a front plate. At this time, the front plate may include an alignment layer.
  • the film thickness of the front plate may be about 100 ⁇ m to 10 mm, preferably 200 ⁇ m to 5 mm, more preferably 500 ⁇ m to 2 mm, and still more preferably 500 ⁇ m to 1000 ⁇ m.
  • the front plate may include a high Re retardation film.
  • the plastic film may include a high Re retardation film, or may include a high Re retardation film in addition to the plastic film not corresponding to a glass plate or a high Re retardation film.
  • the front plate may include an optical function layer.
  • the term “high Re phase difference film” means a phase difference film having a high front phase difference, which is distinguished from a quarter wave plate (phase difference plate).
  • the front retardation of the high Re retardation film is preferably 3000 nm or more, and more preferably 5000 nm or more.
  • the front retardation of the high Re retardation film is preferably as large as possible, but may be 100000 nm or less, 50000 nm or less, 40000 nm or less, or 30000 nm or less in consideration of manufacturing efficiency and thinning.
  • the high Re retardation film can eliminate light / dark unevenness or color unevenness that may occur in a mirror reflection image or image. Brightness / darkness unevenness or color unevenness can occur in a mirror reflection image for the following reason, for example.
  • tempered glass for example, tempered glass that is not a laminated glass
  • vehicle window glass particularly rear glass
  • tempered glass has a birefringence distribution.
  • light and dark unevenness or color unevenness occurs in the mirror reflection image based on the light that passes through the rear glass of the vehicle and enters the front surface of the mirror with an image display function.
  • the high Re retardation film examples include a birefringent material such as a plastic film and a quartz plate.
  • the plastic film examples include polyester films such as polyethylene terephthalate (PET), polycarbonate films, polyacetal films, polyarylate films, and the like. JP-A-2013-257579, JP-A-2015-102636, and the like can be referred to for a retardation film having a high retardation including PET.
  • Commercial products such as optical Cosmo Shine (registered trademark) super birefringence type (Toyobo) may be used.
  • plastic films with high phase difference are melt-extruded from resin, cast on a drum, etc., and formed into a film shape. While heating this, it is stretched 2 to 5 times uniaxially or biaxially. It can be formed by stretching at a magnification.
  • a heat treatment called “heat setting” may be performed at a temperature exceeding the stretching temperature after stretching.
  • optical functional layer examples include a hard coat layer, an antiglare layer, an antireflection layer, and an antistatic layer.
  • the optical functional layer is preferably a cured layer of a polymerizable composition provided on a glass plate or a plastic film.
  • the optical functional layer is preferably provided so that the optical functional layer, the glass plate or plastic film, and the circularly polarized light reflecting layer are in this order.
  • the hard coat layer may be included as the outermost layer of the half mirror, and another layer may be further provided outside the hard coat layer.
  • the hard coat layer refers to a layer that, when formed, increases the pencil hardness of the half mirror surface. Specifically, it is a layer having a pencil hardness (JIS K5400) of H or higher after the hard coat layer lamination.
  • the pencil hardness after laminating the hard coat layer is preferably 2H or more, and more preferably 3H or more.
  • the thickness of the hard coat layer is preferably 0.1 ⁇ m to 100 ⁇ m, more preferably 1.0 ⁇ m to 70 ⁇ m, and further preferably 2.0 ⁇ m to 50 ⁇ m.
  • the hard coat layer may also serve as an antireflection layer or an antistatic layer.
  • the hard coat layer include a layer formed from a composition containing an ultraviolet curable polymerizable compound.
  • the composition may contain other components such as particles.
  • As the ultraviolet curable polymerizable compound (meth) acrylate is preferable.
  • As for the material and the production method of the hard coat layer reference can be made to JP-A-2016-071085, JP-A-2012-168295, JP-A-2011-225846, and the like.
  • the antiglare layer is a layer for imparting antiglare properties based on surface scattering.
  • the antiglare layer may be included as the outermost layer of the half mirror, and another layer may be further provided outside the antiglare layer.
  • the antiglare layer can be formed from a composition containing a binder resin-forming compound for the antiglare layer and particles for the antiglare layer.
  • material and production method of the antiglare layer reference can be made to the descriptions of 0101 to 0109 of JP2013-178484A, JP2016-053601A, and the like.
  • the antireflection layer is preferably included on the outermost surface of the half mirror. By providing the antireflection layer, the reflected light on the outermost surface is suppressed, and a mirror reflection image based on an image derived from the light from the polarizing reflection plate can be clearly observed.
  • the description in 0049 to 0053 of WO2015 / 050202 can be referred to.
  • the antistatic layer is preferably contained on the outermost surface of the half mirror.
  • the material and manufacturing method of the antistatic layer reference can be made to the descriptions in 0020 to 0028 of JP 2012-027191 A.
  • the half mirror of the present invention includes a circularly polarizing reflection layer and an adhesive layer for adhesion of the front plate.
  • the adhesive layer for bonding the circularly polarized light reflecting layer and the front plate is an adhesive layer included between the circularly polarized light reflecting layer and the front plate.
  • Adhesive layer is acrylate, urethane, urethane acrylate, epoxy, epoxy acrylate, polyolefin, modified olefin, polypropylene, ethylene vinyl alcohol, vinyl chloride, chloroprene rubber, cyanoacrylate, polyamide Any adhesive may be used as long as it is formed from an adhesive containing a compound such as polyimide, polystyrene, or polyvinyl butyral.
  • acrylate, urethane acrylate, epoxy acrylate, and the like are preferable.
  • the adhesive there are a hot melt type, a thermosetting type, a photocuring type, a reaction curing type, and a pressure-sensitive adhesive type that does not require curing from the viewpoint of a curing method. From the viewpoint of workability and productivity, the photocuring type is preferred as the curing method.
  • the adhesive layer for bonding the circularly polarized light reflecting layer and other layers is not a hot melt type. That is, it is preferably not a thermoplastic weld layer.
  • a thermoplastic welding layer is a layer which melt
  • the adhesive layer for bonding the circularly polarized light reflection layer and other layers is made of a pressure-sensitive adhesive type adhesive that does not require curing. Examples of pressure-sensitive adhesives include acrylate-based, urethane-based, and silicone-based adhesives, and acrylate-based adhesives are particularly preferable.
  • the adhesive may be a sheet or a liquid.
  • the sheet-like adhesive include a pressure-sensitive adhesive type that does not require curing, and a type that performs thermal curing or photocuring after placing the sheet.
  • an OCA tape highly transparent adhesive transfer tape
  • OCA tapes are generally marketed in the form of having a peelable protective sheet on one or both sides of the adhesive layer, and this adhesive layer can be used as the adhesive layer.
  • the liquid adhesive include OCR (highly transparent optical resin).
  • the sheet-like adhesive When the sheet-like adhesive is used as an adhesive layer for adhesion of the circularly polarized reflective layer and other layers, the above problem that the color change occurs in the mirror reflection image under high temperature conditions is specifically becomes particularly prominent when the adhesive layer in the OCA tape is used.
  • the sheet-like adhesive generally has a low Tg and a high fluidity, and therefore, it is considered that the substance easily flows from the outside in a high temperature environment. Therefore, the effect of providing the barrier layer is particularly remarkable when a sheet-like adhesive is used for forming the adhesive layer.
  • the sheet-like adhesive examples include acrylates, urethanes, and silicones, and acrylates are particularly preferable.
  • OCA tape that can be used as a sheet-like adhesive
  • a commercially available product for an image display device particularly a product marketed for the surface of an image display unit of an image display device may be used.
  • Examples of commercially available products include PANAC Corporation pressure sensitive adhesive sheets (PD-S1 and the like), Nichiei Kako MHM series pressure sensitive adhesive sheets, 3M Corporation OCA8146, and the like.
  • the film thickness of the adhesive layer is preferably 0.50 ⁇ m or more and 50 ⁇ m or less, and more preferably 1.0 ⁇ m or more and 25 ⁇ m or less.
  • the half mirror of the present invention includes a barrier layer.
  • the barrier layer is included between the adhesive layer and the circularly polarized light reflecting layer.
  • the barrier layer and the circularly polarized light reflecting layer are preferably in direct contact.
  • the barrier layer is preferably in direct contact with the cholesteric liquid crystal layer in the circularly polarized light reflecting layer.
  • a half mirror including a cholesteric liquid crystal layer may cause a color change in a mirror reflection image under a high temperature condition, particularly a high temperature and high humidity condition.
  • a color change can occur in an environment of 40 ° C. to 200 ° C., particularly in an environment of 65 ° C. to 110 ° C.
  • color changes can occur in an environment of 85 ° C. to 110 ° C. at a relative humidity of 40%, and in an environment of 65 ° C. to 85 ° C. at a relative humidity of 85%.
  • the color change is based on the fact that the selective reflection center wavelength of a cholesteric liquid crystal layer described later is shifted by a short wavelength under a high temperature environment.
  • the inventors have obtained a result that a substance is considered to have moved from the cholesteric liquid crystal layer to the adhesive layer in a high temperature environment, and provided a barrier layer for suppressing this movement. The above problem was solved.
  • the film thickness of the cholesteric liquid crystal layer is reduced due to the movement of the material constituting the cholesteric liquid crystal layer to the outside at high temperatures.
  • the pitch P is reduced and the selective reflection center wavelength is shifted by a short wavelength.
  • the barrier layer is a layer that can suppress the movement of components in the cholesteric liquid crystal layer to the outside in a high temperature environment.
  • a layer capable of suppressing the movement of components in the cholesteric liquid crystal layer to the adhesive layer is preferable.
  • the barrier layer is preferably a layer in which the components in the cholesteric liquid crystal layer are difficult to move.
  • the component in the cholesteric liquid crystal layer whose movement is suppressed by the barrier layer include a polymerization initiator, an unreacted polymerizable liquid crystal compound, and any of the above decomposition products. Among these, it is preferable that the movement of the component selected from the polymerization initiator and the decomposition product of the polymerization initiator is suppressed.
  • That the movement can be suppressed means that the amount of components detected in the cholesteric liquid crystal layer is increased compared to the amount of components detected in the cholesteric liquid crystal layer of the half mirror having the same configuration except that there is no barrier layer. It means that you can.
  • the detection at this time may be performed by cutting the half mirror and analyzing the surface of the cholesteric liquid crystal layer.
  • the fact that movement can be suppressed is detected by the barrier layer and the adhesive layer compared to the amount of components in the cholesteric liquid crystal layer detected by the adhesive layer of the half mirror having the same configuration except that there is no barrier layer. This means that the amount of components in the cholesteric liquid crystal layer can be reduced.
  • the detection at this time may be performed by cutting the half mirror and performing surface analysis of both the adhesive layer or the barrier layer and the adhesive layer. Specifically, the above-described detection is performed for each half mirror after being left in a high temperature environment, and the amount may be substantially reduced. Examples of the surface analysis include X-ray photoelectric spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Moreover, the leaving in a high temperature environment should just be performed at 110 degreeC for 160 hours.
  • XPS X-ray photoelectric spectroscopy
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • the barrier layer is preferably transparent in the visible light region.
  • Transparent in the visible light region means that the light transmittance in the visible light region is 80% or more, preferably 85% or more.
  • the light transmittance used as a measure of transparency is the light transmittance determined by the method described in JIS A5759. That is, the transmittance at a wavelength of 380 nm to 780 nm is measured with a spectrophotometer, and the weight obtained from the spectral distribution of CIE (International Commission on Illumination) daylight D65, the wavelength distribution of CIE light adaptation standard relative luminous sensitivity, and the wavelength interval. The light transmittance is obtained by multiplying the coefficient and performing a weighted average.
  • the barrier layer preferably has a small birefringence.
  • the front phase difference may be 20 nm or less, preferably less than 10 nm, and more preferably 5 nm or less.
  • the barrier layer may be an inorganic layer or an organic layer, for example.
  • barrier layer When the barrier layer is an organic layer, it is preferably a barrier layer formed from a composition having a high glass transition temperature (Tg). This is because it is strong in a high temperature environment.
  • Tg glass transition temperature
  • DSC differential scanning calorimetry
  • DSC device DSC6200, manufactured by SII Technology ⁇ Atmosphere in measurement chamber: Nitrogen (50 mL / min) ⁇ Raising rate: 10 ° C / min ⁇ Measurement start temperature: 0 °C -Measurement end temperature: 200 ° C ⁇ Sample pan: Aluminum pan ⁇ Measurement sample mass: 5 mg -Calculation of Tg: Tg is the intermediate temperature between the descent start point and descent end point of the DSC chart. However, the measurement is performed twice with the same sample, and the second measurement result is adopted.
  • Tg is preferably 80 ° C. or higher, and more preferably 100 ° C. or higher.
  • Tg is preferably 500 ° C. or lower, and more preferably 300 ° C. or lower.
  • the barrier layer is preferably hydrophilic.
  • the SP value Solubility Parameter (solubility parameter or solubility parameter)
  • the solubility parameter (SP value) can be determined by the Okitsu method. For details on the Okitsu method, see Journal of the Japan Adhesion Society Vol. 29, no. 6 (1993) 249-259.
  • the barrier layer which is an organic layer
  • a layer obtained by curing a composition containing a monomer containing a polymerizable group is preferable.
  • a urethane (meth) acrylate monomer, a (meth) acrylate monomer, and an epoxy monomer are mentioned.
  • the monomer preferably has a large number of polymerizable groups.
  • the monomer may be used as a mixture of two or more monomers.
  • Urethane (meth) acrylate monomer contains a urethane bond represented by formula (I) and a (meth) acryloyl group.
  • R represents a hydrogen atom or a hydrocarbon group.
  • the “hydrocarbon group” means a monovalent group composed of only carbon atoms and hydrogen atoms, and examples thereof include aromatic ring groups such as alkyl groups, cycloalkyl groups, phenyl groups, and naphthyl groups.
  • R is preferably a hydrogen atom.
  • the urethane (meth) acrylate monomer is a compound obtained from an addition reaction using a polyisocyanate compound and a hydroxyl group-containing (meth) acrylate compound, or an addition reaction using a polyalcohol compound and an isocyanate group-containing (meth) acrylate compound. .
  • the polyisocyanate compound is preferably diisocyanate or triisocyanate.
  • Specific examples of the polyisocyanate compound include toluene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, tolylene diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane and the like.
  • Examples of the hydroxyl group-containing (meth) acrylate compound include pentaerythritol triacrylate, dipentaerythritol pentaacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, and the like.
  • Examples of the polyalcohol compound include ethylene glycol, propylene glycol, glycerin, pentaerythritol, dipentaerythritol, trimethylolethane, trimethylolpropane, and the like.
  • Examples of the isocyanate group-containing (meth) acrylate compound include 2-isocyanatoethyl acrylate and 2-isocyanatoethyl methacrylate.
  • the urethane (meth) acrylate monomer preferably contains two or more (meth) acryloyl groups, more preferably three or more, and still more preferably four or more.
  • the upper limit of the number of (meth) acryloyl groups in the urethane (meth) acrylate monomer is not particularly limited, but may be 30 or less, more preferably 20 or less, and even more preferably 18 or less.
  • the molecular weight of the urethane (meth) acrylate monomer is preferably 400 to 8000, more preferably 500 to 5000.
  • urethane (meth) acrylate monomer Commercial products may be used as the urethane (meth) acrylate monomer. Commercially available products include U-2PPA, U-4HA, U-6LPA, U-10PA, UA-1100H, U-10HA, U-15HA, UA-53H, UA-33H, U-, manufactured by Shin-Nakamura Kogyo Co., Ltd. 200PA, UA-160TM, UA-290TM, UA-4200, UA-4400, UA-122P, UA-7100, UA-W2A and Kyoeisha Chemical Co., Ltd.
  • EBERCRYL204 EBERCRYL205, EBERCRYL210, EBERCRYL215, EBERCRYL220L 44, EBERCRYL245, EBERCRYL264, EBERCRYL265, EBERCRYL270, EBERCRYL280 / 15IB, EBERCRYL284, EBERCRYL285, EBERCRYL294 / 25HD, EBERCRYL1259, EBERCRYL1290, EBERCRYL8200, EBERCRYL8200AE, EBERCRYL4820, EBERCRYL4858, EBERCRYL5129, EBERCRYL8210, EBERCRYL8254, EBERCRYL8301R, EBERCRYL83
  • Examples of preferable urethane (meth) acrylate monomers include U-6LPA and U-4HA.
  • the urethane (meth) acrylate monomer is also preferably used in combination with a urethane polymer.
  • a urethane-based polymer is a generic term for polymers having a urethane bond in the main chain, and is usually obtained by reaction of polyisocyanate and polyol.
  • the polyisocyanate include toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), and isophorone diisocyanate (IPDI).
  • examples of the polyol include ethylene glycol, propylene glycol, glycerin, and hexanetriol. It is done.
  • the urethane polymer may be a polymer obtained by subjecting polyurethane obtained by the reaction of polyisocyanate and polyol to chain extension treatment to increase the molecular weight.
  • polyisocyanate, polyol, and chain extension treatment for example, “Polyurethane Resin Handbook” (Akita Seida, edited by Nikkan Kogyo Shimbun, published in 1987) can be referred to.
  • 8BR-600 manufactured by Taisei Fine Chemical Co., Ltd.
  • the urethane polymer preferably has a molecular weight of 10,000 to 200,000, more preferably 15,000 to 150,000.
  • the urethane polymer is used in the composition for forming a barrier layer in an amount of 1.0 to 50 with respect to the total mass (solid content) of the composition. It is preferably contained in an amount of 10% by mass, more preferably 10 to 40% by mass.
  • the (meth) acrylate monomer for example, compounds described in paragraphs 0024 to 0036 of JP2013-43382A or paragraphs 0036 to 0048 of JP2013-43384A can be used. Further, a polyfunctional acrylic monomer having a fluorene skeleton described in WO2013 / 047524 can also be used.
  • the (meth) acrylate monomer is selected from the group consisting of Shinnakamura's DPHA and ADCP, Toagosei's SP327, and Nippon Kayaku's KAYARAD PET30, KAYARAD DPCA20, DPCA30, DPCA60, and DPCA120.
  • One or more monomers are preferred. This is because Tg is particularly high and there are many polymerizable groups.
  • the epoxy monomer may be any monomer containing an epoxy group.
  • bisphenol A hydrogenated bisphenol A, bisphenol F, hydrogenated bisphenol F, novolak, other aromatic, alicyclic, heterocyclic, glycidyl ester, or glycidylamine epoxy
  • glycidyl (meth) acrylate, triglycidyl isocyanurate, and the like can be used.
  • epoxy monomers include EHPE3150, CEL2021P, CEL8000, Cyclomer M100 (Daicel), JER1031S, JER157S65, JER1007, JER152, JER154, JERYX6810 (Mitsubishi Chemical Corporation), Denacol EX411, Denacol EX8, EX821, Denacol EX825, Denacol EX841 (Nagase ChemteX Corporation), EPICLON HP-4032D, EPICLON EXA1514, EPICLON HP-7200, EPICLON HP7200L, EPICLON HP7200H, EPICLON N670, EPICLON N6 Of these, CEL2021P, CEL8000, cyclomer M100, and EPICLON HP-4032D are particularly preferable.
  • the monomer is preferably contained in an amount of 50 to 100% by mass, preferably 80 to 99% by mass, based on the total mass (solid content) of the composition. It is more preferable.
  • the composition for forming the barrier layer may contain a polymerization initiator.
  • a polymerization initiator is preferably 0.1 mol% or more, more preferably 0.5 to 5 mol% of the total amount of the monomers.
  • the polymerization initiator include the following cationic photopolymerization initiators in addition to the same examples as the polymerization initiators that can be used in the liquid crystal composition described later.
  • an epoxy monomer is used as the monomer, it is preferable to use a cationic photopolymerization initiator.
  • a cation can be generated as an active species by light irradiation.
  • Specific examples include known sulfonium salts, ammonium salts, iodonium salts (for example, diaryl iodonium salts), triarylsulfonium salts, A diazonium salt, an iminium salt, etc. are mentioned. More specifically, for example, cationic photopolymerization initiators represented by formulas (25) to (28) shown in paragraphs 0050 to 0053 of JP-A-8-143806, JP-A-8-283320 In the paragraph 0020, those exemplified as the cationic polymerization catalyst can be exemplified.
  • Examples of commercially available cationic photopolymerization initiators include CI-1370, CI-2064, CI-2397, CI-2624, CI-2634, CI-2734, CI-2758, CI-2758 manufactured by Nippon Soda Co., Ltd. 2823, CI-2855 and CI-5102, PHOTOINITIATOR 2047 manufactured by Rhodia, UVI-6974, UVI-6990 manufactured by Union Carbide, and CPI-10P manufactured by San Apro.
  • a diazonium salt, an iodonium salt, a sulfonium salt, and an iminium salt are preferable from the viewpoints of sensitivity of the photopolymerization initiator to light and stability of the compound. Moreover, an iodonium salt is more preferable from the point of weather resistance.
  • iodonium salts examples include B2380 manufactured by Tokyo Chemical Industry Co., Ltd., BBI-102 manufactured by Midori Chemical Co., Ltd., WPI-113, WPI-124, WPI- manufactured by Wako Pure Chemical Industries, Ltd. 169, WPI-170, and DTBPI-PFBS manufactured by Toyo Gosei.
  • Specific examples of the iodonium salt compound that can be used as the cationic photopolymerization initiator include the following compounds PAG-1 and PAG-2.
  • composition for forming the barrier layer may further contain other components such as a surfactant.
  • the number of polymerizable groups Y 1 and the polymerizable group content X 1 of the monomer in the composition satisfy Formula 1.
  • the inventors have found that when the formula 1 is satisfied, the generation of cracks in the barrier layer can be more effectively prevented.
  • Equation 1 if the number of polymerizable groups in the monomer is too large, cracks are likely to occur, and if the molecular weight relative to the number of polymerizable groups is large, cracks are likely to occur even if the number of polymerizable groups is lower.
  • the polymerizable group content is a value obtained by dividing the number of polymerizable groups of the monomer by the molecular weight (number of polymerizable groups / molecular weight).
  • Y 1 and X 1 is an average value in consideration of the percentage of the total monomer weight of the monomer weight of each composition. Therefore, it is preferable to use a monomer that does not satisfy Formula 1 alone as a mixture with other monomers and a composition that satisfies Formula 1.
  • the barrier layer is a layer obtained by curing a composition containing a urethane (meth) acrylate monomer
  • the number of polymerizable groups Y 2 of the urethane (meth) acrylate monomer and the glass transition temperature (Tg) X 2 of the composition are It is preferable to satisfy Equation 2.
  • the present inventors have found that when the formula 2 is satisfied, the heat resistance of the barrier layer becomes higher.
  • the number of polymerizable groups of the urethane (meth) acrylate monomer is preferably large, as can be seen from Formula 2, when Tg is large, the number of polymerizable groups may be relatively low.
  • the composition comprises a plurality of monomers
  • Y 2 and X 2 is an average value in consideration of the percentage of the total monomer weight of the monomer weight of each composition. Therefore, it is preferable to use a monomer that does not satisfy Formula 2 alone as a mixture with other monomers and a composition that satisfies Formula 2.
  • the barrier layer is a layer obtained by curing a composition containing an epoxy monomer
  • the polymerizable group number Y 3 of the epoxy monomer and the glass transition temperature (Tg) X 3 of the composition satisfy the formula 3.
  • the present inventors have found that when Formula 3 is satisfied, generation of cracks in the barrier layer can be more effectively prevented.
  • the number of polymerizable groups of the epoxy monomer is preferably large, but as can be seen from Formula 3, when the Tg of the composition containing the epoxy monomer is large, the number of polymerizable groups may be relatively low.
  • the composition comprises a plurality of monomers
  • Y 3 and X 3 is an average value in consideration of the percentage of the total monomer weight of the monomer weight of each composition. Therefore, it is preferable to use a monomer that does not satisfy Formula 3 alone as a mixture with other monomers and a composition that satisfies Formula 3.
  • the film thickness of the barrier layer which is an organic layer is preferably 0.1 ⁇ m or more and 20 ⁇ m or less, more preferably 0.5 ⁇ m or more and 10 ⁇ m or less, and further preferably 1.2 ⁇ m or more and 3.0 ⁇ m or less. .
  • the formation of the barrier layer from the above composition is preferably performed by a method including applying the composition for forming the barrier layer on the cholesteric liquid crystal layer, preferably on the surface of the cholesteric liquid crystal layer.
  • the composition for forming the barrier layer may contain a solvent for good application.
  • the layer after application may be dried and cured by a method suitable for the composition used to form a barrier layer. Curing is preferably performed by photocuring.
  • the solvent, coating method, and photocuring condition that may be contained in the composition for forming the barrier layer the description for the liquid crystal composition described later can be referred to.
  • the barrier layer is an inorganic layer
  • a high density is desirable. This is to make it difficult to pass components in the cholesteric liquid crystal layer.
  • the density of the inorganic layer is preferably 2.1 to 2.4 g / cm 3 . Low density inorganic layers tend to have low barrier performance. On the other hand, if the density is too high, the flexibility is lowered, and peeling or cracking due to stress tends to occur.
  • the density of the inorganic layer shown in this specification is determined by XRR (X-ray reflectivity). The calculation of the density from the XRR measurement result may be performed by simulation using software.
  • XRR measurement can be performed by, for example, ATX (manufactured by Rigaku Corporation).
  • the simulation can be performed using, for example, analysis software GXRR (manufactured by Rigaku Corporation). It is assumed that the inorganic layer is a single layer.
  • the inorganic layer preferably contains, for example, metal oxide, metal nitride, metal oxynitride or metal carbide.
  • metal oxide, metal nitride, metal oxynitride or metal carbide preferably contains one or more metals selected from Si, Al, In, Sn, Zn, Ti, Cu, Ce, Ta, Nb, Zr, and La Nitride carbide or the like.
  • a metal oxide, nitride, or oxynitride selected from Si, Ti, Nb, Zr, and La is preferable. Specific examples include silicon oxide, tantalum oxide, zirconium oxide, titanium oxide, niobium oxide, and lanthanum titanate.
  • the inorganic layer can be formed by any method that can form a target thin film.
  • vapor deposition may be ion-assisted vapor deposition
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • Etc plating and sol-gel methods Etc.
  • the film thickness of the barrier layer, which is an inorganic layer is preferably 1.0 nm or more and 1000 nm or less, more preferably 3.0 nm or more and 500 nm or less, and further preferably 5.0 nm or more and 100 nm or less.
  • the half mirror of the present invention may include a quarter wavelength plate.
  • a half mirror including a quarter wavelength plate and forming a mirror with an image display function as a configuration including a quarter wavelength plate between the image display device and the circularly polarized light reflection layer. Therefore, the light reflected by the circularly polarized light reflection layer and returning to the image display device side can be greatly reduced, and a bright image can be displayed.
  • the quarter wave plate may be a retardation layer that functions as a quarter wave plate in the visible light region.
  • the quarter-wave plate include a single-layer quarter-wave plate, a broadband quarter-wave plate in which a quarter-wave plate and a half-wave retardation plate are stacked, and the like.
  • the front phase difference of the former 1 ⁇ 4 wavelength plate may be 1 ⁇ 4 of the emission wavelength of the image display device. Therefore, for example, when the emission wavelength of the image display device is 450 nm, 530 nm, and 640 nm, the wavelength of 450 nm is 112.5 nm ⁇ 10 nm, preferably 112.5 nm ⁇ 5 nm, more preferably 112.5 nm, and 530 nm.
  • Inverse dispersion phase difference such that the phase difference is 5 nm ⁇ 10 nm, preferably 132.5 nm ⁇ 5 nm, more preferably 132.5 nm, 160 nm ⁇ 10 nm, preferably 160 nm ⁇ 5 nm, more preferably 160 nm at a wavelength of 640 nm
  • a layer is most preferable as a quarter-wave plate, but a retardation plate having a small retardation wavelength dispersion or a forward dispersion retardation plate can also be used.
  • the reverse dispersion means a property that the absolute value of the phase difference becomes larger as the wavelength becomes longer, and the forward dispersion means a property that the absolute value of the phase difference becomes larger as the wavelength becomes shorter.
  • the laminated quarter-wave plate is formed by laminating a quarter-wave plate and a half-wave retardation plate at an angle of 60 ° with the slow axis, and the side of the half-wave retardation plate is linearly polarized. It is arranged on the incident side and the slow axis of the half-wave retardation plate is used so as to cross 15 ° or 75 ° with respect to the polarization plane of the incident linearly polarized light. Can be suitably used because of its good resistance.
  • quartz plate stretched polycarbonate film, stretched norbornene polymer film, transparent film containing inorganic particles exhibiting birefringence such as strontium carbonate, and oblique deposition of inorganic dielectric on support Thin films and the like.
  • the quarter wavelength plate examples include (1) a birefringent film having a large retardation and a birefringence having a small retardation described in JP-A-5-27118 and JP-A-5-27119.
  • a commercial item can also be used as a quarter wavelength plate, As a commercial item, brand name: Pure Ace WR (made by Teijin Ltd.) etc. are mentioned, for example.
  • the quarter wavelength plate may be formed by arranging and fixing a polymerizable liquid crystal compound or a polymer liquid crystal compound.
  • a liquid crystal composition is applied to the surface of a temporary support, an alignment film, or a front plate, and a polymerizable liquid crystal compound in the liquid crystal composition is formed into a nematic alignment in a liquid crystal state, and then photocrosslinked. It can be formed by immobilization by thermal crosslinking. Details of the liquid crystal composition or the production method will be described later.
  • the quarter wavelength plate is formed by applying a liquid crystal composition on a surface of a temporary support, an alignment film or a front plate to form a nematic alignment in a liquid crystal state, and then cooling the composition containing a polymer liquid crystal compound. It may be a layer obtained by fixing the orientation.
  • the quarter-wave plate may be bonded to the circularly polarized light reflection layer by an adhesive layer, or may be in direct contact, but the latter is preferred.
  • the quarter-wave plate is preferably laminated with the circularly polarized light reflecting layer with the same main surface area.
  • a preparation material and a preparation method of a quarter-wave plate formed from a cholesteric liquid crystal layer and a liquid crystal composition will be described.
  • the material used for forming the quarter wavelength plate include a liquid crystal composition containing a polymerizable liquid crystal compound.
  • the material used for forming the cholesteric liquid crystal layer preferably further contains a chiral agent (optically active compound).
  • a cholesteric liquid crystal layer as a support, a temporary support, an alignment film, a quarter-wave plate, or a lower layer, which is mixed with a surfactant or a polymerization initiator as necessary and dissolved in a solvent. It can apply
  • a rod-like liquid crystal compound may be used as the polymerizable liquid crystal compound.
  • the rod-like polymerizable liquid crystal compound include a rod-like nematic liquid crystal compound.
  • rod-like nematic liquid crystal compounds include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines.
  • Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used. Not only low-molecular liquid crystal compounds but also high-molecular liquid crystal compounds can be used.
  • the polymerizable liquid crystal compound can be obtained by introducing a polymerizable group into the liquid crystal compound.
  • the polymerizable group include an unsaturated polymerizable group, an epoxy group, and an aziridinyl group, preferably an unsaturated polymerizable group, and particularly preferably an ethylenically unsaturated polymerizable group.
  • the polymerizable group can be introduced into the molecule of the liquid crystal compound by various methods.
  • the number of polymerizable groups possessed by the polymerizable liquid crystal compound is preferably 1 to 6, more preferably 1 to 3. Examples of polymerizable liquid crystal compounds are described in Makromol. Chem. 190, 2255 (1989), Advanced Materials 5, 107 (1993), US Pat. No.
  • the addition amount of the polymerizable liquid crystal compound in the liquid crystal composition is preferably 80 to 99.9% by mass with respect to the solid content mass (mass excluding the solvent) of the liquid crystal composition, and is preferably 85 to 99. It is more preferably 5% by mass, particularly preferably 90 to 99% by mass.
  • the liquid crystal composition used for forming the cholesteric liquid crystal layer preferably contains a chiral agent.
  • the chiral agent has a function of inducing a helical structure of a cholesteric liquid crystal phase.
  • the chiral compound may be selected according to the purpose because the helical sense or helical pitch induced by the compound is different. There is no restriction
  • Examples of chiral agents include liquid crystal device handbook (Chapter 3, Section 4-3, TN, chiral agent for STN, page 199, edited by Japan Society for the Promotion of Science, 142th Committee, 1989), Japanese Patent Application Laid-Open No. 2003-287623. And compounds described in JP-A Nos. 2002-302487, 2002-80478, 2002-80851, 2010-181852 and 2014-034581.
  • a chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound containing no asymmetric carbon atom can also be used as the chiral agent.
  • the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the chiral agent may have a polymerizable group. When both the chiral agent and the liquid crystal compound have a polymerizable group, they are derived from the repeating unit derived from the polymerizable liquid crystal compound and the chiral agent by a polymerization reaction between the polymerizable chiral agent and the polymerizable liquid crystal compound.
  • the polymerizable group possessed by the polymerizable chiral agent is preferably the same group as the polymerizable group possessed by the polymerizable liquid crystal compound. Therefore, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Particularly preferred.
  • the chiral agent may be a liquid crystal compound.
  • an isosorbide derivative As the chiral agent, an isosorbide derivative, an isomannide derivative, or a binaphthyl derivative can be preferably used.
  • an isosorbide derivative a commercial product such as LC-756 manufactured by BASF may be used.
  • the content of the chiral agent in the liquid crystal composition is preferably from 0.01 mol% to 200 mol%, more preferably from 1.0 mol% to 30 mol%, based on the total molar amount of the polymerizable liquid crystal compound.
  • the liquid crystal composition preferably contains a polymerization initiator.
  • the polymerization initiator to be used is preferably a photopolymerization initiator capable of initiating the polymerization reaction by ultraviolet irradiation, and particularly preferably a radical photopolymerization initiator.
  • radical photopolymerization initiators include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), ⁇ -hydrocarbon substitution Aromatic acyloin compounds (described in US Pat. No.
  • acyl phosphine oxide compound As the polymerization initiator, it is also preferable to use an acyl phosphine oxide compound or an oxime compound.
  • acylphosphine oxide compound for example, IRGACURE819 (compound name: bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide) manufactured by BASF Japan Ltd. can be used.
  • Examples of the oxime compounds include IRGACURE OXE01 (manufactured by BASF), IRGACURE OXE02 (manufactured by BASF), TR-PBG-304 (manufactured by Changzhou Strong Electronic New Materials Co., Ltd.), Adeka Arcles NCI-831, Adeka Arcles NCI-930 Commercial products such as (ADEKA) and Adeka Arcles NCI-831 (ADEKA) can be used.
  • the content of the polymerization initiator in the liquid crystal composition is preferably 0.1 to 20% by mass, and preferably 0.5 to 5.0% by mass with respect to the content of the polymerizable liquid crystal compound. Is more preferable.
  • the liquid crystal composition may optionally contain a crosslinking agent in order to improve the film strength after curing and improve the durability.
  • a crosslinking agent one that can be cured by ultraviolet rays, heat, moisture, or the like can be suitably used.
  • polyfunctional acrylate compounds such as a trimethylol propane tri (meth) acrylate and pentaerythritol tri (meth) acrylate
  • Glycidyl (meth) acrylate Epoxy compounds such as ethylene glycol diglycidyl ether; aziridine compounds such as 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) diphenylmethane; hexa Isocyanate compounds such as methylene diisocyanate and biuret type isocyanate; polyoxazoline compounds having an oxazoline group in the side chain; vinyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylto Alkoxysilane compounds such as methoxy silane.
  • a well-known catalyst can be used according to the reactivity of a crosslinking agent, and productivity can be improved in addition to membrane strength and durability improvement. These may be used individually by 1 type and may use 2 or more types together.
  • the content of the crosslinking agent in the liquid crystal composition is preferably 3.0% by mass to 20% by mass, and more preferably 5.0% by mass to 15% by mass. When the content of the crosslinking agent is 3.0% by mass or more, an effect of improving the crosslinking density can be obtained. Moreover, the stability of the layer formed can be maintained by setting it as 20 mass% or less.
  • an alignment control agent that contributes to stable or rapid planar alignment may be added.
  • the alignment control agent include fluorine (meth) acrylate polymers described in paragraphs 0018 to 0043 of JP 2007-272185 A, and formulas (I) described in paragraphs 0031 to 0034 of JP 2012-203237 A, and the like.
  • To (IV) 1 type may be used independently and 2 or more types may be used together.
  • the addition amount of the alignment control agent in the liquid crystal composition is preferably 0.01% by mass to 10% by mass and more preferably 0.01% by mass to 5.0% by mass with respect to the total mass of the polymerizable liquid crystal compound. 0.02% by mass to 1.0% by mass is particularly preferable.
  • the liquid crystal composition may contain at least one selected from a surfactant for adjusting the surface tension of the coating film to make the film thickness uniform, and various additives such as a polymerizable monomer.
  • a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, a colorant, metal oxide fine particles, and the like may be added as long as the optical performance is not deteriorated. Can be added.
  • solvent there is no restriction
  • the organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, ketones, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons, esters, ethers, etc. Is mentioned. These may be used individually by 1 type and may use 2 or more types together. Among these, ketones are particularly preferable in consideration of environmental load.
  • the method for applying the liquid crystal composition to the temporary support, the alignment film, the quarter-wave plate, the underlying cholesteric liquid crystal layer, etc. is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include a wire bar coating method, a curtain coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, a die coating method, a spin coating method, a dip coating method, a spray coating method, and a slide coating method. It can also be carried out by transferring a liquid crystal composition separately coated on a support. The liquid crystal molecules are aligned by heating the applied liquid crystal composition.
  • cholesteric alignment may be performed, and in forming the quarter-wave plate, nematic alignment is preferable.
  • the heating temperature is preferably 200 ° C. or lower, and more preferably 130 ° C. or lower.
  • the heating temperature is preferably 50 ° C. to 120 ° C., more preferably 60 ° C. to 100 ° C.
  • the aligned liquid crystal compound can be further polymerized to cure the liquid crystal composition.
  • the polymerization may be either thermal polymerization or photopolymerization utilizing light irradiation, but photopolymerization is preferred. It is preferable to use ultraviolet rays for light irradiation.
  • the irradiation energy is preferably 20mJ / cm 2 ⁇ 50J / cm 2, 100mJ / cm 2 ⁇ 1,500mJ / cm 2 is more preferable.
  • light irradiation may be performed under heating conditions or in a nitrogen atmosphere.
  • the irradiation ultraviolet wavelength is preferably 350 nm to 430 nm.
  • the polymerization reaction rate is preferably high from the viewpoint of stability, preferably 70% or more, and more preferably 80% or more.
  • the polymerization reaction rate can be determined by measuring the consumption rate of the polymerizable group using an IR absorption spectrum.
  • each cholesteric liquid crystal layer is not particularly limited as long as it exhibits the above characteristics, but is preferably in the range of 1.0 to 150 ⁇ m, more preferably in the range of 4.0 to 100 ⁇ m. Good.
  • the thickness of the quarter-wave plate formed from the liquid crystal composition is not particularly limited, but is preferably 0.2 ⁇ m to 10 ⁇ m, more preferably 0.5 ⁇ m to 2.0 ⁇ m.
  • the liquid crystal composition may be applied to the support, the temporary support, or the surface of the alignment layer formed on the support or the temporary support surface to form a layer.
  • the temporary support or the temporary support and the alignment layer may be peeled off after forming the layer. For example, what is necessary is just to peel, after adhere
  • the temporary support may function as a protective film after the circularly polarized reflective layer is bonded to the front plate and further until the circularly polarized reflective layer is bonded to the image display device.
  • the support may be left as a layer constituting the half mirror without being peeled off.
  • the front plate, the circularly polarizing reflection layer, and the support may be arranged in this order (for example, FIG. 1 (e) and FIG. 1 (g)).
  • the support may constitute a front plate (for example, FIG. 1 (f)).
  • Examples of the temporary support and the support include a plastic film or a glass plate.
  • plastic film materials include polyesters such as polyethylene terephthalate (PET), polycarbonate, acrylic resins, epoxy resins, polyurethanes, polyamides, polyolefins, cellulose derivatives such as triacetyl cellulose, and silicones.
  • PET polyethylene terephthalate
  • the temporary support is preferably a polyethylene terephthalate (PET) film, and the support is preferably a triacetyl cellulose film.
  • the alignment layer has a rubbing treatment of organic compounds such as polymers (resins such as polyimide, polyvinyl alcohol, polyester, polyarylate, polyamideimide, polyetherimide, polyamide, modified polyamide), oblique deposition of inorganic compounds, and microgrooves. It can be provided by means such as formation of a layer or accumulation of an organic compound (for example, ⁇ -tricosanoic acid, dioctadecylmethylammonium chloride, methyl stearylate) using the Langmuir-Blodgett method (LB film).
  • organic compounds such as polymers (resins such as polyimide, polyvinyl alcohol, polyester, polyarylate, polyamideimide, polyetherimide, polyamide, modified polyamide), oblique deposition of inorganic compounds, and microgrooves. It can be provided by means such as formation of a layer or accumulation of an organic compound (for example, ⁇ -tricosanoic acid, dio
  • an alignment layer that generates an alignment function by application of an electric field, application of a magnetic field, or light irradiation may be used.
  • the alignment layer made of a polymer is preferably subjected to a rubbing treatment and then a liquid crystal composition is applied to the rubbing treatment surface.
  • the rubbing treatment can be performed by rubbing the surface of the polymer layer several times in a certain direction with paper or cloth.
  • the liquid crystal composition may be applied to the surface of the temporary support without providing the alignment layer, or to the surface on which the temporary support has been rubbed.
  • the thickness of the alignment layer is preferably 0.01 ⁇ m to 5.0 ⁇ m, and more preferably 0.05 ⁇ m to 2.0 ⁇ m.
  • ⁇ Laminated film of layers formed from polymerizable liquid crystal compound> When forming a multi-layer film composed of a plurality of cholesteric liquid crystal layers and a multi-layer film composed of a quarter-wave plate and a plurality of cholesteric liquid crystal layers, each is directly applied to the surface of the quarter-wave plate or the previous cholesteric liquid crystal layer.
  • the liquid crystal composition containing a polymerizable liquid crystal compound or the like may be applied, and the steps of alignment and fixing may be repeated.
  • a separately prepared quarter wave plate, cholesteric liquid crystal layer, or a laminate thereof is used with an adhesive or the like. However, the former is preferable. This is because the interference unevenness derived from the film thickness unevenness of the adhesive layer becomes difficult to be observed.
  • the liquid crystal on the air interface side of the cholesteric liquid crystal layer formed earlier is formed by forming the next cholesteric liquid crystal layer so as to be in direct contact with the surface of the cholesteric liquid crystal layer formed earlier. This is because the orientation direction of the molecules matches the orientation direction of the liquid crystal molecules below the cholesteric liquid crystal layer formed thereon, and the polarization property of the laminate of the cholesteric liquid crystal layer is improved.
  • the half mirror can be produced by transferring a circularly polarized light reflecting layer formed on the temporary support, or a quarter wavelength plate and a circularly polarized light reflecting layer to the front plate.
  • a cholesteric liquid crystal layer or a laminate of cholesteric liquid crystal layers is formed on a temporary support to obtain a circularly polarized light reflecting layer.
  • the surface of the circularly polarized light reflection layer is bonded to the front plate through an adhesive layer. Thereafter, if necessary, the temporary support is peeled off and a quarter-wave plate is provided to obtain a half mirror.
  • a quarter wavelength plate and a cholesteric liquid crystal layer are sequentially formed on the temporary support to obtain a laminate of the quarter wavelength plate and the circularly polarized light reflection layer. Then, the surface of the cholesteric liquid crystal (circularly polarized light reflecting layer) is bonded to the front plate through an adhesive layer. Then, a half mirror can be obtained by peeling a temporary support body as needed.
  • the half mirror can be produced by adhering a circularly polarized light reflecting layer formed on a support, or a quarter wavelength plate and a circularly polarized light reflecting layer to the front plate.
  • the circularly polarized light reflecting layer formed on the support, or the circularly polarized light reflecting layer and 1 ⁇ 4 wavelength plate formed on the support can be used as a half mirror as it is with the support as the front plate.
  • a quarter-wave plate may be separately prepared and bonded.
  • a mirror with an image display function can be produced using the half mirror.
  • the mirror with an image display function includes the half mirror and the image display device.
  • the image display device, the circularly polarized light reflection layer, and the front plate are arranged in this order.
  • the image display device and the half mirror may be in direct contact with each other, an air layer may be present therebetween, or may be directly bonded via an adhesive layer.
  • a half mirror of the main surface having the same area as the image display unit of the image display device may be used, and the main surface area is larger or smaller than the image display unit of the image display device.
  • a half mirror may be used.
  • the slow axis of the quarter wavelength plate is adjusted so that the image is brightest. That is, the relationship between the polarization direction of the linearly polarized light (transmission axis) and the slow axis of the quarter-wave plate so that the linearly polarized light is transmitted best, particularly for an image display device displaying an image by linearly polarized light. Is preferably adjusted. For example, in the case of a quarter wavelength plate, it is preferable that the transmission axis and the slow axis form an angle of 45 °.
  • the light emitted from the image display device displaying an image by linearly polarized light is circularly polarized light of either right or left sense after passing through the quarter wavelength plate.
  • the circularly polarized light reflecting layer described later only needs to be composed of a cholesteric liquid crystal layer having a twist direction that transmits the circularly polarized light of the above-described sense.
  • the image display device is not particularly limited.
  • the image display device is preferably an image display device that emits (emits light) linearly polarized light to form an image.
  • the image display device is more preferably a liquid crystal display device or an organic EL device.
  • the liquid crystal display device may be a transmission type or a reflection type, and is particularly preferably a transmission type.
  • the liquid crystal display device includes IPS (In Plane Switching) mode, FFS (Fringe Field Switching) mode, VA (Vertical Alignment) mode, ECB (Electrically Controlled Birefringence) mode, STN (Super Twisted Nematic) mode, TN (Twisted Nematic) mode, Any liquid crystal display device such as an OCB (Optically Compensated Bend) mode may be used.
  • IPS In Plane Switching
  • FFS Frringe Field Switching
  • VA Very Alignment
  • ECB Electrical Controlled Birefringence
  • STN Super Twisted Nematic
  • TN Transmission Nematic
  • Any liquid crystal display device such as an OCB (Optically Compensated Bend) mode may be used.
  • the image displayed on the image display unit of the image display device may be a still image, a moving image, or simply text information. Further, it may be a monochrome display such as black and white, a multi-color display, or a full-color display.
  • a preferable example of the image displayed on the image display unit of the image display device is an image taken by a vehicle-mounted camera. This image is preferably a moving image.
  • the image display device only needs to indicate the emission peak wavelength ⁇ R of red light, the emission peak wavelength ⁇ G of green light, and the emission peak wavelength ⁇ B of blue light in the emission spectrum during white display.
  • ⁇ R may be any wavelength in the range of 580 nm to 700 nm, preferably in the range of 610 nm to 680 nm.
  • ⁇ G may be any wavelength in the range of 500 nm to 580 nm, preferably in the range of 510 nm to 550 nm.
  • ⁇ B may be any wavelength in the range of 400 nm to 500 nm, preferably in the range of 440 nm to 480 nm.
  • the half mirror or the mirror with an image display function of the present invention may include an image display device, a circularly polarized light reflection layer, and other adhesive layers for bonding each layer.
  • the adhesive layer may be formed from an adhesive.
  • the other adhesive layer the same adhesive layer as the adhesive layer for adhering the circularly polarized light reflecting layer and the front plate can be used.
  • an adhesive layer generally made of a sheet-like adhesive is preferable.
  • the mirror with an image display function can be manufactured by arranging the half mirror on the image display side of the image display device and integrating the image display device and the half mirror. In the half mirror, the image display device, the circularly polarizing reflection layer, and the front plate are arranged in this order.
  • the integration of the image display device and the half mirror may be performed by connection with a frame or a hinge or adhesion.
  • the mirror with an image display function of the present invention can be manufactured by adhering a half mirror to the image display surface of the image display device. Adhesion is performed so that the front plate, the circularly polarized light reflection layer, and the image display device are in this order.
  • the half mirror of the present invention may be provided as a half mirror with a polarizer. You may manufacture the mirror with an image display function using the half mirror with a polarizer. That is, in an image display device having a polarizing plate on the image display surface side, which is an image display device that emits linearly polarized light and forms an image, an image display function is achieved by using a half mirror with a polarizer instead of the polarizing plate.
  • a mirror can be manufactured.
  • the polarizer, the circularly polarized light reflection layer, and the front plate may be arranged in this order.
  • the polarizer may be bonded to, for example, a circularly polarized light reflection layer or a quarter wave plate.
  • the polarizer examples include an iodine polarizer, a dye polarizer using a dichroic dye, and a polyene polarizer.
  • the iodine-based polarizer and the dye-based polarizer are generally produced using a polyvinyl alcohol film.
  • a polarizer can be composed of modified or unmodified polyvinyl alcohol and dichroic molecules.
  • a polarizer composed of modified or unmodified polyvinyl alcohol and a dichroic molecule reference can be made to, for example, the description in JP-A-2009-237376.
  • the film thickness of a polarizer should just be 50 micrometers or less, 30 micrometers or less are preferable and 20 micrometers or less are more preferable. Moreover, the film thickness of a polarizer should just be 1.0 micrometer or more, 5.0 micrometers or more, or 10 micrometers or more normally.
  • the polarizer preferably has a polarizer protective layer on one or both main surfaces. In the case of having a polarizer protective layer on one of the main surfaces, the surface may be bonded to the circularly polarized light reflecting layer or the quarter-wave plate, or the opposite surface, but the opposite surface Preferably there is.
  • a cellulose acylate polymer film As the polarizer protective layer, a cellulose acylate polymer film, an acrylic polymer film, or a cycloolefin polymer film can be used.
  • cellulose acylate polymer reference can be made to the description of the cellulose acylate resin in JP2011-237474A.
  • the cycloolefin-based polymer film the descriptions in JP2009-175222A and JP2009-237376A can be referred to.
  • the polarizer protective layer may contain one or more of the above polymers as a main component, for example, 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more, 99% by mass or more. Or 100% by mass.
  • the film thickness of the polarizer protective layer may be 100 ⁇ m or less, 50 ⁇ m or less, 30 ⁇ m or less, 20 ⁇ m or less, 10 ⁇ m or less, or 1.0 ⁇ m or more, 5.0 ⁇ m or more, and 10 ⁇ m or more.
  • the polarizer protective layer may be provided by a method such as directly applying and drying the protective layer forming composition on the surface on which the protective layer is provided, or may be adhered via an adhesive layer.
  • the use of the mirror with an image display function is not particularly limited. For example, it can be used as a security mirror, a beauty salon or a barber mirror, and can display images such as character information, still images, and moving images. Further, the mirror with an image display function of the present invention may be a vehicle rearview mirror, and may be used as a television, a personal computer, a smartphone, or a mobile phone.
  • the mirror with an image display function is particularly preferably used as a vehicle rearview mirror.
  • the mirror with an image display function may have a frame, a housing, a support arm for attaching to the vehicle body, and the like for use as a rearview mirror.
  • the vehicle image display function-equipped mirror may be formed for incorporation into a room mirror. In the vehicle-mounted image display function-equipped mirror having the above shape, it is possible to specify the vertical and horizontal directions during normal use.
  • the mirror By curving the mirror with an image display function so that the convex curved surface is on the front side, it is possible to make a wide mirror that can visually recognize the rear visual field and the like in a wide angle.
  • a curved front surface can be produced using a curved half mirror.
  • the curve may be in the vertical direction, the horizontal direction, or both the vertical direction and the horizontal direction.
  • the curvature may be a curvature radius of 500 mm to 3000 mm. More preferably, it is 1000 mm to 2500 mm.
  • the radius of curvature is the radius of the circumscribed circle when the circumscribed circle of the curved portion is assumed in the cross section.
  • a coating solution for forming a cholesteric liquid crystal layer having the following composition.
  • Compound 1 80 parts by mass Compound 2 20 parts by mass Fluorine-based horizontal alignment agent 1 0.1 part by mass Fluorine-based horizontal alignment agent 2 0.007 parts by mass Right-turning chiral agent LC756 (manufactured by BASF) Target Adjusted according to the reflection wavelength of the polymerization initiator IRGACURE OXE01 (manufactured by BASF) 3.0 parts by mass Solvent (methyl ethyl ketone) Amount that the solute concentration is 30% by mass
  • Coating solutions 1 to 3 were prepared by adjusting the prescription amount of the chiral agent LC-756 having the above coating solution composition. Using each coating solution, a single cholesteric liquid crystal layer was prepared on a temporary support in the same manner as in the preparation of the following circularly polarized reflective layer, and the reflection characteristics were confirmed. The prepared cholesteric liquid crystal layers were all right circularly polarized light reflecting layers, and the central reflection wavelength was as shown in Table 1 below.
  • a quarter-wave plate forming coating solution having the following composition.
  • Compound 1 80 parts by mass Compound 2 20 parts by mass Fluorine-based horizontal alignment agent 1 0.1 part by mass Fluorine-based horizontal alignment agent 2 0.007 parts by mass Polymerization initiator IRGACURE OXE01 (manufactured by BASF) 3.0 Part by mass / solvent (methyl ethyl ketone) Amount of solute concentration of 30% by mass
  • Coating liquid for barrier layer formation A coating solution having the following composition was prepared. About each coating liquid, Tg was obtained by DSC in the above-mentioned procedure.
  • (C) Coating liquid for forming a barrier layer containing a plurality of acrylate monomers (Example 5) ⁇ Urethane (meth) acrylate monomer U-6LPA (made by Shin-Nakamura Chemical Co., Ltd.) 50 parts by mass ⁇ Urethane acrylate resin UA122P (made by Shin-Nakamura Chemical Co., Ltd.) 50 parts by mass ⁇ Polymer surfactant B1176 (Dainippon Chemical) Manufactured by Kogyo Co., Ltd.) 0.05 parts by mass / polymerization initiator IRGACURE OXE01 (manufactured by BASF) 1.0 parts by mass / solvent (methyl ethyl ketone) Amount at which the solute concentration is 40% by mass
  • (D) Coating liquid for forming a barrier layer containing an epoxy monomer (Examples 6 to 10) -Epoxy monomer listed in Table 2 100 parts by mass-Polymer surfactant B1176 (Dainippon Chemical Co., Ltd.) 0.05 part by mass-Polymerization initiator PAG-1 1.0 part by mass-Solvent (methyl ethyl ketone and methyl (A mixture of isobutyl ketone at 3: 7) Amount at which the solute concentration is 40% by mass
  • the monomers in Table 2 show the following.
  • U6LPA Urethane (meth) acrylate monomer U-6LPA (manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • U4HA Urethane (meth) acrylate monomer U-4HA (manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • EBECRY220 Aromatic urethane acrylate EBECRYL220 (manufactured by Daicel Ornex Co., Ltd.)
  • ⁇ 8BR-600 Urethane polymer 8BR-600 (manufactured by Taisei Fine Chemical Co., Ltd.)
  • UA122P Urethane acrylate resin UA122P (manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • CEL2021P bifunctional alicyclic epoxy resin ceroxide 2021P (manufactured by Daicel Corporation)
  • CEL8000 Alicyclic epoxy resin Celoxide 8000 (manufactured
  • PET30 Pentaerythritol (tri / tetra) acrylate KAYARAD PET-30 (Nippon Kayaku Co., Ltd.)
  • DPCA20 caprolactone-modified dipentaerythritol hexaacrylate DPCA20 (manufactured by Nippon Kayaku Co., Ltd.)
  • DPCA120 caprolactone-modified dipentaerythritol hexaacrylate DPCA120 (manufactured by Nippon Kayaku Co., Ltd.)
  • the quarter wavelength plate forming coating solution was applied to the rubbed surface of the PET film using a wire bar and then dried. Next, this was placed on a hot plate at 30 ° C., and UV irradiation was performed for 6 seconds with an electrodeless lamp “D bulb” (60 mW / cm 2 ) manufactured by Fusion UV Systems Co., Ltd. A retardation layer (1 ⁇ 4 wavelength plate) of 8 ⁇ m was obtained. The coating liquid 1 was applied to the surface of the obtained retardation layer using a wire bar and then dried.
  • the laminated body A which consists of a quarter wavelength plate and a circularly-polarized light reflection layer (three cholesteric liquid crystal layers) was obtained.
  • the barrier layer forming coating solution is applied to the surface of the laminate A on the cholesteric liquid crystal layer side at room temperature so that the dry film thickness after drying is 3.0 ⁇ m. Further application was performed using a wire bar.
  • the coating layer was dried at room temperature for 10 seconds, heated in an atmosphere of 85 ° C. for 1 minute, and then irradiated with UV at 70 ° C. with a fusion D bulb (lamp 90 mW / cm) at an output of 80% for 5 seconds.
  • an OCA tape (MHM-FWD25, film thickness 25 ⁇ m, manufactured by Nichiei Kako Co., Ltd.) was bonded to a 50 mm square glass plate, and then the protective film of the OCA tape was peeled off.
  • bonding was performed on the glass plate with the adhesive layer of OCA and the surface of the laminate A on the side of the circularly polarized light reflecting layer, or on the surface of the laminate A with the barrier layer on the side of the barrier layer. Thereafter, the temporary support (PET) was peeled off to produce a 50 mm square half mirror.
  • the half mirror of Example 17 was produced by the procedure described above.
  • a triacetyl cellulose film (Fujitack, thickness 80 ⁇ m) manufactured by Fuji Film Co., Ltd. was used as a support (150 mm ⁇ 100 mm).
  • a predetermined amount of a 2% by mass solution of long-chain alkyl-modified bhopal (MP-203, manufactured by Kuraray Co., Ltd.) was applied on the support, and then dried to form an alignment film resin layer.
  • One side was subjected to rubbing treatment (rayon cloth, pressure: 0.5 kgf (4.9 N), rotation speed: 1000 rpm, conveyance speed: 10 m / min, number of times: 1 reciprocation), and a support with an alignment layer was obtained. .
  • Triacetylcellulose (Fujitack, manufactured by Fuji Film Co., Ltd.) was used as a support (150 mm ⁇ 100 mm).
  • a rubbing treatment (rayon cloth, pressure: 0.5 kgf (4.9 N), rotation speed: 1000 rpm, conveyance speed: 10 m / min, number of times: 1 reciprocation) was performed on one surface.
  • the coating solution 1 was applied to the rubbed surface using a wire bar and then dried.
  • Hard coat composition / acrylate monomer DPHA (manufactured by Shin-Nakamura Chemical Co., Ltd.) 76.5 parts by mass / methacrylate monomer Cyclomer M-100 (manufactured by Daicel) 23.5 parts by mass / antifouling agent RS-90 (DIC) 0.7 parts by mass, inorganic particles MEK-AC-2140Z (manufactured by Nissan Chemical Industries) 15.0 parts by mass, polymerization initiator IRGACURE 184 (manufactured by BASF) 4.0 parts by mass, polymerization initiator PAG-1. 5 parts by mass / solvent (methyl ethyl ketone) 40.0 parts by mass / solvent (methyl isobutyl ketone) 60.0 parts by mass
  • One side was subjected to rubbing treatment (rayon cloth, pressure: 0.1 kgf (0.98 N), rotation speed: 1000 rpm, conveyance speed: 10 m / min, number of times: 1 reciprocation).
  • the quarter-wave plate forming coating solution was applied to the rubbed surface of the PET film using a wire bar and then dried.
  • a 80 ⁇ m thick triacetyl cellulose film (Fujitac, manufactured by Fuji Film Co., Ltd.) was immersed in a 1.5 mol / L, 55 ° C. NaOH aqueous solution for 2 minutes, and then neutralized and washed with water. Iodine was adsorbed on a polyvinyl alcohol film and stretched to produce a polarizer. A triacetyl cellulose film after washing with water was bonded to one side of the produced polarizer. On the other surface of the polarizer, a UV adhesive composition A having the following composition was applied and applied using a wire bar so that the film thickness after curing was 2.5 ⁇ m.
  • UV adhesive composition A ⁇ Denacol EX-211 (manufactured by Shin-Nakamura Chemical Co., Ltd.) 100 parts by mass. WPBG-056 (manufactured by Daicel Corporation) 7.5 parts by mass. Composition A was applied. The laminate C and the polarizer were bonded so that the surfaces coated with the UV adhesive composition A were not bubbled, and an electrodeless lamp “D bulb” (60 mW / cm) manufactured by Fusion UV Systems Co., Ltd. 2 ) UV irradiation was performed for 10 seconds. Thus, the half mirror with a polarizer was produced.
  • Esterification reaction In a first esterification reaction tank, 4.7 tons of high-purity terephthalic acid and 1.8 tons of ethylene glycol were mixed for 90 minutes to form a slurry, and continuously at a flow rate of 3800 kg / h. It supplied to the esterification reaction tank. Further, an ethylene glycol solution of antimony trioxide was continuously supplied, and the reaction was carried out at a reaction vessel temperature of 250 ° C. with stirring and an average residence time of about 4.3 hours. At this time, antimony trioxide was continuously added so that the amount of Sb added was 150 ppm in terms of element.
  • the reaction product was transferred to a second esterification reaction vessel, and reacted with stirring at a temperature in the reaction vessel of 250 ° C. and an average residence time of 1.2 hours.
  • an ethylene glycol solution of magnesium acetate and an ethylene glycol solution of trimethyl phosphate are continuously supplied so that the added amount of Mg and the added amount of P are 65 ppm and 35 ppm in terms of element, respectively. did.
  • the esterification reaction product obtained above is continuously supplied to the first polycondensation reaction tank, and with stirring, the reaction temperature is 270 ° C. and the pressure in the reaction tank is 20 torr (2.67 ⁇ 10 ⁇ 3 MPa). The polycondensation was carried out with an average residence time of about 1.8 hours.
  • reaction tank temperature was 276 ° C.
  • reaction tank pressure was 5 torr (6.67 ⁇ 10 ⁇ 4 MPa)
  • residence time was about 1.2 hours.
  • the reaction (polycondensation) was performed under the conditions.
  • the reaction tank temperature was 278 ° C.
  • the reaction tank pressure was 1.5 torr (2.0 ⁇ 10 ⁇ 4 MPa)
  • the residence time was 1.5 hours.
  • the reaction product polyethylene terephthalate (PET)
  • PET polyethylene terephthalate
  • polyester pellets cross section: major axis: about 4 mm, minor axis: about 2 mm, length: about 3 mm).
  • This polymer was designated as raw material polyester 1 (hereinafter abbreviated as PET1).
  • the molten resin was extruded from the die under the conditions that the pressure fluctuation was 1% and the temperature distribution of the molten resin was 2%. Specifically, the back pressure was increased by 1% with respect to the average pressure in the barrel of the extruder, and the piping temperature of the extruder was heated at a temperature 2% higher than the average temperature in the barrel of the extruder.
  • the molten resin extruded from the die was extruded onto a cooling cast drum set at a temperature of 25 ° C., and was brought into close contact with the cooling cast drum using an electrostatic application method. It peeled using the peeling roll arrange
  • the discharge amount of each extruder was adjusted so that the ratio of the thicknesses of the I layer, the II layer, and the III layer was 10:80:10. Moreover, the unstretched polyester film from which thickness differs was changed by changing the conditions which extrude molten resin from die
  • a coating solution H was prepared with the composition shown below.
  • (Coating liquid H) Water 56.6 parts by mass acrylic resin (A1, solid content 28% by mass) 21.4 parts by mass carbodiimide compound: (B1, solid content 40% by mass) 2.9 parts by mass surfactant (E1, solid content 1% by mass) 8.1 parts by weight surfactant (E2, solid content 1% by weight aqueous solution) 9.6 parts by weight particles (F1, solid content 40% by weight) 0.4 parts by weight lubricant (G, solid content 30% by weight) 1.0 part by weight
  • the polyester film was divided into 1.4 m widths in the width direction, and the chuck portion was trimmed. Then, after extruding (knurling) at a width of 10 mm on both ends of each divided roll, it was wound up 2000 m at a tension of 18 kg / m.
  • the divided samples were designated as an end A, a center B, and an end C from one end side, and the center B was used.
  • the obtained retardation film had a film thickness of 80 ⁇ m, and the front phase difference measured by Axoscan was 8060 nm.
  • Laminate F (Half Mirror) Using a laminator, an OCA tape (MHM-FWD25 film thickness 25 ⁇ m, manufactured by Niei Kaiko Co., Ltd.) is bonded to the barrier layer side of the laminate D, and then the OCA tape is protected. The film was peeled off. A laminate F was obtained by laminating a surface opposite to the hard coat application surface of the laminate E on the release surface using a laminator.
  • the UV adhesive composition A was applied to the triacetyl cellulose surface of the laminate F.
  • Laminate F and the above polarizer were bonded so that the surfaces coated with UV adhesive composition A were not bubbled, and an electrodeless lamp “D bulb” (60 mW / cm) manufactured by Fusion UV Systems Co., Ltd. 2 ) UV irradiation was performed for 10 seconds.
  • an electrodeless lamp “D bulb” 60 mW / cm manufactured by Fusion UV Systems Co., Ltd. 2
  • a laminate G of a quarter-wave plate and a circularly polarizing reflective layer is obtained in the same manner as in the production of the laminate A, except that the same amount of IRGACURE 819 (manufactured by BASF) is used as a polymerization initiator instead of IRGACURE OXE01. It was.
  • An OCA tape (MHM-FWD25, film thickness 25 ⁇ m, manufactured by Nichiei Kako Co., Ltd.) was bonded to the surface of the circularly polarized reflective layer of the laminate G. Thereafter, the temporary support was peeled off to obtain Sample 1.
  • the horizontal axis represents the cutting time and corresponds to the depth
  • the vertical axis represents the observed signal intensity of the ions (corresponding to the amount of substance).
  • “Fresh” is the analysis result before the environmental test
  • “wet” is the analysis result after the environmental test at 85 ° C. and 85% relative humidity 85%
  • “Dry” is an analysis result after an environmental test at 110 ° C. for 160 hours.
  • the polymerization initiator IRGACURE819 C 26 H 27 PO 3 ⁇
  • its decomposition product PO 2 ⁇
  • Sample 2 was produced in the same procedure except that the laminate A was used instead of the laminate G. The same analysis by TOF-SIMS was performed on this sample 2. As a result, a result showing that the polymerization initiator IRGACURE OXE01 and the decomposition product were transferred as in the case of sample 1 was obtained.
  • a coating solution for forming a barrier layer having the following composition was applied to the surface of the circularly polarized light reflecting layer of the laminate G using a wire bar at room temperature so that the dry film thickness after drying was 3.0 ⁇ m. .
  • the coating layer was dried at room temperature for 10 seconds, and then heated at 85 ° C. for 1 minute. Thereafter, UV irradiation was performed at 70 ° C. with a fusion D bulb (lamp 90 mW / cm) at an output of 80% for 5 seconds to obtain a barrier layer.
  • OCA MHM-FWD25 film thickness 25 ⁇ m, manufactured by Niei Kaiko Co., Ltd.
  • Sample 3 was similarly analyzed by TOF-SIMS, and no data indicating that the chiral agent, the polymerizable liquid crystal compound, the polymerization initiator, or any of the decomposition products thereof had moved was obtained.
  • Circularly polarized reflective layer 2 Adhesive layer (adhesive layer in contact with the barrier layer) 3 Front plate 4 Barrier layer 5 1/4 wavelength plate 6 Polarizer 10 Support 11 Orientation layer 12 Other adhesive layer 16 Polarizer protective layer 21 Glass plate or plastic film 22 High Re retardation film 23 Optical functional layer

