WO2017206640A1 - Bluetooth ceiling lamp - Google Patents

Bluetooth ceiling lamp Download PDF

Info

Publication number
WO2017206640A1
WO2017206640A1 PCT/CN2017/082316 CN2017082316W WO2017206640A1 WO 2017206640 A1 WO2017206640 A1 WO 2017206640A1 CN 2017082316 W CN2017082316 W CN 2017082316W WO 2017206640 A1 WO2017206640 A1 WO 2017206640A1
Authority
WO
WIPO (PCT)
Prior art keywords
bluetooth
coupled
module
ceiling
ceiling light
Prior art date
Application number
PCT/CN2017/082316
Other languages
French (fr)
Chinese (zh)
Inventor
张文彬
陈辉萍
郭光立
黄新
彭智光
Original Assignee
深圳佳比泰智能照明股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳佳比泰智能照明股份有限公司 filed Critical 深圳佳比泰智能照明股份有限公司
Publication of WO2017206640A1 publication Critical patent/WO2017206640A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/19Controlling the light source by remote control via wireless transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/04Lighting devices intended for fixed installation intended only for mounting on a ceiling or the like overhead structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/11Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present invention relates to the field of Bluetooth luminaires, and in particular, to a Bluetooth ceiling light.
  • the object of the present invention is to provide a Bluetooth ceiling light, which solves the problem that the lighting fixture in the prior art is difficult to realize remote diversification operation, and there is a technical bottleneck in the lighting function and the Bluetooth communication function collection.
  • the present invention provides a Bluetooth ceiling light, including:
  • a Bluetooth mesh module for receiving an external control signal via Bluetooth, coupled to the control module;
  • a Bluetooth control circuit for controlling the light emitting unit, coupled to the control module and the light emitting unit
  • the method further includes:
  • a power drive module for connecting to the mains and providing direct current, coupled to the light emitting unit
  • a Bluetooth power supply module for stepping down the DC power of the power drive module is coupled to the power drive module and the Bluetooth control circuit.
  • the ceiling light housing assembly includes a ceiling light mask, a light panel, Ceiling lamp housing, circuit board, support plate, lower cover and ceiling lamp crimping cover;
  • the ceiling light mask is fastened to the front side of the ceiling light housing, and the light board is fixed between the ceiling light shell and the ceiling light mask;
  • the lower cover is mounted on the rear side of the ceiling lamp housing to form a receiving cavity, and the circuit board and the supporting plate are disposed in the receiving cavity;
  • the ceiling crimping cover is disposed on a sidewall of the lower cover
  • the light emitting unit is disposed in the light panel; the control module, the Bluetooth mesh module, and a Bluetooth control circuit are disposed in the circuit board.
  • the Bluetooth control circuit includes:
  • a first Bluetooth pad the first Bluetooth pad being coupled to a plurality of pins of the control module, and coupled to a Bluetooth power supply module;
  • a second Bluetooth pad the second Bluetooth pad being coupled to the light emitting unit, the plurality of MOS transistors being respectively coupled to the plurality of terminals of the second Bluetooth pad.
  • the light emitting unit includes a unit pad, a plurality of cool color temperature LED monochrome lamps, a plurality of warm color temperature LED monochrome lamps, and a plurality of RGB lamps;
  • Each RGB lamp includes an R lamp, a G lamp, and a B lamp;
  • the unit pad includes a plurality of cathode terminals and an anode terminal, the plurality of cathode terminals and the anode terminal are respectively coupled to the second Bluetooth pad; the plurality of cathode terminals are respectively coupled to the a plurality of cold color temperature LED monochrome lamps, a plurality of warm color temperature LED monochrome lamps, a plurality of R lamps, a plurality of G lamps, and one end of a plurality of B lamps; the anode terminal being coupled to the power driving module and coupled The other ends of the plurality of cool color temperature LED monochrome lamps, the plurality of warm color temperature LED monochrome lamps, the plurality of R lamps, the plurality of G lamps, and the plurality of B lamps.
  • the method further includes:
  • the radio frequency module is coupled to the control module.
  • the radio frequency module includes:
  • a radio frequency circuit coupled to the control module
  • the power driving module includes:
  • a DC output circuit coupled to the drive control circuit.
  • the Bluetooth power supply module includes:
  • a buck buck circuit coupled to the DC output circuit
  • a voltage stabilizing circuit coupled to the Bluetooth control circuit.
  • the ceiling light housing assembly further includes a first screw, a spring connector, a second screw, a spring member, a third screw, and a fourth screw; wherein:
  • the first screw fixes the light board to a front side of the ceiling light housing
  • the second screw fixes the spring connector to two sides of the ceiling lamp housing, and the spring connector is provided with the spring member;
  • the third screw fixes the support plate to a rear side of the circuit board
  • the fourth screw fixes the ceiling lamp crimping cover to the sidewall of the lower cover.
  • the invention has the beneficial effects that the blue light wireless control technology realizes the functions of remotely adjusting brightness, adjusting color, fixing color, music colorful, scene mode, etc. for the convenience of people's life, and increasing the diversity and interest of the smart home lighting. Chemical.
  • FIG. 1 is a block diagram of a Bluetooth ceiling light provided by the present invention.
  • FIG. 2 is a schematic diagram of connection of a control module provided by the present invention.
  • FIG. 3 is a schematic structural diagram of a Bluetooth control circuit provided by the present invention.
  • FIG. 4 is a schematic structural view of a light emitting unit provided by the present invention.
  • FIG. 5 is a schematic structural diagram of a power driving module according to the present invention.
  • FIG. 6 is a schematic structural diagram of a Bluetooth power supply module according to the present invention.
  • FIG. 7 is a schematic structural view of an ceiling lamp housing assembly provided by the present invention.
  • the present invention provides a Bluetooth ceiling light 100, the purpose of which is to enable free networking by using Bluetooth mes h control technology in the LED ceiling light, and remotely control the ceiling light by using a terminal intelligent controller, a remote controller, and the like. Dimming color, music and other functions, to meet the needs of different people, the operation is strong, the experience is good.
  • FIG. 1 is a block diagram of a Bluetooth ceiling light 100 according to the present invention.
  • the Bluetooth ceiling light 100 includes a ceiling light housing component 1, a control module 2, a Bluetooth mesh module 3, and a light emitting unit 4. , a Bluetooth control circuit 5, a power drive module 6, and a Bluetooth power supply module 7.
  • the control module 2 is disposed inside the ceiling lamp housing assembly 1.
  • a Bluetooth mesh module 3 for receiving an external control signal via Bluetooth is coupled to the control module 2.
  • the light emitting unit 4 is disposed inside the ceiling lamp housing assembly 1.
  • a Bluetooth control circuit 5 for controlling the light emitting unit 4 is coupled to the control module 2 and the light emitting unit 4.
  • a power drive module 6 for connecting to the mains and providing direct current is coupled to the lighting unit 4.
  • a Bluetooth power supply module 7 for stepping down the DC power of the power drive module 6 is coupled to the power supply drive module 6 and the Bluetooth control circuit 5.
  • FIG. 2 is a schematic diagram of the connection of the control module 2 provided by the present invention.
  • the control module 2 includes eight output pins and is connected to the RF module 8 and the Bluetooth mesh module 3.
  • Control module 2 preferably has a built-in 16KB data memory (SRAM) embedded in a 32-bit high-performance MCU and a maximum 48MHZ cesium clock signal.
  • SRAM 16KB data memory
  • the powerful memory function provides enough capacity to write control programs for a wide variety of control functions.
  • the radio frequency module 8 includes a radio frequency circuit 81 and a radio frequency antenna 82.
  • a radio frequency circuit 81 is coupled to the control mode Block 2; RF antenna 82 is coupled to the RF circuit 81.
  • FIG. 3 is a schematic structural diagram of a Bluetooth control circuit 5 according to the present invention.
  • the Bluetooth control circuit 5 includes a first Bluetooth pad 51, a plurality of MOS tubes 52, and a second Bluetooth pad 53.
  • the first Bluetooth pad 51 is coupled to a plurality of pins of the control module 2 and coupled to the Bluetooth power supply module 7; the first Bluetooth pad 51 also includes 8 terminals, which are respectively connected to the control module The 8 pins of 2, wherein the terminal 1 of the first Bluetooth pad 51 is also connected to the Bluetooth power supply module 7 to access the +3.3V voltage.
