WO2017208359A1 - Method for visualizing molecular dynamics - Google Patents

Method for visualizing molecular dynamics Download PDF

Info

Publication number
WO2017208359A1
WO2017208359A1 PCT/JP2016/066049 JP2016066049W WO2017208359A1 WO 2017208359 A1 WO2017208359 A1 WO 2017208359A1 JP 2016066049 W JP2016066049 W JP 2016066049W WO 2017208359 A1 WO2017208359 A1 WO 2017208359A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
luminescent
luminescence
signal
localized
Prior art date
Application number
PCT/JP2016/066049
Other languages
French (fr)
Japanese (ja)
Inventor
和史 合田
浩文 鈴木
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2016/066049 priority Critical patent/WO2017208359A1/en
Publication of WO2017208359A1 publication Critical patent/WO2017208359A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/66Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving luciferase

Definitions

  • the present invention relates to a method for visualizing molecular dynamics related to a cell group in a multilayer state.
  • a photoprotein is expressed in a cell, luminescence based on bioluminescence by the photoprotein is photographed, and a luminescence image is acquired. Visualizing molecular dynamics by acquiring a luminescence image in this way is used for analyzing the expression state of a gene or protein of interest. On the other hand, since the expression amount of photoprotein is very small, various studies have been proposed by imaging a thin object such as a tissue slice or monolayer culture.
  • Japanese Patent Application Laid-Open No. 2009-65848 discloses a method for analyzing gene expression in cells cultured in a substantially monolayer state by introducing a gene encoding a photoprotein expressed in a cell nucleus into a plurality of cells. It is disclosed.
  • a photoprotein that generates a marker signal that is localized in the cell nucleus is expressed, and a photoprotein that generates a reporter signal with a different emission wavelength is expressed in the entire cell, so that the same cell is expressed based on the shape of the cell nucleus.
  • a gene expression analysis method to be traced is disclosed.
  • Japanese Unexamined Patent Application Publication No. 2014-89193 discloses that the cytoplasm and the cell nucleus are labeled using luminescent genes of different luminescent colors cultured in a substantially monolayer state, thereby improving the cell recognition accuracy. Yes. This document discloses that the accuracy of cell recognition is improved by preventing the emission wavelengths of photoproteins that label the cell nucleus and cytoplasm from overlapping as much as possible. Furthermore, by recognizing cytoplasm, it is disclosed that various imageable components in the same cell such as micronuclei, polynuclear, G protein receptor (GPCR), aggregates, etc. are distinguished from other cells. .
  • GPCR G protein receptor
  • any of the above documents discloses a case where a luminescence signal is photographed with respect to cells cultured in a single layer in a container such as a petri dish.
  • a luminescence signal is photographed with respect to cells cultured in a single layer in a container such as a petri dish.
  • each cell when a luminescent image is acquired for a multi-layered cell group in which cells overlap in the height direction, the luminescent signals for each cell interfere with each other, and it may be difficult to distinguish individual cells.
  • visualizing molecular dynamics in a cell it is preferable that each cell can be individually distinguished.
  • An object of the present invention is to provide a method for visualizing the molecular dynamics of a cell group in a multilayer state for each individual cell.
  • the visualization method is a method of visualizing molecular dynamics regarding a cell group in a multi-layered state, and can generate a luminescent signal for a partial region in the cell in each individual cell to be visualized.
  • imaging related to the luminescence signal is performed in a visual field including the cell group.
  • FIG. 1 is a flowchart showing an outline of an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining an embodiment, and is a schematic diagram of an example in which a substance capable of generating a luminescence signal is localized in a cell nucleus.
  • FIG. 3 is a diagram for explaining an embodiment, and is a schematic diagram of an example of a luminescence image acquired when a substance capable of generating a luminescence signal is localized in a cell nucleus.
  • FIG. 4 is a diagram for explaining an embodiment, and is a schematic diagram of an example in which a substance capable of generating a luminescence signal is not localized as a comparative example.
  • FIG. 1 is a flowchart showing an outline of an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining an embodiment, and is a schematic diagram of an example in which a substance capable of generating a luminescence signal is localized in a cell nucleus.
  • FIG. 3 is a diagram
  • FIG. 5 is a diagram for explaining an embodiment, and is a schematic diagram of an example of a luminescence image acquired when a substance that can generate a luminescence signal is not localized as a comparative example.
  • FIG. 6 is a view showing a T-DNA region of plasmid pRI201AN-luc2 for expressing a non-nuclear localized luminescent gene.
  • FIG. 7 is a diagram showing a T-DNA region of plasmid pRI201AN-luc2NLS3 for expressing a nuclear-localized luminescent gene.
  • FIG. 6 is a view showing a T-DNA region of plasmid pRI201AN-luc2 for expressing a non-nuclear localized luminescent gene.
  • FIG. 7 is a diagram showing a T-DNA region of plasmid pRI201AN-luc2NLS3 for expressing a nuclear-localized luminescent gene.
  • FIG. 8 is a diagram showing a result of observing each site of Arabidopsis thaliana in which nuclear-localized luciferase Luc-NLS3 is expressed with an inverted luminescence imaging system LV200 (objective lens 10x).
  • FIG. 9 is a diagram showing a result of observing a root part of Arabidopsis thaliana in which a nuclear localization type luciferase Luc-NLS3 is expressed with a stereomicroscope SZX16 (objective lens 1x, Zoom 0.8x).
  • FIG. 10 is a diagram showing the results of observation of the root region of Arabidopsis thaliana in which the nuclear-localized luciferase Luc-NLS3 is expressed using an inverted luminescence imaging system LV200 (objective lens 100x).
  • FIG. 11 shows the result of photographing the root part of Arabidopsis thaliana in which the nuclear-localized luciferase Luc-NLS3 is expressed while changing the focus position with an inverted luminescence imaging system LV200 (objective lens 100x).
  • FIG. 12 is a diagram showing the results of photographing the root part of Arabidopsis thaliana expressing non-nuclear localized luciferase Luc while changing the focus position with the inverted luminescence imaging system LV200 (objective lens 100x). is there.
  • FIG. 13 is a diagram showing the result of observation of the site of the root tip meristem of Arabidopsis thaliana in which the nuclear-localized luciferase Luc-NLS3 is expressed using an inverted luminescence imaging system LV200 (objective lens 100x).
  • FIG. 13 is a diagram showing the result of observation of the site of the root tip meristem of Arabidopsis thaliana in which the nuclear-localized luciferase Luc-NLS3 is expressed using an inverted luminescence imaging system LV200 (objective lens 100x).
  • FIG. 14 shows an image of a root meristem site of Arabidopsis thaliana expressing nuclear-localized luciferase Luc-NLS3 while changing the focal position with an inverted luminescence imaging system LV200 (objective lens 100x). It is a figure which shows a result.
  • FIG. 15 shows the result of photographing the root meristem site of Arabidopsis thaliana expressing non-nuclear localized luciferase Luc while changing the focal position with an inverted luminescence imaging system LV200 (objective lens 100x).
  • FIG. 16 is a diagram showing the results of observation of the cotyledon site of Arabidopsis thaliana in which nuclear-localized luciferase Luc-NLS3 is expressed using an inverted luminescence imaging system LV200 (objective lens 100x).
  • FIG. 17 shows the results of photographing the cotyledon site of Arabidopsis thaliana expressing the nuclear-localized luciferase Luc-NLS3 while changing the in-focus position using the inverted luminescence imaging system LV200 (objective lens 100x).
  • FIG. FIG. 18 is a view showing the downstream region of the CMV promoter of plasmid pcDNA-luc2 for expressing a non-nuclear localized luminescent gene.
  • FIG. 19 is a view showing the downstream region of the CMV promoter of plasmid pcDNA-luc2NLS3 for expressing a nuclear-localized luminescent gene.
  • FIG. 20 is an enlarged view of the region of plasmid pGL4.14-NR using a non-nuclear localized luminescent gene.
  • FIG. 21 is an enlarged view of the region of plasmid pGL4.14N-NR using a nuclear-localized luminescent gene.
  • FIG. 22 is a diagram showing a result of observing a stacked sample of Hela cells in which nuclear-localized luciferase Luc-NLS3 is expressed using an inverted luminescence imaging system LV200 (objective lens 100x).
  • FIG. 23 is a diagram showing a result of observing a stacked sample of Hela cells in which non-nuclear localized luciferase Luc is expressed with an inverted luminescence imaging system LV200 (objective lens 100x).
  • FIG. 24 shows the result of observation of luminescence of a monolayer culture sample of Hela cells in which nuclear localization type luciferase Luc-NLS3 is expressed using pcDNA-luc2NLS3, using an inverted luminescence imaging system LV200 (objective lens 100x).
  • FIG. 25 shows the results of observation of luminescence of a monolayer culture sample of Hela cells in which non-nuclear localized luciferase Luc was expressed using pcDNA-luc2 with an inverted luminescence imaging system LV200 (objective lens 100x).
  • FIG. FIG. 26 is a graph showing the luminescence intensity of each cell in which nuclear localization type luciferase Luc-NLS3 was expressed using pcDNA-luc2NLS3.
  • FIG. 27 is a diagram showing the luminescence intensity of each cell in which non-nuclear localized luciferase Luc was expressed using pcDNA-luc2.
  • FIG. 28 is a diagram showing measurement results of changes in luminescence intensity over time when PMA or DMSO was added to Hela cells introduced with pGL4.14-NR or pGL4.14N-NR.
  • FIG. 29 is an observation using an inverted luminescence imaging system LV200 (objective lens 40x) in an NF- ⁇ B reporter assay using Hela cells into which pGL4.14N-NR containing a nuclei-based luminescence gene luc2-NLS3 has been introduced. It is a figure which shows a result.
  • the present embodiment relates to a method for visualizing molecular dynamics related to a cell group in a multilayer state.
  • this method includes introducing a substance capable of generating a luminescence signal in a localized state into a partial region in a cell of each cell included in a multi-layered cell group (step S1). .
  • step S1 an apparatus or system for acquiring a light emission image as described later is used.
  • the user sets a cell group in which a substance capable of generating a luminescence signal is localized in the partial region in step S1 for this apparatus or system.
  • a group of cells to be imaged is placed in the field of view for imaging of the detection device that detects the luminescent signal.
  • the method also includes imaging a luminescence signal related to the introduced substance (step S2). Depending on the specifications of the apparatus or system, it can be designed to automatically execute at least some of these steps S1 and S2. Transfer and imaging of the detection device to the imaging field of view can be executed simply by placing the object at the start position of the predetermined conveyance line.
  • multi-layered cell groups include plant tissue, animal tissue, cultured cells cultured in multi-layered state, stem cells-derived embryoid bodies such as iPS cells or ES cells, or tissues such as spheroids, gels or carriers 3D cell samples cultured in 1), laminated cell sheets, self-proliferating cells or colonies, single cells densely packed in a 3D space, and the like. Further, the cell group may be in vivo or ex vivo.
  • a partial region in a cell where a substance capable of generating a luminescent signal is localized is three-dimensionally at an arbitrary distance from the cell membrane (both cell membrane and cell wall in the case of plants) in a region inside the cell membrane.
  • “three-dimensionally spaced” means that the partial region exists so as not to contact the cell membrane in all directions.
  • Organelles including nuclei and mitochondria are three-dimensionally separated from the cell membrane that surrounds them.
  • self-luminescence interferes with other cells that are three-dimensionally adjacent or close by self-luminescence (bioluminescence or chemiluminescence) in a three-dimensionally distant area from the cell membrane.
  • self-luminescence biologicalluminescence or chemiluminescence
  • the self-luminescence generated in the partial region scatters almost uniformly in the cell, so that the surroundings including the cell membrane are appropriately illuminated and the contour is raised.
  • a suitable example of such a partial region is an intracellular organelle.
  • the cell nucleus is particularly preferred as a partial region.
  • the substance capable of generating a luminescent signal may label the entire nucleus or a partial volume in the nucleus.
  • This partial region is not limited to the nucleus, and may be a partial region that can be optically recognized in a cell and can be labeled with a substance that can generate a luminescence signal.
  • the partial region may be, for example, an organelle such as mitochondria.
  • the substance that can generate a luminescence signal is a substance that does not require excitation light such as fluorescence and self-luminesce by a chemical reaction, and is preferably bioluminescence in order to visualize molecular dynamics.
  • the bioluminescence may be a photoprotein expressed in cells.
  • the light emission signal by bioluminescence includes a signal generated by bioluminescence resonance energy transfer (so-called BRET).
  • the luminescent signal is a bioluminescent signal generated by a luminescent reaction between the photoprotein and the substrate corresponding thereto. That is, a substance that can generate a luminescence signal is not limited to a substance that emits light, but may be a substance that emits light from another substance.
  • the light emission signal by bioluminescence includes a signal generated by bioluminescence resonance energy transfer (so-called BRET).
  • the substance capable of generating a luminescent signal may be, for example, a photoprotein used in a reporter assay. That is, the substance capable of generating a luminescent signal may be a luminescent protein encoded by a luminescent gene that is expressed together with a gene encoding a protein whose molecular dynamics is to be visualized.
  • the substance capable of generating the luminescence signal may be a substance introduced from outside the cell without involving gene expression.
  • the partial region in the cell where the substance is localized may be, for example, an organic synthetic capsule introduced into the cell.
  • the “part of the cell group in the thickness direction” is a volume for imaging including one or more cells located near the surface of the target or at a specific distance from the surface. In addition to the cells at a specific depth, this imaging volume has another cell on at least one side in the thickness direction (on the upside or downside in an inverted or upright optical instrument). A deep (large) volume of focus that includes one or more may be used. When the focal depth is shallow (small) so that only one cell at a specific depth is included, by moving the focal position, the cell group at each depth is made into a multilayer state.
  • Images can be picked from a certain cell group.
  • the focusing process is performed by moving the focal point in an arbitrary thickness direction by a focal position adjusting mechanism of an existing optical microscope.
  • it can be performed by a mechanism that moves an imaging optical system including an objective lens and / or a movable stage holding a cell group.
  • the focal position in the thickness direction it is possible to visualize a thick object such as a living tissue at different depths.
  • the depth of focus in the thickness direction can be adjusted as appropriate. By changing the depth of focus, visualization at different thicknesses can be performed for a cell group in a multilayer state.
  • FIG. 2 shows a schematic diagram when a substance capable of generating a luminescence signal is localized in the cell nucleus.
  • FIG. 2 is a side view of the cell group 10 in a multi-layered state.
  • the cell group 10 includes a first cell layer 12 and a second cell layer 14.
  • a substance capable of generating a luminescent signal is localized in the nucleus 24 and is not present in the cytoplasm 22.
  • Such a cell group 10 is observed from the direction indicated by the arrow perpendicular to the plane in which the cells are layered. It is assumed that the focusing surface 30 is aligned with the first cell layer 12.
  • FIG. 3 shows a schematic diagram of an example of a light emission image acquired in this case.
  • the nucleus 24 of each cell 20 emits light
  • the focused nucleus 24 of the first cell layer 12 appears brightly as a first nucleus image 42.
  • the nucleus 24 of the second cell layer 14 that is not focused is blurred and dark as the second nucleus image 44.
  • the substance capable of generating a luminescent signal is localized in the nucleus 24, interference of luminescent signals derived from different cells can be reduced.
  • individual cells can be distinguished and recognized with high accuracy.
  • the luminescent signal emitted from the nucleus 24 illuminates the cell membrane from the inside of the cell, thereby visualizing the cell membrane.
  • FIG. 4 a schematic diagram in the case where a substance capable of generating a luminescence signal in the cell nucleus is not localized and the substance is present in the entire cell 20 is shown in FIG. 4 is also a view of the cell group 10 including the first cell layer 12 and the second cell layer 14 as seen from the side, as in FIG. Such a cell group 10 is observed from the direction indicated by the arrow perpendicular to the plane on which the cells form a layer, with the focusing surface 30 aligned with the first cell layer 12.
  • FIG. 5 shows a schematic diagram of an example of a light emission image acquired in this case.
  • the entire cells 20 adjacent to each other in the first cell layer 12 emit light, and since such cell layers overlap, the entire cell group 10 appears bright. That is, the light emitted from a plurality of cells overlap and interfere with each other. As a result, in the obtained image 50, it is difficult to distinguish and recognize individual cells.
  • a luminescence signal is emitted by self-luminescence in a localized state in the cell.
  • imaging related to the luminescent signal in this state the molecular dynamics relating to the multi-layered cell group can be visualized stably and clearly.
  • localizing a substance capable of generating a luminescent signal within the cell individual cells can be identified in the luminescent image. As a result, it is possible to analyze the emission intensity and the like for each individual cell.
  • by obtaining luminescence images over time changes in luminescence intensity in individual cells can be obtained accurately continuously or in time series.
  • the expression level of the gene of interest for each cell is quantitatively determined. It becomes possible to analyze. As a result, cell function can be evaluated for each individual cell. In reporter assays that image changes in gene expression, the localization of luminescent signals is often not subject to evaluation, and in such cases, the method according to this embodiment can be used.
  • the molecular dynamics relating to the multi-layered cell group can be analyzed for each individual cell.
  • the size of the nucleus is small for each cell, a regular luminescence image can be obtained.
  • mass transfer from the nucleus to the cytoplasm hardly occurs, a stable luminescent image can be obtained over time.
  • examples of a substance that can generate a luminescent signal in which unnecessary light interference is reduced by localizing include a photoprotein using bioluminescence, a luminescent dye, and the like.
  • An example of a photoprotein is luciferase.
  • luciferase When luciferase is used as the photoprotein, luciferin, a luminescent substrate, is introduced into the cell.
  • a nuclear localization signal such as a nuclear-localization signal (NLS) sequence can be fused to a photoprotein such as luciferase.
  • luminescent dyes include luminescent dyes that emit light by an enzymatic reaction with a substance serving as a substrate, such as luminol.
  • an image sensor using a CCD or CMOS, a photomultiplier, a scintillation counter, or the like can be used as a device for detecting luminescence.
  • the detection conditions (for example, exposure time, binning value, etc.) of these detection devices include the overall magnification of various lenses for optically expanding the cells, the N.D. A. (Numerical aperture), magnification taking into account each magnification of the imaging lens), target cell size, cell group density (number of cells constituting the cell group), depth of focus, substance that can produce a luminescent signal You may set arbitrarily according to a density
  • a relatively high-magnification microscope, a relatively low-magnification stereomicroscope, or other image acquisition device may be used for photographing the luminescent signal.
  • the detection device preferably performs detection in chronological order through arbitrary intervals in order to obtain a luminescent signal related to molecular dynamics.
  • the luminescence signal detected by the detection device is displayed on the screen of the display device after image construction and / or image analysis.
  • the luminescence signal subjected to the image analysis is displayed on the screen of the display device as a numerical value or a time-series graph.
  • the density increases by localizing the substance in a partial region in the cell.
  • the luminescence signal emitted from the substance also increases.
  • the detection sensitivity of the luminescent signal is improved, and the molecular dynamics can be visualized with higher sensitivity.
  • the above-described cell group is a biological tissue having a three-dimensional structure and having cytoplasmic communication such as a plant tissue
  • the following effects can also be obtained. That is, since plant cells have protoplasmic communication, substances move between cells. For this reason, even if attention is paid to a single cell, if a substance capable of generating a luminescent signal is positioned in the cytoplasm, the substance moves to an adjacent cell.
  • One method for suppressing the intercellular transfer of a substance due to such protoplasm communication is to increase the molecular weight of the substance.
  • the exclusion molecular weight limit is, for example, 1 k to several tens of Kda, and varies depending on organs and tissues.
  • the substance when a substance capable of generating a luminescent signal is localized in an organelle as in this embodiment, the substance does not move between cytoplasms even if the molecular weight of the substance is not increased, and protoplasm communication Intercellular migration can be suppressed.
  • plasmid for transformation Two types of plasmids were prepared in order to introduce a luminescent gene into a plant. One is a plasmid pRI201AN-luc2 for expressing a non-nuclear localized luminescent gene in plant cells. The other is a plasmid pRI201AN-luc2NLS3 for expressing a nuclear-localized luminescent gene in plant cells. Both plasmids were prepared by incorporating a luminescent gene into the restriction enzyme site of pRI201AN (Takara Bio).
  • FIG. 6 shows an enlarged view of the T-DNA region of plasmid pRI201AN-luc2 for expressing a non-nuclear localized luminescent gene.
  • the luciferase gene (luc2) is inserted into pRI201AN-luc2.
  • FIG. 7 shows an enlarged view of the T-DNA region of plasmid pRI201AN-luc2NLS3 for expressing a nuclear-localized luminescent gene.
  • a luciferase gene (luc2-NLS3) to which a sequence in which three nuclear localization signals (nuclear localization signal; NLS) are linked at the C-terminal is added is inserted.
  • NLS nuclear localization signal
  • pRI201AN-luc2 a non-nuclear localized luminescent gene was inserted between restriction enzyme sites NdeI and SalI downstream of the 35S promoter of pRI201AN.
  • the non-nuclear localized luminescent gene was amplified by PCR using pGL4.14 as a template and a primer Nde_GL4Fw (SEQ ID NO: 1) having the following sequence and primer Sal_GL4Rev (SEQ ID NO: 2).
  • the PCR reaction product and pRI201AN were digested with restriction enzymes NdeI and SalI, and a non-nuclear localized luminescent gene was inserted into pRI201AN.
  • a luminescent gene with a nuclear localization signal added was inserted between restriction enzyme sites NdeI and SalI downstream of the 35S promoter of pRI201AN.
  • the nuclear localization type luminescent gene was amplified by PCR reaction using pGL4.14 as a template and a primer Nde_GL4Fw (SEQ ID NO: 1) having the following sequence and a primer SalNLS3GL4Rev (SEQ ID NO: 3).
  • the PCR reaction product and pRI201AN were digested with restriction enzymes NdeI and SalI, and the nuclear localized luminescent gene was inserted into pRI201AN.
  • Nde_GL4Fw ATGCCATATGGAAGATGCCAAAAACATTAA
  • Sal_GL4Rev TGCGTCGACTTACACGGCGATCTTGCCGCCCT
  • SEQ ID NO: 2 SalNLS3GL4Rev: GCGTCGACTATACCTTTCTCTTCTTTTTTGGATCTACCTTTCTCTTCTTTTTTGGATCTACCTTTCTCTTCTTTTTTGGATCCACGGCGATCTTGCCGCC (SEQ ID NO: 3)
  • the seeds were collected from the plant after gene introduction, and a strain showing drug resistance at the time of seedling was selected using a medium containing kanamycin. Selection of drug resistant strains was also performed as described in Reference 2. Cultivated until a resistant strain was formed, and the collected seed was used as a material for luminescence observation.
  • Sucrose (Wako Pure Chemical) (final concentration: 1.5%) and agar powder (Wako Pure Chemical) (final concentration: 1.5%) and added to a petri dish after autoclaving to solidify.
  • Sterilized seeds were sown on an agar medium and placed in a cool dark place for about 3 days. After that, the petri dish was moved vertically to an incubator set at about 20 ° C. and cultivated for 4 to 7 days. During cultivation, light having an intensity of about 50-65 ⁇ mol m ⁇ 2 s ⁇ 1 was continuously irradiated.
  • the substrate solution was sprayed on the whole plant.
  • the substrate solution is a 0.05% Tween 20 aqueous solution containing 2.5 mM D-luciferin (Promega).
  • the sprayed Arabidopsis thaliana was transferred to a glass bottom dish (Matsunami Glass Industry) and observed.
  • the sample prepared as described above was observed.
  • an inverted luminescence imaging system LV200 (Olympus) or an upright stereo microscope SZX16 (Olympus) was used.
  • an inverted luminescence imaging system LV200 (Olympus) was used.
  • the NORMAL-CCD readout mode was used, the exposure time was set to 122 ms, and binning 1x1.
  • Each image acquired and stored by imaging was analyzed using image analysis software AQUACOSMOS (Hamamatsu Photonics) or ImageJ (National Institutes of Health, USA).
  • the position of the cell showing the luminescence signal can be roughly understood.
  • the light emission indicated by A, B, and C in the light emission image is light emission related to the cells indicated by A, B, and C in the bright field image, respectively.
  • FIG. 11 shows the result of photographing while changing the in-focus position.
  • the upper part shows a light emission image acquired by light emission observation
  • the lower part shows a bright field image acquired by bright field observation.
  • the luminescent spots on the epidermal cells and the inner cell layer could be recognized individually.
  • FIG. 12 shows the result of observing the root region of Arabidopsis thaliana expressing non-nuclear localized luciferase Luc as a control at a high magnification (objective lens 100 ⁇ ) using an inverted luminescence imaging system LV200.
  • the upper part shows a light emission image acquired by light emission observation
  • the lower part shows a bright field image acquired by bright field observation.
  • FIG. 13 shows the result of observing the root apical meristem site of Arabidopsis thaliana in which the nuclear-localized luciferase Luc-NLS3 was expressed with an inverted luminescence imaging system LV200 (objective lens 100x).
  • the left figure shows a bright field image acquired by bright field observation
  • the right figure shows a light emission image acquired by light emission observation.
  • the luminescence signals emitted by a plurality of different epidermal cells could be individually identified.
  • FIG. 14 shows the result of photographing while changing the focus position.
  • the upper part shows a light emission image acquired by light emission observation
  • the lower part shows a bright field image acquired by bright field observation.
  • the epidermal cell layer at a position close to the objective lens and the outer epidermal cell slightly away from the objective lens could be distinguished by photographing at different focal positions.
  • FIG. 15 shows the results of observing the root apical meristem site of Arabidopsis thaliana expressing non-nuclear localized luciferase Luc as a control using an inverted luminescence imaging system LV200 (objective lens 100x).
  • the upper part shows a light emission image acquired by light emission observation
  • the lower part shows a bright field image acquired by bright field observation.
  • FIG. 15 shows the results of observing the root apical meristem site of Arabidopsis thaliana expressing non-nuclear localized luciferase Luc as a control using an inverted luminescence imaging system LV200 (objective lens 100x).
  • FIG. 16 shows the result of observation of the cotyledon site of Arabidopsis thaliana in which the nuclear-localized luciferase Luc-NLS3 was expressed using an inverted luminescence imaging system LV200 (objective lens 100x).
  • the left figure shows the bright field image acquired by bright field observation
  • the right figure shows the luminescence image acquired by light emission observation.
  • the luminescence signals emitted by a plurality of different epidermal cells could be recognized individually.
  • FIG. 17 shows the result of shooting while changing the focus position.
  • the upper part shows a light emission image acquired by light emission observation
  • the lower part shows a bright field image acquired by bright field observation.
  • the epidermal cells spreading diagonally could be recognized separately at different focal positions.
  • Arabidopsis images that can be identified for each cell by expressing the nuclear-localized luciferase Luc-NLS3 can also be obtained in the case of time-lapse photography in which multiple luminescence images are acquired over time. It was. In such an image, there was a tendency for a certain dynamic change for each cell. Thus, it was revealed that by expressing the nuclear-localized luciferase Luc-NLS3, molecular dynamics can be visualized and accurate monitoring or analysis of cells in a multilayer state can be performed.
  • FIG. 18 shows an enlarged view of the downstream region of the CMV promoter of plasmid pcDNA-luc2 for expressing a non-nuclear localized luminescent gene.
  • the luciferase gene (luc2) is inserted into pcDNA-luc2.
  • FIG. 19 shows an enlarged view of the downstream region of the CMV promoter of plasmid pcDNA-luc2NLS3 for expressing a nuclear-localized luminescent gene.
  • a luciferase gene (luc2-NLS3) to which a sequence in which three nuclear localization signals (nuclear localization signal; NLS) are linked at the C-terminus is added is inserted.
  • a non-nuclear localized luminescence gene was inserted between the restriction enzyme sites EcoRI and XhoI downstream of the CMDNA promoter of pcDNA3.1 (+).
  • the non-nuclear localized luminescent gene was amplified by a PCR reaction using pGL4.14 as a template and a primer ERI_GL4Fw (SEQ ID NO: 4) having the following sequence and the above-described primer Sal_GL4Rev (SEQ ID NO: 2).
  • the PCR reaction product was digested with restriction enzymes EcoRI and SalI, and a non-nuclear localized luminescent gene was inserted into pcDNA3.1 (+).
  • the overhanging end of DNA generated by digestion with XhoI and the overhanging end of DNA generated by digestion with SalI can be combined by a general DNA ligase reaction.
  • a nuclear-localized luminescent gene was inserted between the restriction enzyme sites EcoRI and XhoI downstream of the CMV promoter of pcDNA3.1 (+).
  • the nuclear localization type luminescent gene was amplified by PCR reaction using pGL4.14 as a template and the primer ERI_GL4Fw (SEQ ID NO: 4) and the primer SalNLS3GL4Rev (SEQ ID NO: 3).
  • the PCR reaction product was digested with restriction enzymes EcoRI and SalI, and a non-nuclear localized luminescent gene was inserted into pcDNA3.1 (+).
  • the overhanging end of DNA generated by digestion with XhoI and the overhanging end of DNA generated by digestion with SalI can be combined by a general DNA ligase reaction.
  • ERI_GL4Fw AATGGAATTCATGGAAGATGCCAAAAACATTAA (SEQ ID NO: 4)
  • pGL4.14-NR Preparation of pGL4.14-NR and pGL4.14N-NR
  • pGL4.14-NR that expresses a non-nuclear localized luminescent gene in Hela cells.
  • the other is the plasmid pGL4.14N-NR, in which the nuclear localized luminescent gene is expressed in Hela cells.
  • Both plasmids were prepared by incorporating a luminescent gene into a restriction enzyme site present in the Multiple Cloning Site of pGL4.14 (Promega).
  • FIG. 20 shows an enlarged view of the region of plasmid pGL4.14-NR using a non-nuclear localized luminescent gene.
  • pGL4.14-NR contains an NF- ⁇ B response element and a downstream luciferase gene (luc2).
  • FIG. 21 is an enlarged view of the region of plasmid pGL4.14N-NR using a nuclear-localized luminescent gene.
  • pGL4.14N-NR has a luciferase gene (luc2-NLS3) with a NF- ⁇ B response element and a sequence of three nuclear localization signals (NLS) connected to the downstream C-terminus. Has been inserted.
  • NF- ⁇ B response element was inserted between the restriction enzyme sites KpnI and HindIII upstream of the luminescent gene of pGL4.14.
  • the NF- ⁇ B response element used a sequence of about 110 bp obtained by digesting NFkB (1) Luciferase Reporter Vector (Panomics) with KpnI and HindIII.
  • the luminescent gene of pGL4.14 was replaced with a luminescent gene to which a nuclear localization signal was added. Replacement was performed between the recognition sequences of restriction enzymes HindIII and FseI.
  • the luminescent gene to which the nuclear localization signal was added was amplified by PCR reaction using pcDNA-luc2NLS3 as a template and primer HinGL4.14Fw (SEQ ID NO: 5) having the following sequence and primer FseIXbaNLS3GL4Rev (SEQ ID NO: 6).
  • the PCR reaction product was digested with restriction enzymes HindIII and FseI, and the nuclear localized luminescent gene was inserted into pGL4.14.
  • NF- ⁇ B response element was inserted between restriction enzyme sites KpnI and HindIII upstream of the luminescent gene.
  • the NF- ⁇ B response element used a sequence of about 110 bp obtained by digesting NFkB (1) Luciferase Reporter ⁇ Vector with KpnI and HindIII.
  • HinGL4.14Fw GGCCAAGCTTGGCAATCCGGTACTGTTGGTAAAGCCACCATGGAAGATGCCAAAAACATTAA
  • FseIXbaNLS3GL4Rev AAGCGGCCGGCCGCCCCGACTCTAGAAACTCGACTATACCTTTCTCTT (SEQ ID NO: 6)
  • FuGene® HD Promega
  • the experimental protocol is the result of searching for Cell ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ line: httpHela cells and Plate tyoe: 35mm dish in the protocol database (http://www.promega.com/techserv/tools/FugeneHdTool/) on the Promega website (reference) Reference 3).
  • PcDNA-luc2 was used for the production of a stable expression strain of a non-nuclear localized luminescent gene.
  • PcDNA-luc2NLS3 was used for the production of a stable expression strain of a nuclear-localized luminescent gene.
  • Respectively expressing strains were obtained by selecting the Hela cells after gene introduction in a medium supplemented with Geneticin (Thermo Fisher Fisher Scientific) to a final concentration of 625 ⁇ g / ml and cloning by limiting dilution.
  • FIG. 23 shows the result of observing a laminated sample of Hela cells expressing non-nuclear localized luciferase Luc with an inverted luminescence imaging system LV200 (objective lens 100x).
  • the left figure shows a bright field image acquired by bright field observation
  • the right figure shows a light emission image acquired by light emission observation.
  • FIG. 24 is a luminescence image of a cell in which nuclear localization type luciferase Luc-NLS3 was expressed using pcDNA-luc2NLS3.
  • FIG. 25 is a luminescence image of a cell in which non-nuclear localized luciferase Luc was expressed using pcDNA-luc2.
  • ROI region of interest
  • FIG. 26 shows the luminescence intensity of each of the cells in which the nuclear localized luciferase Luc-NLS3 was expressed using pcDNA-luc2NLS3. Each point represents the luminescence intensity of one cell.
  • FIG. 27 shows the luminescence intensity of each cell in which non-nuclear localized luciferase Luc was expressed using pcDNA-luc2.
  • the intensity distribution of the luminescent signal shown in FIGS. 26 and 27 was statistically analyzed by t-test. As a result, it was clarified that the nuclear-localized luciferase Luc-NLS3 has a higher emission intensity than the non-nuclear-localized luciferase Luc with a significance level of 1 to 5%.
  • the density of the photoprotein increases, and the luminescence signal intensity is enhanced by the condensation (concentration) of the luminescent signal. Conceivable. This indicates that the accuracy of quantitative analysis using a luminescence image can be improved by using the nuclear localization type luciferase Luc-NLS3.
  • the culture vessel was set in a luminometer / Kronos (Ato), and the change over time of the luminescence signal was recorded.
  • the luminescence signal at each data point was the sum of the signals obtained during 10 seconds and was measured every 5 minutes.
  • the broken line shows the result of adding PMA to Hela cells into which pGL4.14N-NR has been introduced, and the dotted line shows the result of adding DMSO to Hela cells into which pGL4.14N-NR has been introduced.
  • PMA or DMSO was added 263.7 min after the start of measurement indicated by arrow E.
  • nuclear-localized luciferase Luc-NLS3 can also be used in a reporter assay.
  • the plasmid pGL4.14N-NR using a nuclear-localized luminescent gene was used as an example.
  • NLS nuclear localization signal
  • a plasmid into which the gene for added luciferase is inserted may be used, and the mode of addition of NLS may be variously changed.
  • the cell nucleus but also other organelles (for example, mitochondria) can be intentionally increased in luminescence intensity by labeling with a substance capable of producing luminescence.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

A method for visualizing molecular dynamics relating to a multilayer cell mass comprises introducing a substance capable of generating a luminescent signal into an intracellular partial region in each of cells in the cell mass (S1) to image the luminescent signal in each of self-light-emitting cell masses each having the substance localized therein (S2).