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided are: a mirror with an image display function that allows a user to observe a display image and a mirror reflection image without directional dependency even through polarized sunglasses, and is capable of displaying a bright and good color image; and a half mirror for achieving said mirror with an image display function. The half mirror includes: a circularly polarized light reflective layer including a cholesteric liquid crystal layer; a barrier layer; an adhesive layer; and a front surface plate. The half mirror includes the barrier layer between the adhesive layer and the circularly polarized light reflective layer, and the barrier layer is formed by curing a composition including a urethane (meth)acrylate monomer.

Description

ハーフミラーおよび画像表示機能付きミラーHalf mirror and mirror with image display function
 本発明は、ハーフミラーおよび画像表示機能付きミラーに関する。 The present invention relates to a half mirror and a mirror with an image display function.
 画像表示装置の画像表示部の表面にハーフミラーを設け、表示モード時は画像を表示し、画像表示装置の電源オフ時などの非表示モード時は鏡としてミラー反射像を表示する画像表示機能付きミラーについては、例えば、特許文献1および特許文献2に記載がある。
 特許文献1では、車両用ミラーのハウジングの内部に液晶表示装置を設け、車両用ミラーの前面に設けられたハーフミラーを介して画像を表示することにより、ミラーでの画像表示を実現する構成が開示されている。
 特許文献2においては、インテリア、化粧用、防犯用、安全用の鏡に適用される情報表示機能付鏡に関する開示がある。
A half mirror is provided on the surface of the image display unit of the image display device, and an image display function is provided to display an image in the display mode and to display a mirror reflection image as a mirror in the non-display mode such as when the image display device is turned off. The mirror is described in, for example, Patent Document 1 and Patent Document 2.
In Patent Literature 1, a liquid crystal display device is provided inside a housing for a vehicle mirror, and an image is displayed via a half mirror provided on the front surface of the vehicle mirror, thereby realizing an image display on the mirror. It is disclosed.
In Patent Document 2, there is a disclosure relating to a mirror with an information display function applied to a mirror for interior, makeup, crime prevention, and safety.
特開2014-201146号公報JP 2014-2011146 A 特開2011-45427号公報JP 2011-45427 A
 画像表示装置の画像表示部にハーフミラーを配置すると、画像表示光の一部がハーフミラーを透過せず、画像が暗くなりうる。また、画像表示装置の画像表示部にハーフミラーを配置すると、ハーフミラー自体の光学的性質の影響を受けて、画像の色味の変化などにより画像品質が低下しうる。特許文献1においては、このような問題については着目されていない。一方、特許文献2においては、ハーフミラーとして反射偏光板を利用し、画像表示装置から出射する直線偏光と反射偏光板の透過軸とを合わせて光のロスをなくし、さらに画像品質を改善することについての記載がある。しかし、ハーフミラーとして反射偏光板を利用した構成においては、偏光サングラスを介して観察した場合において、画像およびミラー反射像が確認できなくなる方向が生じるという問題がある。
 本発明は、偏光サングラスを介しても方向依存性なく表示画像およびミラー反射像を観察でき、かつ、明るく色味のよい画像表示が可能な画像表示機能付きミラーの提供を課題とする。本発明は、また、上記のミラー機能付画像表示装置を実現するハーフミラーの提供を課題とする。
When a half mirror is disposed in the image display unit of the image display device, a part of the image display light does not pass through the half mirror, and the image may become dark. Further, when a half mirror is arranged in the image display unit of the image display device, the image quality may be deteriorated due to a change in the color of the image due to the influence of the optical properties of the half mirror itself. Patent Document 1 does not pay attention to such a problem. On the other hand, in Patent Document 2, a reflective polarizing plate is used as a half mirror, the linearly polarized light emitted from the image display device and the transmission axis of the reflective polarizing plate are combined, light loss is eliminated, and image quality is further improved. There is description about. However, in the configuration using a reflective polarizing plate as a half mirror, there is a problem that an image and a mirror reflection image cannot be confirmed when observed through polarized sunglasses.
It is an object of the present invention to provide a mirror with an image display function capable of observing a display image and a mirror reflection image without direction dependency even through polarized sunglasses, and capable of displaying a bright and colorful image. Another object of the present invention is to provide a half mirror that realizes the image display device with a mirror function.
 本発明者らは、上記課題の解決のため、コレステリック液晶層をハーフミラーに利用することを検討した。円偏光反射性のコレステリック液晶層の利用により偏光サングラスを介しても方向依存性なく表示画像およびミラー反射像を観察できるようにするためである。さらに、コレステリック液晶層との間に1/4波長板を設け画像表示装置から出射する直線偏光をロスなく利用することが可能であることを見いだした。 In order to solve the above-mentioned problems, the present inventors have examined using a cholesteric liquid crystal layer for a half mirror. This is because a display image and a mirror reflection image can be observed without direction dependency even through polarized sunglasses by using a circularly polarized reflective cholesteric liquid crystal layer. Furthermore, it has been found that a quarter wave plate can be provided between the cholesteric liquid crystal layer and the linearly polarized light emitted from the image display device can be used without loss.
 しかし、このような構成のハーフミラーは高温環境下において、ミラー反射像に色味変化が生じるという新たな問題に直面した。特にハーフミラーを車両用に用いる場合、高温での使用が想定されるため、上記の色味変化は深刻な問題となり得る。
 本発明者らは、この問題の解決のためにさらに検討を重ねて、本発明の完成に至った。
However, the half mirror having such a configuration has faced a new problem that a color change occurs in a mirror reflection image under a high temperature environment. In particular, when a half mirror is used for a vehicle, use at a high temperature is assumed, and thus the above-described color change can be a serious problem.
The inventors have further studied to solve this problem, and have completed the present invention.
 すなわち、本発明は下記の[1]~[17]を提供するものである。
[1]コレステリック液晶層を含む円偏光反射層と、バリア層と、接着層と、前面板と、を含み、
上記バリア層は、上記接着層と上記円偏光反射層との間に設けられる、ハーフミラー。
[2]上記円偏光反射層と上記バリア層とが直接接している[1]に記載のハーフミラー。
[3]上記コレステリック液晶層が重合性液晶化合物および重合開始剤を含む液晶組成物を硬化した層である[1]または[2]に記載のハーフミラー。
[4]上記バリア層が上記コレステリック液晶層中の上記重合開始剤または上記重合開始剤の分解物の上記接着層への移動を抑える[3]に記載のハーフミラー。
[5]上記重合開始剤がアシルフォスフィンオキシド化合物またはオキシム化合物である[3]または[4]に記載のハーフミラー。
That is, the present invention provides the following [1] to [17].
[1] A circularly polarized light reflecting layer including a cholesteric liquid crystal layer, a barrier layer, an adhesive layer, and a front plate,
The barrier layer is a half mirror provided between the adhesive layer and the circularly polarized light reflecting layer.
[2] The half mirror according to [1], wherein the circularly polarized light reflection layer and the barrier layer are in direct contact.
[3] The half mirror according to [1] or [2], wherein the cholesteric liquid crystal layer is a layer obtained by curing a liquid crystal composition containing a polymerizable liquid crystal compound and a polymerization initiator.
[4] The half mirror according to [3], wherein the barrier layer suppresses movement of the polymerization initiator or a decomposition product of the polymerization initiator in the cholesteric liquid crystal layer to the adhesive layer.
[5] The half mirror according to [3] or [4], wherein the polymerization initiator is an acyl phosphine oxide compound or an oxime compound.
[6]上記接着層がシート状の接着剤からなる[1]~[5]のいずれかに記載のハーフミラー。
[7]上記バリア層が重合性基を含むモノマーを含む組成物を硬化した層である[1]~[6]のいずれかに記載のハーフミラー。
[8]上記モノマーの重合性基数Y1と上記重合性基数Y1を上記モノマーの分子量で割った値である重合性基含率X1とが式1を満たす[7]に記載のハーフミラー。
1< -300X1+7.5   式1
[9]上記モノマーがウレタン(メタ)アクリレートモノマーおよびエポキシモノマーからなる群より選択される1つ以上のモノマーである[7]または[8]に記載のハーフミラー。
[10]上記モノマーがウレタン(メタ)アクリレートモノマーであり、
上記組成物がウレタン系ポリマーを含む[7]~[9]に記載のハーフミラー。
[6] The half mirror according to any one of [1] to [5], wherein the adhesive layer is made of a sheet-like adhesive.
[7] The half mirror according to any one of [1] to [6], wherein the barrier layer is a layer obtained by curing a composition containing a monomer containing a polymerizable group.
[8] the half mirror according to the polymerizable groups Y 1 and the polymerizable groups Y 1 of the above monomers satisfy the polymerizable group content X 1 Togashiki 1 is a value obtained by dividing the molecular weight of the monomer [7] .
Y 1 <-300X 1+ 7.5 Formula 1
[9] The half mirror according to [7] or [8], wherein the monomer is one or more monomers selected from the group consisting of a urethane (meth) acrylate monomer and an epoxy monomer.
[10] The monomer is a urethane (meth) acrylate monomer,
The half mirror according to [7] to [9], wherein the composition contains a urethane-based polymer.
[11]上記モノマーがウレタン(メタ)アクリレートモノマーであり、上記ウレタン(メタ)アクリレートモノマーの重合性基数Y2と上記組成物のガラス転移温度X2とが式2を満たす[7]~[10]に記載のハーフミラー。
2> -0.0066X2+5.33   式2
[12]上記モノマーがエポキシモノマーであり、上記エポキシモノマーの重合性基数Y3と上記組成物のガラス転移温度X3とが式3を満たす[7]~[9]に記載のハーフミラー。
3> -0.01X3+2.75   式3
[13]上記円偏光反射層が3層以上のコレステリック液晶層を含む[1]~[12]のいずれかに記載のハーフミラー。
[14]上記ハーフミラーが1/4波長板を含み、
上記1/4波長板、上記円偏光反射層および上記前面板をこの順に含む[1]~[13]のいずれかに記載のハーフミラー。
[15]上記円偏光反射層と上記1/4波長板とが互いに直接接している[14]に記載のハーフミラー。
[16][1]~[15]のいずれかに記載のハーフミラーおよび画像表示装置を含み、上記画像表示装置、上記円偏光反射層および上記前面板をこの順に含む画像表示機能付きミラー。
[17]車両用である[16]に記載の画像表示機能付きミラー。
[11] The monomer is a urethane (meth) acrylate monomer, and the polymerizable group number Y 2 of the urethane (meth) acrylate monomer and the glass transition temperature X 2 of the composition satisfy Formula 2. [7] to [10 ] Is a half mirror.
Y 2 > −0.0066 X 2 +5.33 Equation 2
[12] The half mirror according to [7] to [9], wherein the monomer is an epoxy monomer, and the polymerizable group number Y 3 of the epoxy monomer and the glass transition temperature X 3 of the composition satisfy Formula 3.
Y 3> -0.01X 3 +2.75 Equation 3
[13] The half mirror according to any one of [1] to [12], wherein the circularly polarized light reflecting layer includes three or more cholesteric liquid crystal layers.
[14] The half mirror includes a quarter-wave plate,
The half mirror according to any one of [1] to [13], including the quarter-wave plate, the circularly polarized light reflection layer, and the front plate in this order.
[15] The half mirror according to [14], wherein the circularly polarized light reflection layer and the quarter-wave plate are in direct contact with each other.
[16] A mirror with an image display function, comprising the half mirror according to any one of [1] to [15] and an image display device, the image display device, the circularly polarizing reflection layer, and the front plate in this order.
[17] The mirror with an image display function according to [16] for a vehicle.
 本発明により、新規なハーフミラーおよびこれを用いた画像表示機能付きミラーが提供される。本発明のハーフミラーを用いて、偏光サングラスを介しても方向依存性なく明るい表示画像およびミラー反射像を観察することができる。また、高温環境下においても、色味変化のない品質の画像表示機能付きミラーを提供することができる。 According to the present invention, a novel half mirror and a mirror with an image display function using the same are provided. Using the half mirror of the present invention, a bright display image and mirror reflection image can be observed without direction dependency even through polarized sunglasses. In addition, it is possible to provide a mirror with an image display function having a quality that does not change in color even under a high temperature environment.
図1a)~1g)は、ハーフミラーの層構成の例を模式的に示す図である。FIGS. 1a) to 1g) are diagrams schematically showing an example of the layer configuration of a half mirror. 図2(a)は、円偏光反射層および接着層を含む積層体を高温下に放置した前後の積層体の膜厚方向の物質分布を示すTOF-SIMS測定結果の図でであって、重合開始剤の分布を示す。図2(b)は、円偏光反射層および接着層を含む積層体を高温下に放置した前後の積層体の膜厚方向の物質分布を示すTOF-SIMS測定結果の図でであって、重合開始剤の分解物の分布を示す。FIG. 2 (a) is a graph of TOF-SIMS measurement results showing the material distribution in the film thickness direction of the laminate before and after the laminate including the circularly polarized light reflection layer and the adhesive layer was left at high temperature. The initiator distribution is shown. FIG. 2 (b) is a graph of TOF-SIMS measurement results showing the material distribution in the film thickness direction of the laminate before and after the laminate including the circularly polarized light reflection layer and the adhesive layer was left at high temperature. The distribution of decomposition products of the initiator is shown.
 以下、本発明を詳細に説明する。
 なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書において、例えば、「45°」、「平行」、「垂直」あるいは「直交」等の角度は、特に記載がなければ、厳密な角度との差異が5°未満の範囲内であることを意味する。厳密な角度との差異は、4°未満であることが好ましく、3°未満であることがより好ましい。
 本明細書において、「(メタ)アクリレート」は、「アクリレートおよびメタクリレートのいずれか一方または双方」の意味で使用される。
Hereinafter, the present invention will be described in detail.
In the present specification, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
In this specification, for example, an angle such as “45 °”, “parallel”, “vertical” or “orthogonal” is within a range where the difference from the exact angle is less than 5 ° unless otherwise specified. Means. The difference from the exact angle is preferably less than 4 °, more preferably less than 3 °.
In this specification, “(meth) acrylate” is used to mean “one or both of acrylate and methacrylate”.
 本明細書において、円偏光につき「選択的」というときは、右円偏光成分または左円偏光成分のいずれかの光量が、他方の円偏光成分よりも多いことを意味する。具体的には「選択的」というとき、光の円偏光度は、0.3以上であることが好ましく、0.6以上がより好ましく、0.8以上がさらに好ましい。実質的に1.0であることがさらに好ましい。ここで、円偏光度とは、光の右円偏光成分の強度をIR、左円偏光成分の強度をILとしたとき、|IR-IL|/(IR+IL)で表される値である。 In this specification, “selective” for circularly polarized light means that either the right circularly polarized light component or the left circularly polarized light component has more light than the other circularly polarized light component. Specifically, when referred to as “selective”, the degree of circular polarization of light is preferably 0.3 or more, more preferably 0.6 or more, and even more preferably 0.8 or more. More preferably, it is substantially 1.0. Table In / (I R + I L) | Here, the degree of circular polarization, the intensity of the right circularly polarized light component of the light I R, when the strength of the left-handed circularly polarized light component and I L, | I R -I L Is the value to be
 本明細書において、円偏光につき「センス」というときは、右円偏光であるか、または左円偏光であるかを意味する。円偏光のセンスは、光が手前に向かって進んでくるように眺めた場合に電場ベクトルの先端が時間の増加に従って時計回りに回る場合が右円偏光であり、反時計回りに回る場合が左円偏光であるとして定義される。 In this specification, “sense” for circularly polarized light means right circularly polarized light or left circularly polarized light. The sense of circularly polarized light is right-handed circularly polarized light when the electric field vector tip turns clockwise as time increases when viewed as the light travels toward you, and left when it turns counterclockwise. Defined as being circularly polarized.
 本明細書においては、コレステリック液晶の螺旋の捩れ方向について「センス」との用語を用いることもある。コレステリック液晶の螺旋の捩れ方向(センス)が右の場合は、右円偏光を反射し、左円偏光を透過する。コレステリック液晶の螺旋のセンスが左の場合は、左円偏光を反射し、右円偏光を透過する。 In this specification, the term “sense” is sometimes used for the twist direction of the spiral of the cholesteric liquid crystal. When the twist direction (sense) of the spiral of the cholesteric liquid crystal is right, the right circularly polarized light is reflected and the left circularly polarized light is transmitted. When the cholesteric liquid crystal spiral sense is on the left, it reflects left circularly polarized light and transmits right circularly polarized light.
 可視光線は、電磁波のうちヒトの目で見える波長の光であり、380nm~780nmの波長域の光を示す。赤外線(赤外光)は可視光線より長く電波より短い波長域電磁波である。赤外線のうち、近赤外光とは780nm~2500nmの波長域の電磁波である。 Visible light is light having a wavelength visible to the human eye among electromagnetic waves, and indicates light having a wavelength range of 380 nm to 780 nm. Infrared rays (infrared light) are electromagnetic waves in the wavelength range that are longer than visible rays and shorter than radio waves. Among infrared rays, near infrared light is an electromagnetic wave having a wavelength range of 780 nm to 2500 nm.
 本明細書においては、円偏光反射層に対して前面板側となるハーフミラーの表面、および円偏光反射層に対して前面板側となる画像表示機能付きミラーの表面をそれぞれ前面ということがある。
 本明細書において、画像表示機能付きミラーについて「画像」というときは、画像表示装置の画像表示部で画像が表示されているときに前面を視認して観察できる像を意味する。また、本明細書において、画像表示機能付きミラーについて「ミラー反射像」というときは、画像表示装置の画像表示部で画像が表示されていないとき、前面を視認して観察できる像を意味する。
In the present specification, the surface of the half mirror on the front plate side with respect to the circularly polarized reflective layer and the surface of the mirror with an image display function on the front plate side with respect to the circularly polarized reflective layer may be referred to as the front surface, respectively. .
In this specification, the term “image” for a mirror with an image display function means an image that can be viewed and observed when the image is displayed on the image display unit of the image display device. Further, in this specification, the term “mirror reflection image” for a mirror with an image display function means an image that can be viewed and observed when the image is not displayed on the image display unit of the image display device.
 本明細書において、正面位相差は、Axometrics社製のAxoScanを用いて測定した値である。正面位相差はKOBRA 21ADHまたはWR(王子計測機器株式会社製)においてコレステリック液晶層の選択反射の中心波長などの可視光波長域内の波長の光をフィルム法線方向に入射させて測定した値を用いることもできる。測定波長の選択にあたっては、波長選択フィルターをマニュアルで交換するか、または測定値をプログラム等で変換して測定することができる。本明細書において、正面位相差を「Re」ということもある。 In the present specification, the front phase difference is a value measured using an AxoScan manufactured by Axometrics. The front phase difference is a value measured by making light in a wavelength range of visible light such as the central wavelength of selective reflection of the cholesteric liquid crystal layer incident in the normal direction of the film in KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments). You can also When selecting the measurement wavelength, the wavelength selection filter can be exchanged manually, or the measurement value can be converted by a program or the like. In the present specification, the front phase difference is sometimes referred to as “Re”.
 本明細書において、所定の波長における「反射率」というとき、分光光度計を用いて、上記各波長に設定したときの反射率の測定値とする。具体的には分光光度計V-670(日本分光株式会社製)を用いて各波長における反射率を測定することができる。 In this specification, when “reflectance” at a predetermined wavelength is referred to, it is a measured value of reflectivity when set to each wavelength using a spectrophotometer. Specifically, the reflectance at each wavelength can be measured using a spectrophotometer V-670 (manufactured by JASCO Corporation).
<<ハーフミラー>>
 本発明のハーフミラーは、円偏光反射層、接着層および前面板を含む。本発明のハーフミラーは、円偏光反射層、接着層および前面板をこの順で含んでいてもよく、または接着層、円偏光反射層、および前面板をこの順で含んでいてもよい。
 本発明のハーフミラーは、前面板、円偏光反射層、および偏光子をこの順で含む偏光子付きハーフミラーであってもよい。
 本発明のハーフミラーはさらにバリア層を上記円偏光反射層と上記接着層との間に含む。ハーフミラーは、上記接着層以外のその他の接着層または1/4波長板などの他の層を含んでいてもよい。
<< Half Mirror >>
The half mirror of the present invention includes a circularly polarized light reflecting layer, an adhesive layer, and a front plate. The half mirror of the present invention may include a circularly polarized light reflecting layer, an adhesive layer, and a front plate in this order, or may include an adhesive layer, a circularly polarized light reflecting layer, and a front plate in this order.
The half mirror of the present invention may be a half mirror with a polarizer including a front plate, a circularly polarized light reflection layer, and a polarizer in this order.
The half mirror of the present invention further includes a barrier layer between the circularly polarized light reflecting layer and the adhesive layer. The half mirror may include other layers such as an adhesive layer other than the adhesive layer or a quarter wave plate.
 図11a)~1g)に本発明のハーフミラーの層構成の例を模式的に示す。
 図1a)は、前面板としてガラス基板またはプラスチックフィルムを有し、前面板と円偏光反射層との間に接着層を有し、さらに接着層と円偏光反射層との間にバリア層を含む構成を示す。
 図1b)は図1a)の構成においてさらに1/4波長板を含む構成を示す。
 図1c)は前面板が光学機能層を含む構成を示す。
 図1d)はガラス基板またはプラスチックフィルムの表面に高Re位相差膜と光学機能層の積層体が接着されている構成を示す。
 図1e)は円偏光反射層および1/4波長板の外側に1/4波長板形成時の配向層と支持体を含む構成を示す。
 図1f)および図1g)は偏光子付きハーフミラーの層構成の例を示す。
 図1f)においては円偏光反射層形成時の支持体および配向層の表面に光学機能層が形成されて前面板が構成されている。円偏光反射層表面にバリア層が形成され、さらに1/4波長板、続いて偏光子が接着されている。バリア層は、円偏光反射層から見て、偏光子側に設けられている。
FIGS. 11a) to 1g) schematically show examples of the layer structure of the half mirror of the present invention.
FIG. 1a) has a glass substrate or a plastic film as a front plate, an adhesive layer between the front plate and the circularly polarized reflective layer, and further includes a barrier layer between the adhesive layer and the circularly polarized reflective layer. The configuration is shown.
FIG. 1b) shows a configuration that further includes a quarter-wave plate in the configuration of FIG. 1a).
FIG. 1c) shows a configuration in which the front plate includes an optical functional layer.
FIG. 1d) shows a configuration in which a laminate of a high Re retardation film and an optical functional layer is bonded to the surface of a glass substrate or a plastic film.
FIG. 1e) shows a configuration including an alignment layer and a support when a quarter-wave plate is formed outside the circularly polarized light reflection layer and the quarter-wave plate.
FIGS. 1f) and 1g) show examples of the layer structure of a half mirror with a polarizer.
In FIG. 1f), an optical functional layer is formed on the surface of the support and the alignment layer when the circularly polarized light reflecting layer is formed to constitute a front plate. A barrier layer is formed on the surface of the circularly polarized light reflecting layer, and a quarter wave plate and then a polarizer are bonded. The barrier layer is provided on the polarizer side when viewed from the circularly polarized light reflecting layer.
 前面板の主表面の面積は円偏光反射層の主表面の面積より大きくてもよく、同じであってもよく、小さくてもよい。なお、本明細書において、「主表面」とは、板状またはフィルム状の部材の表面(おもて面または裏面)をいう。前面板主表面の一部に円偏光反射層が接着されており、その他の部位に金属箔などの他の種類の反射層が接着または形成されていてもよい。このような構成でミラーの一部での画像表示が可能である。一方、前面板主表面の全面に円偏光反射層が接着されていてもよい。 The area of the main surface of the front plate may be larger than the area of the main surface of the circularly polarized light reflecting layer, or may be the same or smaller. In the present specification, “main surface” refers to the surface (front surface or back surface) of a plate-like or film-like member. The circularly polarized light reflecting layer may be bonded to a part of the main surface of the front plate, and another type of reflecting layer such as a metal foil may be bonded or formed at other portions. With such a configuration, an image can be displayed on a part of the mirror. On the other hand, a circularly polarized light reflecting layer may be adhered to the entire front plate main surface.
 ハーフミラーの膜厚は特に限定されないが、100μm~20mmであることが好ましく、200μm~15mmであることがより好ましく、300μm~10mmであることがさらに好ましい。
 ハーフミラーは、板状またはフィルム状であればよく、曲面を有していてもよい。ハーフミラーは平坦であってもよく、湾曲していてもよい。湾曲したハーフミラーは湾曲した前面板を用いて作製することができる。
The film thickness of the half mirror is not particularly limited, but is preferably 100 μm to 20 mm, more preferably 200 μm to 15 mm, and even more preferably 300 μm to 10 mm.
The half mirror may be plate-shaped or film-shaped, and may have a curved surface. The half mirror may be flat or curved. A curved half mirror can be produced using a curved front plate.
<円偏光反射層>
 円偏光反射層は、ハーフミラーを画像表示機能付きミラーに用いた際、画像表示時には、画像表示装置からの出射光を透過させることにより画像表示機能付きミラーの前面に画像が表示されるように機能し、一方、画像非表示時には、前面からの入射光の少なくとも一部を反射し画像表示機能付きミラーの前面がミラーとなるように機能する層である。
<Circularly polarized reflective layer>
When the circular mirror is used as a mirror with an image display function, an image is displayed on the front surface of the mirror with an image display function by transmitting light emitted from the image display device when the image is displayed. On the other hand, when the image is not displayed, it is a layer that reflects at least part of incident light from the front surface and functions so that the front surface of the mirror with the image display function becomes a mirror.
 ハーフミラーが円偏光反射層を含むことにより、前面からの入射光を円偏光として反射させ、画像表示装置からの入射光を円偏光として透過させることができる。そのため、本発明のハーフミラーを含む画像表示機能付きミラーは、偏光サングラスを介しても、偏光サングラスの透過軸方向と画像表示機能付きミラーの水平方向との関係に依存せずに、表示画像およびミラー反射像の観察を行うことができる。 Since the half mirror includes a circularly polarized light reflection layer, incident light from the front surface can be reflected as circularly polarized light, and incident light from the image display device can be transmitted as circularly polarized light. Therefore, the mirror with an image display function including the half mirror according to the present invention does not depend on the relationship between the transmission axis direction of the polarized sunglasses and the horizontal direction of the mirror with the image display function, even through the polarized sunglasses. A mirror reflection image can be observed.
 円偏光反射層はコレステリック液晶層を含む。円偏光反射層はコレステリック液晶層を少なくとも3層含むことが好ましい。円偏光反射層は4層以上のコレステリック液晶層を含んでいてもよい。円偏光反射層は、コレステリック液晶層のほかに配向層などの他の層を含んでいてもよく、コレステリック液晶層のみからなっていてもよい。また、複数のコレステリック液晶層は、隣接するコレステリック液晶層と直接接していることが好ましい。
 円偏光反射層の膜厚は好ましくは2.0μm~300μmの範囲、より好ましくは6.0μm~100μmの範囲であればよい。
The circularly polarized light reflection layer includes a cholesteric liquid crystal layer. The circularly polarized light reflection layer preferably includes at least three cholesteric liquid crystal layers. The circularly polarized light reflecting layer may include four or more cholesteric liquid crystal layers. The circularly polarized light reflecting layer may include other layers such as an alignment layer in addition to the cholesteric liquid crystal layer, or may be composed of only the cholesteric liquid crystal layer. The plurality of cholesteric liquid crystal layers are preferably in direct contact with adjacent cholesteric liquid crystal layers.
The film thickness of the circularly polarized light reflecting layer is preferably in the range of 2.0 μm to 300 μm, more preferably in the range of 6.0 μm to 100 μm.
[コレステリック液晶層]
 本明細書において、コレステリック液晶層はコレステリック液晶相を固定した層を意味する。コレステリック液晶層を単に液晶層ということもある。
 コレステリック液晶相は、特定の波長域において右円偏光または左円偏光のいずれか一方のセンスの円偏光を選択的に反射させるとともに、他方のセンスの円偏光を選択的に透過する円偏光選択反射を示すことが知られている。本明細書において、円偏光選択反射を単に選択反射ということもある。
[Cholesteric liquid crystal layer]
In this specification, a cholesteric liquid crystal layer means a layer in which a cholesteric liquid crystal phase is fixed. The cholesteric liquid crystal layer is sometimes simply referred to as a liquid crystal layer.
The cholesteric liquid crystal phase selectively reflects the circularly polarized light of either the right circularly polarized light or the left circularly polarized light in a specific wavelength range and selectively transmits the circularly polarized light of the other sense. It is known to show. In this specification, the circularly polarized light selective reflection is sometimes simply referred to as selective reflection.
 円偏光選択反射性を示すコレステリック液晶相を固定した層を含むフィルムとして、重合性液晶化合物を含む組成物から形成されたフィルムは従来から数多く知られており、コレステリック液晶層については、それらの従来技術を参照することができる。 Many films formed from a composition containing a polymerizable liquid crystal compound have been known as a film containing a layer in which a cholesteric liquid crystal phase exhibiting circularly polarized light selectively is fixed. You can refer to the technology.
 コレステリック液晶層は、コレステリック液晶相となっている液晶化合物の配向が保持されている層であればよい。典型的には、重合性液晶化合物をコレステリック液晶相の配向状態としたうえで、紫外線照射や加熱等によって重合及び硬化することにより、流動性が無い層を形成し、外場や外力によって配向形態に変化を生じさせることのない状態に変化した層であればよい。なお、コレステリック液晶層においては、コレステリック液晶相の光学的性質が層中において保持されていれば十分であり、層中の液晶化合物はもはや液晶性を示していなくてもよい。例えば、重合性液晶化合物は、硬化反応により高分子量化して、もはや液晶性を失っていてもよい。 The cholesteric liquid crystal layer may be a layer that maintains the orientation of the liquid crystal compound that is in the cholesteric liquid crystal phase. Typically, a polymerizable liquid crystal compound is brought into an alignment state of a cholesteric liquid crystal phase, and then polymerized and cured by ultraviolet irradiation or heating to form a non-flowable layer, and an alignment form by an external field or an external force. Any layer may be used as long as it is changed to a state that does not cause any change. In the cholesteric liquid crystal layer, it is sufficient that the optical properties of the cholesteric liquid crystal phase are maintained in the layer, and the liquid crystal compound in the layer may no longer exhibit liquid crystallinity. For example, the polymerizable liquid crystal compound may have a high molecular weight due to a curing reaction and may no longer have liquid crystallinity.
 コレステリック液晶層の選択反射の中心波長λは、コレステリック相における螺旋構造のピッチP(=螺旋の周期)に依存し、コレステリック液晶層の平均屈折率nとλ=n×Pの関係に従う。
 コレステリック液晶層の選択反射中心波長と半値幅は以下のように求めることができる。なお、本明細書において、選択反射の中心波長はコレステリック液晶層の法線方向から測定した時の中心波長を意味する。
The central wavelength λ of selective reflection of the cholesteric liquid crystal layer depends on the pitch P (= helical period) of the helical structure in the cholesteric phase, and follows the relationship between the average refractive index n of the cholesteric liquid crystal layer and λ = n × P.
The selective reflection center wavelength and the half value width of the cholesteric liquid crystal layer can be obtained as follows. In the present specification, the center wavelength of selective reflection means the center wavelength when measured from the normal direction of the cholesteric liquid crystal layer.
 分光光度計V-670(島津製作所)を用いてコレステリック液晶層の反射スペクトルを測定すると、選択反射領域に反射ピークがみられる。この最も大きいピーク高さの1/2の高さの反射率となる2つの波長のうち、短波長側の波長の値をλl(nm)、長波長側の波長の値をλh(nm)とすると、選択反射の中心波長と半値幅は下記式で表すことができる。
選択反射中心波長=(λl+λh)/2半値幅=(λh-λl
 なお、反射スペクトルはコレステリック液晶層の法線方向から+5°の方向から光を照射し、その正反射方向(法線方向から-5°)から観測したものである。このように求められる、コレステリック液晶層が有する選択反射の中心波長λは、コレステリック液晶層の法線方向から測定した円偏光反射スペクトルの反射ピークの重心位置にある波長と通常一致する。
When the reflection spectrum of the cholesteric liquid crystal layer is measured using a spectrophotometer V-670 (Shimadzu Corporation), a reflection peak is observed in the selective reflection region. Of the two wavelengths having a reflectance of 1/2 of the largest peak height, the wavelength value on the short wavelength side is λ l (nm), and the wavelength value on the long wavelength side is λ h (nm ), The center wavelength and the full width at half maximum of selective reflection can be expressed by the following equations.
Selective reflection center wavelength = (λ l + λ h ) / 2 half width = (λ h −λ l )
The reflection spectrum is observed from the normal reflection direction (−5 ° from the normal direction) when light is irradiated from the + 5 ° direction from the normal direction of the cholesteric liquid crystal layer. The central wavelength λ of selective reflection possessed by the cholesteric liquid crystal layer thus obtained usually coincides with the wavelength at the center of gravity of the reflection peak of the circularly polarized reflection spectrum measured from the normal direction of the cholesteric liquid crystal layer.
 上記λ=n×Pの式から分かるように、螺旋構造のピッチを調節することによって、選択反射の中心波長を調整できる。n値とP値を調節して、所望の波長の光に対して右円偏光または左円偏光のいずれか一方を選択的に反射させるために、中心波長λを調節することができる。 As can be seen from the equation of λ = n × P, the center wavelength of selective reflection can be adjusted by adjusting the pitch of the spiral structure. The center wavelength λ can be adjusted in order to selectively reflect either the right circularly polarized light or the left circularly polarized light with respect to light of a desired wavelength by adjusting the n value and the P value.
 コレステリック液晶層に対して斜めに光が入射する場合は、選択反射の中心波長は短波長側にシフトする。そのため、画像表示のために必要とされる選択反射の波長に対して、上記のλ=n×Pの式に従って計算されるλが長波長となるようにn×Pを調整することが好ましい。屈折率n2のコレステリック液晶層中でコレステリック液晶層の法線方向(コレステリック液晶層の螺旋軸方向)に対して光線がθ2の角度で通過するときの選択反射の中心波長をλdとするとき、λdは以下の式で表される。
λd=n2×P×cosθ2
When light is incident on the cholesteric liquid crystal layer at an angle, the center wavelength of selective reflection is shifted to the short wavelength side. Therefore, it is preferable to adjust n × P so that λ calculated according to the above formula λ = n × P becomes a long wavelength with respect to the wavelength of selective reflection required for image display. In the cholesteric liquid crystal layer having a refractive index n 2 , the center wavelength of selective reflection when a light beam passes at an angle of θ 2 with respect to the normal direction of the cholesteric liquid crystal layer (helical axis direction of the cholesteric liquid crystal layer) is λ d . Λ d is expressed by the following equation.
λ d = n 2 × P × cos θ 2
 上記を考慮して、円偏光反射層に含まれるコレステリック液晶層の選択反射の中心波長を設計することにより、画像の斜めからの視認性の低下を防止することができる。
 コレステリック液晶相のピッチは重合性液晶化合物とともに用いるキラル剤の種類、またはその添加濃度に依存するため、これらを調整することによって所望のピッチを得ることができる。なお、螺旋のセンスやピッチの測定法については「液晶化学実験入門」日本液晶学会編 シグマ出版2007年出版、46頁、および「液晶便覧」液晶便覧編集委員会 丸善 196頁に記載の方法を用いることができる。
In consideration of the above, by designing the center wavelength of selective reflection of the cholesteric liquid crystal layer included in the circularly polarized light reflecting layer, it is possible to prevent the visibility of the image from being viewed obliquely.
Since the pitch of the cholesteric liquid crystal phase depends on the type of chiral agent used together with the polymerizable liquid crystal compound or the concentration of the chiral agent, the desired pitch can be obtained by adjusting these. For the method of measuring spiral sense and pitch, use the methods described in “Introduction to Liquid Crystal Chemistry Experiments”, edited by the Japanese Liquid Crystal Society, Sigma Publishing 2007, page 46, and “Liquid Crystal Handbook”, Liquid Crystal Handbook Editing Committee, page 196. be able to.
 使用するコレステリック液晶層の選択反射の中心波長を、画像表示装置の発光波長域、および円偏光反射層の使用態様に応じて調整することにより、光利用効率良く明るい画像を表示することができる。円偏光反射層の使用態様としては、特に円偏光反射層への光の入射角、画像観察方向などが挙げられる。 By adjusting the central wavelength of selective reflection of the cholesteric liquid crystal layer to be used according to the emission wavelength range of the image display device and the usage mode of the circularly polarized light reflection layer, a bright image can be displayed with high light utilization efficiency. Examples of the usage of the circularly polarized light reflecting layer include an incident angle of light to the circularly polarized light reflecting layer, an image observation direction, and the like.
 本発明のハーフミラーにおいて、円偏光反射層は、赤色光の波長域に選択反射の中心波長を有するコレステリック液晶層と、緑色光の波長域に選択反射の中心波長を有するコレステリック液晶層と、青色光の波長域に選択反射の中心波長を有するコレステリック液晶層とを含むことが好ましい。反射層は、例えば、400nm~500nmに選択反射の中心波長を有するコレステリック液晶層、500nm~580nmに選択反射の中心波長を有するコレステリック液晶層、および580nm~700nmに選択反射の中心波長を有するコレステリック液晶層を含むことが好ましい。
 また、円偏光反射層が複数のコレステリック液晶層を含むときは、より画像表示装置に近いコレステリック液晶層がより長い選択反射の中心波長を有していることが好ましい。このような構成により、画像およびミラー反射像における斜め観察時の色味変化を抑えることができる。
In the half mirror of the present invention, the circularly polarized light reflection layer includes a cholesteric liquid crystal layer having a central wavelength of selective reflection in a red light wavelength range, a cholesteric liquid crystal layer having a central wavelength of selective reflection in a wavelength range of green light, and blue It is preferable to include a cholesteric liquid crystal layer having a central wavelength of selective reflection in the wavelength region of light. The reflective layer is, for example, a cholesteric liquid crystal layer having a central wavelength of selective reflection in 400 nm to 500 nm, a cholesteric liquid crystal layer having a central wavelength of selective reflection in 500 nm to 580 nm, and a cholesteric liquid crystal having a central wavelength of selective reflection in 580 nm to 700 nm. It is preferable to include a layer.
Further, when the circularly polarized light reflection layer includes a plurality of cholesteric liquid crystal layers, it is preferable that the cholesteric liquid crystal layer closer to the image display device has a longer selective reflection center wavelength. With such a configuration, it is possible to suppress a color change during oblique observation in the image and the mirror reflection image.
 また、ミラー反射像の色味変化を防止するために、赤外光領域に選択反射の中心波長を有するコレステリック液晶層を円偏光反射層に含ませてもよい。この場合の赤外光領域の選択反射の中心波長は具体的には、780~900nmにあればよく、好ましくは780~850nmにあればよい。赤外光領域に選択反射の中心波長を有するコレステリック液晶層を設ける場合は、可視光領域に選択反射の中心波長をそれぞれ有するコレステリック液晶層すべてに対し、画像表示装置側にあることが好ましい。 Further, in order to prevent the color change of the mirror reflection image, a cholesteric liquid crystal layer having a central wavelength of selective reflection in the infrared light region may be included in the circularly polarized light reflection layer. In this case, the center wavelength of selective reflection in the infrared light region may specifically be in the range of 780 to 900 nm, and preferably in the range of 780 to 850 nm. When a cholesteric liquid crystal layer having a central wavelength of selective reflection is provided in the infrared light region, it is preferable that the cholesteric liquid crystal layer having a central wavelength of selective reflection in the visible light region is on the image display device side.
 さらに、画像表示機能付きミラーに用いられるハーフミラーについて、特に1/4波長板を含まないとき、各コレステリック液晶層が有する選択反射の中心波長は、画像表示装置の発光のピークの波長と5nm以上異なるようにすることが好ましい。この差異は、10nm以上とすることがより好ましい。選択反射の中心波長と画像表示装置の画像表示のための発光ピークの波長をずらすことにより、画像表示のための光がコレステリック液晶層で反射されず、表示画像を明るくすることができる。画像表示装置の発光のピークの波長は、画像表示装置の白表示時の発光スペクトルで確認できる。ピーク波長は上記発光スペクトルの可視光領域におけるピーク波長であればよく、例えば、画像表示装置の赤色光の発光ピーク波長λR、緑色光の発光ピーク波長λG、および青色光の発光ピーク波長λBからなる群から選択されるいずれか1つ以上であればよい。コレステリック液晶層が有する選択反射の中心波長は、画像表示装置の上述の赤色光の発光ピーク波長λR、緑色光の発光ピーク波長λG、および青色光の発光ピーク波長λBのいずれとも5nm以上、好ましくは10nm以上異なっていることが好ましい。円偏光反射層が複数のコレステリック液晶層を含む場合は、すべてのコレステリック液晶層の選択反射の中心波長を、画像表示装置の発光する光のピークの波長と5nm以上、好ましくは10nm以上異なるようにすればよい。例えば、画像表示装置が白表示時の発光スペクトルにおいて赤色光の発光ピーク波長λRと、緑色光の発光ピーク波長λGと、青色光の発光ピーク波長λBとを示すフルカラー表示の表示装置である場合、コレステリック液晶層が有する選択反射の中心波長がいずれも、λR、λG、およびλBのいずれとも5nm以上、好ましくは10nm以上異なるようにすればよい。 Further, for the half mirror used for the mirror with an image display function, when not including a quarter wavelength plate, the central wavelength of selective reflection of each cholesteric liquid crystal layer is 5 nm or more with the wavelength of the emission peak of the image display device. It is preferable to make them different. This difference is more preferably 10 nm or more. By shifting the center wavelength of selective reflection and the wavelength of the emission peak for image display of the image display device, the light for image display is not reflected by the cholesteric liquid crystal layer, and the display image can be brightened. The wavelength of the light emission peak of the image display device can be confirmed by the emission spectrum when the image display device displays white. The peak wavelength only needs to be a peak wavelength in the visible light region of the emission spectrum, and includes, for example, an emission peak wavelength λR of red light, an emission peak wavelength λG of green light, and an emission peak wavelength λB of blue light. Any one or more selected from the group may be used. The central wavelength of selective reflection of the cholesteric liquid crystal layer is 5 nm or more for any of the above-described red light emission peak wavelength λR, green light emission peak wavelength λG, and blue light emission peak wavelength λB of the image display device, preferably It is preferably different by 10 nm or more. When the circularly polarized light reflection layer includes a plurality of cholesteric liquid crystal layers, the central wavelength of selective reflection of all the cholesteric liquid crystal layers is different from the wavelength of the peak of light emitted from the image display device by 5 nm or more, preferably 10 nm or more. do it. For example, when the image display device is a full-color display device showing an emission peak wavelength λR of red light, an emission peak wavelength λG of green light, and an emission peak wavelength λB of blue light in the emission spectrum during white display, All of the central wavelengths of selective reflection of the cholesteric liquid crystal layer may be different from each of λR, λG, and λB by 5 nm or more, preferably 10 nm or more.
 さらに、円偏光反射層がλ1、λ2、λ3で表される互いに異なる選択反射の中心波長を有する3つのコレステリック液晶層を含む場合は、λB<λ1<λG<λ2<λR<λ3の関係が満たされていることが好ましい。 Further, when the circularly polarized light reflection layer includes three cholesteric liquid crystal layers having different selective reflection center wavelengths represented by λ1, λ2, and λ3, the relationship of λB <λ1 <λG <λ2 <λR <λ3 is satisfied. It is preferable that
 各コレステリック液晶層としては、螺旋のセンスが右または左のいずれかであるコレステリック液晶層が用いられる。コレステリック液晶層の反射円偏光のセンスは螺旋のセンスに一致する。複数のコレステリック液晶層の螺旋のセンスは、全て同じであることが好ましい。1/4波長板を含むハーフミラーの場合、そのときの螺旋のセンスは、各コレステリック液晶層として、画像表示装置から出射して1/4波長板を透過した直後の光においてより多く含まれる円偏光のセンスに応じて決定すればよい。具体的には、画像表示装置から出射して1/4波長板を透過した直後の光においてより多く含まれるセンスの円偏光を透過する螺旋のセンスを有するコレステリック液晶層を用いればよい。 As each cholesteric liquid crystal layer, a cholesteric liquid crystal layer whose spiral sense is either right or left is used. The sense of reflected circularly polarized light in the cholesteric liquid crystal layer coincides with the sense of a spiral. It is preferable that the spiral senses of the plurality of cholesteric liquid crystal layers are all the same. In the case of a half mirror including a quarter wave plate, the sense of the spiral at that time is a circle that is more contained in the light immediately after being emitted from the image display device and transmitted through the quarter wave plate as each cholesteric liquid crystal layer. What is necessary is just to determine according to the sense of polarization. Specifically, a cholesteric liquid crystal layer having a spiral sense that transmits circularly polarized light of sense contained more in light immediately after being emitted from the image display device and transmitted through the quarter-wave plate may be used.
 選択反射を示す選択反射帯の半値幅Δλ(nm)は、液晶化合物の複屈折Δnと上記ピッチPに依存し、Δλ=Δn×Pの関係に従う。そのため、選択反射帯の幅の制御は、Δnを調整して行うことができる。Δnの調整は重合性液晶化合物の種類やその混合比率を調整したり、配向固定時の温度を制御したりすることで行うことができる。
 選択反射の中心波長が同一の1種のコレステリック液晶層の形成のために、ピッチPが同じで、同じ螺旋のセンスのコレステリック液晶層を複数積層してもよい。ピッチPが同じで、同じ螺旋のセンスのコレステリック液晶層を積層することによって、特定の波長で円偏光選択性を高くすることができる。
The half width Δλ (nm) of the selective reflection band showing selective reflection depends on the birefringence Δn of the liquid crystal compound and the pitch P, and follows the relationship of Δλ = Δn × P. Therefore, the width of the selective reflection band can be controlled by adjusting Δn. Δn can be adjusted by adjusting the kind of the polymerizable liquid crystal compound and the mixing ratio thereof, or by controlling the temperature at the time of fixing the alignment.