  • the plurality of MOS transistors 52 are respectively coupled to the plurality of terminals of the first Bluetooth pad 51, and the plurality of MOs
  • the S tube 52 is as shown in Fig. 3, Ql-Q5.
  • the second Bluetooth pad 53 is coupled to the light emitting unit 4, and the plurality of MOS transistors 52 are respectively coupled to a plurality of terminals of the second Bluetooth pad 53.
  • Q1-Q5 is connected to the terminal of the second Bluetooth pad 53 1-
  • Terminal block 6 is connected to power supply driver module 66 to access the operating voltage.
  • the circuit function of the Bluetooth control circuit 5 is: After the Bluetooth control circuit 5 is working, the internal MCU (ie, the control module 2) receives the instruction of the intelligent terminal device, and the control module 2 outputs the five-way PWM dimming color and The RGB signal controls the turn-off turns of the five MOSs Q1, Q2, Q3, Q4, and Q5.
  • the internal MCU ie, the control module 2
  • the control module 2 receives the instruction of the intelligent terminal device
  • the control module 2 outputs the five-way PWM dimming color and
  • the RGB signal controls the turn-off turns of the five MOSs Q1, Q2, Q3, Q4, and Q5.
  • FIG. 4 is a schematic structural diagram of a light emitting unit 4 according to the present invention.
  • the light emitting unit 4 includes a unit pad 41, a plurality of cool color temperature LED monochrome lamps 42, and a plurality of warm color temperature LED monochrome lamps. 43 and multiple RGB lights 44
  • Each RGB lamp 44 includes an R lamp 441, a G lamp 442, and a B lamp 443;
  • the unit pad 41 includes a plurality of cathode terminals 411 and an anode terminal 412, and the plurality of cathode terminals 411 and the anode Terminals 412 are respectively coupled to the second Bluetooth pads 53;
  • the plurality of cathode terminals 411 are respectively coupled to the plurality of cool color temperature LED monochrome lamps 42, a plurality of warm color temperature LED monochrome lamps 43, and a plurality of R lamps One end of a plurality of G lamps and a plurality of B lamps;
  • the anode terminal 412 is coupled to the power supply driving module 6 and coupled to the plurality of cool color temperature LED monochrome lamps 42 and a plurality of warm color temperature LED monochrome lamps 43.
  • the terminal 1-5 of the unit pad 41 is connected to the terminal 1-5 of the second Bluetooth pad 53, and the terminal 6 of the unit pad 41 is connected to the terminal 6 of the second Bluetooth pad 53 to be connected to the operating voltage. .
  • the drains of the five MOS transistors 52 are respectively connected to the cathodes of the ceiling lamp-loaded R lamp 441, G lamp 442, B lamp 443, cold color temperature LED monochrome lamp 42, and warm color temperature LED monochrome lamp 43.
  • the anode of the light-emitting unit 4 is directly connected to the output positive terminal of the power supply driving module 6, that is, to the terminal 6 of the unit pad 41.
  • Bluetooth control circuit 5 The operating state of each LED string is controlled by receiving an instruction of the smart terminal device, thereby controlling the color temperature change and the brightness change and the plurality of color changes of the output L ED to realize dimming and color adjustment.
  • the part of the circuit of the light-emitting unit 4 is mounted on the aluminum substrate, and then adhered to the heat sink of the ceiling lamp by using a viscous thermal conductive glue, and then uniformly illuminated by the matte cover and the lens.
  • the illuminating unit 4 is composed of a 6PIN RGB lamp bead of 3528 type and a single 0.2W lamp bead of white light 2835.
  • FIG. 5 is a schematic structural diagram of a power driving module 6 according to the present invention.
  • the power driving module 6 includes an AC input terminal 61, a rectifier circuit 62, a filter circuit 63, a driving control circuit 64, and a DC output circuit. 65.
  • the AC input terminal 61 is used to access 200-240V mains.
  • a rectifier circuit 62 is coupled to the AC input terminal 61.
  • a filter circuit 63 is coupled to the rectifier circuit 62.
  • a drive control circuit 64 is coupled to the filter circuit 63.
  • a DC output circuit 65 is coupled to the drive control circuit 64.
  • U1 in the drive control circuit 64 is an isolated package LED drive control IC of the integrated package, model number is FT838MBD
  • the circuit consisting of a stable voltage and current output for the post-stage circuit (ie, the DC output circuit 65).
  • the detailed working process is that after the entire power supply is turned on AC (AC) 220V mains, it is rectified by the bridge DB 1 (ie, the rectifier circuit 62), and then ⁇ -type filtering composed of Cl, C2, L1, because the drive control circuit 6 4
  • the internal integrated switch, the logic circuit inside the drive control circuit 64 controls the on and off of the switch, the transformer realizes the conversion of electromagnetic energy, and the stable voltage and current output are realized by the control of the drive control circuit 64.
  • FIG. 6 is a schematic structural diagram of a Bluetooth power supply module 7 according to the present invention.
  • the Bluetooth power supply module 7 includes a buck buck circuit 71 and a voltage stabilizing circuit 72.
  • a buck buck circuit 71 is coupled to the DC output circuit 65.
  • a voltage stabilizing circuit 72 is coupled to the Bluetooth control circuit 5.
  • the U3 model in the buck buck circuit 71 is SI3116, and the function of the buck buck circuit 71 is to buck the 20V voltage output from the power supply driving module 6 to a constant 3.3V voltage, and another 3.3V.
  • Zener diode ZD1 which provides more accurate power to the Bluetooth module.
  • the approximate working process of the circuit is as follows: When the 5 pin of U3 is powered on, U3 starts to work normally, and then the duty cycle is adjusted by the external voltage dividing resistor of the 3 pin FB pin. That is, the output voltage is regulated to be 3.3V.
  • D4 in the peripheral circuit of U3 is a freewheeling diode, and C12 electrolytic capacitor provides energy.
  • FIG. 7 is a schematic structural view of a ceiling lamp housing assembly 1 according to the present invention.
  • the ceiling lamp housing assembly 1 includes a ceiling lamp cover 101, a lamp panel 102, a ceiling lamp housing 103, and a circuit board 104. , a support plate 10 5 , a lower cover 106 , a ceiling lamp crimping cover 107 , a first screw 108 , a spring connector 109 , a second screw 110 , a spring member m , a third screw 112 , and a fourth screw 113 ;
  • the ceiling light mask 101 is fastened to the front side of the ceiling light housing 103, and the light board 102 is fixed between the ceiling light housing 103 and the ceiling light mask 101;
  • the lower cover 106 is mounted on the rear side of the ceiling lamp housing 103 to form a receiving cavity, and the circuit board 104 and the support plate 105 are disposed in the receiving cavity;
  • the ceiling crimping cover 107 is disposed on a sidewall of the lower cover 106;
  • the light emitting unit 4 is disposed in the light board 102; the control module 2, the Bluetooth mesh module 3, and the Bluetooth control circuit 5 are disposed in the circuit board 104.
  • the first screw 108 fixes the light board 102 to the front side of the ceiling lamp housing 103;
  • the second screw 110 is fixed to the two sides of the ceiling lamp housing 103, the spring connector 109 is provided with the spring member 111;
  • the third screw 112 fixes the support plate 105 to the rear side of the circuit board 104;
  • the fourth screw 113 fixes the ceiling lamp crimping cover 107 to the side wall of the lower cover 106.
  • the one or operations may constitute computer readable instructions stored on a computer readable medium that, when executed by an electronic device, will cause the computing device to perform the operations.
  • the order in which some or all of the operations are described should not be construed as implying that the operations must be sequential. Those skilled in the art will appreciate alternative rankings that have the benefit of this specification. Moreover, it should be understood that not all operations must be present in every embodiment provided herein.
  • the word "preferred” as used herein is intended to serve as an example, instance, or illustration. Any aspect or design described as “preferred” in the text is not necessarily to be construed as being more advantageous than other aspects or designs. Instead, the use of the word “preferred” is intended to present a concept in a specific manner.
  • the term “or” as used in the present application is intended to mean “or” or “excluding”. That is, unless otherwise specified or clear from the context, "X uses A or B” means naturally including any one of the permutations. That is, if X uses A; X uses B; or X uses both A and B, then "X uses A or B" is satisfied in any of the foregoing examples.
  • Each functional unit in the embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as separate products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