Description

分子動態の可視化方法Visualization method of molecular dynamics
 本発明は、多層状態の細胞群に関する分子動態を可視化する方法に関する。 The present invention relates to a method for visualizing molecular dynamics related to a cell group in a multilayer state.
 細胞に発光タンパク質を発現させ、当該発光タンパク質による生物発光に基づく発光を撮影し、発光画像を取得することが行われている。このように発光画像を取得することで分子動態を可視化することは、注目する遺伝子又はタンパク質の発現の状態の解析等に利用されている。一方で、発光タンパク質の発現量は非常に微量であるため、組織切片や単層培養のような厚みの小さい対象を撮像することで、種々の研究が提案されてきた。 A photoprotein is expressed in a cell, luminescence based on bioluminescence by the photoprotein is photographed, and a luminescence image is acquired. Visualizing molecular dynamics by acquiring a luminescence image in this way is used for analyzing the expression state of a gene or protein of interest. On the other hand, since the expression amount of photoprotein is very small, various studies have been proposed by imaging a thin object such as a tissue slice or monolayer culture.
 例えば、日本国特開2009-65848号公報には、ほぼ単層状態で培養された細胞内の遺伝子発現解析方法として、細胞核で発現する発光タンパク質をコードする遺伝子を複数の細胞に導入することが開示されている。この文献では、細胞核に局在するようなマーカーシグナルを生じる発光タンパク質を発現させるとともに、発光波長の異なるレポータシグナルを生じる発光タンパク質を細胞全体に発現させることで、細胞核の形状に基づき同一の細胞を追跡する遺伝子発現解析方法が開示されている。 For example, Japanese Patent Application Laid-Open No. 2009-65848 discloses a method for analyzing gene expression in cells cultured in a substantially monolayer state by introducing a gene encoding a photoprotein expressed in a cell nucleus into a plurality of cells. It is disclosed. In this document, a photoprotein that generates a marker signal that is localized in the cell nucleus is expressed, and a photoprotein that generates a reporter signal with a different emission wavelength is expressed in the entire cell, so that the same cell is expressed based on the shape of the cell nucleus. A gene expression analysis method to be traced is disclosed.
 また、日本国特開2014-89193号公報には、ほぼ単層状態で培養された異なる発光色の発光遺伝子を用いて細胞質と細胞核とを標識し、細胞の認識精度を高めることが開示されている。この文献では、細胞核と細胞質とを標識する発光タンパク質の発光波長がなるべく重ならないようにすることにより、細胞認識の精度を向上させることが開示されている。さらに、細胞質を認識することにより、小核、多核、G蛋白受容体(GPCR)、凝集体等といった同一細胞内の多様な画像化可能な成分を他の細胞と区別することが開示されている。 Japanese Unexamined Patent Application Publication No. 2014-89193 discloses that the cytoplasm and the cell nucleus are labeled using luminescent genes of different luminescent colors cultured in a substantially monolayer state, thereby improving the cell recognition accuracy. Yes. This document discloses that the accuracy of cell recognition is improved by preventing the emission wavelengths of photoproteins that label the cell nucleus and cytoplasm from overlapping as much as possible. Furthermore, by recognizing cytoplasm, it is disclosed that various imageable components in the same cell such as micronuclei, polynuclear, G protein receptor (GPCR), aggregates, etc. are distinguished from other cells. .
 上記何れの文献も、シャーレ等の容器に単層状態で培養した細胞について、発光シグナルを撮影する場合について開示している。このように、発光タンパク質による分子動態の可視化は、厚みの小さい状態でのみ、種々の用途に適用できることを証明してきた。生物発光を種々の研究に適用することで、蛍光で必須とされるような、励起光を撮影の間に照明することなく細胞を可視化できるので、細胞内部における光散乱の影響を受けず、分子動態を忠実に反映した光量を得られる。 Any of the above documents discloses a case where a luminescence signal is photographed with respect to cells cultured in a single layer in a container such as a petri dish. Thus, it has been proved that visualization of molecular dynamics by photoprotein can be applied to various uses only in a thin state. By applying bioluminescence to various studies, cells can be visualized without illuminating excitation light during imaging, which is essential for fluorescence. The amount of light that reflects the dynamics can be obtained.
 特に高さ方向に細胞が重なった多層状態の細胞群について発光画像を取得する場合、細胞ごとの発光シグナルが互いに干渉して、個々の細胞を区別することが困難になることがある。細胞内の分子動態を可視化するにあたっては、細胞ごとに個々に区別できることが好ましい。 In particular, when a luminescent image is acquired for a multi-layered cell group in which cells overlap in the height direction, the luminescent signals for each cell interfere with each other, and it may be difficult to distinguish individual cells. In visualizing molecular dynamics in a cell, it is preferable that each cell can be individually distinguished.
 本発明は、多層状態の細胞群に関する分子動態を個々の細胞ごとに可視化する方法を提供することを目的とする。 An object of the present invention is to provide a method for visualizing the molecular dynamics of a cell group in a multilayer state for each individual cell.
 本発明の一態様によれば、可視化方法は、多層状態の細胞群に関する分子動態を可視化する方法であって、可視化の対象としての個々の細胞における細胞内の部分領域に対し発光シグナルを生じうる物質が局在状態で導入された状態で、前記細胞群を含む視野において前記発光シグナルに係る撮影を行う。 According to one aspect of the present invention, the visualization method is a method of visualizing molecular dynamics regarding a cell group in a multi-layered state, and can generate a luminescent signal for a partial region in the cell in each individual cell to be visualized. In a state in which the substance is introduced in a localized state, imaging related to the luminescence signal is performed in a visual field including the cell group.
 本発明によれば、多層状態の細胞群に関する分子動態を個々の細胞ごとに可視化する方法を提供できる。 According to the present invention, it is possible to provide a method for visualizing the molecular dynamics of a cell group in a multilayer state for each individual cell.
図1は、本発明の一実施形態の概略を示すフローチャートである。FIG. 1 is a flowchart showing an outline of an embodiment of the present invention. 図2は、一実施形態を説明するための図であって、細胞核に発光シグナルを生じうる物質を局在させた例の模式図である。FIG. 2 is a diagram for explaining an embodiment, and is a schematic diagram of an example in which a substance capable of generating a luminescence signal is localized in a cell nucleus. 図3は、一実施形態を説明するための図であって、細胞核に発光シグナルを生じうる物質を局在させた場合に取得される発光画像の例の模式図である。FIG. 3 is a diagram for explaining an embodiment, and is a schematic diagram of an example of a luminescence image acquired when a substance capable of generating a luminescence signal is localized in a cell nucleus. 図4は、一実施形態を説明するための図であって、比較例として発光シグナルを生じうる物質を局在させなかった例の模式図である。FIG. 4 is a diagram for explaining an embodiment, and is a schematic diagram of an example in which a substance capable of generating a luminescence signal is not localized as a comparative example. 図5は、一実施形態を説明するための図であって、比較例として発光シグナルを生じうる物質を局在させなかった場合に取得される発光画像の例の模式図である。FIG. 5 is a diagram for explaining an embodiment, and is a schematic diagram of an example of a luminescence image acquired when a substance that can generate a luminescence signal is not localized as a comparative example. 図6は、非核局在型の発光遺伝子を発現させるためのプラスミドpRI201AN-luc2のT-DNA領域を示す図である。FIG. 6 is a view showing a T-DNA region of plasmid pRI201AN-luc2 for expressing a non-nuclear localized luminescent gene. 図7は、核局在型の発光遺伝子を発現させるためのプラスミドpRI201AN-luc2NLS3のT-DNA領域を示す図である。FIG. 7 is a diagram showing a T-DNA region of plasmid pRI201AN-luc2NLS3 for expressing a nuclear-localized luminescent gene. 図8は、核局在型のルシフェラーゼLuc-NLS3を発現させたシロイヌナズナの各部位を、倒立型の発光イメージングシステムLV200(対物レンズ10x)で観察した結果を示す図である。FIG. 8 is a diagram showing a result of observing each site of Arabidopsis thaliana in which nuclear-localized luciferase Luc-NLS3 is expressed with an inverted luminescence imaging system LV200 (objective lens 10x). 図9は、核局在型のルシフェラーゼLuc-NLS3を発現させたシロイヌナズナの根の部位を、実体顕微鏡SZX16(対物レンズ1x, Zoom 0.8x)で観察した結果を示す図である。FIG. 9 is a diagram showing a result of observing a root part of Arabidopsis thaliana in which a nuclear localization type luciferase Luc-NLS3 is expressed with a stereomicroscope SZX16 (objective lens 1x, Zoom 0.8x). 図10は、核局在型のルシフェラーゼLuc-NLS3を発現させたシロイヌナズナの根の部位を、倒立型の発光イメージングシステムLV200(対物レンズ100x)で観察した結果を示す図である。FIG. 10 is a diagram showing the results of observation of the root region of Arabidopsis thaliana in which the nuclear-localized luciferase Luc-NLS3 is expressed using an inverted luminescence imaging system LV200 (objective lens 100x). 図11は、核局在型のルシフェラーゼLuc-NLS3を発現させたシロイヌナズナの根の部位を、倒立型の発光イメージングシステムLV200(対物レンズ100x)で合焦位置を変えながら撮影を行った結果を示す図である。FIG. 11 shows the result of photographing the root part of Arabidopsis thaliana in which the nuclear-localized luciferase Luc-NLS3 is expressed while changing the focus position with an inverted luminescence imaging system LV200 (objective lens 100x). FIG. 図12は、非核局在型のルシフェラーゼLucを発現させたシロイヌナズナの根の部位を、倒立型の発光イメージングシステムLV200(対物レンズ100x)で合焦位置を変えながら撮影を行った結果を示す図である。FIG. 12 is a diagram showing the results of photographing the root part of Arabidopsis thaliana expressing non-nuclear localized luciferase Luc while changing the focus position with the inverted luminescence imaging system LV200 (objective lens 100x). is there. 図13は、核局在型のルシフェラーゼLuc-NLS3を発現させたシロイヌナズナの根端分裂組織の部位を、倒立型の発光イメージングシステムLV200(対物レンズ100x)で観察した結果を示す図である。FIG. 13 is a diagram showing the result of observation of the site of the root tip meristem of Arabidopsis thaliana in which the nuclear-localized luciferase Luc-NLS3 is expressed using an inverted luminescence imaging system LV200 (objective lens 100x). 図14は、核局在型のルシフェラーゼLuc-NLS3を発現させたシロイヌナズナの根端分裂組織の部位を、倒立型の発光イメージングシステムLV200(対物レンズ100x)で合焦位置を変えながら撮影を行った結果を示す図である。FIG. 14 shows an image of a root meristem site of Arabidopsis thaliana expressing nuclear-localized luciferase Luc-NLS3 while changing the focal position with an inverted luminescence imaging system LV200 (objective lens 100x). It is a figure which shows a result. 図15は、非核局在型のルシフェラーゼLucを発現させたシロイヌナズナの根端分裂組織の部位を、倒立型の発光イメージングシステムLV200(対物レンズ100x)で合焦位置を変えながら撮影を行った結果を示す図である。FIG. 15 shows the result of photographing the root meristem site of Arabidopsis thaliana expressing non-nuclear localized luciferase Luc while changing the focal position with an inverted luminescence imaging system LV200 (objective lens 100x). FIG. 図16は、核局在型のルシフェラーゼLuc-NLS3を発現させたシロイヌナズナの子葉の部位を、倒立型の発光イメージングシステムLV200(対物レンズ100x)で観察した結果を示す図である。FIG. 16 is a diagram showing the results of observation of the cotyledon site of Arabidopsis thaliana in which nuclear-localized luciferase Luc-NLS3 is expressed using an inverted luminescence imaging system LV200 (objective lens 100x). 図17は、核局在型のルシフェラーゼLuc-NLS3を発現させたシロイヌナズナの子葉の部位を、倒立型の発光イメージングシステムLV200(対物レンズ100x)で合焦位置を変えながら撮影を行った結果を示す図である。FIG. 17 shows the results of photographing the cotyledon site of Arabidopsis thaliana expressing the nuclear-localized luciferase Luc-NLS3 while changing the in-focus position using the inverted luminescence imaging system LV200 (objective lens 100x). FIG. 図18は、非核局在型の発光遺伝子を発現させるためのプラスミドpcDNA-luc2のCMVプロモーターの下流領域を示す図である。FIG. 18 is a view showing the downstream region of the CMV promoter of plasmid pcDNA-luc2 for expressing a non-nuclear localized luminescent gene. 図19は、核局在型の発光遺伝子を発現させるためのプラスミドpcDNA-luc2NLS3のCMVプロモーターの下流領域を示す図である。FIG. 19 is a view showing the downstream region of the CMV promoter of plasmid pcDNA-luc2NLS3 for expressing a nuclear-localized luminescent gene. 図20は、非核局在型の発光遺伝子を用いたプラスミドpGL4.14-NRの領域拡大図である。FIG. 20 is an enlarged view of the region of plasmid pGL4.14-NR using a non-nuclear localized luminescent gene. 図21は、核局在型の発光遺伝子を用いたプラスミドpGL4.14N-NRの領域拡大図である。FIG. 21 is an enlarged view of the region of plasmid pGL4.14N-NR using a nuclear-localized luminescent gene. 図22は、核局在型のルシフェラーゼLuc-NLS3を発現させたHela細胞の積層化サンプルを、倒立型の発光イメージングシステムLV200(対物レンズ100x)で観察した結果を示す図である。FIG. 22 is a diagram showing a result of observing a stacked sample of Hela cells in which nuclear-localized luciferase Luc-NLS3 is expressed using an inverted luminescence imaging system LV200 (objective lens 100x). 図23は、非核局在型のルシフェラーゼLucを発現させたHela細胞の積層化サンプルを、倒立型の発光イメージングシステムLV200(対物レンズ100x)で観察した結果を示す図である。FIG. 23 is a diagram showing a result of observing a stacked sample of Hela cells in which non-nuclear localized luciferase Luc is expressed with an inverted luminescence imaging system LV200 (objective lens 100x). 図24は、pcDNA-luc2NLS3を用いて核局在型のルシフェラーゼLuc-NLS3を発現させたHela細胞の単層培養サンプルの発光を、倒立型の発光イメージングシステムLV200(対物レンズ100x)で観察した結果を示す図である。FIG. 24 shows the result of observation of luminescence of a monolayer culture sample of Hela cells in which nuclear localization type luciferase Luc-NLS3 is expressed using pcDNA-luc2NLS3, using an inverted luminescence imaging system LV200 (objective lens 100x). FIG. 図25は、pcDNA-luc2を用いて非核局在型のルシフェラーゼLucを発現させたHela細胞の単層培養サンプルの発光を、倒立型の発光イメージングシステムLV200(対物レンズ100x)で観察した結果を示す図である。FIG. 25 shows the results of observation of luminescence of a monolayer culture sample of Hela cells in which non-nuclear localized luciferase Luc was expressed using pcDNA-luc2 with an inverted luminescence imaging system LV200 (objective lens 100x). FIG. 図26は、pcDNA-luc2NLS3を用いて核局在型のルシフェラーゼLuc-NLS3を発現させた細胞各々の発光強度を示す図である。FIG. 26 is a graph showing the luminescence intensity of each cell in which nuclear localization type luciferase Luc-NLS3 was expressed using pcDNA-luc2NLS3. 図27は、pcDNA-luc2を用いて非核局在型のルシフェラーゼLucを発現させた細胞各々の発光強度を示す図である。FIG. 27 is a diagram showing the luminescence intensity of each cell in which non-nuclear localized luciferase Luc was expressed using pcDNA-luc2. 図28は、pGL4.14-NR又はpGL4.14N-NRを導入したHela細胞にPMA又はDMSOを添加した際の時間経過に対する発光強度の変化の測定結果を示す図である。FIG. 28 is a diagram showing measurement results of changes in luminescence intensity over time when PMA or DMSO was added to Hela cells introduced with pGL4.14-NR or pGL4.14N-NR. 図29は、核局在型の発光遺伝子luc2-NLS3を含むpGL4.14N-NRを導入したHela細胞を用いたNF-κBのレポーターアッセイにおける倒立型の発光イメージングシステムLV200(対物レンズ40x)による観察結果を示す図である。FIG. 29 is an observation using an inverted luminescence imaging system LV200 (objective lens 40x) in an NF-κB reporter assay using Hela cells into which pGL4.14N-NR containing a nuclei-based luminescence gene luc2-NLS3 has been introduced. It is a figure which shows a result.
 本発明の一実施形態について図面を参照して説明する。本実施形態は、多層状態の細胞群に関する分子動態を可視化する方法に関する。この方法は、図1に示すように、多層状態の細胞群に含まれる個々の細胞における細胞内の部分領域に、発光シグナルを生じうる物質を局在状態で導入すること(ステップS1)を含む。このステップS1では、後述するような発光画像を取得するための装置又はシステムが使用される。使用者は、この装置又はシステムに対し、ステップS1により部分領域に発光シグナルを生じうる物質を局在させた細胞群をセットする。こうして、発光シグナルを検出する検出デバイスの撮影用の視野に、撮影の対象となる細胞群が配置される。また、この方法は、導入された物質に係る発光シグナルを撮影すること(ステップS2)を含む。装置又はシステムの仕様によっては、これらステップS1とステップS2の少なくとも一部のステップを自動的に実行するように設計することができる。使用者が所定の搬送ラインのスタート位置に対象を置くだけで、検出デバイスの撮像視野への移送及び撮像が実行されうる。 An embodiment of the present invention will be described with reference to the drawings. The present embodiment relates to a method for visualizing molecular dynamics related to a cell group in a multilayer state. As shown in FIG. 1, this method includes introducing a substance capable of generating a luminescence signal in a localized state into a partial region in a cell of each cell included in a multi-layered cell group (step S1). . In step S1, an apparatus or system for acquiring a light emission image as described later is used. The user sets a cell group in which a substance capable of generating a luminescence signal is localized in the partial region in step S1 for this apparatus or system. In this way, a group of cells to be imaged is placed in the field of view for imaging of the detection device that detects the luminescent signal. The method also includes imaging a luminescence signal related to the introduced substance (step S2). Depending on the specifications of the apparatus or system, it can be designed to automatically execute at least some of these steps S1 and S2. Transfer and imaging of the detection device to the imaging field of view can be executed simply by placing the object at the start position of the predetermined conveyance line.
 多層状態の細胞群の例としては、植物の組織、動物等の組織、多層状態で培養された培養細胞、iPS細胞又はES細胞といった幹細胞由来の胚様体又はスフェロイドといった組織体、ゲル又は担体内で培養した3次元細胞試料、積層化された細胞シート、自己増殖した細胞又はコロニー、3次元空間に密集した単細胞などが挙げられる。また、細胞群は、in vivoであってもex vivoであってもよい。 Examples of multi-layered cell groups include plant tissue, animal tissue, cultured cells cultured in multi-layered state, stem cells-derived embryoid bodies such as iPS cells or ES cells, or tissues such as spheroids, gels or carriers 3D cell samples cultured in 1), laminated cell sheets, self-proliferating cells or colonies, single cells densely packed in a 3D space, and the like. Further, the cell group may be in vivo or ex vivo.