In order to form one type of cholesteric liquid crystal layer having the same selective reflection center wavelength, a plurality of cholesteric liquid crystal layers having the same pitch P and the same spiral sense may be stacked. By laminating cholesteric liquid crystal layers having the same pitch P and the same spiral sense, the circularly polarized light selectivity can be increased at a specific wavelength.
<前面板>
 本発明のハーフミラーは、前面板を含む。
 前面板は、板状またはフィルム状であればよく、曲面を有していてもよい。前面板は平坦であってもよく、湾曲していてもよい。このような湾曲した前面板は、例えば、射出成形などのプラスチック加工法により作製することができる。射出成形においては、例えば、原料プラスチックペレットを熱で溶融し、金型内に射出した後、冷却固化することにより、樹脂製品を得ることができる。
<Front plate>
The half mirror of the present invention includes a front plate.
The front plate may be a plate shape or a film shape, and may have a curved surface. The front plate may be flat or curved. Such a curved front plate can be produced by a plastic processing method such as injection molding. In injection molding, for example, a resin product can be obtained by melting raw plastic pellets with heat, injecting them into a mold, and then cooling and solidifying.
 前面板は円偏光反射層と接着層により直接接着されているか、または前面板と円偏光反射層とが直接接してることが好ましい。
 前面板の材料は特に限定されない。前面板は、通常のミラーの作製に用いられるガラス板やプラスチックフィルムを含んでいればよい。
It is preferable that the front plate is directly bonded to the circularly polarized light reflecting layer and the adhesive layer, or the front plate and the circularly polarized light reflecting layer are in direct contact with each other.
The material of the front plate is not particularly limited. The front plate should just contain the glass plate and plastic film which are used for preparation of a normal mirror.
 プラスチックフィルムの材料の例としては、ポリカーボネート、アクリル樹脂、エポキシ樹脂、ポリウレタン、ポリアミド、ポリオレフィン、トリアセチルセルロースなどのセルロース誘導体、シリコーン、ポリエチレンテレフタレート(PET)などのポリエステル、ポリアセタール、ポリアリレートなどが挙げられる。コレステリック液晶層の形成時に用いられる支持体が前面板となっていてもよい。このとき、前面板は配向層を含んでいてもよい。 Examples of plastic film materials include polycarbonate, acrylic resin, epoxy resin, polyurethane, polyamide, polyolefin, cellulose derivatives such as triacetylcellulose, silicone, polyester such as polyethylene terephthalate (PET), polyacetal, polyarylate, and the like. . The support used when forming the cholesteric liquid crystal layer may be a front plate. At this time, the front plate may include an alignment layer.
 前面板の膜厚は、100μm~10mm程度であればよく、好ましくは200μm~5mmであり、より好ましくは500μm~2mmであり、さらに好ましくは500μm~1000μmである。 The film thickness of the front plate may be about 100 μm to 10 mm, preferably 200 μm to 5 mm, more preferably 500 μm to 2 mm, and still more preferably 500 μm to 1000 μm.
 前面板は高Re位相差膜を含んでいてもよい。上記プラスチックフィルムとして高Re位相差膜を含んでいてもよく、またはガラス板または高Re位相差膜に該当しない上記プラスチックフィルムに加えて高Re位相差膜を含んでいてもよい。また、前面板は光学機能層を含んでいてもよい。 The front plate may include a high Re retardation film. The plastic film may include a high Re retardation film, or may include a high Re retardation film in addition to the plastic film not corresponding to a glass plate or a high Re retardation film. The front plate may include an optical function layer.
[高Re位相差膜]
 本明細書において、「高Re位相差膜」というとき、1/4波長板(位相差板)とは区別される、高い正面位相差を有する位相差膜を意味する。上記高Re位相差膜の正面位相差は、3000nm以上であることが好ましく、5000nm以上であることがより好ましい。高Re位相差膜の正面位相差は、大きいほど好ましいが、製造効率や薄膜化を考慮して、100000nm以下、50000nm以下、40000nm以下、または30000nm以下であればよい。
[High Re retardation film]
In this specification, the term “high Re phase difference film” means a phase difference film having a high front phase difference, which is distinguished from a quarter wave plate (phase difference plate). The front retardation of the high Re retardation film is preferably 3000 nm or more, and more preferably 5000 nm or more. The front retardation of the high Re retardation film is preferably as large as possible, but may be 100000 nm or less, 50000 nm or less, 40000 nm or less, or 30000 nm or less in consideration of manufacturing efficiency and thinning.
 高Re位相差膜は、本発明のハーフミラーを画像表示機能付きミラーに用いたとき、ミラー反射像または画像に生じうる明暗ムラまたは色ムラを解消することができる。
 明暗ムラまたは色ムラは例えば以下の理由でミラー反射像に生じうる。
When the half mirror of the present invention is used for a mirror with an image display function, the high Re retardation film can eliminate light / dark unevenness or color unevenness that may occur in a mirror reflection image or image.
Brightness / darkness unevenness or color unevenness can occur in a mirror reflection image for the following reason, for example.
 車両の窓ガラス、特にリアガラスに用いられる強化ガラス(例えば、合わせガラスの構成ではない強化ガラス)は複屈折性分布を有することが知られている。そのため、車両のリアガラスなどを通過して画像表示機能付きミラー前面に入射する光に基づくミラー反射像には明暗ムラまたは色ムラが生じると考えられる。すなわち、複屈折分布により画像表示機能付きミラー前面に入射する光に分布を伴った偏光成分が生じると、画像表示機能付きミラー前面(最表面)での反射光と円偏光反射層での選択反射光との干渉によって反射光の強度の差が生じ、上述の明暗ムラまたは色ムラが生じうると考えられる。高Re位相差膜の利用によって、画像表示機能付きミラー前面に入射する光を反射層に入射する前に疑似的に無偏光とすることにより、明暗ムラまたは色ムラを軽減することができる。 It is known that tempered glass (for example, tempered glass that is not a laminated glass) used for vehicle window glass, particularly rear glass, has a birefringence distribution. For this reason, it is considered that light and dark unevenness or color unevenness occurs in the mirror reflection image based on the light that passes through the rear glass of the vehicle and enters the front surface of the mirror with an image display function. In other words, when a polarized component with a distribution is generated in the light incident on the front surface of the mirror with the image display function due to the birefringence distribution, the reflected light on the front surface (outermost surface) of the mirror with the image display function and the selective reflection on the circularly polarized reflective layer It is considered that the difference in intensity of reflected light occurs due to interference with light, and the above-described brightness / darkness unevenness or color unevenness can occur. By using a high Re retardation film, light and dark unevenness or color unevenness can be reduced by making light incident on the front surface of the mirror with an image display function pseudo-polarized before entering the reflection layer.
 偏光を疑似的に無偏光とすることができる正面位相差については、特開2005-321544号公報の段落0022~0033に記載がある。 The front phase difference that can make the polarized light pseudo-non-polarized is described in paragraphs 0022 to 0033 of JP-A-2005-321544.
 高Re位相差膜としては、プラスチックフィルムや、水晶板などの複屈折性材料を挙げることができる。プラスチックフィルムとしては、ポリエチレンテレフタレート(PET)などのポリエステルフィルム、ポリカーボネートフィルム、ポリアセタールフィルム、ポリアリレートフィルムなどが挙げられる。PETを含む高い位相差を有する位相差膜については、特開2013-257579号公報、特開2015-102636号公報などを参照することができる。光学コスモシャイン(登録商標)超複屈折タイプ(東洋紡)などの市販品を用いてもよい。 Examples of the high Re retardation film include a birefringent material such as a plastic film and a quartz plate. Examples of the plastic film include polyester films such as polyethylene terephthalate (PET), polycarbonate films, polyacetal films, polyarylate films, and the like. JP-A-2013-257579, JP-A-2015-102636, and the like can be referred to for a retardation film having a high retardation including PET. Commercial products such as optical Cosmo Shine (registered trademark) super birefringence type (Toyobo) may be used.
 高い位相差を有するプラスチックフィルムは一般的には、樹脂を溶融押出ししてドラム上などにキャストしてフィルム状に成型し、これを加熱しながら、一軸、または二軸に2~5倍の延伸倍率で延伸することによって形成できる。また結晶化を促進しフィルムの強度を上げる目的で、延伸した後に延伸温度を超える温度で「熱固定」とよばれる熱処理を行ってもよい。 In general, plastic films with high phase difference are melt-extruded from resin, cast on a drum, etc., and formed into a film shape. While heating this, it is stretched 2 to 5 times uniaxially or biaxially. It can be formed by stretching at a magnification. In order to promote crystallization and increase the strength of the film, a heat treatment called “heat setting” may be performed at a temperature exceeding the stretching temperature after stretching.
[光学機能層]
 光学機能層としては、ハードコート層、防眩層、反射防止層、または帯電防止層などが挙げられる。
 光学機能層はガラス板またはプラスチックフィルム上に設けられた重合性組成物の硬化層であることが好ましい。光学機能層は本発明のハーフミラーにおいて、光学機能層、ガラス板またはプラスチックフィルム、および円偏光反射層がこの順となるように設けられていることが好ましい。
[Optical function layer]
Examples of the optical functional layer include a hard coat layer, an antiglare layer, an antireflection layer, and an antistatic layer.
The optical functional layer is preferably a cured layer of a polymerizable composition provided on a glass plate or a plastic film. In the half mirror of the present invention, the optical functional layer is preferably provided so that the optical functional layer, the glass plate or plastic film, and the circularly polarized light reflecting layer are in this order.
(ハードコート層)
 ハードコート層はハーフミラーの最外層として含まれていてもよく、ハードコート層の外側にさらに他の層が設けられていてもよい。
 本明細書において、ハードコート層とは、形成されることでハーフミラー表面の鉛筆硬度が上昇する層をいう。具体的には、ハードコート層積層後の鉛筆硬度(JIS K5400)がH以上となる層である。ハードコート層積層後の鉛筆硬度は好ましくは2H以上であり、さらに好ましくは3H以上となっていればよい。ハードコート層の厚みは、0.1μm~100μmが好ましく、1.0μm~70μmがより好ましく、2.0μm~50μmがさらに好ましい。
 ハードコート層は反射防止層または帯電防止層などを兼ねるものであってもよい。
(Hard coat layer)
The hard coat layer may be included as the outermost layer of the half mirror, and another layer may be further provided outside the hard coat layer.
In this specification, the hard coat layer refers to a layer that, when formed, increases the pencil hardness of the half mirror surface. Specifically, it is a layer having a pencil hardness (JIS K5400) of H or higher after the hard coat layer lamination. The pencil hardness after laminating the hard coat layer is preferably 2H or more, and more preferably 3H or more. The thickness of the hard coat layer is preferably 0.1 μm to 100 μm, more preferably 1.0 μm to 70 μm, and further preferably 2.0 μm to 50 μm.
The hard coat layer may also serve as an antireflection layer or an antistatic layer.
 ハードコート層の具体例としては、紫外線硬化性重合性化合物を含む組成物から形成された層が挙げられる。この組成物は粒子など他の成分を含んでいてもよい。紫外線硬化性重合性化合物としては(メタ)アクリレートが好ましい。ハードコート層の材料および作製方法については、特開2016-071085号公報、特開2012-168295号公報、特開2011-225846号公報等を参照することができる。 Specific examples of the hard coat layer include a layer formed from a composition containing an ultraviolet curable polymerizable compound. The composition may contain other components such as particles. As the ultraviolet curable polymerizable compound, (meth) acrylate is preferable. As for the material and the production method of the hard coat layer, reference can be made to JP-A-2016-071085, JP-A-2012-168295, JP-A-2011-225846, and the like.
(防眩層)
 防眩層は、表面散乱に基づく防眩性を付与するための層である。防眩層は、ハーフミラーの最外層として含まれていてもよく、防眩層の外側にさらに他の層が設けられていてもよい。
 防眩層は、防眩層用バインダー樹脂形成化合物と防眩層用粒子を含む組成物から形成することができる。
 防眩層の材料および作製方法については、特開2013-178584号公報の0101~0109の記載、特開2016-053601号公報等を参照することができる。
(Anti-glare layer)
The antiglare layer is a layer for imparting antiglare properties based on surface scattering. The antiglare layer may be included as the outermost layer of the half mirror, and another layer may be further provided outside the antiglare layer.
The antiglare layer can be formed from a composition containing a binder resin-forming compound for the antiglare layer and particles for the antiglare layer.
With respect to the material and production method of the antiglare layer, reference can be made to the descriptions of 0101 to 0109 of JP2013-178484A, JP2016-053601A, and the like.
(反射防止層)
 反射防止層は、ハーフミラーの最表面に含まれていることが好ましい。反射防止層を設けることによって、最表面の反射光が抑制され、偏光反射板からの光に由来する像に基づくミラー反射像を鮮明に観測することができる。反射防止層の材料および作製方法については、WO2015/050202の0049~0053の記載を参照できる。
(Antireflection layer)
The antireflection layer is preferably included on the outermost surface of the half mirror. By providing the antireflection layer, the reflected light on the outermost surface is suppressed, and a mirror reflection image based on an image derived from the light from the polarizing reflection plate can be clearly observed. For the material and the production method of the antireflection layer, the description in 0049 to 0053 of WO2015 / 050202 can be referred to.
(帯電防止層)
 帯電防止層は、ハーフミラーの最表面に含まれていることが好ましい。帯電防止層の材料および作製方法については、特開2012-027191号公報の0020~0028の記載を参照できる。
(Antistatic layer)
The antistatic layer is preferably contained on the outermost surface of the half mirror. With respect to the material and manufacturing method of the antistatic layer, reference can be made to the descriptions in 0020 to 0028 of JP 2012-027191 A.
<接着層>
 本発明のハーフミラーは、円偏光反射層および前面板の接着のための接着層を含む。円偏光反射層および前面板の接着のための接着層は、円偏光反射層と前面板との間に含まれる接着層である。
 接着層は、アクリレート系、ウレタン系、ウレタンアクリレート系、エポキシ系、エポキシアクリレート系、ポリオレフィン系、変性オレフィン系、ポリプロピレン系、エチレンビニルアルコール系、塩化ビニル系、クロロプレンゴム系、シアノアクリレート系、ポリアミド系、ポリイミド系、ポリスチレン系、ポリビニルブチラール系などの化合物を含む接着剤から形成されたものであればよい。光学的な透明性、耐熱性の観点から、アクリレート系、ウレタンアクリレート系、エポキシアクリレート系などが好ましい。接着剤としては硬化方式の観点からホットメルトタイプ、熱硬化タイプ、光硬化タイプ、反応硬化タイプ、硬化の不要な感圧接着タイプがある。作業性、生産性の観点から、硬化方式として光硬化タイプが好ましい。
<Adhesive layer>
The half mirror of the present invention includes a circularly polarizing reflection layer and an adhesive layer for adhesion of the front plate. The adhesive layer for bonding the circularly polarized light reflecting layer and the front plate is an adhesive layer included between the circularly polarized light reflecting layer and the front plate.
Adhesive layer is acrylate, urethane, urethane acrylate, epoxy, epoxy acrylate, polyolefin, modified olefin, polypropylene, ethylene vinyl alcohol, vinyl chloride, chloroprene rubber, cyanoacrylate, polyamide Any adhesive may be used as long as it is formed from an adhesive containing a compound such as polyimide, polystyrene, or polyvinyl butyral. From the viewpoint of optical transparency and heat resistance, acrylate, urethane acrylate, epoxy acrylate, and the like are preferable. As the adhesive, there are a hot melt type, a thermosetting type, a photocuring type, a reaction curing type, and a pressure-sensitive adhesive type that does not require curing from the viewpoint of a curing method. From the viewpoint of workability and productivity, the photocuring type is preferred as the curing method.
 円偏光反射層および他の層(前面板、1/4波長板または偏光子等)の接着のための接着層はホットメルトタイプではないことが好ましい。すなわち、熱可塑性溶着層ではないことが好ましい。熱可塑性溶着層は、加熱により溶解し、その後冷却することで2つの層を接着させる層である。
 円偏光反射層および他の層の接着のための接着層は硬化の不要な感圧接着タイプの接着剤からなることがより好ましい。感圧接着タイプの接着剤としては、アクリレート系、ウレタン系、およびシリコーン系が挙げられ、特にアクリレート系が好ましい。
It is preferable that the adhesive layer for bonding the circularly polarized light reflecting layer and other layers (front plate, quarter wave plate, polarizer, etc.) is not a hot melt type. That is, it is preferably not a thermoplastic weld layer. A thermoplastic welding layer is a layer which melt | dissolves by heating and adheres two layers by cooling after that.
More preferably, the adhesive layer for bonding the circularly polarized light reflection layer and other layers is made of a pressure-sensitive adhesive type adhesive that does not require curing. Examples of pressure-sensitive adhesives include acrylate-based, urethane-based, and silicone-based adhesives, and acrylate-based adhesives are particularly preferable.
 接着剤は、シート状であっても液状であってもよい。
 シート状の接着剤としては、硬化の不要な感圧接着タイプのほか、シートを配置後、熱硬化または光硬化を行うタイプが挙げられる。シート状の接着剤の適用に際しては、例えば、OCAテープ(高透明性接着剤転写テープ)を用いることができる。OCAテープは一般に粘着層の片面または両面に剥離性の保護シートを有する形態で市販されており、接着層としてはこの粘着層を用いることができる。
 液状の接着剤としては、例えば、OCR(高透明性光学樹脂)が挙げられる。
The adhesive may be a sheet or a liquid.
Examples of the sheet-like adhesive include a pressure-sensitive adhesive type that does not require curing, and a type that performs thermal curing or photocuring after placing the sheet. When applying the sheet-like adhesive, for example, an OCA tape (highly transparent adhesive transfer tape) can be used. OCA tapes are generally marketed in the form of having a peelable protective sheet on one or both sides of the adhesive layer, and this adhesive layer can be used as the adhesive layer.
Examples of the liquid adhesive include OCR (highly transparent optical resin).
 高温の状況下において、ミラー反射像に色味変化が生じるという上記の問題は、円偏光反射層および他の層の接着のための接着層としてシート状の接着剤を用いた場合、具体的にはOCAテープ中の粘着層を用いた場合に特に顕著となる。シート状の接着剤は、一般的に、Tgが低く流動性が高いため、高温環境下では物質が外部から流入しやすいためと考えられる。そのため、バリア層を設けることの効果は接着層の形成にシート状の接着剤を用いた場合に特に顕著である。 When the sheet-like adhesive is used as an adhesive layer for adhesion of the circularly polarized reflective layer and other layers, the above problem that the color change occurs in the mirror reflection image under high temperature conditions is specifically Becomes particularly prominent when the adhesive layer in the OCA tape is used. The sheet-like adhesive generally has a low Tg and a high fluidity, and therefore, it is considered that the substance easily flows from the outside in a high temperature environment. Therefore, the effect of providing the barrier layer is particularly remarkable when a sheet-like adhesive is used for forming the adhesive layer.
 シート状の接着剤としてはアクリレート系、ウレタン系、およびシリコーン系が挙げられ、特にアクリレート系が好ましい。
 シート状の接着剤として用いることができるOCAテープとしては、画像表示装置用の市販品、特に画像表示装置の画像表示部表面用として市販されている製品を用いればよい。市販品の例としては、パナック株式会社製の粘着シート(PD-S1など)、日栄化工株式会社のMHMシリーズの粘着シート、およびスリーエム社製OCA8146などが挙げられる。
Examples of the sheet-like adhesive include acrylates, urethanes, and silicones, and acrylates are particularly preferable.
As an OCA tape that can be used as a sheet-like adhesive, a commercially available product for an image display device, particularly a product marketed for the surface of an image display unit of an image display device may be used. Examples of commercially available products include PANAC Corporation pressure sensitive adhesive sheets (PD-S1 and the like), Nichiei Kako MHM series pressure sensitive adhesive sheets, 3M Corporation OCA8146, and the like.
 接着層は膜厚が0.50μm以上50μm以下であることが好ましく、1.0μm以上25μm以下であることがより好ましい。 The film thickness of the adhesive layer is preferably 0.50 μm or more and 50 μm or less, and more preferably 1.0 μm or more and 25 μm or less.
<バリア層>
 本発明のハーフミラーはバリア層を含む。バリア層は、接着層と円偏光反射層との間に含まれる。バリア層と円偏光反射層とは直接接していることが好ましい。特に、バリア層は円偏光反射層中のコレステリック液晶層と直接接していることが好ましい。
<Barrier layer>
The half mirror of the present invention includes a barrier layer. The barrier layer is included between the adhesive layer and the circularly polarized light reflecting layer. The barrier layer and the circularly polarized light reflecting layer are preferably in direct contact. In particular, the barrier layer is preferably in direct contact with the cholesteric liquid crystal layer in the circularly polarized light reflecting layer.
 上記のように、本発明者らは、コレステリック液晶層を含むハーフミラーは、高温、特に高温高湿の状況下において、ミラー反射像に色味変化が生じることがあることを見出した。例えば、40℃~200℃の環境下、特に65℃~110℃の環境下などで色味変化が生じうる。具体的には、相対湿度40%における85℃~110℃の環境下、相対湿度85%における65℃~85℃の環境下などで色味変化が生じうる。色味変化は、後述するコレステリック液晶層の選択反射中心波長が高温環境下で短波長シフトしたことに基づく。
 本発明者らは、実施例に示すように、高温環境下で、コレステリック液晶層から接着層へ物質が移動していると考えられる結果を得て、この移動を抑えるためのバリア層を設けることにより上記問題を解決した。
As described above, the present inventors have found that a half mirror including a cholesteric liquid crystal layer may cause a color change in a mirror reflection image under a high temperature condition, particularly a high temperature and high humidity condition. For example, a color change can occur in an environment of 40 ° C. to 200 ° C., particularly in an environment of 65 ° C. to 110 ° C. Specifically, color changes can occur in an environment of 85 ° C. to 110 ° C. at a relative humidity of 40%, and in an environment of 65 ° C. to 85 ° C. at a relative humidity of 85%. The color change is based on the fact that the selective reflection center wavelength of a cholesteric liquid crystal layer described later is shifted by a short wavelength under a high temperature environment.
As shown in the Examples, the inventors have obtained a result that a substance is considered to have moved from the cholesteric liquid crystal layer to the adhesive layer in a high temperature environment, and provided a barrier layer for suppressing this movement. The above problem was solved.
 いずれの理論にも拘泥するものではないが、バリア層を含んでいないハーフミラーにおいては、高温下で、コレステリック液晶層を構成する物質が外部に移動することにより、コレステリック液晶層の膜厚が減少し、ピッチPが小さくなって選択反射中心波長が短波長シフトしたと考えられる。 Although not bound by any theory, in a half mirror that does not include a barrier layer, the film thickness of the cholesteric liquid crystal layer is reduced due to the movement of the material constituting the cholesteric liquid crystal layer to the outside at high temperatures. However, it is considered that the pitch P is reduced and the selective reflection center wavelength is shifted by a short wavelength.
 バリア層は、高温環境下でのコレステリック液晶層中の成分の外部への移動を抑えることができる層である。特にコレステリック液晶層中の成分の接着層への移動を抑えることができる層であることが好ましい。バリア層は、それ自体にコレステリック液晶層中の成分が移動しにくいものであることが好ましい。
 バリア層により移動が抑えられるコレステリック液晶層中の成分としては、重合開始剤、未反応の重合性液晶化合物、および上記いずれかの分解物などが挙げられる。これらのうち、重合開始剤および重合開始剤の分解物から選択される成分の移動が抑えられることが好ましい。
The barrier layer is a layer that can suppress the movement of components in the cholesteric liquid crystal layer to the outside in a high temperature environment. In particular, a layer capable of suppressing the movement of components in the cholesteric liquid crystal layer to the adhesive layer is preferable. The barrier layer is preferably a layer in which the components in the cholesteric liquid crystal layer are difficult to move.
Examples of the component in the cholesteric liquid crystal layer whose movement is suppressed by the barrier layer include a polymerization initiator, an unreacted polymerizable liquid crystal compound, and any of the above decomposition products. Among these, it is preferable that the movement of the component selected from the polymerization initiator and the decomposition product of the polymerization initiator is suppressed.
 移動を抑えることができるとは、バリア層が無い以外は同じ構成のハーフミラーのコレステリック液晶層で検出される成分の量と比較して、コレステリック液晶層で検出される成分の量を増加させることができるという意味である。この際の検出は、ハーフミラーを切削し、コレステリック液晶層の表面分析を行えばよい。同様に、移動を抑えることができるとは、バリア層が無い以外は同じ構成のハーフミラーの接着層で検出されるコレステリック液晶層中の成分の量と比較して、バリア層および接着層で検出されるコレステリック液晶層中の成分の量を減らすことができるという意味である。この際の検出は、ハーフミラーを切削し、接着層またはバリア層と接着層との両方の表面分析を行うことにより行えばよい。具体的には、高温環境下で放置後のハーフミラーについて上記の検出をそれぞれ行い、実質的に量が減少していればよい。
 表面分析としてはX線光電分光法(XPS)および飛行時間型二次イオン質量分析法(TOF-SIMS)などが挙げられる。
 また、高温環境下での放置は110℃で160時間行われればよい。
That the movement can be suppressed means that the amount of components detected in the cholesteric liquid crystal layer is increased compared to the amount of components detected in the cholesteric liquid crystal layer of the half mirror having the same configuration except that there is no barrier layer. It means that you can. The detection at this time may be performed by cutting the half mirror and analyzing the surface of the cholesteric liquid crystal layer. Similarly, the fact that movement can be suppressed is detected by the barrier layer and the adhesive layer compared to the amount of components in the cholesteric liquid crystal layer detected by the adhesive layer of the half mirror having the same configuration except that there is no barrier layer. This means that the amount of components in the cholesteric liquid crystal layer can be reduced. The detection at this time may be performed by cutting the half mirror and performing surface analysis of both the adhesive layer or the barrier layer and the adhesive layer. Specifically, the above-described detection is performed for each half mirror after being left in a high temperature environment, and the amount may be substantially reduced.
Examples of the surface analysis include X-ray photoelectric spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS).
Moreover, the leaving in a high temperature environment should just be performed at 110 degreeC for 160 hours.
 また、バリア層は、可視光領域で透明であることが好ましい。可視光領域で透明とは、可視光領域における光線透過率が、80%以上、好ましくは85%以上であることをいう。透明の尺度として用いられる光線透過率は、JIS A5759に記載された方法で求めた光線透過率とする。すなわち分光光度計にて、波長380nm~780nmの透過率を測定し、CIE(国際照明委員会)昼光 D65の分光分布、CIE 明順応標準比視感度の波長分布および波長間隔から得られる重価係数を乗じて加重平均することによって光線透過率を求める。
 さらに、バリア層は複屈折が小さいことが好ましい。例えば、正面位相差が20nm以下であればよく、10nm未満であることが好ましく、5nm以下であることがより好ましい。
 バリア層は、例えば無機層または有機層であればよい。
The barrier layer is preferably transparent in the visible light region. Transparent in the visible light region means that the light transmittance in the visible light region is 80% or more, preferably 85% or more. The light transmittance used as a measure of transparency is the light transmittance determined by the method described in JIS A5759. That is, the transmittance at a wavelength of 380 nm to 780 nm is measured with a spectrophotometer, and the weight obtained from the spectral distribution of CIE (International Commission on Illumination) daylight D65, the wavelength distribution of CIE light adaptation standard relative luminous sensitivity, and the wavelength interval. The light transmittance is obtained by multiplying the coefficient and performing a weighted average.
Further, the barrier layer preferably has a small birefringence. For example, the front phase difference may be 20 nm or less, preferably less than 10 nm, and more preferably 5 nm or less.
The barrier layer may be an inorganic layer or an organic layer, for example.
[有機層であるバリア層]
 バリア層が有機層である場合、高いガラス転移温度(Tg)の組成物から形成されたバリア層であることが好ましい。高温環境で強固であるためである。
 本明細書において、ガラス転移温度Tg(以下、「Tg」と略記することがある)は、示差走査熱量測定(DSC)によって得られる。DSCの具体的な測定条件の一例としては、以下の測定条件を挙げることができる。
 DSC装置:SIIテクノロジー社製、DSC6200
・測定室内の雰囲気:窒素(50mL/min)
・昇温速度:10℃/min
・測定開始温度:0℃
・測定終了温度:200℃
・試料パン:アルミニウム製パン
・測定試料の質量:5mg
・Tgの算定:DSCチャートの下降開始点と下降終了点の中間温度をTgとする。ただし、測定は同一の試料で2回実施し、2回目の測定結果を採用する。
[Barrier layer that is an organic layer]
When the barrier layer is an organic layer, it is preferably a barrier layer formed from a composition having a high glass transition temperature (Tg). This is because it is strong in a high temperature environment.
In this specification, the glass transition temperature Tg (hereinafter sometimes abbreviated as “Tg”) is obtained by differential scanning calorimetry (DSC). Examples of specific measurement conditions for DSC include the following measurement conditions.
DSC device: DSC6200, manufactured by SII Technology
・ Atmosphere in measurement chamber: Nitrogen (50 mL / min)
・ Raising rate: 10 ° C / min
・ Measurement start temperature: 0 ℃
-Measurement end temperature: 200 ° C
・ Sample pan: Aluminum pan ・ Measurement sample mass: 5 mg
-Calculation of Tg: Tg is the intermediate temperature between the descent start point and descent end point of the DSC chart. However, the measurement is performed twice with the same sample, and the second measurement result is adopted.
 Tgは具体的には80℃以上であることが好ましく、100℃以上であることがより好ましい。Tgは500℃以下であることが好ましく、300℃以下であることがより好ましい。 Specifically, Tg is preferably 80 ° C. or higher, and more preferably 100 ° C. or higher. Tg is preferably 500 ° C. or lower, and more preferably 300 ° C. or lower.
 バリア層は、親水性であることが好ましい。具体的にはSP値(Solubility Parameter(溶解度パラメータまたは溶解性パラメータ))が22~26であることが好ましく、23~26であることがより好ましい。
 溶解性パラメータ(SP値)は、沖津法によって求めることができる。沖津法については、日本接着学会誌Vol.29、No.6(1993年)249~259頁に詳述されている。
The barrier layer is preferably hydrophilic. Specifically, the SP value (Solubility Parameter (solubility parameter or solubility parameter)) is preferably 22 to 26, more preferably 23 to 26.
The solubility parameter (SP value) can be determined by the Okitsu method. For details on the Okitsu method, see Journal of the Japan Adhesion Society Vol. 29, no. 6 (1993) 249-259.
(重合性基を含むモノマーを含む組成物を硬化した層)
 有機層であるバリア層としては、重合性基を含むモノマーを含む組成物を硬化した層が好ましい。
 上記モノマーとしては、ウレタン(メタ)アクリレートモノマー、(メタ)アクリレートモノマーおよびエポキシモノマーが挙げられる。上記モノマーは重合性基の数が多いことが好ましい。上記モノマーは2種以上のモノマーの混合物で用いてもよい。
(Layer obtained by curing a composition containing a monomer containing a polymerizable group)
As the barrier layer which is an organic layer, a layer obtained by curing a composition containing a monomer containing a polymerizable group is preferable.
As said monomer, a urethane (meth) acrylate monomer, a (meth) acrylate monomer, and an epoxy monomer are mentioned. The monomer preferably has a large number of polymerizable groups. The monomer may be used as a mixture of two or more monomers.
 ウレタン(メタ)アクリレートモノマーは式(I)で表されるウレタン結合および(メタ)アクリロイル基を含む。 Urethane (meth) acrylate monomer contains a urethane bond represented by formula (I) and a (meth) acryloyl group.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(I)中、Rは水素原子または炭化水素基を示す。
 本明細書において、「炭化水素基」は炭素原子および水素原子のみから構成される1価の基を意味し、アルキル基、シクロアルキル基、フェニル基、ナフチル基などの芳香環基が挙げられる。
 Rは水素原子であることが好ましい。
In formula (I), R represents a hydrogen atom or a hydrocarbon group.
In the present specification, the “hydrocarbon group” means a monovalent group composed of only carbon atoms and hydrogen atoms, and examples thereof include aromatic ring groups such as alkyl groups, cycloalkyl groups, phenyl groups, and naphthyl groups.
R is preferably a hydrogen atom.
 ウレタン(メタ)アクリレートモノマーは、ポリイソシアネート化合物と水酸基含有(メタ)アクリレート化合物を用いた付加反応、または、ポリアルコール化合物とイソシアネート基含有(メタ)アクリレート化合物を用いた付加反応から得られる化合物である。 The urethane (meth) acrylate monomer is a compound obtained from an addition reaction using a polyisocyanate compound and a hydroxyl group-containing (meth) acrylate compound, or an addition reaction using a polyalcohol compound and an isocyanate group-containing (meth) acrylate compound. .
 ポリイソシアネート化合物はジイソシアネートまたはトリイソシアネートであることが好ましい。ポリイソシアネート化合物の具体例としてはトルエンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、トリレンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサンなどが挙げられる。 The polyisocyanate compound is preferably diisocyanate or triisocyanate. Specific examples of the polyisocyanate compound include toluene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, tolylene diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane and the like.
 水酸基含有(メタ)アクリレート化合物の例としては、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレートなどが挙げられる。
 ポリアルコール化合物の例としてはエチレングリコール、プロピレングリコール、グリセリン、ペンタエリスリトール、ジペンタエリスリトール、トリメチロールエタン、トリメチロールプロパンなどが挙げられる。
 イソシアネート基含有(メタ)アクリレート化合物の例としては、2-イソシアナトエチルアクリレート、2-イソシアナトエチルメタクリレートなどが挙げられる。
Examples of the hydroxyl group-containing (meth) acrylate compound include pentaerythritol triacrylate, dipentaerythritol pentaacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, and the like.
Examples of the polyalcohol compound include ethylene glycol, propylene glycol, glycerin, pentaerythritol, dipentaerythritol, trimethylolethane, trimethylolpropane, and the like.
Examples of the isocyanate group-containing (meth) acrylate compound include 2-isocyanatoethyl acrylate and 2-isocyanatoethyl methacrylate.
 ウレタン(メタ)アクリレートモノマーは(メタ)アクリロイル基を2つ以上含むことが好ましく、3つ以上含むことがより好ましく、4つ以上含むことがさらに好ましい。ウレタン(メタ)アクリレートモノマーにおける(メタ)アクリロイル基の数の上限は特にないが30個以下であればよく、20個以下がより好ましく、18個以下がさらに好ましい。
 ウレタン(メタ)アクリレートモノマーの分子量は400~8000であることが好ましく、500~5000であることがより好ましい。
The urethane (meth) acrylate monomer preferably contains two or more (meth) acryloyl groups, more preferably three or more, and still more preferably four or more. The upper limit of the number of (meth) acryloyl groups in the urethane (meth) acrylate monomer is not particularly limited, but may be 30 or less, more preferably 20 or less, and even more preferably 18 or less.
The molecular weight of the urethane (meth) acrylate monomer is preferably 400 to 8000, more preferably 500 to 5000.
 ウレタン(メタ)アクリレートモノマーとしては市販品を用いてもよい。市販品としては、新中村工業株式会社製のU-2PPA、U-4HA、U-6LPA,U-10PA、UA-1100H,U-10HA、U-15HA、UA-53H,UA-33H,U-200PA,UA-160TM,UA-290TM,UA-4200,UA-4400,UA-122P,UA-7100,UA-W2Aおよび共栄社化学株式会社製のUA-510H,AH-600,AT-600,U-306T,UA-306I,UA-306H,UF-8001G,DAUA-167,BPZA-66,BPZA-100、ダイセル・サイテック社製EBERCRYL204、EBERCRYL205、EBERCRYL210、EBERCRYL215、EBERCRYL220、EBERCRYL230、EBERCRYL244、EBERCRYL245、EBERCRYL264、EBERCRYL265、EBERCRYL270、EBERCRYL280/15IB、EBERCRYL284、EBERCRYL285、EBERCRYL294/25HD、EBERCRYL1259、EBERCRYL1290、EBERCRYL8200、EBERCRYL8200AE、EBERCRYL4820、EBERCRYL4858、EBERCRYL5129、EBERCRYL8210、EBERCRYL8254、EBERCRYL8301R、EBERCRYL8307、EBERCRYL8402、EBERCRYL8405、EBERCRYL8411、EBERCRYL8465、EBERCRYL8800、EBERCRYL8804、EBERCRYL8807、EBERCRYL9260、EBERCRYL9270、KRM7735、KRM8296、KRM8452、KRM8904、EBERCRYL8311、EBERCRYL8701、EBERCRYL9227EA、KRM8667、KRM8528などが挙げられる。 Commercial products may be used as the urethane (meth) acrylate monomer. Commercially available products include U-2PPA, U-4HA, U-6LPA, U-10PA, UA-1100H, U-10HA, U-15HA, UA-53H, UA-33H, U-, manufactured by Shin-Nakamura Kogyo Co., Ltd. 200PA, UA-160TM, UA-290TM, UA-4200, UA-4400, UA-122P, UA-7100, UA-W2A and Kyoeisha Chemical Co., Ltd. UA-510H, AH-600, AT-600, U- 306T, UA-306I, UA-306H, UF-8001G, DAUA-167, BPZA-66, BPZA-100, Daicel Cytec EBERCRYL204, EBERCRYL205, EBERCRYL210, EBERCRYL215, EBERCRYL220L 44, EBERCRYL245, EBERCRYL264, EBERCRYL265, EBERCRYL270, EBERCRYL280 / 15IB, EBERCRYL284, EBERCRYL285, EBERCRYL294 / 25HD, EBERCRYL1259, EBERCRYL1290, EBERCRYL8200, EBERCRYL8200AE, EBERCRYL4820, EBERCRYL4858, EBERCRYL5129, EBERCRYL8210, EBERCRYL8254, EBERCRYL8301R, EBERCRYL8307, EBERCRYL8402, EBERCRYL8405, EBERCRYL8411, EBERCRYL 8465, EBERCRYL 8800, EBERCRYL 8804 EBERCRYL8807, EBERCRYL9260, EBERCRYL9270, KRM7735, KRM8296, KRM8452, KRM8904, EBERCRYL8311, EBERCRYL8701, EBERCRYL9227EA, KRM8667, KRM8528, and the like.
 好ましいウレタン(メタ)アクリレートモノマーの例としては、U-6LPA、U-4HAなどが挙げられる。重合性基の多いU-6LPA、U-4HAなどと、ウレタンアクリレート樹脂BPZA-66もしくはBPZA-100などとの混合物、U-6LPA、U-4HAなどとUA122P(新中村化学社製)などとの混合物も好ましい例として挙げられる。 Examples of preferable urethane (meth) acrylate monomers include U-6LPA and U-4HA. A mixture of U-6LPA, U-4HA, etc. with a large number of polymerizable groups and urethane acrylate resin BPZA-66 or BPZA-100, U-6LPA, U-4HA, etc. and UA122P (made by Shin-Nakamura Chemical Co., Ltd.) Mixtures are also mentioned as preferred examples.
 ウレタン(メタ)アクリレートモノマーはウレタン系ポリマーと組み合わせて用いることも好ましい。
 ウレタン系ポリマーは主鎖にウレタン結合を有するポリマーの総称であり、通常ポリイソシアネートとポリオールの反応によって得られる。ポリイソシアネートとしては、トルエンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)などが挙げられる、ポリオールとしてはエチレングリコール、プロピレングリコール、グリセリン、ヘキサントリオールなどが挙げられる。ウレタン系ポリマーはポリイソシアネートとポリオールの反応によって得られたポリウレタンに鎖延長処理をして分子量を増大させたポリマーであってもよい。ポリイソシアネート、ポリオール及び、鎖延長処理については、例えば「ポリウレタン樹脂ハンドブック」(磐田経時編,日刊工業新聞社,昭和62年発行)を参照できる。市販品としては、8BR-600(大成ファインケミカル社製)を使用できる。
 ウレタン系ポリマーは、分子量が10,000~200,000であることが好ましく、15,000~150,000であることがより好ましい。
 ウレタン系ポリマーをウレタン(メタ)アクリレートモノマーと組み合わせて用いる場合、ウレタン系ポリマーはバリア層形成のための組成物中に、上記組成物の総質量(固形分)に対して、1.0~50質量%含まれていることが好ましく、10~40質量%含まれていることがより好ましい。
The urethane (meth) acrylate monomer is also preferably used in combination with a urethane polymer.
A urethane-based polymer is a generic term for polymers having a urethane bond in the main chain, and is usually obtained by reaction of polyisocyanate and polyol. Examples of the polyisocyanate include toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), and isophorone diisocyanate (IPDI). Examples of the polyol include ethylene glycol, propylene glycol, glycerin, and hexanetriol. It is done. The urethane polymer may be a polymer obtained by subjecting polyurethane obtained by the reaction of polyisocyanate and polyol to chain extension treatment to increase the molecular weight. For the polyisocyanate, polyol, and chain extension treatment, for example, “Polyurethane Resin Handbook” (Akita Seida, edited by Nikkan Kogyo Shimbun, published in 1987) can be referred to. As a commercial product, 8BR-600 (manufactured by Taisei Fine Chemical Co., Ltd.) can be used.
The urethane polymer preferably has a molecular weight of 10,000 to 200,000, more preferably 15,000 to 150,000.
When a urethane polymer is used in combination with a urethane (meth) acrylate monomer, the urethane polymer is used in the composition for forming a barrier layer in an amount of 1.0 to 50 with respect to the total mass (solid content) of the composition. It is preferably contained in an amount of 10% by mass, more preferably 10 to 40% by mass.
 (メタ)アクリレートモノマーとしては、例えば特開2013-43382号公報の段落0024~0036または特開2013-43384号公報の段落0036~0048に記載の化合物を用いることができる。また、WO2013/047524に記載のフルオレン骨格を有する多官能アクリルモノマーを用いることもできる。
 (メタ)アクリレートモノマーとしては、新中村化学社製のDPHAおよびADCP、東亞合成社製のSP327、ならびに日本化薬社製のKAYARAD PET30、KAYARAD DPCA20、DPCA30、DPCA60、およびDPCA120からなる群より選択される1つ以上のモノマーがこの好ましい。特にTgが高く、重合性基が多いからである。
As the (meth) acrylate monomer, for example, compounds described in paragraphs 0024 to 0036 of JP2013-43382A or paragraphs 0036 to 0048 of JP2013-43384A can be used. Further, a polyfunctional acrylic monomer having a fluorene skeleton described in WO2013 / 047524 can also be used.
The (meth) acrylate monomer is selected from the group consisting of Shinnakamura's DPHA and ADCP, Toagosei's SP327, and Nippon Kayaku's KAYARAD PET30, KAYARAD DPCA20, DPCA30, DPCA60, and DPCA120. One or more monomers are preferred. This is because Tg is particularly high and there are many polymerizable groups.
 エポキシモノマーとしては、エポキシ基を含むモノマーであればよい。例えば、ビスフェノールA系、水素化ビスフェノールA系、ビスフェノールF系、水素化ビスフェノールF系、ノボラック型、他の芳香族系、脂環族系、複素環式、グリシジルエステル系、またはグリシジルアミン系のエポキシ化合物のほか、グリシジル(メタ)アクリレート、トリグリシジルイソシアヌレート等を用いることができる。 The epoxy monomer may be any monomer containing an epoxy group. For example, bisphenol A, hydrogenated bisphenol A, bisphenol F, hydrogenated bisphenol F, novolak, other aromatic, alicyclic, heterocyclic, glycidyl ester, or glycidylamine epoxy In addition to compounds, glycidyl (meth) acrylate, triglycidyl isocyanurate, and the like can be used.
 エポキシモノマーの市販品としては、EHPE3150、CEL2021P、CEL8000、サイクロマーM100(株式会社ダイセル)、JER1031S、JER157S65、JER1007、JER152、JER154、JERYX6810、JERYX8000(三菱化学株式会社)、デナコールEX411、デナコールEX810、デナコールEX821、デナコールEX825、デナコールEX841(ナガセケムテックス株式会社)、EPICLON HP-4032D、EPICLON EXA1514、EPICLON HP-7200、EPICLON HP7200L、EPICLON HP7200H、EPICLON N670、EPICLON N680等が挙げられる。
 これらのうち、特にCEL2021P、CEL8000、サイクロマーM100、EPICLON HP-4032Dが好ましい。
Commercially available epoxy monomers include EHPE3150, CEL2021P, CEL8000, Cyclomer M100 (Daicel), JER1031S, JER157S65, JER1007, JER152, JER154, JERYX6810 (Mitsubishi Chemical Corporation), Denacol EX411, Denacol EX8, EX821, Denacol EX825, Denacol EX841 (Nagase ChemteX Corporation), EPICLON HP-4032D, EPICLON EXA1514, EPICLON HP-7200, EPICLON HP7200L, EPICLON HP7200H, EPICLON N670, EPICLON N6
Of these, CEL2021P, CEL8000, cyclomer M100, and EPICLON HP-4032D are particularly preferable.
 バリア層形成のための組成物中に、モノマーは、上記組成物の総質量(固形分)に対して、50~100質量%含まれていることが好ましく、80~99質量%含まれていることがより好ましい。 In the composition for forming the barrier layer, the monomer is preferably contained in an amount of 50 to 100% by mass, preferably 80 to 99% by mass, based on the total mass (solid content) of the composition. It is more preferable.
 バリア層形成のための組成物は、重合開始剤を含んでいてもよい。重合開始剤を用いる場合、上記モノマーの合計量の0.1モル%以上であることが好ましく、0.5~5モル%であることがより好ましい。重合開始剤の例としては後述する液晶組成物に用いることができる重合開始剤と同様の例のほか、下記のカチオン光重合開始剤を挙げることができる。モノマーとしてエポキシモノマーが用いられる場合において、カチオン光重合開始剤を用いることが好ましい。 The composition for forming the barrier layer may contain a polymerization initiator. When a polymerization initiator is used, it is preferably 0.1 mol% or more, more preferably 0.5 to 5 mol% of the total amount of the monomers. Examples of the polymerization initiator include the following cationic photopolymerization initiators in addition to the same examples as the polymerization initiators that can be used in the liquid crystal composition described later. When an epoxy monomer is used as the monomer, it is preferable to use a cationic photopolymerization initiator.
 カチオン光重合開始剤としては、光照射により活性種としてカチオンを発生できるものであり、具体例としては、公知のスルホニウム塩、アンモニウム塩、ヨードニウム塩(例えば、ジアリールヨードニウム塩)、トリアリールスルホニウム塩、ジアゾニウム塩、イミニウム塩などが挙げられる。より具体的には、例えば、特開平8-143806号公報の段落0050~0053に示されている式(25)~(28)で表されるカチオン光重合開始剤、特開平8-283320号公報の段落0020にカチオン重合触媒として例示されているもの等を挙げることができる。市販品として入手可能なカチオン光重合開始剤としては、例えば、日本曹達社製CI-1370、CI-2064、CI-2397、CI-2624、CI-2639、CI-2734、CI-2758、CI-2823、CI-2855およびCI-5102等、ローディア社製PHOTOINITIATOR2047等、ユニオンカーバイト社製UVI-6974、UVI-6990、サンアプロ社製CPI-10P等を挙げることができる。 As the cationic photopolymerization initiator, a cation can be generated as an active species by light irradiation. Specific examples include known sulfonium salts, ammonium salts, iodonium salts (for example, diaryl iodonium salts), triarylsulfonium salts, A diazonium salt, an iminium salt, etc. are mentioned. More specifically, for example, cationic photopolymerization initiators represented by formulas (25) to (28) shown in paragraphs 0050 to 0053 of JP-A-8-143806, JP-A-8-283320 In the paragraph 0020, those exemplified as the cationic polymerization catalyst can be exemplified. Examples of commercially available cationic photopolymerization initiators include CI-1370, CI-2064, CI-2397, CI-2624, CI-2634, CI-2734, CI-2758, CI-2758 manufactured by Nippon Soda Co., Ltd. 2823, CI-2855 and CI-5102, PHOTOINITIATOR 2047 manufactured by Rhodia, UVI-6974, UVI-6990 manufactured by Union Carbide, and CPI-10P manufactured by San Apro.
 カチオン光重合開始剤としては、光重合開始剤の光に対する感度、化合物の安定性等の点からは、ジアゾニウム塩、ヨードニウム塩、スルホニウム塩、イミニウム塩が好ましい。また、耐候性の点からは、ヨードニウム塩がより好ましい。 As the cationic photopolymerization initiator, a diazonium salt, an iodonium salt, a sulfonium salt, and an iminium salt are preferable from the viewpoints of sensitivity of the photopolymerization initiator to light and stability of the compound. Moreover, an iodonium salt is more preferable from the point of weather resistance.
 ヨードニウム塩であるカチオン光重合開始剤の具体的な市販品としては、例えば、東京化成社製B2380、みどり化学社製BBI-102、和光純薬工業社製WPI-113、WPI-124、WPI-169、WPI-170、東洋合成化学社製DTBPI-PFBSを挙げることができる。
 また、カチオン光重合開始剤として使用可能なヨードニウム塩化合物の具体例としては、下記化合物PAG-1、PAG-2を挙げることもできる。
Specific examples of commercially available cationic photopolymerization initiators that are iodonium salts include B2380 manufactured by Tokyo Chemical Industry Co., Ltd., BBI-102 manufactured by Midori Chemical Co., Ltd., WPI-113, WPI-124, WPI- manufactured by Wako Pure Chemical Industries, Ltd. 169, WPI-170, and DTBPI-PFBS manufactured by Toyo Gosei.
Specific examples of the iodonium salt compound that can be used as the cationic photopolymerization initiator include the following compounds PAG-1 and PAG-2.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 バリア層形成のための組成物は、その他、界面活性剤などの他の成分を含んでいてもよい。 The composition for forming the barrier layer may further contain other components such as a surfactant.
 バリア層形成のための上記モノマーを含む組成物においては、この組成物中のモノマーの重合性基数Y1と重合性基含率X1とが式1を満たすことが好ましい。
 