A Bluetooth ceiling lamp (100), comprising: a ceiling lamp housing assembly (1); a control module (2) provided in the ceiling lamp housing assembly (1); a Bluetooth mesh module (3) used for receiving an external control signal by means of Bluetooth and coupled with the control module (2); a light-emitting unit (4) provided in the ceiling lamp housing assembly (1); and a Bluetooth control circuit (5) used for controlling the light-emitting unit (4) and coupled with the control module (2) and the light-emitting unit (4). By means of Bluetooth wireless control technology, functions such as remote brightness adjustment, color adjustment, timing, music colorful illumination, and profiles of a ceiling lamp are implemented, thereby facilitating people's life and enhancing the diversity and the delights of intelligent home illumination.

Description

一种蓝牙天花灯 技术领域  Bluetooth ceiling light
[0001] 本发明涉及蓝牙灯具技术领域, 尤其涉及一种蓝牙天花灯。  [0001] The present invention relates to the field of Bluetooth luminaires, and in particular, to a Bluetooth ceiling light.
背景技术  Background technique
[0002] 随着 LED技术的普及, 越来越多的 LED照明灯具进入到人们的生活中。 目前 市场上的无线调光和调色温天花灯几乎都是无线射频控制技术, 这种控制技术 抗干扰能力弱, 组网不便, 可靠性一般, 不能实现情景模式和音乐炫彩等功能 。 而且现有技术中, 将灯的照明功能与蓝牙通讯功能集合一直存在技术瓶颈。 技术问题  [0002] With the popularity of LED technology, more and more LED lighting fixtures have entered people's lives. At present, wireless dimming and color temperature ceiling lamps on the market are almost all radio frequency control technologies. This control technology has weak anti-interference ability, inconvenient networking, and generally reliable performance, and cannot implement scene mode and music colorful functions. Moreover, in the prior art, there is always a technical bottleneck in the lighting function of the lamp and the Bluetooth communication function set. technical problem
[0003] 本发明的目的在于提供一种蓝牙天花灯, 解决现有技术中照明灯具难以实现远 程多样化操作, 照明功能与蓝牙通讯功能集合存在技术瓶颈的问题。  [0003] The object of the present invention is to provide a Bluetooth ceiling light, which solves the problem that the lighting fixture in the prior art is difficult to realize remote diversification operation, and there is a technical bottleneck in the lighting function and the Bluetooth communication function collection.
问题的解决方案  Problem solution
技术解决方案  Technical solution
[0004] 本发明的技术方案实现如下:  [0004] The technical solution of the present invention is implemented as follows:
[0005] 本发明提供一种蓝牙天花灯, 包括:  [0005] The present invention provides a Bluetooth ceiling light, including:
[0006] 天花灯壳体组件;  [0006] a ceiling light housing assembly;
[0007] 控制模块, 设置于所述天花灯壳体组件的内部;  [0007] a control module disposed inside the ceiling lamp housing assembly;
[0008] 用于通过蓝牙接收外部控制信号的蓝牙 mesh模块, 耦合至所述控制模块; [0008] a Bluetooth mesh module for receiving an external control signal via Bluetooth, coupled to the control module;
[0009] 发光单元, 设置于所述天花灯壳体组件内部; 以及 [0009] a light emitting unit disposed inside the ceiling lamp housing assembly;
[0010] 用于控制所述发光单元的蓝牙控制电路, 耦合至所述控制模块及所述发光单元  [0010] a Bluetooth control circuit for controlling the light emitting unit, coupled to the control module and the light emitting unit
[0011] 在本发明所述的蓝牙天花灯中, 还包括: [0011] In the Bluetooth ceiling light of the present invention, the method further includes:
[0012] 用于接入市电并提供直流电的电源驱动模块, 耦合至所述发光单元;  [0012] a power drive module for connecting to the mains and providing direct current, coupled to the light emitting unit;
[0013] 用于对所述电源驱动模块的直流电进行降压的蓝牙供电模块, 耦合至所述电源 驱动模块及所述蓝牙控制电路。  [0013] A Bluetooth power supply module for stepping down the DC power of the power drive module is coupled to the power drive module and the Bluetooth control circuit.
[0014] 在本发明所述的蓝牙天花灯中, 所述天花灯壳体组件包括天花灯面罩、 灯板、 天花灯外壳、 电路板、 支撑板、 下盖以及天花灯压线盖; 其中: [0014] In the Bluetooth ceiling light of the present invention, the ceiling light housing assembly includes a ceiling light mask, a light panel, Ceiling lamp housing, circuit board, support plate, lower cover and ceiling lamp crimping cover;
[0015] 所述天花灯面罩紧扣于所述天花灯外壳前侧, 所述灯板固定于所述天花灯外壳 与所述天花灯面罩之间;  [0015] the ceiling light mask is fastened to the front side of the ceiling light housing, and the light board is fixed between the ceiling light shell and the ceiling light mask;
[0016] 所述下盖安装在所述天花灯外壳后侧以形成一容纳腔, 所述电路板及所述支撑 板设置于所述容纳腔内; [0016] The lower cover is mounted on the rear side of the ceiling lamp housing to form a receiving cavity, and the circuit board and the supporting plate are disposed in the receiving cavity;
[0017] 所述天花板压线盖设置于所述下盖的侧壁; [0017] the ceiling crimping cover is disposed on a sidewall of the lower cover;
[0018] 所述发光单元设置于所述灯板内; 所述控制模块、 蓝牙 mesh模块及蓝牙控制电 路设置于所述电路板内。  [0018] The light emitting unit is disposed in the light panel; the control module, the Bluetooth mesh module, and a Bluetooth control circuit are disposed in the circuit board.
[0019] 在本发明所述的蓝牙天花灯中, 所述蓝牙控制电路包括: [0019] In the Bluetooth ceiling light of the present invention, the Bluetooth control circuit includes:
[0020] 第一蓝牙焊盘, 所述第一蓝牙焊盘耦合至所述控制模块的多个引脚, 并耦合至 蓝牙供电模块;  [0020] a first Bluetooth pad, the first Bluetooth pad being coupled to a plurality of pins of the control module, and coupled to a Bluetooth power supply module;
[0021] 多个 MOS管, 所述多个 MOS管分别耦合至所述第一蓝牙焊盘的多个接线端子  [0021] a plurality of MOS transistors respectively coupled to the plurality of terminals of the first Bluetooth pad
[0022] 第二蓝牙焊盘, 所述第二蓝牙焊盘耦合至所述发光单元, 所述多个 MOS管分别 耦合至所述第二蓝牙焊盘的多个接线端子。 [0022] a second Bluetooth pad, the second Bluetooth pad being coupled to the light emitting unit, the plurality of MOS transistors being respectively coupled to the plurality of terminals of the second Bluetooth pad.
[0023] 在本发明所述的蓝牙天花灯中, 所述发光单元包括单元焊盘、 多个冷色温 LED 单色灯、 多个暖色温 LED单色灯及多个 RGB灯; [0023] In the Bluetooth ceiling light of the present invention, the light emitting unit includes a unit pad, a plurality of cool color temperature LED monochrome lamps, a plurality of warm color temperature LED monochrome lamps, and a plurality of RGB lamps;
[0024] 每个 RGB灯包括 R灯、 G灯及 B灯; [0024] Each RGB lamp includes an R lamp, a G lamp, and a B lamp;
[0025] 所述单元焊盘包括多个阴极端子及一阳极端子, 所述多个阴极端子及所述阳极 端子分别耦合至所述第二蓝牙焊盘; 所述多个阴极端子分别耦合至所述多个冷 色温 LED单色灯、 多个暖色温 LED单色灯、 多个 R灯、 多个 G灯及多个 B灯的一端 ; 所述阳极端子耦合至所述电源驱动模块, 并耦合至所述多个冷色温 LED单色灯 、 多个暖色温 LED单色灯、 多个 R灯、 多个 G灯及多个 B灯的另一端。  [0025] the unit pad includes a plurality of cathode terminals and an anode terminal, the plurality of cathode terminals and the anode terminal are respectively coupled to the second Bluetooth pad; the plurality of cathode terminals are respectively coupled to the a plurality of cold color temperature LED monochrome lamps, a plurality of warm color temperature LED monochrome lamps, a plurality of R lamps, a plurality of G lamps, and one end of a plurality of B lamps; the anode terminal being coupled to the power driving module and coupled The other ends of the plurality of cool color temperature LED monochrome lamps, the plurality of warm color temperature LED monochrome lamps, the plurality of R lamps, the plurality of G lamps, and the plurality of B lamps.
[0026] 在本发明所述的蓝牙天花灯中, 还包括:  [0026] In the Bluetooth ceiling light of the present invention, the method further includes:
[0027] 射频模组, 所述射频模组耦合至所述控制模块。  [0027] The radio frequency module, the radio frequency module is coupled to the control module.
[0028] 在本发明所述的蓝牙天花灯中, 所述射频模组包括:  [0028] In the Bluetooth ceiling light of the present invention, the radio frequency module includes:
[0029] 射频电路, 耦合至所述控制模块;  [0029] a radio frequency circuit coupled to the control module;
[0030] 射频天线, 耦合至所述射频电路。 [0031] 在本发明所述的蓝牙天花灯中, 所述电源驱动模块包括: [0030] an RF antenna coupled to the RF circuit. [0031] In the Bluetooth ceiling light of the present invention, the power driving module includes:
[0032] 用于接入市电的交流输入端;  [0032] an AC input terminal for accessing the mains;
[0033] 整流电路, 耦合至所述交流输入端;  [0033] a rectifier circuit coupled to the alternating current input terminal;
[0034] 滤波电路, 耦合至所述整流模块;  [0034] a filter circuit coupled to the rectifier module;
[0035] 驱动控制电路, 耦合至所述滤波电路;  [0035] a drive control circuit coupled to the filter circuit;
[0036] 直流输出电路, 耦合至所述驱动控制电路。  [0036] A DC output circuit coupled to the drive control circuit.
[0037] 在本发明所述的蓝牙天花灯中, 所述蓝牙供电模块包括:  [0037] In the Bluetooth ceiling light of the present invention, the Bluetooth power supply module includes:
[0038] 降压 buck电路, 耦合至所述直流输出电路;  [0038] a buck buck circuit coupled to the DC output circuit;
[0039] 稳压电路, 耦合至所述蓝牙控制电路。  [0039] a voltage stabilizing circuit coupled to the Bluetooth control circuit.
[0040] 在本发明所述的蓝牙天花灯中, 所述天花灯壳体组件还包括第一螺丝、 弹簧连 接件、 第二螺丝、 弹簧件、 第三螺丝及第四螺丝; 其中:  [0040] In the Bluetooth ceiling light of the present invention, the ceiling light housing assembly further includes a first screw, a spring connector, a second screw, a spring member, a third screw, and a fourth screw; wherein:
[0041] 所述第一螺丝将所述灯板固定于所述天花灯外壳前侧;  [0041] the first screw fixes the light board to a front side of the ceiling light housing;
[0042] 所述第二螺丝将所述弹簧连接件固定于所述天花灯外壳的两侧, 所述弹簧连接 件上设置有所述弹簧件;  [0042] the second screw fixes the spring connector to two sides of the ceiling lamp housing, and the spring connector is provided with the spring member;
[0043] 所述第三螺丝将所述支撑板固定于所述电路板后侧;  [0043] the third screw fixes the support plate to a rear side of the circuit board;
[0044] 所述第四螺丝将所述天花灯压线盖固定于所述下盖的侧壁。  [0044] The fourth screw fixes the ceiling lamp crimping cover to the sidewall of the lower cover.
发明的有益效果  Advantageous effects of the invention
有益效果  Beneficial effect
[0045] 本发明的有益效果是, 通过蓝牙无线控制技术实现天花灯远程调节亮度、 调节 颜色、 定吋、 音乐炫彩、 情景模式等功能, 方便人们生活, 增加智能家居照明 的多样化和情趣化。  [0045] The invention has the beneficial effects that the blue light wireless control technology realizes the functions of remotely adjusting brightness, adjusting color, fixing color, music colorful, scene mode, etc. for the convenience of people's life, and increasing the diversity and interest of the smart home lighting. Chemical.
对附图的简要说明  Brief description of the drawing
附图说明  DRAWINGS
[0046] 下面将结合附图及实施例对本发明作进一步说明, 附图中:  [0046] The present invention will be further described below in conjunction with the accompanying drawings and embodiments, in which:
[0047] 图 1为本发明提供的一种蓝牙天花灯的模块框图; 1 is a block diagram of a Bluetooth ceiling light provided by the present invention;
[0048] 图 2为本发明提供的控制模块的连接示意图; 2 is a schematic diagram of connection of a control module provided by the present invention;
[0049] 图 3为本发明提供的蓝牙控制电路的结构示意图; 3 is a schematic structural diagram of a Bluetooth control circuit provided by the present invention;
[0050] 图 4为本发明提供的发光单元的结构示意图; [0051] 图 5为本发明提供的电源驱动模块的结构示意图; 4 is a schematic structural view of a light emitting unit provided by the present invention; [0051] FIG. 5 is a schematic structural diagram of a power driving module according to the present invention;
[0052] 图 6为本发明提供的蓝牙供电模块的结构示意图; 6 is a schematic structural diagram of a Bluetooth power supply module according to the present invention;
[0053] 图 7为本发明提供的天花灯壳体组件的结构示意图。 7 is a schematic structural view of an ceiling lamp housing assembly provided by the present invention.
本发明的实施方式 Embodiments of the invention
[0054] 为了对本发明的技术特征、 目的和效果有更加清楚的理解, 以下将对照附图详 细说明本发明的具体实施方式。 应当理解, 以下说明仅为本发明实施例的具体 阐述, 不应以此限制本发明的保护范围。  [0054] In order to more clearly understand the technical features, objects and effects of the present invention, the specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be understood that the following description is only illustrative of the embodiments of the present invention and should not be construed as limiting the scope of the invention.
[0055] 本发明提供一种蓝牙天花灯 100, 其目的在于, 通过 LED天花灯中采用蓝牙 mes h控制技术, 实现能够自由组网, 采用终端智能控制器、 遥控器等就能够远程控 制天花灯调光调色、 音乐炫彩等功能, 满足不同需求的使用人群, 操作性强, 体验性好。  [0055] The present invention provides a Bluetooth ceiling light 100, the purpose of which is to enable free networking by using Bluetooth mes h control technology in the LED ceiling light, and remotely control the ceiling light by using a terminal intelligent controller, a remote controller, and the like. Dimming color, music and other functions, to meet the needs of different people, the operation is strong, the experience is good.
[0056] 参见图 1, 图 1为本发明提供的一种蓝牙天花灯 100的模块框图, 该蓝牙天花灯 1 00包括天花灯壳体组件 1、 控制模块 2、 蓝牙 mesh模块 3、 发光单元 4、 蓝牙控制 电路 5、 电源驱动模块 6以及蓝牙供电模块 7。  [0056] Referring to FIG. 1, FIG. 1 is a block diagram of a Bluetooth ceiling light 100 according to the present invention. The Bluetooth ceiling light 100 includes a ceiling light housing component 1, a control module 2, a Bluetooth mesh module 3, and a light emitting unit 4. , a Bluetooth control circuit 5, a power drive module 6, and a Bluetooth power supply module 7.
[0057] 控制模块 2设置于所述天花灯壳体组件 1的内部。  [0057] The control module 2 is disposed inside the ceiling lamp housing assembly 1.
[0058] 用于通过蓝牙接收外部控制信号的蓝牙 mesh模块 3, 耦合至所述控制模块 2。  [0058] A Bluetooth mesh module 3 for receiving an external control signal via Bluetooth is coupled to the control module 2.
[0059] 发光单元 4, 设置于所述天花灯壳体组件 1内部。 [0059] The light emitting unit 4 is disposed inside the ceiling lamp housing assembly 1.
[0060] 用于控制所述发光单元 4的蓝牙控制电路 5, 耦合至所述控制模块 2及所述发光 单元 4。  [0060] A Bluetooth control circuit 5 for controlling the light emitting unit 4 is coupled to the control module 2 and the light emitting unit 4.
[0061] 用于接入市电并提供直流电的电源驱动模块 6, 耦合至所述发光单元 4。  [0061] A power drive module 6 for connecting to the mains and providing direct current is coupled to the lighting unit 4.
[0062] 用于对所述电源驱动模块 6的直流电进行降压的蓝牙供电模块 7, 耦合至所述电 源驱动模块 6及所述蓝牙控制电路 5。  [0062] A Bluetooth power supply module 7 for stepping down the DC power of the power drive module 6 is coupled to the power supply drive module 6 and the Bluetooth control circuit 5.
[0063] 参见图 2, 图 2为本发明提供的控制模块 2的连接示意图, 控制模块 2包括 8个输 出引脚, 并连接至射频模组 8及蓝牙 mesh模块 3。 控制模块 2优选内置 16KB容量 的数据存储器 (SRAM) , 嵌入 32位高性能 MCU与最大 48MHZ的吋钟信号, 强 大的存储功能能够提供足够的容量写入控制程序, 实现丰富多样的控制功能。  Referring to FIG. 2, FIG. 2 is a schematic diagram of the connection of the control module 2 provided by the present invention. The control module 2 includes eight output pins and is connected to the RF module 8 and the Bluetooth mesh module 3. Control module 2 preferably has a built-in 16KB data memory (SRAM) embedded in a 32-bit high-performance MCU and a maximum 48MHZ cesium clock signal. The powerful memory function provides enough capacity to write control programs for a wide variety of control functions.
[0064] 所述射频模组 8包括射频电路 81及射频天线 82。 射频电路 81耦合至所述控制模 块 2; 射频天线 82耦合至所述射频电路 81。 [0064] The radio frequency module 8 includes a radio frequency circuit 81 and a radio frequency antenna 82. A radio frequency circuit 81 is coupled to the control mode Block 2; RF antenna 82 is coupled to the RF circuit 81.
[0065] 参见图 3, 图 3为本发明提供的蓝牙控制电路 5的结构示意图, 所述蓝牙控制电 路 5包括第一蓝牙焊盘 51、 多个 MOS管 52及第二蓝牙焊盘 53。 Referring to FIG. 3, FIG. 3 is a schematic structural diagram of a Bluetooth control circuit 5 according to the present invention. The Bluetooth control circuit 5 includes a first Bluetooth pad 51, a plurality of MOS tubes 52, and a second Bluetooth pad 53.
[0066] 所述第一蓝牙焊盘 51耦合至所述控制模块 2的多个引脚, 并耦合至蓝牙供电模 块 7; 第一蓝牙焊盘 51也包括 8个接线端子, 分别连接至控制模块 2的 8个引脚, 其中, 第一蓝牙焊盘 51的接线端子 1还连接至蓝牙供电模块 7以接入 +3.3V电压。 [0066] The first Bluetooth pad 51 is coupled to a plurality of pins of the control module 2 and coupled to the Bluetooth power supply module 7; the first Bluetooth pad 51 also includes 8 terminals, which are respectively connected to the control module The 8 pins of 2, wherein the terminal 1 of the first Bluetooth pad 51 is also connected to the Bluetooth power supply module 7 to access the +3.3V voltage.