 上述の方法において、発光シグナルを生じうる物質を局在させる細胞内の部分領域は、細胞膜内部の領域において、当該細胞膜(植物の場合は細胞膜と細胞壁の両方)から任意の距離で3次元的に離間した位置に在る1以上の領域であり、好ましくは細胞内で特定できる体積を有する。ここで「3次元的に離間する」とは、部分領域が、全ての方向において細胞膜とは接触しないように存在することを意味する。核やミトコンドリアを含むオルガネラは、これらを囲う細胞膜とは3次元的に離間している。よって、細胞内に細胞膜から3次元的に離れた領域で自己発光(生物発光又は化学発光)することで、3次元的に隣接又は接近している状態の他の細胞に対して自己発光が干渉することを有効に防止する。ここで、細胞膜は、自己発光しないようにすることが重要である。なぜなら、細胞膜内外の光散乱性は高いので、細胞膜が自己発光すると、膜内外で光散乱が発生して細胞の輪郭を濁らせてしまうからである。一方、部分領域で発生した自己発光は、細胞内をほぼ均一に散乱することで、細胞膜を含む周囲を適度に照らし、輪郭を浮き出させる。かかる部分領域として好適な例は、細胞内小器官である。細胞内小器官のうち、細胞の核はとくに部分領域として好ましい。この場合、発光シグナルを生じうる物質は、核全体を標識してもよいし、核内の部分的なボリュームに標識してもよい。この部分領域は、核に限らず、細胞内で光学的に認識可能でかつ、発光シグナルを生じうる物質で標識可能な部分領域であればよい。部分領域は、例えばミトコンドリア等のオルガネラ等であってもよい。 In the above-described method, a partial region in a cell where a substance capable of generating a luminescent signal is localized is three-dimensionally at an arbitrary distance from the cell membrane (both cell membrane and cell wall in the case of plants) in a region inside the cell membrane. One or more regions that are spaced apart, and preferably have a volume that can be identified within a cell. Here, “three-dimensionally spaced” means that the partial region exists so as not to contact the cell membrane in all directions. Organelles including nuclei and mitochondria are three-dimensionally separated from the cell membrane that surrounds them. Therefore, self-luminescence interferes with other cells that are three-dimensionally adjacent or close by self-luminescence (bioluminescence or chemiluminescence) in a three-dimensionally distant area from the cell membrane. To effectively prevent it. Here, it is important that the cell membrane does not self-emit. This is because the light scattering property inside and outside the cell membrane is high, and when the cell membrane self-emits, light scattering occurs inside and outside the membrane and the outline of the cell becomes cloudy. On the other hand, the self-luminescence generated in the partial region scatters almost uniformly in the cell, so that the surroundings including the cell membrane are appropriately illuminated and the contour is raised. A suitable example of such a partial region is an intracellular organelle. Of the organelles, the cell nucleus is particularly preferred as a partial region. In this case, the substance capable of generating a luminescent signal may label the entire nucleus or a partial volume in the nucleus. This partial region is not limited to the nucleus, and may be a partial region that can be optically recognized in a cell and can be labeled with a substance that can generate a luminescence signal. The partial region may be, for example, an organelle such as mitochondria.
 上述の方法において、発光シグナルを生じうる物質は、蛍光のような励起光を必要としない、化学反応により自己発光する物質であり、分子動態を可視化するためには生物発光であることが好ましい。生物発光としては、細胞内で発現する発光タンパク質であってもよい。生物発光による発光シグナルには、生物発光共鳴エネルギー移動(いわゆるBRET)で生じるシグナルも含まれる。この場合、発光シグナルは、発光タンパク質とそれに応じた基質との発光反応によって発生する生物発光シグナルとなる。すなわち、発光シグナルを生じうる物質は、その物質自体が発光する物質に限らず、他の物質を発光させる物質であってもよい。生物発光による発光シグナルには、生物発光共鳴エネルギー移動(いわゆるBRET)で生じるシグナルも含まれる。さらに、発光シグナルを生じうる物質は、例えばレポーターアッセイに用いられる発光タンパク質であってもよい。すなわち、発光シグナルを生じうる物質は、分子動態を可視化する対象であるタンパク質をコードする遺伝子とともに発現する発光遺伝子によってコードされた発光タンパク質であってもよい。 In the above-described method, the substance that can generate a luminescence signal is a substance that does not require excitation light such as fluorescence and self-luminesce by a chemical reaction, and is preferably bioluminescence in order to visualize molecular dynamics. The bioluminescence may be a photoprotein expressed in cells. The light emission signal by bioluminescence includes a signal generated by bioluminescence resonance energy transfer (so-called BRET). In this case, the luminescent signal is a bioluminescent signal generated by a luminescent reaction between the photoprotein and the substrate corresponding thereto. That is, a substance that can generate a luminescence signal is not limited to a substance that emits light, but may be a substance that emits light from another substance. The light emission signal by bioluminescence includes a signal generated by bioluminescence resonance energy transfer (so-called BRET). Furthermore, the substance capable of generating a luminescent signal may be, for example, a photoprotein used in a reporter assay. That is, the substance capable of generating a luminescent signal may be a luminescent protein encoded by a luminescent gene that is expressed together with a gene encoding a protein whose molecular dynamics is to be visualized.
 また、前記発光シグナルを生じうる物質は、遺伝子発現を介さずに細胞外から導入した物質であってもよい。この場合、物質を局在させる細胞内の部分領域は、例えば、細胞内に導入された有機合成カプセルであってもよい。 Further, the substance capable of generating the luminescence signal may be a substance introduced from outside the cell without involving gene expression. In this case, the partial region in the cell where the substance is localized may be, for example, an organic synthetic capsule introduced into the cell.
 上述の方法において、発光シグナルの撮影は、細胞群の厚さ方向の一部の層に対し合焦した状態で行われうる。ここで、「細胞群の厚さ方向の一部」とは、対象の表面付近又は表面から特定の距離の深さに在る細胞が1個以上含まれる撮像のためのボリュームである。この撮像用のボリュームは、特定の深さに在る細胞に加えて、厚さ方向の少なくとも一方(倒立型又は正立型の光学機器においては上下のいずれか一方の側)に別の細胞が1個以上が含まれるような焦点深度の深い(大きい)ボリュームであってもよい。特定の深さに在る細胞が概ね1個だけ含まれるような浅い(小さい)焦点深度である場合には、焦点位置を移動させることにより、それぞれの深さに在る細胞群を多層状態にある細胞群から選んで撮像することができる。合焦の工程は、既存の光学顕微鏡が有する焦点位置調整機構により、任意の厚さ方向に焦点を移動することで実行される。合焦させながら焦点位置を移動するためには、対物レンズを含む結像光学系及び/又は細胞群を保持する可動ステージを移動する機構で実行することができる。焦点位置を厚さ方向に移動させることにより、生体組織のような厚みのある対象について、異なる深さでの可視化が可能となる。さらに好ましい合焦の工程は、厚さ方向の焦点深度を適宜調節できるものである。焦点深度を変更することで、多層状態の細胞群について、異なる厚さでの可視化を実行できる。 In the above-described method, photographing of the luminescent signal can be performed in a state where it is focused on a partial layer in the thickness direction of the cell group. Here, the “part of the cell group in the thickness direction” is a volume for imaging including one or more cells located near the surface of the target or at a specific distance from the surface. In addition to the cells at a specific depth, this imaging volume has another cell on at least one side in the thickness direction (on the upside or downside in an inverted or upright optical instrument). A deep (large) volume of focus that includes one or more may be used. When the focal depth is shallow (small) so that only one cell at a specific depth is included, by moving the focal position, the cell group at each depth is made into a multilayer state. Images can be picked from a certain cell group. The focusing process is performed by moving the focal point in an arbitrary thickness direction by a focal position adjusting mechanism of an existing optical microscope. In order to move the focal position while focusing, it can be performed by a mechanism that moves an imaging optical system including an objective lens and / or a movable stage holding a cell group. By moving the focal position in the thickness direction, it is possible to visualize a thick object such as a living tissue at different depths. In a more preferable focusing process, the depth of focus in the thickness direction can be adjusted as appropriate. By changing the depth of focus, visualization at different thicknesses can be performed for a cell group in a multilayer state.
 一例として、細胞核に発光シグナルを生じうる物質を局在させた場合の模式図を図2に示す。図2は、多層状態をとっている細胞群10を側面から見た図である。細胞群10は、第1の細胞層12と第2の細胞層14とを含む。細胞群10に含まれる各々の細胞20において、発光シグナルを生じうる物質は、核24に局在しており、細胞質22には存在しない。このような細胞群10を細胞が層をなす面と垂直な矢印で示した方向から観察する。合焦面30を第1の細胞層12に合せるものとする。この場合に取得される発光画像の例の模式図を図3に示す。 As an example, FIG. 2 shows a schematic diagram when a substance capable of generating a luminescence signal is localized in the cell nucleus. FIG. 2 is a side view of the cell group 10 in a multi-layered state. The cell group 10 includes a first cell layer 12 and a second cell layer 14. In each cell 20 included in the cell group 10, a substance capable of generating a luminescent signal is localized in the nucleus 24 and is not present in the cytoplasm 22. Such a cell group 10 is observed from the direction indicated by the arrow perpendicular to the plane in which the cells are layered. It is assumed that the focusing surface 30 is aligned with the first cell layer 12. FIG. 3 shows a schematic diagram of an example of a light emission image acquired in this case.
 図3に示すように、各々の細胞20の核24が発光するので、合焦している第1の細胞層12の核24が第1の核画像42として明るく写る。また、合焦していない第2の細胞層14の核24が第2の核画像44としてぼやけて暗く写る。このように、発光シグナルを生じうる物質が核24に局在しているため、異なる細胞に由来する発光シグナルの干渉を低減できる。その結果、得られる画像40では、個々の細胞が区別して高精度で認識されうる。合焦面30の位置を変更することによって、深さ方向に注目する細胞を変更することも可能である。核24から発せられる発光シグナルは、細胞の内側から細胞膜を照らすことで、細胞膜を可視化する。 As shown in FIG. 3, since the nucleus 24 of each cell 20 emits light, the focused nucleus 24 of the first cell layer 12 appears brightly as a first nucleus image 42. Further, the nucleus 24 of the second cell layer 14 that is not focused is blurred and dark as the second nucleus image 44. Thus, since the substance capable of generating a luminescent signal is localized in the nucleus 24, interference of luminescent signals derived from different cells can be reduced. As a result, in the obtained image 40, individual cells can be distinguished and recognized with high accuracy. By changing the position of the focusing surface 30, it is also possible to change cells to be noted in the depth direction. The luminescent signal emitted from the nucleus 24 illuminates the cell membrane from the inside of the cell, thereby visualizing the cell membrane.
 比較例として、細胞核に発光シグナルを生じうる物質を局在させず、細胞20全体に当該物質が存在する場合の模式図を図4に示す。図4も図2と同様に、第1の細胞層12と第2の細胞層14とを含む細胞群10を側面から見た図である。このような細胞群10を、合焦面30を第1の細胞層12に合せて、細胞が層をなす面と垂直な矢印で示した方向から観察する。この場合に取得される発光画像の例の模式図を図5に示す。 As a comparative example, a schematic diagram in the case where a substance capable of generating a luminescence signal in the cell nucleus is not localized and the substance is present in the entire cell 20 is shown in FIG. 4 is also a view of the cell group 10 including the first cell layer 12 and the second cell layer 14 as seen from the side, as in FIG. Such a cell group 10 is observed from the direction indicated by the arrow perpendicular to the plane on which the cells form a layer, with the focusing surface 30 aligned with the first cell layer 12. FIG. 5 shows a schematic diagram of an example of a light emission image acquired in this case.
 図5に示すように、第1の細胞層12において隣接している複数の細胞20の全体が発光し、さらにこのような細胞層が重なっているので、細胞群10全体が明るく写る。すなわち、複数の細胞で発せられた光が重なり合い、互いに干渉する。その結果、得られる画像50では、個々の細胞を区別して認識することは困難である。 As shown in FIG. 5, the entire cells 20 adjacent to each other in the first cell layer 12 emit light, and since such cell layers overlap, the entire cell group 10 appears bright. That is, the light emitted from a plurality of cells overlap and interfere with each other. As a result, in the obtained image 50, it is difficult to distinguish and recognize individual cells.
 以上のように、可視化の対象としての個々の細胞における細胞内の部分領域に対し発光シグナルを生じうる物質を導入することで、細胞内で局在状態で発光シグナルが自己発光により放出される。この状態で発光シグナルに係る撮影を行うことで、多層状態の細胞群に関する分子動態が安定かつ鮮明に可視化される。さらに、発光シグナルを生じうる物質を細胞内で局在させることにより、発光画像において個々の細胞が識別されうる。その結果、個々の細胞ごとに発光強度等を解析することが可能になる。さらに、発光画像を経時的に取得することで、個々の細胞における発光強度の変化を正確に連続的又は時系列に得ることができる。 As described above, by introducing a substance capable of generating a luminescence signal into a partial region in each cell as an object to be visualized, a luminescence signal is emitted by self-luminescence in a localized state in the cell. By performing imaging related to the luminescent signal in this state, the molecular dynamics relating to the multi-layered cell group can be visualized stably and clearly. Furthermore, by localizing a substance capable of generating a luminescent signal within the cell, individual cells can be identified in the luminescent image. As a result, it is possible to analyze the emission intensity and the like for each individual cell. Furthermore, by obtaining luminescence images over time, changes in luminescence intensity in individual cells can be obtained accurately continuously or in time series.
 例えば、注目する遺伝子の発現量等に応じて発光強度が変化するように調製されたサンプルに対して本実施形態に係る方法を用いれば、個々の細胞ごとに注目する遺伝子の発現量を定量的に解析することが可能になる。その結果、個々の細胞ごとに細胞機能が評価されうる。遺伝子発現の変化をイメージングするレポーターアッセイにおいては、発光シグナルの局在が評価の対象とならないことも多く、このような場合に本実施形態に係る方法が用いられうる。このように、本実施形態によれば、多層状態の細胞群に関する分子動態を個々の細胞ごとに解析できる。 For example, if the method according to this embodiment is used for a sample prepared such that the luminescence intensity changes according to the expression level of the gene of interest, the expression level of the gene of interest for each cell is quantitatively determined. It becomes possible to analyze. As a result, cell function can be evaluated for each individual cell. In reporter assays that image changes in gene expression, the localization of luminescent signals is often not subject to evaluation, and in such cases, the method according to this embodiment can be used. Thus, according to the present embodiment, the molecular dynamics relating to the multi-layered cell group can be analyzed for each individual cell.
 また、核は、細胞ごとに大きさの差異が小さいので、規則的な発光画像を得ることができる。また、核から細胞質への物質移動は起こりにくいので、経時的にも安定した発光画像が得られる。 Also, since the size of the nucleus is small for each cell, a regular luminescence image can be obtained. In addition, since mass transfer from the nucleus to the cytoplasm hardly occurs, a stable luminescent image can be obtained over time.
 以上のように、局在させることで不要な光干渉が低減される発光シグナルを生じうる物質の例としては、生物発光を利用した発光タンパク質、発光色素等が挙げられる。発光タンパク質の例としては、ルシフェラーゼが挙げられる。発光タンパク質としてルシフェラーゼが用いられる場合、細胞には、発光基質であるルシフェリンが導入される。また、ルシフェラーゼを細胞の核に局在させるために、例えばnuclear localization signal(NLS)配列といった核局在シグナルをルシフェラーゼ等の発光タンパク質に融合させることができる。また、発光色素の例としては、基質となる物質との酵素反応により発光を示すような発光色素が挙げられ、例えばルミノールが挙げられる。 As described above, examples of a substance that can generate a luminescent signal in which unnecessary light interference is reduced by localizing include a photoprotein using bioluminescence, a luminescent dye, and the like. An example of a photoprotein is luciferase. When luciferase is used as the photoprotein, luciferin, a luminescent substrate, is introduced into the cell. Further, in order to localize luciferase in the nucleus of a cell, for example, a nuclear localization signal such as a nuclear-localization signal (NLS) sequence can be fused to a photoprotein such as luciferase. Examples of luminescent dyes include luminescent dyes that emit light by an enzymatic reaction with a substance serving as a substrate, such as luminol.
 また、発光シグナルを生じうる物質を細胞内に導入したら即時に発光反応とカップリングするような生化学反応の変化においても、本方法によれば定量的な画像情報を得ることができる。 In addition, according to this method, quantitative image information can be obtained even in a change in a biochemical reaction such that when a substance capable of generating a luminescence signal is introduced into a cell, it is immediately coupled to the luminescence reaction.
 発光を検出するデバイスとしては、CCD又はCMOS等を用いたイメージセンサ、フォトマルチプライヤー、シンチレーションカウンター等が用いられうる。これら検出デバイスの検出条件(例えば露光時間、ビニング値等)は、細胞を光学的に拡大するための各種レンズの総合的な倍率、それらレンズのN.A.(開口数)、結像レンズの各倍率を考慮した倍率)、対象となる細胞のサイズ、細胞群の密集度(細胞群を構成する細胞の個数)、焦点深度、発光シグナルを生じうる物質の濃度等に応じて、任意に設定してよい。発光シグナルの撮影には、比較的高倍率な顕微鏡が用いられてもよいし、比較的低倍率な実体顕微鏡が用いられてもよいし、その他の画像取得装置が用いられてもよい。検出デバイスは、分子動態に関連する発光シグナルを得るために、任意のインターバルを介して時系列に検出を行うのが好ましい。検出デバイスにより検出された発光シグナルは、画像構築及び/又は画像解析された後、ディスプレイ機器の画面に表示される。画像解析された発光シグナルは、数値又は時系列のグラフとしてディスプレイ機器の画面に表示される。 As a device for detecting luminescence, an image sensor using a CCD or CMOS, a photomultiplier, a scintillation counter, or the like can be used. The detection conditions (for example, exposure time, binning value, etc.) of these detection devices include the overall magnification of various lenses for optically expanding the cells, the N.D. A. (Numerical aperture), magnification taking into account each magnification of the imaging lens), target cell size, cell group density (number of cells constituting the cell group), depth of focus, substance that can produce a luminescent signal You may set arbitrarily according to a density | concentration etc. A relatively high-magnification microscope, a relatively low-magnification stereomicroscope, or other image acquisition device may be used for photographing the luminescent signal. The detection device preferably performs detection in chronological order through arbitrary intervals in order to obtain a luminescent signal related to molecular dynamics. The luminescence signal detected by the detection device is displayed on the screen of the display device after image construction and / or image analysis. The luminescence signal subjected to the image analysis is displayed on the screen of the display device as a numerical value or a time-series graph.