1<-300X1+7.5   式1
In the composition containing the monomer for forming the barrier layer, it is preferable that the number of polymerizable groups Y 1 and the polymerizable group content X 1 of the monomer in the composition satisfy Formula 1.

Y 1 <-300X 1 +7.5 Formula 1
 本発明者らは、式1を満たす場合に、バリア層におけるクラックの発生をより効果的に防止できることを見出した。式1からわかるように、モノマーの重合性基数が大きすぎるとクラックが生じ易く、また、重合性基数に対する分子量が大きいと、より低い重合性基数であってもクラックが生じ易い。重合性基含率は、モノマーの重合性基数を分子量で割った値(重合性基数/分子量)である。なお、組成物が複数のモノマーを含む場合、Y1およびX1は、それぞれ組成物中の各モノマー量の全モノマー量に対する割合を考慮した平均値である。従って、単一では式1を満たさないモノマーは他のモノマーとの混合物として用い、式1を満たす組成物として用いることが好ましい。 The inventors have found that when the formula 1 is satisfied, the generation of cracks in the barrier layer can be more effectively prevented. As can be seen from Equation 1, if the number of polymerizable groups in the monomer is too large, cracks are likely to occur, and if the molecular weight relative to the number of polymerizable groups is large, cracks are likely to occur even if the number of polymerizable groups is lower. The polymerizable group content is a value obtained by dividing the number of polymerizable groups of the monomer by the molecular weight (number of polymerizable groups / molecular weight). Incidentally, if the composition comprises a plurality of monomers, Y 1 and X 1 is an average value in consideration of the percentage of the total monomer weight of the monomer weight of each composition. Therefore, it is preferable to use a monomer that does not satisfy Formula 1 alone as a mixture with other monomers and a composition that satisfies Formula 1.
 また、バリア層が、ウレタン(メタ)アクリレートモノマーを含む組成物を硬化した層である場合、ウレタン(メタ)アクリレートモノマーの重合性基数Y2と組成物のガラス転移温度(Tg)X2とが式2を満たすことが好ましい。
 
2> -0.0066X2+5.33   式2
When the barrier layer is a layer obtained by curing a composition containing a urethane (meth) acrylate monomer, the number of polymerizable groups Y 2 of the urethane (meth) acrylate monomer and the glass transition temperature (Tg) X 2 of the composition are It is preferable to satisfy Equation 2.

Y 2 > −0.0066 X 2 +5.33 Equation 2
 本発明者らは、式2を満たす場合に、バリア層の耐熱性がより高くなることを見出した。ウレタン(メタ)アクリレートモノマーの重合性基数は大きいことが好ましいが、式2からわかるように、Tgが大きい場合は比較的低い重合性基数であってもよい。なお、組成物が複数のモノマーを含む場合、Y2およびX2は、それぞれ組成物中の各モノマー量の全モノマー量に対する割合を考慮した平均値である。従って、単一では式2を満たさないモノマーは他のモノマーとの混合物として用い、式2を満たす組成物として用いることが好ましい。 The present inventors have found that when the formula 2 is satisfied, the heat resistance of the barrier layer becomes higher. Although the number of polymerizable groups of the urethane (meth) acrylate monomer is preferably large, as can be seen from Formula 2, when Tg is large, the number of polymerizable groups may be relatively low. Incidentally, if the composition comprises a plurality of monomers, Y 2 and X 2 is an average value in consideration of the percentage of the total monomer weight of the monomer weight of each composition. Therefore, it is preferable to use a monomer that does not satisfy Formula 2 alone as a mixture with other monomers and a composition that satisfies Formula 2.
 バリア層が、エポキシモノマーを含む組成物を硬化した層である場合、エポキシモノマーの重合性基数Y3と組成物のガラス転移温度(Tg)X3とが式3を満たすことが好ましい。
 
3>-0.01X3+2.758   式3
When the barrier layer is a layer obtained by curing a composition containing an epoxy monomer, it is preferable that the polymerizable group number Y 3 of the epoxy monomer and the glass transition temperature (Tg) X 3 of the composition satisfy the formula 3.