[0067] 所述多个 MOS管 52分别耦合至所述第一蓝牙焊盘 51的多个接线端子, 多个 MO[0067] The plurality of MOS transistors 52 are respectively coupled to the plurality of terminals of the first Bluetooth pad 51, and the plurality of MOs
S管 52如图 3中的 Ql-Q5。 The S tube 52 is as shown in Fig. 3, Ql-Q5.
[0068] 所述第二蓝牙焊盘 53耦合至所述发光单元 4, 所述多个 MOS管 52分别耦合至所 述第二蓝牙焊盘 53的多个接线端子。 Q1-Q5连接至第二蓝牙焊盘 53的接线端子 1-The second Bluetooth pad 53 is coupled to the light emitting unit 4, and the plurality of MOS transistors 52 are respectively coupled to a plurality of terminals of the second Bluetooth pad 53. Q1-Q5 is connected to the terminal of the second Bluetooth pad 53 1-
5, 接线端子 6连接至电源驱动模块 66以接入工作电压。 5. Terminal block 6 is connected to power supply driver module 66 to access the operating voltage.
[0069] 所述蓝牙控制电路 5的电路功能为: 当蓝牙控制电路 5工作后, 内部 MCU (即 控制模块 2) 接收智能终端设备的指令, 控制模块 2通过输出五路 PWM调光调色 及 RGB信号来控制 Ql、 Q2、 Q3、 Q4、 Q5这5个MOS的关断导通吋间。 [0069] The circuit function of the Bluetooth control circuit 5 is: After the Bluetooth control circuit 5 is working, the internal MCU (ie, the control module 2) receives the instruction of the intelligent terminal device, and the control module 2 outputs the five-way PWM dimming color and The RGB signal controls the turn-off turns of the five MOSs Q1, Q2, Q3, Q4, and Q5.
[0070] 参见图 4, 图 4为本发明提供的发光单元 4的结构示意图, 所述发光单元 4包括单 元焊盘 41、 多个冷色温 LED单色灯 42、 多个暖色温 LED单色灯 43及多个 RGB灯 44 [0070] Referring to FIG. 4, FIG. 4 is a schematic structural diagram of a light emitting unit 4 according to the present invention. The light emitting unit 4 includes a unit pad 41, a plurality of cool color temperature LED monochrome lamps 42, and a plurality of warm color temperature LED monochrome lamps. 43 and multiple RGB lights 44
[0071] 每个 RGB灯 44包括 R灯 441、 G灯 442及 B灯 443; 所述单元焊盘 41包括多个阴极 端子 411及一阳极端子 412, 所述多个阴极端子 411及所述阳极端子 412分别耦合 至所述第二蓝牙焊盘 53; 所述多个阴极端子 411分别耦合至所述多个冷色温 LED 单色灯 42、 多个暖色温 LED单色灯 43、 多个 R灯、 多个 G灯及多个 B灯的一端; 所述阳极端子 412耦合至所述电源驱动模块 6, 并耦合至所述多个冷色温 LED单色 灯 42、 多个暖色温 LED单色灯 43、 多个 R灯 441、 多个 G灯 442及多个 B灯 443的另 一端。 单元焊盘 41的接线端子 1-5连接至第二蓝牙焊盘 53的接线端子 1-5, 单元焊 盘 41的接线端子 6连接至第二蓝牙焊盘 53的接线端子 6以接入工作电压。 [0071] Each RGB lamp 44 includes an R lamp 441, a G lamp 442, and a B lamp 443; the unit pad 41 includes a plurality of cathode terminals 411 and an anode terminal 412, and the plurality of cathode terminals 411 and the anode Terminals 412 are respectively coupled to the second Bluetooth pads 53; the plurality of cathode terminals 411 are respectively coupled to the plurality of cool color temperature LED monochrome lamps 42, a plurality of warm color temperature LED monochrome lamps 43, and a plurality of R lamps One end of a plurality of G lamps and a plurality of B lamps; the anode terminal 412 is coupled to the power supply driving module 6 and coupled to the plurality of cool color temperature LED monochrome lamps 42 and a plurality of warm color temperature LED monochrome lamps 43. The other ends of the plurality of R lamps 441, the plurality of G lamps 442, and the plurality of B lamps 443. The terminal 1-5 of the unit pad 41 is connected to the terminal 1-5 of the second Bluetooth pad 53, and the terminal 6 of the unit pad 41 is connected to the terminal 6 of the second Bluetooth pad 53 to be connected to the operating voltage. .
[0072] 其中, 5个 MOS管 52的漏极分别和天花灯负载的 R灯 441、 G灯 442、 B灯 443、 冷 色温 LED单色灯 42、 暖色温 LED单色灯 43的阴极相连。 发光单元 4的阳极直接接 电源驱动模块 6的输出正极, 即连接至单元焊盘 41的接线端子 6。 蓝牙控制电路 5 通过接收智能终端设备的指令来控制每路 LED灯串的工作状态, 从而控制输出 L ED的色温变化和亮度变化及多种颜色变化, 实现调光调色和调颜色。 [0072] The drains of the five MOS transistors 52 are respectively connected to the cathodes of the ceiling lamp-loaded R lamp 441, G lamp 442, B lamp 443, cold color temperature LED monochrome lamp 42, and warm color temperature LED monochrome lamp 43. The anode of the light-emitting unit 4 is directly connected to the output positive terminal of the power supply driving module 6, that is, to the terminal 6 of the unit pad 41. Bluetooth control circuit 5 The operating state of each LED string is controlled by receiving an instruction of the smart terminal device, thereby controlling the color temperature change and the brightness change and the plurality of color changes of the output L ED to realize dimming and color adjustment.
[0073] 发光单元 4这部分电路是贴片在铝基板上, 然后采用粘性的导热胶紧贴在天花 灯的散热器上, 再通过雾面盖、 透镜实现均匀发光。 发光单元 4采用 6PIN的型号 为 3528的 RGB灯珠和单颗 0.2W的型号为白光 2835的灯珠组成。  [0073] The part of the circuit of the light-emitting unit 4 is mounted on the aluminum substrate, and then adhered to the heat sink of the ceiling lamp by using a viscous thermal conductive glue, and then uniformly illuminated by the matte cover and the lens. The illuminating unit 4 is composed of a 6PIN RGB lamp bead of 3528 type and a single 0.2W lamp bead of white light 2835.
[0074] 参见图 5, 图 5为本发明提供的电源驱动模块 6的结构示意图; 所述电源驱动模 块 6包括交流输入端 61、 整流电路 62、 滤波电路 63、 驱动控制电路 64及直流输出 电路 65。  Referring to FIG. 5, FIG. 5 is a schematic structural diagram of a power driving module 6 according to the present invention. The power driving module 6 includes an AC input terminal 61, a rectifier circuit 62, a filter circuit 63, a driving control circuit 64, and a DC output circuit. 65.
[0075] 交流输入端 61用于接入 200-240V市电。  [0075] The AC input terminal 61 is used to access 200-240V mains.
[0076] 整流电路 62耦合至所述交流输入端 61。 [0076] A rectifier circuit 62 is coupled to the AC input terminal 61.
[0077] 滤波电路 63耦合至所述整流电路 62。 [0077] A filter circuit 63 is coupled to the rectifier circuit 62.
[0078] 驱动控制电路 64耦合至所述滤波电路 63。 A drive control circuit 64 is coupled to the filter circuit 63.
[0079] 直流输出电路 65耦合至所述驱动控制电路 64。 A DC output circuit 65 is coupled to the drive control circuit 64.
[0080] 驱动控制电路 64中的 U1为集成封装的隔离 LED驱动控制 IC, 型号是 FT838MBD [0080] U1 in the drive control circuit 64 is an isolated package LED drive control IC of the integrated package, model number is FT838MBD
, 其组成的电路为后级电路 (即直流输出电路 65) 提供稳定的电压和电流输出 。 详细工作过程是当整个电源接通 AC (交流) 220V市电后, 经过桥堆 DB 1 (即 整流电路 62) 整流, 然后经过 Cl、 C2、 L1组成的 π型滤波, 由于驱动控制电路 6 4内部集成幵关管, 驱动控制电路 64内部的逻辑电路控制幵关管的导通与关闭, 变压器实现电磁能量的转换, 通过驱动控制电路 64的控制实现稳定的电压和电 流输出。 The circuit consisting of a stable voltage and current output for the post-stage circuit (ie, the DC output circuit 65). The detailed working process is that after the entire power supply is turned on AC (AC) 220V mains, it is rectified by the bridge DB 1 (ie, the rectifier circuit 62), and then π-type filtering composed of Cl, C2, L1, because the drive control circuit 6 4 The internal integrated switch, the logic circuit inside the drive control circuit 64 controls the on and off of the switch, the transformer realizes the conversion of electromagnetic energy, and the stable voltage and current output are realized by the control of the drive control circuit 64.
[0081] 参见图 6, 图 6为本发明提供的蓝牙供电模块 7的结构示意图, 所述蓝牙供电模 块 7包括降压 buck电路 71及稳压电路 72。  Referring to FIG. 6, FIG. 6 is a schematic structural diagram of a Bluetooth power supply module 7 according to the present invention. The Bluetooth power supply module 7 includes a buck buck circuit 71 and a voltage stabilizing circuit 72.
[0082] 降压 buck电路 71耦合至所述直流输出电路 65。 A buck buck circuit 71 is coupled to the DC output circuit 65.
[0083] 稳压电路 72耦合至所述蓝牙控制电路 5。 A voltage stabilizing circuit 72 is coupled to the Bluetooth control circuit 5.