 また、細胞内の発光シグナルを生じうる物質の量が等量であると仮定すると、当該物質を細胞内の部分領域に局在させることで、密度が増加する。その結果、当該物質から発せられる発光シグナルも増加する。これにより、発光シグナルの検出感度が向上し、分子動態をより高感度に可視化できる。 Also, assuming that the amount of a substance capable of generating a luminescence signal in the cell is equal, the density increases by localizing the substance in a partial region in the cell. As a result, the luminescence signal emitted from the substance also increases. Thereby, the detection sensitivity of the luminescent signal is improved, and the molecular dynamics can be visualized with higher sensitivity.
 上述の細胞群が例えば植物の組織のように細胞質間連絡があり立体的な構造を有している生物組織である場合、次のような効果も得られる。すなわち、植物細胞には、原形質連絡があるため、細胞間を物質が移動する。このため、1つの細胞に注目していても、発光シグナルを生じうる物質を細胞質に位置させると、当該物質は、隣接する細胞に移行してしまう。このような原形質連絡による物質の細胞間移行を抑止するための一つの方法は、当該物質の分子量を大きくすることである。排除分子量限界は、例えば1k~数十Kdaであり、器官や組織によって異なる。一方、本実施形態のように発光シグナルを生じうる物質を細胞内小器官に局在させると、当該物質の分子量を大きくしなくても、当該物質が細胞質間で移動せず、原形質連絡による細胞間移行を抑止することができる。 When the above-described cell group is a biological tissue having a three-dimensional structure and having cytoplasmic communication such as a plant tissue, the following effects can also be obtained. That is, since plant cells have protoplasmic communication, substances move between cells. For this reason, even if attention is paid to a single cell, if a substance capable of generating a luminescent signal is positioned in the cytoplasm, the substance moves to an adjacent cell. One method for suppressing the intercellular transfer of a substance due to such protoplasm communication is to increase the molecular weight of the substance. The exclusion molecular weight limit is, for example, 1 k to several tens of Kda, and varies depending on organs and tissues. On the other hand, when a substance capable of generating a luminescent signal is localized in an organelle as in this embodiment, the substance does not move between cytoplasms even if the molecular weight of the substance is not increased, and protoplasm communication Intercellular migration can be suppressed.
 1. 植物の器官毎の発光シグナルの観察
 1.1. 方法
 1.1.1. 形質転換用プラスミドの作製
 植物に発光遺伝子を導入するために2種類のプラスミドを作製した。1つは、植物細胞内に非核局在型発光遺伝子を発現させるためのプラスミドpRI201AN-luc2である。もう1つは、植物細胞内に核局在型発光遺伝子を発現させるためのプラスミドpRI201AN-luc2NLS3である。いずれのプラスミドも、pRI201AN(タカラバイオ)の制限酵素サイトに発光遺伝子を組み込むことで作製した。
1. Observation of luminescence signal for each organ of plant 1.1. Method 1.1.1. Preparation of plasmid for transformation Two types of plasmids were prepared in order to introduce a luminescent gene into a plant. One is a plasmid pRI201AN-luc2 for expressing a non-nuclear localized luminescent gene in plant cells. The other is a plasmid pRI201AN-luc2NLS3 for expressing a nuclear-localized luminescent gene in plant cells. Both plasmids were prepared by incorporating a luminescent gene into the restriction enzyme site of pRI201AN (Takara Bio).
 図6は、非核局在型の発光遺伝子を発現させるためのプラスミドpRI201AN-luc2のT-DNA領域拡大図を示す。pRI201AN-luc2には、ルシフェラーゼの遺伝子(luc2)が挿入されている。図7は、核局在型の発光遺伝子を発現させるためのプラスミドpRI201AN-luc2NLS3のT-DNA領域拡大図を示す。pRI201AN-luc2NLS3には、C末端に核局在シグナル(nuclear localization signal; NLS)が3つ連なった配列が付加されたルシフェラーゼの遺伝子(luc2-NLS3)が挿入されている。NLSは、SV40 Large T antigenに類似した哺乳類でしばしば用いられる配列である。 FIG. 6 shows an enlarged view of the T-DNA region of plasmid pRI201AN-luc2 for expressing a non-nuclear localized luminescent gene. The luciferase gene (luc2) is inserted into pRI201AN-luc2. FIG. 7 shows an enlarged view of the T-DNA region of plasmid pRI201AN-luc2NLS3 for expressing a nuclear-localized luminescent gene. In pRI201AN-luc2NLS3, a luciferase gene (luc2-NLS3) to which a sequence in which three nuclear localization signals (nuclear localization signal; NLS) are linked at the C-terminal is added is inserted. NLS is a sequence often used in mammals similar to SV40 Large T antigen.
 pRI201AN-luc2では、pRI201ANの35Sプロモーターの下流にある制限酵素サイトNdeI及びSalIの間に、非核局在型発光遺伝子を挿入した。非核局在型発光遺伝子は、pGL4.14を鋳型とし、下記の配列を有するプライマーNde_GL4Fw(配列番号1)とプライマーSal_GL4Rev(配列番号2)とを用いたPCR反応によって増幅した。PCR反応産物とpRI201ANとを、制限酵素NdeI及びSalIで消化し、非核局在型発光遺伝子をpRI201ANに挿入した。 In pRI201AN-luc2, a non-nuclear localized luminescent gene was inserted between restriction enzyme sites NdeI and SalI downstream of the 35S promoter of pRI201AN. The non-nuclear localized luminescent gene was amplified by PCR using pGL4.14 as a template and a primer Nde_GL4Fw (SEQ ID NO: 1) having the following sequence and primer Sal_GL4Rev (SEQ ID NO: 2). The PCR reaction product and pRI201AN were digested with restriction enzymes NdeI and SalI, and a non-nuclear localized luminescent gene was inserted into pRI201AN.
 pRI201AN-luc2NLS3では、pRI201ANの35Sプロモーターの下流にある制限酵素サイトNdeI及びSalIの間に、核局在シグナルを付加させた発光遺伝子を挿入した。核局在型発光遺伝子は、pGL4.14を鋳型とし、下記の配列を有するプライマーNde_GL4Fw(配列番号1)とプライマーSalNLS3GL4Rev(配列番号3)とを用いたPCR反応によって増幅した。PCR反応産物とpRI201ANとを、制限酵素NdeI及びSalIで消化し、核局在型発光遺伝子をpRI201ANに挿入した。 In pRI201AN-luc2NLS3, a luminescent gene with a nuclear localization signal added was inserted between restriction enzyme sites NdeI and SalI downstream of the 35S promoter of pRI201AN. The nuclear localization type luminescent gene was amplified by PCR reaction using pGL4.14 as a template and a primer Nde_GL4Fw (SEQ ID NO: 1) having the following sequence and a primer SalNLS3GL4Rev (SEQ ID NO: 3). The PCR reaction product and pRI201AN were digested with restriction enzymes NdeI and SalI, and the nuclear localized luminescent gene was inserted into pRI201AN.
 Nde_GL4Fw:ATGCCATATGGAAGATGCCAAAAACATTAA(配列番号1)
 Sal_GL4Rev:TGCGTCGACTTACACGGCGATCTTGCCGCCCT(配列番号2)
 SalNLS3GL4Rev:GCGTCGACTATACCTTTCTCTTCTTTTTTGGATCTACCTTTCTCTTCTTTTTTGGATCTACCTTTCTCTTCTTTTTTGGATCCACGGCGATCTTGCCGCC(配列番号3)
Nde_GL4Fw: ATGCCATATGGAAGATGCCAAAAACATTAA (SEQ ID NO: 1)
Sal_GL4Rev: TGCGTCGACTTACACGGCGATCTTGCCGCCCT (SEQ ID NO: 2)
SalNLS3GL4Rev: GCGTCGACTATACCTTTCTCTTCTTTTTTGGATCTACCTTTCTCTTCTTTTTTGGATCTACCTTTCTCTTCTTTTTTGGATCCACGGCGATCTTGCCGCC (SEQ ID NO: 3)
 1.1.2. 土壌細菌へのプラスミドの導入
 pRI201AN-luc2又はpRI201AN-luc2NLS3をエレクトロポレーション法を用いてAgrobacterium tumefaciens LBA4404 Electro-Cells(タカラバイオ)に遺伝子導入した。エレクトロポレーションには、MicroPulser(Bio Rad)を用いた。形質転換は、Agrobacterium tumefaciens LBA4404 Electro-Cellsの説明書(http://catalog.takara-bio.co.jp/PDFS/9115_j.pdf)(参考文献1)に記載の方法で行った。
1.1.2. Introduction of plasmid into soil bacteria pRI201AN-luc2 or pRI201AN-luc2NLS3 was introduced into Agrobacterium tumefaciens LBA4404 Electro-Cells (Takara Bio) using electroporation. MicroPulser (Bio Rad) was used for electroporation. The transformation was performed by the method described in the manual of Agrobacterium tumefaciens LBA4404 Electro-Cells (http://catalog.takara-bio.co.jp/PDFS/9115_j.pdf) (reference document 1).
 1.1.3. 植物への遺伝子導入
 Floral Dip法を用いて植物への遺伝子導入を行った。Floral Dip法のプロトコルは、島本功ら監修、「モデル植物の実験プロトコル」、改訂3版、学研メディカル秀潤社、2005年4月、p. 149-154、大門靖史ら著、「4-4 減圧湿潤法および花序浸し法によるシロイヌナズナの形質転換」(参考文献2)に記載のとおりである。
1.1.3. Gene introduction into plants Gene introduction into plants was performed using the Floral Dip method. The protocol of the Floral Dip method is supervised by Isao Shimamoto et al., "Experiment Protocol for Model Plants", revised 3rd edition, Gakken Medical Shujunsha, April 2005, p. 149-154, written by Atsushi Daimon et al., "4-4 As described in "Transformation of Arabidopsis thaliana by reduced pressure moistening method and inflorescence dipping method" (reference document 2).
 遺伝子導入後の植物から種子を回収して、カナマイシンを含む培地を用いて芽生え時に薬剤耐性を示す株を選択した。薬剤耐性株の選択についても参考文献2に記載のとおりに行った。耐性株を結実するまで栽培し、回収した種子を発光観察の材料とした。 The seeds were collected from the plant after gene introduction, and a strain showing drug resistance at the time of seedling was selected using a medium containing kanamycin. Selection of drug resistant strains was also performed as described in Reference 2. Cultivated until a resistant strain was formed, and the collected seed was used as a material for luminescence observation.
 1.1.4. 発光観察用の植物の栽培
 シロイヌナズナの種子を滅菌した後に寒天培地上で4日間~7日間栽培し、発光観察と明視野観察を行った。種子の滅菌は、0.1% 次亜塩素酸ナトリウム、0.02% Triton X-100を含む蒸留水内で攪拌した後、5分間室温で放置し、次いで種子を滅菌蒸留水で5回洗うことにより行った。栽培用の寒天培地は、次のように作製した。蒸留水にガンボーグB5ビタミン入りムラシゲアンドスクーグ培地粉末を2.2 g/lの濃度で調製し、スクロース(和光純薬)(終濃度:1.5%)と寒天末(和光純薬)(終濃度:1.5%)を加え、オートクレーブ後にシャーレに注いで固化させた。滅菌した種子を寒天培地上に播種し、約3日間冷暗所に置いた。その後、シャーレを垂直に立てた状態で約20℃に設定したインキュベータに移して4日間~7日間栽培した。栽培時には、約50-65 μmol m-2 s-1の強度の光を連続で照射した。
1.1.4. Cultivation of plants for luminescence observation After seeds of Arabidopsis were sterilized, they were cultivated on an agar medium for 4-7 days, and luminescence observation and bright field observation were performed. Seed sterilization was carried out by stirring in distilled water containing 0.1% sodium hypochlorite and 0.02% Triton X-100, leaving it at room temperature for 5 minutes, and then washing the seed 5 times with sterile distilled water. . The agar medium for cultivation was produced as follows. Prepared Murashige and Skoog medium powder containing Gamborg B5 vitamins in distilled water at a concentration of 2.2 g / l. Sucrose (Wako Pure Chemical) (final concentration: 1.5%) and agar powder (Wako Pure Chemical) (final concentration: 1.5%) and added to a petri dish after autoclaving to solidify. Sterilized seeds were sown on an agar medium and placed in a cool dark place for about 3 days. After that, the petri dish was moved vertically to an incubator set at about 20 ° C. and cultivated for 4 to 7 days. During cultivation, light having an intensity of about 50-65 μmol m −2 s −1 was continuously irradiated.
 1.1.5. 基質溶液の噴霧
 発光観察と明視野観察を行う前に、基質溶液を植物個体全体に噴霧した。基質溶液は2.5 mM D-luciferin(プロメガ)を含む0.05% Tween 20水溶液である。噴霧処理後のシロイヌナズナをガラスボトムディッシュ(松浪硝子工業)に移して観察を行った。
1.1.5. Spraying of substrate solution Before performing luminescence observation and bright field observation, the substrate solution was sprayed on the whole plant. The substrate solution is a 0.05% Tween 20 aqueous solution containing 2.5 mM D-luciferin (Promega). The sprayed Arabidopsis thaliana was transferred to a glass bottom dish (Matsunami Glass Industry) and observed.
 以上のようにして調製したサンプルを観察した。器官レベルでの観察には、倒立型の発光イメージングシステムLV200(オリンパス)又は正立型の実体顕微鏡SZX16(オリンパス)を用いた。細胞レベルでの観察には、倒立型の発光イメージングシステムLV200(オリンパス)を用いた。 The sample prepared as described above was observed. For observation at the organ level, an inverted luminescence imaging system LV200 (Olympus) or an upright stereo microscope SZX16 (Olympus) was used. For observation at the cell level, an inverted luminescence imaging system LV200 (Olympus) was used.
 1.1.6. LV200による植物の器官ごとの発光シグナルの観察
 発光イメージングシステムLV200(オリンパス)による植物の器官ごとの観察は、10倍の対物レンズUPlanSApo 10x(オリンパス)を用いて行った。LV200による植物の根、根端分裂組織、子葉のそれぞれの詳細な観察は、100倍の対物レンズUPlanFL N 100x(オリンパス)を用いて行った。画像の取得には、EM-CCDカメラImagEM(C9100-13)(浜松ホトニクス)を用いた。発光観察では、EM-CCD読み出しモードを用い、露出時間は488 msから5 sまでの間に設定し、binning 1x1に設定した。明視野観察では、NORMAL-CCD読み出しモードを用い、露出時間は122 msに設定し、binning 1x1に設定した。撮像により取得し保存した各画像を、画像解析ソフトウェアAQUACOSMOS(浜松ホトニクス)又はImageJ(アメリカ国立衛生研究所)を用いて解析した。
1.1.6. Observation of luminescence signal for each plant organ with LV200 Observation of each plant organ with luminescence imaging system LV200 (Olympus) was performed using 10 times objective lens UPlanSApo 10x (Olympus). Detailed observations of plant roots, root tip meristems, and cotyledons using LV200 were performed using a 100 × objective lens UPlanFL N 100x (Olympus). An EM-CCD camera ImagEM (C9100-13) (Hamamatsu Photonics) was used for image acquisition. In luminescence observation, the EM-CCD readout mode was used, the exposure time was set between 488 ms and 5 s, and binning 1x1. In bright field observation, the NORMAL-CCD readout mode was used, the exposure time was set to 122 ms, and binning 1x1. Each image acquired and stored by imaging was analyzed using image analysis software AQUACOSMOS (Hamamatsu Photonics) or ImageJ (National Institutes of Health, USA).
 1.1.7. SZX16による植物の根の発光シグナルの観察
 実体顕微鏡SZX16(オリンパス)によるシロイヌナズナの根の観察は、1倍の対物レンズPLAPO 1x PF(オリンパス)を用いて行った。画像の取得には、EM-CCDカメラImagEM(C9100-13)(浜松ホトニクス)を用いた。発光観察では、EM-CCD読み出しモードを用い、露出時間は10 sに設定し、binning 1x1に設定した。明視野観察では、NORMAL-CCD読み出しモードを用い、露出時間は122 msに設定し、binning 1x1に設定した。撮像され保存された各画像を、画像解析ソフトウェアAQUACOSMOS(浜松ホトニクス)又はImageJ(アメリカ国立衛生研究所)を用いて解析した。
1.1.7. Observation of plant root luminescence signal with SZX16 Observation of Arabidopsis roots with stereo microscope SZX16 (Olympus) was performed using a 1 × objective PLAPO 1x PF (Olympus). An EM-CCD camera ImagEM (C9100-13) (Hamamatsu Photonics) was used for image acquisition. In luminescence observation, EM-CCD readout mode was used, exposure time was set to 10 s, and binning 1x1. In bright field observation, the NORMAL-CCD readout mode was used, the exposure time was set to 122 ms, and binning 1x1. Each image captured and stored was analyzed using image analysis software AQUACOSMOS (Hamamatsu Photonics) or ImageJ (National Institutes of Health, USA).
 1.2 結果及び考察
 1.2.1. LV200を用いた植物の器官ごとの観察
 核局在型のルシフェラーゼLuc-NLS3を発現させたシロイヌナズナの各部位を、倒立型の発光イメージングシステムLV200を用いて低倍率(対物レンズ10x)で観察した結果を図8に示す。図8において、上段は発光観察で取得された発光像を示し、下段は明視野観察で取得された明視野像を示す。左列は子葉と胚軸部分の画像であり、中列は根部分の画像であり、右列は根端分裂組織部分の画像である。何れの部位においても、発光シグナルが検出された。特に、画像中に矢印で示した胚軸や根等の部分に認められる大きい細胞では、1細胞ごとのシグナルを検出できることが明らかになった。
1.2 Results and Discussion 1.2.1. Observation of plant organs using LV200 Each site of Arabidopsis thaliana expressing luciferase Luc-NLS3, a nuclear localization type, was measured at low magnification using an inverted luminescence imaging system LV200. The result of observation with the objective lens 10x) is shown in FIG. In FIG. 8, the upper part shows a light emission image acquired by light emission observation, and the lower part shows a bright field image acquired by bright field observation. The left column is the image of the cotyledon and hypocotyl part, the middle column is the image of the root part, and the right column is the image of the root tip meristem part. A luminescent signal was detected at any site. In particular, it has been clarified that a signal for each cell can be detected in a large cell observed in a portion such as an hypocotyl or a root indicated by an arrow in the image.
 1.2.2. SZX16を用いた植物の器官の観察
 核局在型のルシフェラーゼLuc-NLS3を発現させたシロイヌナズナの根の部位を、実体顕微鏡SZX16(対物レンズ1x, Zoom 0.8x)で観察した結果を図9に示す。図9において、左図は明視野観察で取得された明視野像を示し、右図は発光観察で取得された発光像を示す。実体顕微鏡を用いても、1細胞ごとのシグナルを検出できることが明らかになった。
1.2.2. Observation of plant organs using SZX16 The result of observation of the root region of Arabidopsis thaliana expressing the nuclear-localized luciferase Luc-NLS3 with a stereo microscope SZX16 (objective lens 1x, Zoom 0.8x) As shown in FIG. In FIG. 9, the left figure shows the bright field image acquired by bright field observation, and the right figure shows the luminescence image acquired by light emission observation. It became clear that a signal for each cell could be detected even using a stereomicroscope.
 1.2.3. LV200を用いた高倍率での観察
 核局在型のルシフェラーゼLuc-NLS3を発現させたシロイヌナズナの根の部位を、倒立型の発光イメージングシステムLV200を用いて高倍率(対物レンズ100x)で観察した結果を図10に示す。図10において、左図は明視野観察で取得された明視野像を示し、右図は発光観察で取得された発光像を示す。図10に示す画像の取得においては、対物レンズに近い位置の表皮細胞(Z = 90 μm)に合焦するように調整した。図10に示すように、複数の発光スポットが観察できた。発光像と明視野像とを比較することで、発光シグナルを示す細胞の位置がおおよそ分かる。例えば、発光像におけるA,B,Cで示した発光は、それぞれ明視野像におけるA,B,Cで示した細胞に係る発光であることが分かる。
1.2.3. High-magnification observation using LV200 High-magnification (100x objective lens) using the inverted luminescence imaging system LV200 for the root region of Arabidopsis thaliana expressing the nuclear-localized luciferase Luc-NLS3 The results observed with are shown in FIG. In FIG. 10, the left figure shows a bright field image acquired by bright field observation, and the right figure shows a light emission image acquired by light emission observation. In the acquisition of the image shown in FIG. 10, adjustment was made to focus on epidermal cells (Z = 90 μm) at a position close to the objective lens. As shown in FIG. 10, a plurality of light emission spots could be observed. By comparing the luminescence image with the bright field image, the position of the cell showing the luminescence signal can be roughly understood. For example, it can be seen that the light emission indicated by A, B, and C in the light emission image is light emission related to the cells indicated by A, B, and C in the bright field image, respectively.