Y 3 > −0.01X 3 +2.758 Formula 3
 本発明者らは、式3を満たす場合に、バリア層におけるクラックの発生をより効果的に防止できることを見出した。エポキシモノマーの重合性基数は大きいことが好ましいが、式3からわかるようにエポキシモノマーを含む組成物のTgが大きい場合は比較的低い重合性基数であってもよい。なお、組成物が複数のモノマーを含む場合、Y3およびX3は、それぞれ組成物中の各モノマー量の全モノマー量に対する割合を考慮した平均値である。従って、単一では式3を満たさないモノマーは他のモノマーとの混合物として用い、式3を満たす組成物として用いることが好ましい。 The present inventors have found that when Formula 3 is satisfied, generation of cracks in the barrier layer can be more effectively prevented. The number of polymerizable groups of the epoxy monomer is preferably large, but as can be seen from Formula 3, when the Tg of the composition containing the epoxy monomer is large, the number of polymerizable groups may be relatively low. Incidentally, if the composition comprises a plurality of monomers, Y 3 and X 3 is an average value in consideration of the percentage of the total monomer weight of the monomer weight of each composition. Therefore, it is preferable to use a monomer that does not satisfy Formula 3 alone as a mixture with other monomers and a composition that satisfies Formula 3.
 有機層であるバリア層の膜厚は、0.1μm以上20μm以下であることが好ましく、0.5μm以上10μm以下であることがより好ましく、1.2μm以上3.0μm以下であることがさらに好ましい。 The film thickness of the barrier layer which is an organic layer is preferably 0.1 μm or more and 20 μm or less, more preferably 0.5 μm or more and 10 μm or less, and further preferably 1.2 μm or more and 3.0 μm or less. .
 上記の組成物からのバリア層の形成は、コレステリック液晶層上、好ましくはコレステリック液晶層の表面に、バリア層形成のための組成物を塗布することを含む方法により行うことが好ましい。バリア層形成のための組成物は良好な塗布のために溶媒を含んでいてもよい。塗布後の層は乾燥し、用いた組成物に適した方法によって硬化してバリア層とすればよい。硬化は光硬化により行うことが好ましい。バリア層形成のための組成物が含んでいてもよい溶媒、塗布方法、光硬化の条件としては、後述する液晶組成物に対する記載を参照することができる。 The formation of the barrier layer from the above composition is preferably performed by a method including applying the composition for forming the barrier layer on the cholesteric liquid crystal layer, preferably on the surface of the cholesteric liquid crystal layer. The composition for forming the barrier layer may contain a solvent for good application. The layer after application may be dried and cured by a method suitable for the composition used to form a barrier layer. Curing is preferably performed by photocuring. As the solvent, coating method, and photocuring condition that may be contained in the composition for forming the barrier layer, the description for the liquid crystal composition described later can be referred to.
[無機層であるバリア層]
 バリア層が無機層である場合、高密度であることが望ましい。コレステリック液晶層中の成分を通しにくくするためである。具体的には無機層の密度は2.1~2.4g/cm3であることが好ましい。低密度の無機層はバリア性能が低くなり易い。逆に密度が高すぎると屈曲性が低下し、応力を原因とする剥離やクラックが生じ易くなる。
 本明細書において示される無機層の密度はXRR(X線反射率)により決定されるものである。XRR測定結果からの密度の計算は、ソフトを用いたシミュレーションにより行うものであってもよい。XRR測定は、例えばATX(リガク社製)により行うことができる。シミュレーションは、例えば、解析ソフトGXRR(リガク社製)を使用して行うことができる。無機層は単一層であることを仮定している。
[Barrier layer that is an inorganic layer]
When the barrier layer is an inorganic layer, a high density is desirable. This is to make it difficult to pass components in the cholesteric liquid crystal layer. Specifically, the density of the inorganic layer is preferably 2.1 to 2.4 g / cm 3 . Low density inorganic layers tend to have low barrier performance. On the other hand, if the density is too high, the flexibility is lowered, and peeling or cracking due to stress tends to occur.
The density of the inorganic layer shown in this specification is determined by XRR (X-ray reflectivity). The calculation of the density from the XRR measurement result may be performed by simulation using software. XRR measurement can be performed by, for example, ATX (manufactured by Rigaku Corporation). The simulation can be performed using, for example, analysis software GXRR (manufactured by Rigaku Corporation). It is assumed that the inorganic layer is a single layer.
 無機層は例えば金属酸化物、金属窒化物、金属酸窒化物または金属炭化物を含むことが好ましい。特に、Si、Al、In、Sn、Zn、Ti、Cu、Ce、Ta、Nb、ZrおよびLa等から選ばれる1種以上の金属を含む酸化物、窒化物、炭化物、酸化窒化物、または酸化窒化炭化物などを好ましく用いることができる。これらの中でも、Si、Ti、Nb、ZrおよびLaから選ばれる金属の酸化物、窒化物、または酸化窒化物が好ましい。具体的には、酸化ケイ素、酸化タンタル、酸化ジルコニウム、酸化チタン、酸化ニオブ、およびチタン酸ランタンなどが挙げられる。 The inorganic layer preferably contains, for example, metal oxide, metal nitride, metal oxynitride or metal carbide. In particular, an oxide, nitride, carbide, oxynitride, or oxidation containing one or more metals selected from Si, Al, In, Sn, Zn, Ti, Cu, Ce, Ta, Nb, Zr, and La Nitride carbide or the like can be preferably used. Among these, a metal oxide, nitride, or oxynitride selected from Si, Ti, Nb, Zr, and La is preferable. Specific examples include silicon oxide, tantalum oxide, zirconium oxide, titanium oxide, niobium oxide, and lanthanum titanate.
 無機層は、目的の薄膜を形成できる方法であればいかなる方法でも形成することができる。例えば、蒸着法(イオンアシスト蒸着であってもよい)、スパッタリング法、イオンプレーティング法等の物理的気相成長法(PVD)、種々の化学的気相成長法(CVD)、めっきやゾルゲル法等の液相成長法があり、プラズマCVD法が好ましい。
 無機層であるバリア層の膜厚は1.0nm以上1000nm以下であることが好ましく、3.0nm以上500nm以下であることがより好ましく、5.0nm以上100nm以下であることがさらに好ましい。
The inorganic layer can be formed by any method that can form a target thin film. For example, vapor deposition (may be ion-assisted vapor deposition), physical vapor deposition (PVD) such as sputtering and ion plating, various chemical vapor deposition (CVD), plating and sol-gel methods Etc., and the plasma CVD method is preferred.
The film thickness of the barrier layer, which is an inorganic layer, is preferably 1.0 nm or more and 1000 nm or less, more preferably 3.0 nm or more and 500 nm or less, and further preferably 5.0 nm or more and 100 nm or less.
<1/4波長板>
 本発明のハーフミラーは1/4波長板を含んでいてもよい。1/4波長板を含むハーフミラーを用いて、画像表示装置と円偏光反射層との間に1/4波長板を含む構成として画像表示機能付きミラーを形成することにより、画像表示装置からの光を円偏光に変換して円偏光反射層に入射させることが可能となる。そのため、円偏光反射層において反射されて画像表示装置側に戻る光を大幅に減らすことができ、明るい画像の表示が可能となる。
<1/4 wavelength plate>
The half mirror of the present invention may include a quarter wavelength plate. By using a half mirror including a quarter wavelength plate and forming a mirror with an image display function as a configuration including a quarter wavelength plate between the image display device and the circularly polarized light reflection layer, Light can be converted into circularly polarized light and incident on the circularly polarized light reflecting layer. Therefore, the light reflected by the circularly polarized light reflection layer and returning to the image display device side can be greatly reduced, and a bright image can be displayed.
 1/4波長板は可視光領域において1/4波長板として機能する位相差層であればよい。1/4波長板の例としては、一層型の1/4波長板、1/4波長板と1/2波長位相差板とを積層した広帯域1/4波長板などが挙げられる。
 前者の1/4波長板の正面位相差は、画像表示装置の発光波長の1/4であればよい。それゆえに例えば画像表示装置の発光波長が450nm、530nm、640nmの場合は、450nmの波長で112.5nm±10nm、好ましくは112.5nm±5nm、より好ましくは112.5nm、530nmの波長で132.5nm±10nm、好ましくは132.5nm±5nm、より好ましくは132.5nm、640nmの波長で160nm±10nm、好ましくは160nm±5nm、より好ましくは160nmの位相差であるような逆分散性の位相差層が1/4波長板として最も好ましいが、位相差の波長分散性の小さい位相差板や順分散性の位相差板も用いることができる。なお、逆分散性とは長波長になるほど位相差の絶対値が大きくなる性質を意味し、順分散性とは短波長になるほど位相差の絶対値が大きくなる性質を意味する。
The quarter wave plate may be a retardation layer that functions as a quarter wave plate in the visible light region. Examples of the quarter-wave plate include a single-layer quarter-wave plate, a broadband quarter-wave plate in which a quarter-wave plate and a half-wave retardation plate are stacked, and the like.
The front phase difference of the former ¼ wavelength plate may be ¼ of the emission wavelength of the image display device. Therefore, for example, when the emission wavelength of the image display device is 450 nm, 530 nm, and 640 nm, the wavelength of 450 nm is 112.5 nm ± 10 nm, preferably 112.5 nm ± 5 nm, more preferably 112.5 nm, and 530 nm. Inverse dispersion phase difference such that the phase difference is 5 nm ± 10 nm, preferably 132.5 nm ± 5 nm, more preferably 132.5 nm, 160 nm ± 10 nm, preferably 160 nm ± 5 nm, more preferably 160 nm at a wavelength of 640 nm A layer is most preferable as a quarter-wave plate, but a retardation plate having a small retardation wavelength dispersion or a forward dispersion retardation plate can also be used. The reverse dispersion means a property that the absolute value of the phase difference becomes larger as the wavelength becomes longer, and the forward dispersion means a property that the absolute value of the phase difference becomes larger as the wavelength becomes shorter.
 積層型の1/4波長板は、1/4波長板と1/2波長位相差板とをその遅相軸を60°の角度で貼り合わせ、1/2波長位相差板側を直線偏光の入射側に配置して、且つ1/2波長位相差板の遅相軸を入射直線偏光の偏光面に対して15°、または75°に交差して使用するもので、位相差の逆分散性が良好なため好適に用いることができる。 The laminated quarter-wave plate is formed by laminating a quarter-wave plate and a half-wave retardation plate at an angle of 60 ° with the slow axis, and the side of the half-wave retardation plate is linearly polarized. It is arranged on the incident side and the slow axis of the half-wave retardation plate is used so as to cross 15 ° or 75 ° with respect to the polarization plane of the incident linearly polarized light. Can be suitably used because of its good resistance.
 1/4波長板としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、石英板、延伸されたポリカーボネートフィルム、延伸されたノルボルネン系ポリマーフィルム、炭酸ストロンチウムのような複屈折を示す無機粒子を含有して配向させた透明フィルム、支持体上に無機誘電体を斜め蒸着した薄膜などが挙げられる。 There is no restriction | limiting in particular as a quarter wavelength plate, According to the objective, it can select suitably. For example, quartz plate, stretched polycarbonate film, stretched norbornene polymer film, transparent film containing inorganic particles exhibiting birefringence such as strontium carbonate, and oblique deposition of inorganic dielectric on support Thin films and the like.
 1/4波長板としては、例えば、(1)特開平5-27118号公報および特開平5-27119号公報に記載された、レターデーションが大きい複屈折性フィルムと、レターデーションが小さい複屈折性フィルムとを、それらの光軸が直交するように積層させた位相差板、(2)特開平10-68816号公報に記載された、特定波長において1/4波長となっているポリマーフィルムと、それと同一材料からなり同じ波長において1/2波長となっているポリマーフィルムとを積層させて、広い波長域で1/4波長が得られる位相差板、(3)特開平10-90521号公報に記載された、二枚のポリマーフィルムを積層することにより広い波長域で1/4波長を達成できる位相差板、(4)国際公開第00/26705号パンフレットに記載された変性ポリカーボネートフィルムを用いた広い波長域で1/4波長を達成できる位相差板、(5)国際公開第00/65384号パンフレットに記載されたセルロースアセテートフィルムを用いた広い波長域で1/4波長を達成できる位相差板、などが挙げられる。
 1/4波長板としては、市販品を用いることもでき、市販品としては、例えば商品名:ピュアエース WR(帝人株式会社製)などが挙げられる。
Examples of the quarter wavelength plate include (1) a birefringent film having a large retardation and a birefringence having a small retardation described in JP-A-5-27118 and JP-A-5-27119. A retardation plate in which the optical axes are laminated so that their optical axes are orthogonal to each other, (2) a polymer film described in JP-A-10-68816, having a quarter wavelength at a specific wavelength; A retardation film that can be obtained by laminating a polymer film made of the same material and having a half wavelength at the same wavelength to obtain a quarter wavelength in a wide wavelength range. (3) Japanese Patent Laid-Open No. 10-90521 A retardation plate that can achieve a quarter wavelength in a wide wavelength range by laminating two polymer films as described, (4) International Publication No. 00/26705 pamphlet A retardation plate capable of achieving a quarter wavelength in a wide wavelength range using the modified polycarbonate film described above, (5) 1 in a wide wavelength range using a cellulose acetate film described in International Publication No. 00/65384 pamphlet And a retardation plate capable of achieving a / 4 wavelength.
A commercial item can also be used as a quarter wavelength plate, As a commercial item, brand name: Pure Ace WR (made by Teijin Ltd.) etc. are mentioned, for example.
 1/4波長板は、重合性液晶化合物、高分子液晶化合物を配列させて固定して形成してもよい。例えば、1/4波長板は、仮支持体、配向膜、または前面板表面に液晶組成物を塗布し、そこで液晶組成物中の重合性液晶化合物を液晶状態においてネマチック配向に形成後、光架橋や熱架橋によって固定化して、形成することができる。液晶組成物または製法について、詳細は後述する。1/4波長板は、高分子液晶化合物を含む組成物を、仮支持体、配向膜または前面板表面に、液晶組成物を塗布して液晶状態においてネマチック配向に形成後、冷却することによって上記配向を固定化して得られる層であってもよい。
 1/4波長板は円偏光反射層と、接着層により接着されていてもよく、直接接していてもよいが、後者が好ましい。
 1/4波長板は、円偏光反射層と、互いに同じ主表面の面積で積層されていることが好ましい。
The quarter wavelength plate may be formed by arranging and fixing a polymerizable liquid crystal compound or a polymer liquid crystal compound. For example, for a quarter-wave plate, a liquid crystal composition is applied to the surface of a temporary support, an alignment film, or a front plate, and a polymerizable liquid crystal compound in the liquid crystal composition is formed into a nematic alignment in a liquid crystal state, and then photocrosslinked. It can be formed by immobilization by thermal crosslinking. Details of the liquid crystal composition or the production method will be described later. The quarter wavelength plate is formed by applying a liquid crystal composition on a surface of a temporary support, an alignment film or a front plate to form a nematic alignment in a liquid crystal state, and then cooling the composition containing a polymer liquid crystal compound. It may be a layer obtained by fixing the orientation.
The quarter-wave plate may be bonded to the circularly polarized light reflection layer by an adhesive layer, or may be in direct contact, but the latter is preferred.
The quarter-wave plate is preferably laminated with the circularly polarized light reflecting layer with the same main surface area.
<コレステリック液晶層および液晶組成物から形成される1/4波長板の作製方法>
 以下、コレステリック液晶層および液晶組成物から形成される1/4波長板の作製材料および作製方法について説明する。
 上記1/4波長板の形成に用いる材料としては、重合性液晶化合物を含む液晶組成物などが挙げられる。コレステリック液晶層の形成に用いる材料は、さらにキラル剤(光学活性化合物)を含むことが好ましい。必要に応じてさらに界面活性剤や重合開始剤などと混合して溶剤などに溶解した上記液晶組成物を、支持体、仮支持体、配向膜、1/4波長板、下層となるコレステリック液晶層などに塗布し、配向熟成後、液晶組成物の硬化により固定化して1/4波長板またはコレステリック液晶層を形成することができる。
<Method for Producing 1/4 Wave Plate Formed from Cholesteric Liquid Crystal Layer and Liquid Crystal Composition>
Hereinafter, a preparation material and a preparation method of a quarter-wave plate formed from a cholesteric liquid crystal layer and a liquid crystal composition will be described.
Examples of the material used for forming the quarter wavelength plate include a liquid crystal composition containing a polymerizable liquid crystal compound. The material used for forming the cholesteric liquid crystal layer preferably further contains a chiral agent (optically active compound). A cholesteric liquid crystal layer as a support, a temporary support, an alignment film, a quarter-wave plate, or a lower layer, which is mixed with a surfactant or a polymerization initiator as necessary and dissolved in a solvent. It can apply | coating to etc., and it can fix | immobilize by hardening of a liquid crystal composition after orientation ripening, and can form a quarter wavelength plate or a cholesteric liquid crystal layer.
[重合性液晶化合物]
 重合性液晶化合物としては、棒状液晶化合物を用いればよい。
 棒状の重合性液晶化合物の例としては、棒状ネマチック液晶化合物が挙げられる。棒状ネマチック液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。低分子液晶化合物だけではなく、高分子液晶化合物も用いることができる。
[Polymerizable liquid crystal compound]
A rod-like liquid crystal compound may be used as the polymerizable liquid crystal compound.
Examples of the rod-like polymerizable liquid crystal compound include a rod-like nematic liquid crystal compound. Examples of rod-like nematic liquid crystal compounds include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines. , Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used. Not only low-molecular liquid crystal compounds but also high-molecular liquid crystal compounds can be used.
 重合性液晶化合物は、重合性基を液晶化合物に導入することで得られる。重合性基の例には、不飽和重合性基、エポキシ基、およびアジリジニル基が含まれ、不飽和重合性基が好ましく、エチレン性不飽和重合性基が特に好ましい。重合性基は種々の方法で、液晶化合物の分子中に導入できる。重合性液晶化合物が有する重合性基の個数は、好ましくは1~6個、より好ましくは1~3個である。重合性液晶化合物の例は、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開WO95/22586、WO95/24455、WO97/00600号公報、WO98/23580、WO98/52905、特開平1-272551号公報、同6-16616号公報、同7-110469号公報、同11-80081号公報、および特開2001-328973号公報などに記載の化合物が含まれる。2種類以上の重合性液晶化合物を併用してもよい。2種類以上の重合性液晶化合物を併用すると、配向温度を低下させることができる。 The polymerizable liquid crystal compound can be obtained by introducing a polymerizable group into the liquid crystal compound. Examples of the polymerizable group include an unsaturated polymerizable group, an epoxy group, and an aziridinyl group, preferably an unsaturated polymerizable group, and particularly preferably an ethylenically unsaturated polymerizable group. The polymerizable group can be introduced into the molecule of the liquid crystal compound by various methods. The number of polymerizable groups possessed by the polymerizable liquid crystal compound is preferably 1 to 6, more preferably 1 to 3. Examples of polymerizable liquid crystal compounds are described in Makromol. Chem. 190, 2255 (1989), Advanced Materials 5, 107 (1993), US Pat. No. 4,683,327, US Pat. No. 5,622,648, US Pat. No. 5,770,107, International Publication WO 95/22586, WO 95 / 24455, WO 97/00600, WO 98/23580, WO 98/52905, JP-A-1-272551, JP-A-6-16616, JP-A-7-110469, JP-A-11-80081, and JP-A-2001. The compounds described in Japanese Patent Publication No. 328873 are included. Two or more kinds of polymerizable liquid crystal compounds may be used in combination. When two or more kinds of polymerizable liquid crystal compounds are used in combination, the alignment temperature can be lowered.
 また、液晶組成物中の重合性液晶化合物の添加量は、液晶組成物の固形分質量(溶媒を除いた質量)に対して、80~99.9質量%であることが好ましく、85~99.5質量%であることがより好ましく、90~99質量%であることが特に好ましい。 The addition amount of the polymerizable liquid crystal compound in the liquid crystal composition is preferably 80 to 99.9% by mass with respect to the solid content mass (mass excluding the solvent) of the liquid crystal composition, and is preferably 85 to 99. It is more preferably 5% by mass, particularly preferably 90 to 99% by mass.
[キラル剤:光学活性化合物]
 コレステリック液晶層の形成に用いる液晶組成物はキラル剤を含んでいることが好ましい。キラル剤はコレステリック液晶相の螺旋構造を誘起する機能を有する。キラル化合物は、化合物によって誘起する螺旋のセンスまたは螺旋ピッチが異なるため、目的に応じて選択すればよい。
 キラル剤としては、特に制限はなく、公知の化合物を用いることができる。キラル剤の例としては、液晶デバイスハンドブック(第3章4-3項、TN、STN用カイラル剤、199頁、日本学術振興会第142委員会編、1989に記載)、特開2003-287623号、特開2002-302487号、特開2002-80478号、特開2002-80851号、特開2010-181852号または特開2014-034581号の各公報に記載の化合物が挙げられる。
[Chiral agent: optically active compound]
The liquid crystal composition used for forming the cholesteric liquid crystal layer preferably contains a chiral agent. The chiral agent has a function of inducing a helical structure of a cholesteric liquid crystal phase. The chiral compound may be selected according to the purpose because the helical sense or helical pitch induced by the compound is different.
There is no restriction | limiting in particular as a chiral agent, A well-known compound can be used. Examples of chiral agents include liquid crystal device handbook (Chapter 3, Section 4-3, TN, chiral agent for STN, page 199, edited by Japan Society for the Promotion of Science, 142th Committee, 1989), Japanese Patent Application Laid-Open No. 2003-287623. And compounds described in JP-A Nos. 2002-302487, 2002-80478, 2002-80851, 2010-181852 and 2014-034581.
 キラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物あるいは面性不斉化合物もキラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファンおよびこれらの誘導体が含まれる。キラル剤は、重合性基を有していてもよい。キラル剤と液晶化合物とがいずれも重合性基を有する場合は、重合性キラル剤と重合性液晶化合物との重合反応により、重合性液晶化合物から誘導される繰り返し単位と、キラル剤から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性キラル剤が有する重合性基は、重合性液晶化合物が有する重合性基と、同種の基であることが好ましい。従って、キラル剤の重合性基も、不飽和重合性基、エポキシ基またはアジリジニル基であることが好ましく、不飽和重合性基であることがさらに好ましく、エチレン性不飽和重合性基であることが特に好ましい。
 また、キラル剤は、液晶化合物であってもよい。
A chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound containing no asymmetric carbon atom can also be used as the chiral agent. Examples of the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof. The chiral agent may have a polymerizable group. When both the chiral agent and the liquid crystal compound have a polymerizable group, they are derived from the repeating unit derived from the polymerizable liquid crystal compound and the chiral agent by a polymerization reaction between the polymerizable chiral agent and the polymerizable liquid crystal compound. A polymer having repeating units can be formed. In this aspect, the polymerizable group possessed by the polymerizable chiral agent is preferably the same group as the polymerizable group possessed by the polymerizable liquid crystal compound. Therefore, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Particularly preferred.
The chiral agent may be a liquid crystal compound.
 キラル剤としては、イソソルビド誘導体、イソマンニド誘導体、またはビナフチル誘導体を好ましく用いることができる。イソソルビド誘導体としては、BASF社製のLC-756等の市販品を用いてもよい。
 液晶組成物における、キラル剤の含有量は、重合性液晶化合物の総モル量に対し0.01モル%~200モル%が好ましく、1.0モル%~30モル%がより好ましい。
As the chiral agent, an isosorbide derivative, an isomannide derivative, or a binaphthyl derivative can be preferably used. As the isosorbide derivative, a commercial product such as LC-756 manufactured by BASF may be used.
The content of the chiral agent in the liquid crystal composition is preferably from 0.01 mol% to 200 mol%, more preferably from 1.0 mol% to 30 mol%, based on the total molar amount of the polymerizable liquid crystal compound.
[重合開始剤]
 液晶組成物は、重合開始剤を含有していることが好ましい。紫外線照射により重合反応を進行させる態様では、使用する重合開始剤は、紫外線照射によって重合反応を開始可能な光重合開始剤であることが好ましく、特にラジカル光重合開始剤が好ましい。ラジカル光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)、アシルフォスフィンオキシド化合物(特公昭63-40799号公報、特公平5-29234号公報、特開平10-95788号公報、特開平10-29997号公報記載)、オキシム化合物(特公昭63-40799号、特公平5-29234号、特開平10-95788号、特開平10-29997号、特開2001-233842号、特開2000-80068号、特開2006-342166号、特開2013-114249号、特開2014-137466号、特許4223071号、特開2010-262028号、特表2014-500852号各公報記載)およびオキサジアゾール化合物(米国特許第4212970号明細書記載)等が挙げられる。例えば、特開2012-208494号公報の段落0500~0547の記載も参酌できる。
[Polymerization initiator]
The liquid crystal composition preferably contains a polymerization initiator. In the embodiment in which the polymerization reaction is advanced by ultraviolet irradiation, the polymerization initiator to be used is preferably a photopolymerization initiator capable of initiating the polymerization reaction by ultraviolet irradiation, and particularly preferably a radical photopolymerization initiator. Examples of radical photopolymerization initiators include α-carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), α-hydrocarbon substitution Aromatic acyloin compounds (described in US Pat. No. 2,722,512), polynuclear quinone compounds (described in US Pat. Nos. 3,046,127 and 2,951,758), combinations of triarylimidazole dimers and p-aminophenyl ketone (US) No. 3549367), acridine and phenazine compounds (JP-A-60-105667, U.S. Pat. No. 4,239,850), acylphosphine oxide compounds (JP-B 63-40799, JP-B-5) -29234, JP-A-10-957 88, JP-A-10-29997), oxime compounds (JP-B 63-40799, JP-B 5-29234, JP-A 10-95788, JP-A 10-29997, JP-A 2001-233842). No., JP-A No. 2000-80068, JP-A No. 2006-342166, JP-A No. 2013-114249, JP-A No. 2014-137466, JP-A No. 4223071, JP-A No. 2010-262028, JP-A No. 2014-500852 ) And oxadiazole compounds (described in U.S. Pat. No. 4,221,970). For example, the description in paragraphs 0500 to 0547 of JP2012-208494A can be considered.
 重合開始剤としては、アシルフォスフィンオキシド化合物またはオキシム化合物を用いることも好ましい。
 アシルフォスフィンオキシド化合物としては、例えば、市販品のBASFジャパン株式会社製のIRGACURE819(化合物名:ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド)を用いることができる。オキシム化合物としては、IRGACURE OXE01(BASF社製)、IRGACURE OXE02(BASF社製)、TR-PBG-304(常州強力電子新材料有限公司製)、アデカアークルズNCI-831、アデカアークルズNCI-930(ADEKA社製)、アデカアークルズNCI-831(ADEKA社製)等の市販品を用いることができる。
As the polymerization initiator, it is also preferable to use an acyl phosphine oxide compound or an oxime compound.
As the acylphosphine oxide compound, for example, IRGACURE819 (compound name: bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide) manufactured by BASF Japan Ltd. can be used. Examples of the oxime compounds include IRGACURE OXE01 (manufactured by BASF), IRGACURE OXE02 (manufactured by BASF), TR-PBG-304 (manufactured by Changzhou Strong Electronic New Materials Co., Ltd.), Adeka Arcles NCI-831, Adeka Arcles NCI-930 Commercial products such as (ADEKA) and Adeka Arcles NCI-831 (ADEKA) can be used.
 重合開始剤は、1種のみ用いてもよいし、2種以上を併用してもよい。
 液晶組成物中の重合開始剤の含有量は、重合性液晶化合物の含有量に対して0.1~20質量%であることが好ましく、0.5質量%~5.0質量%であることがさらに好ましい。
Only one type of polymerization initiator may be used, or two or more types may be used in combination.
The content of the polymerization initiator in the liquid crystal composition is preferably 0.1 to 20% by mass, and preferably 0.5 to 5.0% by mass with respect to the content of the polymerizable liquid crystal compound. Is more preferable.
[架橋剤]
 液晶組成物は、硬化後の膜強度向上、耐久性向上のため、任意に架橋剤を含有していてもよい。架橋剤としては、紫外線、熱、湿気等で硬化するものが好適に使用できる。
 架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えばトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレート、エチレングリコールジグリシジルエーテル等のエポキシ化合物;2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン等のアジリジン化合物;ヘキサメチレンジイソシアネート、ビウレット型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ビニルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン等のアルコキシシラン化合物などが挙げられる。また、架橋剤の反応性に応じて公知の触媒を用いることができ、膜強度および耐久性向上に加えて生産性を向上させることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 液晶組成物の架橋剤の含有量は、3.0質量%~20質量%が好ましく、5.0質量%~15質量%がより好ましい。架橋剤の含有量が3.0質量%以上であることにより、架橋密度向上の効果を得ることができる。また、20質量%以下とすることにより、形成される層の安定性を維持することができる。
[Crosslinking agent]
The liquid crystal composition may optionally contain a crosslinking agent in order to improve the film strength after curing and improve the durability. As the cross-linking agent, one that can be cured by ultraviolet rays, heat, moisture, or the like can be suitably used.
There is no restriction | limiting in particular as a crosslinking agent, According to the objective, it can select suitably, For example, polyfunctional acrylate compounds, such as a trimethylol propane tri (meth) acrylate and pentaerythritol tri (meth) acrylate; Glycidyl (meth) acrylate , Epoxy compounds such as ethylene glycol diglycidyl ether; aziridine compounds such as 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) diphenylmethane; hexa Isocyanate compounds such as methylene diisocyanate and biuret type isocyanate; polyoxazoline compounds having an oxazoline group in the side chain; vinyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylto Alkoxysilane compounds such as methoxy silane. Moreover, a well-known catalyst can be used according to the reactivity of a crosslinking agent, and productivity can be improved in addition to membrane strength and durability improvement. These may be used individually by 1 type and may use 2 or more types together.
The content of the crosslinking agent in the liquid crystal composition is preferably 3.0% by mass to 20% by mass, and more preferably 5.0% by mass to 15% by mass. When the content of the crosslinking agent is 3.0% by mass or more, an effect of improving the crosslinking density can be obtained. Moreover, the stability of the layer formed can be maintained by setting it as 20 mass% or less.
[配向制御剤]
 液晶組成物中には、安定的にまたは迅速にプレーナー配向とするために寄与する配向制御剤を添加してもよい。配向制御剤の例としては特開2007-272185号公報の段落0018~0043等に記載のフッ素(メタ)アクリレート系ポリマー、特開2012-203237号公報の段落0031~0034等に記載の式(I)~(IV)で表される化合物などが挙げられる。
 なお、配向制御剤としては1種を単独で用いてもよいし、2種以上を併用してもよい。
[Orientation control agent]
In the liquid crystal composition, an alignment control agent that contributes to stable or rapid planar alignment may be added. Examples of the alignment control agent include fluorine (meth) acrylate polymers described in paragraphs 0018 to 0043 of JP 2007-272185 A, and formulas (I) described in paragraphs 0031 to 0034 of JP 2012-203237 A, and the like. ) To (IV).
In addition, as an orientation control agent, 1 type may be used independently and 2 or more types may be used together.
 液晶組成物中における、配向制御剤の添加量は、重合性液晶化合物の全質量に対して0.01質量%~10質量%が好ましく、0.01質量%~5.0質量%がより好ましく、0.02質量%~1.0質量%が特に好ましい。 The addition amount of the alignment control agent in the liquid crystal composition is preferably 0.01% by mass to 10% by mass and more preferably 0.01% by mass to 5.0% by mass with respect to the total mass of the polymerizable liquid crystal compound. 0.02% by mass to 1.0% by mass is particularly preferable.
[その他の添加剤]
 その他、液晶組成物は、塗膜の表面張力を調整し膜厚を均一にするための界面活性剤、および重合性モノマー等の種々の添加剤から選ばれる少なくとも1種を含有していてもよい。また、液晶組成物中には、必要に応じて、さらに重合禁止剤、酸化防止剤、紫外線吸収剤、光安定化剤、色材、金属酸化物微粒子等を、光学的性能を低下させない範囲で添加することができる。
[Other additives]
In addition, the liquid crystal composition may contain at least one selected from a surfactant for adjusting the surface tension of the coating film to make the film thickness uniform, and various additives such as a polymerizable monomer. . Further, in the liquid crystal composition, if necessary, a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, a colorant, metal oxide fine particles, and the like may be added as long as the optical performance is not deteriorated. Can be added.
[溶媒]
 液晶組成物の調製に使用する溶媒としては、特に制限はなく、目的に応じて適宜選択することができるが、有機溶媒が好ましく用いられる。
 有機溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えばケトン類、アルキルハライド類、アミド類、スルホキシド類、ヘテロ環化合物、炭化水素類、エステル類、エーテル類、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、環境への負荷を考慮した場合にはケトン類が特に好ましい。
[solvent]
There is no restriction | limiting in particular as a solvent used for preparation of a liquid-crystal composition, Although it can select suitably according to the objective, An organic solvent is used preferably.
The organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, ketones, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons, esters, ethers, etc. Is mentioned. These may be used individually by 1 type and may use 2 or more types together. Among these, ketones are particularly preferable in consideration of environmental load.
[塗布、配向、重合]
 仮支持体、配向膜、1/4波長板、下層となるコレステリック液晶層などへの液晶組成物の塗布方法は、特に制限はなく、目的に応じて適宜選択することができる。例えば、ワイヤーバーコーティング法、カーテンコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、スピンコーティング法、ディップコーティング法、スプレーコーティング法、スライドコーティング法などが挙げられる。また、別途支持体上に塗設した液晶組成物を転写することによっても実施できる。塗布した液晶組成物を加熱することにより、液晶分子を配向させる。コレステリック液晶層形成の際はコレステリック配向させればよく、1/4波長板形成の際は、ネマチック配向させることが好ましい。コレステリック配向の際、加熱温度は200℃以下が好ましく、130℃以下がより好ましい。この配向処理により、重合性液晶化合物がフィルム面に対して実質的に垂直な方向に螺旋軸を有するようにねじれ配向している光学薄膜が得られる。ネマチック配向の際、加熱温度は50℃~120℃が好ましく、60℃~100℃がより好ましい。
[Coating, orientation, polymerization]
The method for applying the liquid crystal composition to the temporary support, the alignment film, the quarter-wave plate, the underlying cholesteric liquid crystal layer, etc. is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include a wire bar coating method, a curtain coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, a die coating method, a spin coating method, a dip coating method, a spray coating method, and a slide coating method. It can also be carried out by transferring a liquid crystal composition separately coated on a support. The liquid crystal molecules are aligned by heating the applied liquid crystal composition. In forming the cholesteric liquid crystal layer, cholesteric alignment may be performed, and in forming the quarter-wave plate, nematic alignment is preferable. In the cholesteric orientation, the heating temperature is preferably 200 ° C. or lower, and more preferably 130 ° C. or lower. By this alignment treatment, an optical thin film in which the polymerizable liquid crystal compound is twisted and aligned so as to have a helical axis in a direction substantially perpendicular to the film surface is obtained. In the nematic orientation, the heating temperature is preferably 50 ° C. to 120 ° C., more preferably 60 ° C. to 100 ° C.
 配向させた液晶化合物は、更に重合させ、液晶組成物を硬化することができる。重合は、熱重合、光照射を利用する光重合のいずれでもよいが、光重合が好ましい。光照射は、紫外線を用いることが好ましい。照射エネルギーは、20mJ/cm2~50J/cm2が好ましく、100mJ/cm2~1,500mJ/cm2がより好ましい。光重合反応を促進するため、加熱条件下または窒素雰囲気下で光照射を実施してもよい。照射紫外線波長は350nm~430nmが好ましい。重合反応率は安定性の観点から高いことが好ましく、70%以上が好ましく、80%以上がより好ましい。重合反応率は、重合性基の消費割合を、IR吸収スペクトルを用いて測定することにより決定することができる。 The aligned liquid crystal compound can be further polymerized to cure the liquid crystal composition. The polymerization may be either thermal polymerization or photopolymerization utilizing light irradiation, but photopolymerization is preferred. It is preferable to use ultraviolet rays for light irradiation. The irradiation energy is preferably 20mJ / cm 2 ~ 50J / cm 2, 100mJ / cm 2 ~ 1,500mJ / cm 2 is more preferable. In order to accelerate the photopolymerization reaction, light irradiation may be performed under heating conditions or in a nitrogen atmosphere. The irradiation ultraviolet wavelength is preferably 350 nm to 430 nm. The polymerization reaction rate is preferably high from the viewpoint of stability, preferably 70% or more, and more preferably 80% or more. The polymerization reaction rate can be determined by measuring the consumption rate of the polymerizable group using an IR absorption spectrum.
 個々のコレステリック液晶層の膜厚は、上記特性を示す範囲であれば、特に限定はされないが、好ましくは1.0μm以上150μm以下の範囲、より好ましくは4.0μm以上100μm以下の範囲であればよい。また、液晶組成物から形成される1/4波長板の膜厚は、特に限定はされないが、好ましくは0.2μm~10μm、より好ましくは0.5μm~2.0μmであればよい。 The film thickness of each cholesteric liquid crystal layer is not particularly limited as long as it exhibits the above characteristics, but is preferably in the range of 1.0 to 150 μm, more preferably in the range of 4.0 to 100 μm. Good. The thickness of the quarter-wave plate formed from the liquid crystal composition is not particularly limited, but is preferably 0.2 μm to 10 μm, more preferably 0.5 μm to 2.0 μm.
[仮支持体、支持体]
 液晶組成物は、支持体、仮支持体、または、支持体もしくは仮支持体表面に形成された配向層の表面に塗布され層形成されてもよい。
 仮支持体または仮支持体および配向層は、層形成後に剥離されればよい。例えば、円偏光反射層を前面板に接着後、剥離されるものであればよい。仮支持体は、円偏光反射層を前面板に接着後、さらに、円偏光反射層が画像表示装置に接着されるまで、保護フィルムとして機能していてもよい。
[Temporary support, support]