[0084] 其中, 降压 buck电路 71中的 U3型号为 SI3116, 降压 buck电路 71的功能是将电源 驱动模块 6输出的 20V电压降压为恒定的 3.3V电压, 另外还有一个 3.3V的稳压二 极管 ZD1, 这样更加精确给蓝牙模块供电。 电路大致的工作流程如下: 当 U3的 5 脚上电后, U3幵始正常工作, 然后通过 3脚 FB脚的外接分压电阻来调节占空比, 也就是调节输出电压为 3.3V。 其中 U3外围电路中的 D4为续流二极管, C12电解 电容提供能量。 [0084] wherein, the U3 model in the buck buck circuit 71 is SI3116, and the function of the buck buck circuit 71 is to buck the 20V voltage output from the power supply driving module 6 to a constant 3.3V voltage, and another 3.3V. Zener diode ZD1, which provides more accurate power to the Bluetooth module. The approximate working process of the circuit is as follows: When the 5 pin of U3 is powered on, U3 starts to work normally, and then the duty cycle is adjusted by the external voltage dividing resistor of the 3 pin FB pin. That is, the output voltage is regulated to be 3.3V. Among them, D4 in the peripheral circuit of U3 is a freewheeling diode, and C12 electrolytic capacitor provides energy.
[0085] 参见图 7, 图 7为本发明提供的天花灯壳体组件 1的结构示意图, 所述天花灯壳 体组件 1包括天花灯面罩 101、 灯板 102、 天花灯外壳 103、 电路板 104、 支撑板 10 5、 下盖 106、 天花灯压线盖 107、 第一螺丝 108、 弹簧连接件 109、 第二螺丝 110 、 弹簧件 m、 第三螺丝 112及第四螺丝 113; 其中: Referring to FIG. 7, FIG. 7 is a schematic structural view of a ceiling lamp housing assembly 1 according to the present invention. The ceiling lamp housing assembly 1 includes a ceiling lamp cover 101, a lamp panel 102, a ceiling lamp housing 103, and a circuit board 104. , a support plate 10 5 , a lower cover 106 , a ceiling lamp crimping cover 107 , a first screw 108 , a spring connector 109 , a second screw 110 , a spring member m , a third screw 112 , and a fourth screw 113 ;
[0086] 所述天花灯面罩 101紧扣于所述天花灯外壳 103前侧, 所述灯板 102固定于所述 天花灯外壳 103与所述天花灯面罩 101之间;  [0086] The ceiling light mask 101 is fastened to the front side of the ceiling light housing 103, and the light board 102 is fixed between the ceiling light housing 103 and the ceiling light mask 101;
[0087] 所述下盖 106安装在所述天花灯外壳 103后侧以形成一容纳腔, 所述电路板 104 及所述支撑板 105设置于所述容纳腔内;  [0087] The lower cover 106 is mounted on the rear side of the ceiling lamp housing 103 to form a receiving cavity, and the circuit board 104 and the support plate 105 are disposed in the receiving cavity;
[0088] 所述天花板压线盖 107设置于所述下盖 106的侧壁;  [0088] The ceiling crimping cover 107 is disposed on a sidewall of the lower cover 106;
[0089] 所述发光单元 4设置于所述灯板 102内; 所述控制模块 2、 蓝牙 mesh模块 3及蓝牙 控制电路 5设置于所述电路板 104内。  [0089] The light emitting unit 4 is disposed in the light board 102; the control module 2, the Bluetooth mesh module 3, and the Bluetooth control circuit 5 are disposed in the circuit board 104.
[0090] 所述第一螺丝 108将所述灯板 102固定于所述天花灯外壳 103前侧; [0090] the first screw 108 fixes the light board 102 to the front side of the ceiling lamp housing 103;
[0091] 所述第二螺丝 110将所述弹簧连接件 109固定于所述天花灯外壳 103的两侧, 所 述弹簧连接件 109上设置有所述弹簧件 111; [0091] The second screw 110 is fixed to the two sides of the ceiling lamp housing 103, the spring connector 109 is provided with the spring member 111;
[0092] 所述第三螺丝 112将所述支撑板 105固定于所述电路板 104后侧; [0092] The third screw 112 fixes the support plate 105 to the rear side of the circuit board 104;
[0093] 所述第四螺丝 113将所述天花灯压线盖 107固定于所述下盖 106的侧壁。 [0093] The fourth screw 113 fixes the ceiling lamp crimping cover 107 to the side wall of the lower cover 106.
[0094] 本文提供了实施例的各种操作。 在一个实施例中, 所述的一个或操作可以构成 一个或计算机可读介质上存储的计算机可读指令, 其在被电子设备执行吋将使 得计算设备执行所述操作。 描述一些或所有操作的顺序不应当被解释为暗示这 些操作必需是顺序相关的。 本领域技术人员将理解具有本说明书的益处的可替 代的排序。 而且, 应当理解, 不是所有操作必需在本文所提供的每个实施例中 存在。 [0094] Various operations of the embodiments are provided herein. In one embodiment, the one or operations may constitute computer readable instructions stored on a computer readable medium that, when executed by an electronic device, will cause the computing device to perform the operations. The order in which some or all of the operations are described should not be construed as implying that the operations must be sequential. Those skilled in the art will appreciate alternative rankings that have the benefit of this specification. Moreover, it should be understood that not all operations must be present in every embodiment provided herein.
[0095] 而且, 本文所使用的词语"优选的 "意指用作实例、 示例或例证。 奉文描述为" 优选的 "任意方面或设计不必被解释为比其他方面或设计更有利。 相反, 词语"优 选的"的使用旨在以具体方式提出概念。 如本申请中所使用的术语 "或"旨在意指 包含的 "或"而非排除的"或"。 即, 除非另外指定或从上下文中清楚, "X使用 A或 B"意指自然包括排列的任意一个。 即, 如果 X使用 A; X使用 B; 或 X使用 A和 B 二者, 则" X使用 A或 B "在前述任一示例中得到满足。 [0095] Moreover, the word "preferred" as used herein is intended to serve as an example, instance, or illustration. Any aspect or design described as "preferred" in the text is not necessarily to be construed as being more advantageous than other aspects or designs. Instead, the use of the word "preferred" is intended to present a concept in a specific manner. The term "or" as used in the present application is intended to mean "or" or "excluding". That is, unless otherwise specified or clear from the context, "X uses A or B" means naturally including any one of the permutations. That is, if X uses A; X uses B; or X uses both A and B, then "X uses A or B" is satisfied in any of the foregoing examples.
[0096] 而且, 尽管已经相对于一个或实现方式示出并描述了本公幵, 但是本领域技术 人员基于对本说明书和附图的阅读和理解将会想到等价变型和修改。 本公幵包 括所有这样的修改和变型, 并且仅由所附权利要求的范围限制。 特别地关于由 上述组件 (例如元件、 资源等) 执行的各种功能, 用于描述这样的组件的术语 旨在对应于执行所述组件的指定功能 (例如其在功能上是等价的) 的任意组件 (除非另外指示) , 即使在结构上与执行本文所示的本公幵的示范性实现方式 中的功能的公幵结构不等同。 此外, 尽管本公幵的特定特征已经相对于若干实 现方式中的仅一个被公幵, 但是这种特征可以与如可以对给定或特定应用而言 是期望和有利的其他实现方式的一个或其他特征组合。 而且, 就术语 "包括"、 " 具有"、 "含有 "或其变形被用在具体实施方式或权利要求中而言, 这样的术语旨 在以与术语"包含"相似的方式包括。 [0096] Moreover, while the present disclosure has been shown and described with respect to the embodiments, All such modifications and variations are encompassed by the present invention and are limited only by the scope of the appended claims. With particular regard to various functions performed by the above-described components (e.g., components, resources, etc.), the terms used to describe such components are intended to correspond to the specified functions of the components (e.g., they are functionally equivalent). Any component (unless otherwise indicated) is not equivalent in structure to the public structure of the functions in the exemplary implementations of the present disclosure shown herein. Moreover, although specific features of the present disclosure have been disclosed with respect to only one of several implementations, such features may be associated with one or other implementations as may be desirable and advantageous for a given or particular application. Other feature combinations. Furthermore, the terms "comprising", "having", "comprising" or "comprising" are used in the particular embodiments or claims, and such terms are intended to be encompassed in a manner similar to the term "comprising."
[0097] 本发明实施例中的各功能单元可以集成在一个处理模块中, 也可以是各个单元 单独物理存在, 也可以两个或两个以上单元集成在一个模块中。 上述集成的模 块既可以采用硬件的形式实现, 也可以采用软件功能模块的形式实现。 所述集 成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用吋, 也 可以存储在一个计算机可读取存储介质中。 上述提到的存储介质可以是只读存 储器, 磁盘或光盘等。 上述的各装置或系统, 可以执行相应方法实施例中的方 法。  [0097] Each functional unit in the embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module. The above integrated modules can be implemented in the form of hardware or in the form of software functional modules. The integrated modules, if implemented in the form of software functional modules and sold or used as separate products, may also be stored in a computer readable storage medium. The above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like. Each of the above-described devices or systems can perform the method in the corresponding method embodiment.
[0098] 综上所述, 虽然本发明已以优选实施例揭露如上, 但上述优选实施例并非用以 限制本发明, 本领域的普通技术人员, 在不脱离本发明的精神和范围内, 均可 作各种更动与润饰, 因此本发明的保护范围以权利要求界定的范围为准。  In the above, although the present invention has been disclosed in the above preferred embodiments, the preferred embodiments are not intended to limit the invention, and those skilled in the art, without departing from the spirit and scope of the invention, Various changes and modifications may be made, and the scope of the invention is defined by the scope of the claims.