 さらに、合焦位置を変えながら撮影を行った結果を図11に示す。図11において、上段は発光観察で取得された発光像を示し、下段は明視野観察で取得された明視野像を示す。左列は、Z = 50 μmであり、内部細胞層に相当する部位の画像である。中列は、Z = 70 μmであり、内部細胞層に相当する部位の画像である。右列は、Z = 90 μmであり、対物レンズに近い表皮細胞層に相当する部位の画像である。 Further, FIG. 11 shows the result of photographing while changing the in-focus position. In FIG. 11, the upper part shows a light emission image acquired by light emission observation, and the lower part shows a bright field image acquired by bright field observation. The left column is an image of a site corresponding to Zm = 層 50 μm and corresponding to the inner cell layer. The middle row is an image of a site corresponding to the internal cell layer with Z = 70 μm. The right column is an image of a site corresponding to the epidermal cell layer close to the objective lens, with Z = 90 μm.
 異なる合焦位置で撮影を行うことで、表皮細胞や内部細胞層における発光スポットを、それぞれ個別に認識することができた。 By photographing at different in-focus positions, the luminescent spots on the epidermal cells and the inner cell layer could be recognized individually.
 コントロールとしての非核局在型のルシフェラーゼLucを発現させたシロイヌナズナの根の部位を、倒立型の発光イメージングシステムLV200を用いて高倍率(対物レンズ100x)で観察した結果を図12に示す。図12において、上段は発光観察で取得された発光像を示し、下段は明視野観察で取得された明視野像を示す。左列は、Z = 20 μmであり、表皮細胞層に相当する部位の画像である。右列は、Z = 55 μmであり、内部細胞層に相当する部位の画像である。図12に示すように、非核局在型のルシフェラーゼLucを発現させたシロイヌナズナでは、細胞ごとに発光シグナルを区別することは難しい。図11と図12とを比較すると、核局在型のルシフェラーゼLuc-NLS3を発現させて発光タンパク質を細胞核に局在させることで、1細胞ごとに特定してシグナルを検出することができることが明らかになった。 FIG. 12 shows the result of observing the root region of Arabidopsis thaliana expressing non-nuclear localized luciferase Luc as a control at a high magnification (objective lens 100 ×) using an inverted luminescence imaging system LV200. In FIG. 12, the upper part shows a light emission image acquired by light emission observation, and the lower part shows a bright field image acquired by bright field observation. The left column is an image of a region corresponding to the epidermal cell layer where Z = 20 μm. The right column is an image of a site corresponding to the internal cell layer with Z = 55 μm. As shown in FIG. 12, in Arabidopsis thaliana in which non-nuclear localized luciferase Luc is expressed, it is difficult to distinguish the luminescence signal for each cell. When FIG. 11 and FIG. 12 are compared, it is clear that the signal can be detected specifically for each cell by expressing the nuclear-localized luciferase Luc-NLS3 and localizing the photoprotein in the cell nucleus. Became.
 核局在型のルシフェラーゼLuc-NLS3を発現させたシロイヌナズナの根端分裂組織の部位を、倒立型の発光イメージングシステムLV200(対物レンズ100x)で観察した結果を図13に示す。図13において、左図は明視野観察で取得された明視野像を示し、右図は発光観察で取得された発光像を示す。図13に示す画像の取得においては、対物レンズに近い位置(Z = 70 μm)の表皮細胞に合焦するように調整した。図13に示すように、複数の異なる表皮細胞が発する発光シグナルをそれぞれ個別に識別できた。 FIG. 13 shows the result of observing the root apical meristem site of Arabidopsis thaliana in which the nuclear-localized luciferase Luc-NLS3 was expressed with an inverted luminescence imaging system LV200 (objective lens 100x). In FIG. 13, the left figure shows a bright field image acquired by bright field observation, and the right figure shows a light emission image acquired by light emission observation. In the acquisition of the image shown in FIG. 13, adjustment was made to focus on the epidermal cells at a position close to the objective lens (Z レ ン ズ = 70 μm). As shown in FIG. 13, the luminescence signals emitted by a plurality of different epidermal cells could be individually identified.
 さらに、合焦位置を変えながら撮影を行った結果を図14に示す。図14において、上段は発光観察で取得された発光像を示し、下段は明視野観察で取得された明視野像を示す。左列から順に、Z = 30 μm、Z = 40 μm、Z = 50 μm、Z = 60 μm、Z = 70 μm、Z = 84 μmの部位の画像を示す。対物レンズに近い位置の表皮細胞層と対物レンズから少し遠い外側の表皮細胞とが、異なる焦点位置で撮影することによって区別できた。 Further, FIG. 14 shows the result of photographing while changing the focus position. In FIG. 14, the upper part shows a light emission image acquired by light emission observation, and the lower part shows a bright field image acquired by bright field observation. In order from the left column, an image of a region of Z = 30 μm, Z = 40 μm, Z = 50 μm, Z = 60 μm, Z = 70 μm, Z = 84 μm is shown. The epidermal cell layer at a position close to the objective lens and the outer epidermal cell slightly away from the objective lens could be distinguished by photographing at different focal positions.
 コントロールとしての非核局在型のルシフェラーゼLucを発現させたシロイヌナズナの根端分裂組織の部位を、倒立型の発光イメージングシステムLV200(対物レンズ100x)で観察した結果を図15に示す。図15において、上段は発光観察で取得された発光像を示し、下段は明視野観察で取得された明視野像を示す。左列から順に、Z = 70 μm、Z = 80 μm、Z = 90 μm、Z = 100 μm、Z = 110 μmの部位の画像を示す。図15に示すように、非核局在型のルシフェラーゼLucを発現させたシロイヌナズナでは、表皮細胞であっても細胞ごとに発光シグナルを区別することは困難であった。図14と図15とを比較すると、核局在型のルシフェラーゼLuc-NLS3を発現させて発光タンパク質を細胞核に局在させることで、1細胞ごとに特定してシグナルを検出することができることが明らかになった。 FIG. 15 shows the results of observing the root apical meristem site of Arabidopsis thaliana expressing non-nuclear localized luciferase Luc as a control using an inverted luminescence imaging system LV200 (objective lens 100x). In FIG. 15, the upper part shows a light emission image acquired by light emission observation, and the lower part shows a bright field image acquired by bright field observation. In order from the left column, images of Z = の 70 μm, Z = 80 μm, Z = 90 μm, Z = 100 μm, Z = 110 μm are shown. As shown in FIG. 15, in Arabidopsis thaliana in which non-nuclear localized luciferase Luc was expressed, it was difficult to distinguish the luminescence signal for each cell even in epidermal cells. Comparison of FIG. 14 and FIG. 15 reveals that a signal can be detected specifically for each cell by expressing a nuclear localization type luciferase Luc-NLS3 and localizing the photoprotein in the cell nucleus. Became.
 核局在型のルシフェラーゼLuc-NLS3を発現させたシロイヌナズナの子葉の部位を、倒立型の発光イメージングシステムLV200(対物レンズ100x)で観察した結果を図16に示す。図16において、左図は明視野観察で取得された明視野像を示し、右図は発光観察で取得された発光像を示す。図16に示す画像の取得においては、対物レンズに近い位置(Z = 120 μm)の表皮細胞に合焦するように調整した。ただし、サンプルの表面が水平でないために、一部分にしか合焦していない。図16に示すように、複数の異なる表皮細胞が発する発光シグナルを、それぞれ個別に認識できた。 FIG. 16 shows the result of observation of the cotyledon site of Arabidopsis thaliana in which the nuclear-localized luciferase Luc-NLS3 was expressed using an inverted luminescence imaging system LV200 (objective lens 100x). In FIG. 16, the left figure shows the bright field image acquired by bright field observation, and the right figure shows the luminescence image acquired by light emission observation. In the acquisition of the image shown in FIG. 16, adjustment was made so as to focus on epidermal cells at a position close to the objective lens (Z = 120 μm). However, since the surface of the sample is not horizontal, only a part is focused. As shown in FIG. 16, the luminescence signals emitted by a plurality of different epidermal cells could be recognized individually.
 さらに、合焦位置を変えながら撮影を行った結果を図17に示す。図17において、上段は発光観察で取得された発光像を示し、下段は明視野観察で取得された明視野像を示す。左列から順に、Z = 80 μm、Z = 100 μm、Z = 120 μm、Z = 140 μmの部位の画像を示す。斜めに拡がっている表皮細胞が、それぞれ異なる焦点位置で区別して認識できた。 Further, FIG. 17 shows the result of shooting while changing the focus position. In FIG. 17, the upper part shows a light emission image acquired by light emission observation, and the lower part shows a bright field image acquired by bright field observation. In order from the left column, images of regions where Z の = 80 μm, Z = 100 μm, Z = 120 μm, Z = 140 μm are shown. The epidermal cells spreading diagonally could be recognized separately at different focal positions.
 1.3. まとめ
 以上のように、核局在型のルシフェラーゼLuc-NLS3を発現させたシロイヌナズナの観察では、多くの細胞層から構成されている厚みのある子葉、根などの器官において、表皮細胞の発光シグナルを細胞ごとに区別して検出することができた。内部の細胞については、器官ごとに区別できる場合と区別できない場合とがあった。これには、細胞の大きさや透明度などが影響していると考えられる。核局在型のルシフェラーゼLuc-NLS3を用いて発光シグナルを細胞ごとに区別して検出できることは、非核局在型のルシフェラーゼLucを発現させて、細胞全体に発光タンパク質が存在する状態におけるシロイヌナズナの観察では各細胞の発光シグナルの認識精度は低くなるのとは対照的であった。
1.3. Summary As described above, in the Arabidopsis thaliana that expressed the nuclear-localized luciferase Luc-NLS3, luminescence of epidermal cells was observed in organs such as thick cotyledons and roots composed of many cell layers. The signal could be detected separately for each cell. Regarding internal cells, there were cases where they could be distinguished for each organ and cases where they could not be distinguished. This is thought to be influenced by cell size and transparency. The ability to distinguish and detect the luminescent signal for each cell using the nuclear-localized luciferase Luc-NLS3 means that non-nuclear-localized luciferase Luc is expressed and the observation of Arabidopsis in the state where the photoprotein is present throughout the cell. In contrast to the low recognition accuracy of the luminescent signal of each cell.
 上に示したような、核局在型のルシフェラーゼLuc-NLS3を発現させることで細胞ごとに識別されうるシロイヌナズナの画像は、経時的に複数の発光画像を取得するタイムラプス撮影の場合にも得られた。このような画像では、細胞ごとに一定の動態変化の傾向が見られた。このように、核局在型のルシフェラーゼLuc-NLS3を発現させることで、分子動態を可視化し、多層状態の細胞についての正確なモニタリング又は解析を実施できることが明らかになった。 As shown above, Arabidopsis images that can be identified for each cell by expressing the nuclear-localized luciferase Luc-NLS3 can also be obtained in the case of time-lapse photography in which multiple luminescence images are acquired over time. It was. In such an image, there was a tendency for a certain dynamic change for each cell. Thus, it was revealed that by expressing the nuclear-localized luciferase Luc-NLS3, molecular dynamics can be visualized and accurate monitoring or analysis of cells in a multilayer state can be performed.
 2. Hela細胞を用いたシグナル強度の定量評価
 2.1. 方法
 2.1.1. 形質転換用プラスミドの作製
 2.1.1.1. pcDNA-luc2とpcDNA-luc2NLS3との作製
 核局在型発光遺伝子と非核局在型発光遺伝子とをHela細胞内に発現させた際の発光強度を比較するために、2種類のプラスミドを作製した。1つは、Hela細胞内に非核局在型発光遺伝子を発現させるためのプラスミドpcDNA-luc2である。もう1つは、Hela細胞内に核局在型発光遺伝子を発現させるためのプラスミドpcDNA-luc2NLS3である。いずれのプラスミドも、pcDNA3.1(+)(Thermo Fisher Scientific)のMultiple Cloning Siteに存在する制限酵素サイトに発光遺伝子を組み込むことで作製した。
2. Quantitative evaluation of signal intensity using Hela cells 2.1. Method 2.1.1. Preparation of plasmid for transformation 2.1.1.1. Preparation of pcDNA-luc2 and pcDNA-luc2NLS3 Nuclear-localized luminescent gene and non-nuclear-localized In order to compare the luminescence intensity when the luminescent gene was expressed in Hela cells, two types of plasmids were prepared. One is a plasmid pcDNA-luc2 for expressing a non-nuclear localized luminescent gene in Hela cells. The other is a plasmid pcDNA-luc2NLS3 for expressing a nuclear localized luminescence gene in Hela cells. Both plasmids were prepared by incorporating a luminescent gene into the restriction enzyme site present in the Multiple Cloning Site of pcDNA3.1 (+) (Thermo Fisher Scientific).
 図18は、非核局在型の発光遺伝子を発現させるためのプラスミドpcDNA-luc2のCMVプロモーターの下流領域拡大図を示す。pcDNA-luc2には、ルシフェラーゼの遺伝子(luc2)が挿入されている。図19は、核局在型の発光遺伝子を発現させるためのプラスミドpcDNA-luc2NLS3のCMVプロモーターの下流領域拡大図を示す。pcDNA-luc2NLS3には、C末端に核局在シグナル(nuclear localization signal; NLS)が3つ連なった配列が付加されたルシフェラーゼの遺伝子(luc2-NLS3)が挿入されている。 FIG. 18 shows an enlarged view of the downstream region of the CMV promoter of plasmid pcDNA-luc2 for expressing a non-nuclear localized luminescent gene. The luciferase gene (luc2) is inserted into pcDNA-luc2. FIG. 19 shows an enlarged view of the downstream region of the CMV promoter of plasmid pcDNA-luc2NLS3 for expressing a nuclear-localized luminescent gene. In pcDNA-luc2NLS3, a luciferase gene (luc2-NLS3) to which a sequence in which three nuclear localization signals (nuclear localization signal; NLS) are linked at the C-terminus is added is inserted.
 pcDNA-luc2では、pcDNA3.1(+)のCMVプロモーターの下流にある制限酵素サイトEcoRI及びXhoIの間に、非核局在型発光遺伝子を挿入した。非核局在型発光遺伝子は、pGL4.14を鋳型とし、下記の配列を有するプライマーERI_GL4Fw(配列番号4)と上述のプライマーSal_GL4Rev(配列番号2)とを用いたPCR反応によって増幅した。PCR反応産物を、制限酵素EcoRI及びSalIで消化し、非核局在型発光遺伝子をpcDNA3.1(+)に挿入した。XhoIの消化によって生じたDNAの突出末端とSalIの消化によって生じたDNAの突出末端は、一般的なDNAリガーゼ反応によって結合させることが可能である。 In pcDNA-luc2, a non-nuclear localized luminescence gene was inserted between the restriction enzyme sites EcoRI and XhoI downstream of the CMDNA promoter of pcDNA3.1 (+). The non-nuclear localized luminescent gene was amplified by a PCR reaction using pGL4.14 as a template and a primer ERI_GL4Fw (SEQ ID NO: 4) having the following sequence and the above-described primer Sal_GL4Rev (SEQ ID NO: 2). The PCR reaction product was digested with restriction enzymes EcoRI and SalI, and a non-nuclear localized luminescent gene was inserted into pcDNA3.1 (+). The overhanging end of DNA generated by digestion with XhoI and the overhanging end of DNA generated by digestion with SalI can be combined by a general DNA ligase reaction.
 pcDNA-luc2NLS3では、pcDNA3.1(+)のCMVプロモーターの下流にある制限酵素サイトEcoRI及びXhoIの間に、核局在型発光遺伝子を挿入した。核局在型発光遺伝子は、pGL4.14を鋳型とし、上述のプライマーERI_GL4Fw(配列番号4)とプライマーSalNLS3GL4Rev(配列番号3)とを用いたPCR反応によって増幅した。PCR反応産物を、制限酵素EcoRI及びSalIで消化し、非核局在型発光遺伝子をpcDNA3.1(+)に挿入した。XhoIの消化によって生じたDNAの突出末端とSalIの消化によって生じたDNAの突出末端は、一般的なDNAリガーゼ反応によって結合させることが可能である。 In pcDNA-luc2NLS3, a nuclear-localized luminescent gene was inserted between the restriction enzyme sites EcoRI and XhoI downstream of the CMV promoter of pcDNA3.1 (+). The nuclear localization type luminescent gene was amplified by PCR reaction using pGL4.14 as a template and the primer ERI_GL4Fw (SEQ ID NO: 4) and the primer SalNLS3GL4Rev (SEQ ID NO: 3). The PCR reaction product was digested with restriction enzymes EcoRI and SalI, and a non-nuclear localized luminescent gene was inserted into pcDNA3.1 (+). The overhanging end of DNA generated by digestion with XhoI and the overhanging end of DNA generated by digestion with SalI can be combined by a general DNA ligase reaction.
 ERI_GL4Fw:AATGGAATTCATGGAAGATGCCAAAAACATTAA(配列番号4) ERI_GL4Fw: AATGGAATTCATGGAAGATGCCAAAAACATTAA (SEQ ID NO: 4)
 2.1.1.2. pGL4.14-NRとpGL4.14N-NRとの作製
 核局在型発光遺伝子と非核局在型発光遺伝子とを用いたレポーターアッセイをHela細胞を用いて行うために、2種類のプラスミドを作製した。1つは、Hela細胞内で非核局在型発光遺伝子が発現するプラスミドpGL4.14-NRである。もう1つは、Hela細胞内で核局在型発光遺伝子が発現するプラスミドpGL4.14N-NRである。いずれのプラスミドも、pGL4.14(Promega)のMultiple Cloning Siteに存在する制限酵素サイトに発光遺伝子を組み込むことで作製した。
2.1.1.2. Preparation of pGL4.14-NR and pGL4.14N-NR To perform a reporter assay using a nuclear-localized luminescent gene and a non-nuclear-localized luminescent gene using Hela cells, two types were used. A plasmid was prepared. One is the plasmid pGL4.14-NR that expresses a non-nuclear localized luminescent gene in Hela cells. The other is the plasmid pGL4.14N-NR, in which the nuclear localized luminescent gene is expressed in Hela cells. Both plasmids were prepared by incorporating a luminescent gene into a restriction enzyme site present in the Multiple Cloning Site of pGL4.14 (Promega).
 図20は、非核局在型の発光遺伝子を用いたプラスミドpGL4.14-NRの領域拡大図を示す。pGL4.14-NRには、NF-κB response elementとその下流のルシフェラーゼの遺伝子(luc2)とが挿入されている。図21は、核局在型の発光遺伝子を用いたプラスミドpGL4.14N-NRの領域拡大図を示す。pGL4.14N-NRには、NF-κB response elementとその下流のC末端に核局在シグナル(nuclear localization signal; NLS)が3つ連なった配列が付加されたルシフェラーゼの遺伝子(luc2-NLS3)とが挿入されている。 FIG. 20 shows an enlarged view of the region of plasmid pGL4.14-NR using a non-nuclear localized luminescent gene. pGL4.14-NR contains an NF-κB response element and a downstream luciferase gene (luc2). FIG. 21 is an enlarged view of the region of plasmid pGL4.14N-NR using a nuclear-localized luminescent gene. pGL4.14N-NR has a luciferase gene (luc2-NLS3) with a NF-κB response element and a sequence of three nuclear localization signals (NLS) connected to the downstream C-terminus. Has been inserted.
 pGL4.14-NRの作製では、pGL4.14の発光遺伝子の上流にある制限酵素サイトKpnI及びHindIIIの間に、NF-κB response elementを挿入した。NF-κB response elementは、NFkB(1) Luciferase Reporter Vector(Panomics)をKpnI及びHindIIIで消化して取り出した約110 bpの配列を利用した。 In the preparation of pGL4.14-NR, an NF-κB response element was inserted between the restriction enzyme sites KpnI and HindIII upstream of the luminescent gene of pGL4.14. The NF-κB response element used a sequence of about 110 bp obtained by digesting NFkB (1) Luciferase Reporter Vector (Panomics) with KpnI and HindIII.
 pGL4.14N-NRの作製では、初めにpGL4.14の発光遺伝子を核局在シグナルを付加させた発光遺伝子に入れ替えた。入れ替えは制限酵素のHindIIIとFseIの認識配列の間で行った。核局在シグナルを付加させた発光遺伝子はpcDNA-luc2NLS3を鋳型とし、下記の配列を有するプライマーHinGL4.14Fw(配列番号5)とプライマーFseIXbaNLS3GL4Rev(配列番号6)とを用いたPCR反応によって増幅した。PCR反応産物を、制限酵素HindIII及びFseIで消化し、核局在型発光遺伝子をpGL4.14に挿入した。続いて、発光遺伝子の上流にある制限酵素サイトKpnI及びHindIIIの間に、NF-κB response elementを挿入した。NF-κB response elementは、NFkB(1) Luciferase Reporter VectorをKpnI及びHindIIIで消化して取り出した約110 bpの配列を利用した。 In the production of pGL4.14N-NR, first, the luminescent gene of pGL4.14 was replaced with a luminescent gene to which a nuclear localization signal was added. Replacement was performed between the recognition sequences of restriction enzymes HindIII and FseI. The luminescent gene to which the nuclear localization signal was added was amplified by PCR reaction using pcDNA-luc2NLS3 as a template and primer HinGL4.14Fw (SEQ ID NO: 5) having the following sequence and primer FseIXbaNLS3GL4Rev (SEQ ID NO: 6). The PCR reaction product was digested with restriction enzymes HindIII and FseI, and the nuclear localized luminescent gene was inserted into pGL4.14. Subsequently, NF-κB response element was inserted between restriction enzyme sites KpnI and HindIII upstream of the luminescent gene. The NF-κB response element used a sequence of about 110 bp obtained by digesting NFkB (1) Luciferase Reporter で Vector with KpnI and HindIII.