The liquid crystal composition may be applied to the support, the temporary support, or the surface of the alignment layer formed on the support or the temporary support surface to form a layer.
The temporary support or the temporary support and the alignment layer may be peeled off after forming the layer. For example, what is necessary is just to peel, after adhere | attaching a circularly-polarized-light reflection layer to a front board. The temporary support may function as a protective film after the circularly polarized reflective layer is bonded to the front plate and further until the circularly polarized reflective layer is bonded to the image display device.
 支持体は剥離されずに、ハーフミラーを構成する層として残っていてもよい。ハーフミラーにおいて、前面板、円偏光反射層、および支持体がこの順に配置されていてもよい(例えば、図1(e)、図1(g))。または、支持体が前面板を構成していてもよい(例えば、図1(f))。 The support may be left as a layer constituting the half mirror without being peeled off. In the half mirror, the front plate, the circularly polarizing reflection layer, and the support may be arranged in this order (for example, FIG. 1 (e) and FIG. 1 (g)). Alternatively, the support may constitute a front plate (for example, FIG. 1 (f)).
 仮支持体および支持体の例としては、プラスチックフィルムまたはガラス板が挙げられる。プラスチックフィルムの材料の例としては、ポリエチレンテレフタレート(PET)などのポリエステル、ポリカーボネート、アクリル樹脂、エポキシ樹脂、ポリウレタン、ポリアミド、ポリオレフィン、トリアセチルセルロースなどのセルロース誘導体、シリコーンなどが挙げられる。仮支持体としてはポリエチレンテレフタレート(PET)フィルムが好ましく、支持体としてはトリアセチルセルロースフィルムが好ましい。 Examples of the temporary support and the support include a plastic film or a glass plate. Examples of plastic film materials include polyesters such as polyethylene terephthalate (PET), polycarbonate, acrylic resins, epoxy resins, polyurethanes, polyamides, polyolefins, cellulose derivatives such as triacetyl cellulose, and silicones. The temporary support is preferably a polyethylene terephthalate (PET) film, and the support is preferably a triacetyl cellulose film.
[配向層]
 配向層は、ポリマーなどの有機化合物(ポリイミド、ポリビニルアルコール、ポリエステル、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、ポリアミド、変性ポリアミドなどの樹脂)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、またはラングミュア・ブロジェット法(LB膜)を用いた有機化合物(例えば、ω-トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で、設けることができる。更に、電場の付与、磁場の付与または光照射により、配向機能が生じる配向層を用いてもよい。
 特にポリマーからなる配向層はラビング処理を行ったうえで、ラビング処理面に液晶組成物を塗布することが好ましい。ラビング処理は、ポリマー層の表面を、紙、布で一定方向に、数回擦ることにより実施することができる。
 配向層を設けずに仮支持体表面に、または仮支持体をラビング処理した表面に、液晶組成物を塗布してもよい。
 配向層の厚さは0.01μm~5.0μmであることが好ましく、0.05μm~2.0μmであることがさらに好ましい。
[Alignment layer]
The alignment layer has a rubbing treatment of organic compounds such as polymers (resins such as polyimide, polyvinyl alcohol, polyester, polyarylate, polyamideimide, polyetherimide, polyamide, modified polyamide), oblique deposition of inorganic compounds, and microgrooves. It can be provided by means such as formation of a layer or accumulation of an organic compound (for example, ω-tricosanoic acid, dioctadecylmethylammonium chloride, methyl stearylate) using the Langmuir-Blodgett method (LB film). Further, an alignment layer that generates an alignment function by application of an electric field, application of a magnetic field, or light irradiation may be used.
In particular, the alignment layer made of a polymer is preferably subjected to a rubbing treatment and then a liquid crystal composition is applied to the rubbing treatment surface. The rubbing treatment can be performed by rubbing the surface of the polymer layer several times in a certain direction with paper or cloth.
The liquid crystal composition may be applied to the surface of the temporary support without providing the alignment layer, or to the surface on which the temporary support has been rubbed.
The thickness of the alignment layer is preferably 0.01 μm to 5.0 μm, and more preferably 0.05 μm to 2.0 μm.
<重合性液晶化合物から形成される層の積層膜>
 複数のコレステリック液晶層からなる積層膜、および1/4波長板と複数のコレステリック液晶層とからなる積層膜の形成の際は、それぞれ、1/4波長板または先のコレステリック液晶層の表面に直接、重合性液晶化合物等を含む液晶組成物を塗布し、配向および固定の工程を繰り返してもよく、別に用意した1/4波長板、コレステリック液晶層、またはそれらの積層体を接着剤等を用いて積層してもよいが、前者が好ましい。接着層の膜厚ムラに由来する干渉ムラが観測されにくくなるからである。また、コレステリック液晶層の積層膜においては、先に形成されたコレステリック液晶層の表面に直接接するように次のコレステリック液晶層を形成することにより、先に形成したコレステリック液晶層の空気界面側の液晶分子の配向方位と、その上に形成するコレステリック液晶層の下側の液晶分子の配向方位が一致し、コレステリック液晶層の積層体の偏光特性が良好となるからである。
<Laminated film of layers formed from polymerizable liquid crystal compound>
When forming a multi-layer film composed of a plurality of cholesteric liquid crystal layers and a multi-layer film composed of a quarter-wave plate and a plurality of cholesteric liquid crystal layers, each is directly applied to the surface of the quarter-wave plate or the previous cholesteric liquid crystal layer. The liquid crystal composition containing a polymerizable liquid crystal compound or the like may be applied, and the steps of alignment and fixing may be repeated. A separately prepared quarter wave plate, cholesteric liquid crystal layer, or a laminate thereof is used with an adhesive or the like. However, the former is preferable. This is because the interference unevenness derived from the film thickness unevenness of the adhesive layer becomes difficult to be observed. In the laminated film of the cholesteric liquid crystal layer, the liquid crystal on the air interface side of the cholesteric liquid crystal layer formed earlier is formed by forming the next cholesteric liquid crystal layer so as to be in direct contact with the surface of the cholesteric liquid crystal layer formed earlier. This is because the orientation direction of the molecules matches the orientation direction of the liquid crystal molecules below the cholesteric liquid crystal layer formed thereon, and the polarization property of the laminate of the cholesteric liquid crystal layer is improved.
<<ハーフミラーの作製方法>>
 ハーフミラーは、仮支持体上に形成された円偏光反射層、または、1/4波長板および円偏光反射層を、前面板に転写することにより作製することができる。例えば、仮支持体上でコレステリック液晶層またはコレステリック液晶層の積層体を形成して、円偏光反射層を得る。そして、この円偏光反射層の面を、接着層を介して前面板と接着させる。その後、必要に応じて仮支持体を剥離して、さらに1/4波長板を設けることで、ハーフミラーを得ることができる。または、仮支持体上で1/4波長板とコレステリック液晶層とを順次形成して、1/4波長板と円偏光反射層との積層体を得る。そして、このコレステリック液晶(円偏光反射層)の面を、接着層を介して前面板と接着させる。その後、必要に応じて仮支持体を剥離することで、ハーフミラーを得ることができる。
<< Half mirror manufacturing method >>
The half mirror can be produced by transferring a circularly polarized light reflecting layer formed on the temporary support, or a quarter wavelength plate and a circularly polarized light reflecting layer to the front plate. For example, a cholesteric liquid crystal layer or a laminate of cholesteric liquid crystal layers is formed on a temporary support to obtain a circularly polarized light reflecting layer. Then, the surface of the circularly polarized light reflection layer is bonded to the front plate through an adhesive layer. Thereafter, if necessary, the temporary support is peeled off and a quarter-wave plate is provided to obtain a half mirror. Alternatively, a quarter wavelength plate and a cholesteric liquid crystal layer are sequentially formed on the temporary support to obtain a laminate of the quarter wavelength plate and the circularly polarized light reflection layer. Then, the surface of the cholesteric liquid crystal (circularly polarized light reflecting layer) is bonded to the front plate through an adhesive layer. Then, a half mirror can be obtained by peeling a temporary support body as needed.
 または、ハーフミラーは、支持体上に形成された円偏光反射層、または、1/4波長板および円偏光反射層を、前面板に接着させて作製することができる。または、支持体上に形成された円偏光反射層、または、支持体上に形成された円偏光反射層および1/4波長板を、支持体を前面板としてそのままハーフミラーとすることができる。1/4波長板は別途用意して接着してもよい。 Alternatively, the half mirror can be produced by adhering a circularly polarized light reflecting layer formed on a support, or a quarter wavelength plate and a circularly polarized light reflecting layer to the front plate. Alternatively, the circularly polarized light reflecting layer formed on the support, or the circularly polarized light reflecting layer and ¼ wavelength plate formed on the support can be used as a half mirror as it is with the support as the front plate. A quarter-wave plate may be separately prepared and bonded.
<<画像表示機能付きミラー>>
 上記ハーフミラーを用いて画像表示機能付きミラーを作製することができる。画像表示機能付きミラーは上記ハーフミラーおよび画像表示装置を含む。画像表示機能付きミラーにおいては、画像表示装置、円偏光反射層、および前面板はこの順で配置される。画像表示機能付きミラーにおいて、画像表示装置およびハーフミラーは、互いに直接接していてもよく、その間に空気層が存在してもよく、または接着層を介して直接接着されていてもよい。
<< Mirror with image display function >>
A mirror with an image display function can be produced using the half mirror. The mirror with an image display function includes the half mirror and the image display device. In the mirror with an image display function, the image display device, the circularly polarized light reflection layer, and the front plate are arranged in this order. In the mirror with an image display function, the image display device and the half mirror may be in direct contact with each other, an air layer may be present therebetween, or may be directly bonded via an adhesive layer.
 画像表示機能付きミラーにおいては、画像表示装置の画像表示部と同面積の主表面のハーフミラーを用いてもよく、画像表示装置の画像表示部よりも大きいか、または小さい主表面の面積を有するハーフミラーを用いてもよい。これらの関係を選択することにより、ミラーの全面に対する画像表示部表面の割合や位置を調整することができる。 In the mirror with an image display function, a half mirror of the main surface having the same area as the image display unit of the image display device may be used, and the main surface area is larger or smaller than the image display unit of the image display device. A half mirror may be used. By selecting these relationships, it is possible to adjust the ratio and position of the surface of the image display unit with respect to the entire surface of the mirror.
 1/4波長板を含むハーフミラーを用いる場合、画像表示機能付きミラーにおいて、1/4波長板の遅相軸は、画像が最も明るくなるように調整されていることが好ましい。すなわち、特に直線偏光により画像表示している画像表示装置に対し、上記直線偏光を最もよく透過させるように上記直線偏光の偏光方向(透過軸)と1/4波長板の遅相軸との関係が調整されていることが好ましい。例えば、1/4波長板の場合、上記透過軸と遅相軸とは45°の角度をなしていることが好ましい。直線偏光により画像表示している画像表示装置から出射した光は1/4波長板を透過後、右または左のいずれかのセンスの円偏光となっている。後述の円偏光反射層は、上記のセンスの円偏光を透過する捩れ方向を有するコレステリック液晶層で構成されていればよい。 When a half mirror including a quarter wavelength plate is used, in the mirror with an image display function, it is preferable that the slow axis of the quarter wavelength plate is adjusted so that the image is brightest. That is, the relationship between the polarization direction of the linearly polarized light (transmission axis) and the slow axis of the quarter-wave plate so that the linearly polarized light is transmitted best, particularly for an image display device displaying an image by linearly polarized light. Is preferably adjusted. For example, in the case of a quarter wavelength plate, it is preferable that the transmission axis and the slow axis form an angle of 45 °. The light emitted from the image display device displaying an image by linearly polarized light is circularly polarized light of either right or left sense after passing through the quarter wavelength plate. The circularly polarized light reflecting layer described later only needs to be composed of a cholesteric liquid crystal layer having a twist direction that transmits the circularly polarized light of the above-described sense.
 画像表示装置と円偏光反射層との間に1/4波長板を含むことによって、画像表示装置からの光を円偏光に変換して円偏光反射層に入射させることが可能となる。そのため、円偏光反射層において反射されて画像表示装置側に戻る光を大幅に減らすことができ、明るい画像の表示が可能となる。 By including a quarter-wave plate between the image display device and the circularly polarized reflection layer, it becomes possible to convert the light from the image display device into circularly polarized light and make it incident on the circularly polarized reflection layer. Therefore, the light reflected by the circularly polarized light reflection layer and returning to the image display device side can be greatly reduced, and a bright image can be displayed.
<画像表示装置>
 画像表示装置としては、特に限定されない。画像表示装置は直線偏光を出射して(発光して)画像を形成する画像表示装置であることが好ましい。画像表示装置は、液晶表示装置または有機EL装置であることがより好ましい。
 液晶表示装置は透過型であっても反射型であってもよく、特に、透過型であることが好ましい。液晶表示装置は、IPS(In Plane Switching)モード、FFS(Fringe FieldSwitching) モード、VA(Vertical Alignment)モード、ECB(Electrically Controlled Birefringence)モード、STN(Super Twisted Nematic)モード、TN(Twisted Nematic)モード、OCB(Optically Compensated Bend)モードなどのいずれの液晶表示装置であってもよい。
<Image display device>
The image display device is not particularly limited. The image display device is preferably an image display device that emits (emits light) linearly polarized light to form an image. The image display device is more preferably a liquid crystal display device or an organic EL device.
The liquid crystal display device may be a transmission type or a reflection type, and is particularly preferably a transmission type. The liquid crystal display device includes IPS (In Plane Switching) mode, FFS (Fringe Field Switching) mode, VA (Vertical Alignment) mode, ECB (Electrically Controlled Birefringence) mode, STN (Super Twisted Nematic) mode, TN (Twisted Nematic) mode, Any liquid crystal display device such as an OCB (Optically Compensated Bend) mode may be used.
 画像表示装置の画像表示部に示される画像は、静止画であっても動画であっても、単なる文字情報であってもよい。また白黒などのモノカラー表示であってもよく、マルチカラー表示であってもよく、フルカラー表示であってもよい。画像表示装置の画像表示部に示される画像の好ましい例としては、車載用のカメラで撮影された像が挙げられる。この像は動画であることが好ましい。 The image displayed on the image display unit of the image display device may be a still image, a moving image, or simply text information. Further, it may be a monochrome display such as black and white, a multi-color display, or a full-color display. A preferable example of the image displayed on the image display unit of the image display device is an image taken by a vehicle-mounted camera. This image is preferably a moving image.
 画像表示装置は、例えば、白表示時の発光スペクトルにおいて赤色光の発光ピーク波長λRと、緑色光の発光ピーク波長λGと、青色光の発光ピーク波長λBとを示していればよい。このような発光ピーク波長を有することによりフルカラーの画像表示が可能である。λRは580nm~700nmの範囲、好ましくは610nm~680nmの範囲のいずれかの波長であればよい。λGは500nm~580nmの範囲、好ましくは510nm~550nmの範囲のいずれかの波長であればよい。λBは400nm~500nmの範囲、好ましくは440nm~480nmの範囲のいずれかの波長であればよい。 For example, the image display device only needs to indicate the emission peak wavelength λR of red light, the emission peak wavelength λG of green light, and the emission peak wavelength λB of blue light in the emission spectrum during white display. By having such an emission peak wavelength, full-color image display is possible. λR may be any wavelength in the range of 580 nm to 700 nm, preferably in the range of 610 nm to 680 nm. λG may be any wavelength in the range of 500 nm to 580 nm, preferably in the range of 510 nm to 550 nm. λB may be any wavelength in the range of 400 nm to 500 nm, preferably in the range of 440 nm to 480 nm.
<その他の接着層>
 本発明のハーフミラーまたは画像表示機能付きミラーは、画像表示装置および円偏光反射層、その他、各層の接着のためのその他の接着層を含んでいてもよい。接着層は接着剤から形成されるものであればよい。
 その他の接着層としては、上述の円偏光反射層および前面板の接着のための接着層と同様の接着層を用いることができる。その他の接着層としては、一般的にシート状の接着剤からなる接着層が好ましい。
<Other adhesive layers>
The half mirror or the mirror with an image display function of the present invention may include an image display device, a circularly polarized light reflection layer, and other adhesive layers for bonding each layer. The adhesive layer may be formed from an adhesive.
As the other adhesive layer, the same adhesive layer as the adhesive layer for adhering the circularly polarized light reflecting layer and the front plate can be used. As the other adhesive layer, an adhesive layer generally made of a sheet-like adhesive is preferable.
<<画像表示機能付きミラーの製法>>
 画像表示機能付きミラーは、画像表示装置の画像表示側に上記ハーフミラーを配置して、画像表示装置とハーフミラーとを一体化することにより作製することができる。ハーフミラーにおいては、画像表示装置、円偏光反射層、および前面板はこの順に配置される。画像表示装置とハーフミラーとの一体化は、フレームまたは蝶番での連結や、接着により行えばよい。例えば、本発明の画像表示機能付きミラーは画像表示装置の画像表示面に、ハーフミラーを接着して作製することができる。接着は、前面板、円偏光反射層、および画像表示装置がこの順になるように行う。
<< Manufacturing method of mirror with image display function >>
The mirror with an image display function can be manufactured by arranging the half mirror on the image display side of the image display device and integrating the image display device and the half mirror. In the half mirror, the image display device, the circularly polarizing reflection layer, and the front plate are arranged in this order. The integration of the image display device and the half mirror may be performed by connection with a frame or a hinge or adhesion. For example, the mirror with an image display function of the present invention can be manufactured by adhering a half mirror to the image display surface of the image display device. Adhesion is performed so that the front plate, the circularly polarized light reflection layer, and the image display device are in this order.
<<偏光子付きハーフミラー>>
 本発明のハーフミラーは偏光子付きハーフミラーとして提供されていてもよい。偏光子付きハーフミラーを用いて画像表示機能付きミラーを製造してもよい。すなわち、直線偏光を出射して画像を形成する画像表示装置である、画像表示面側に偏光板を有する画像表示装置において、その偏光板の代わりに偏光子付きハーフミラーを用いることにより画像表示機能付きミラーを製造することができる。
 偏光子付きハーフミラーにおいては、偏光子、円偏光反射層、および前面板がこの順に配置されていればよい。偏光子は例えば円偏光反射層または1/4波長板に接着されていればよい。
<< Half mirror with polarizer >>
The half mirror of the present invention may be provided as a half mirror with a polarizer. You may manufacture the mirror with an image display function using the half mirror with a polarizer. That is, in an image display device having a polarizing plate on the image display surface side, which is an image display device that emits linearly polarized light and forms an image, an image display function is achieved by using a half mirror with a polarizer instead of the polarizing plate. A mirror can be manufactured.
In the half mirror with a polarizer, the polarizer, the circularly polarized light reflection layer, and the front plate may be arranged in this order. The polarizer may be bonded to, for example, a circularly polarized light reflection layer or a quarter wave plate.
<偏光子>
 偏光子としては、ヨウ素系偏光子、二色性染料を用いる染料系偏光子やポリエン系偏光子が挙げられる。ヨウ素系偏光子および染料系偏光子は、一般にポリビニルアルコールフィルムを用いて製造される。例えば偏光子は変性または未変性のポリビニルアルコールと二色性分子とから構成することができる。変性または未変性のポリビニルアルコールと二色性分子とから構成される偏光子については例えば特開2009-237376号公報の記載を参照することができる。偏光子の膜厚は50μm以下であればよく、30μm以下が好ましく、20μm以下がより好ましい。また、偏光子の膜厚は、通常、1.0μm以上、5.0μm以上、または10μm以上であればよい。
 偏光子はいずれか一方または両方の主表面に偏光子保護層を有することが好ましい。いずれか一方の主表面に偏光子保護層を有する場合、円偏光反射層または1/4波長板に接着される面であっても、その反対の面であってもよいが、反対の面であることが好ましい。
<Polarizer>
Examples of the polarizer include an iodine polarizer, a dye polarizer using a dichroic dye, and a polyene polarizer. The iodine-based polarizer and the dye-based polarizer are generally produced using a polyvinyl alcohol film. For example, a polarizer can be composed of modified or unmodified polyvinyl alcohol and dichroic molecules. For a polarizer composed of modified or unmodified polyvinyl alcohol and a dichroic molecule, reference can be made to, for example, the description in JP-A-2009-237376. The film thickness of a polarizer should just be 50 micrometers or less, 30 micrometers or less are preferable and 20 micrometers or less are more preferable. Moreover, the film thickness of a polarizer should just be 1.0 micrometer or more, 5.0 micrometers or more, or 10 micrometers or more normally.
The polarizer preferably has a polarizer protective layer on one or both main surfaces. In the case of having a polarizer protective layer on one of the main surfaces, the surface may be bonded to the circularly polarized light reflecting layer or the quarter-wave plate, or the opposite surface, but the opposite surface Preferably there is.
 偏光子保護層としては、セルロースアシレ―ト系ポリマーフィルム、アクリル系ポリマーフィルム、またはシクロオレフィン系ポリマーフィルムを用いることができる。セルロースアシレ―ト系ポリマーに関しては特開2011-237474号公報のセルロースアシレ―ト系樹脂に関する記載を参照できる。シクロオレフィン系ポリマーフィルムとしては、特開2009-175222号および特開2009-237376号公報の記載を参照できる。 As the polarizer protective layer, a cellulose acylate polymer film, an acrylic polymer film, or a cycloolefin polymer film can be used. Regarding the cellulose acylate polymer, reference can be made to the description of the cellulose acylate resin in JP2011-237474A. As for the cycloolefin-based polymer film, the descriptions in JP2009-175222A and JP2009-237376A can be referred to.
 偏光子保護層は上記ポリマーの1つまたは2つ以上を主成分として含んでいればよく、例えば、70質量%以上、80質量%以上、90質量%以上、95質量%以上、99質量%以上、または100質量%含んでいればよい。
 偏光子保護層の膜厚は、100μm以下、50μm以下、30μm以下、20μm以下、10μm以下であればよく、1.0μm以上、5.0μm以上、10μm以上であればよい。
 偏光子保護層は、保護層が設けられる表面に保護層形成用組成物を直接塗布乾燥させるなどの方法により設けてもよく、接着層を介して接着させてもよい。
The polarizer protective layer may contain one or more of the above polymers as a main component, for example, 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more, 99% by mass or more. Or 100% by mass.
The film thickness of the polarizer protective layer may be 100 μm or less, 50 μm or less, 30 μm or less, 20 μm or less, 10 μm or less, or 1.0 μm or more, 5.0 μm or more, and 10 μm or more.
The polarizer protective layer may be provided by a method such as directly applying and drying the protective layer forming composition on the surface on which the protective layer is provided, or may be adhered via an adhesive layer.
<<画像表示機能付きミラーの用途>>
 画像表示機能付きミラーの用途としては特に限定されない。例えば、防犯用ミラー、美容室または理容室のミラー等として用い、文字情報、静止画、動画などの画像を表示することができる。また、本発明の画像表示機能付きミラーは、車両用ルームミラーであってもよく、テレビ、パーソナルコンピューター、スマートフォン、携帯電話として用いられていてもよい。
<< Use of mirror with image display function >>
The use of the mirror with an image display function is not particularly limited. For example, it can be used as a security mirror, a beauty salon or a barber mirror, and can display images such as character information, still images, and moving images. Further, the mirror with an image display function of the present invention may be a vehicle rearview mirror, and may be used as a television, a personal computer, a smartphone, or a mobile phone.
 画像表示機能付きミラーは車両用ルームミラーとして用いられることが特に好ましい。画像表示機能付きミラーは、ルームミラーとしての使用のため、フレーム、ハウジング、車両本体に取り付けるための支持アーム等を有していてもよい。あるいは、車両用画像表示機能付きミラーはルームミラーへの組み込み用に成形されたものであってもよい。上記の形状の車両用画像表示機能付きミラーにおいては、通常使用時に上下左右となる方向が特定できる。 The mirror with an image display function is particularly preferably used as a vehicle rearview mirror. The mirror with an image display function may have a frame, a housing, a support arm for attaching to the vehicle body, and the like for use as a rearview mirror. Alternatively, the vehicle image display function-equipped mirror may be formed for incorporation into a room mirror. In the vehicle-mounted image display function-equipped mirror having the above shape, it is possible to specify the vertical and horizontal directions during normal use.
 画像表示機能付きミラーを湾曲させて、凸曲面を前面側とすることにより、広角的に後方視野等を視認できるワイドミラーとすることも可能である。このような湾曲した前面は湾曲したハーフミラーを用いて作製することができる。
湾曲は、上下方向、左右方向、または上下方向と左右方向との両方にあればよい。また、湾曲は、曲率半径が500mm~3000mmであればよい。1000mm~2500mmであることがより好ましい。曲率半径は、断面で湾曲部分の外接円を仮定した場合の、この外接円の半径である。
By curving the mirror with an image display function so that the convex curved surface is on the front side, it is possible to make a wide mirror that can visually recognize the rear visual field and the like in a wide angle. Such a curved front surface can be produced using a curved half mirror.
The curve may be in the vertical direction, the horizontal direction, or both the vertical direction and the horizontal direction. In addition, the curvature may be a curvature radius of 500 mm to 3000 mm. More preferably, it is 1000 mm to 2500 mm. The radius of curvature is the radius of the circumscribed circle when the circumscribed circle of the curved portion is assumed in the cross section.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の実施例に限定されるものではない。 The present invention will be described more specifically with reference to the following examples. The materials, reagents, amounts and ratios of substances, operations, and the like shown in the following examples can be appropriately changed without departing from the gist of the present invention. Therefore, the scope of the present invention is not limited to the following examples.
<ハーフミラーの作製>
[塗布液の調製]
(コレステリック液晶層形成用塗布液)
 下記の成分を混合し、下記組成のコレステリック液晶層形成用塗布液を調製した。
・化合物1   80質量部
・化合物2   20質量部
・フッ素系水平配向剤1   0.1質量部
・フッ素系水平配向剤2   0.007質量部
・右旋回性キラル剤LC756(BASF社製)   目標の反射波長に合わせて調整
・重合開始剤IRGACURE OXE01(BASF社製)   3.0質量部
・溶媒(メチルエチルケトン)   溶質濃度が30質量%となる量
<Production of half mirror>
[Preparation of coating solution]
(Coating liquid for forming cholesteric liquid crystal layer)
The following components were mixed to prepare a coating solution for forming a cholesteric liquid crystal layer having the following composition.
Compound 1 80 parts by mass Compound 2 20 parts by mass Fluorine-based horizontal alignment agent 1 0.1 part by mass Fluorine-based horizontal alignment agent 2 0.007 parts by mass Right-turning chiral agent LC756 (manufactured by BASF) Target Adjusted according to the reflection wavelength of the polymerization initiator IRGACURE OXE01 (manufactured by BASF) 3.0 parts by mass Solvent (methyl ethyl ketone) Amount that the solute concentration is 30% by mass
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記塗布液組成のキラル剤LC-756の処方量を調整して塗布液1~3を調製した。それぞれの塗布液を用いて、以下の円偏光反射層作製時と同様に仮支持体上に単一層のコレステリック液晶層を作製し、反射特性を確認した。作製されたコレステリック液晶層はすべて右円偏光反射層であり、中心反射波長は下記表1のとおりであった。 Coating solutions 1 to 3 were prepared by adjusting the prescription amount of the chiral agent LC-756 having the above coating solution composition. Using each coating solution, a single cholesteric liquid crystal layer was prepared on a temporary support in the same manner as in the preparation of the following circularly polarized reflective layer, and the reflection characteristics were confirmed. The prepared cholesteric liquid crystal layers were all right circularly polarized light reflecting layers, and the central reflection wavelength was as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(1/4波長板形成用塗布液)
 下記の成分を混合し、下記組成の1/4波長板形成用塗布液を調製した。
・化合物1   80質量部
・化合物2   20質量部
・フッ素系水平配向剤1   0.1質量部
・フッ素系水平配向剤2   0.007質量部
・重合開始剤IRGACURE OXE01(BASF社製)   3.0質量部
・溶媒(メチルエチルケトン)   溶質濃度が30質量%となる量
(Coating liquid for quarter-wave plate formation)
The following components were mixed to prepare a quarter-wave plate forming coating solution having the following composition.
Compound 1 80 parts by mass Compound 2 20 parts by mass Fluorine-based horizontal alignment agent 1 0.1 part by mass Fluorine-based horizontal alignment agent 2 0.007 parts by mass Polymerization initiator IRGACURE OXE01 (manufactured by BASF) 3.0 Part by mass / solvent (methyl ethyl ketone) Amount of solute concentration of 30% by mass
(バリア層形成用塗布液)
 下記組成の塗布液を調製した。各塗布液については、上述の手順でDSCによりTgを得た。
(a)アクリレートモノマーを含有するバリア層形成用塗布液 (実施例1~3、および実施例11~19)(ここで、アクリレートモノマーはウレタン(メタ)アクリレートモノマーおよび(メタ)アクリレートモノマーを含む意味である)
・表2に記載のアクリレートモノマー   100質量部
・高分子界面活性剤 B1176 (大日本化学工業株式会社製)   0.05質量部
・重合開始剤IRGACURE OXE01(BASF社製)   1.0質量部
・溶媒(メチルエチルケトン)   溶質濃度が40質量%となる量
(Coating liquid for barrier layer formation)
A coating solution having the following composition was prepared. About each coating liquid, Tg was obtained by DSC in the above-mentioned procedure.
(A) Coating solution for forming a barrier layer containing an acrylate monomer (Examples 1 to 3 and Examples 11 to 19) (wherein the acrylate monomer means a urethane (meth) acrylate monomer and a (meth) acrylate monomer) Is)
-100 parts by mass of the acrylate monomer listed in Table 2-Polymer surfactant B1176 (manufactured by Dainippon Chemical Co., Ltd.) 0.05 part by mass-Polymerization initiator IRGACURE OXE01 (manufactured by BASF) 1.0 part by mass-Solvent (Methyl ethyl ketone) The amount that the solute concentration becomes 40% by mass
(b)ウレタン系ポリマーを含有するバリア層形成用塗布液 (実施例4)
・ウレタン(メタ)アクリレートモノマーU-6LPA(新中村化学工業株式会社製)   75質量部
・ウレタン系ポリマー8BR-600(大成ファインケミカル社製)   25質量部
・高分子界面活性剤 B1176 (大日本化学工業株式会社製)   0.05質量部
・重合開始剤IRGACURE OXE01(BASF社製)   1.0質量部
・溶媒(メチルエチルケトン)   溶質濃度が40質量%となる量
(B) Coating liquid for forming a barrier layer containing a urethane-based polymer (Example 4)
-Urethane (meth) acrylate monomer U-6LPA (manufactured by Shin-Nakamura Chemical Co., Ltd.) 75 parts by mass- Urethane polymer 8BR-600 (manufactured by Taisei Fine Chemical Co., Ltd.) 25 parts by mass-Polymer surfactant B1176 (Dainippon Chemical Industry) 0.05 parts by mass / polymerization initiator IRGACURE OXE01 (manufactured by BASF) 1.0 parts by mass / solvent (methyl ethyl ketone) Amount at which the solute concentration is 40% by mass
(c)複数のアクリレートモノマーを含有するバリア層形成用塗布液 (実施例5)
・ウレタン(メタ)アクリレートモノマーU-6LPA(新中村化学工業株式会社製)   50質量部
・ウレタンアクリレート樹脂  UA122P(新中村化学工業株式会社製)   50質量部
・高分子界面活性剤 B1176 (大日本化学工業株式会社製)   0.05質量部
・重合開始剤IRGACURE OXE01(BASF社製)   1.0質量部
・溶媒(メチルエチルケトン)   溶質濃度が40質量%となる量
(C) Coating liquid for forming a barrier layer containing a plurality of acrylate monomers (Example 5)
・ Urethane (meth) acrylate monomer U-6LPA (made by Shin-Nakamura Chemical Co., Ltd.) 50 parts by mass ・ Urethane acrylate resin UA122P (made by Shin-Nakamura Chemical Co., Ltd.) 50 parts by mass ・ Polymer surfactant B1176 (Dainippon Chemical) Manufactured by Kogyo Co., Ltd.) 0.05 parts by mass / polymerization initiator IRGACURE OXE01 (manufactured by BASF) 1.0 parts by mass / solvent (methyl ethyl ketone) Amount at which the solute concentration is 40% by mass
(d)エポキシモノマーを含有するバリア層形成用塗布液 (実施例6~10)
 ・表2に記載のエポキシモノマー   100質量部
 ・高分子界面活性剤 B1176 (大日本化学工業株式会社製)   0.05質量部
 ・重合開始剤 PAG-1   1.0質量部
 ・溶媒(メチルエチルケトンとメチルイソブチルケトンを3:7で混合したもの)   溶質濃度が40質量%となる量
 表2におけるモノマーは、以下を示す。
・U6LPA:ウレタン(メタ)アクリレートモノマーU-6LPA(新中村化学工業株式会社製)
・U4HA:ウレタン(メタ)アクリレートモノマーU-4HA(新中村化学工業株式会社製)
・EBECRY220:芳香族ウレタンアクリレートEBECRYL220(ダイセル・オルネクス株式会社製)
・8BR-600:ウレタン系ポリマー8BR-600(大成ファインケミカル社製)
・UA122P:ウレタンアクリレート樹脂UA122P(新中村化学工業株式会社製)
・CEL2021P:二官能脂環式エポキシ樹脂セロキサイド2021P(株式会社ダイセル製)
・CEL8000:脂環式エポキシ樹脂セロキサイド8000(株式会社ダイセル製)
・サイクロマーM100:メタクリレートモノマー サイクロマーM-100(株式会社ダイセル製)
・EPICLON:2官能ナフタレン型エポキシ樹脂 EPICLON HP-4032D(DIC株式会社製)
・HP-4032D:(DIC株式会社製)
・ADCP:2官能アクリレートA-DCP(新中村化学工業株式会社製)
・DPHA:アクリレートモノマー DPHA(新中村化学工業株式会社製)
・SP-327:大阪有機化学工業株式会社製
・PET30:ペンタエリスリトール(トリ/テトラ)アクリレート KAYARAD PET-30(日本化薬株式会社製)
・DPCA20:カプロラクトン変性ジペンタエリスリトールヘキサアクリレート DPCA20(日本化薬株式会社製)
・DPCA120:カプロラクトン変性ジペンタエリスリトールヘキサアクリレートDPCA120(日本化薬株式会社製)
(D) Coating liquid for forming a barrier layer containing an epoxy monomer (Examples 6 to 10)
-Epoxy monomer listed in Table 2 100 parts by mass-Polymer surfactant B1176 (Dainippon Chemical Co., Ltd.) 0.05 part by mass-Polymerization initiator PAG-1 1.0 part by mass-Solvent (methyl ethyl ketone and methyl (A mixture of isobutyl ketone at 3: 7) Amount at which the solute concentration is 40% by mass The monomers in Table 2 show the following.
U6LPA: Urethane (meth) acrylate monomer U-6LPA (manufactured by Shin-Nakamura Chemical Co., Ltd.)
U4HA: Urethane (meth) acrylate monomer U-4HA (manufactured by Shin-Nakamura Chemical Co., Ltd.)
EBECRY220: Aromatic urethane acrylate EBECRYL220 (manufactured by Daicel Ornex Co., Ltd.)
・ 8BR-600: Urethane polymer 8BR-600 (manufactured by Taisei Fine Chemical Co., Ltd.)
UA122P: Urethane acrylate resin UA122P (manufactured by Shin-Nakamura Chemical Co., Ltd.)
CEL2021P: bifunctional alicyclic epoxy resin ceroxide 2021P (manufactured by Daicel Corporation)
CEL8000: Alicyclic epoxy resin Celoxide 8000 (manufactured by Daicel Corporation)
Cyclomer M100: Methacrylate monomer Cyclomer M-100 (manufactured by Daicel Corporation)
EPICLON: bifunctional naphthalene type epoxy resin EPICLON HP-4032D (manufactured by DIC Corporation)
・ HP-4032D: (made by DIC Corporation)
ADCP: Bifunctional acrylate A-DCP (manufactured by Shin-Nakamura Chemical Co., Ltd.)
・ DPHA: Acrylate monomer DPHA (manufactured by Shin-Nakamura Chemical Co., Ltd.)
SP-327: Osaka Organic Chemical Industries, Ltd. PET30: Pentaerythritol (tri / tetra) acrylate KAYARAD PET-30 (Nippon Kayaku Co., Ltd.)
DPCA20: caprolactone-modified dipentaerythritol hexaacrylate DPCA20 (manufactured by Nippon Kayaku Co., Ltd.)
DPCA120: caprolactone-modified dipentaerythritol hexaacrylate DPCA120 (manufactured by Nippon Kayaku Co., Ltd.)
<実施例1~16および比較例1のハーフミラーの作製>
(1)仮支持体(150mm×100mm)として東洋紡株式会社製PETフィルム(コスモシャインA4100、厚み:100μm)を使用し、その片面にラビング処理(レーヨン布、圧力:0.1kgf(0.98N)、回転数:1000rpm、搬送速度:10m/min、回数:1往復)を施した。
<Production of Half Mirrors of Examples 1 to 16 and Comparative Example 1>
(1) A PET film (Cosmo Shine A4100, thickness: 100 μm) manufactured by Toyobo Co., Ltd. was used as a temporary support (150 mm × 100 mm), and one side thereof was rubbed (rayon cloth, pressure: 0.1 kgf (0.98 N)) , Rotation speed: 1000 rpm, transport speed: 10 m / min, number of times: 1 reciprocation).
(2)1/4波長板形成用塗布液をワイヤーバーを用いてPETフィルムのラビングした表面に塗布後、乾燥させた。次いで、これを30℃のホットプレート上に置き、フュージョンUVシステムズ株式会社製無電極ランプ「Dバルブ」(60mW/cm2)にて6秒間UV照射し、液晶相を固定して、膜厚0.8μmの位相差層(1/4波長板)を得た。得られた位相差層の表面に塗布液1をワイヤーバーを用いて塗布後、乾燥させた。次いで、これを30℃のホットプレート上に置き、フュージョンUVシステムズ株式会社製無電極ランプ「Dバルブ」(60mW/cm2)にて6秒間UV照射し、コレステリック液晶相を固定して、膜厚3.5μmのコレステリック液晶層を得た。得られたコレステリック液晶層の表面にさらに塗布液2および塗布液3をこの順番で用いて、同様の工程を繰り返した(塗布液2の層:3.0μm、塗布液3の層:2.7μm)。このようにして、1/4波長板および円偏光反射層(3層のコレステリック液晶層)からなる積層体Aを得た。積層体Aの透過スペクトルを分光光度計(日本分光株式会社製、V-670)で測定したところ、630nm、540nm、450nmに選択反射中心波長を有する透過スペクトルが得られた。 (2) The quarter wavelength plate forming coating solution was applied to the rubbed surface of the PET film using a wire bar and then dried. Next, this was placed on a hot plate at 30 ° C., and UV irradiation was performed for 6 seconds with an electrodeless lamp “D bulb” (60 mW / cm 2 ) manufactured by Fusion UV Systems Co., Ltd. A retardation layer (¼ wavelength plate) of 8 μm was obtained. The coating liquid 1 was applied to the surface of the obtained retardation layer using a wire bar and then dried. Next, this was placed on a hot plate at 30 ° C., and irradiated with UV for 6 seconds with an electrodeless lamp “D bulb” (60 mW / cm 2 ) manufactured by Fusion UV Systems, fixing the cholesteric liquid crystal phase, A 3.5 μm cholesteric liquid crystal layer was obtained. The same process was repeated using the coating liquid 2 and the coating liquid 3 in this order on the surface of the obtained cholesteric liquid crystal layer (the coating liquid 2 layer: 3.0 μm, the coating liquid 3 layer: 2.7 μm). ). Thus, the laminated body A which consists of a quarter wavelength plate and a circularly-polarized light reflection layer (three cholesteric liquid crystal layers) was obtained. When the transmission spectrum of the laminate A was measured with a spectrophotometer (manufactured by JASCO Corporation, V-670), transmission spectra having selective reflection center wavelengths at 630 nm, 540 nm, and 450 nm were obtained.