Claims

权利要求书  Claim
[权利要求 1] 一种蓝牙天花灯, 其特征在于, 包括:  [Claim 1] A Bluetooth ceiling light, comprising:
天花灯壳体组件;  Ceiling lamp housing assembly;
控制模块, 设置于所述天花灯壳体组件的内部; 用于通过蓝牙接收外部控制信号的蓝牙 mesh模块, 耦合至所述控制 模块;  a control module disposed inside the ceiling lamp housing assembly; a Bluetooth mesh module for receiving an external control signal via Bluetooth, coupled to the control module;
发光单元, 设置于所述天花灯壳体组件内部; 以及 用于控制所述发光单元的蓝牙控制电路, 耦合至所述控制模块及所述 发光单元。  a lighting unit disposed inside the ceiling lamp housing assembly; and a Bluetooth control circuit for controlling the lighting unit, coupled to the control module and the lighting unit.
[权利要求 2] 根据权利要求 1所述的蓝牙天花灯, 其特征在于, 还包括:  [Claim 2] The Bluetooth ceiling light according to claim 1, further comprising:
用于接入市电并提供直流电的电源驱动模块, 耦合至所述发光单元; 用于对所述电源驱动模块的直流电进行降压的蓝牙供电模块, 耦合至 所述电源驱动模块及所述蓝牙控制电路。  a power driving module for connecting to the mains and providing direct current, coupled to the light emitting unit; a Bluetooth power supply module for stepping down the direct current of the power driving module, coupled to the power driving module and the bluetooth Control circuit.
[权利要求 3] 根据权利要求 1所述的蓝牙天花灯, 其特征在于, 所述天花灯壳体组 件包括天花灯面罩、 灯板、 天花灯外壳、 电路板、 支撑板、 下盖以及 天花灯压线盖; 其中:  [Claim 3] The Bluetooth ceiling light according to claim 1, wherein the ceiling light housing assembly comprises a ceiling light mask, a light board, a ceiling light housing, a circuit board, a support plate, a lower cover, and a ceiling light Pressure line cover; where:
所述天花灯面罩紧扣于所述天花灯外壳前侧, 所述灯板固定于所述天 花灯外壳与所述天花灯面罩之间; 所述下盖安装在所述天花灯外壳后侧以形成一容纳腔, 所述电路板及 所述支撑板设置于所述容纳腔内;  The ceiling light cover is fastened to the front side of the ceiling light housing, the light board is fixed between the ceiling light shell and the ceiling light mask; the lower cover is mounted on the rear side of the ceiling light shell Forming a receiving cavity, the circuit board and the supporting plate are disposed in the receiving cavity;
所述天花板压线盖设置于所述下盖的侧壁;  The ceiling crimping cover is disposed on a sidewall of the lower cover;
所述发光单元设置于所述灯板内; 所述控制模块、 蓝牙 mesh模块及 蓝牙控制电路设置于所述电路板内。  The light emitting unit is disposed in the light panel; the control module, the Bluetooth mesh module, and the Bluetooth control circuit are disposed in the circuit board.
[权利要求 4] 根据权利要求 2所述的蓝牙天花灯, 其特征在于, 所述蓝牙控制电路 包括: [Claim 4] The Bluetooth ceiling light according to claim 2, wherein the Bluetooth control circuit comprises:
第一蓝牙焊盘, 所述第一蓝牙焊盘耦合至所述控制模块的多个引脚, 并耦合至蓝牙供电模块;  a first Bluetooth pad, the first Bluetooth pad being coupled to a plurality of pins of the control module and coupled to a Bluetooth power supply module;
多个 MOS管, 所述多个 MOS管分别耦合至所述第一蓝牙焊盘的多个 接线端子; a plurality of MOS transistors, the plurality of MOS tubes being respectively coupled to the plurality of first Bluetooth pads Terminals;
第二蓝牙焊盘, 所述第二蓝牙焊盘耦合至所述发光单元, 所述多个 M OS管分别耦合至所述第二蓝牙焊盘的多个接线端子。  a second Bluetooth pad, the second Bluetooth pad being coupled to the lighting unit, the plurality of MOS tubes being coupled to a plurality of terminals of the second Bluetooth pad, respectively.
根据权利要求 4所述的蓝牙天花灯, 其特征在于, 所述发光单元包括 单元焊盘、 多个冷色温 LED单色灯、 多个暖色温 LED单色灯及多个 R GB灯;  The Bluetooth ceiling light according to claim 4, wherein the light emitting unit comprises a unit pad, a plurality of cool color temperature LED monochrome lamps, a plurality of warm color temperature LED monochrome lamps, and a plurality of R GB lamps;
每个 RGB灯包括 R灯、 G灯及 B灯;  Each RGB lamp includes an R lamp, a G lamp, and a B lamp;
所述单元焊盘包括多个阴极端子及一阳极端子, 所述多个阴极端子及 所述阳极端子分别耦合至所述第二蓝牙焊盘; 所述多个阴极端子分别 耦合至所述多个冷色温 LED单色灯、 多个暖色温 LED单色灯、 多个 R 灯、 多个 G灯及多个 B灯的一端; 所述阳极端子耦合至所述电源驱动 模块, 并耦合至所述多个冷色温 LED单色灯、 多个暖色温 LED单色灯 The unit pad includes a plurality of cathode terminals and an anode terminal, the plurality of cathode terminals and the anode terminal are respectively coupled to the second Bluetooth pad; the plurality of cathode terminals are respectively coupled to the plurality of a cold color temperature LED monochrome lamp, a plurality of warm color temperature LED monochrome lamps, a plurality of R lamps, a plurality of G lamps, and one end of a plurality of B lamps; said anode terminal being coupled to said power supply driving module and coupled to said Multiple cool color temperature LED monochrome lights, multiple warm color temperature LED monochrome lights
、 多个 R灯、 多个 G灯及多个 B灯的另一端。 , the other ends of the plurality of R lamps, the plurality of G lamps, and the plurality of B lamps.
根据权利要求 1所述的蓝牙天花灯, 其特征在于, 还包括: 射频模组, 所述射频模组耦合至所述控制模块。  The Bluetooth ceiling light of claim 1 , further comprising: a radio frequency module, the radio frequency module being coupled to the control module.
根据权利要求 6所述的蓝牙天花灯, 其特征在于, 所述射频模组包括 射频电路, 耦合至所述控制模块;  The Bluetooth ceiling light according to claim 6, wherein the radio frequency module comprises a radio frequency circuit coupled to the control module;
射频天线, 耦合至所述射频电路。  An RF antenna coupled to the RF circuit.
[权利要求 8] 根据权利要求 2所述的蓝牙天花灯, 其特征在于, 所述电源驱动模块 包括: [Claim 8] The Bluetooth ceiling light according to claim 2, wherein the power driving module comprises:
用于接入市电的交流输入端;  An AC input for accessing the mains;
整流电路, 耦合至所述交流输入端;  a rectifier circuit coupled to the alternating current input terminal;
滤波电路, 耦合至所述整流模块;  a filter circuit coupled to the rectifier module;
驱动控制电路, 耦合至所述滤波电路;  Driving a control circuit coupled to the filter circuit;
直流输出电路, 耦合至所述驱动控制电路。  A DC output circuit is coupled to the drive control circuit.
[权利要求 9] 根据权利要求 8所述的蓝牙天花灯, 其特征在于, 所述蓝牙供电模块 包括: 降压 buck电路, 耦合至所述直流输出电路; [Claim 9] The Bluetooth ceiling light according to claim 8, wherein the Bluetooth power supply module comprises: a buck buck circuit coupled to the DC output circuit;
稳压电路, 耦合至所述蓝牙控制电路。  A voltage stabilizing circuit coupled to the Bluetooth control circuit.
[权利要求 10] 根据权利要求 3所述的蓝牙天花灯, 其特征在于, 所述天花灯壳体组 件还包括第一螺丝、 弹簧连接件、 第二螺丝、 弹簧件、 第三螺丝及第 四螺丝; 其中: 所述第一螺丝将所述灯板固定于所述天花灯外壳前侧; [Claim 10] The Bluetooth ceiling light according to claim 3, wherein the ceiling light housing assembly further comprises a first screw, a spring connector, a second screw, a spring member, a third screw, and a fourth a screw; wherein: the first screw fixes the light board to a front side of the ceiling light housing;
所述第二螺丝将所述弹簧连接件固定于所述天花灯外壳的两侧, 所述 弹簧连接件上设置有所述弹簧件;  The second screw fixes the spring connector to two sides of the ceiling lamp housing, and the spring connector is provided with the spring member;
所述第三螺丝将所述支撑板固定于所述电路板后侧;  The third screw fixes the support plate to a rear side of the circuit board;
所述第四螺丝将所述天花灯压线盖固定于所述下盖的侧壁。  The fourth screw fixes the ceiling lamp crimping cover to the side wall of the lower cover.
PCT/CN2017/082316 2016-05-30 2017-04-28 Bluetooth ceiling lamp WO2017206640A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201620509037 2016-05-30
CN201620509037.1 2016-05-30