 HinGL4.14Fw:GGCCAAGCTTGGCAATCCGGTACTGTTGGTAAAGCCACCATGGAAGATGCCAAAAACATTAA(配列番号5)
 FseIXbaNLS3GL4Rev:AAGCGGCCGGCCGCCCCGACTCTAGAAACTCGACTATACCTTTCTCTT(配列番号6)
HinGL4.14Fw: GGCCAAGCTTGGCAATCCGGTACTGTTGGTAAAGCCACCATGGAAGATGCCAAAAACATTAA (SEQ ID NO: 5)
FseIXbaNLS3GL4Rev: AAGCGGCCGGCCGCCCCGACTCTAGAAACTCGACTATACCTTTCTCTT (SEQ ID NO: 6)
 2.1.2. Hela細胞の培養、遺伝子導入、安定発現株の作製
 Hela細胞の培養は、DMEM(Sigma-Aldrich)に10% FBS(SERANA)と1% ペニシリン-ストレプトマイシン-アンホテリシンB混合溶液(Antibiotic-Antimycotic, 100X, カタログ番号:15240062)(Thermo Fisher Scientific)を添加した培地で行った。
2.1.2. Culture of Hela cells, gene transfer, and generation of stable expression strain Hela cells were cultured in DMEM (Sigma-Aldrich) with 10% FBS (SERANA) and 1% penicillin-streptomycin-amphotericin B mixed solution (Antibiotic- Antimycotic, 100X, catalog number: 15240062) (Thermo Fisher Scientific).
 遺伝子の導入には、FuGene HD(Promega)を利用した。実験プロトコルは、Promegaのウェブサイトにあるプロトコルデータベース(http://www.promega.com/techserv/tools/FugeneHdTool/)において、Cell line: Hela細胞、Plate tyoe: 35mm dishで検索される結果(参考文献3)の通りである。 For gene introduction, FuGene® HD (Promega) was used. The experimental protocol is the result of searching for Cell デ ー タ ベ ー ス line: httpHela cells and Plate tyoe: 35mm dish in the protocol database (http://www.promega.com/techserv/tools/FugeneHdTool/) on the Promega website (reference) Reference 3).
 非核局在型発光遺伝子の安定発現株の作製には、pcDNA-luc2を用いた。核局在型発光遺伝子の安定発現株の作製には、pcDNA-luc2NLS3を用いた。それぞれ、遺伝子導入後のHela細胞を最終濃度が625 μg/mlとなるようにGeneticin(Thermo Fisher Scientific)を添加した培地で選択し、限界希釈法でクローニングすることによって、安定発現株を得た。 PcDNA-luc2 was used for the production of a stable expression strain of a non-nuclear localized luminescent gene. PcDNA-luc2NLS3 was used for the production of a stable expression strain of a nuclear-localized luminescent gene. Respectively expressing strains were obtained by selecting the Hela cells after gene introduction in a medium supplemented with Geneticin (Thermo Fisher Fisher Scientific) to a final concentration of 625 μg / ml and cloning by limiting dilution.
 2.1.3. Hela細胞の積層化サンプルの作製
 非核局在型発光遺伝子又は核局在型発光遺伝子の安定発現株の積層化サンプルは、UpCell(セルシード)及びCellShifter(セルシード)を用いて作製した。実験プロトコルは、セルシードのカタログ(http://www.cellseed.com/product/img/CellSeed_New_Brochure01.pdf)(参考文献4)の9ページに記載の通りである。
2.1.3. Preparation of Hela cell layered sample A layered sample of a non-nuclear localized luminescent gene or a stable expression strain of a nuclear localized luminescent gene was prepared using UpCell (Cell Seed) and CellShifter (Cell Seed). The experimental protocol is as described on page 9 of the cell seed catalog (http://www.cellseed.com/product/img/CellSeed_New_Brochure01.pdf) (reference document 4).
 2.1.4. Hela細胞の積層化サンプルの観察
 積層化サンプルについては、積層後に1日間培養した後に、培地をDMEMに1 mMのD-luciferinを添加した培地に交換した。培地交換後、LV200(オリンパス)で100倍の対物レンズUPlanFL N 100x(オリンパス)を用いて、積層化サンプルの撮影を行った。画像の取得には、EM-CCDカメラImagEM(C9100-13)(浜松ホトニクス)を用いた。発光観察では、EM-CCD読み出しモードを用い、露出時間は5 sから10 sまでの間に設定し、binning 1x1に設定した。
2.1.4. Observation of stacked samples of Hela cells For stacked samples, after culturing for 1 day after stacking, the medium was replaced with a medium in which 1 mM D-luciferin was added to DMEM. After exchanging the culture medium, the laminated sample was photographed using an objective lens UPlanFL N 100x (Olympus) of 100 magnification with LV200 (Olympus). An EM-CCD camera ImagEM (C9100-13) (Hamamatsu Photonics) was used for image acquisition. In luminescence observation, the EM-CCD readout mode was used, and the exposure time was set between 5 s and 10 s and binning 1x1.
 2.1.5. Hela細胞の単層培養時の発光シグナルの観察とシグナル強度の定量評価
 核局在型発光遺伝子を発現させたHela細胞及び非核局在型発光遺伝子を発現させたHela細胞を用いて、発光画像の強度比較を行った。pcDNA-luc2又はpcDNA-luc2NLS3の導入を行った後約24時間後の細胞を用いた。また、pGL4.14-NR又はpGL4.14N-NRの導入を行った後約4時間後の細胞を用いた。LV200(オリンパス)で100倍の対物レンズUPlanFL N 100x(オリンパス)を用いて撮像した。画像の取得には、EM-CCDカメラImagEM(C9100-13)(浜松ホトニクス)を用いた。発光観察では、EM-CCD読み出しモードを用い、露出時間は10 sに設定し、binning 1x1に設定した。
2.1.5. Observation of luminescence signal and quantitative evaluation of signal intensity during monolayer culture of Hela cells Using Hela cells expressing nuclear-localized luminescent genes and Hela cells expressing non-nuclear-localized luminescent genes The intensity of the luminescent images was compared. Cells about 24 hours after introduction of pcDNA-luc2 or pcDNA-luc2NLS3 were used. In addition, cells about 4 hours after introduction of pGL4.14-NR or pGL4.14N-NR were used. Images were taken with an LV200 (Olympus) 100X objective lens UPlanFL N 100x (Olympus). An EM-CCD camera ImagEM (C9100-13) (Hamamatsu Photonics) was used for image acquisition. In luminescence observation, EM-CCD readout mode was used, exposure time was set to 10 s, and binning 1x1.
 それぞれの発光画像上において、核由来の発光シグナルを示す領域と細胞全体に由来する発光シグナルを示す領域を約60領域ずつ選び出し、発光シグナルの強度分布をt検定により統計解析した。 On each luminescent image, about 60 regions each showing a luminescence signal derived from the nucleus and a luminescence signal derived from the whole cell were selected, and the intensity distribution of the luminescence signal was statistically analyzed by t-test.
 2.2. 結果及び考察
 2.2.1. Hela細胞の積層化サンプルの観察
 核局在型のルシフェラーゼLuc-NLS3を発現させたHela細胞の積層化サンプルを、倒立型の発光イメージングシステムLV200(対物レンズ100x)で観察した結果を図22に示す。図22において、左図は明視野観察で取得された明視野像を示し、右図は発光観察で取得された発光像を示す。図22に示すように、核局在型のルシフェラーゼLuc-NLS3を発現させたHela細胞の積層化サンプルでは、細胞ごとに発光シグナルを個別に認識できた。
2.2. Results and discussion 2.2.1. Observation of stacked samples of Hela cells Stacked samples of Hela cells expressing nuclear-localized luciferase Luc-NLS3, inverted luminescence imaging system LV200 (objective lens 100x) The result observed in FIG. 22 is shown in FIG. In FIG. 22, the left figure shows the bright field image acquired by bright field observation, and the right figure shows the luminescence image acquired by light emission observation. As shown in FIG. 22, in the laminated sample of Hela cells in which the nuclear localization type luciferase Luc-NLS3 was expressed, the luminescence signal could be recognized individually for each cell.
 比較例として、非核局在型のルシフェラーゼLucを発現させたHela細胞の積層化サンプルを、倒立型の発光イメージングシステムLV200(対物レンズ100x)で観察した結果を図23に示す。図23において、左図は明視野観察で取得された明視野像を示し、右図は発光観察で取得された発光像を示す。図23に示すように、非核局在型のルシフェラーゼLucを発現させたHela細胞の積層化サンプルでは、細胞ごとに発光シグナルを認識することは困難であった。 As a comparative example, FIG. 23 shows the result of observing a laminated sample of Hela cells expressing non-nuclear localized luciferase Luc with an inverted luminescence imaging system LV200 (objective lens 100x). In FIG. 23, the left figure shows a bright field image acquired by bright field observation, and the right figure shows a light emission image acquired by light emission observation. As shown in FIG. 23, it was difficult to recognize a luminescence signal for each cell in a stacked sample of Hela cells in which non-nuclear localized luciferase Luc was expressed.
 2.2.2. Hela細胞の単層培養時の発光シグナルの観察とシグナル強度の定量評価
 Hela細胞の単層培養サンプルの発光を、倒立型の発光イメージングシステムLV200(対物レンズ100x)で観察した結果を図24及び図25に示す。図24は、pcDNA-luc2NLS3を用いて核局在型のルシフェラーゼLuc-NLS3を発現させた細胞の発光画像である。図25は、pcDNA-luc2を用いて非核局在型のルシフェラーゼLucを発現させた細胞の発光画像である。得られた画像において、図24及び図25に四角形で示すように、細胞核内の領域に面積が等しい関心領域(region of interest; ROI)を設定した。
2.2.2. Observation of luminescence signal in Hela cell monolayer culture and quantitative evaluation of signal intensity The luminescence of Hela cell monolayer culture sample was observed with inverted luminescence imaging system LV200 (objective lens 100x). It shows in FIG.24 and FIG.25. FIG. 24 is a luminescence image of a cell in which nuclear localization type luciferase Luc-NLS3 was expressed using pcDNA-luc2NLS3. FIG. 25 is a luminescence image of a cell in which non-nuclear localized luciferase Luc was expressed using pcDNA-luc2. In the obtained image, as shown by a square in FIGS. 24 and 25, a region of interest (ROI) having the same area as the region in the cell nucleus was set.
 pcDNA-luc2NLS3を用いて核局在型のルシフェラーゼLuc-NLS3を発現させた細胞各々の発光強度を図26に示す。各点が、1つの細胞の発光強度を示す。同様に、pcDNA-luc2を用いて非核局在型のルシフェラーゼLucを発現させた細胞各々の発光強度を図27に示す。 FIG. 26 shows the luminescence intensity of each of the cells in which the nuclear localized luciferase Luc-NLS3 was expressed using pcDNA-luc2NLS3. Each point represents the luminescence intensity of one cell. Similarly, FIG. 27 shows the luminescence intensity of each cell in which non-nuclear localized luciferase Luc was expressed using pcDNA-luc2.
 図26及び図27に示す発光シグナルの強度分布をt検定により統計解析した。その結果、1~5%の水準の有意性をもって、核局在型のルシフェラーゼLuc-NLS3の方が、非核局在型のルシフェラーゼLucよりも発光強度が強いことが明らかになった。 The intensity distribution of the luminescent signal shown in FIGS. 26 and 27 was statistically analyzed by t-test. As a result, it was clarified that the nuclear-localized luciferase Luc-NLS3 has a higher emission intensity than the non-nuclear-localized luciferase Luc with a significance level of 1 to 5%.
 核局在型のルシフェラーゼLuc-NLS3を利用して発光タンパク質が発現する領域を細胞核に限定することで、発光タンパク質の密度が高くなり、発光シグナルの凝縮(濃縮)作用によって発光シグナル強度が増強すると考えられる。このことは、核局在型のルシフェラーゼLuc-NLS3を利用することで、発光画像を用いた定量的な解析の精度を向上させることができることを示している。 By limiting the region where the photoprotein is expressed to the cell nucleus using the nuclear-localized luciferase Luc-NLS3, the density of the photoprotein increases, and the luminescence signal intensity is enhanced by the condensation (concentration) of the luminescent signal. Conceivable. This indicates that the accuracy of quantitative analysis using a luminescence image can be improved by using the nuclear localization type luciferase Luc-NLS3.
 3. レポーターアッセイの定量評価
 3.1. 方法
 3.1.1. レポーターアッセイの定量評価
 NF-κB response elementの下流に非核局在型の発光遺伝子luc2が配置されたpGL4.14-NR、又はNF-κB response elementの下流に核局在型の発光遺伝子luc2-NLS3が配置されたpGL4.14N-NRをHela細胞に導入した。pGL4.14-NR又はpGL4.14N-NRの導入を行ってから4時間後のHela細胞の培地を、DMEMに0.5 mMのD-luciferinを添加した培地に交換した。
3. Quantitative evaluation of reporter assay 3.1. Method 3.1.1. Quantitative evaluation of reporter assay pGL4.14-NR or NF-κB response with non-nuclear localized luminescent gene luc2 placed downstream of NF-κB response element pGL4.14N-NR in which a nuclear-localized luminescence gene luc2-NLS3 is arranged downstream of the element was introduced into Hela cells. The medium of Hela cells 4 hours after the introduction of pGL4.14-NR or pGL4.14N-NR was replaced with a medium in which 0.5 mM D-luciferin was added to DMEM.
 培地交換後、培養容器をルミノメーター クロノス(アトー)にセットして発光シグナルの経時変化を記録した。各データポイントの発光シグナルは、10秒間に得られたシグナルの和とし、5分ごとに計測を行った。 After exchanging the medium, the culture vessel was set in a luminometer / Kronos (Ato), and the change over time of the luminescence signal was recorded. The luminescence signal at each data point was the sum of the signals obtained during 10 seconds and was measured every 5 minutes.
 培地交換から約5時間後に、NF-κBを活性化させるPMA(終濃度30 ng/ml)を添加し、さらに17時間計測を続けた。また、対照実験として、培地交換から約5時間後に、DMSO(終濃度0.03%)を添加し、さらに17時間計測を続けた。 Approx. 5 hours after medium exchange, PMA (final concentration 30 μng / ml) for activating NF-κB was added, and measurement was continued for another 17 hours. As a control experiment, DMSO (final concentration 0.03%) was added about 5 hours after the medium exchange, and measurement was continued for another 17 hours.
 3.1.2. レポーターアッセイ時の発光シグナルの観察
 pGL4.14N-NRを導入したHela細胞の培地を、DMEMに0.5 mM D-luciferinを添加した培地に交換した。培地交換後、LV200(オリンパス)で40倍の対物レンズUPlanFL N 40x(オリンパス)を用いて撮像した。培地交換から約6時間後に最終濃度が30 ng/mlとなるようにPMAを添加し、約8時間連続で観察を行った。
3.1.2. Observation of luminescence signal during reporter assay The medium of Hela cells into which pGL4.14N-NR was introduced was replaced with a medium in which 0.5 mM D-luciferin was added to DMEM. After the medium was changed, images were taken with LV200 (Olympus) using a 40 × objective lens UPlanFL N 40x (Olympus). About 6 hours after the medium exchange, PMA was added so that the final concentration was 30 ng / ml, and observation was performed continuously for about 8 hours.
 3.2. 結果及び考察
 3.2.1. ルミノメーターによる発光強度の変化の測定
 pGL4.14-NR又はpGL4.14N-NRを導入したHela細胞にPMA又はDMSOを添加した際の時間経過に対する発光強度の変化の測定結果を図28に示す。実線は、pGL4.14-NRを導入したHela細胞にPMAを添加した結果を示し、一点鎖線はpGL4.14-NRを導入したHela細胞にDMSOを添加した結果を示す。破線は、pGL4.14N-NRを導入したHela細胞にPMAを添加した結果を示し、点線はpGL4.14N-NRを導入したHela細胞にDMSOを添加した結果を示す。矢印Eで示した計測開始から263.7 min後にPMA又はDMSOを添加した。
3.2. Results and discussion 3.2.1. Measurement of changes in luminescence intensity with a luminometer Changes in luminescence intensity over time when PMA or DMSO was added to Hela cells transfected with pGL4.14-NR or pGL4.14N-NR The measurement results are shown in FIG. The solid line shows the result of adding PMA to Hela cells into which pGL4.14-NR has been introduced, and the alternate long and short dash line shows the result of adding DMSO to Hela cells into which pGL4.14-NR has been introduced. The broken line shows the result of adding PMA to Hela cells into which pGL4.14N-NR has been introduced, and the dotted line shows the result of adding DMSO to Hela cells into which pGL4.14N-NR has been introduced. PMA or DMSO was added 263.7 min after the start of measurement indicated by arrow E.
 図28に示すとおり、非核局在型の発光遺伝子luc2を含むpGL4.14-NRを導入したHela細胞においても、核局在型の発光遺伝子luc2-NLS3を含むpGL4.14N-NRを導入したHela細胞においても、PMAを添加した後に、同様に発光強度が上昇することが明らかになった。発光強度は、PMA添加後約7時間で最高になり、その後減少した。一方、pGL4.14-NRを導入したHela細胞においても、pGL4.14N-NRを導入したHela細胞においても、DMSOを添加した際に発光強度はほとんど変化しなかった。 As shown in FIG. 28, even in the Hela cells into which pGL4.14-NR containing the non-nuclear localized luminescence gene luc2 was introduced, Hela into which pGL4.14N-NR containing the nuclear luminescent gene luc2-NLS3 was introduced. It was also clarified that the luminescence intensity similarly increased in cells after addition of PMA. The emission intensity reached its maximum at about 7 hours after PMA addition, and then decreased. On the other hand, in both Hela cells into which pGL4.14-NR was introduced and Hela cells into which pGL4.14N-NR was introduced, the luminescence intensity hardly changed when DMSO was added.
 3.2.2. LV200による発光強度の変化の観察
 核局在型の発光遺伝子luc2-NLS3を含むpGL4.14N-NRを導入したHela細胞のNF-κBのレポーターアッセイにおいて、倒立型の発光イメージングシステムLV200で発光の状況を確認した。LV200(対物レンズ40x)による観察結果を図29に示す。図29において、左図は明視野観察で取得された明視野像を示し、右図は発光観察で取得された発光像を示す。各細胞において、PMA添加後5-8時間で発光強度がピークを示すことが確認できた。
3.2.2. Observation of changes in luminescence intensity with LV200 In the LV-κB reporter assay of Hela cells transfected with pGL4.14N-NR containing the nuclear-localized luminescence gene luc2-NLS3, an inverted luminescence imaging system LV200 The light emission status was confirmed with. The observation result by LV200 (objective lens 40x) is shown in FIG. In FIG. 29, the left figure shows a bright field image acquired by bright field observation, and the right figure shows a light emission image acquired by light emission observation. In each cell, it was confirmed that the luminescence intensity showed a peak 5-8 hours after the addition of PMA.
 以上のとおり、核局在型のルシフェラーゼLuc-NLS3は、レポーターアッセイにも用いられうることが確認できた。 As described above, it was confirmed that the nuclear-localized luciferase Luc-NLS3 can also be used in a reporter assay.
 上記実施例では、核局在型の発光遺伝子を用いたプラスミドpGL4.14N-NRを例にしたが、他のresponse elementとその下流のC末端に核局在シグナル(nuclear localization signal; NLS)が付加されたルシフェラーゼの遺伝子が挿入されたプラスミドであってもよく、NLSの付加の態様も種々変更してよい。また、細胞核だけでなく、他のオルガネラ(例えばミトコンドリア)も発光を生じうる物質で標識することで、発光強度を意図的に高めることも可能である。 In the above example, the plasmid pGL4.14N-NR using a nuclear-localized luminescent gene was used as an example. However, there is a nuclear localization signal (NLS) at the other response element and its downstream C-terminal. A plasmid into which the gene for added luciferase is inserted may be used, and the mode of addition of NLS may be variously changed. Further, not only the cell nucleus but also other organelles (for example, mitochondria) can be intentionally increased in luminescence intensity by labeling with a substance capable of producing luminescence.