(3)バリア層を有するハーフミラーについては、積層体Aのコレステリック液晶層側の表面に、バリア層形成用塗布液を、乾燥後の乾膜の厚みが3.0μmになるように室温にてワイヤーバーを用いてさらに塗布した。塗布層を室温にて10秒間乾燥させた後、85℃の雰囲気で1分間加熱し、その後70℃でフュージョン製Dバルブ(ランプ90mW/cm)にて出力80%で5秒間UV照射した。 (3) For the half mirror having a barrier layer, the barrier layer forming coating solution is applied to the surface of the laminate A on the cholesteric liquid crystal layer side at room temperature so that the dry film thickness after drying is 3.0 μm. Further application was performed using a wire bar. The coating layer was dried at room temperature for 10 seconds, heated in an atmosphere of 85 ° C. for 1 minute, and then irradiated with UV at 70 ° C. with a fusion D bulb (lamp 90 mW / cm) at an output of 80% for 5 seconds.
(4)ラミネーターを用いて、50mm角ガラス板にOCAテープ(日栄化工株式会社製MHM-FWD25 膜厚25μm)を貼合し、その後OCAテープの保護フィルムを剥離した。次に、ラミネーターを用いて、OCAの粘着層つきガラス板と上記積層体Aの円偏光反射層側の表面、またはバリア層つき上記積層体Aのバリア層側の表面で貼合した。その後、仮支持体(PET)を剥がして、50mm角のハーフミラーを作製した。 (4) Using a laminator, an OCA tape (MHM-FWD25, film thickness 25 μm, manufactured by Nichiei Kako Co., Ltd.) was bonded to a 50 mm square glass plate, and then the protective film of the OCA tape was peeled off. Next, using a laminator, bonding was performed on the glass plate with the adhesive layer of OCA and the surface of the laminate A on the side of the circularly polarized light reflecting layer, or on the surface of the laminate A with the barrier layer on the side of the barrier layer. Thereafter, the temporary support (PET) was peeled off to produce a 50 mm square half mirror.
<実施例17のハーフミラーの作製>
 上記のラビングした仮支持体の代わりに、以下の手順で調製した配向層付きの支持体を用い、かつ配向層および支持体を剥離しなかった以外は、実施例1のハーフミラーの作製と同様の手順で実施例17のハーフミラーを作製した。
 富士フィルム株式会社製トリアセチルセルロースフィルム(フジタック、厚み80μm)を支持体(150mm×100mm)として用いた。この支持体の上に、長鎖アルキル変性ボパール(MP-203、クラレ株式会社製)の2質量%溶液を所定量塗布した後、乾燥させて、配向膜樹脂層を形成した。その片面に、ラビング処理(レーヨン布、圧力:0.5kgf(4.9N)、回転数:1000rpm、搬送速度:10m/min、回数:1往復)を施し、配向層付きの支持体を得た。
<Preparation of Half Mirror of Example 17>
Similar to the production of the half mirror of Example 1, except that instead of the rubbed temporary support, a support with an alignment layer prepared in the following procedure was used and the alignment layer and the support were not peeled off. The half mirror of Example 17 was produced by the procedure described above.
A triacetyl cellulose film (Fujitack, thickness 80 μm) manufactured by Fuji Film Co., Ltd. was used as a support (150 mm × 100 mm). A predetermined amount of a 2% by mass solution of long-chain alkyl-modified bhopal (MP-203, manufactured by Kuraray Co., Ltd.) was applied on the support, and then dried to form an alignment film resin layer. One side was subjected to rubbing treatment (rayon cloth, pressure: 0.5 kgf (4.9 N), rotation speed: 1000 rpm, conveyance speed: 10 m / min, number of times: 1 reciprocation), and a support with an alignment layer was obtained. .
<実施例18のハーフミラーの作製>
(1)支持体(150mm×100mm)として、トリアセチルセルロース(フジタック、富士フィルム株式会社製)を用いた。この支持体上に、長鎖アルキル変性ボパール(MP-203、クラレ株式会社製)の2質量%溶液を所定量塗布した後、乾燥させて、配向膜樹脂層を形成した。その片面に、ラビング処理(レーヨン布、圧力:0.5kgf(4.9N)、回転数:1000rpm、搬送速度:10m/min、回数:1往復)を施した。
 ラビング処理した表面に塗布液1をワイヤーバーを用いて塗布後、乾燥させた。次いで、これを30℃のホットプレート上に置き、フュージョンUVシステムズ株式会社製無電極ランプ「Dバルブ」(60mW/cm2)にて6秒間UV照射し、コレステリック液晶相を固定して、膜厚3.5μmのコレステリック液晶層を得た。
 得られたコレステリック液晶層の表面にさらに塗布液2および塗布液3をこの順番で用いて、同様の工程を繰り返した(塗布液2の層:3.0μm、塗布液3の層:2.7μm)。このようにして、円偏光反射層(3層のコレステリック液晶層)の積層体を得た。積層体の透過スペクトルを分光光度計(日本分光株式会社製、V-670)で測定したところ、630nm、540nm、450nmに選択反射中心波長を有する透過スペクトルが得られた。
 コレステリック液晶層側の表面に、実施例1と同様のバリア層形成用塗布液を、乾燥後の乾膜の厚みが3.0μmになるように室温にてワイヤーバーを用いてさらに塗布した。塗布層を室温にて10秒間乾燥させた後、85℃の雰囲気で1分間加熱し、その後70℃でフュージョン製Dバルブ(ランプ90mW/cm)にて出力80%で5秒間UV照射し、積層体を得た。
<Preparation of Half Mirror of Example 18>
(1) Triacetylcellulose (Fujitack, manufactured by Fuji Film Co., Ltd.) was used as a support (150 mm × 100 mm). A predetermined amount of a 2% by mass solution of long-chain alkyl-modified bhopal (MP-203, manufactured by Kuraray Co., Ltd.) was applied on this support, and then dried to form an alignment film resin layer. A rubbing treatment (rayon cloth, pressure: 0.5 kgf (4.9 N), rotation speed: 1000 rpm, conveyance speed: 10 m / min, number of times: 1 reciprocation) was performed on one surface.
The coating solution 1 was applied to the rubbed surface using a wire bar and then dried. Next, this was placed on a hot plate at 30 ° C., and irradiated with UV for 6 seconds with an electrodeless lamp “D bulb” (60 mW / cm 2 ) manufactured by Fusion UV Systems, fixing the cholesteric liquid crystal phase, A 3.5 μm cholesteric liquid crystal layer was obtained.
The same process was repeated using the coating liquid 2 and the coating liquid 3 in this order on the surface of the obtained cholesteric liquid crystal layer (the coating liquid 2 layer: 3.0 μm, the coating liquid 3 layer: 2.7 μm). ). In this way, a laminated body of circularly polarized light reflecting layers (three cholesteric liquid crystal layers) was obtained. When the transmission spectrum of the laminate was measured with a spectrophotometer (manufactured by JASCO Corporation, V-670), transmission spectra having selective reflection center wavelengths at 630 nm, 540 nm, and 450 nm were obtained.
On the surface on the cholesteric liquid crystal layer side, the same barrier layer-forming coating solution as in Example 1 was further applied at room temperature using a wire bar so that the dry film thickness after drying was 3.0 μm. The coating layer was dried at room temperature for 10 seconds, heated in an atmosphere at 85 ° C. for 1 minute, and then irradiated with UV at a power of 80% with a fusion D bulb (lamp 90 mW / cm) at 70 ° C. for 5 seconds. Got the body.
(2)上記積層体の液晶層側と反対の面に、下記ハードコート組成物をワイヤーバーを用いて塗布した。その後、60℃で150秒乾燥させて、30℃のホットプレート上に置き、フュージョンUVシステムズ株式会社製無電極ランプ「Dバルブ」(60mW/cm2)にて10秒間UV照射し、膜厚25μmの層を作製した。このようにして、積層体Bを得た。
ハードコート組成物
・アクリレートモノマー DPHA(新中村化学工業株式会社製)   76.5質量部
・メタクリレートモノマー サイクロマーM-100(株式会社ダイセル製)   23.5質量部
・防汚剤 RS-90 (DIC製)   0.7質量部
・無機粒子 MEK-AC-2140Z(日産化学工業製)   15.0質量部
・重合開始剤 IRGACURE184(BASF社製)   4.0質量部
・重合開始剤 PAG-1   1.5質量部
・溶媒(メチルエチルケトン)   40.0質量部
・溶媒(メチルイソブチルケトン)   60.0質量部
(2) The following hard coat composition was applied to the surface opposite to the liquid crystal layer side of the laminate using a wire bar. Then, it was dried at 60 ° C. for 150 seconds, placed on a hot plate at 30 ° C., and irradiated with UV for 10 seconds using an electrodeless lamp “D bulb” (60 mW / cm 2 ) manufactured by Fusion UV Systems Co., Ltd., with a film thickness of 25 μm. A layer of was prepared. In this way, a laminate B was obtained.
Hard coat composition / acrylate monomer DPHA (manufactured by Shin-Nakamura Chemical Co., Ltd.) 76.5 parts by mass / methacrylate monomer Cyclomer M-100 (manufactured by Daicel) 23.5 parts by mass / antifouling agent RS-90 (DIC) 0.7 parts by mass, inorganic particles MEK-AC-2140Z (manufactured by Nissan Chemical Industries) 15.0 parts by mass, polymerization initiator IRGACURE 184 (manufactured by BASF) 4.0 parts by mass, polymerization initiator PAG-1. 5 parts by mass / solvent (methyl ethyl ketone) 40.0 parts by mass / solvent (methyl isobutyl ketone) 60.0 parts by mass
(3)1/4波長板作製用の仮支持体(150mm×100mm)として東洋紡株式会社製PETフィルム(コスモシャインA4100、厚み:100μm)を用いた。その片面にラビング処理(レーヨン布、圧力:0.1kgf(0.98N)、回転数:1000rpm、搬送速度:10m/min、回数:1往復)を施した。1/4波長板形成用塗布液をワイヤーバーを用いてPETフィルムのラビングした表面に塗布後、乾燥させた。次いで、これを30℃のホットプレート上に置き、フュージョンUVシステムズ株式会社製無電極ランプ「Dバルブ」(60mW/cm2)にて6秒間UV照射し、液晶相を固定して、膜厚0.8μmの位相差層を形成した。このようにして、仮支持体付きの1/4波長板を得た。 (3) A PET film (Cosmo Shine A4100, thickness: 100 μm) manufactured by Toyobo Co., Ltd. was used as a temporary support (150 mm × 100 mm) for producing a quarter-wave plate. One side was subjected to rubbing treatment (rayon cloth, pressure: 0.1 kgf (0.98 N), rotation speed: 1000 rpm, conveyance speed: 10 m / min, number of times: 1 reciprocation). The quarter-wave plate forming coating solution was applied to the rubbed surface of the PET film using a wire bar and then dried. Next, this was placed on a hot plate at 30 ° C., and UV irradiation was performed for 6 seconds with an electrodeless lamp “D bulb” (60 mW / cm 2 ) manufactured by Fusion UV Systems Co., Ltd. A retardation layer of .8 μm was formed. In this way, a quarter wavelength plate with a temporary support was obtained.
(4)ラミネーターを用いて、積層体Bのバリア層側にOCAテープ(日栄化工株式会社製MHM-FWD25 膜厚25μm)を貼合し、その後OCAテープの保護フィルムを剥離した。この剥離面に上記仮支持体付きの1/4波長板の位相差層面をラミネーターを用いて貼合した。その後、1/4波長板の仮支持体(PET)を剥がし、積層体Cを作製した。 (4) Using a laminator, an OCA tape (MHM-FWD25, film thickness 25 μm) manufactured by Niei Kaiko Co., Ltd. was bonded to the barrier layer side of the laminate B, and then the protective film of the OCA tape was peeled off. The phase difference layer surface of the quarter wavelength plate with the temporary support was bonded to the release surface using a laminator. Then, the temporary support body (PET) of the quarter wavelength plate was peeled off, and the laminated body C was produced.
(5)80μmの厚さのトリアセチルセルロースフィルム(フジタック、富士フィルム株式会社製)を、1.5mol/L、55℃のNaOH水溶液中に2分間浸漬した後に、中和および水洗した。ポリビニルアルコールフィルムにヨウ素を吸着させ、延伸して偏光子を作製した。作製した偏光子の片面に、水洗後のトリアセチルセルロースフィルムを接着した。偏光子のもう一方の面に、下記組成のUV接着剤組成物Aを塗布して硬化後の膜厚が2.5μmとなるように、ワイヤーバーを用いて塗布した。
UV接着剤組成物A
・デナコールEX-211(新中村化学工業株式会社製)   100質量部
・WPBG-056(株式会社ダイセル製)   7.5質量部
 積層体Cの1/4波長板の面にも同様にUV接着剤組成物Aを塗布した。積層体Cと上記偏光子とを、UV接着剤組成物Aが塗布された面同士を気泡が入らないように貼合し、フュージョンUVシステムズ株式会社製無電極ランプ「Dバルブ」(60mW/cm2)にて10秒間UV照射した。このようにして、偏光子付きハーフミラーを作製した。
(5) A 80 μm thick triacetyl cellulose film (Fujitac, manufactured by Fuji Film Co., Ltd.) was immersed in a 1.5 mol / L, 55 ° C. NaOH aqueous solution for 2 minutes, and then neutralized and washed with water. Iodine was adsorbed on a polyvinyl alcohol film and stretched to produce a polarizer. A triacetyl cellulose film after washing with water was bonded to one side of the produced polarizer. On the other surface of the polarizer, a UV adhesive composition A having the following composition was applied and applied using a wire bar so that the film thickness after curing was 2.5 μm.
UV adhesive composition A
・ Denacol EX-211 (manufactured by Shin-Nakamura Chemical Co., Ltd.) 100 parts by mass. WPBG-056 (manufactured by Daicel Corporation) 7.5 parts by mass. Composition A was applied. The laminate C and the polarizer were bonded so that the surfaces coated with the UV adhesive composition A were not bubbled, and an electrodeless lamp “D bulb” (60 mW / cm) manufactured by Fusion UV Systems Co., Ltd. 2 ) UV irradiation was performed for 10 seconds. Thus, the half mirror with a polarizer was produced.
<実施例19のハーフミラーの作製>
(1)積層体Dの作製
 支持体(150mm×100mm)としてトリアセチルセルロースフィルム(フジタック、富士フィルム株式会社製)を用いた。この支持体上に、長鎖アルキル変性ボパール(MP-203、クラレ株式会社製)の2質量%溶液を所定量塗布した後、乾燥させて配向膜樹脂層を形成した。その片面に、ラビング処理(レーヨン布、圧力:0.5kgf(4.9N)、回転数:1000rpm、搬送速度:10m/min、回数:1往復)を施した。
 上記配向層側に実施例1と同様の手順で1/4波長板、コレステリック液晶層(3層)、および、バリア層を形成し、積層体Dを得た。
<Production of Half Mirror of Example 19>
(1) Production of Laminate D A triacetyl cellulose film (Fujitac, manufactured by Fuji Film Co., Ltd.) was used as a support (150 mm × 100 mm). A predetermined amount of a 2% by mass solution of long-chain alkyl-modified bhopal (MP-203, manufactured by Kuraray Co., Ltd.) was applied on the support, and then dried to form an alignment film resin layer. A rubbing treatment (rayon cloth, pressure: 0.5 kgf (4.9 N), rotation speed: 1000 rpm, conveyance speed: 10 m / min, number of times: 1 reciprocation) was performed on one surface.
A quarter-wave plate, a cholesteric liquid crystal layer (three layers), and a barrier layer were formed on the alignment layer side in the same procedure as in Example 1 to obtain a laminate D.
(2)位相差フィルム(高Re位相差膜)の作製
[原料ポリエステルの合成]
(原料ポリエステル1)
 以下に示すように、テレフタル酸及びエチレングリコールを直接反応させて水を留去し、エステル化した後、減圧下で重縮合を行う直接エステル化法を用いて、連続重合装置により原料ポリエステル1(Sb触媒系PET)を得た。
(2) Production of retardation film (high Re retardation film) [synthesis of raw material polyester]
(Raw material polyester 1)
As shown below, by directly reacting terephthalic acid and ethylene glycol to distill off water, esterify, and then use a direct esterification method in which polycondensation is performed under reduced pressure, raw polyester 1 ( Sb catalyst system PET) was obtained.
エステル化反応
 第一エステル化反応槽に、高純度テレフタル酸4.7トンとエチレングリコール1.8トンとを90分かけて混合してスラリー形成させ、3800kg/hの流量で連続的に第一エステル化反応槽に供給した。更に三酸化アンチモンのエチレングリコール溶液を連続的に供給し、反応槽内温度250℃、攪拌下、平均滞留時間約4.3時間で反応を行なった。このとき、三酸化アンチモンはSb添加量が元素換算値で150ppmとなるように連続的に添加した。
Esterification reaction In a first esterification reaction tank, 4.7 tons of high-purity terephthalic acid and 1.8 tons of ethylene glycol were mixed for 90 minutes to form a slurry, and continuously at a flow rate of 3800 kg / h. It supplied to the esterification reaction tank. Further, an ethylene glycol solution of antimony trioxide was continuously supplied, and the reaction was carried out at a reaction vessel temperature of 250 ° C. with stirring and an average residence time of about 4.3 hours. At this time, antimony trioxide was continuously added so that the amount of Sb added was 150 ppm in terms of element.
 この反応物を第二エステル化反応槽に移送し、攪拌下、反応槽内温度250℃で、平均滞留時間で1.2時間反応させた。第二エステル化反応槽には、酢酸マグネシウムのエチレングリコール溶液と、リン酸トリメチルのエチレングリコール溶液を、Mg添加量およびP添加量が元素換算値でそれぞれ65ppm、35ppmになるように連続的に供給した。 The reaction product was transferred to a second esterification reaction vessel, and reacted with stirring at a temperature in the reaction vessel of 250 ° C. and an average residence time of 1.2 hours. To the second esterification reaction tank, an ethylene glycol solution of magnesium acetate and an ethylene glycol solution of trimethyl phosphate are continuously supplied so that the added amount of Mg and the added amount of P are 65 ppm and 35 ppm in terms of element, respectively. did.
重縮合反応
 上記で得られたエステル化反応生成物を連続的に第一重縮合反応槽に供給し、攪拌下、反応温度270℃、反応槽内圧力20torr(2.67×10-3MPa)で、平均滞留時間約1.8時間で重縮合させた。
Polycondensation reaction The esterification reaction product obtained above is continuously supplied to the first polycondensation reaction tank, and with stirring, the reaction temperature is 270 ° C. and the pressure in the reaction tank is 20 torr (2.67 × 10 −3 MPa). The polycondensation was carried out with an average residence time of about 1.8 hours.
 さらに、第二重縮合反応槽に移送し、この反応槽において攪拌下、反応槽内温度276℃、反応槽内圧力5torr(6.67×10-4MPa)で滞留時間約1.2時間の条件で反応(重縮合)させた。 Furthermore, it was transferred to the second double condensation reaction tank, and while stirring in this reaction tank, the reaction tank temperature was 276 ° C., the reaction tank pressure was 5 torr (6.67 × 10 −4 MPa), and the residence time was about 1.2 hours. The reaction (polycondensation) was performed under the conditions.
 次いで、更に第三重縮合反応槽に移送し、この反応槽では、反応槽内温度278℃、反応槽内圧力1.5torr(2.0×10-4MPa)で、滞留時間1.5時間の条件で反応(重縮合)させ、反応物(ポリエチレンテレフタレート(PET))を得た。 Subsequently, it was further transferred to the third triple condensation reaction tank. In this reaction tank, the reaction tank temperature was 278 ° C., the reaction tank pressure was 1.5 torr (2.0 × 10 −4 MPa), and the residence time was 1.5 hours. The reaction product (polyethylene terephthalate (PET)) was obtained by reaction (polycondensation) under the following conditions.
 次に、得られた反応物を、冷水にストランド状に吐出し、直ちにカッティングしてポリエステルのペレット(断面:長径約4mm、短径約2mm、長さ:約3mm)を作製した。 Next, the obtained reaction product was discharged into cold water in a strand shape and immediately cut to prepare polyester pellets (cross section: major axis: about 4 mm, minor axis: about 2 mm, length: about 3 mm).
 得られたポリマーは、IV(固有粘度)=0.63であった。このポリマーを原料ポリエステル1とした(以降、PET1と略す)。 The obtained polymer had IV (intrinsic viscosity) = 0.63. This polymer was designated as raw material polyester 1 (hereinafter abbreviated as PET1).
(原料ポリエステル2)
 乾燥させた紫外線吸収剤(2,2'-(1,4-フェニレン)ビス(4H-3,1-ベンゾオキサジン-4-オン)10質量部、PET1(IV=0.63)90質量部を混合した。次いで、混練押出機を用い、PET1の作製と同様にしてペレット化して、紫外線吸収剤を含有する原料ポリエステル2を得た(以降、PET2と略す)。
(Raw material polyester 2)
10 parts by weight of the dried UV absorber (2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazin-4-one) and 90 parts by weight of PET1 (IV = 0.63) Next, using a kneading extruder, pelletization was performed in the same manner as in the production of PET 1 to obtain a raw material polyester 2 containing an ultraviolet absorber (hereinafter abbreviated as PET 2).
[ポリエステルフィルムの製造]
-フィルム成形工程-
 PET1の90質量部と、紫外線吸収剤を含有したPET2の10質量部とを、含水率20ppm以下に乾燥させた後、直径50mmの1軸混練押出機1のホッパー1に投入し、押出機1で300℃に溶融した(中間層II層)。
 また、PET1を、含水率20ppm以下に乾燥させた後、直径30mmの1軸混練押出機2のホッパー2に投入し、押出機2で300℃に溶融した(外層I層、外層III層)。
 これらの2種のポリマー溶融物をそれぞれギアポンプ、濾過器(孔径20μm)に介した後、2種3層合流ブロックにて、押出機1から押出されたポリマーが中間層(II層)に、押出機2から押出されたポリマーが外層(I層及びIII層)になるように積層し、幅120mmのダイよりシート状に押し出した。
[Production of polyester film]
-Film forming process-
After 90 parts by mass of PET 1 and 10 parts by mass of PET 2 containing an ultraviolet absorber were dried to a moisture content of 20 ppm or less, they were put into a hopper 1 of a single-screw kneading extruder 1 having a diameter of 50 mm. To 300 ° C. (intermediate layer II layer).
Moreover, after drying PET1 to a water content of 20 ppm or less, it was put into the hopper 2 of a single-screw kneading extruder 2 having a diameter of 30 mm and melted at 300 ° C. by the extruder 2 (outer layer I layer, outer layer III layer).
These two kinds of polymer melts are respectively passed through a gear pump and a filter (pore diameter 20 μm), and then the polymer extruded from the extruder 1 is extruded into an intermediate layer (II layer) in a two-type three-layer confluence block. The polymer extruded from the machine 2 was laminated so as to be outer layers (I layer and III layer), and extruded from a die having a width of 120 mm into a sheet shape.
 溶融樹脂の押出条件は、圧力変動を1%、溶融樹脂の温度分布を2%として、溶融樹脂をダイから押出した。具体的には、背圧を、押出機のバレル内平均圧力に対して1%加圧し、押出機の配管温度を、押出機のバレル内平均温度に対して2%高い温度で加熱した。
 ダイから押出した溶融樹脂を、温度25℃に設定された冷却キャストドラム上に押出し、静電印加法を用い冷却キャストドラムに密着させた。冷却キャストドラムに対向配置された剥ぎ取りロールを用いて剥離し、未延伸ポリエステルフィルムを得た。このとき、I層、II層、III層の厚さの比は10:80:10となるように各押出機の吐出量を調整した。また、ダイから溶融樹脂を押し出す条件を変えて厚みの異なる未延伸ポリエステルフィルムを得た。
The molten resin was extruded from the die under the conditions that the pressure fluctuation was 1% and the temperature distribution of the molten resin was 2%. Specifically, the back pressure was increased by 1% with respect to the average pressure in the barrel of the extruder, and the piping temperature of the extruder was heated at a temperature 2% higher than the average temperature in the barrel of the extruder.
The molten resin extruded from the die was extruded onto a cooling cast drum set at a temperature of 25 ° C., and was brought into close contact with the cooling cast drum using an electrostatic application method. It peeled using the peeling roll arrange | positioned facing the cooling cast drum, and obtained the unstretched polyester film. At this time, the discharge amount of each extruder was adjusted so that the ratio of the thicknesses of the I layer, the II layer, and the III layer was 10:80:10. Moreover, the unstretched polyester film from which thickness differs was changed by changing the conditions which extrude molten resin from die | dye.
[塗布液Hの調製]
 以下に示す組成で塗布液Hを調製した。
(塗布液H)
水     56.6質量部
アクリル樹脂(A1、固形分28質量%)   21.4質量部
カルボジイミド化合物:(B1、固形分40質量%)   2.9質量部
界面活性剤(E1、固形分1質量%水溶液)   8.1質量部
界面活性剤(E2、固形分1質量%水溶液)   9.6質量部
粒子(F1、固形分40質量%)   0.4質量部
滑剤(G、固形分30質量%)   1.0質量部
[Preparation of coating solution H]
A coating solution H was prepared with the composition shown below.
(Coating liquid H)
Water 56.6 parts by mass acrylic resin (A1, solid content 28% by mass) 21.4 parts by mass carbodiimide compound: (B1, solid content 40% by mass) 2.9 parts by mass surfactant (E1, solid content 1% by mass) 8.1 parts by weight surfactant (E2, solid content 1% by weight aqueous solution) 9.6 parts by weight particles (F1, solid content 40% by weight) 0.4 parts by weight lubricant (G, solid content 30% by weight) 1.0 part by weight
 以下に使用化合物の詳細を示す。
・アクリル樹脂:(A1)
 アクリル樹脂(A1)としては、下記組成のモノマーで重合したアクリル樹脂の水分散体(固形分28質量%)を用いた。
 メチルメタアクリレート/スチレン/2-エチルヘキシルアクリレート/2-ヒドロキシエチルメタアクリレート/アクリル酸=59/9/26/5/1(質量%)の乳化重合体(乳化剤:アニオン系界面活性剤)、Tg=45℃
・カルボジイミド化合物:(B1)(日清紡製、カルボジライトV-02-L2)
・界面活性剤:(E1)スルホコハク酸系界面活性剤(日本油脂製、ラピゾールA-90)
・界面活性剤:(E2)ポリエチレンオキサイド系界面活性剤(三洋化成工業製、ナロアクティCL-95)
・粒子:(F1)平均粒径50nmのシリカゾル
・滑剤:(G)カルナバワックス
Details of the compounds used are shown below.
Acrylic resin: (A1)
As the acrylic resin (A1), an aqueous dispersion of acrylic resin polymerized with monomers having the following composition (solid content: 28% by mass) was used.
Methyl methacrylate / styrene / 2-ethylhexyl acrylate / 2-hydroxyethyl methacrylate / acrylic acid = 59/9/26/5/1 (mass%) emulsion polymer (emulsifier: anionic surfactant), Tg = 45 ° C
Carbodiimide compound: (B1) (Nisshinbo, Carbodilite V-02-L2)
Surfactant: (E1) sulfosuccinic acid surfactant (manufactured by NOF Corporation, Rapisol A-90)
・ Surfactant: (E2) Polyethylene oxide surfactant (Sanyo Chemical Industries, NAROACTY CL-95)
-Particles: (F1) Silica sol with an average particle size of 50 nm-Lubricant: (G) Carnauba wax
[位相差フィルムの形成]
(一軸延伸(横延伸)フィルム(位相差フィルム)の形成)
 上記のように得られた未延伸ポリエステルフィルムの両側それぞれに、リバースロール法にて、上記記組成の塗布液Hを乾燥後の塗布量が0.12g/m2になるように調整しながら塗布した。得られたフィルムをテンター(横延伸機)に導き、フィルムの端部をクリップで把持しながら、予熱温度92℃で延伸可能な温度まで加熱し、幅方向に4.0倍延伸(延伸速度900%/分)して5m幅のフィルムを得た。次いで、ポリエステルフィルムの膜面温度を160℃に制御しながら熱固定処理および熱緩和した後、50℃の冷却温度にて冷却した。
[Formation of retardation film]
(Formation of uniaxially stretched (laterally stretched) film (retardation film))
Apply to both sides of the unstretched polyester film obtained as described above by the reverse roll method while adjusting the coating solution H having the above composition so that the coating amount after drying is 0.12 g / m 2. did. The obtained film is guided to a tenter (transverse stretching machine), heated to a preheating temperature of 92 ° C. while being gripped by a clip, and stretched 4.0 times in the width direction (stretching speed: 900). % / Min) to obtain a 5 m wide film. Next, the film surface temperature of the polyester film was controlled to 160 ° C., heat-fixed and relaxed, and then cooled at a cooling temperature of 50 ° C.
 冷却の後、ポリエステルフィルムを1.4m幅に幅方向に3分割し、チャック部をトリミングした。その後、分割した各ロールの両端に幅10mmで押出し加工(ナーリング)を行なった後、張力18kg/mで2000m巻き取った。分割したサンプルを一方の端部側からそれぞれ端部A、中心B、端部Cとし、中心Bを使用した。得られた位相差フィルムは膜厚80μmであり、正面位相差をAxoscanで測定したところ、8060nmであった。 After cooling, the polyester film was divided into 1.4 m widths in the width direction, and the chuck portion was trimmed. Then, after extruding (knurling) at a width of 10 mm on both ends of each divided roll, it was wound up 2000 m at a tension of 18 kg / m. The divided samples were designated as an end A, a center B, and an end C from one end side, and the center B was used. The obtained retardation film had a film thickness of 80 μm, and the front phase difference measured by Axoscan was 8060 nm.
(3)前面板の作製
 上記位相差フィルムの片面に上記ハードコート組成物をワイヤーバーを用いて塗布後、60℃で150秒乾燥させた。次いで、これを30℃のホットプレート上に置き、フュージョンUVシステムズ株式会社製無電極ランプ「Dバルブ」(60mW/cm2)にて10秒間UV照射し、膜厚25μmの層を作製した。このようにして、前面板(積層体E)を得た。
(3) Preparation of front plate The hard coat composition was applied to one side of the retardation film using a wire bar and then dried at 60 ° C for 150 seconds. Next, this was placed on a hot plate at 30 ° C., and irradiated with UV for 10 seconds using an electrodeless lamp “D bulb” (60 mW / cm 2 ) manufactured by Fusion UV Systems Co., Ltd., to produce a 25 μm thick layer. In this way, a front plate (laminate E) was obtained.
(4)積層体F(ハーフミラー)の作製
 ラミネーターを用いて、積層体Dのバリア層側にOCAテープ(日栄化工株式会社製MHM-FWD25 膜厚25μm)を貼合し、その後OCAテープの保護フィルムを剥離した。この剥離面に、ラミネーターを用いて、上記積層体Eのハードコート塗布面と反対側の面を貼合し、積層体Fを得た。
(4) Fabrication of Laminate F (Half Mirror) Using a laminator, an OCA tape (MHM-FWD25 film thickness 25 μm, manufactured by Niei Kaiko Co., Ltd.) is bonded to the barrier layer side of the laminate D, and then the OCA tape is protected. The film was peeled off. A laminate F was obtained by laminating a surface opposite to the hard coat application surface of the laminate E on the release surface using a laminator.
(5)偏光子付きハーフミラーの作製
 80μmの厚さのトリアセチルセルロースフィルム(フジタック、富士フィルム株式会社製)を、1.5mol/L、55℃のNaOH水溶液中に2分間浸漬した後に中和および水洗した。ポリビニルアルコールフィルムにヨウ素を吸着させ、延伸して偏光子を作製した。作製した偏光子の片面に、水洗後のトリアセチルセルロースフィルムを直接接触させて貼付した。偏光子のもう一方の面に、UV接着剤組成物Aを、硬化後の膜厚が2.5μmとなるようにワイヤーバーを用いて塗布した。積層体Fのトリアセチルセルロース面にも同様にUV接着剤組成物Aを塗布した。積層体Fと上記偏光子とを、UV接着剤組成物Aが塗布された面同士を気泡が入らないように貼合し、フュージョンUVシステムズ株式会社製無電極ランプ「Dバルブ」(60mW/cm2)にて10秒間UV照射した。このようにして、偏光子付きハーフミラーを作製した。
(5) Production of half mirror with polarizer A triacetyl cellulose film (Fujitac, manufactured by Fuji Film Co., Ltd.) with a thickness of 80 μm was neutralized after being immersed in a 1.5 mol / L, 55 ° C. NaOH aqueous solution for 2 minutes. And washed with water. Iodine was adsorbed on a polyvinyl alcohol film and stretched to produce a polarizer. A triacetyl cellulose film after washing with water was directly contacted and attached to one side of the produced polarizer. The UV adhesive composition A was applied to the other surface of the polarizer using a wire bar so that the film thickness after curing was 2.5 μm. Similarly, the UV adhesive composition A was applied to the triacetyl cellulose surface of the laminate F. Laminate F and the above polarizer were bonded so that the surfaces coated with UV adhesive composition A were not bubbled, and an electrodeless lamp “D bulb” (60 mW / cm) manufactured by Fusion UV Systems Co., Ltd. 2 ) UV irradiation was performed for 10 seconds. Thus, the half mirror with a polarizer was produced.
<ハーフミラーの評価>
 得られたハーフミラー(実施例18および実施例19については、偏光子付きハーフミラー)を110℃に設定した恒温恒湿ボックスに配置し、1000時間経過後に耐熱性とクラック耐性を評価した。
 耐熱性の評価は、分光光度計(日本分光株式会社製、V-670)で、光入射角度25度における反射率を測定し、恒温恒湿ボックスに入れる前後(110℃で1000時間経過する前後)での450nm付近の反射率ピーク波長のシフト量により行った。反射率ピーク波長のシフト量はハーフミラーの色味変化にも影響する。
 (波長シフト量=恒温恒湿ボックス配置前のサンプルの450nm付近の反射率ピーク-110℃で1000時間経過したサンプルの450nm付近の反射率ピーク)
 クラック耐性の評価は、110℃で1000時間経過した時点で円偏光反射層に生じているクラックの有無を目視確認することにより行った。
 結果を表2に示す。
 なお、同じ条件で恒温恒湿ボックスに配置し160時間経過後に同じ評価を行ったが、いずれも、ほぼ同じ結果であった。
<Evaluation of half mirror>
The obtained half mirror (for Example 18 and Example 19, half mirror with polarizer) was placed in a constant temperature and humidity box set at 110 ° C., and heat resistance and crack resistance were evaluated after 1000 hours.
The heat resistance was evaluated by measuring the reflectance at a light incident angle of 25 degrees with a spectrophotometer (manufactured by JASCO Corporation, V-670) and before and after placing it in a constant temperature and humidity box (before and after 1000 hours at 110 ° C). ) By the shift amount of the reflectance peak wavelength around 450 nm. The shift amount of the reflectance peak wavelength also affects the color change of the half mirror.
(Wavelength shift amount = reflectance peak around 450 nm of sample before placement in constant temperature and humidity box—reflectance peak around 450 nm of sample after 1000 hours at 110 ° C.)
Evaluation of crack resistance was performed by visually confirming the presence or absence of cracks occurring in the circularly polarized light reflecting layer when 1000 hours passed at 110 ° C.
The results are shown in Table 2.
The same evaluation was performed after 160 hours had passed in a constant temperature and humidity box under the same conditions, but almost the same results were obtained.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<層間の物質移動>
 重合開始剤として、IRGACURE OXE01の代わりにIRGACURE819(BASF社製)を同量用いた以外は、積層体Aの製造と同様にして1/4波長板と円偏光反射層との積層体Gを得た。
 積層体Gの円偏光反射層の表面にOCAテープ(日栄化工株式会社製MHM-FWD25 膜厚25μm)を貼合した。その後、仮支持体を剥離してサンプル1を得た。
<Mass transfer between layers>
A laminate G of a quarter-wave plate and a circularly polarizing reflective layer is obtained in the same manner as in the production of the laminate A, except that the same amount of IRGACURE 819 (manufactured by BASF) is used as a polymerization initiator instead of IRGACURE OXE01. It was.
An OCA tape (MHM-FWD25, film thickness 25 μm, manufactured by Nichiei Kako Co., Ltd.) was bonded to the surface of the circularly polarized reflective layer of the laminate G. Thereafter, the temporary support was peeled off to obtain Sample 1.
 サンプル1の環境試験前後の物質分布をTOF-SIMS(ION-TOF社製TOF-SIMS IV)で解析した。環境試験はサンプルを恒温恒湿ボックスに放置することにより行った。110℃160時間、および、85℃相対湿度85%160時間それぞれの条件で放置した。コレステリック液晶層を形成する組成物に含まれる物質である上記キラル剤、重合性液晶化合物、および重合開始剤に着目し、サンプル1を深さ方向(膜厚方向)に切削しながらTOF解析した。結果を図2(a)及び図2(b)に示す。図2(a)及び図2(b)において、横軸は切削時間であって深さに対応しており、縦軸は観測されたイオンの信号強度(物質量に対応する)である。また、図2(a)及び図2(b)中「Fresh」は環境試験前の解析結果であり、「wet」は85℃相対湿度85%160時間の環境試験後の解析結果であり、「dry」は110℃160時間の環境試験後の解析結果である。図2(a)及び図2(b)より、重合開始剤IRGACURE819(C2627PO3 -)およびその分解物(PO2 -)がOCAの粘着層である接着層に移動していることがわかる。 The material distribution of Sample 1 before and after the environmental test was analyzed by TOF-SIMS (TOF-SIMS IV manufactured by ION-TOF). The environmental test was conducted by leaving the sample in a constant temperature and humidity box. It was left under conditions of 110 ° C. for 160 hours and 85 ° C. and 85% relative humidity for 85 hours. Focusing on the chiral agent, polymerizable liquid crystal compound, and polymerization initiator, which are substances contained in the composition forming the cholesteric liquid crystal layer, TOF analysis was performed while cutting Sample 1 in the depth direction (film thickness direction). The results are shown in FIGS. 2 (a) and 2 (b). 2A and 2B, the horizontal axis represents the cutting time and corresponds to the depth, and the vertical axis represents the observed signal intensity of the ions (corresponding to the amount of substance). In FIG. 2 (a) and FIG. 2 (b), “Fresh” is the analysis result before the environmental test, and “wet” is the analysis result after the environmental test at 85 ° C. and 85% relative humidity 85%, “Dry” is an analysis result after an environmental test at 110 ° C. for 160 hours. From FIG. 2 (a) and FIG. 2 (b), the polymerization initiator IRGACURE819 (C 26 H 27 PO 3 ) and its decomposition product (PO 2 ) have moved to the adhesive layer which is an OCA adhesive layer. I understand.
 積層体Gの代わりに積層体Aを用いた以外は同様の手順でサンプル2を作製した。このサンプル2について同様のTOF-SIMSによる解析を行ったところ、サンプル1と同様に重合開始剤IRGACURE OXE01と分解物が移動していることを示す結果が得られた。 Sample 2 was produced in the same procedure except that the laminate A was used instead of the laminate G. The same analysis by TOF-SIMS was performed on this sample 2. As a result, a result showing that the polymerization initiator IRGACURE OXE01 and the decomposition product were transferred as in the case of sample 1 was obtained.
 上記積層体Gの、円偏光反射層の表面に下記の組成のバリア層形成用塗布液を、乾燥後の乾膜の厚みが3.0μmになるように室温にてワイヤーバーを用いて塗布した。塗布層を室温にて10秒間乾燥させた後、85℃の雰囲気で1分間加熱した。その後、70℃でフュージョン製Dバルブ(ランプ90mW/cm)にて出力80%で5秒間UV照射し、バリア層を得た。得られたバリア層側の表面にOCA(日栄化工株式会社製MHM-FWD25 膜厚25μm)を貼合した。その後、仮支持体を剥離してサンプル3を得た。
・ウレタン(メタ)アクリレートモノマーU6LPA   100質量部
・高分子界面活性剤 B1176 (大日本化学工業株式会社製)   0.05質量部
・重合開始剤IRGACURE OXE01(BASF社製)   1.0質量部
・溶媒(メチルエチルケトン)   溶質濃度が40質量%となる量
A coating solution for forming a barrier layer having the following composition was applied to the surface of the circularly polarized light reflecting layer of the laminate G using a wire bar at room temperature so that the dry film thickness after drying was 3.0 μm. . The coating layer was dried at room temperature for 10 seconds, and then heated at 85 ° C. for 1 minute. Thereafter, UV irradiation was performed at 70 ° C. with a fusion D bulb (lamp 90 mW / cm) at an output of 80% for 5 seconds to obtain a barrier layer. OCA (MHM-FWD25 film thickness 25 μm, manufactured by Niei Kaiko Co., Ltd.) was bonded to the surface of the obtained barrier layer side. Thereafter, the temporary support was peeled off to obtain Sample 3.
-Urethane (meth) acrylate monomer U6LPA 100 parts by mass-Polymer surfactant B1176 (manufactured by Dainippon Chemical Industry Co., Ltd.) 0.05 part by mass-Polymerization initiator IRGACURE OXE01 (manufactured by BASF) 1.0 part by mass-Solvent (Methyl ethyl ketone) The amount that the solute concentration becomes 40% by mass
 サンプル3につき、同様にTOF-SIMSで解析を行ったところ、キラル剤、重合性液晶化合物、重合開始剤、またはそれらいずれかの分解物が移動していることを示すデータは得られなかった。 Sample 3 was similarly analyzed by TOF-SIMS, and no data indicating that the chiral agent, the polymerizable liquid crystal compound, the polymerization initiator, or any of the decomposition products thereof had moved was obtained.
1 円偏光反射層
2 接着層(バリア層に接している接着層)
3 前面板
4 バリア層
5 1/4波長板
6 偏光子
10 支持体
11 配向層
12 その他の接着層
16 偏光子保護層
21 ガラス板またはプラスチックフィルム
22 高Re位相差膜
23 光学機能層
 