Publications (1)

Publication Number Publication Date
WO2017206640A1 true WO2017206640A1 (en) 2017-12-07

Family

ID=60478570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082316 WO2017206640A1 (en) 2016-05-30 2017-04-28 Bluetooth ceiling lamp

Country Status (1)

Country Link
WO (1) WO2017206640A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3373708A4 (en) * 2016-06-03 2019-01-02 Shenzhen JBT Smart Lighting Co., Ltd. Bluetooth controller
US10685559B2 (en) 2016-07-19 2020-06-16 Shenzhen Jbt Smart Lighting Co., Ltd. Bluetooth remote controller

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140239816A1 (en) * 2013-02-25 2014-08-28 Samsung Electronics Co., Ltd. Lighting control system and method for controlling the same
CN204442783U (en) * 2015-03-16 2015-07-01 李俊杰 A kind of Bluetooth LED lamp
CN204611558U (en) * 2015-05-28 2015-09-02 厦门光莆电子股份有限公司 The music lamp affixed to the ceiling of Color tunable
CN204879559U (en) * 2015-08-08 2015-12-16 湖北爱商光电股份有限公司 Bluetooth intelligent ball steeps lamp
CN204994012U (en) * 2015-09-30 2016-01-20 横店集团得邦照明股份有限公司 LED ball bubble lamp based on network deployment of bluetooth mesh
CN205793520U (en) * 2016-06-03 2016-12-07 深圳市蚂蚁雄兵物联技术有限公司 A kind of bluetooth controller
CN205961495U (en) * 2016-05-30 2017-02-15 深圳市蚂蚁雄兵物联技术有限公司 Blue tooth surface board lamp
CN206061200U (en) * 2016-05-30 2017-03-29 深圳市蚂蚁雄兵物联技术有限公司 A kind of bluetooth lamp affixed to the ceiling

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140239816A1 (en) * 2013-02-25 2014-08-28 Samsung Electronics Co., Ltd. Lighting control system and method for controlling the same
CN204442783U (en) * 2015-03-16 2015-07-01 李俊杰 A kind of Bluetooth LED lamp
CN204611558U (en) * 2015-05-28 2015-09-02 厦门光莆电子股份有限公司 The music lamp affixed to the ceiling of Color tunable
CN204879559U (en) * 2015-08-08 2015-12-16 湖北爱商光电股份有限公司 Bluetooth intelligent ball steeps lamp
CN204994012U (en) * 2015-09-30 2016-01-20 横店集团得邦照明股份有限公司 LED ball bubble lamp based on network deployment of bluetooth mesh
CN205961495U (en) * 2016-05-30 2017-02-15 深圳市蚂蚁雄兵物联技术有限公司 Blue tooth surface board lamp
CN206061200U (en) * 2016-05-30 2017-03-29 深圳市蚂蚁雄兵物联技术有限公司 A kind of bluetooth lamp affixed to the ceiling
CN205793520U (en) * 2016-06-03 2016-12-07 深圳市蚂蚁雄兵物联技术有限公司 A kind of bluetooth controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3373708A4 (en) * 2016-06-03 2019-01-02 Shenzhen JBT Smart Lighting Co., Ltd. Bluetooth controller
US10492278B2 (en) 2016-06-03 2019-11-26 Shenzhen Jbt Smart Lighting Co., Ltd. Bluetooth controller
US10685559B2 (en) 2016-07-19 2020-06-16 Shenzhen Jbt Smart Lighting Co., Ltd. Bluetooth remote controller

Similar Documents

Publication Publication Date Title
WO2017206737A1 (en) Bluetooth ceiling lamp
WO2017206641A1 (en) Bluetooth panel lamp
WO2017206636A1 (en) Bluetooth bulb lamp
WO2017215406A1 (en) Ceiling light with bluetooth speaker
WO2017206738A1 (en) Bluetooth controller
WO2017206719A1 (en) Bluetooth sensing switch panel
WO2017206637A1 (en) Bluetooth control power source
CN103162198A (en) Light emitting diode (LED) ceiling lamp
WO2017206720A1 (en) Bluetooth-sensing switching lamp socket
WO2017206640A1 (en) Bluetooth ceiling lamp
WO2017206639A1 (en) Bluetooth down lamp
WO2017206638A1 (en) Bluetooth bulb lamp
WO2017206752A1 (en) Bluetooth switch panel
WO2015078354A1 (en) Card type led driver and transportation means with card type driver
TWM527525U (en) Intelligent lighting device capable of reducing power consumption in standby
CN201748257U (en) Novel energy-saving and health-care leaf-shaped LED read-write table lamp
WO2018040628A1 (en) Bluetooth ceiling lamp fan
CN210670669U (en) Low-power-consumption intelligent bulb lamp and intelligent bulb lamp body
CN202750270U (en) Intelligent light-emitting diode (LED) ceiling lamp
CN202514114U (en) Dimming control system of light emitting diode (LED) in studio
WO2017206727A1 (en) Bluetooth sensing lamp switch
CN205447434U (en) LED down lamp with adjustable it is photochromic
CN212481068U (en) Intelligent floodlight
CN215489342U (en) Landscape illuminating lamp with wireless cascade function
CN204217159U (en) A kind of electrodeless intelligent dimming LED lamp system with Radio Control Function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17805585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17805585

Country of ref document: EP

Kind code of ref document: A1