Claims (9)

  1.  多層状態の細胞群に関する分子動態を可視化する方法であって、
     可視化の対象としての個々の細胞における細胞内の部分領域に対し発光シグナルを生じうる物質が局在状態で導入された状態で、
     前記細胞群を含む視野において前記発光シグナルに係る撮影を行う可視化方法。
    A method for visualizing the molecular dynamics of a multi-layered cell group,
    In a state in which a substance capable of generating a luminescent signal is introduced in a localized state in a partial region in each individual cell as a visualization target,
    A visualization method for performing imaging related to the luminescent signal in a visual field including the cell group.
  2.  前記部分領域は、前記細胞の細胞膜から3次元的に離間した位置に在る、請求項1に記載の可視化方法。 The visualization method according to claim 1, wherein the partial region is located at a position three-dimensionally separated from the cell membrane of the cell.
  3.  前記撮影は、前記細胞群の厚さ方向の一部の層に対し焦点を合わせた状態で行う、請求項1又は2に記載の可視化方法。 The visualization method according to claim 1 or 2, wherein the imaging is performed in a state in which a part of layers in the thickness direction of the cell group is focused.
  4.  前記部分領域は、細胞内小器官又は合成カプセルである、請求項1に記載の可視化方法。 The visualization method according to claim 1, wherein the partial region is an intracellular organelle or a synthetic capsule.
  5.  前記部分領域は細胞核であり、
     前記発光シグナルを生じうる物質は核全体を標識する、
     請求項4に記載の可視化方法。
    The partial region is a cell nucleus;
    The substance capable of producing a luminescent signal labels the whole nucleus;
    The visualization method according to claim 4.
  6.  前記細胞群は、細胞質間の連絡がある立体的な生物組織である、請求項1乃至5のうち何れか1項に記載の可視化方法。 The visualization method according to any one of claims 1 to 5, wherein the cell group is a three-dimensional biological tissue having communication between cytoplasms.
  7.  前記発光シグナルを生じうる物質は、前記分子動態を可視化する対象であるタンパク質をコードする遺伝子とともに発現する発光遺伝子によってコードされた発光タンパク質であり、
     前記発光シグナルは、前記発光タンパク質と基質との発光反応によって発生する生物発光シグナルである、
     請求項1乃至6のうち何れか1項に記載の可視化方法。
    The substance capable of generating a luminescent signal is a luminescent protein encoded by a luminescent gene expressed together with a gene encoding a protein for which the molecular dynamics is to be visualized,
    The luminescent signal is a bioluminescent signal generated by a luminescent reaction between the photoprotein and a substrate.
    The visualization method according to any one of claims 1 to 6.
  8.  前記発光シグナルを生じうる物質はルシフェラーゼである、請求項7に記載の可視化方法。 The visualization method according to claim 7, wherein the substance capable of generating a luminescence signal is luciferase.
  9.  前記発光シグナルを生じうる物質は、遺伝子発現を介さずに細胞外から導入した物質である、請求項1乃至6のうち何れか1項に記載の可視化方法。 The visualization method according to any one of claims 1 to 6, wherein the substance capable of generating a luminescence signal is a substance introduced from outside the cell without involving gene expression.
PCT/JP2016/066049 2016-05-31 2016-05-31 Method for visualizing molecular dynamics WO2017208359A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/066049 WO2017208359A1 (en) 2016-05-31 2016-05-31 Method for visualizing molecular dynamics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/066049 WO2017208359A1 (en) 2016-05-31 2016-05-31 Method for visualizing molecular dynamics