 
1 Circularly polarized reflective layer 2 Adhesive layer (adhesive layer in contact with the barrier layer)
3 Front plate 4 Barrier layer 5 1/4 wavelength plate 6 Polarizer 10 Support 11 Orientation layer 12 Other adhesive layer 16 Polarizer protective layer 21 Glass plate or plastic film 22 High Re retardation film 23 Optical functional layer

Claims (16)

  1. コレステリック液晶層を含む円偏光反射層と、
    バリア層と、
    接着層と、
    前面板と、
    を含み、前記バリア層は、前記接着層と前記円偏光反射層との間に設けられるハーフミラー。
    A circularly polarized reflective layer including a cholesteric liquid crystal layer;
    A barrier layer;
    An adhesive layer;
    A front plate,
    The barrier layer is a half mirror provided between the adhesive layer and the circularly polarized reflective layer.
  2. 前記円偏光反射層と前記バリア層とが直接接している請求項1に記載のハーフミラー。 The half mirror according to claim 1, wherein the circularly polarized light reflection layer and the barrier layer are in direct contact.
  3. 前記コレステリック液晶層が、重合性液晶化合物および重合開始剤を含む液晶組成物を硬化した層である請求項1または2に記載のハーフミラー。 The half mirror according to claim 1, wherein the cholesteric liquid crystal layer is a layer obtained by curing a liquid crystal composition containing a polymerizable liquid crystal compound and a polymerization initiator.
  4. 前記重合開始剤がアシルフォスフィンオキシド化合物またはオキシム化合物である請求項3に記載のハーフミラー。 The half mirror according to claim 3, wherein the polymerization initiator is an acylphosphine oxide compound or an oxime compound.
  5. 前記接着層がシート状の接着剤からなる請求項1~4のいずれか一項に記載のハーフミラー。 The half mirror according to any one of claims 1 to 4, wherein the adhesive layer is made of a sheet-like adhesive.
  6. 前記バリア層が重合性基を含むモノマーを含む組成物を硬化した層である請求項1~5のいずれか一項に記載のハーフミラー。 The half mirror according to any one of claims 1 to 5, wherein the barrier layer is a layer obtained by curing a composition containing a monomer containing a polymerizable group.
  7. 前記モノマーの重合性基数Y1と、前記重合性基数Y1を前記モノマーの分子量で割った値である重合性基含率X1とが、式1を満たす請求項6に記載のハーフミラー。
    1< -300X1+7.5   式1
    And the polymerizable groups Y 1 of the monomer, the polymerizable groups Y 1 polymerizable group content X 1 is a value obtained by dividing the molecular weight of the monomer is, the half mirror according to claim 6 satisfying the formula 1.
    Y 1 <-300X 1 +7.5 Formula 1
  8. 前記モノマーがウレタン(メタ)アクリレートモノマーおよびエポキシモノマーからなる群より選択される1つ以上のモノマーである請求項6または7に記載のハーフミラー。 The half mirror according to claim 6 or 7, wherein the monomer is one or more monomers selected from the group consisting of a urethane (meth) acrylate monomer and an epoxy monomer.
  9. 前記モノマーがウレタン(メタ)アクリレートモノマーであり、
    前記組成物がウレタン系ポリマーを含む請求項6~8のいずれか一項に記載のハーフミラー。
    The monomer is a urethane (meth) acrylate monomer,
    The half mirror according to any one of claims 6 to 8, wherein the composition contains a urethane-based polymer.
  10. 前記モノマーがウレタン(メタ)アクリレートモノマーであり、
    前記ウレタン(メタ)アクリレートモノマーの重合性基数Y2と、前記組成物のガラス転移温度X2とが、式2を満たす請求項6~9のいずれか一項に記載のハーフミラー。
    2> -0.0066X2+5.33   式2
    The monomer is a urethane (meth) acrylate monomer,
    The half mirror according to any one of claims 6 to 9, wherein the number of polymerizable groups Y 2 of the urethane (meth) acrylate monomer and the glass transition temperature X 2 of the composition satisfy Formula 2.
    Y 2 > −0.0066 X 2 +5.33 Equation 2
  11. 前記モノマーがエポキシモノマーであり、前記エポキシモノマーの重合性基数Y3と、前記組成物のガラス転移温度X3とが、式3を満たす請求項6~8のいずれか一項に記載のハーフミラー。
    3> -0.01X3+2.75   式3
    The half mirror according to any one of claims 6 to 8, wherein the monomer is an epoxy monomer, and the polymerizable group number Y 3 of the epoxy monomer and the glass transition temperature X 3 of the composition satisfy Formula 3. .
    Y 3> -0.01X 3 +2.75 Equation 3
  12. 前記円偏光反射層が3層以上のコレステリック液晶層を含む請求項1~11のいずれか一項に記載のハーフミラー。 The half mirror according to any one of claims 1 to 11, wherein the circularly polarized light reflection layer includes three or more cholesteric liquid crystal layers.
  13. 1/4波長板をさらに含み、
    前記1/4波長板、前記円偏光反射層および前記前面板をこの順に含む請求項1~12のいずれか一項に記載のハーフミラー。
    A quarter wave plate;
    The half mirror according to any one of claims 1 to 12, including the quarter-wave plate, the circularly polarizing reflection layer, and the front plate in this order.
  14. 前記円偏光反射層と前記1/4波長板とが互いに直接接している請求項13に記載のハーフミラー。 The half mirror according to claim 13, wherein the circularly polarized light reflection layer and the quarter-wave plate are in direct contact with each other.
  15. 請求項1~14のいずれか一項に記載のハーフミラーと、
    画像表示装置と、
    を含み、
    前記画像表示装置、前記円偏光反射層および前記前面板をこの順に含む画像表示機能付きミラー。
    The half mirror according to any one of claims 1 to 14,
    An image display device;
    Including
    A mirror with an image display function including the image display device, the circularly polarized light reflection layer, and the front plate in this order.
  16. 車両用である請求項15に記載の画像表示機能付きミラー。
     
     
    The mirror with an image display function according to claim 15, which is for a vehicle.

PCT/JP2017/009980 2016-05-31 2017-03-13 Half mirror, and mirror with image display function WO2017208559A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/172,192 US20190072819A1 (en) 2016-05-31 2018-10-26 Half mirror and mirror with image display function

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-108561 2016-05-31
JP2016108561 2016-05-31
JP2016-122604 2016-06-21
JP2016122604A JP6632479B2 (en) 2016-05-31 2016-06-21 Half mirror and mirror with image display function

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/172,192 Continuation US20190072819A1 (en) 2016-05-31 2018-10-26 Half mirror and mirror with image display function

Publications (1)

Publication Number Publication Date
WO2017208559A1 true WO2017208559A1 (en) 2017-12-07

Family

ID=60479497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009980 WO2017208559A1 (en) 2016-05-31 2017-03-13 Half mirror, and mirror with image display function

Country Status (1)

Country Link
WO (1) WO2017208559A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005055887A (en) * 2003-07-22 2005-03-03 Dainippon Printing Co Ltd Projection screen and projection system using the same
JP2007334206A (en) * 2006-06-19 2007-12-27 Dainippon Printing Co Ltd Optical element and its manufacturing method
JP2015072410A (en) * 2013-10-04 2015-04-16 富士フイルム株式会社 Thermal compression bonding film containing cholesteric liquid crystal layer and application of the same
JP2015125240A (en) * 2013-12-26 2015-07-06 日本ゼオン株式会社 Optical control element and on-vehicle liquid crystal display device
WO2015141818A1 (en) * 2014-03-20 2015-09-24 富士フイルム株式会社 Composition, light-reflection membrane, brightness-improving film, backlight unit, and liquid crystal display device
JP2015194675A (en) * 2013-08-26 2015-11-05 富士フイルム株式会社 Luminance enhancement film, optical sheet member, and liquid crystal display device
JP2016071078A (en) * 2014-09-29 2016-05-09 富士フイルム株式会社 Member for displaying projection image and projection image display system
JP2016090993A (en) * 2014-10-31 2016-05-23 富士フイルム株式会社 Optical member and image display device having optical member

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005055887A (en) * 2003-07-22 2005-03-03 Dainippon Printing Co Ltd Projection screen and projection system using the same
JP2007334206A (en) * 2006-06-19 2007-12-27 Dainippon Printing Co Ltd Optical element and its manufacturing method
JP2015194675A (en) * 2013-08-26 2015-11-05 富士フイルム株式会社 Luminance enhancement film, optical sheet member, and liquid crystal display device
JP2015072410A (en) * 2013-10-04 2015-04-16 富士フイルム株式会社 Thermal compression bonding film containing cholesteric liquid crystal layer and application of the same
JP2015125240A (en) * 2013-12-26 2015-07-06 日本ゼオン株式会社 Optical control element and on-vehicle liquid crystal display device
WO2015141818A1 (en) * 2014-03-20 2015-09-24 富士フイルム株式会社 Composition, light-reflection membrane, brightness-improving film, backlight unit, and liquid crystal display device
JP2016071078A (en) * 2014-09-29 2016-05-09 富士フイルム株式会社 Member for displaying projection image and projection image display system
JP2016090993A (en) * 2014-10-31 2016-05-23 富士フイルム株式会社 Optical member and image display device having optical member

Similar Documents

Publication Publication Date Title
US10501017B2 (en) Vehicle mirror with image display function
CN107615119B (en) Method for manufacturing half mirror used on surface of image display part of image display device, half mirror, and mirror with image display function
US20180143363A1 (en) Mirror with image display function
WO2017145580A1 (en) Vehicle mirror including image display function and method for manufacturing same
JP2017227879A (en) Half mirror and mirror having image display function
US20190072819A1 (en) Half mirror and mirror with image display function
EP3309010B1 (en) Vehicle mirror with image display function and method of manufacturing the same
US10746906B2 (en) Half mirror and mirror with image display function
US10670781B2 (en) Mirror with image display function and half mirror
WO2017221760A1 (en) Half mirror and mirror with image displaying function
US10569713B2 (en) Vehicle mirror with image display function
CN110121668B (en) Half mirror, method for manufacturing half mirror, and mirror with image display function
WO2017208559A1 (en) Half mirror, and mirror with image display function
JP6514232B2 (en) Mirror with image display function for vehicles
JP6806848B2 (en) Mirror with image display function for vehicles
JP7335863B2 (en) Mirror with image display function for vehicles
JP6793781B2 (en) Mirror with image display function for vehicles
JP2017227720A (en) Resin mirror, mirror having image display function, method for manufacturing resin mirror, and transfer sheet
WO2017183428A1 (en) Mirror with image display function and half mirror

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806121

Country of ref document: EP

Kind code of ref document: A1