Publications (1)

Publication Number Publication Date
WO2017208359A1 true WO2017208359A1 (en) 2017-12-07

Family

ID=60478257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066049 WO2017208359A1 (en) 2016-05-31 2016-05-31 Method for visualizing molecular dynamics

Country Status (1)

Country Link
WO (1) WO2017208359A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065848A (en) * 2007-09-10 2009-04-02 Olympus Corp Method for analyzing expression of gene and system for analyzing expression of gene
JP2013253983A (en) * 2013-07-09 2013-12-19 Olympus Corp Method and device for analyzing weak light sample

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065848A (en) * 2007-09-10 2009-04-02 Olympus Corp Method for analyzing expression of gene and system for analyzing expression of gene
JP2013253983A (en) * 2013-07-09 2013-12-19 Olympus Corp Method and device for analyzing weak light sample

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NISHIOKA N. ET AL.: "The Hippo Signaling Pathway Components Lats and Yap Pattern Tead4 Activity to Distinguish Mouse Trophectoderm from Inner Cell Mass", DEVELOPMENTAL CELL, vol. 16, no. 3, 17 March 2009 (2009-03-17), pages 398 - 410, XP055600484, ISSN: 1534-5807 *

Similar Documents

Publication Publication Date Title
Gronnier et al. Divide and rule: plant plasma membrane organization
Warner et al. An optical clearing technique for plant tissues allowing deep imaging and compatible with fluorescence microscopy
Joensuu et al. Visualizing endocytic recycling and trafficking in live neurons by subdiffractional tracking of internalized molecules
JP5953293B2 (en) Long-term monitoring and analysis methods using photoproteins
Duncan et al. X-ray microscopy enables multiscale high-resolution 3D imaging of plant cells, tissues, and organs
Colin et al. Imaging the living plant cell: from probes to quantification
Marion et al. Multiscale and multimodal approaches to study autophagy in model plants
Hanson et al. Streamlined embedding of cell monolayers on gridded glass-bottom imaging dishes for correlative light and electron microscopy
Kitagawa et al. Quantitative imaging of directional transport through plasmodesmata in moss protonemata via single-cell photoconversion of Dendra2
Jelínková et al. Using FM dyes to study endomembranes and their dynamics in plants and cell suspensions
Baroux et al. Technical review: microscopy and image processing tools to analyze plant chromatin: practical considerations
Ekanayake et al. Imaging and analysis of mitochondrial dynamics in living cells
von Wangenheim et al. Live imaging of Arabidopsis development
WO2017208359A1 (en) Method for visualizing molecular dynamics
Malínská et al. The use of FM dyes to analyze plant endocytosis
Irani et al. In vivo imaging of brassinosteroid endocytosis in Arabidopsis
Jones et al. Visualizing the movement of Magnaporthe oryzae effector proteins in rice cells during infection
Molina-Santiago et al. A noninvasive method for time-lapse imaging of microbial interactions and colony dynamics
JP2007155558A (en) Feeble light analysis method
Groh et al. Structure–function analysis of genetically defined neuronal populations
Luo et al. Quantitative microscopic analysis of plasma membrane receptor dynamics in living plant cells
Higuchi-Sanabria et al. Live-cell imaging of mitochondria and the actin cytoskeleton in budding yeast
Kommnick et al. Correlative light and scanning electron microscopy to study interactions of Salmonella enterica with polarized epithelial cell monolayers
Kikukawa et al. Metal-nano-ink coating for monitoring and quantification of cotyledon epidermal cell morphogenesis
JP4839073B2 (en) Low light analysis method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16903987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP